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Abstract 

 

Consistent VRP with profits is a variant of vehicle routing problems, it was introduced 

in 2019. In this problem, each instance is defined by a depot, a group of customers (frequent 

customers and non-frequent customers) and a group of vehicles with a specific capacity. In 

this variant, each customer has a demand, a service time, and a fixed profit. The goal is to find 

the best set of paths for the group of vehicles, while respecting the constraints of consistency, 

which are Person consistency, Time consistency, and consistency in the delivered quantity. In 

this work, we used the simulated annealing meta-heuristic for solving the consistent VRP 

with profit. In the definition of the neighborhood, we have implemented several operators 

noted 2-Opt move, 1-1 exchange move and 1-0 exchange move. In the 

computational experiments, we have compared the results obtained by the simulated 

annealing algorithm with those of an Adaptive Tabu Search and also with those of branch 

and-bound exact method. The comparison showed that SA performs good results for small-

sized instances. For the large-sized instances we found that SA is not enough efficient to solve 

this NP-complete problem, comparing with ATS. 

 

Keywords: vehicle routing problem, consistent vehicle routing problem with profit, meta-

heuristic, simulated annealing. 



 

 
 

 ملخص

 هذه في. 2019 عام في تقديمه تم وقد المركبات، توجيه مشاكل أشكال أحد الأرباح معالمتناسق  VRP تبريع

( رينمتكر غير وعملاء متكررون عملاء) العملاء من مجموعة مستودع، خلال من نموذج كل تعريف يتم ، المشكلة

 .ثابتة وأرباح خدمة قتو ثابت، طلب عميل لكل ،المشكل هذا في. محددة استيعاب قدرة ذات المركبات من ومجموعة

 تناسق في تمثلت والتي ،التناسق قيود مراعاة مع المركبات، لمجموعة المسارات من مجموعة أفضل على العثور هو الهدف

 VRP لحل حاكيالم التلدين خوارزمية استخدمنا ، العمل هذا في. المسلمة الكمية فيوالتناسق  الوقتتناسق  الأشخاص،

 التبادل حركة ,Opt-2و هي حركة  ،العمليات من العديد قمنا ببرمجة العديد من لتعريف علاقة الجيرة، الربح. مع سقناالمت

محاكاة  خوارزمية بواسطة عليها الحصول تم التي النتائج بمقارنة قمنا ، الحسابية التجارب في .0-1 التبادل حركةو 1-1

. (B&B) بطروال الفرع الدقيقة بالطريقة الخاصة تلك مع وأيضًا (,ATS) التكيفي Tabu ببحث الخاصة تلك معالصلب 

 ليست SA نأ وجدنا الحجم، كبيرة للحالات بالنسبة. الحجم صغيرة للحالات جيدة نتائج تؤدي SA أن المقارنة أظهرت

 .ATS بـ مقارنة ،NP-Complete مشكلة لحل يكفي بما فعالة

 .محاكاة الصلب خوارزمية ، الربح مع متسقةال السيارة توجيه مشكلة ، السيارة توجيه مشكلة: الرئيسية الكلمات
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General Introduction  

The vehicle routing problem (VRP) is an extension of the travelling salesman problem 

(TSP), it is a problem of combinatorial optimization and operations research. In these 

problems falling within the domain of logistics, one or more vehicles must cover a transport 

network to deliver goods to customers or cover the routes of this network (Ismai, Legras, & 

Coppin, 2011). 

The literature in recent years has flourished with customer-oriented routing problems. 

Mathematically, VRP is classified as an NP-hard problem, which means that the required 

solution time increases excessively with size. Solving VRP consists in focusing on finding the 

optimal paths for a fleet of vehicles. The optimal paths are the shortest and least expensive 

paths. Various types of consistency have been identified and discussed in the literature, such 

as time consistency, person consistency, quantitative consistency, etc. The primary goal of 

consistency constraints is customer satisfaction. The primary work in this field is that of 

(Groër, Golden, & Wasil, 2009). 

Person consistency is important so that employees are able to learn about customer 

areas, in addition to that they become aware of customers' needs and requirements and create 

bonds with customers. Time consistency is also important, as it makes it easier to plan and 

organize the visited customers. Consistency in delivered quantity is also desirable, as low 

differences in delivery quantity facilitate warehouse management processes for clients 

(Stavropoulou, Repoussis, & Tarantilis, 2018). 

Thus, any route or set of routes, starting and ending at a given depot, can be measured 

in terms of cost, profit, and time. To that end, we addresses a vehicle routing problem that 

aims to maximizing the total acquired profit, and to minimizing the total traveling cost when a 

mixed set of customers is served with consistent service constraints. This variant of VRP is 

called consistent Vehicle Routing Problem with Profit was firstly introduced by 

(Stavropoulou, Repoussis, & Tarantilis, 2018) in 2018. Is the problem addressed in this 

master thesis. 
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Objective 

The vehicle routing problem is an NP-hard problem. Therefore, exact methods cannot 

be used to solve large-sized problems in a reasonable time. On the other hand, meta-heuristics 

can generate high-quality solutions in reasonable computing time. In the variant of VRP 

addressed in this study called is also an NP-hard problem. 

Thus to solve this problem, decided to implement a meta-heuristic, which is the 

Simulated Annealing Algorithm. Our choice of this Mete-heuristic is justify by its ability to 

escape local optima and its efficiency to solve many kinds of NP-hard problems. Our main 

objective is to verify if SA may beat the results obtained by ATS. 

Document Organization 

This master thesis is organized into three chapters: 

- In the first chapter, we will introduce the consistent Vehicle Routing Problem with Profit. 

- In the second chapter, we will present solution methodologies for solving the Vehicle 

Routing Problem. 

- In the third and final chapter of this thesis, we will present the method we have developed to 

solve this problem and the results obtained from this study. To evaluate the efficiency of this 

approach, we compare the results obtained by our algorithm with those found in the literature. 

- We conclude with a general conclusion that summarizes the performed study and provides 

some perspectives. 
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Chapter 1: consistent Vehicle Routing Problem with Profit 

I. Introduction  

In the standard version of the Vehicle Routing Problem (VRP), we have a group of 

customers with known needs and a group of monolithic vehicles of limited capacity located 

on the depot. The aim is to define a set of paths to satisfy all orders at the lowest cost.  The 

VRP was introduced in 1959, and its initial goal is to reduce the company's dependencies 

without considering customer satisfaction. This last point represents an important issue in a 

competitive market. That is why in the recent variants of VRP, more effort is made to 

incorporate the customer satisfaction in the model. The goal is to obtain more balanced and 

efficient configuration. By balanced efficient configuration, we mean solutions that 

implement as trade-off between the satisfaction of customer and the profit of company. 

Consistent Vehicle Routing Problem with profits is one of these variants that focus more 

on customer satisfaction, where the goal is to maximize the company’s profit while ensuring 

customer satisfaction. These objectives are subject to a set of consistency constraints. The 

purpose behind the incorporation of consistency constraints such as time consistency, person 

consistency and consistency in the delivered quantity is to achieve the customer comfort and 

satisfaction.  

This chapter is organized as follows: Firstly, in section II, we start by presenting some 

transportation problems0, and we define the VRP and mention some of its variants. After, in 

section III, we define the conVRP and enumerate some of consistency constraints. In 

sectionIV, we present the consistent VRP with profits and its mathematical formulation2. 

Finally, in sectionV, we conclude the chapter. 
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II. Transportation Problems 

Transportation problems, also known as routing problems, model real issues and problems 

related to the transportation of goods or people. In this section, we will first present the 

traveling salesman problem in order to introduce later the vehicle routing problem. 

1. Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) was first formulated in 1930. It is one of the most 

intensively studied problems in optimization. In this problem, a traveling salesman wants to 

find the shortest and less weight way to visit all destinations. Each destination must be visited 

only once. Formally speaking, the problem is formulated using a graph. Solving the problem 

consists in finding a Hamiltonian cycle in the graph that contains all destinations (see the 

example in Figure 1).  

Thus, we have a graph G = (V, E), and a weight function w : E → N, where : 

 V: is the set of destinations, and  

 E: is the set of edges.  

 Each edge (i, j)∈ E has a certain weight w.  

 

Figure 1: Example of Traveling Salesmen Problem. 

More information about TSP can be found at (Floo, 1956). 
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2. Vehicle Routing Problem  

2.1 Definition 

The vehicle routing problem (VRP) was introduced by Dantzig and Ramser in 1959 

(Dantzig & Ramser, 1956), it is an extension of the traveling salesman problem (TSP). The 

goal is to find the optimal set of paths for a group of vehicles in order to deliver orders for oil 

to a customers set. In 1964, the problem was generalized to a linear optimization problem 

known as VRP by (Clark & Wright, 1964). Solving daily vehicle routing issues allows 

companies to reduce operating costs and use their fleets effectivelyFigure 2: Example of vehicle 

routing problem. Figure 2 represents an Example of vehicle routing problem.           

 

Figure 2: Example of vehicle routing problem. 

                                              

2.2 Mathematical Formulation 

VRP can be defined as a complete undirected graph 𝐺 = (𝑉, 𝐴) (Labbé & Laporte, 

1991), where: 

 𝑉 = {1, … , 𝑛} is the set of customers having a non-negative demand 𝑞𝑖, 0 represent 

the depot. 

