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Chapter 1

General Introduction

Origin of things, what are they made of ? How do they interact with each other ? This questions
have always been the preoccupation of mankind. Civilizations throughout history have always tried
to give answers to these questions. Beginning with the ancient Greek philosophers and the idea
that the four elements: earth, water, air, and fire are the basis of everything, passing through the
Periodic Table of Antoine Lavoisier in 1789 up to our modern age and after a huge cultural heritage
of the most accurate theories so far: Standard Model (SM) of particle physics.

The Standard Model of particles, which looks like the periodic table for fundamental particles.
On the left, there are twelfe fermions: six quarks and six leptons divided into three generations
which made all baryonic matter. On the right, there are four force mediators. If we want to learn
all fundamental particle interactions we would first have to know that the world we live in is governed
by four forces. The strong, weak, electromagnetic and gravitational forces. We have a successful
quantum description for three of these forces except the gravitation. For the later one, there is no a
complete quantum theory able to describe it yet, because it is so weak, sot it doesn’t have a signif-
icant effect at the quantum level. After almost a hundred years of scientific progress, we can very
accurately describe the other forces in terms of quantum field theories. These theories explain how
particles interact with each other via these three forces. Each force is mediated by a force carrier
or mediator, called gauge boson. The electromagnetic force is mediated by the photon γ, the weak
force is mediated by theW and Z bosons and the strong force is mediated by the gluons g (8 gluons).
Also, do not forget the Higgs boson, which indicates the existence of the Higgs field, which gives to
particles their masses by a mechanism called the spontaneous symmetry breaking. The Standard
Model is a non-abelian gauge theory, based on the symmetry group SUC(3)× SUL(2)×UY (1), i.e.
the lagrangian of these theory, that describes the particles and their interactions, is invariant under
the previous groupe. The calculation in this theory (and gauge theories in general) might be very
complicated, but fortunately the american physicist Richard Feynman came up with an ingenious
way to simplify the calculations, where the particles and their interactions are represented by some
graphs called Feynman diagrams.

The SM is not the ultimate theory of elementary particles. Despite its successes it has funda-
mental problems like the arbitrary parameters which cannot be predicted by the theory, the non
unification of the strong force with the electroweak force and the absence of a neutrinos masses ...
etc. To solve these problems or some of them, many extensions of the Standard Model have been
proposed, which are called also beyond the standard model models (BSM)" [1]. Some of them focus
on unifying the three fundamental forces together, others focus on the inclusion of the neutrinos
masses to solve the neutrino mass problem, other models focus on the asymmetry of the parity under
the electroweak interaction and other are more ambitious since they try to solve all the problems at
one time (like string theory!). The most important trends of the extensions of the Standard Model
can be summarized in the following directions:

• Extention of gauge symmetry: by adding a new sub-gauge groups to the SM gauge group
(as LR Symmetric Model) or finding a theory based on larger gauge group which is broken
spontaneously to the SM gauge group (as grand unification theories SO(10) and SU(5)).

• Extension of the Higgs sector: There are many theoretical reasons to support the idea
that SM with a simple Higgs sector is not the end of the story. SM has difficulty in explaining
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the relatively light higgs mass (hierarchy problem and qudratic divergences). Therefore, the-
oretical physicists have suggested extensions of the Higgs sector to include at least two Higgs
doublets, and perhaps singlets and/or triplet and other representations (like the Two Higgs
Doublets model) [2].

• Extention of matter content: by adding new hypothetical fermions or gauge bosons as
the Heavy Neutrinos or adding a new generation and so one.

• Extention with flavor symmetry: the main purpose of these theories is to solve the
hierarchy problem and giving an explanation for the free parameters of SM (as Technicolor
and models with Leptoquarks).

• Extention of space time dimentions (Extra-dimentions): by adding a new dimension
or more to the space-time that we are living in as the Kaluza-Klein inspired theories and
Randall-Sundrum model.

• Extention of Lorentz Symmetriy: These are the theories that we know as supersymmetric
theories (as MSSM and NMSSM theories).

• One dimension object: like superstring theory.

We are interested in this study by the problem of absence of the neutrino mass in SM. Our un-
derstanding of the neutrino is essential and the fact that the neutrinos are massives providing the
first experimental evidence for new physics beyond the SM. There are many theories that try to
solve this problem among of them the two models that we will discuss in this work. (i) The Heavy
Neutrino Model which is an effective theory based on adding three heavy neutrino to the standard
model. (ii) The Left Right Symmetric Model which is an extension of SM by enlarging its gauge
groupe to be CP symmetric. Heavy Neutrino Model belongs to the matter content extension cat-
egory, we just add three right-handed chiral neutrinos terms to the SM lagrangian. This model is
based on the SM gauge groupe wich is one of the simplest extentions of SM. LR Symmetric Model
belongs to the gauge symmetry extension category, it is based on SUL(2)×SUR(2)×UB−L(1)×P
gauge groupe and this kind of theories has more fundamental gauge structure than the other kinds
of BSM theories, where it solves the problem of the parity asymmetry in weak interactions, their
gauge groupe generators are physically meaningful compared to SM [3].

To compare experimental results with the prediction of the theoretical models, one needs to calculate
the physical observable like the total cross section and deferential distribution the most precisely as
possible. In this work, we focus on the Next to Leading Order (NLO) calculations matched (or not)
to parton shower. The NLO calculation includes the quantum corrections to the physical observ-
ables by entering an extra factor of αs (the coupling constant of the strong force) to the hadronic
cross sections. This requires to take all Feynman diagrams beyond the LO, which are classified as
follows:

• Virtual corrections: include one-loop to the Born diagrams

• Real emission: are introduced to cancel the soft and collinear divergences of the one-loop
diagrams. A real emission diagram is obtained by emitting an extra parton from the Born
diagram.

The squared amplitude of the virtaul correction is obtained by interfacing the Born diagrams
with one-loop diagrams. The calculation of the one-loop integral leads to ultraviolet and infrared
divergences. The ultraviolet divergences can be handled by carrying out the renormalisation proce-
dure which consist of the redefinition of the parameters and the field of the model to eliminate these
divergences. The infrared divergences (soft and collinear) cancel with the real contribution, the
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remaining are absorbed in the PDFs. We remaind that the real contribution is obtained by squar-
ing the sum of all the real emission amplitudes. Parton Shower (PS) is another method of higher
order correction, it approximates higher-order real-emission corrections to the hard scattering by
simulating the branching of a single external parton into two partons with high energy, each of of
these partons may either split into two partons with less energy. At very low energy, the emission of
partons stops due to the confinement phenomenon and hadronization begins. Hadronization is the
process of forming hadrons from quarks and gluons, this occurs when low energy partons confine
themselves to form hadrons which are not stable so they decay in general. This approach (PS) gives
a good simulation for what’s happening on detectors. All computational simulations have been
completed automatically by using some programs and calculation tools. Results, computational
steps and the numerical simulations with the calculation tools that we used are explained in details
in chapter 5.

We start this work in chapter 2 by providing a brief introduction for the most important points
in SM. Also, we summarise the successes and failures of this theory, therefore the necessity of the
BSM physics. In chapter 3, we discuss in general the neutrinos physics and we present the effective
theory of Heavy Neutrino Model, where we study two classes of this model. In the first one, the
neutrino are of Dirac type and in the second one the neutrinos are of Majorana type. In chapter
4, we present the Left Right Symmetric Model. In order to know the difference between the two
models and which one of them gives the best description for nature, and also what the neutrino
spinors should be Dirac or Majorana typ? We study two types of interactions the charged and
neutral current processes in all models in chapters 5 and 6. In chapter 5 we study those processes
at the leading order (LO) on the three cases: HNM where the neutrino is Dirac type or Majorana
type and LR Symmetric Model where the neutrino is Majorana type. In chapter 6, we study the
processes for the same models at next-to-leading order (NLO) matched (or not) to parton shower
(PS).





Chapter 2

Standard Model

The Standard Model (SM) of particle physics is a renormalisable quantum field theory which com-
bines the Glashow-Weinberg-Salam theory of ElectroWeak interactions with QCD in one theory.
It unifies two fondamental forces EM and Weak and describes the interaction of all elementary
particles known in nature. We follows in this chapter the notation of the ref. [1].

2.1 SM Particles and Interactions

The SM describes the interaction of all known quarks, leptons and gauge bosons. The left-handed
fermions are organised in doublets of the SUL(2) gauge group, while the right-handed fermions
being singlets:

Quarks ∼
(
u

d

)
L

(
c

s

)
L

(
t

b

)
L

uR, dR, cR... (2.1)

Leptons ∼
(
e

νe

)
L

(
µ

νµ

)
L

(
τ

ντ

)
L

eR, µR, τR (2.2)

the gauge bosons are :



γ is the EM mediator, it is massless.
.

W±, Z are the weak interaction mediators, they are massives.
.

g the is the gluons, they are the strong force mediators, they are massless.
.

H is the Higgs boson, it is responsible for the generation of particle masses,
it is massive.
.

Here’s some quantum numbers associated to the SM particles:

particles Q I I3 Y Le Lµ Lτ B

e−(e+) −1(+1) 1/2 −1/2(1/2) −1(1) 1(−1) 0 0 0

µ−(µ+) −1(1) 1/2 −1/2(1/2) −1(1) 0 1(−1) 0 0

τ−(τ+) −1(1) 1/2 −1/2(1/2) −1 0 0 1(−1) 0

u(u) 2/3(−2/3) 1/2 1/2(−1/2) 1/3(−1/3) 0 0 0 1/3(−1/3)

d(d) −1/3(1/3) 1/2 −1/2(1/2) −1/3(1/3) 0 0 0 1/3(−1/3)

c(c) 2/3(−2/3) 1/2 1/2(−1/2) 1/3(−1/3) 0 0 0 1/3(−1/3)

s(s) −1/3(1/3) 1/2 −1/2(1/2) −1/3(1/3) 0 0 0 1/3(−1/3)

t(t) 2/3(−2/3) 1/2 1/2(−1/2) 1/3(−1/3) 0 0 0 1/3(−1/3)

b(b) −1/3(1/3) 1/2 −1/2(1/2) −1/3(1/3) 0 0 0 1/3(−1/3)

Table 2.1: Some quantum numbers of SM fermions.
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leptons Q I I3 Y

eL −1 1/2 −1/2 −1

νeL 0 1/2 1/2 −1

eR −1 0 0 −2

Table 2.2: Left and right lepton fields quantum
numbers.

quarks Q I I3 Y

uL 2/3 1/2 1/2 1/3

dL −1/3 1/2 −1/2 1/3

uR 2/3 0 0 4/3

dR −1/3 0 0 −2/3

Table 2.3: Left and right quark fields quantum
numbers.

2.2 SM Gauge Group and Lagrangian

The Standard Model is a non-Abelian gauge theory based on the symmetry group SUC(3)×SUL(2)×
UY (1), where

• SUC(3) is the color group (strong interaction). There are 8 generators of this group which
corresponds to Gell-Mann matrices. The quarks are embedded on the fundamental represen-
tation of this group (called 3), while the eight gluons are embedded on ajoint representation
(called 8).

• SUL(2)× UY (1) is the electroweak interaction group.

– SUL(2) is the isospin group (weak isospin). There are 3 generators of the group called
isospin Ii with Ii = σi

2 (where σi are the Pauli matrices). The gauge coupling associated
to this group is denoted g.

– UY (1) is the hypercharge group. There are one generator of this group which is Y , the
gauge coupling of this group is g′.

• The electric charge, the isospin and the hypercharge are related by the Nishijima relation:
Q = I3 + Y

2 .

Because the color group SUC(3) is added by hand to electroweak group SUL(2) × UY (1), therfore
the SM group does not unify the electromagnetism and weak forcess whith the strong force, so in
this chapter we will focus more on Glashow-Weinberg-Salam theory or " the Standard Model of
ElectroWeak interaction".

The total lagrangian of the GWS contains the following terms:

L = LF + LG + Lφ + LY (2.3)

with:

LF = LiγµDµL+RiγµDµR LG = −1

4
W i
µνW

µν
i −

1

4
BµνB

µν

Lφ = (Dµφ)+(Dµφ)− V(|φ|2) LY = −Ge(LφR+RφL+ h.c.) (2.4)

where:

• LF is the fermionic lagrangian.

• LG is the gauge lagrangian.

• Lφ is the scalar field lagrangian.

• LY is the Yukawa term.

and
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• Wµν
i = ∂µW

i
ν − ∂νW i

µ + gεijkW
i
µW

k
ν . W

µ
i are the 3 masslles gauge fields of SUL(2)

• Bµν = ∂µBν − ∂νBµ. Bµ is the massless gauge field of UY (1)

• Covariant derivative acting on L: Dµ = ∂µ − ig ~σ2 · ~W + i
2g
′Bµ

• Covariant derivative acting on R: Dµ = ∂µ + ig′Bµ

We notice that those terms are invariant under the gauge group SUL(2)× UY (1). We remaind
that all the fermions and bosons feilds masses are absent in the lagrangian (2.3), sience adding such
terms will violate gauge invariance (this called the weak bases). To go to the real world we need a
mechanism which gives the particles their masses, that is the Higgs Mechanism.

2.3 Higgs Mechanism and Particles Masses

Since the process of generating particles masses in the two models that we will take in the next
two chapters (Heavy Neutrino Model in chp.(3) and Left-Right symmetric Model in chp.(4)) is the
same in the Standard Model. Therefore, we will discuss spontaneous symmetry breaking (SSB)
extensively and the principle will remain the same in the rest models with some differences.

The Higgs mechanism is one of spontaneous symmetry breaking mechanisms in SM. It is the
process by which particles and gauge bosons acquire masses. Prior to SSB, leptons, quarks and
bosons are massless because their mass terms are not gauge invariant. This is solved by introducing
a scalar complex field φ in doublets form of group SUL(2) with a non-zero vacuum expectation
value vev, to gives the particles their mass.

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 − iφ4

)
(2.5)

where, the Higgs lagrangian is given by:

Lφ = (Dµφ)+(Dµφ)− V(|φ|2) (2.6)

with

Dµ = ∂µ − ig
~σ

2
· ~Wµ − ig′

Y

2
Bµ (2.7)

The Higgs potential takes the following form :

V(|φ|2) = −µ2φ+φ+ λ(φ+φ)2 (2.8)

where µ, λ are real.
The lowest energy state is called vaccum expectation value (vev). It corresponds to the minimum

of the potential V, we can distinguish two cases:

• λ > 0, µ2 > 0

in this case the solution which minimizes the potential is unique |φ| = 0, therefore, there is
no spontaneous symmetry breaking (see fig.(2.1)).

• λ > 0, µ2 < 0

the solution that minimizes the potential is not unique (fig.(2.2)), it is given by

φ+φ = |φ|2 =
v2

2
= −µ

2

2λ

(2.9)
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Figure 2.1: For µ2 > 0, no SSB (Wigner phase).
Figure 2.2: For µ2 < 0, SSB (Numbo-Goldstone
phase).

so, the mean value in the field is |φ| = v√
2
⇒< φ >0=

(
0
v√
2

)
.

Now it is more convenient to write the scalar doublet in the form:

φ =

(
φ+

φ0

)
=

1√
2

exp

(
iσiξi
2v

)(
0

v +H

)
(2.10)

The fields ξi (for i = 1, 2, 3) are the Goldstone bosons and H is the physical Higgs boson, v is the
vev (v = 246GeV ). The mean values on the vacuum of the fields ξi and H are zero. The Goldstone
bosons ξi will absorb the longitudinal components of the gauge bosons W and Z.