 𝐴 represents the edges of graph G.  
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The VRP formulation that we present here corresponds to the mathematical 

formulation used in linear integer programming. It translates the natural modeling of the 

problem by the definition of a binary decision variable 𝑥ijk. This variable takes value 1if the 

vehicle k crosses the arc (𝑖, 𝑗) (Ismai, Legras, & Coppin, 2011). In this problem, we have a 

fleet of vehicles, the number of vehicles available can be limited in some cases. 

In order to write the mathematical model we use the following variables:𝑛 number of 

clients (or vertices). 

 𝑚 number of vehicles. 

 𝑐ij is the cost of the edge between vertices i and j (distance or travel time). 

 𝑥𝑖𝑗𝑘 = {
1 𝑖𝑓 (𝑖, 𝑗) 𝑖𝑠 𝑡𝑟𝑎𝑣𝑒𝑙𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘
0                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

Thus, as an optimization problem, the VRP is written (Ismai, Legras, & Coppin, 

2011): 

min ∑ ∑ 𝑐𝑖𝑗 ∑ 𝑥𝑖𝑗𝑘

𝑚

𝑘=1

 

𝑛

𝑗=1

𝑛

𝑖=1

  
 

(1) 
 

 

Subject to the following constraints: 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑚

𝑘=1

= 1 

𝑛

𝑖=1

           ∀  1 ≤ 𝑗 ≤ 𝑛 
 

(2) 

 

∑ ∑ 𝑥𝑖𝑗𝑘

𝑚

𝑘=1

= 1 

𝑛

𝑗=1

            ∀  1 ≤ 𝑖 ≤ 𝑛 
 

(3) 

 

∑ ∑ 𝑥𝑖𝑙𝑘 =  ∑ ∑ 𝑥𝑙𝑗𝑘

𝑛

𝑗=1

𝑛

𝑙=1

𝑛

𝑙=1

𝑛

𝑖=1

 
 

(4) 

 

∑ 𝑥0𝑗𝑘 = 1

𝑛

𝑗=0

             ∀  1 ≤ 𝑘 ≤ 𝑚 
 

(5) 

 

∑ 𝑥𝑖0𝑘 = 1

𝑛

𝑖=0

            ∀  1 ≤ 𝑘 ≤ 𝑚 
 

(6) 

 

𝑥𝑖𝑗  ∈ {0,1}             ∀  0 ≤ 𝑖, 𝑗 ≤ 𝑛 ;  1 ≤ 𝑘 ≤ 𝑚 (7) 

 

 The objective function (1) minimizes the total traveling cost. 
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 Constraints (2) and (3) require that each customer must be served once and only 

once. 

 Constraints (4) ensure flow conservation. 

 Constraints (5) and (6) verify that each tour begins and ends at the depot. 

 Finally, the constraints (7) are binarity constraints on the decision variables 𝑥𝑖𝑗𝑘 . 

2.3 Some Variants of VRP 

In practice, the basic vehicle routing problem is extended with constraints, such as, the 

permissible capacity of the vehicle, route length, time of arrival departure and repair, time of 

assortment, and delivery of products. So depending on the type of necessities, there are many 

variants of VRP (see     Figure 3). 

 

    Figure 3: Hierarchy of VRP variants (Režnar, Martinovič, Slaninová, Grakova, & Vondrák, 2017). 

 

We can mention the following variants: 
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a. Vehicle Routing Problem with Profits (VRPP) 

The problem of maximization seeks to increase the profit, as visiting all customers is 

not mandatory. The goal is to visit, as much as possible, customers in order to increase the 

total collected profits while respecting the time specified for the vehicles. Vehicles must start 

and end at the depot. 

b. Vehicle Routing Problem with Time Windows (VRPTW) 

The delivery locations have time windows within which the deliveries (or visits) must 

be made. These time windows limit the times at which a customer is available to receive a 

delivery. VRPTW is NP-hard, and even finding a feasible solution to VRPTW is an NP-hard 

problem. A review of research work related to VRPTW can be found in (Cordeau, Gendreau, 

Laporte, & Potvin..., 2002), (Kallehauge, 2008). 

c. Capacitated Vehicle Routing Problem (CVRP) 

Vehicles have a limited carrying capacity of the goods to be delivered. A review of 

research work related to CVRP can be found in (Mazzeo & Loiseau, 2004). 

d. Open Vehicle Routing Problem (OVRP) 

The vehicles either are not required to return to the depot, or they have to return by 

revisiting the customers assigned to them in the reverse order. Therefore, the vehicle routes 

are not closed paths but open ones. 

e. Multi-Depot Vehicle Routing Problem (MDVRP)  

In this variant of the problem, there are multiple depots from which vehicles can start and 

finish. 

In this master thesis, we are interested with a variant of VRP called “ConVRP with 

profit”. Thus, we reserve the next section for exposing more this variant. 
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III. Consistent Vehicle Routing Problem (conVRP) 

The main objective of Consistent Vehicle Routing Problem (conVRP) is to provide 

consistent service and ensure customer satisfaction by imposing some consistency constraints, 

such as time constraints, vehicle capacity constraints, road duration constraints, etc. (Barros, 

Linfati, & Escobar, 2020). 

1. Definition 

In the standard version of (VRP), the goal is to visit a group of customers in order to 

deliver their known requests, each customer is visited only once during the day by one 

vehicle, which has a specific capacity. A road is created for each vehicle, and reduces the total 

distance traveled by the fleet. But, in conVRP there is a group of customers who must be 

served over a planning horizon, i.e. over a set of days, where the customer is visited only once 

a day by a vehicle. The same vehicle delivers orders for the rest of the planning horizon days. 

The visit of the same customer must be performed within a specified time range, not 

exceeding L time units. In addition, the time taken by the vehicle to complete the road should 

not exceed T units of time. The goal is to find a set of routes for a group of vehicles that 

reduce the operating time of the vehicles over several days. Also, we point out that the fleet is 

homogeneous, where all the vehicles having the same capacity and ability to serve any 

customer (Groër, Golden, & Wasil, 2009; Groër, Golden, & Wasil, 2009). 

3. Consistency constraints 

In general, customer satisfaction is directly related to providing a consistent service. 

Service consistency has three different dimensions: Time consistency, Person consistency and 

Consistency in delivered quantity. 

3.1 Time Consistency 

Time consistency ensures that clients are visited at the same time or within a specified 

time range throughout the days of the planning horizon. Time consistency is important, as it 

makes it easier to plan and organize the visited customers (Talarico & Duque, 2015) 
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3.2 Person Consistency 

Person consistency verify that orders are delivered to customers by the same driver, 

throughout the days of the planning horizon, making drivers aware of customer locations. In 

addition, to being aware of customer needs and requirements, creating links with customers 

and providing good service. Makes the customers feel more comfortable by dealing with the 

same drivers.  

3.3 Consistency in Delivered Quantity 

Consistency in the delivered quantity, means that the customer’s order must be 

delivered in one go and not in parts. But we also should verify that the load should not exceed 

the vehicle’s carrying capacity. 

The importance of each of these three dimensions of consistency changes from market to 

market. 

IV. Consistent Vehicle Routing Problem with profit (conVRP with profits) 

1. Definition 

Consistent VRP with profits is one of vehicle routing problems, was introduced by 

(Stavropoulou, Repoussis, & Tarantilis, 2018) in 2018 it is the problem addressed in this 

master thesis. In this problem, we have: the warehouse or the depot where the goods that will 

be transported to customers are located. A group of vehicles with a specific capacity that used 

to serve customers with the ordered goods. They start from the depot and return to it. A group 

of customers. The customer set is divided into two subsets, the set of frequent customers or 

regular customers, and the set of non-frequent customers or on the spot customers. Frequent 

customers are the clients who request the service more than once during the planning horizon, 

they must to be visited in all days they requested the service. Non-frequent customers only 

request the service once during the planning horizon, they need to be visited at most once on 

an ad hoc basis, so that the customers who contribute to the maximization of profit are 

selected. In this problem variant each customer has a demand, service time, and profit. 

The goal is to find the best set of paths for the group of vehicles, while respecting the 

constraints of consistency. Good paths are those that include all frequent customers that must 
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be served, and include the largest possible number of non-frequent customers. It is worth 

noting that there are cases where adding a non-frequent customer decreases the objective 

function. There are two categories of non-frequent customers that decrease the objective 

value, (i) the ones with an estimated profit equal to zero and (ii) the ones whose estimated 

profit is greater than zero, but when including them in the initial solution the required 

traveling cost is greater than their estimated profit (Stavropoulou, Repoussis, & Tarantilis, 

2018). Figure 4 represent the impact of change vehicle move on the assignment of frequent 

customers for vehicles. 

 

Figure 4: Change vehicle move - affecting the assignment of frequent customers to vehicles (Stavropoulou, 

Repoussis, & Tarantilis, 2018). 

2. Mathematical Formulation 

conVRP with profit can be defined on a complete undirected graph 𝐺 = (𝑁, 𝐸). 

Where: 

𝑁 = {0,1,2, … , 𝑛} is the node set, and 

𝐸 = {(𝑖, 𝑗)|𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗} is the edge set.  

The mathematical model for conVRP is introduced by stavropoulou (Stavropoulou, 

Repoussis, & Tarantilis, 2018). In order to write the mathematical model for conVRP with 

profit, the following variables are used: 
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 𝑁𝑐 = 𝑁\{0} is the set of customers, where 0 is the depot. 𝑁𝑐 can be divided into two 

disjoint subsets 𝑁𝑓, 𝑁𝑛𝑓 based on the customers’ service requirements. 

 𝑁𝑓  is the set of frequent customers. 

 𝑁𝑛𝑓 is the set of non-frequent customers. 𝑁𝑛𝑓 can be divided into two disjoint 

subsets 𝑁𝑠  and 𝑁𝑢. 

o 𝑁𝑠 is the set of serviced non-frequent customers. 

o 𝑁𝑢 is the set of non-serviced non-frequent customers. 

 𝑐𝑖𝑗 is a non-negative cost associated with each edge (𝑖, 𝑗) ∈ 𝐸, while the 

corresponding travel cost matrix [𝑐𝑖𝑗] is symmetric, i.e. 𝑐𝑖𝑗 = 𝑐𝑗𝑖. 

 𝑄 is the maximum carrying capacity of a vehicle.  

 𝑇 is the maximum available time units for a vehicle. 

 𝑃 = {1, … , ℎ}  is a set of periods, it represents the horizon of the tour. 

 𝑟𝑖𝑝 is a specific service requirement for each customer 𝑖 ∈ 𝑁𝑐 on period 𝑝 ∈ 𝑃 , so: 

 𝑟𝑖𝑝 =  {
1       if customer 𝑖 requires service on period 𝑝  
0                                                                  otherwise   

 

 Each customer 𝑖 ∈ 𝑁𝑐 has: 

 a predefined profit 𝑔𝑖𝑝,  

 a service time 𝑠𝑖𝑝, and  

 a non-zero demand 𝑞𝑖𝑝 (0 < 𝑞𝑖𝑝 ≤ 𝑄).  

 𝐸𝑝 = {(𝑖, 𝑗) ∈ 𝐸, 𝑟𝑖𝑝𝑟𝑗𝑝 = 1} is a reduced set of edges for each period 𝑝 ∈ 𝑃. 

 𝑉𝑝 = {𝑖 ∈ 𝑉𝑐 , 𝑟𝑖𝑝 = 1} is a reduced set of customers, for each period 𝑝 ∈ 𝑃. It 

represents customers that require service in day p. 

The goal behind solving this problem is to determine the subset of customers to be served 

and the corresponding order of visits, so as to maximize the difference between the total 

collected profit minus the total travel cost, and to satisfy the following constraints 

(Stavropoulou, Repoussis, & Tarantilis, 2018): 

 The start/end of each vehicle route must be from/at the depot. 

 The carrying load of each vehicle 𝑘 ∈ 𝐾 in each day does not exceed the total carrying 

capacity 𝑄. 

 Each vehicle route lasts at most 𝑇 time units. 
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 Each frequent customer 𝑖 ∈ 𝑁𝑓 must be visited only once by the same vehicle 𝑘 ∈ 𝐾 

on each period 𝑝 ∈ 𝑃 when they need to be served (or each profit 𝑔𝑖𝑝 of customer 𝑖 ∈

𝑁𝑓  is collected only once). 

 Each non-frequent customer 𝑖 ∈ 𝑁𝑛𝑓  can be visited by one vehicle 𝑘 ∈ 𝐾 at most 

once during the time period p ∈ P when they need to be served (each profit 𝑔𝑖𝑝 of 

customer 𝑖 ∈ 𝑁𝑠 can be collected at most once). 

 The maximum difference between the earliest and latest vehicle arrival times to a 

frequent customer 𝑖 ∈ 𝑁𝑓 over the planning horizon does not exceed 𝐿 time units 

 Within the planning horizon, the maximum difference between the earliest and latest 

vehicles arriving frequent customer 𝑖 ∈ 𝑁𝑓 does not exceed 𝐿 time unit. 

Three groups of variables associated with the customer visiting sequence, the customers’ 

assignment to vehicle routes and the vehicle arrival time to serviced customers are used 

(Stavropoulou, Repoussis, & Tarantilis, 2018). Let:  

 binary variables 𝑥𝑖𝑗𝑝 count the number of times edge (𝑖, 𝑗) ∈ 𝐸 is traversed on 

period 𝑝,  

 binary variables 𝑦𝑖𝑘  indicate if customer 𝑖 is serviced by vehicle 𝑘, and  

 continuous variables 𝑎𝑖𝑝 depict the arrival time to customer 𝑖 on period 𝑝 in the 

optimal solution.  

Considering the above notations, ConVRP with profits can be mathematically described 

as follows: 

𝑚𝑎𝑥 ∑ ∑ ∑ 𝑦𝑖𝑘  𝑔𝑖𝑝 − (∑ ∑ 𝑥𝑖𝑗𝑝 𝑐𝑖𝑗 + ∑ ∑ ∑ 𝑦𝑖𝑘  𝑠𝑖𝑝 )

𝑖∈𝑁𝑐𝑘∈𝐾𝑝∈𝑃(𝑖,𝑗)∈𝐸𝑝∈𝑃𝑝∈𝑃𝑘∈𝐾𝑖∈𝑁𝑐

 
 

(8) 
 

 

Subject to: 

∑ 𝒚𝒊𝒌 = 𝒓𝒊𝒑      ∀ 𝒑 ∈ 𝑷, 𝒊 ∈ 𝑵𝒇

𝒌∈𝑲

 
 

(9) 

∑ 𝒚𝒊𝒌 < 𝒓𝒊𝒑      ∀ 𝒑 ∈ 𝑷, 𝒊 ∈ 𝑵𝒏𝒇

𝒌∈𝑲

  

(10) 

∑ 𝒙𝟎𝒋𝒑 =

𝒋∈𝑵𝒄

∑ 𝒙𝒊𝟎𝒑 = 𝑲      ∀𝒑 ∈ 𝑷

𝒊∈𝑵𝒄

 
 

(11) 
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∑ 𝒙𝒊𝒋𝒑 = 

𝒊∈𝑵

∑ 𝒙𝒋𝒊𝒑 =

𝒋∈𝑵

∑ 𝒚𝒊𝒌      ∀𝒊 ∈ 𝑵(𝒊 ≠ 𝒋), 𝒑 ∈ 𝑷

𝒌∈𝑲

 
 

(12) 

∑ 𝒒𝒊𝒑 𝒚𝒊𝒌 ≤ 𝑸      ∀𝒌 ∈ 𝑲, 𝒑 ∈ 𝑷

𝒊∈𝑽𝒑

  

(13) 

𝟏 − 𝒙𝒊𝒋𝒑 − 𝒙𝒋𝒊𝒑 ≥ 𝒚𝒊𝒌 − 𝒚𝒋𝒌      ∀(𝒊, 𝒋) ∈ 𝑽𝒑 × 𝑽𝒑: 𝒊 ≠ 𝒋, 𝒌 ∈ 𝑲, 𝒑 ∈ 𝑷 (14) 

 

𝒂𝟎𝒑 = 𝟎      ∀𝒑 ∈ 𝑷 (15) 

𝒂𝒊𝒑 + 𝒙𝒊𝒋𝒑(𝒔𝒊𝒑 + 𝒄𝒊𝒋) − (𝟏 − 𝒙𝒊𝒋𝒑)𝑻 ≤ 𝒂𝒋𝒑       ∀(𝒊, 𝒋) ∈ 𝑽𝒄 × 𝑽𝒄: 𝒊 ≠ 𝒋, 𝒑 ∈ 𝑷 (16) 

𝒂𝒊𝒑 + 𝒓𝒊𝒑(𝒔𝒊𝒑 + 𝒄𝒊𝟎) ≤ 𝒓𝒊𝒑𝑻      ∀𝒊 ∈ 𝑽𝒄 , 𝒑 ∈ 𝑷 (17) 

𝒂𝒊𝒑−𝒂𝒊𝒑′ ≤ 𝑳      ∀𝒊 ∈ 𝑽𝒑 ∩ 𝑽𝒑′ , 𝒑 ∈ 𝑷, 𝒑′ ∈ 𝑷: 𝒑 ≠ 𝑷′ (18) 

𝒚𝟎𝒌 = 𝟏      ∀𝒌 ∈ 𝑲 (19) 

𝒚𝒊𝒌, 𝒙𝒊𝒋𝒑 ∈ {𝟎, 𝟏}, 𝒂𝒊𝒑 ≥ 𝟎      ∀𝒊, 𝒋 ∈ 𝑵, 𝒌 ∈ 𝑲 (20) 

 

𝒓𝒊𝒑𝒄𝟎𝒊 ≤ 𝒂𝒊𝒑 ≤ 𝑻 − 𝒔𝒊𝒑 − 𝒄𝒊𝟎      ∀𝒊 ∈ 𝑵𝒇, 𝒑 ∈ 𝑷 (21) 

 

 The objective function (8) maximizes the net collected profit, i.e. the difference 

between the total collected profit and the total traveling cost. 

 Constraints (9) and (10) verify that frequent customers must be visited on each period 

they require service while the non-frequent customers must be visited at most once on 

the period they require service. 

 Constraints (11) impose that the K vehicles leave and return to the depot in every 

period.  

 Constraints (12) ensure route connectivity. 

 Constraints (13) are capacity restrictions for each vehicle.  

 Constraints (14) show that each frequent customer must be serviced by the same 

vehicle.  