For going to the real world (mass bases), we introduce the following unitary gauge transforma-
tion:

φ→ φ′ =
1√
2

exp

(
−iσiξi

2v

)
exp

(
iσiξi
2v

)(
0

v +H

)
=

1√
2

(
0

v +H

)
(2.11)

so we write now

(Dµφ)′ =

[
∂µ − ig

~σ

2
· ~Wµ − ig′

Y

2
Bµ

]
1√
2

(
0

v +H

)
(2.12)

but we have

~σ · ~Wµ =

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
(2.13)

so

(Dµφ)′ =
1√
2

(
−ig2W

1
µ − iW 2

µ

∂µ − ig σ32 W
3
µ − ig′ Y2 Bµ

)
(v +H) (2.14)

the kinetic term of the Higgs lagrangian is then:

(Dµφ)′+(Dµφ)′ =
1

2
(∂µH)(∂µH) +

g2

8
(v +H)2(W 1

µ − iW 2
µ)(W 1

µ + iW 2
µ)

+
g2

8
(v +H)2(g′Bµ −W 3

µ)2 (2.15)

and the mass term for W i
µ bosons, is:

g2

8
v2(W 1

µ − iW 2
µ)(W 1

µ + iW 2
µ) +

g2

8
v2(g′Bµ −W 3

µ)2 (2.16)
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the charged gauge bosons are defined by:

W−µ =
W 1
µ + iW 2

µ√
2

W+
µ =

W 1
µ − iW 2

µ√
2

(2.17)

we replace W± in the equation (2.15) we get:

(
g

2
v)2W+

µ W
−
µ +

v2

8
(gW 3

µ − g′Bµ)2 (2.18)

the first term of the equation (2.18) gives the mass of the charged bosons:

mW± =
g

2
v. (2.19)

The last term of equation (2.18) can be written as follows:

v2

8
(gW 3

µ − g′Bµ)2 =
1

8
v2
(
W 3
µ Bµ

)
·
(
g2 −gg′
−gg′ −g′2

)
︸ ︷︷ ︸

M

·
(
W 3
µ

Bµ

)

(2.20)

we can diagonalise this term by the following transformation:(
Zµ
Aµ

)
=

(
cos θw − sin θw
sin θw cos θw

)
·
(
W 3
µ

Bµ

)
(2.21)

• where θw is the Weinberg angle.

We get

v2

8
(gW 3

µ − g′Bµ)2 =
1

8
v2
(
Zµ Aµ

)
·
(
g2 + g′2 0

0 0

)
·
(
Zµ
Aµ

)
=
v2

8
(g2 + g′2)ZµZ

µ + 0×AµAµ (2.22)

with

cos θw =
g′√

g2 + g′2
sin θw =

g√
g2 + g′2

tan θw =
g′

g
(2.23)

therefore, the mass of the photon Aµ remains zero and the mass of the neutral gauge boson
Zµ is:

mZ =
1

2
v
√
g2 + g′2 (2.24)

and the relation between the charged and the neutral gauge boson masses and the Weinberg angle
is:

mZ =
mW±

cos θw
. (2.25)

The Higgs potential after spontaneous symmetry breaking gives the Higgs mass:

V(φ+φ)→ −µ
2v

4
+

1

2
(2µ2)H2 + λvH3 +

λ

4
H4 (2.26)

so the Higgs boson mass is:

mH =
√

2µ2 (2.27)

and the same thing for the fermions, when we break the symmetry spontaneously we get from
Yukawa lagrangian their masses:

me =
Gev√

2
. (2.28)
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2.4 Lagrangian of Interaction

When we break the symmetry spontaneously as we did in the previous section, in addition to the
mass terms that we got, we get interaction of physical particles. There are two kindes of interactions
of the fermions with the gauge bosons. The charged current and the neutral current interactions.

• The charged current interaction:

LCC =
g√
2

(J−µW
−µ + J+

µW
+µ) (2.29)

where

– J+
µ = J1

µ + iJ2
µ = 1

2 ν̄eγµ(1− γ5)e

– J−µ = J1
µ − iJ2

µ = 1
2 ēγµ(1− γ5)νe

• The neutral current interaction:

LNC = g′ cos θwJ
EM
µ Aµ +

g

cos θw
(J3
µ − sin2 θwJ

EM
µ )

= g′ cos θwJ
EM
µ Aµ +

g

cos θw
JZµ (2.30)

– where JZµ is explicitly written

JZµ = afLf̄LγµfL + afRf̄RγµfR + af
′

L f̄
′
Lγµf

′
L + af

′

R f̄
′
Rγµf

′
R (2.31)

where

afL =
1

2
−Qf sin2 θw afL = −1

2
−Qf ′ sin2 θw (2.32)

afR = −Qf sin2 θw afR = −Qf ′ sin2 θw (2.33)

where Qf , Qf ′ , are electric charges of f , f ′ (in the unit of e), respectively, and JEMµ
given by:

JEMµ = −eLγµeL − eRγµeR (2.34)

2.5 Feynman’s Rules

• External fermions propagators

External fermions propagators are given by:

entering fermion f

�

p
ul(p)

going out fermion f

�

p
ūl(p)
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entering anti-fermion f

�

-p
v̄l(p)

going out anti-fermion f

�

-p
vl(p)

• Feynman vertices

Since our focus was only on the ElectroWeak theory (GWS), we just give their vertices:

l − νl −W vertex

............�
µ

− i g√
2
γµ

1− γ5

2

u− d−W vertex (same generation)

............�
µ

− i g√
2

cos(θC)γµ
1− γ5

2

where θC are Cabibo angeles.

u− d−W vertex (different generations)

............�
µ

∓ i g√
2

sin(θC)γµ
1− γ5

2

f − f − Z vertex

............�
µ

−ie
sin(θW ) cos(θW )

γµ

[
afL

1− γ5

2
+ qfR

1 + γ5

2

]
with 

afL = −1
2 + sin2(θW ) afR = sin2(θW ) For f = e−, µ−, τ−

afL = 1
2 −

2
3 sin2(θW ) afR = −2

3 sin2(θW ) For f = u, c, t

afL = −1
2 + 1

3 sin2(θW ) afR = 1
3 sin2(θW ) For f = d, s, b

f − f −H vertex

............� − ie

2 sin(θW )

mf

MW
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incoming V = W,Z bosons

�k
a, µ εaµ(k)

2.6 SM Successes and Problems

Due to its experimental success, the SM is one of the most important theories in quantum physics. It
predicts the presence of many particles before they are detected in many experiments like the Higgs
boson, the W and Z bosons and the top quarks. It explains how the two forces Electromagnetism
and Weak are unified ...etc. Here are some of it’s successes:

• Unifies the weak force and Electromagnetic force in one of the most accurate theories, Elec-
troWeak theories.

• It predicted the existence of the W and Z bosons (descovered in 1983).

• Predicted the existence of the top quark. It was discovered in 1995. Its properties were
experimented with the collider detector at Fermilab (CDF) and (Do).

• It predicted the existence of the Higgs boson H and it was descovered at LHC in 2012.

Despite the success of the SM, there are serious problems for which the SM does not give an
answer to, we summarize it in several points:

• Dark matter: SM is not able to propose a candidate for dark matter.

• The hierarchy problem: SM can not explain the large difference between weak force and
gravitational force.

• Free parameters in the Standard Model: there are 19 free parameters that we need to
put in by hand.

• Unification of fundamental forces: SM does not unify all fundamental forces (it unifies
only two fondamental forces from four (EM and Weak).

• Mass of Neutrinos: Neutrinos in the SM are massless, but experiments show that neutrinos
are massive [4].

This is what motivate us to search for models beyond the standard model which tries to give answers
for these questions.



Chapter 3

Heavy Neutrino Model

In this chapter, we extend the SM by including three heavy neutrinos Ni (for i = 1, 2, 3) where their
masses are generated via the seesaw mechanics: type-I. We will begain this chapter by giving some
motivations for Heavy Neutrino Models (HNM). Then, we will discuss the inclusion of different
fermion fields types in QFT. At next, we will give a brief review about neutrinos and their masses
where we give the mass part of Lagrangian that will give for neutrinos their possible mass terms
(Dirac or Majorana). Finally we give the new vertices that describe the interaction between the
standard model particles (and bosons) and heavy neutrinos.

3.1 Why Heavy Neutrino Model ?

In the previous chapter, we discussed the success and failures of the SM and the necessity of having
a model beyond it, to solve it’s problems. Among them is the absence of the neutrino mass. One
of the simplest models that tries to solve this problem is Heavy Neutrino Model. Our motivation
for this model can be summarized in the following three points:

• Their Lagrangian is one of the simplest extensions for the SM Lagrangian, we have just to
add a Lagrangian for new right handed neutrinos that are singlet under the SM gauge group.

• It is based on the seesaw mechanism type-I, which is one of the simplest and most popular
ways to give to the neutrinos their masses.

• It explains the smallness of the neutrino mass even if we compared it with the electron mass.

Overview of the model particles and interactions:
Fermions in HNM are organized as in the case of the Standard Model. However, because the

neutrinos have masses we have to add three right-chiral singlets to the fields of the SM. So the fields
in this model are given by:

Quarks ∼
(
u

d

)
L

(
c

s

)
L

(
t

b

)
L

uR, dR, cR... (3.1)

Leptons ∼
(
e

νe

)
L

(
µ

νµ

)
L

(
τ

ντ

)
L

eR, µR, τR, νeR, νµR, ντR (3.2)

where the gauge bosons are the same of the Standard Model. We mention that the new right-chiral
singlets are massive. They are half-integer spin particles and they participate only in the weak
interactions. In the following tables, we give the isospin, the electric charge and hypercharge of the
particles of HNM.

3.2 Types of Fermions Fields in QFT

Fermions are particles which follow the Fermi-Dirac statistics and generally has half-integer spin
and obey the Pauli exclusion principle, they can be massive or massless. Mathematically, fermions
fields comme in three types (Dirac, Weyl and Majorana). We give a brief definition for this types,
because we will need it later when we discuss the possible neutrinos types.
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leptons Q I I3 Y

eL −1 1/2 −1/2 −1

νeL 0 1/2 1/2 −1

eR −1 0 0 −2

νeR 0 0 0 0

Table 3.1: Right and left leptons quantum num-
bers.

quarks Q I I3 Y

uL 2/3 1/2 1/2 1/3

dL −1/3 1/2 −1/2 1/3

uR 2/3 0 0 4/3

dR −1/3 0 0 −2/3

Table 3.2: Right and left quarks quantum num-
bers.

3.2.1 Dirac fermions

Dirac fermions can be massive (like the electron in SM) and massless (like neutrino in SM). All
fermions in the standard model have distinct antiparticles, where the signs of additive quantum
numbers (like Q, I3, ...) are opposite, hence all of them are Dirac fermions. The evolution of the
Dirac fermions is controlled by the Dirac equation, which is given by:

(iγµ∂µ −m)ψ = 0. (3.3)

where the free fermions wave function is a superposition of a plane waves, it is expressed in terms
of Dirac spinor as follows:

ψ(x) =

∫
d3p

(2π)32Ep

2∑
s=1

[u(p, s)a(p, s)e−ip·x + v(p, s)b†(p, s)e+ip·x] (3.4)

where a(~p, s) and b†(~p, s) are the creation and annihilation operators of fermion (anti-fermion) states,
which satisfy respectively:

a(p, s)|e−(p, s) >= |0 > b(p, s)|e+(p, s) >= |0 >
a†(p, s)|0 >= |e−(p, s) > b†(p, s)|0 >= |e+(p, s) > (3.5)

Here u(p, s) and v(p, s) are the Dirac spinors with four-momenum p in the spin state s. If we
substitute the fermions wave function ψ into the Dirac equation, we get:

( 6p−m)u(p, s) = 0 ( 6p+m)v(p, s) = 0 (3.6)

those spinors satisfied the projections:∑
s

u(p, s)u(p, s) =6p+m
∑
s

v(p, s)v(p, s) =6p−m (3.7)

from the equation (3.45) and the spinors sum (3.7), we obtains the Feynman propagator for the free
Dirac field:

< 0|T (ψ(x), ψ̄(x′))|0 >= i

∫
d4k

(2π)4
exp(−ik · (x− x′)SF (k) (3.8)

where SF (k) is the momentum space propagator, which is:

SF (k) =
1

6 k −m+ iε
(3.9)

for a particle at rest ~p = 0 we find(
iγ0∂t −m

)
ψ = (γ0E −m)ψ = 0 (3.10)
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the solutions are the four eigenspinors:

u =


1

0

0

0

 u =


0

1

0

0

 v =


0

0

1

0

 v =


0

0

0

1

 (3.11)

Then, the wave function of the four fermions are given by:

ψ1 = exp(−imt)u ψ2 = exp(−imt)u ψ3 = exp(+imt)v ψ4 = exp(+imt)v (3.12)

• There are four possible states, we would expect only two spin states for a spin 1/2 fermion
(the other are associated to anti-fermions).

• Note also that the change of the sign in the exponents of the plane waves in the states ψ3 and
ψ4 has an important physical meaning, the four solutions in the following equations describe
two different spinstates with E = m (which represent the fermions), and two spin states with
E = −m (which represent the anti-fermions).

Each Dirac fermion, has two chiralities:

ψL = PLψ ψR = PRψ (3.13)

with

PL =
1− γ5

2
PR =

1 + γ5

2
(3.14)

where P 2
L,R = PL,R, PL.PR = PR.PL = 0 and P †L,R = PR,L. One can see ψL and ψR as two

degrees of freedom with ψ = ψL + ψR [5].
We remind that, in the absence of interaction, the Dirac field lagrangian density is given by:

LD = ψ̄(i 6∂ −m)ψ (3.15)

where one can get the Dirac equation (the equation of evolution of the fermion field) from this
lagrangian density by applying the Euler-Lagrange equations.

3.2.2 Weyl fermions

Weyl fermions are massless half odd integer spin particles, they are modeled by Weyl equation.
When Dirac publishd his equation in 1928, a German mathematical physicist, Hermann Weyl pub-
lished his equation in 1929 as a simplified version of the Dirac equation:

σµ∂µψ = 0 µ = 0, 1, 2, 3. (3.16)

where σµ = (I2, σx, σy, σz) is a vector whose components are the 2 × 2 identity matrix and the
Pauli matrices and ψ is the wave-function of the Weyl spinors. It is clear that this equation (3.16)
corresponds to a massless fermions.

The solutions of Weyl equation are the left- and right-chiral handed spinors, which are described
by 2-conponent complex spinors that we give in the previous section. In the chiral representation,
one can write

ψ =

(
ψL
ψR

)
⇒ PLψ =

(
ψL
0

)
PRψ =

(
0

ψR

)
(3.17)

with

PL =
1− γ5

2
=

(
I 0

0 0

)
PR =

1 + γ5

2
=

(
0 0

0 I

)
(3.18)
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where ψL,R are the Weyl two-component fields.
Because of Weyl fermions are massless the L and the R-chiral component correspond to particles

with negative and positive helicity (h = ±1
2). Which means that a single Weyl L field, for example,

can be introduced independently of the other chirality, wehre its free lagrangian density is

L0 = ψ†Liσ
µ∂µψL σµ = (I,−~σ) (3.19)

which describes the physics of a free massless negative helicity particle and a positive helicity
antiparticle.

• Remark: a Dirac fermion is equivalent to two Weyl fermions. The Lagrangian density for
the free Dirac field can be written in terms of the Weyl fields as:

LD = ψ†Liσ
µ∂µψL + ψ†Riσ

µ∂µψR −m(ψ†LψR + ψ†RψL) (3.20)

and the free Dirac equation becomes,

iσµ∂µψL −mψR = 0 iσµ∂µψR −mψL = 0 (3.21)

This tells us that a general field can be described by two Weyl fields: one left-chiral and one
right-chiral, therefore, they can be seen as the building blocks for any fermion field [5].