 Constraints (15), (16) and (17) calculate the arrival times to the depot and to each 

serviced customer on each period, and impose that it must be less than T. 

 Constraints (18) ensure that the maximum difference between the earliest and latest 

arrival time to each frequent customer does not exceed a predefined threshold L. 

 Constraints (19) impose that all vehicle routes start from the depot on every period of 

the planning horizon.  

 Finally, the last sets of constraints impose binary conditions to x and y variables as 

well as lower and upper bounds for the continuous variables.  
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V. Conclusion 

In this chapter, we have presented in the first part the travelling salesman problem (TSP). 

Next, we have exposed VRP, its variants, and its mathematical formulation. After we 

presented consistent VRP and types of consistency. Then, we presented conVRP with profit 

and it mathematical formulation. In the next chapter, we will show some exact methods and 

meta-heuristics as methods to solve the problem. 

Our problem belongs to the NP-hard class. The problems of this class are algorithmically 

solvable but computationally intractable. There is no exact method that can find the optimal 

global solutions to NP-hard problems in polynomial time. Fast approximate heuristics and 

meta-heuristics are the popular approaches to search for practical solutions. In our study, we 

will use the simulated annealing, which is often used to solve complex large-scale 

optimization problems. 
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Chapter 2: Solution Methods for Vehicle Routing Problem 

I. Introduction 

In the literature, there are many strategies for solving VRP problems, such as exact 

methods and approximation methods. Exact methods provide the optimal solution, i.e. the 

best solution, but they are generally used to solve small problems, because despite their ability 

to find the optimal solution, they are not suitable for large-sized problems (NP-hard 

problems), because it takes a long and unacceptable time to reach the optimal solution. While 

there is no limit to the scale of problems that can be solved by meta-heuristics, it produces 

close optimal solutions and can handle a large number of constraints efficiently. 

This chapter is organized as follows: Firstly, in section II, we start by presenting some 

solution methodologies for VRP, where we present, exact methods and meta-heuristics and 

enumerate some of its advantages and drawbacks, and we mention some recent works on 

solving VRP using exact methods and meta-heuristics. After, in section III, we present the 

simulated annealing algorithm2. Finally, in section IV, we conclude the chapter. 

II. Solution Methodologies for VRP 

A variety of VRP solution strategies are provided in the literature (see Figure 5). 

These range from exact methods to the approximate solution methods. Although the Exact 

methods provide the best solution, the approximation method commonly referred to as meta-

heuristics usually produces a near-optimal solution. 
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Figure 5: Various approaches to solve VRP. 

1. Exact Methods 

Exact methods (also called complete) are generally based on a tree search and partial 

enumeration of the solution space. Exact methods obtain optimal solutions and guarantee their 

optimality (Manen, November 2019). It is a method for solving a problem, and it is able to 

find the optimal solution and ensure its optimality, but it is not suitable for NP-hard problems, 

unless the problem size is small. In combinatorial optimization, the exact methods are mostly 

used when the number of customers in particular problems is relatively low and thus the 

optimal solution can be found in a reasonable time. For example, if we want to solve the 

traveling salesman problem, we end up with n! possible combinations. So, looking for a 

Hamiltonian path of 3 cities gives 3! = 6 or 4 cities gives 4! = 24  possible combinations, 

while solving the same problem with 10 cities requires 10! = 3, 628, 800 possible 

combinations.  

Among the most famous exact algorithms used to solve vehicle routing problems is 

branch-and-bound.  
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The branch-and-bound method is an algorithm design paradigm which is generally 

used for solving combinatorial optimization problems.  It is based on a tree-like method in 

which branches that do not generate better solutions are cut down. All separations are 

permitted provided that no information is lost (Thanina & Katrin, 2017). The idea of this 

method is divide to conquer, as well as to use optimal cost boundaries to avoid exploring parts 

of the set of acceptable solutions. Where the main problem is divided into a group of sub-

problems. Sub-problems can be as difficult as the original problem, in this case, we apply the 

same system, we partition the sub-problem (s) as shown in Figure 6, This stage is called the 

separation phase.  

 

    Figure 6: Representation of the problem's division into sub-problems.                                  

The nodes of the search tree are evaluated to determine the best set of possible 

solutions associated with the node, or to prove that this set does not contain an optimal 

solution, so it is not necessary to check its solution space but is rather separate. At a given 

node, the optimum of the sub problem can be determined when the sub problem becomes 

"sufficiently simple", this stage is called the evaluation phase.  

The most general method to determine that a set of feasible solutions does not contain 

an optimal solution, consists in determining a lower bound (upper bound, if it is a 

maximization problem) of the cost of the solutions contained in the set. If we manage to find a 

lower bound (upper bound) which is greater (smaller) than the cost of the best solution found 

so far, then we have the assurance that the subset does not contain the optimum. The most 
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classic techniques for calculating bound are based on the idea of relaxation of certain 

constraints. 

 

Figure 7: Solution for the problem (p) using the branch and bound method. 

Consider the following problem:                                                                 

   

max 𝑍 = 3𝑥1 + 5𝑥2 

Subject to:                                        

9𝑥1 + 5𝑥2 ≤ 45 

                                                                

𝑥1 + 5𝑥2 ≤ 6 

                                                                      

𝑥1, 𝑥2 ≥ 0 ,      𝑎𝑛𝑑  𝑥1, 𝑥2 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

 

The solution of this problem using the branch and bound method is represented in Figure 7. 

So, the optimal solution of problem (p), is 𝑍 = 40 where 𝑥1 = 5 , 𝑥2 = 0. 

(P) 
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1.1 Advantages of Exact Methods 

Although exact algorithms may not be the most suitable option for solving some 

problems, they have some advantages that sometimes make them useful and required, we can 

mention the fallowing advantages: 

 Confidence of finding the optimal solution. 

 Valuable information on the upper/lower bounds to the optimal solution are obtained 

even if the algorithm is stopped before completion (Dumitrescu & Stützle, 2003) . 

 Methods allow pruning parts of the search space in which optimal solutions cannot be 

located (Dumitrescu & Stützle, 2003). 

1.2 Drawbacks of Exact Methods 

Most exact algorithms solve small-sized problems, the larger the problem size is, the 

larger the execution time will be. Although, these algorithms have some advantages that we 

mentioned earlier, they have some disadvantages. We can mention the fallowing drawbacks 

(Dumitrescu & Stützle, 2003): 

 They take a lot of time (Prohibitive execution time). 

 The memory consumption of exact algorithms may lead to the early abortion of a 

programme. 

 They are often difficult to extend high-performance exact algorithms for a single 

problem, if some details of the problem formulation change. 

 For many combinatorial problems the best performing algorithms are highly problem 

specific and that they require large development times by experts on integer 

programming. 

1.3 Recent Works on Solving VRP Variants Using Exact Methods 

In recent years, several exact algorithms have been proposed for the vehicle routing 

problem and its variants. In this section, we will mention some recent works on solving VRP 

variants using exact methods. 

In (Blocho, 2020), the most important and exact methods for solving various variants 

of VRP problems are described. The authors proposed a new precise branch-price-and-cut 

algorithm has been developed to solve cases where there are few customers and many 
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vehicles per route for the VRPSD problem. In (Lee & Chungmok, 2021), a branch-and-price 

algorithm is introduced to solve the EVRP problem. Its goal is to minimize the total travel and 

charging times without approximating the charging time function on the expanded charging 

station network. In (Florio, Hartl, & Mi, 2020), a branch-price-and-cut exact algorithm relies 

on an efficient labeling procedure, exact and heuristic dominance rules, and completion 

bounds to price profitable columns, is developed. The algorithm proved its efficiency to solve 

many instances with many vehicles and few customers per route. In (Hebler, 2021), a branch-

and-cut algorithm based on a three-index formulation for the multi-compartment vehicle 

routing problem with flexible compartment sizes was modified, and an exact solution 

approach is introduced that is tailored to the continuous problem variant. Moreover, two other 

exact solution approaches are proposed, a branch-and-cut algorithm based on a two-index 

formulation and a branch-price-and-cut algorithm based on a route-indexed formulation. 

2 Meta-heuristics 

2.1 Definition  

In the early years, specialized inference methods were usually developed to solve 

complex combinatorial optimization problems, such as VRP. The term Meta-heuristics was 

introduced in 1986 by Fred Glover to refer to heuristics with a higher level of abstraction 

(Pedemonte & Martín, 2017). 

A meta-heuristic is an optimization algorithm that is generally recursive stochastic 

algorithms, and approaches the global maximum, i.e. the global optimum of the function, by 

sampling an objective function. Meta-heuristic aims to solve difficult problems (often from 

the fields of operations research, engineering or artificial intelligence), that require a very 

large amount of time if they are solved by effective and exact methods (Amraoui, Mhamdi, & 

Elloumi, 2017). Despite the popularity of meta-heuristics, there is no agreed upon definition 

of heuristics and meta-heuristics in the literature (Gandomi, Yang, Talatahari, & Alavi, 2013). 

2.2 Examples of Meta-heuristics 

In literature many meta-heuristic algorithms are exist. We will mention the most 

popular meta-heuristic algorithms for optimization and for solving VRPs. 
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a. Ant Colony Optimization 

Ant Colony Optimization (ACO) is a recent meta-heuristic approach for solving hard 

combinatorial optimization problems (Dorigo & Stützle, 2001). The idea of (ACO) is derived 

from the way the real ants live, and the way they discover the shortest path to reach food, 

where the ants secrete a substance called pheromone through which they can determine the 

paths, where the concentration of pheromone rises in the shortest path, the ants follow the 

paths with the highest concentration of pheromone. As shown in Figure 8Figure 8. ACO is 

based on the indirect communication of a colony of simple agents, called (artificial) ants, 

mediated by (artificial) pheromone trails (Dorigo & Stützle, 2001). 

 

Figure 8: Ant Colony Optimization Algorithm (Neural Networks Tutorial:Model selection). 

The process of finding the shortest path is divided into these steps (Müller, 2009): 

1) The first ant finds the food source (F), via any path (a), and then returns to the nest (N) 

leaving behind a pheromone trail (b). 

 2) The ants take the four possible paths indifferently, but the reinforcement of the track 

makes the shorter path more attractive.  
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3) The ants take the shortest path; the long portions of the other paths lose their trail of 

pheromones. 

There are many experimental works on VRP resolution using ACO. In (Wang, Wang, 

Chen, Cai, Zhou, & Xing, 2020) a heuristic algorithm based on Improved Ant Colony 

Optimization (IACO) and Simulate Annealing (SA) called Multi Objective Simulate 

Annealing - Ant Colony Optimization (MOSA-ACO) is developed to solve the Vehicle 

Routing Problem with Time Window and Service Choice, Computation experiment results 

showed that MOSA-ACO algorithm has a good performance on solving (VRPTW). In 

(Mutar, Burhanuddin, Hameed, Yusof, & Mutashar, 2020) an improvement of Ant Colony 

System (ACS) is presented to solve the Capacitated Vehicle Routing Problem (CVRP), and 

better results were obtained compared with the results of other methods. In (Jia, Mei, & 

Zhang, 2021) a new bi-level ant colony optimization algorithm is proposed to process 

CEVRP. 

b. Genetic Algorithm 

       A genetic algorithm (GA) is a research heuristic inspired by Charles Darwin's theory of 

natural evolution, and developed by John Holland and his collaborators in the 1960s and 

1970s (Yang, 2021). As in the process of natural selection, in this algorithm, the most 

appropriate solutions are selected from a population, for reproduction in order to produce the 

next generation offspring that bear the characteristics of the parents. This process keeps 

repeating itself and in the end a generation with the fittest individuals will be found. 

There are five phases in a genetic algorithm, initial population, fitness function, selection, 

crossover, and mutation (see Figure 9). 

There are many experimental works on solving VRP using this GA. In (Samsuddin, 

Othman, & Yusuf, 2019) some single and population-based meta-heuristics have been 

reviewed, that were used from 2013 to 2018 to solve MDVRP, in which were discussed 

genetic algorithm (GA), simulated annealing (SA), variable neighborhood search (VNS), ant 

colony algorithm (ACO), and particle swarm optimization (PSO). 

 In (Yahyaoui, Kaabachi, Krichen, & Dekdouk, 2020) two algorithms (meta-heuristics) 

are proposed, an adaptive variable neighborhood search (AVNS) and a Partially Matched 
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Crossover PMX-based Genetic Algorithm to solve the multi-compartment vehicle routing 

problem in order to ensure better quality of the solution.  

A waiting strategy was proposed for the vehicle routing problem with simultaneous 

pickup and delivery, and a genetic algorithm was used to solve the problem (Park, Son, Koo, 

& Jeong, 2021). 

 

Figure 9: Genetic Algorithm phases (Yang, 2021). 

c. Tabu Search 

       TS is a meta-heuristic search method employing local search methods for mathematical 

optimization. It was created by Fred W. Glover in 1986 and formalized in 1989. The basic 

idea of TS is to penalize moves that take the solution into previously visited search spaces 
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(also known as tabu). TS, however, does deterministically accept non-improving solutions in 

order to prevent getting stuck in local optimums. 

The short term memory, being a key component of the TS algorithm, prevents cycling 

and revisiting the same solutions during the local search, while the long-term memory records 

the “good” solution characteristics obtained during the execution of the TS algorithm 

(Stavropoulou, Repoussis, & Tarantilis, 2018). The construction of the tabu list is based on 

the FIFO principle, i.e. first in is first out. 

Termination Criteria is dependent upon the problem at hand but some possible 

examples are: setting a maximum number of iterations without improving 𝑥∗, or setting a time 

limit after which the search should stop. Figure 10 represent a flowchart of TS algorithm. 

 

Figure 10: Flowchart of TS algorithm (Wang Z. ). 
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There are many experimental work on solving VRP using this meta-heuristics. We 

mention some recent works. In (Gmira, Gendreau, Lodi, & Potvin, 2021) a TS heuristic 

were proposed to solve the time-dependent vehicle routing problem with time windows on a 

road network, the performance of algorithm were assessed by comparing it to an exact method 

on a set of benchmark instances. In (Rajabi-Bahaabadi, Shariat-Mohaymany, Babaei, & 

Vigo, 2021) a Max–Min ant colony system were hybridized with a TS algorithm to solve the 

vehicle routing problem in stochastic networks with correlated travel times. In (Xia & Fu, 

2018) an adaptive TS algorithm were designed to solve the capacitated open vehicle routing 

problem with split deliveries by order, where the comparison with other methods in the 

literature shown the effectiveness of the algorithm.  

2.3 Advantages of Meta-heuristics 

Meta-heuristics are often considered the most appropriate choice for solving problems. 

They have some advantages that make them effective and satisfactory. We will mention some 

of them below (Dumitrescu & Stützle, 2003): 

 It is able to find a good solution (not necessarily an optimal solution) within a 

reasonable time. 

 In practice they are found to be the best performing algorithms for a large number of 

problems. 

 They can examine an enormous number of possible solutions in short computation 

time. 

 They are often more easily adapted to variants of problems and, thus, are more 

flexible. 

 They are typically easier to understand and implement than exact methods. 

2.4 Drawbacks of Meta-heuristics 

Meta-heuristics solves problems of a large size, and gives results close to the optimal 

solution, in a short time, but it has some drawbacks or disadvantages, we will mention some 

of them below (Dumitrescu & Stützle, 2003): 

 They cannot prove optimality. 

 They cannot provably reduce the search space. 

 They do not have well defined stopping criteria.  
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 They often have problems with highly constrained problems where feasible areas of 

the solution space are disconnected. 

 In practically, most meta-heuristics often require considerable programming efforts, 

although usually less than for exact algorithms. 

III. Simulated Annealing 

Simulated annealing (SA) is the oldest meta-heuristic. It was introduced in 1983 by 

Kirkpatrick et al (Kirkpatrick & Vecchi, 1983). It is a "meta-heuristic" inspired from the 

physical process of metals, which consists of heating the metal at a high enough temperature, 

which leads to the movement of the metal atoms in an irregular way. Thus, as many 

formations as possible are explored, then the metal is gradually cooled which makes the atoms 

gradually reduce their movement and settle in Static positions forms a natural crystal structure 

with the least amount of energy, in which case the ductility improves and the metal becomes 

easier to work with. Scientists call the slow cooling process the annealing process, and It must 

be contrasted with the quenching process, which consists of the rapid cooling of a metal 

(Chopard & Tomassini, 2018). Figure 11 represents a flowchart of simulated annealing 

algorithm. 

The algorithm starts with the initialization of SA parameters and the creating of an 

Initial solution, and the initialization of the current solution and best solution. then the main 

loop of the algorithm starts by the creating of a neighbor solution based on the current 

solution. Then the neighbor solution is accepted if it is better the the current one, else the 

neighbor solution is accepted by a probability. After that the updateing of the temperateur. 

The process is done until at least one of the termination criterions are met. 

At the best of our knowledge, SA did not use before to solve the conVRP. Thus, we 

decided to implement the simulated annealing to solve the conVRP with profit in order to 

investigate and evaluate its efficiency to solve this variant of vehicle routing problem. 
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Figure 11 : Flowchart of simulated annealing algorithm.  

IV. Conclusion 

In this chapter, we have presented some types of methods used to solve the VRP. We have 

also mention some works done to solve the different variants of VRP. Lather we will show 

our developed algorithm which based on simulated annealing, in order to solve the conVRP 

with profit. 

In the next chapter, we will apply the Simulated Annealing Algorithm to the problem 

already described in chapter 1, which is the consistent Vehicle Routing Problem with profit.
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Chapter 3: Our Approach to solve the conVRP with Profit. 

I. Introduction 

In the previous chapters, we have defined the conVRP with profit, and we have given an 

overview of the SA meta-heuristic. In this chapter, we will show how we applied the 

simulated annealing algorithm to solve the conVRP with Profit. Then, we compare the results 

of our method with other methods, namely CPLEX, and ATS. Thus, this chapter is organized 

as follow: 

In section II, we present the adopted representation and evaluation of the solution. In 

section III, we detail the solution approach containing a description of the proposed SA. In 

section IV, we exhibit computational results. In section VV, we show the application’s 

interface and instances. Finally, we conclude in section VII. 