3.2.3 Majorana fermions

In his famous 1937 article Majorana begins by refusing the hypothesis of the "Dirac sea", and more
specifically the idea that any particle must have an antiparticle different from itself, which can be
problematic, precisely, for neutral particles such as neutrino. Majorana immediately remarks on the
fundamental law of Dirac’s approach saying that "Dirac forgot a basic symmetry, the symmetry of
the particle in relation with itself". The very elegant Majorana point of view consists in showing
that one can deduce the Dirac equation from a more fundamental principle wich is the variational
principle. (For more details see the reference [6]).

In the modern form of Majorana equation we start from the Dirac equation, where we define
complex Dirac-like matrices as the following:

γ0 = σ2 γ1 = σ1 ⊗ I2 γ2 = iσ3 ⊗ I2 γ3 = iσ2 ⊗ I2 (3.22)

here’s the explicit form of those matrices:

γ0 =


0 0 0 −i
0 0 −i 0

0 i 0 0

i 0 0 0

 γ1 =


0 0 i 0

0 0 0 i

i 0 0 0

0 i 0 0

 (3.23)

γ2 =


i 0 0 0

0 i 0 0

0 0 −i 0

i 0 0 −i

 γ3 =


0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

 (3.24)

Let’s rewrite the Dirac equation in (3.3) in terms of the new matrices, we get

(iγµ∂µ −m)ψ = 0 ⇒ (i 6∂µ −m)ψ = 0 (3.25)

this equation becomes real and only admits real solutions, which corresponds to particles which are
their own antiparticles, and the spinors of the fermions in this case are the same for their
own antiparticles u = v and u = v. It should therefore be noted that the leptonic number has
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been violated in processes in which Majorana fermions are involved because of the property that
the particles are their own antiparticles, so a process like n→ p+ e− + νe− is allowed.

We remind that, in the absence of interaction, the Majorana field lagrangian density is given

LM = ψ(iγµ∂µ −m)ψ

⇒LM = ψ(i 6∂µ −m)ψ or LM = ψL(i 6∂µ)ψL −
1

2
(mψcLψL + h.c) (3.26)

with ψ = ψL + C ψ̄TL and ψc = ψL + ψcL, where one can get the Majorana equation (the equation
of evolution of the fermion field) from this lagrangian density by applying the Euler-Lagrange
equations.

Propagator for Majorna fermions

For free Dirac fields the laptonic numbers are conserved, therefore there is only a single type of
propagator. But for Majorana neutrinos, the leptonic numbers are not conserved, so there are three
non-zero propagators:

< 0|T (ψ(x), ψ̄(x′))|0 >= i

∫
d4k

(2π)4
exp(−ik · (x− x′)SF (k)

< 0|T (ψ(x), ψ̄(x′))|0 >= i

∫
d4k

(2π)4
exp(−ik · (x− x′)C†SF (k) (3.27)

< 0|T (ψ(x), ψ̄(x′))|0 >= i

∫
d4k

(2π)4
exp(−ik · (x− x′)SF (k)(−C)

(3.28)

where SF (k) = 1
6k−m+iε is the momentum space propagator.

• The first Majorana propagator is analogous to the Dirac case.

• The second and third can be thought of as annihilating or creating two neutrinos, respectively
[5]. So, we can find processes where the leptonic number is violated by ∆ l = ±2.

3.3 Physics of Neutrinos

3.3.1 Properties of neutrinos

Neutrinos are spin-half, electrically neutral particles. They participate only in gravitational and
weak interactions. They are introduced by Pauli in 1930 to explain the energy crisis that had
plagued the understanding of beta-decay process since the time of their discovery. Soon after
Pauli’s suggestion, Fermi wrote down the Hamiltonian describing the interactions of the neutrino
with other elementary particles required to explain the nuclear beta-decay observations (Fermi
theory). After that, physics of neutrino becames an active domain of research. Today we are
sure that neutrinos exist, they are produced everywhere naturally: in stars, supernovae, coming
from Big Bang, generated in gamma ray bursts and in cosmic ray interactions in the atmosphere.
After development of technology, we can now easily produce and detect neutrinos in the laboratory
and particles accelerators in huge numbers. Also, we know that neutrinos are massive (Super-
Kamiokanda Neutrino Detection Experiment" [7]).

Finally, we must remark that the neutrinos comes in three different types or generations ac-
cording to the lepton they are produced with, so if the neutrino produced with an electron e− the
neutrino is an "electron-neutrino νe−"(..+ νe− → e− + ...) , if the neutrino produced with a muon
µ− the neutrino is a "muon-neutrino νµ−"(...+ νµ− → µ− + ...), and the same for τ− the neutrino
that produced with it is a "tau-neutrino ντ"(...+ τ− → +...ντ−).
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3.3.2 Neutrinos, massless or massive!

At the time whene Pauli postulated the neutrino existence and for almost half a century after that,
most people believed that neutrinos where massless particles. This feature was embodied in the
construction of the SM of the electroweak interactions. However, recent neutrino experiments and
neutrino oscillations data strongly suggest that neutrinos have finite mass, much smaller than any
known fermion even the electron (see fig.(5.1)). The neutrino mass searches can be divided into two
categories:

• Direct laboratory searches:

We give one direct research experiments wich predict that the neutrino has a mass. It is the
process of neutrinoless double beta-decay (denoted ββ0ν)1. In this process a nucleus XA

Z decays
into a daughter nucleus XA

Z+2 + 2e− without any accompanying neutrinos and can go only if the
neutrino is its own anti-particle (the case of Majorana fermion). This stringent limit on a parameter,
which we call (effective electron neutrino mass ) mνe is 0.2eV . The experimental value of this
parameter has been found by the Heidelberg-Moscow collaboration using enriched Germanium Ge

in an underground experiment at Gran Sasso, Italy.

Figure 3.1: Double beta decay with and without neutrinos: (a) 2n→ 2p+ 2e− and (b) 2n→ 2p+ 2e− + 2ν̄

• Indirect searches involving neutrinos oscillations:

The best way to look for neutrino mass until now is to realize that a neutrino produced in a
weak-interaction process is actually superposition of several states (at least two of the mass states
are not zero). We know from quantum mechanics that a particle changing its state must have a
mass. We will call the state produced in a weak process (the types that we measure or generations)
a weak eigenstate, νl with l = e−, µ−, τ−. If we denote a mass eigenstate as νi with mass mi

(i = 1, 2, 3), then the state νl produced in the weak process at t = 0 is

|νl >=
∑
i

Uli|νi > (3.29)

where U is a unitary matrix similar to the quark mixing matrices.
We assume that the 3-momentum p of the different components in the beam are the same. However,
we consider their masses are different, the energies of all these components cannot be equal for the
component νi, the energy is given by the relativistic energy-momentum relation Ei =

√
p2 +m2

i ,
after a time t, the evolution of the initial state is given by:

|νl(t) >=
∑
i

exp(−i Eit)Uli|νl0> (3.30)

1The double beta decay is the decay of two neutrons simultaneously. In the standard model, this process must
be accompanied with the emission of two anti-neutrinos (denoted ββ2ν), which was observed in many experiments.
Many physicists suggest that the double beta decay might hapen without the emission of neutrinos which implies
somehow that neutrinos are of Majorana type.
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By writing this we are assuming that the neutrino state νi are stable. Since all E’s are not equal if
the masses are not, the last equation represent a different superposition of the physical eigenstates
νi compared to equation (3.30). In general, this state has the properties of a νl and other flavor
states. The amplitude of finding νl′ in the original νl beam is :

< νl′ |νl(t) > =
∑
i,j

< νj |U †jl′ exp(−i Eit)Uli |νi >

=
∑
i

exp(−i Eit)UliU∗l′i (3.31)

If we use the fact that the mass eigenstates are orthonormal. The probability of finding a νl′ in an
originally νl beam at time = t is:

Pνl′νl (t) = | < νl′ |νl(t) > |2 =
∑
i,j

UliU
∗
l′iUliU

∗
ljUl′j exp(−i(Ei − Ej)t). (3.32)

To simplified this equation, we use the exponential representation for a complex numbers: z =

|z| exp (iArg(z))

Pνl′νl (t) =
∑
i,j

UliU
∗
l′iUliU

∗
ljUl′j exp(−i(Ei − Ej)t) (3.33)

Pνl′νl (t) =
∑
i,j

=|UliU∗l′iUliU
∗
ljUl′j | exp(iArg(Uli)U

∗
l′iUliU

∗
ljUl′j)︷ ︸︸ ︷

UliU
∗
l′iUliU

∗
ljUl′j exp(−i(Ei − Ej)t)

=
∑
i,j

|UliU∗l′iUliU∗ljUl′j | exp(iArg(Uli)U
∗
l′iUliU

∗
ljUl′j) exp(−i(Ei − Ej)t)

=
∑
i,j

|UliU∗l′iUliU∗ljUl′j | (cos((Ei − Ej)t)− ϕll′ij) (3.34)

(3.35)

where ϕll′ij = Arg(UliU
∗
l′iUliU

∗
ljUl′j). But neutrinos are extremely relativistic, then, we can

approximate the energy-momentum relation as:

Ei =
√
p2 +m2

i = |p|

√
1−

m2
i

p2
= |p|+ m2

i

2 p
(3.36)

because mi � p. If we replace t by the distance x traveled by the beam, and Ei,j by the last relation
we get:

(Ei − Ej)t ' (
m2
i −m2

j

2 p
)x ⇒

2π (m2
i −m2

j )x

2π 2p
=

2π (m2
i −m2

j )x

4p
=

2π x

Lij

(3.37)

where we put E = p and Lij = 4π E
(m2

i−m2
j )
, so

Pνl′νl (x) = | < νl′ |νl(t) > |2 =
∑
i,j

|UliU∗l′iUliU∗ljUl′j | cos [
2π x

Lij
− ϕll′ij ]. (3.38)

The quantities Lij are called the oscillation lengths, which gives a distance scale over which the
oscillation effects can be appreciable.

• Notice that if the distance x is an integral multiple of al Lij , we obtain Pνl′νl = δll′ , as in the
original beam. But at distances where this condition is not fulfilled, we can see non-intuitive
effects, which are searched for in experiments.
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• An important point to note is that these experiments provide information only about squares
of the mass difference and not about absolute masses. Therefore, we still need direct search
experiments to complete the oscillation experiments.

Usally we use a simplified version of the formula (3.38), for two-neutrino case, it is given by:

Pνl′νl (x) = sin2(2θ) sin2

(
1.27∆m2(eV 2)L(meter)

E(MeV )

)
(3.39)

this formula provides a simple way to read off the mass differences squared’s probed in a given
experiment [3].

Figure 3.2: The Standard Model fermion masses. There are no known fermions in the blue-hatched mass
region. The neutrino masses are not known; only the mass-squared differences are. The arrows indicate the
allowed ranges for the neutrino masses, assuming a so-called normal mass ordering: m2

3 > m2
2 > m2

1.[8]

3.3.3 Active and Sterile neutrino

Active neutrinos are the left-chiral doublet Weyl neutrinos, which transform as SU(2) doublets with
a charged lepton partner. It is have normal weak interactions. So, the left electron doublet and its
right-chiral partner are related by following CP transformation:

lL =

(
νeL
e−L

)
CP−−→ lR =

(
e+
R

νceR

)
(3.40)

where ψcR = Cψ̄TL is a field related by CP to ψL
Sterile neutrinos are right-chiral singlet Weyl fermions under SU(2) gauge group. Those neu-

trinos do not interact in SM normal weak interactions, its interact except by mixing, Yukawa
interactions, or beyond the SM (BSM) interactions [5]. So, the right-chiral electron singlet and its
left-chiral partner are related by following CP transformation:

νeR
CP−−→ νceL (3.41)
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3.3.4 Neutrinos, Dirac or Majorana type ?

In this part, we will discuss the difference between Dirac and Majorana types of neutrinos. A
Majorana neutrino is its own anti-particle, whereas a Dirac neutrino is not. This apparently simple
difference between them which leads to a large number of profounds and distinguishing physical
implications which can be used to test whether which the neutrino is, a Majorana or a Dirac
fermion. Let’s start from the fact that a particle has a mass must have a right-hand chiral part,
so we take ν as a four-component spinor and νL,R as its left and right chiral projections. We can
write the Dirac mass LD term and the Majorana mass LM term as follows (we had consider only
one neutrino species for simplicity) [1]:

• The Dirac mass term:

LD = −mDν̄ν

= −mD(νRνL + νLνR) (3.42)

• The Majoran mass term:

LM = −1

2
mRνcRνR −

1

2
mLνcLνL + h.c. (3.43)

where mD and mL,R are arbitrary complex numbers (in general), and νcL,R = νTL,RC
−1 with C is

the generalized charge conjugation operator.

We should pay attention to several points here:

• The first point is to remark that LD is invariant under a global U(1) symmetry. This U(1)

symmetry may be identified with the lepton number l, with L(ν) = L(ν) = 1.

• On the other hand, LM in the Lagrangian, it breaks the lepton number by two units (∆l = 2).
Therefore, in the presence of LM, it should consist of monitoring processes in which the lepton
number is violated, such as double β decay. So, observation of any such process will constitute
strong evidence for the Majorana type of the neutrino.

• One can write the free field Majorana neutrino lagrangian density as:

L0 =
1

2
(ν̄i 6∂ν) + LM (3.44)

where the Mjorana neutrino field is expressed as:

νM (x) =

∫
d3p

(2π)32Ep

2∑
s=1

[u(p, s)a(p, s)e−ip·x + v(p, s)a†(p, s)e+ip·x] (3.45)

So we conclude that: in process where the type of the neutrino is a Dirac type, the mass term of
lagrangia conserved the leptonic number, but if it is violated, the type is a Majorana one.

In general, one can consider a model where both active and sterile neutrino are present. In this
case, both Dirac and Majorana mass term should be taken into account. We write,

Lνmass = −1

2
mRνcRνR −

1

2
mLνcLνL −mDνRνL + h.c. (3.46)

In the matrix form, the previous equation can be written as,

Lνmass = −1

2

(
νcL νR

)
·
(
mL mD

mD mR

)
︸ ︷︷ ︸

M

·
(
νL
νcR

)
+ h.c. (3.47)
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where the property νLνR = νcRν
c
L has been used. (In this case, mD can be chosen real by some

redefining of phases). In general case , this matrix is a complex symmetric matrix (to be denoted
henceforth by M).There are several important special cases of the mixed model in equation (3.47):

• (i) Dirac: if mL = mR = 0 and mD 6= 0 the mass of neutrino is a Dirac mas. There are
two Dirac mass eigenstates, with the eigenvalues m− = mD and m+ = −mD.

• (ii) Majoran: if either mL or mR or both nonzero and mD arbitrary, the mass of neutrino
is Majoran mass case. The mass matrix M is diagonal m− = mL and m+ = mR.

• (iii) Pseudo-Dirac: there is a third case for mass called Pseudo-Dirac if mD 6= 0 and
mL = mR � mD. The mass term of Lagrangian in equation (3.30) becomes in this case:

Lνmass = −1

2
mL,R(νcRνR + νcLνL)−mDνRνL + h.c.

= −1

2
mL,R(νLνR + νRνL)−mDνRνL + h.c.

= −mRνRνL −mDνRνL + h.c. (3.48)

where νcR = νL, which seems like Dirac treme of mass [3].