II. Solution Representation and Evaluation 

1. Solution Representation 

In this work, the solution is represented by a matrix, whose size is 𝑃 × 𝐾, where 𝑃 is 

the number of days (periods) of the planning horizon (the lines of the matrix represent the 

days), while 𝑘 is the number of available vehicles (the columns of the matrix represent the 

vehicles). Each cell of the matrix represents a route. The route is represented by a list, which 

starts and ends at the depot (the depot is denoted by 0). In addition, the cell (𝑝, 𝑘) contains the 

list of customers who will be visited in period 𝑝 by vehicle 𝑘. A schema that represents this 

structure is shown in Figure 12. 
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Figure 12: Solution representation. 

2. Solution Evaluation 

The evaluation of the solution is obtained through three different objectives: 

 the net acquired profit,  

 the total traveling cost, and  

 the maximum difference between the earliest and latest vehicle arrival time to each 

frequent customer (𝐿𝑚𝑎𝑥). 

 The model includes two objectives for minimization:  

 the total traveling cost, where we aim to reduce the distance traveled on all roads and 

take the shortest route as possible, and  

 the maximum difference between the earliest and latest vehicle arrival time to each 

frequent customer (𝐿𝑚𝑎𝑥). 

The model also includes one objective for maximization which is the net acquired profit. 
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This objective function used to evaluate the solutions, it is equal to the total collected 

profit minus the total traveling cost. As shown in the mathematical formulation: 

𝑛𝑒𝑡_𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑔𝑙𝑜𝑏𝑎𝑙_𝑝𝑟𝑜𝑓𝑖𝑡 − 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑠𝑡 

Solutions that do not respect one or more constraints are infeasible solutions. In our 

resolution process, we can obtain infeasible solution that do not respect constraints of capacity 

of vehicle and duration of road. Penalizing them using a penalty factor. The solutions that do 

not respect constraint related to vehicle capacity are penalized by multiplying the number of 

vehicles that exceed the specified capacity, by the penalty factor, and subtracting the result 

from the total value net profit of the solution. In the same way, solutions that do not respect 

constraint of not exceeding a specified period of time for a single path are penalized by 

multiplying the excess by the penalty factor and subtracting the result from the total value of 

the solution. As shown in the mathematical formulation: 

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑛𝑒𝑡𝑃𝑟𝑜𝑓𝑖𝑡 − 10000 × 𝑛𝑏𝑟𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦𝑉𝑒ℎ𝑖𝑐𝑙𝑒 − 10000000 × 𝑡𝑖𝑚𝑒𝐸𝑥𝑒𝑒𝑑 − 𝐿𝑚𝑎𝑥  

III. Simulated Annealing Algorithm 

We used the simulated annealing method because it is an effective way to find the 

solution in a reasonable time. Other hand, it doesn't just accept good solutions which leads the 

objective function in a better direction in the iteration process, but also accepts solutions that 

will degrade the objective function within certain limits, and this is what effectively saves the 

algorithm from falling into a local trap. 

The algorithm starts with initialize SA parameters: cooling_ratio, T, L, 

counter_no_improv, nbr_it_max, stop [line 1]:  

 cooling_ratio the factor that causes the temperature to drop continuously. We can 

imagine any kind of law of decrease, the most common being 𝑇𝑖+1 =∝× 𝑇𝑖 , with 0 <

∝< 1. 
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 T is the temperature, it plays an important role. At high temperature, the system is free 

to move in solution space (𝑒(
∆𝑓

𝑇
) close to 1). At low temperature, the system has less 

freedom of movement (𝑒(
∆𝑓

𝑇
) close to 0). 

 L is the number of changes after which the temperature of the system is lowered. 

 counter_no_improv and nbr_it_max are the stop factors of the algorithm, where 

counter_no_improv represents the number of repetitions without improvement the best 

solution, and nbr_it_max represents the number of iterations of the algorithm. 

Algorithm 1: Simulated Annealing 

1: Initialize the SA parameters (cooling_ratio; T; L ; counter_no_improv; nbr_it_max ; stop) 

2: Create_Initial_Solution (); 

3: Current_Solution ← Initial_Solution; Best_Solution ← Initial_Solution; 

4: while (! stop)  

5:  Create neighbor solution; 

6:  Repair neighbor solution; 

7:  if (neighbor_obj > current_obj)  

8:   Current_Solution  ← Neighbor_Solution; 

9:   if (neighbor_obj > best_obj)  

10:   Best_Solution ← Neighbor_Solution; 

11:    counter_no_improv = initial_value_cno; 

12:  else  

13:    counter_no_improv--; 

14:  endif 

15:  else 

16:  p ← 𝑒(
∆𝑓

𝑇
)
 ; 

17:  m ← Random_probability() ; 

18:  if (m < p) 

19:   Accept neighbor solution as new current solution  

20:  endif 

21: endif 

22:  if (l==0)  

23:   l=L; 

24:   T=T*cooling_ratio; 

25:  else  

26:   l-- ; 

27:  endif 

28:  cpt++ ;   // cpt is the counter of iteration. 

29:  if ((cpt==nbr_it_max) or (counter_no_improv<=0){ 

30:   stop=true; 

31: endif 
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32: endwhile 

 

After that, an initial solution is created [line 2]. The process of building the initial 

solution ensure that the initial solution respects constraints (9), (10), (11), (12), (14), and 

(19) of the mathematical model. More detail about this process will be given later in chapter. 

Then we initialize the current solution and best solution by coping the Initial Solution to them 

[line 3]. Next the main loop of the algorithm starts [line 4]. While we don’t yet reach a 

stopping criterion, the algorithm stays in this loop. At each iteration of the algorithm, we start 

by creating the neighbor solution of the current one [line 5], and we execute some reparations 

on the obtained solution [line 6]. This reparations allow solution to respect more constraints. 

Thus, they allow to reduce the infeasibilities of the solution. After that in [line 7-8] a 

comparison is made between the current solution and the neighbor one. If the value of the 

objective function of the neighbor solution is higher than that of the current solution, the 

neighbor solution is accepted so the current solution is replaced by the neighbor solution. In 

that case, another comparison is made [lines 9-14] between the best solution and the neighbor 

solution. If the value of objective function of the neighbor solution is higher than that of the 

best solution, the neighbor solution is accepted as new best solution, and counter_no_improv 

will be reinitialized by 1. Otherwise the value of counter_no_improv will be decreased by 1. 

In the case when the condition in [line 7] is not satisfied, the neighbor solution is accepted as 

a new current solution with probability p. 𝑒(
∆𝑓

𝑇
)
 ,where ∆𝑓 = |𝑓_𝑜𝑏𝑗(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) −

𝑓_𝑜𝑏𝑗(𝑛𝑒𝑖𝑔𝑏𝑜𝑢𝑟_𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)| [lines 15-20]. At the end of each iteration, T and l are updated 

[lines 22-27].The algorithm stops when at least one of the termination criterions are met [lines 

29-30], Either the number of iterations without optimizing the best solution reached to 50000, 

or the number of iterations of the algorithm reached to 100000. 

1. Initial Solution 

It may be impossible to create a feasible initial solution due to the complexity of the 

process and due to the imposed consistency constraints. Thus, we can start with a possible 

solution and compensate by penalizing the infeasibilities. 

First, we insert depot at the beginning and the end of each route [lines 1-10]. After that we 

order the frequent customers according to their request (the number of days in which they 

requested the service) [line 11]. Next, we find the best vehicle and the best position in this 



CHAPTER 3. OUR APPROACH TO SOLVE THE conVRP WITH PROFIT. 

 

34 
 

vehicle for each frequent customer, then insert it in each day he ask for a service in same 

vehicle [lines 12-18]. Finally, we choose a random vehicle and find the best position for each 

infrequent customer on the day it asks for a service [lines 19-25]. 

Algorithm 2: Build Initial Solution 

1: for each day d 

2: for each vehicle v 

3:  Initial_Solution.routes[d][v].add(0); 

4: endfor 

5: endfor 

6: for each day 

7: for each vehicle 

8:  Initial_Solution.routes[d][v].add(0); 

9: endfor 

10: endfor 

11: Sort customers by them requirement; 

12: for each frequent customer i 

13:  best_vehicle ← Find_Best_Vehicle (i); 

14:  for each day d frequent customer i ask for a service 

15:   best_position ← Find_Best_Position (d, best_vehicle, i); 

16:   Initial_Solution.routes[d][best_vehicle].add (best_position, i); 

17:  endfor 

18: endfor 

19: for each non-frequent customer i 

20:  best_vehicle ← Find_Best_Vehicle (i); 

21:  for the day d non-frequent customer i ask for a service 

22:   best_position ← Find_Best_Position (d, best_vehicle, i); 

23:   Initial_Solution.routes[d][best_vehicle].add (best_position, i); 

24:  endfor 

25: endfor 
 

2. Neighborhood Method 

Neighborhood of the solution is a set of solutions, some of these solutions may be 

better than the current solution and others may be worse than it.  A neighbor solution is 

obtained by making changes and transformations on the current solution. 

To build a neighbor solution, there are several methods. We chose three methods 

among them to implement. The three methods we used are: 

 2-Opt move 

 1-1 Exchange move 
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 1-0 Exchange move 

2.1 The 2-Opt Move  

2-opt is an iterative algorithm, at each step, we remove two edges that form an 

intersection, of the current solution, and we reconnect the two vertices. As shown in Figure 

13. This method improves the cost of solutions. Suppose a single route consists of the 

following set of customers in the given order N1 = {depot , ...  i , i+1 , ... , j , j+1; ... , depot} 

and let {(i , i+1) , (j , j+1)} be a set of two edges in N1 that form a criss-cross. The 2-Opt 

move deleting the branch (i , i+1) , (j , j+1)  and replacing them with their supplement (i, j) , 

(i+1 , j+1)}   to reconstruct the route (see Algorithm 2). In multiple route the 2-Opt move is 

applied exactly in the same way as in the case of single route (Tarantilis, Kiranoudis, & 

Vassiliadis, 2002). 