• (iv) Seesaw: when the condition mR � mD, mL is satisfied(e.g mL = 0 and mD =

Θ(mu,me,md) and mR = Θ(MX) where MX ∼ 14 TeV). This is what known as the see-
saw where the eigenstates and eigenvalues in the seesaw limit are:

ν1L ∼ νL −
mD

mR
νcL ⇒ ν1L ∼ νL −

mD

mR
νR (3.49)

ν2L ∼
mD

mR
νL + νcL ⇒ ν2L ∼

mD

mR
νL + νR (3.50)

(3.51)

and the mass eigenstate are:

m1 ∼ mL −
m2
D

mR
m2 ∼ mR (3.52)

we remark that m− � mD for mL = 0 and m+ = mR � m− and this what suggests the
terminology seesaw. Namely, when one eigenstate m+ gets heavy another eigenstate m−

becomes lighter.

• (iv) Mixing: In general case in which mD and mT (and/or mR) are both small and com-
parable leads to non-degenerate Majorana mass eigenvalues and significant ordinary-sterile
(νL-νR) mixing [5].

3.4 Heavy Neutrino Model

3.4.1 Neutrino mass generation and seesaw mechanism type-I

The seesaw mechanism type I (inverse or linear) is the simplest mechanism for generaing tiny
neutrino masses. In this mechanism, we extends the Standard Model by assuming two or more
additional right-handed neutrino fields νRi. While the neutrino type can be Dirac or Majorana we
can write the most general formula of the seesaw type I Lagrangian [26] which contain the two
possibilities as follow:

Ltype−I =
i

2
NR
i 6∂ − yiαNR

i φ̄
†Lα −

1

2
NR
i mRij(N

R
j )c + h.c. (3.53)
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where Lα = (να, lα), yiα is Yukawa matrix, we used a more convenient notation (νRi = NRi which is
the new heavy neutrino eigenstates to clarify the difference between them and the light eigenstates
ones as we will discuss soon). We choose the case where NRi (i = 1, 2, 3).

When we break the symmetry spontaneously as we did in the SM model, the seesaw mechanism
type I lagrangian give us the following result:

Ltype−I
SSB−−−→ i

2
NR
i 6∂

[
(mD)iα + yiαφ0

]
NR
i + yiαφ+NR

i l
L
α −

1

2
NR
i mRij(N

R
j )c + h.c (3.54)

where (mD)iα is a matrix of complex masses and φ0 contains the real SM Higgs boson. The Dirac
and Majorana mass terms in the neutrino Lagrangian can be organized as follows by Autonne-Takagi
factorization:

Ltype−I → −
1

2

(
(νLα )c (NR

i )
)T
·
(

0αβ (mT
D)αj

(mD)βi (mR)ij

)
︸ ︷︷ ︸

M

·

(
νLβ

(NR
j )c

)
+ h.c. (3.55)

The total neutrino mass matrix therefore corresponds to a complex symmetric M :

M =

(
0αβ (mT

D)αj
(mD)βi (mR)ij

)
with two eigenvalues m± =

mR ±
√
M2
M + 4m2

D

2

where we diagonalized the mass matrix by one unitary transformation:

L† ·
(

0αβ (mT
D)αj

(mD)βi (mR)ij

)
· L =

(
m− 0

0 m+

)
(3.56)

The eigenvalues of this mass matrix are (for mR � mD, this condition will satisfy the seesaw limit
which gives us heavy right-handed neutrinos and light left-handed ones):

m− = δijm
ν
i = −

mDik(mDkj)
T

mRi
⇒ m− = −

m2
D

mR

m+ = δβαmRα ⇒ m+ = mR (3.57)

where m− are the light neutrino mass eigenstates and m+ are the heavy neutrino mass
eigenstates.

• M is the neutrinos mass matrix, MD are the Dirac mass and MR are the Majorana mass.

• The Majorana component MR is order of GUT scale and its violates lepton number.

• The Dirac component MD is very small and conserves lepton number.

• This mechanism explains the smallness of the active neutrino mass (Dirac type) and predict
the existence of heavy neutrino of Majorana type, where the relationm− ·m+ = −m2

D suggests
the terminology seesaw. Namely, when one eigenstate m+ gets heavy another eigenstate m−

becomes lighter[1].

L is a (3 + 3)× (3 + 3) unitary matrix and can be parameterized as:(
U3×3 V3×3

X3×3 Y3×3

)
(3.58)

the relation between the gauge interaction eigenstates and the mass eigenstates are given by:(
νL
N c
L

)
= L ·

(
νL
N c
L

)
m

(3.59)
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with the mass eigenstates νm = (m = 1, 2, 3), N c
m′(m

′ = 1, 2, 3), and the mixing relations between
the gauge and mass eigenstates are:

νaL =

3∑
1

UamνmL +

6∑
4

Vam′N
c
mL N c

bL =

3∑
1

XbmνmL +

6∑
4

Ybm′N
c
mL (3.60)

νcaR =

3∑
1

U∗amν
c
mR +

6∑
4

V ∗am′NmR NbR =

3∑
1

X∗bmν
c
mR +

6∑
4

Ybm′N
c
mR (3.61)

• Note that the unitarity condition for L leads to the relations:

UU † + V V † = U †U + V †V = I3×3 XX† + Y Y † = X†X + Y †Y = I3×3 (3.62)

Parametrically: UU †, Y †Y ∼ Θ(1) and V V †, X†X ∼ Θ(mν/mN )[9].

3.4.2 HNM lagrangian

Heavy neutrino model based originally on seesaw mechanism type I (inverse or linear) which gen-
erated the neutrinos mass and explain their smallness as we discussed in the previous section. So
this model based on the same gauge group of the Standard Model (SU(3)C × SU(2)L × U(1)Y ),
the Lagrangian in this model is: the Lagrangian of the Standard Model plus Lagrangian of the new
right handed neutrinos that are singlet under the SM gauge group as we mentioned above.

Total Lagrangian is given in following:

LHNM = LSM + LN . (3.63)

The lagrangian LN is the heavy neutrino lagrangian, it contains three parts,

LHNM = LKin + Lmass + LInt (3.64)

where

• LKin = N(iγµDµ −m)N is the kinetic energy term.

• Lmass is the mass term (the eq.(3.46)).

• LInt describes the interaction of heavy neutrino with weak gauge bosons and higgs boson.

This lagrangian is obtained after SSB of a theory based on groupe larger than SM gauge group
(LR symmetric model for example). In this chapter we just focus on the heavy neutrino part. We
focus on the Lagrangian part of interaction because it is the important in our phenomenological
study in the next chapters (5, 6). The leptonically universal gauge interactions involving neutrinos
are of the form:

L = −
[
g√
2
W+
µ

3∑
a=1

νaLγ
µlaL + h.c.

]
−
[

g

2 cos θW
Zµ

3∑
a=1

νaLγ
µνaL + h.c.

]
(3.65)

In terms of the mass eigenstates (we use the relations 3.60 and 3.65), the gauge interaction lagrangian
(3.65) can be written as:

L = −g
2
W+
µ

( τ∑
l=e

3∑
m=1

νm(U †OL)lmγ
µPLl

− +

τ∑
l=e

6∑
m′=4

N c
m′(V

†OL)m′lγ
µPLl

−
)

+ h.c.

− g

2 cos θW
Zµ

( 3∑
m1,m2=1

νm1U
†U

)
m1m2

γµPLνm2 +

6∑
m′1,m

′
2=4

N c
m′1
V †V )m′1m′2γ

µPLN
c
m′2

)

− g

2 cos θW
Zµ

( 3∑
m1=1

6∑
m′2=4

νm1(U †V )m1m′2
γµPLN

c
m′2

+ h.c.

)
(3.66)
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we define the combination matrices to make the couplings more intuitive by:

U lν = O†LU V lN = O†LN UνN = U †V Uνν = U †U V NN = V †V (3.67)

We thus rewrite the gauge interaction lagrangian by one mixing matrix for each term as in following:

L = −g
2
W+
µ

( τ∑
l=e

3∑
m=1

νmU
lν∗
lm γµPLl

− +
τ∑
l=e

6∑
m′=4

N c
m′V

lN∗
l m′γµPLl

−
)

+ h.c.

− g

2 cos θW
Zµ

( 3∑
m1,m2=1

νm1U
νν
m1m2

γµPLνm2 +
6∑

m′1,m
′
2=4

N c
m′1
V NN
m′1m

′
2
γµPLN

c
m′2

)

− g

2 cos θW
Zµ

( 3∑
m1=1

6∑
m′2=4

νm1U
νN
m1m′2

γµPLN
c
m′2

+ h.c.

)
(3.68)

It may be convenient in certain practical calculations to rewrite the current interactions in terms of
their flavor eigenstates where we do not forget to the interaction part of neutrinos with the Higgs
boson [9]. We need in our phenomenological study to care about the first generation of the heavy
neutrino particle where the explicit form of the interaction lagrangian is given by [12]:

LInt = LSM−int + LN−int (3.69)

LInt = −g
2
W+
µ

τ∑
l=e

3∑
m=1

νmU
∗
lmγ

µPLl
− − g

2
W+
µ

τ∑
l=e

N cV ∗lNγ
µPLl

−

− g

2 cos θW
Zµ

τ∑
l=e

3∑
m=1

νmU
∗
lmγ

µPLνl −
g

2 cos θW
Zµ

τ∑
l=e

N cV ∗lNγ
µPLνl

− gmN

2mW
h

τ∑
l=e

N cV ∗lNγ
µPLνl + h.c. (3.70)

where PL = 1−γ5
2 and U∗lm is the light neutrino mixing matrix and V ∗lN is the parameterizes

active-heavy mixing.
The precise values of V ∗lN are model-dependent and are constrained by the neutrino oscillation

and collider experiments, tests of lepton universality, and double β decay.

• Remark: the fact that V ∗lN are model-dependent allow us to destinguiche enables between
BSM whic include HNM and LR-symmetric Model. we will discuss this point expandly in
chp.(5).

• We notice that this model is implemented on FeynRules where all the verteces and counter
terms at one-loop in QCD are generated. In chapters 5 and 6 we employ the UFO-The
Universal FeynRules Output model generated by FeynRules [24] to do phenomenological
studies at NLO order by Madgraph [25].

3.4.3 Feynman’s Rules

External Heavy Neutrino propagators

External heavy neutrino propagators are the same one of the fermions( see the section (2.5)).

Feynman vertices [12]

This is the new vertices in this model
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• vertex W − νl − l

� − ig√
2
U∗lm γ

µ PL

• vertex W −N c − l

� − ig√
2
V ∗lm γ

µ PL

• vertex Z − νl − νl

� − ig

2 cos θW
U∗lm γ

µ PL

• vertex Z −N c − νl

� − ig

2 cos θW
V ∗lm γ

µ PL

• vertex h−N c − νl

� − ig mN

2mW
V ∗lm γ

µ PL

where

PL =
1− γ5

2
PR =

1 + γ5

2



Chapter 4

Left-Right Symmetric Model

Left-Right Symmetric Model was first suggested by the physicists Josef Pati and Abdus Salam [11],
after that this idea it was developed by Mohapatra and others in an attempt to unify leptons and
quarks. The model is attractive to study because it removes the left-right asymmetry which occurs
in the standard model. Actually, there is no obvious reason why the left-handed and right-handed
fields should obey different physics, and the LRSM takes care of this. Since symmetry is important
in physics, adding the right handed SUR(2) group to SM (with other differences, we will discuss it
later) is a promossing extension of the standard model (because it might explain CP viliation). We
follows in this chapter the notation of ref. [3].

4.1 Why Left-Right Symmetric Model ?

This model has many advantages over the SM and solves several problems, we can summarize it in
the following points:

• It solves the problems of parity violation at low energy weak interaction, while all other
forces in nature are parity conserving. The basic premise of the left-right symmetric models
is that the fundamental weak interaction Lagrangian is invariant under parity symmetry at
energy scales much above the standard model scale (100GeV ), the parity symmetry observed
in nature arise from vacuum being non invariant under parity symmetry. An immediate
consequence of this hypothesis is that there must be right-handed neutrinos in nature, as a
consequence, neutrinos must be massive.

• In this model, neutrinos have masses and there is an explanation for the smallness of neutrinos
mass.

• Up to energies above weak scale new effects associated with parity invariance of the Lagrangian
appear (heavy right handed neutrino and new right handed weak mediators (W±R and ZR
bosons)), thus we can check the model validity by looking for the presence of these hypothetical
particles at experiments.

• The fundamental planck scale theories such as string theories (and string duality) more easily
lead to a LRSM gauge structure an not to the SM gauge structure.

4.2 Model Gauge Group

The LRSM is symmetric under parity transformations, which effectively switch the left- and right-
handed fields. The gauge group defining our LRSM is given by:

SUL(2)× SUR(2)× UB−L(1)× P (4.1)

we note that one of the deficiencies of the standard model is the absence of any physical meaning
of the hypercharge UY (1) generator, which is arbitrarily adjusted to give the correct electric charges
for the particles. But, in the left-right symmetric models UB−L(1) generator can be identified as
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the B−L quantum number so that all of the weak-interaction symmetry generators have a physical
meaning. With the following assignment of fermions to the gauge group, denoting:

Q =

(
u

d

)
L =

(
e−

νe−

)
(4.2)

so we have

QL =
(

1
2 0 1

3

)
QR =

(
0 1

2
1
3

)
(4.3)

LL =
(

1
2 0 −1

)
LR =

(
0 1

2 −1
)

(4.4)

where the left handed particles are doublets on SUL(2) and singlets on SUR(2) (the opposite for
the right handed particles). The electric charge, isospin and B-L quantum number are related by:

Q = I3L + I3R +
B − L

2
(4.5)

where

• I3L is the third component of isospin of the left handed particles. Where g2L is the gauge
coupling associated to SUL(2).

• I3R is the third component of isospin of the right handed particles. Where g2R is the gauge
coupling associated to SUR(2).

Due to the parity symmetry, the model have only two gauge couplings before spontanious
symmetry breaking (g2 = g2L = g2R and g′), as in SM, we can define sin θw = e

g2L
and the

mixing angle θw can be used to prametrise the neutral current hamiltonian.
The LRSM gauge group must be broken to SM gauge group, after that, to electromagnetisme

gauge group UEM (1). In the first spontaneous symmetry breaking the parity symmetry is lost and
we get the right gauge bosons with masses mWR

, (mZR)), respectively. In the second symmetry
breaking we get the left gauge bosons with masses mWL

, (mZL), respectively (the later are the
gauge bosons of the standard model). The SSB stages are sumurised as follows:

SUL(2)× SUR(2)× UB−L(1)× P

↓ ↓

SUL(2)× UY (1) −→ mWR
,mZR (4.6)

↓ ↓

UEM (1) −→ mWL
,mZL

4.3 Left-Right Symmetric Model Lagrangian

The LRSM Lagrangian is given by:

LLRSM = LG + LF + LY + LS (4.7)

where

• LG is the gauge fields lagrangian.



4.3. Left-Right Symmetric Model Lagrangian 29

• LF is the fermionic fields lagrangian.

• LY is the Yukawa interaction lagrangian.

• LS = (Dµφ)+(Dµφ) + (Dµ∆L)+(Dµ∆L) + (Dµ∆R)+(Dµ∆R) − V(|∆L|2, |∆R|2, |φ|2) is the
scalar fields lagrangian needed for SSB, with

– (Dµφ)+(Dµφ) + (Dµ∆L)+(Dµ∆L) + (Dµ∆R)+(Dµ∆R) is the kinetic term,
– V(|∆L|2, |∆R|2, |φ|2) is the higgs potential.

where φ is doublet under SUL(2) and SUR(2) gauge groups, ∆L is triplet under SUL(2)

and singlet under SUR(2), ∆R is triplet under SUR(2) and singlet under SUL(2).

In following we give more detail about the structure of the lagrangian.

4.3.1 Gauge field lagrangian

LG describes the kinetic terms for the gauge fields and their self interactions. It is given by:

LG = −1

4
F iLµνF

µν
iL −

1

4
F iRµνF

µν
iR −

1

4
BµνB

µν (4.8)

wehre

• The abelian field strength of U(1) is Bµν = ∂µBν − ∂νBµ.

• The non-abelian field strengths of SUL(2), SUR(2) have the form

F iLµν = ∂µW
i
L,Rν − ∂νW i

L,Rµ − if iikW
j
L,RµW

k
L,Rν

with f iik are the structure constants of the group.

4.3.2 Fermionic field lagrangian

LF describes the fermionic kinetic terms and the interactions term between fermions and gauge
fields. Summing over all fermions doublets (Q for quarks and L for leptons) we get:

Lf =
∑

ψ=Q,L

(ψ̄Liγ
µDµψL + ψ̄Riγ

µDµψR) (4.9)

where the covariant derivatives are given by:

Dµ =

{
∂µ + igL

~σ
2 · ~W

i
Lµ + ig′B−L2 Bµ.

∂µ + igR
~σ
2 · ~W

i
Rµ + ig′B−L2 Bµ.

(4.10)

the gauge field corresponding to UB−L(1) transformations is Bµ, with the gauge coupling g′, and
the fields corresponding to SUL,R(2) transformations are WL,R with gauge couplings gL = gR = g

(as we suggested earlier).

4.3.3 Yukawa interaction lagrangian

The interaction of fermions with the scalar fields is given by Yukawa’s Lagrangian, it is given by:

LY =
∑

ψ=Q,L

∑
i,j

(hfijψ̄iLφψjR + h̄fijψ̄iLφ̄ψjR)

+
∑
i,j

fij(L̄
c
iL∆LLjL + L̄ciR∆RLjR) + h.c. (4.11)

If the scalar field has a non-zero vev, then when we substitute it into the Yukawa Lagrangian,
we get the mass terms for fermions.
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4.3.4 Scalar field lagrangian

It consists of two parts as presented in the beginning of this section, the unique minimal set required
to break the symmetry down to the UEM (1) is:

• ∆L(1, 0,+2) + ∆R(0, 1,+2), Where ∆L(1, 0,+2) is triplet on SUL(2) and singlet on SUR(2),
while ∆R(1, 0,+2) is singlet on SUL(2) and triplet on SUR(2).

• φ(1
2 ,

1
2 , 0) is doublet on SUL(2) and SUR(2).

And we have under left-right symmetry ∆L ↔ ∆R and φ ↔ φ+. We choose these fields ∆L + ∆R

to break the gauge group of LRSM to the gauge group of SM SUL(2) × UY (1), then we use φ to
break this gauge group to UEM (1).

Higgs potential composed of two parts V(|∆L|2, |∆R|2, |φ|2) = V(|∆L|2, |∆R|2) + V(|φ|2), We
give the general formula and discuss the symmetry breaking in the next section.

4.4 Spontaneous Symmetry Breaking

We now show that, for a range of parameters, an exactly left-right symmetric potential would lead
to parity-violating that will breaks the gauge symmetry. Let’s start with V(|∆L|2, |∆R|2), the most
general potential formula involving ∆L,R which conserve parity and gauge invariance is:

V(|∆L|2, |∆R|2) = −µ2 Tr[∆†L∆L + ∆†R∆R]

+ ρ1

[
(Tr[∆†L∆L])2 + (Tr[∆†R∆R])2

]
+ ρ2

[
Tr[∆†L∆L∆†L∆L] + Tr[∆†R∆R∆†R∆R]

]
+ ρ3

[
Tr[∆†L∆L] + Tr[∆†R∆R]

]
+ ρ4

[
Tr[∆†L∆†L]Tr[∆L∆L] + Tr[∆†R∆†R]Tr[∆R∆R]

]
(4.12)

where the scalar fields ∆L and ∆R can be parametrised as:

∆L,R =
1

2
~σ · ~δL,R

(
δ+

2 δ++

δ0 − δ+

2

)
L,R

(4.13)

by following the same steps in the SM we can choose the vev of ∆L,R (which minimises the potential)
as follows:

(
0 0

vL,R 0

)
(4.14)

The potential V then becomes,

V(vL, vR) = −µ2(v2
L + v2

R) + (ρ1 + ρ2) + (v4
L + v4

R) + ρ3v
2
Lv

2
R (4.15)

Putting vL = v sinα and vR = v cosα and differentiating V(vL, vR) with respect to α we get the
condition: [

ρ3 − 2(ρ1 + ρ2)

]
v sin 2α cos 2α = 0 (4.16)
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• For ρ3 6= 2(ρ1 + ρ2) the solutions of eq.(4.17) are α = 0, π2 ,
π
4 · · ·

so α = 0 corresponds to vL = 0 and vR 6= 0, whereas α = π
4 corresponds to vR = 0 and

vL 6= 0. So we conclude that if α = 0 (vR 6= 0), this choice corresponds to parity violation.

Taking the second derivative of V(vL, vR) with respect to α, we get:

2v ·
[
ρ3 − 2(ρ1 + ρ2)

]
·
[
cos2 2α− sin2 2α

]
= 0 (4.17)

• For ρ3 > 2(ρ1 + ρ2), α = 0, π2 corresponds to the maximum, α = π
4 corresponds to the

minimum.

Thus, for a range of parameters, we get the correct unbroken symmetry group of the SM (we will
discuss how we choose the parameters in the next sections when we talk about the generation of
bosons and neutrino masses).

If we include the φ multiplet, we get the total potential:

V(|∆L|2, |∆R|2, |φ|2) = V(|∆L|2, |∆R|2)−
∑
ij

Tr[φ†iφj ]

+
∑
ijkl

λijklTr[φ
†
iφj ]Tr[φ

†
kφl]

+
∑
ijkl

λ′ijklTr[φ
†
iφjφ

†
kφl]

+
∑

αijTr[φ†iφj ]Tr[∆
†
L∆L + ∆†R∆R]

+
∑

βij Tr[φiφ
†
j∆
†
L∆L + phi†iφj∆

†
R∆R]

+
∑

γij Tr[∆†Lφi∆Rφ
†
j ] (4.18)

where

φ1 =

(
φ0

1 φ†1
φ−2 φ0

2

)
φ2 = σ2φ

∗
1σ2 =

(
φ0∗

2 −φ†2
−φ−1 φ0∗

2

)
(4.19)

the equation(4.18) is a very complicated potential. To study the minimum of this potential, we
assume that < ∆L >, < ∆R >, < φ >, have the following form:

< ∆L,R > =

(
0 0

vL,R 0

)
< φ >=

(
k 0

0 k′

)
exp(iα). (4.20)

• We mension that k and k′ are nonzero and vL can be written as:

vL =
γ12

2(ρ1 + ρ2)− ρ3
· k

2

vR
(4.21)

we assume for simplicity that k′ � k, since k � vR we get vL � k. This is a seesaw-like
formula for vacuum expectation values, it is useful to understand, in the gauge theory context,
why some physical parameters are small compared to others.

Now let us study the effect of symmetry breaking on the particles masses of LRSM theory:

4.4.1 Charged gauge bosons masses

Now, we show how the symmetry breaking generate the mass of the heavy vector bosons. It is easy
to show, by expanding the kinetic term of Lφ, that the W †L −W

†
R mass matrix is given by :(

1
2 g

2(k2 + k′2 + 2vL) g2kk′

g2kk′ 1
2 g

2(k2 + k′2 + 2vR)

)
(4.22)
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The eigenstates of this matrix denote the physical W1,2 bosons
W1 = WL cos ξ +WR sin ξ

.

W2 = −WL sin ξ +WR cos ξ

.

(4.23)

then their masses are given by: 
m2
W1

w 1
2 g

2(k2 + k′2)

.

m2
W2

w 1
2 g

2(k2 + k′2 + 2vR)

.

(4.24)

⇒


mW1 w 1√

2
g
√

(k2 + k′2)

.

mW2 w 1√
2
g
√

(k2 + k′2 + 2vR)

.

(4.25)

with

tan 2ξ =
2kk′

v2
R − v2

L

. (4.26)

(4.27)

The charged current weak interactions can now be written as

LCC =
g

2
(ūLγµdL + ν̄LγµeL)(W †µ1 cos ξ +W †µ2 sin ξ)

+
g

2
(ūRγµdR + ν̄RγµeR)(W †µ2 cos ξ −W †µ1 sin ξ) + h.c. (4.28)

We have suppressed the generation index in eq.(4.28).

• We note that presence of quark mixings, the weak quark- and lepton-currents will include
mixing angles as well as CP -violating phases α.

• If we use the contraintes that we discussed earlier (k′, vL � k and k � vR) we get from (4.26)
that ξ w 0, so if we replace this value in equation (4.23) we get the physical charged bosons:

W1 w WL W2 w WR (4.29)

and the charged gauge bosons masses becomes:

⇒


mWL

w 1√
2
g
√

(k2 + k′2)

.

mWR
w 1√

2
g
√

(k2 + k′2 + 2vR)

.

(4.30)

we can note from the condition (k′, vL � k and k � vR) that the mass of mWL
� mWR

,
where mWL

comes when we break the left gauge group SUL(2) and mWR
comes when we

break the right gauge group SUR(2). So WL is the SM charge gauge boson that we know and
WR is a new heavy charge gauge boson comes from the right part of the gauge group.
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4.4.2 Neutral gauge bosons masses

The mass matrix of the three neutral gauge bosons W3L,W3R and B, given by:1
2 g

2(k2 + k′2 + 4v2
L) −1

2 g
2(k2 + k′2) −2gg′v2

R

−1
2 g

2(k2 + k′2) 1
2 g

2(k2 + k′2 + 4v2
R) −2gg′v2

R

−2gg′v2
L 2gg′v2

R 2g
′2(v2

L + v2
R)

 (4.31)

To obtain the eigenstates of this matrix, we diagonalise it by a bi-unitary transformation (as we did
in the SM), we get the new basis (define sin θw = e/g)

A = sin θw(W3L +W3R) +
√

cos 2θwB

.

ZL = cos θwW3L − sin θw tan θwW3R − tan θw
√

cos 2θwB

.

ZR =
√

cos 2θw
cos θw

W3R − tan θwB

(4.32)

A is the photon that remains massless after symmetry breaking and is an exact eigenstate. The
remaining physical neutral gauge bosons are given by:

Z1 = ZL cos ξ + ZR sin ξ

.

Z2 = −ZL sin ξ + ZR cos ξ

(4.33)

where 

tan 2ξ w 2
√

cos 2θw
m2
ZL

m2
ZR

.

m2
ZL

w g2

2 cos2 θw
(k2 + k′2 + 4v4

L)

.

m2
ZR

w g2

2 cos2 θw cos 2θw
[4v2

R cos4 θw + (k2 + k′2) cos2 2θw + 4v2
L sin4 θw]

(4.34)

• If we use the contraintes (k′, vL � k and k � vR) we get the physical neutral bosons like:

Z1 w ZL Z2 w ZR (4.35)

and the neutral gauge bosons masses becomes:
mZL w g√

2 cos2 θw

√
(k2 + k′2 + 4v4

L)

.

mZR w g√
2 cos2 θw cos 2θw

√
[4v2

R cos4 θw + (k2 + k′2) cos2 2θw + 4v2
L sin4 θw]

(4.36)

as we did with the charge gauge bosons, we can note from the condition (k′, vL � k and
k � vR) that the mass of mZL � mZR , where mZL comes when we break the left gauge
group SUL(2) and mZR comes when we break the right gauge group SUR(2). So ZL is the
SM neutral gauge boson that we know and ZR is a new heavy neutral gaue boson comes from
the right part of the gauge group.

The neutral current is given by:

LNC =
g

cos θw

[(
JµL −

ξ√
cos 2θw

(sin2 θwJ
µ
L + cos2 θwJ

µ
R

)
Z1µ

+
1√

cos 2θw

(
sin2 θwJ

µ
L + cos2 θwJ

µ
R

)]
(4.37)

where

JµLR =
∑
f

fγµ(I3L,R −Q sin2 θw)f (4.38)
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4.4.3 Fermions masses and mixings

Fermion masses in the LRSM are as in the SM, arise from the Yukawa coupling between quarks,
leptons, and the Higgs bosons responsible for gauge symmetry breaking. The most general gauge-
invariant Yukawa coupling as we mentioned in eq.(4.11) is:

LY =
∑

ψ=Q,L

∑
i,j

(hfijψ̄iLφψjR + h̄fijψ̄iLφ̄ψjR)

+
∑
i,j

fij(L̄
c
iL∆LLjL + L̄ciR∆RLjR) + h.c. (4.39)

when we substituting the vacuum expectation values from eq.(4.20), we get for charged fermions
the following mass matrices: 

mu
ij = hqijk expiα +h̄qijk

′ exp−iα

.

md
ij = hqijk exp−iα +h̄qijk

′ expiα

.

me
ij = hlijk exp−iα +h̄lijk

′ expiα .

(4.40)

We will discuss the neutrino masses in the next section.
The invariance of the Yukawa coupling under parity symmetry requires that:

haij = h∗aji (4.41)

where a goes over all the Yukawa couplings involving φ and φ̄. This property leads to interesting
constraints on the mass matrices, which are:

• h complex, α = 0 (manifest left-right symmetry):
In the literature, this is called "manifest left-right symmetry" when the mixing angles in the
left- and right-handed quark sectors are identical, which implies that:

ma = ma† a = u, d, e (4.42)

and the hermitian matrices are diagonalized by unitary transformations UmaU † = Da.

• h real, α 6= 0 (pseudo-manifest left-right symmetry):
In this case reality of h is caused by the invariance of CP prior to symmetry breaking. In
this case, eq.(4.40) implies that the mass matrices are complex and symmetric, they are
diagonalized by UmaUTK = Da, where K is a diagonal unitary matrix. As a result, the left-
and right-handed mixing angles are equal but the corresponding phases are different.

4.4.4 Neutrinos masses

When V -A theory was proposed by Sudarshan and Marshak, Feynman and Gell-Mann built their
argument on the assumption that neutrinos are massless. If mν = 0, then the neutrino spinor
obeys the Weyl equation, which is invariant under γ5 transformations (ν → γ5ν), then Marshak
and Sundarshan argued that neutrinos participate only in weak interactions, the weak Hamiltonian
Hwe should be invariant under separate γ5 transformations, and this leads to the successful V -A
theory of charged-current weak interactions. Therefore from this point, the existence of neutrinos
mass should be connected with the existence of V +A theory.

As we discussed in the previous chapter (3) (section 3.4.1) there are two possibilities of neutrno
type (Dirac or Majorana), and the general formula of the mass term is given in (3.46) by:

Lνmass = −1

2
mRνcRνR −

1

2
mLνcLνL −mDνRνL + h.c. (4.43)



4.4. Spontaneous Symmetry Breaking 35

we get the mass matrix M as before: (
0αβ (mT

D)αj
(mD)βi (mR)ij

)
(4.44)

The mechanism which we use to obtain and explain smallness of the neutrino masses is the seesaw
mechanism type I like in the previous section.