Algorithm 3: 2-Opt Move 

1: for each edge (𝑥𝑖 , 𝑥𝑖+1) ∈ 𝑔𝑟𝑎𝑝ℎ  do 

2: for each edge (𝑥𝑗 , 𝑥𝑗+1) ∈ 𝑔𝑟𝑎𝑝ℎ  different from (𝑥𝑖, 𝑥𝑖+1) do 

3:  if ((𝑥𝑖 , 𝑥𝑖+1), (𝑥𝑗 , 𝑥𝑗+1) intersect) then 

4:   Replace edges (𝑥𝑖 , 𝑥𝑖+1), (𝑥𝑗 , 𝑥𝑗+1) by (𝑥𝑖 , 𝑥𝑗), (𝑥𝑖+1 , 𝑥𝑗+1) 

5:  end if 

6: end for 

7: end for 

 

 

 

Figure 13: 2-Opt move for single and multiple routes.     
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2.2 The 1-1 Exchange Move  

The 1-1 Exchange move swaps two customers from the same route. Consequently, if it 

is supposed that the initial tour consists of the set of customers {depot ; ... ; i -1 ; i ; i +1 ; ... ; 

j- 1; j ; j +1 ; ... ; depot} , the improved one is constructed as {depot ; ... ; i -1 ; j ; i +1 ; ... ; j- 

1; i ; j +1 ; ... ; depot}(see Algorithm 3).The 1-1 Exchange move is applied exactly in the 

same way as in the case of single route but the swapping of nodes takes place between 

different routes (Tarantilis, Kiranoudis, & Vassiliadis, 2002).This move is shown in Figure 

14. 

Algorithm 4: 1-1 Exchange move 

1: for each node 𝑥𝑖 ∈ 𝑔𝑟𝑎𝑝ℎ  do 

2: for each node 𝑥𝑗 ∈ 𝑔𝑟𝑎𝑝ℎ  different from 𝑥𝑖 do 

3:          if ((𝑥𝑖−1 , 𝑥𝑖), (𝑥𝑖 , 𝑥𝑖+1) , (𝑥𝑗−1 , 𝑥𝑗), (𝑥𝑗 , 𝑥𝑗+1) form two consecutive 

intersections) then 

4:   Replace edges {((𝑥𝑖−1 , 𝑥𝑖), (𝑥𝑖 , 𝑥𝑖+1) , (𝑥𝑗−1 , 𝑥𝑗), (𝑥𝑗 , 𝑥𝑗+1) }by 

5:      {((𝑥𝑖−1 , 𝑥𝑗), (𝑥𝑗 , 𝑥𝑖+1) , (𝑥𝑗−1 , 𝑥𝑖), (𝑥𝑖 , 𝑥𝑗+1)} 

6:           end if 

7: end for 

8: end for 

 

 

Figure 14: 1-1 Exchange move for single and multiple routes.   



CHAPTER 3. OUR APPROACH TO SOLVE THE conVRP WITH PROFIT. 

 

37 
 

2.3 The 1-0 Exchange Move  

The 1-0 Exchange transfers a customer from its position in one route to another 

position in either the same or a different route. If it is supposed that the initial tour consists of 

the set of customers {depot ; ... ; i ; i +1 ; ... ; j -2 ; j- 1; j ; j +1 ; ... ; depot}, the improved one 

is constructed as {depot ; ... ; i ; j ; i +1 ; ... ; j -2 ; j- 1 ; j +1 ; ... ; depot} (see Algorithm 4) 

(Tarantilis, Kiranoudis, & Vassiliadis, 2002). This move is shown in Figure 15.         

Algorithm 5: 1-0 Exchange move 

1: for each node 𝑥𝑗 ∈ 𝑔𝑟𝑎𝑝ℎ  do 

2: for each edge (𝑥𝑖 , 𝑥𝑖+1) ∈ 𝑔𝑟𝑎𝑝ℎ;  𝑥𝑖 , 𝑥𝑖+1 different from 𝑥𝑗 do 

3:          if (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑗−1 , 𝑥𝑗) + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑗 , 𝑥𝑗+1) >  

4:      𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑖 , 𝑥𝑗) + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑥𝑗 , 𝑥𝑖+1)) then 

5:    Replace edges {((𝑥𝑖 , 𝑥𝑖+1) , (𝑥𝑗−1 , 𝑥𝑗), (𝑥𝑗 , 𝑥𝑗+1)} by 

6:                {((𝑥𝑖 , 𝑥𝑗), (𝑥𝑗 , 𝑥𝑖+1) , (𝑥𝑗−1 , 𝑥𝑗+1)} 

7:            end if  

8:  end for 

9: end for 

 

 

 

Figure 15: 1-0 Exchange move for single and multiple routes.    
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IV. Computational Results 

The SA was coded in java using the integrated development environment: Net Beans IDE 

8.2, under Windows 7 operating system, and run on a PC Intel(R) Core(TM) i3-3110M CPU.  

1. Parameters Setting  

There is no algorithm that determines exactly the best parameter values of meta-heuristics. 

So, most developers use the traditional try-and-error method, to set them. In this method, the 

programmer tries to find the appropriate combination of parameter values by visually 

analyzing the outputs of the algorithm, i.e. the obtained solution and its objective value. We 

have adopted the aforementioned method to fix the parameters of our algorithm. Thus, the 

initial values of counter_no_improv and nbr_it_max; the stop criteria of the algorithm, are 

respectively set to be equal to 50000 and 100000. The initial values of cooling_ratio, T, L are, 

respectively, set to be equal to 0.88, 1000 and 10. 

2. Instances 

Each instance is saved in a text file and organized as shown in Figure 16. The numbered 

elements on Figure 16, are explained underneath: 

1. The name of instance. 

2.  The number of available vehicles. 

3. The vehicle capacity. 

4.  The route duration. 

5. The planning horizon (number of days). 

6. The depot coordinates. 

7.  The number of customers. 

8. Customer demand section. 

9. The customer coordinate X. 

10. The customer coordinate Y. 

11. The customer service time. 

12. The customer profit. 
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Figure 16: Instance representation. 

There are two types of instances: 

 small instances and  

 large instances. 

The instance size is related to the number of clients, the larger the number of clients, the 

larger the instance. Tableau 1 represents the small instances data, the number of permissible 

vehicles, max capacity of vehicles, max duration of road, number of days and the number of 

customers.
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Tableau 1 : Small instances data. 

Instance Max vehicles Max capacity Max time Number of 

days 

Number of 

customers 

b1 

b2 

b3 

b4 

b5 

b6 

b7 

b8 

b9 

b10 

b11 

b12 

b13 

1 

1 

2 

2 

2 

2 

1 

2 

2 

1 

2 

2 

2 

17 

19 

15 

15 

15 

15 

15 

15 

15 

15 

19 

15 

15 

40 

38 

35 

35 

35 

35 

35 

35 

35 

35 

40 

35 

35 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

11 

11 

11 

11 

11 

13 

13 

13 

13 

13 

19 

19 

19 

 

3. Our Results 

Our results of solving the small instances of ConVRP with Profit are presented in Tableau 2. 

Three runs of SA were conducted on each test problem. The objective value of the best 

found solution in these three runs for each test problem is shown in Tableau 2. This table also 

presents the average objective value obtained for each instance, the average 𝐿𝑚𝑎𝑥  , and the 

average time CPU. 

3.1 SA vs. CPLEX 

CPLEX is a computer optimization tool marketed by IBM since its acquisition of the 

French company ILOG in 2009. Its name refers to the C language and the simplex algorithm, 

more information can be found in (IBM ILOG CPLEX Optimizer). 

The obtained results of SA are compared with those of CPLEX in Tableau 3. Tableau 

3Tableau 3 shows that SA and CPLEX offer the same results regarding the objective function’s 

values and 𝐿max  values for the four test instances b1, b2, b3, b7 and b8. For the test instances 

b6, b10, b11, b12 and b13, the objective function’s values of solutions provided by the SA are 

almost equal to those provided by CPLEX. But regarding 𝐿max , the results of SA are better. 

For the test instances b4 and b5 the SA provided results slightly lower (one-hundredth or one-

thousandth) than CPLEX results, while 𝐿max results of SA are much better than those of 



CHAPTER 3. OUR APPROACH TO SOLVE THE conVRP WITH PROFIT. 

 

41 
 

CPLEX. According to the table, for instance b4, SA offers the same value as CPLEX for the 

net profit, but also a better value for 𝐿max . This is due to rounding the net profit values to two 

digits after comma. For the test instance b9, the results of CPLEX (the net profit’s value and 

𝐿max value) are better than those of SA.  Regarding the computational time, CPLEX takes 

more time to find the global optimal solution for test instances b6, b9, b11, b12 and b13, but 

SA takes slightly more time for instances b1, b2, b3, b4, b5, b7, b8 and b10. Figure 17 and 

Figure 18Figure 18 represent convergence comparison of SA and CPLEX. 

Tableau 2: Results SA of small-scale instances. 

Instance Best 

objective 

𝑳𝒎𝒂𝒙 CT 

(s) 

Average 

objective 

Average   
𝑳𝒎𝒂𝒙 

Average 

CT (s) 

b1 

b2 

b3 

b4 

b5 

b6 

b7 

b8 

b9 

b10 

b11 

b12 

b13 

357.307 

289.04 

375.12 

413.11 

391.17 

440.68 

303.77 

431.56 

376.96 

306.47 

573.06 

766.10 

694.78 

4.67 

4.63 

2.50 

2.87 

0.0 

3.72 

4.25 

3.34 

5.99 

5.87 

2.18 

3.09 

362 

13.9 

23.78 

11.41 

17.24 

17.07 

19.71 

24.43 

20.45 

14.56 

23.45 

48.03 

60.37 

59.12 

365.63 

279.25 

373.27 

413.06 

391.17 

437.74 

301.7 

425.27 

374.15 

296.47 

568.57 

697.84 

684.32 

3.96 

3.52 

4.26 

2.87 

0.0 

3.43 

3.79 

4.18 

5.65 

3.67 

3.21 

2.84 

3.94 

14.71 

26.42 

12.07 

17.39 

17.07 

19.50 

23.92 

20.48 

16.58 

22.45 

47.51 

50.68 

57.68 

 

Tableau 3: SA vs. CPLEX Small-small instances. 

 CPLEX SA 

Instances NP 𝑳𝒎𝒂𝒙 CT (s) NP 𝑳𝒎𝒂𝒙 CT (s) 

b1 

b2 

b3 

b4 

b5 

b6 

b7 

b8 

b9 

b10 

b11 

b12 

b13 

357.31 

289.04 

375.12 

413.11 

391.69 

440.98 

303.77 

431.56 

377.63 

305.08 

588.61 

715.63 

698.92 

4.67 

4.63 

2.50 

3.98 

4.17 

3.93 

4.25 

3.34 

4.21 

4.48 

4.99 

3.48 

4.66 

1.97 

2.36 

8.36 

11.23 

12.37 

222.11 

0.38 

14.65 

51.20 

2.43 

5759 

340.38 

1038.31 

357.31 

289.04 

375.12 

413.11 
391.17 

440.68 

303.77 

431.56 

376.96 

306.47 

573.06 

706.10 

694.78 

4.67 

4.63 

2.50 

2.87 

0.0 

3.72 

4.25 

3.34 

5.99 

5.87 

2.18 

3.09 

3.62 

14.71 

23.78 

11.41 

17.24 

17.07 

19.71 

24.43 

20.45 

14.56 

23.45 

48.03 

60.37 

59.12 
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Figure 17 : Comparison of Net profit  values between SA and CPLEX. 

 

Figure 18 : Comparison of Lmax values between SA and CPLEX. 

3.2 SA vs. ATS 

The Adaptive Tabu Search is the proposed meta-heuristic algorithm in (Stavropoulou, 

Repoussis, & Tarantilis, 2018). We compared our results with those obtained by ATS. 
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The obtained results of SA are compared with those of ATS in Tableau 4. Tableau 

4Tableau 4 shows that SA and ATS offer the same results regarding the net profit’s values and 

𝐿max values for the four test instances b1, b3, b7 and b8. For the test instances b4 and b5, the 

net profit’s values and 𝐿max values of solutions provided by the SA are better than those of 

ATS. For the test instance b11, the results of ATS (the net profit’s value and 𝐿max value) are 

better than those of SA. For instances b2, b9 and b10 the net profit’s values of solutions 

provided by the SA are better than those by ATS, but 𝐿𝑚𝑎𝑥  values of solutions provided by 

ATS are better than those of SA. On the contrary for instances b6, b12 and b13, the net 

profit’s values of solutions provided by ATS are better than those of SA, but 𝐿𝑚𝑎𝑥  values of 

solutions provided by SA are better than those of ATS. Figure 19 and Figure 20 represent 

convergence comparison of SA and ATS. 

By comparing the results of SA with ATS, we see that the performance of SA is good. 

SA gave 15.38% of the instances better results than ATS. While only 7.69% of the instances 

results were found better than SA. 

Tableau 4: SA vs. ATS Small-scale instances. 

 ATS SA 

Instances NP 𝑳𝒎𝒂𝒙 NP 𝑳𝒎𝒂𝒙 
b1 

b2 

b3 

b4 

b5 

b6 

b7 

b8 

b9 

b10 

b11 

b12 

b13 

357.31 

279.04 

375.12 

413.11 

389.50 

440.87 

303.77 

431.56 

369.40 

298.87 

581.21 

715.63 

698.92 

4.67 

3.93 

2.50 

3.98 

4.40 

3.93 

4.25 

3.34 

4.61 

4.15 

2.03 

3.48 

4.66 

357.31 

289.04 

375.12 

413.11 

391.17 

440.68 

303.77 

431.56 

376.96 

306.47 

573.06 

706.10 

694.78 

4.67 

4.63 

2.50 

2.87 

0.0 

3.72 

4.25 

3.34 

5.99 

5.87 

2.18 

3.09 

3.62 
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Figure 19 : Comparison of Net profit values between SA and ATS. 

 

Figure 20 : Comparison of Lmax values between SA and ATS. 
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V. Application Interface 

Our application interface revolves around the main window shown in Figure 21. This 

window includes the following components: 

1: The menu "File", contain two menu items as shown in:  

 The menu item "Open". By pushing the item "Open", the window in Figure 22 is 

shown, through which the user chooses the file he wants to open. If the menu item 

"Open" is pushed before the end of the SA process, a warning window appears (see 

Figure 23Figure 23). 

 The menu item "Exit", by pushing "Exit" item, the main window is closed, and the 

program exits. 

2: The menu "Run MH", contains two menu items as shown in: 

 The menu item "Run", by clicking "Run", the simulated annealing process begins. 

 The menu item "Stop", by clicking "Stop", the simulated annealing process stops. 

3: The menu "Info", contains one menu item as shown in: 

 The menu item "get Information", by pressing "get Information", a help window 

appears (see Figure 25), where information is displayed. On the left side, we find 

information on the test instance. However, on the right, we find information on the 

best_solution yet found. 

4: The "textArea", where SA results appear. This text area records the evolution of the best 

solution at each iteration, as shown in Figure 24. 

5: The "daysPanel", where the solution is drawn (i.e. the depot, customers and roads, for each 

day) as shown in Figure 24. 

6: The button "clear ", by clicking "clear", the content of the "textArea" will be cleared. 
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Figure 21: The main window. 
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Figure 22: Open window. 

 

Figure 23: Warning window. 
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Figure 24: Implementation exemple. 
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Figure 25: Information window. 
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VII. Conclusion 

In this chapter, we have shown how we applied the simulated annealing algorithm to 

conVRP with profit. Firstly, the adopted representation and evaluation of the solution are 

presented. Next, description of the proposed SA is detailed. After, the computational results 

are exhibited. Next, the application’s interface and instances are shown. 
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General Conclusion 

 

In this study, we have tackled the consistent Vehicle Routing Problem with Profit, 

which is a variant of the Vehicle Routing Problem. In this problem, more focus is made on the 

satisfaction of the customers through the enforcing some consistency constraints. Three of 

them are considered in the model used in our study, which are: person consistency, time 

consistency and consistency in the delivered quantity. 

In literature, this model was first solved by Adaptive Tabuo Search and also using the 

exact method branch-and-bound under CPLEX solver. Te ATS showed its performance to 

solve the problem, especially on large-sized instances. So, our goal in this thesis is to evaluate 

the performance of another solution-based meta-heuristic, called Simulated Annealing, to 

solve the problem. 

The Comparison with CPLEX reveals that the SA performs good. For 46.15% of the 

instances, we obtained equal results regarding the net profit's values and the 𝐿max values. For 

7.69%, our method gives larger results regarding the net profit's values. However, for 38.46%, 

our method offers better results than CPLEX regarding the 𝐿max values. Regarding the 

computational time, SA give a very good performs for 38.46% of the instances.  

The Comparison with ATS reveals that the SA gives good results. For 30.77% of the 

instances, we obtained equal results. However, for 15.38%, our method offers better results, 

regarding the net profit's values and the 𝐿max values. However, ATS offers better results than 

those of SA for 7.69%, regarding the net profit's values and the 𝐿max values. For 23.08%, our 

method gives larger results regarding the net profit's values. Finally, for 23.08% of the 

instances, our method offers better results regarding the 𝐿max values than ATS. 

As it is well known in optimization, the combination of parameter’ values has a great 

impact on the obtained results. In this study, we have used the trial-and-error method to fix 

them. Our choice of the parameter values enabled us to obtain these results, but there is a 
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possibility that if we make more experiments, we fall on a combination that gives better 

results than those exhibited in this manuscript. 

For the large-sized instances, after several essays to fix the parameters of SA and to 

develop more preferment neighboring mechanisms, we found that SA is not enough efficient 

to solve this NP-complete problem, comparing with ATS. 

As perspective of this work, we aim in the future to use a population-based meta-

heuristic in order to solve the problem. But, in this case, more effort should be done in order 

to find more appropriate representation for the solution. This representation must be more 

suitable for executing and applying the operators of the chosen meta-heuristic. 
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