Whene we diagonalize it we get eigenvalues of this mass matrix, we get mν
i which are the light

neutrino eigenstates and mN
α which are the heavy neutrino eigenstates

mν
i = −

m2
D

mRi

mN
α = mRα. (4.45)

Now we want to see the connection between the mass mixing matrix M with the vev parameters
and some knowing parameters and how to naturally deduce the mass of the light ν and heavy
neutrino N when we break the symmetry! By using the same higgs fields that we given before
[∆L(1, 0,+2) + ∆R(0, 1,+2), φ(1

2 ,
1
2 , 0)]. Shematically, the masses of neutrinos are generated as

follows:

SUL(2)× SUR(2)× UB−L(1)× P

↓

∆L w 0 ∆R = vR 6= 0 Mν =

(
0 0

0 vR

)
(4.46)

↓

SUL(2)× UY (1)

↓

< φ >=

(
k 0

0 k′

)
Mν =

(
0 1

2hk
1
2hk fvR

)
(4.47)

↓

UEM (1)

By diagonalizing the above Mν we obtain the following eigenstates and masses :

ν = νL cos ξ + νR sin ξ mν w
h2k2

2fvR
(4.48)

N = −νL sin ξ + νR cos ξ mN w 2fvR (4.49)

where tanξ(mν/mN )2 as claimed before : vR → ∞ ⇒ mν → 0, and the leptonic charged currents
now look as: (

ν cos ξ +N sin ξ

e−

)
L

(
−ν sin ξ +N cos ξ

e−

)
R

(4.50)

if we reparametrize the mν and mN in terms of me and mWR
, we get :

mν w r2

β ·
m2
e

mWR
.

mN w βmWR

.

(4.51)

where r and β are dimensionless parameters, me is the electron mass and mWR
are the right- and

the left-handed charged gauge boson mass.
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4.5 Feynman’s Rules

External Heavy Neutrino propagators

External heavy neutrino propagators are the same one of the fermions ( they are the same rules
in the SM chapter (see the section (2.5) ).

Internal Propagators

WR, ZR propagators have the same form of W , Z in SM .

Feynman vertices [25]

In adition to the vertices in the previous chapter ( see the section (3.4.3) ), we have new vertices
arising from the interaction between the new right-handed gauge boson WL, WR, ZR and the
fermions, we give this vertices below:

• vertex WR − q − q′

� −
igkqR√

2
V CKM
ij γµ PR

• vertex WR − l − ν

� −
igklR√

2
Xlm γ

µ PR

• vertex WR − l −N

� −
igklR√

2
Ylm′ γ

µ PR

The matrix Ylm′ (Xlm) quantifies the mixing between the heavy (light) neutrino mass eigenstate
mN (mν) and the right-handed chiral state with corresponding lepton flavor l. The mixing scale as

|Ylm′ |2 ∼ Θ(1) |Xlm|2 ∼ 1− |Ylm′ |2 ∼ Θ

(
m2
νm

m2
N ′m

)
(4.52)

The mixing scale as |Yli′| ∼ Θ(1),andKq
R ∈ R independently normalizes theWR coupling strength to

leptons. At TeV collider scales, both light neutrino masses and light neutrino mixing can be taken to
zero, so for simplicity, we take Ylm′ to be diagonal with unit entires|Ye−N | = |Yµ−N2

| = |Yτ−N3
| = 1

and |Yothers| = 0.

• vertex ZR − f − f

�
−iKf

Rgδij√
1− tan2 θw

(Kf
Rg)

2

γµ
(
gZR,fL PL + gZR,fR PR

)

where

PL =
1− γ5

2
PR =

1 + γ5

2

and

gZR,fL = (I3,f
L −Qf )

1

(Kf
R)2

. tan2 θw gZR,fR = I3,f
R − 1

(Kf
R)2

. tan2 θwQ
f .



Chapter 5

Production of a Heavy Neutrinos at LO
Order

In this chapter we study the production of heavy neutrinos for many processes in the Leading Order
(LO) approximation at the LHC in the BSM models presented in chapter 3 and chapter 4. We leave
the higher order corrections to the next chapter, where we will study the same processes in more
details at Next to Leading Order (NLO) approximation. All the processes studied in this work are
proton-proton collision, we can classify them in two types according to the nature of the current
responsible for the interaction:

• Charged current processes (CC), where the weak force is mediated by the W± or W±r gauge
bosons.

• Neutral current processes (NC), where the weak force is mediated by Z or Zr gauge bosons.

The aim of this study is to find the differences between these models which allows us to know the
correct one by comparing our results with the experimental results that are looking for the presence
of a heavy neutrino N . In both models, the neutrinos can be of Dirac or Majorana types. In HNM
model, we considered the two types of neutrinos, however in the LRSM we considered only the
Majorana type of neutrinos.

5.1 Calculation Tools of the Hadronic Cross Section

Here are some physical quantities and kinematics that we need to study our processes:

5.1.1 Cross sections

Partonic cross section σ̂

The cross section is a physical quantity related to the probability of producing particles in a collision
1 + 2 → 3 + 4 + .... + N . The unit of the cross section is the the unit of area, the barn where
1 barn = 10−24cm2. The partonic cross section normalised by the incident flux is defined by:

σ̂ =
1

4
√

(p1.p2)2 −m2
1m

2
2

1

(2π)2

∫
δ4(p1 + p2 −

n∑
i=1

pi)
d3~p3

2E3
...
d3~pn
2En

∑
|M |2

(5.1)

where pi are the momentum of particles , mi are the particle masses, M is the amplitude and
δ is the Dirac delta function of the particle’s four-momentum, which ensures that the energy and
momentum are conserved during an interaction.

Hadronic cross section σH

According to the parton model (proposed by Feynman), the proton is made up of elementary
particles called partons. Partons are point-like particles of negligible mass. If we consider the
collision betwen 2 hadrons (2 protons for example), we note the momuntum of the hadrons is P1

and P2 and the momentum of the 2 partons p1 and p2. Partons will carry a fraction of hadrons
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momentum, then p1 = x1P1, p2 = x2P2. We define the hadronic cross section σH as a convolution of
the partonic cross section σ̂ij→k+l+X of the sub processes ij → k+ l+X and the parton distribution
functions FH1

i (x1, µ
2
F ),FH2

j (x2, µ
2
F ) (or PDFs). The general form of σH for hadron-hadron collision

is:

σ̂H =
∑
i,j

∫
dx1dx2FH

1

i (x1, µ
2
F )FH2

j (x2, µ
2
F )σ̂ij→k+l+X(p1, p2, µ

2
F , µ

2
R) (5.2)

with i, j = q, q̄, g, where q = u, d, s, c in the four flavour scheme (4FS) and q = u, d, s, c, b the five
flavour scheme (5FS) 1.

• FH1

i (xi, µ
2
F ) is the partonic distribution function, it represents the distribution of the parton

i inside the hadron H, it encodes the physics at low energy.

• σ̂ij→k+l+X is the partonic cross section, it encodes the physics at high energy and gives the
probability transition from de initial state i+ j to the final state k + l +X.

• µ2
F is the factorisation scale, which factorise the physics of short and long distances.

• µ2
R is the renormalisation scale introduced by the renormalisation procedure to eliminate the

UV divergences.

Differential cross section

We now define the differential cross section. This quantity is obtained by keeping one or more
variable of integration of the total cross section non-integrated. For example, if we keep the variable
cos(θ) we denote the differential cross section dσ̂/d cos(θ), which gives us information about the
distribution of the probability in term the angle θ. Many differential cross sections are needed to
compare theory and experiment, in the following we give some of them:

• dσ̂/dt with t is the MandelStam variable t = (p1 − p3)2 = (p2 − p4)2.

• dσ̂/d cos(θ) where θ is the angle between the direction of the incident particle and one of the
outgoing particles.

• dσ̂/dmT where mT is the transverse mass.

• dσ̂/dpT where pT is the transverse momentum.

• dσ̂/dy where y is the rapidity.

• dσ̂/dη where η is the Pseudo-rapidity.

We notice that the kinematics variables like mT , pT , . . . etc are defined in the next section.

Decay rate

Most of the hypothetic particles predicted by BSM models are massive, so they are not stable.
Because of that we need to know their decay rates. The decay rate for the processes 1→ 2 + ...+N

is defined by,

Γ =
1

2m

∫
δ4(p1 −

n∑
i

(pi))
d2~p2

(2π)2 2E2
...

d3~pn
(2π)2 2En

∑
|M |2

where p is the momentum of the decaying particle and m is its mass, pi is the momentum of the
produced particles and Ei are their energies and M is the amplitude of the process.

We mention that de decay rate is inverse of the particle lifetime which is one of important
characteristic of particles.

1In the 4FS all the quarks are assumed to be massles except to bottom and the top quarks, and in the 5FS only
the top quark which is assumed to be massive.
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5.1.2 Kinematics

In this subsection, we give some kinematics variables that we will need in this and in the next
chapters.

Rapidity

Rapidity is commonly used as a measure for relativistic velocity, in the usual convention in accel-
erator physics is to take the beam axis as the z–axis and we define a quantity called the rapidity y
[13]. It is given by,

y =
1

2
ln

(
E + pzc

E − pzc

)
(5.3)

where E is the energy of the particle, pz is the z-component of momentum and c is the speed of
light.

Pseudo-rapidity

The problem with rapidity is that it can be hard to measure for highly relativistic particles, we
need both the energy and the total momentum, and it is hard to get the total momentum in reality,
especially when the z-component of momentum is large, in this cas there is a quantity that is almost
the same thing as the rapidity which is much easier to measure than y for highly energetic particles.
This leads to the concept of pseudo-rapidity η [13], we define it as :

η = − ln[tan(θ/2)] (5.4)

where θ is the angle made by the particle trajectory with z-axis (in general cas), where cos θ = pz
p .

Transverse mass, transverse energy and transverse momentum

The transversus quantities are very important in particle and experimental physics especially when
we study collision processes and results of the reactions, in absence of information about the lon-
gitudinal components of the four-vectors, useful information on the decay can still be extracted
by restricting our attention to the accessible quantities, that are in general energies and momenta
measured in the transverse plane [14].

We start with the transverse mass. Thise quantity is very important since it is invariant under
Lorentz boosts along the z direction (as a convention in general), it is defined by:

mT = m2 + p2
x + p2

y = E2 − p2
z (5.5)

where th z-direction is the direction of motion.
This definition of the transverse mass is used in conjunction with the definition of the transverse

energy,

ET = E · pT
|p|

=
E√

E2 −m2
· pT (5.6)

with the transverse momentum pT =

pxpy
0

.

It is easy to see that for vanishing mass (m = 0) the three quantities are the same ET = pT = mT .
The transverse mass is used together with the rapidity, transverse momentum and polar angle in
the parameterisation of the four-momentum of a single particle as follows,

(E, px, py, pz) = (mT cosh y, pT cosφ, pT sinφ, mT sinh y). (5.7)
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5.1.3 Tools of automatic calculations

HIP package

The HIP program is a set of packages written in mathematica language. It allows to calculate the
amplitudes and the squares of amplitudes of Feynman diagrams symbolically [4]. Here are some
basic commands of this code :

• PrepareIndex[ ]: to declare the Lorentz indices (µ, ν...)

• SetMass[ ]: to declare the momenta and masses of particles (m1,m2...)

• SetReal[ ]: to declare the real variables

• SetMandelstam[ ]: to express the amplitude in term of Mandelstam variables (S,U, T )

• DiracGamma[ ]: Dirac matrix (γµ...]

• SpinorU (V)[ ]: Dirac spinor u(v)

• SpinorUbar (Vbar)[ ]: Dirac spinor ū(v̄)

• Contract[ ]: to contract on the Lorentz indices (gµνp
µ = pν)

• GammaTrace[ ]: to calculate the traces of the matrices

• AbsSquared[ ]: to calculate the square of the amplitude (|M |2)

• DotProduct[ ]: to calculate the dot product (p · q)

• MasslessVectorPolarisation[ ]: massless gauge bosons polarization vector (γ...)

• HeaveyVectorPolarisation[ ]: massive gauge bosons polarization vector (W±, Z...)

One can download this package from the Mathematica website https://library.wolfram.com/
infocenter/Articles/1080/.

MadGraph5_aMC@NLO program

MadGraph5_aMC@NLO is a program which allows us to compute the hadronic cross section at the
order LO and NLO. To install MadGraph5_aMC@NLO we follow the next steps [15] :

• download MadGraph5_aMC@NLO from : //launchpad.net/madgraph5

• start the program with the command : $./bin/mg5_aMC

• to calculate the cross section at LO, we follow these steps:

– Importing the model: MG5 aMC>import model (the Model name).

– Process generation: generate p p > i j, in this step, MadGraph5_aMC@NLO generates
all the Feynman diagrams and the associated amplitudes.

– Output: MG5 aMC>output to create the code that the cross section calculates (the Model
name).

– Execution: In this step, MadGraph5_aMC@NLO calculates the cross section by the com-
mand MG5 aMC>launch.

• We can change the external settings like (center mass energy
√
S, number of events, mass of

particles ...) in the cards inside the generated code.

https://library.wolfram.com/infocenter/Articles/1080/
https://library.wolfram.com/infocenter/Articles/1080/
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5.2 Charged Current Processes

Let’s first start with the process mediated by charged gauge bosons ( (W±) in Heavy Neutino Model
for both Dirac and Majorana types of neutrino, and (W±r ) in Left-Right Symmetric Model.

5.2.1 Heavy Neutrino Model (Dirac type)

One of the sub-processes of this reaction in this model is d(P1) + u(P2) → e−(P3) + N(P4). The
corresponding Feynman diagramme for this proces is,

�W−

d(p2)

ū(p1)

N̄(p4)

e−(p3)

Figure 5.1: Feynman diagram of the charged current proces in HNM (Dirac type of neutrino).

• The amplitude and its complex conjugate for this proces are given by:

M =
ig2δijcosθcV

∗
Nl

8(q2 −m2
W )

(
v̄i(p2)3)γµ(1− γ5)uj(p1) ū(p3)γµ(1− γ5)v(p4)

− 1

m2
W

v̄i(p2) 6q(1− γ5)uj(p2)ū(p3) 6q(1− γ5)v(p4)

)
.

(5.8)

The complex conjugate of M is,

M =
−ig2δj′i′cosθcV

∗
Nl

8(q2 −m2
W )

(
ūj′(p1)3)(1 + γ5)γµ

′
vi′(p2) v̄(p4)(1 + γ5)γµ′u(p3)

− 1

m2
W

ūj′(p1)(1 + γ5) 6qvi′(p1)v̄(p4)(1 + γ5) 6qu(p3)

)
(5.9)

now let use some relations to simplify the calculations:

6pu(p) = m 6pv(p) = −m u(p) 6p = m v(p) 6p = −m (5.10)

6p(1− γ5) = (1 + γ5) 6p (1− γ5)(1 + γ5) = 0 (1− γ5)2 = 2(1− γ5) (5.11)

and we have 6q =6p1+ 6p2 =6p3+ 6p4, so:

v̄i(p2)(6q)(1− γ5)uj(p1) = v̄i(p2)(6p1+ 6p2)(1− γ5)uj(p1)

= −muv̄i(p2)(1− γ5)uj(p1) +mdv̄j(p2)(1 + γ5)uj(p1)

(5.12)

ū(p3)(6q)(1− γ5)v(p4) = ū(p3)(6p3+ 6p4)(1− γ5)v(p4)

= −me− ū(p3)(1− γ5)v(p4) +mN ū(p3)(1 + γ5)v(p4).

(5.13)
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But the energy of the experiment is very large (13 TeV at LHC and 100 TeV in the future
colliders), so we can neglect the mass of the quarks and light leptons (e− for example), so if we
put mu = md = me− = 0 and mN 6=0 we find :

v̄i(p2)(6q)(1− γ5)uj(p1) = 0 ū(p3)(6q)(1− γ5)v(p4) = 0 (5.14)

so the amplitude in this case is,

M =
ig2δijcosθcV

∗
Nl

8(q2 −m2
W )

v̄i(p2)3)γµ(1− γ5)uj(p1) ū(p3)γµ(1− γ5)v(p4) (5.15)

and it’s complex conjugate is,

M =
−ig2δj′i′cosθcV

∗
Nl

8(q2 −m2
W )

ūj′(p1)3)(1 + γ5)γµ
′
vi′(p2) v̄(p4)(1 + γ5)γµ′u(p3). (5.16)

• The amplitude squared:

To calculate the amplitude squared, we use the following relations on the Dirac spinors:∑
u(p)ū(p) =6p+m

∑
v(p)v̄(p) =6p−m (5.17)

∑
ui(p)ūj(p) = (6p+m)δij

∑
v(p)iv̄(p)j = (6p−m)δij (5.18)

so ∑
|M |2 =

g4cos2θc(V
∗2
Nl)δijδj′i′

4N264(q2 −m2
W )2

∑
coulor

∑
spin

v̄i(p2)3)γµ(1− γ5)uj(p1) ūj′(p1)3)(1 + γ5)

γµ
′
vi′(p2) ū(p3)γµ(1− γ5)v(p4) (5.19)

=
g4 cos2 θc(V

∗2
Nl)δijδj′i′

4N264(q2 −m2
W )2

∑
coulor

∑
s2,s4

v̄i(p2)γµ(1− γ5)

(∑
s1

u(p1)j ūj′(p1)3)

)
× γµ(1− γ5)vi′(p2) ū(p3)γµ

(∑
s4

v(p4)v̄(p4)

)
(1 + γ5)γµ′u(p3) (5.20)

we take into consideration that mu = md = me− = 0 and mN 6= 0, so we get:∑
|M |2 =

g4 cos2 θc(V
∗2
Nl)δijδj′i′δjj′

4N264(q2 −m2
W )2

∑
coulor

∑
s2,s4

v̄i(p2)γµ(1− γ5) 6p1γ
µ(1− γ5)vi′(p2) ū(p3)γµ

× (6p4 −mN )(1 + γ5)γµ′u(p3) (5.21)

=
g4cos2θc(V

∗2
Nl)δijδj′i′δjj′δii′

4N264(q2 −m2
W )2

Tr[6p2γ
µ(1− γ5) 6p1(1 + γ5)γµ

′
]

× Tr[ 6p3γµ(1− γ5)(6p4 −mN )(1 + γ5)γµ′ ] (5.22)

to simplify it, we use the relation δijδj′i′δjj′δii′ = δii = N = 3 (3 colors for quarks) and some
trace relations and γ5 properties, we find:

Tr[γαγβγµγµ
′
] = 4(gαβgµµ

′ − gαµgβµ′ + gαµ
′
gβµ)

Tr[γ5γαγβγµγµ′ ] = 4iξγαγβγµγµ′

(5.23)
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so,

Tr[ 6p2γ
µ(1− γ5) 6p1γ

µ′ ] = Tr[6p2γ
µ 6p1γ

µ′ ]− Tr[γ5 6p1γ
µ′ 6p2γ

µ]

= 4p2βp1α(gβµgαµ
′ − gβαgµµ′ + gβµ

′
gαµ)− 4iξ 6p1γ

µ′ 6p2γµ

= 4(pµ2p
µ′

1 − p1.p2g
µµ′ + pµ

′

2 p
µ
1 )− 4iξ 6p1γ

µ′ 6p2γµ (5.24)

Tr[6p3γµ(1− γ5) 6p4γµ′ ] = Tr[6p3γµ 6p4γµ′ ]− Tr[γ5 6p4γµ′ 6p3γµ]

= 4p3
βp4

α(gβµgαµ′ − gβαgµµ′ + gβµ′gµα)− 4iξ 6p4γµ′ 6p3γµ

= 4(p3µ p4µ′ − p4 · p3gµµ′ + p3µ′ p4µ)− 4iξ 6p4γµ′ 6p3γµ (5.25)

The amplitude squared is:∑
|M |2 =

g4cos2θc(V
∗2
Nl)

12(q2 −m2
W )2

(
4(pµ2p

µ′

1 − p1.p2g
µµ′ + pµ

′

2 p
µ
1 )− 4iξ 6p1γ

µ′ 6p2γµ
)

×
(

4(p3µ p4µ′ − p4 · p3gµµ′ + p3µ′ p4µ)− 4iξ 6p4γµ′ 6p3γµ

)
=
g4cos2θc(V

∗2
Nl)

12(q2 −m2
W )2

[(
(pµ2p

µ′

1 − p1.p2g
µµ′ + pµ

′

2 p
µ
1 )(p3µ p4µ′ − p4 · p3gµµ′ + p3µ′)

)
− i
(

(pµ2p
µ′

1 − p1.p2g
µµ′ + pµ

′

2 p
µ
1 )ξ 6p4γµ′ 6p3γµ

)
−i
(
ξ 6p1γ

µ′ 6p2γµ(p3µ p4µ′ − p4 · p3gµµ′ + p3µ′)

)
−
(
ξ 6p1γ

µ′ 6p2γµξ 6p4γµ′ 6p3γµ

)]
(5.26)

∑
|M |2 =

g4cos2θc(V
∗2
Nl)

12(q2 −m2
W )2

[(
p1.p4p2.p3 − p1.p2p3.p4 − p1.p2p3.p4 + 4p1.p2p3.p4 − p1.p2p3.p4

+ p1.p3p2.p4 − p1.p2p3.p4 + p1.p4p2.p3

)
−i
( sym×anti−sym=0︷ ︸︸ ︷

(pµ2p
µ′

1 − p1.p2g
µµ′ + pµ

′

2 p
µ
1 )ξ 6p4γµ′ 6p3γµ

)

− i
( sym×anti−sym=0︷ ︸︸ ︷
ξ 6p1γ

µ′ 6p2γµ(p3µ p4µ′ − p4 · p3gµµ′ + p3µ′)

)
−
(
ξ 6p1γ

µ′ 6p2γµξ6p4γµ′ 6p3γµ

)]
(5.27)

if we used antisymmetric properties of the tensor ξ and the property:
ξγ

αγβγµγνξγαγβγδγσ = −2(gµδ g
ν
σ − g

µ
σgνδ ), we get:

∑
|M |2 =

g4cos2θc(V
∗2
Nl)

12(q2 −m2
W )2

(
2p1.p4p2.p3 + 2p1.p3p2.p4 + ξγ

µγµ
′ 6p1 6p2ξγµγµ′ 6p3 6p4

)
=
g4cos2θc(V

∗2
Nl)

12(q2 −m2
W )2

(
2p1.p4p2.p3 + 2p1.p3p2.p4 − 2p1αp2βp3

δp4
σ(gαδ g

β
σ − gασg

β
δ )

)
(5.28)

∑
|M |2 =

g4cos2θc(V
∗2
Nl)

3(q2 −m2
W )2

p1.p4p2.p3. (5.29)

• The amplitude squared as a function of MandelStam variables:

The Mandelstam variables are:

s = (p1 + p2)2 = (p3 + p4)2 t = (p1 − p3)2 = (p2 − p4)2 u = (p1 − p4)2 = (p2 − p3)2 (5.30)
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s = p2
1 + p2

2 + 2p1.p2 = p2
3 + p2

2 + 2p3.p4 ⇒ s = 2p1p2 = m2
N + 2p3.p4

t = p2
1 + p2

3 − p1.p3 = p2
2 + p2

4 − 2p2.p4 ⇒ t = −2p1p3 = m2
N − 2p2.p4

u = p2
1 + p2

4 − 2p1.p4 = p2
2 + p2

3 − 2p2.p3 ⇒ u = m2
N − 2p1p4 = −2p2.p3 (5.31)

so 
p1.p2 = s

2

.

p3.p4 =
s−m2

N
2

.


p1.p3 = −t

2

.

p2.p4 =
m2
N−s
2

.


p1.p4 =

m2
N−u
2

.

p2.p3 = −u
2

.

the amplitude squared become:

∑
|M |2 =

g4cos2θc(V
∗2
Nl)

12(2p1 · p2 −m2
W )2

(
(u−m2

N )u

)
(5.32)

• The amplitude squared in center of mass rference (CM):

To calculate the cross section we need to write the amplitude squared in CM frame. The
4-momunta of the external particles in this frame are:

p1 =

√
s

2


1

0

0

1

 p2 =

√
s

2


1

0

0

−1

 p3 =


E3

ρ sin θ

0

ρ cos θ

 p3 =


E4

−ρ sin θ

0

−ρ cos θ

 (5.33)

to find ρ we use the general formula of energies, where we find in our case:
E3 =

s+m2
3−m2

4

2
√
s

.

E4 =
s+m2

4−m2
3

2
√
s

.

⇒


E3 =

s−m2
N

2
√
s

.

E4 =
s+m2

N

2
√
s

.

(5.34)

and we have,

p2
3 = E2

3 − ρ2 = 0⇒ ρ = E3

p2
4 = E2

4 − ρ2 = m2
N ⇒ ρ =

√
E2

4 −m2
N .

(5.35)

So,

ρ =
s−m2

N

2
√
s

=

√
s

2

(
1−

m2
N

s

)
(5.36)

The MandelStam variables u and t are writen as :

u = (p1 − p4)2 =


−m2

N

2
√
s

ρ sin θ

0

1 + ρ cos θ

 · (−m2
N

2
√
s

ρ sin θ 0 1 + ρ cos θ
)

(5.37)
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u =
m4
N

4s
− ρ2 sin2 θ − (1− ρ cos θ)2 =

m4
N

4s
− 1− ρ2 − 2 cos θ

=
m4
N

4s
− 1− s

4

(
1−

m2
N

s

)2

−
√
s

(
1−

m2
N

s

)
cos θ

=
m4
N

4s
− 1− s

4

(
1 +

m4
N

s2
−

2m2
N

s

)
−
√
s

(
1−

m2
N

s

)
cos θ

(5.38)

u =
m2
N

2
− s

4
− 1−

√
s

(
1−

m2
N

s

)
cos θ

(5.39)

t = (p1 − p3)2 =


−m2

N

2
√
s

ρ sin θ

0

1 + ρ cos θ

 · (−m2
N

2
√
s

ρ sin θ 0 1 + ρ cos θ
)

(5.40)

t =
m4
N

4s
− ρ2 sin2 θ − (1− ρ cos θ)2 =

m4
N

4s
− 1− ρ2 − 2 cos θ

=
m4
N

4s
− 1− s

4

(
1 +

m4
N

s2
−

2m2
N

s

)
−
√
s(1−

m2
N

s
) cos θ

(5.41)

t =
m2
N

2
− s

4
− 1−

√
s

(
1−

m2
N

s

)
cos θ

(5.42)

if we put the value of t in the expression of the amplitude, we get:

∑
|M |2 =

g4cos2θc(V
∗2
Nl)

12(s−m2
W )2

[(
m2
N

2
− s

4
− 1−

√
s(1−

m2
N

s
) cos θ

)2

−m2
N

(
m2
N

2
− s

4
− 1−

√
s(1−

m2
N

s
) cos θ

)]
(5.43)

⇒
∑
|M |2 =

g4cos2θc(V
∗2
Nl)

12(s−m2
W )2

[
(
m2
N

2
− s

4
− 1)2 + s(1−

m2
N

s
)2 cos2 θ

+

(
2(
m2
N

2
− s

4
− 1)
√
s(
m2
N

s
− 1) +m2

N (
m2
N

2
− s

4
− 1−

√
s(1−

m2
N

s
)

)
cos θ

]
. (5.44)

• Partonic cross section:

Now we calculate the partonic cross section,

σ̂ =
1

4
√

(p1.p2)2 −m2
1m

2
2

1

(2π)2

∫
δ4(p1 + p2 − p3 − p4)

d3~p3

2E3

d3~p4

2En

∑
|M |2

(5.45)



46 Chapter 5. Production of a Heavy Neutrinos at LO Order

but mu = md = me− = 0 and mN 6= 0, so

σ̂ =
1

4
√

(p1.p2)2

1

(2π)2

∫
δ4(p1 + p2 − p3 − p4)

d3~p3

2E3

d3~p4

2E4

∑
|M |2

=
1

2 s(2π)2

∫
δ4(p1 + p2 − p3 − p4)

d3~p3

2E3

d3~p4

2E4

∑
|M |2

(5.46)

we use the relation
∫ d3~p4

2E4
=
∫
d4p4δ

+(p2
4 −m2

N ), so

σ̂ =
1

2 s(2π)2

∫
d3~p3

2E3
δ+((p1 + p2 − p3)2 −m2

N )
∑
|M |2 (5.47)

in CM frame we have that:

(p1 + p2 + p3)2 = (p1 + p2)2 + p2
3 + 2p3.(p1 + p2)

= s2 − 2
(
E3 ~p3

)
·
(√

s

~p3

)
= s2 − 2E3

√
s (5.48)

but p2
3 = 0 = E2

3 − |~p3|2 ⇒ E3 = |~p3| so (p1 + p2 + p3)2 = (s− 2|~p3|
√
s) so from it we get

δ+((p1 + p2 + p3)2 −m2
N ) = δ+(s− 2|~p3|

√
s−m2

N ) (5.49)

now we use the following relation:

δ(g(x)) =
δ(x− xi)
|g′(xi)|

(5.50)

with g(xi) = 0. So,

g(x)→ s− 2|~p3|
√
s−m2

N ⇒


g(xi) = 0→ s− 2|~p3|

√
s−m2

N = 0

.

|~p3|i =
s−m2

N

2
√
s
.

(5.51)

and

g′(xi)⇒ −2
√
s (5.52)

we get:

δ(g(xi))⇒
|~p3| −

(
s−m2

N

2
√
s

)
2
√
s

. (5.53)

In the the spherical coordinates, we have
∫
d3 ~p3 =

∫ ∫ 2π
0

∫ π
0 |~p3|2d|~p3| sin θdθdφ to simplify the

calculations, we get:

⇒ σ̂ =
1

8 sπ

∫ ∫ π

0
|~p3|d|~p3|

(
|~p3| −

s−m2
N

2
√
s

)
2
√
s

sin θdθ
∑
|M |2

=
1

8 sπ

∫ π

0

(s−m2
N )

4s
sin θdθ

∑
|M |2

(5.54)
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puting expression of the amplitude
∑
|M |2 in the previous relation, gives us:

σ̂ =
g4cos2θc(V

∗2
Nl)

384s2(s−m2
W )2

(s−m2
N )

∫ π

0

[(
m2
N

2
− s

4
− 1

)2

+ s

(
1−

m2
N

s

)2

cos2 θ

+

(
2

(
m2
N

2
− s

4
− 1

)√
s

(
m2
N

s
− 1

)
+m2

N

(
m2
N

2
− s

4
− 1−

√
s(1−

m2
N

s
)

)
cos θ

]
sin θdθ (5.55)

now we change the variable,

cos θ = X ⇒ dX = − sin θdθ and

{
θ = 0

θ = π
⇒

{
X = 1

X = −1
(5.56)

⇒ σ̂ =
g4cos2θc(V

∗2
Nl)

384s2(s−m2
W )2

(s−m2
N )

∫ 1

−1

[
(
m2
N

2
− s

4
− 1)2 + s(1−

m2
N

s
)2X2+(

2(
m2
N

2
− s

4
− 1)
√
s(
m2
N

s
− 1) +m2

N (
m2
N

2
− s

4
− 1−

√
s(1−

m2
N

s
)

)
X

]
dX (5.57)

=
g4cos2θc(V

∗2
Nl)

384s2(s−m2
W )2

(s−m2
N )

[
(
m2
N

2
− s

4
− 1)2X +

s

3
(1−

m2
N

s
)2X3+
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(5.59)
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5.2.2 Heavy Neutrino Model (Majorana type)

We do the same calcaulations in the HNM (Majorana type), but in this case we do not calculate
analytically, iinstead of that we use some programs of calculation as Mathematic, Hip, FeynRules,
and MadGraph5_aMC@NLO to calculate the amplitudes, cross sections and decay rate numerically.
The charged current process in this model is: d(P1) + u(P2) → e−(P3) + N(P4), the Feynman
diagramme is:

�W−

d(p2)

ū(p1)

N(p4)

e−(p3)

Figure 5.2: Feynman diagram of the charged current process in HNM (Majorana type of neutrino).

The amplitude of this process is given by:

M =
ig2δijcosθcV

∗
Nl

8(q2 −m2
W )

(
v̄i(p2)3)γµ(1− γ5)uj(p1) ū(p3)γµ(1− γ5)v(p4)− 1

m2
W

v̄i(p2) 6q(1− γ5)uj(p2)

× ū(p3) 6q(1− γ5)v(p4)

)
(5.61)

it should be noted that the vertices in Feynman diagram in this model are the same of the previous
model. Therefore, the results will be the same. The only difference is in the type of neutrino
which is Majorana in this case, but this does not affect on the results. To calculate the amplitude
squared, we use Hip according to the following steps:
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• After installing Hip, we called it on Matematica and putting the following commands:

Exit[ ]
<< /home/yassin/master/hip/work.m

• we put the information about the Particles that will participate in process

PrepareIndex[mu,mup, nu, nup,mu1,mu2]

SetMass[p1, 0, p2, 0, p3, 0, p4,mN ]

(*SetMandelstam[p1, p2, p3, p4, 0, 0, 0,mN, S, T, U ]*)
SetReal[mN,Mw, V, cos, ct, gg]

k = p1 + p2

• puting the amplitude value in the programe

M = (gg2 ∗cos∗V )∗SpinorVbar[p2]∗∗g[mu]∗∗(1−g5)∗∗SpinorU[p1]∗∗(G[mu, nu]−k[mu]∗
∗k[nu]/Mw2) ∗ ∗
SpinorUbar[p3] ∗ ∗g[nu] ∗ ∗(1− g5) ∗ ∗SpinorV [p4]/8/(p[k, k]−Mw2)

The amplitude squared:

• now we put this commands to calculate the amplitude squared

sqM = Simplify[Contract[Simplify[Contract[ AbsSquared[M]/12, {mu, nu, Conjugate[mu],
Conjugate[nu]}]], {mu,nu, Conjugate[mu], Conjugate[nu]}]]
after we clicking on evaluate cell on all commands, we get the result

(cos2gg4V 2DotProduct[p1, p4]DotProduct[p2, p3])

(3(Mw2 − 2DotProduct[p1, p2])2)
(5.62)

so the result of the amplitude squared in this case is the same of the Dirac case,∑
|M |2 =

g4cos2θc(V
∗2
Nl)

3(2p1 · p2 −m2
W )2

p1 · p4p2 · p3 (5.63)

• The amplitude squared as a function of MandelStam variables

• To calculate it, we put the commands:
SetMandelstam[p1, p2, p3, p4, 0, 0, 0,mN, S, T, U ]

sqMstu = Simplify[sqM]
we get the result

−(cos2gg4(mN2 − U)UV 2)

(12(Mw2 − S)2)
(5.64)

so, ∑
|M |2 =

g4cos2θc(V
∗2
Nl)

12(s−m2
W )2

(
(u−m2

N )u

)
(5.65)

The amplitude squared in CM frame:



5.2. Charged Current Processes 49

• We must put the value of Mandelstam variables in mass center frame (to calculate the ampli-
tude squared) by puting the following commands

sqMthe = Simplify[sqMstu /. {T − > ((mN2)/2) − (S/4) − 1 − Sqrt[S] ∗ (1 −mN2/S) ∗
cos θ, U− > ((mN2)/2)− (S/4)− 1− Sqrt[S] ∗ (1−mN2/S) ∗ cos θ}

we get the result
1

(192(Mw2−S)2S)
cos2gg4 (−4ct(mN2−S)+Sqrt[S](4−2mN2+S))(−4ct(mN2−S)+Sqrt[S](4+

2mN2 + S))V 2

so after simplifying, we get:

∑
|M |2 =
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s
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)
cos θ

]
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(5.66)

• Partonic cross section:

We calculated the partonic cross section analytically as in the previous model, and since the
amplitude and it’s squared is the same of Dirac case, we get the same result :

σ̂ =
g4cos2θc(V

∗2
Nl)
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N )
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4
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3

(
1−

m2
N

s

)2]
(5.67)

5.2.3 Left-Right Symmetric Model

Now we want to see the same process (charged current) and studying it in LRSM, therefore to know
the diffrens between the proprity of the produced heavy neutino in this model and the previous
models, to do that we going to calculate numerically. We use the same computational steps as
we calculated in HNM, Majorana case and the same tools (Mathematica, Hip, FeynRules and
MadGraph).

The charged current process in this model is: d(P1) + u(P2)→ e−(P3) +N(P4), and Feynman
diagramme is:

�W−R

d(p2)

ū(p1)

N̄(p4)

e−(p3)

Figure 5.3: Feynman diagram of the charged current process in LRSM (Majorana type of neutrino).

The amplitude:

M =
ig2δij(K

q
r )2V CKM

ij Ylm

8(q2 −m2
Wr

)

(
v̄i(p2)3)γµ(1 + γ5)uj(p1) ū(p3)γµ(1− γ5)v(p4)

− 1

m2
Wr

v̄i(p2) 6q(1 + γ5)uj(p2)× ū(p3) 6q(1− γ5)v(p4)

)
(5.68)
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We going now to use the same commands that we used in Majorana type With a difference in
some points in the commands, this is due to the difference in the process on MadGraph, and therefore
the location of the file on the computer differs and some names in constants and bosons. But in
general the method is the same. So after the computational steps, we get :

• The amplitude squared:∑
|M |2 =

g4(Kq
r )4(V CKM

ij )2(Ylm)2

3(2p1 · p2 −m2
Wr

)2
p1.p4p2.p3 (5.69)

• The amplitude squared as a function of MandelStam variables:∑
|M |2 =

g4(Kq
r )4(V CKM
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• Amplitude square in CM frame:∑
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• Partonic cross section: We calculated the cross section analytically as in the previous
models, we got the result:
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g4(Kq
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5.2.4 Variation of the Cross Section in Term of Heavy Neutrino Mass

In this section we going to study the variation of the hadronic cross section as a function of the
mass of the produced heavy neutrino N (Dirac case), (N) (Majorana case). We remind that the
numerical calculation is performed by MadGraph5, where we have created the codes that enable us to
compute the hadronic cross section numerically for different masses and parameters for each model.

• Here’s the directories that contain those codes:
cd master/MG5_aMC_v2_5_4/pp_en1_̃Dirac_lo/ [in Heavy Neutrino Model (Dirac type)]
cd master/MG5_aMC_v2_5_4/pp_en1_lo/ [in Heavy Neutrino Model (Majorana type)]
cd master/MG5_aMC_v2_5_4/pp_en1_LR_lo/ [in LR-Symmetric Model]

• To change the masses, one has to go to the file param_card.dat inside the directory Cards:
cd Cards/
gedit param_card.dat

• The param card.dat looks like the following:

we get a different result for the hadronic cross section every time we change the value of mass,
the values that we choose and the hadronic cross section results that we got in charged current
processes are summarized in the following tables:
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Figure 5.4: param card.dat

mN(N̄)(GeV) σH(pb) in HNM (Dirac type) σH(pb) in HNM (Majorana type)
200 0.3764± 3.4× 10−03 0.3847± 1.1× 10−03

400 0.02684± 2.5× 10−05 0.02722± 7.3× 10−05

600 0.005189± 4.3× 10−06 0.005238± 1.3× 10−05

800 0.00148± 4.2× 10−06 0.001491± 4.2× 10−06

1000 0.0005163± 1.2× 10−06 0.0005194± 1.2× 10−06

Table 5.1: Hadronic cross section as a function of mN in HNM (Dirac and Majorana cases).

mN(N̄)(Gev) σH(pb) (mWR=3 TeV) σH(pb)(mWR=W TeV) σH(pb)(mWR
= 1.5 TeV)

200 0.002941± 4.8× 10−06 0.5802± 1.6× 10−03 0.09377± 2.7× 10−04

400 0.002944± 3.8× 10−06 0.04007± 1.1× 10−04 0.08372± 2.3× 10−04

600 0.002602± 5.5× 10−06 0.00768± 2.1× 10−05 0.06903± 1.9× 10−04

800 0.002418± 4.6× 10−06 0.002143± 6.2× 10−06 0.05141± 1.1× 10−04

1000 0.002219± 3.4× 10−06 0.0007492± 2.1× 10−06 0.03227± 8.5× 10−05

Table 5.2: Hadronic cross section as a function of mN in LRSM for mWR
= 3 TeV, mWR

= mW

and mWR
= 1.5 TeV.

The variation of the hadronic cross section in terms of the mass of the heavy neutrinos in the
three different models are displyed in Fig.(5.5).

Remarks and comments:

• We observe that the variation of the hadronic cross section in the HNM in both cases (Dirac
and Majorna) strongly depends on the mass of the produced heavy neutrino mN . We have
seen from the theoretical calculations that the Feynman Diagrams and the couplings in Dirac
type HNM and Majorana type HNM are almost the same. The slight differences in the curves
are due to the errors in the numerical calculations by MadGraph5 especially since we used just
10000 of events in our caulations. We observe also that the hadronic cross section decrese
when the mass of the heavy neutrino increse (and vese versa), this is due to the fact the phase
space is reduced for heavy particles in the final state since one neeeds more energy to produce
them. We deduce that this process cannot help us to know if the hypothetical heavy neutrinos
are Dirac, Majorana or they might exist in both cases (since the hadronic cross are almost
the same at this level), so one has to go the higher order corrections and look for the decay
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Figure 5.5: Variation of the hadronic cross section as a function of mN at
√
S = 13 TeV.

product of the heavy neutrinos which will be done in the next chapter. We notice that the
values of VlN are model dependant, so we just give them the same values for simplicity.

• Regarding the LRSM, we observe that the behaviours of the hadronic cross section is com-
pletely different compared to the previous tow models, see the green curve in Fig. (5.5).
For very high mass of the new heavy gauge boson WR (around 3000 GeV), we see that the
hadronic cross section is small and depends very weakly on the mass of the heavy neutrino.
This is due to the fact that the virtuality of the mediator gauge boson is very large which
restrict the phase space and the hadronic cross section of the production of the heavy neu-
trino. Which supports this explanation, is that if we changed the mass of the right charged
gauge boson mWR

and put it equal to mW we note that the hadronic cross section is strongly
depends on the mass of the produced heavy neutrino mN almos as in HNM cases (see the
dashed blue curve in Fig. (5.5)). For a high mass of the new heavy gauge boson WR (we put
it for example around 1500 GeV), we see that the hadronic cross section is dependent weakly
on the mass of the heavy neutrino N then the case of mWR

= mW , but its change remains
greater than the case where the right charge gauge boson mass mWR

= 3000 GeV (see the
dashed black curve in Fig. (5.5)).

5.3 Neutral Current Processes

In this part, division will not be triplet as we did in the previous section but rather binary, we
will study the process p + p → Z → νe− + N in HNM where the process is the same in Dirac and
Majorana types. The only difference is the type of neutrino and this has no impact on results. The
second process is p+ p→ Zr → N +N in LRSM.

5.3.1 Heavy Neutrino Model

The neutral current process in HNM, with their two case is u(p1) + u(p2)→ νe−(p3) +N(p4), and
the Feynman diagram in the two models is:

The calculation will be numerically as we did in the previous section, so we just going to give a
brief reminder to the computational steps:
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�Z

ū(p2)

u(p1)

N(p4)

ν̄−e (p3)

Figure 5.6: Feynman diagram of the neutral current process in HNM, Dirac and Majorana type of neutrino.

• Amplitude is:

M =
iegδijV

∗
lm

8(q2 −m2
W ) sin θw cos2

θw

(
v̄i(p2)3)γµ

[
(
1

2
− 2 sin2 θw

3
(1− γ5)− 2 sin2 θw

3
(1 + γ5)

])
×
(
uj(p1)

[
gµν − qµqν
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]
ū(p3)γν(1− γ5)v(p4)

)
(5.73)

The amplitude is the same in the two models. To get the results we following the next steps:

• we called Hip on Matematica ase we do before,

• we put the information about the Particles that will participate in process,

• puting the amplitude value in the programe,
M = (gg ∗ ee ∗V )∗SpinorVbar[p2] ∗ ∗g[mu] ∗ ∗(((1/2)− (2/3) ∗ sin2) ∗ (1− g5)− (2/3) ∗ sin2 ∗
(1 + g5)) ∗ ∗
SpinorU[p1] ∗ ∗(G[mu, nu]− k[mu] ∗ ∗k[nu]/Mz2) ∗ ∗SpinorUbar[p3] ∗ ∗g[nu] ∗ ∗(1− g5)

∗∗SpinorV[p4]/8 ∗ sin ∗ cos2/(p[k, k]−Mz2)

• The amplitude squared:

• now we following this commands to calculate the amplitude squared:

sqM = Simplify[Contract[Simplify[Contract[ AbsSquared[M]/12,
{mu, nu, Conjugate[mu], Conjugate[nu]}]], {mu,nu, Conjugate[mu], Conjugate[nu]}]]
after we clicking on evaluate cell on all commands, we get the result:

∑
|M |2 =

e2g2(V ∗lm)2 cos4
θw

sin2
θw

216m4
Z (m2

N −m2
Z + 2p3·4 )

(
24 sin2 θw − 32 sin4 θw − g
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2
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Z + 2m2
N p3 · p4

)
(5.74)

• The amplitude squared as a function of MandelStam variables:

• To calculate it, we put the command:
SetMandelstam[p1, p2, p3, p4, 0, 0, 0,mN, S, T, U ]

sqMstu = Simplify[sqM]
we get the result

∑
|M |2 =

e2g2(V ∗lm)2 cos4
θw

sin2
θw

864m4
Z

s(m2
N − s)(m2

N (s− 2m2
Z)− 2m4

Z)

× (9− 24 sin2 θw + 32 sin4 θw) (5.75)



54 Chapter 5. Production of a Heavy Neutrinos at LO Order

• The amplitude square in CM frame:

The result rest the same.

• Partonic cross section:

We calculated the partonic cross section analytically as in the previous section, we do the
same steps:

σ̂ =
(s−m2

N )

32π s2

∫ π

0
sin θ

∑
|M |2 (5.76)

(5.77)

the amplitude squar is independent of θ so:

σ̂ =
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N )

16π s2

∑
|M |2 =

(s−m2
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16π s2
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× (m2
N (s− 2m2

Z)− 2m4
Z)(9− 24 sin2 θw + 32 sin4 θw). (5.78)

5.3.2 Left Right Symmetric Model

The neutral gauge boson in this case is Zr and neutral current process is u(p1) + u(p2)→ N(p3) +

N(p4). Feynman diagramme is:

�ZR

ū(p2)

u(p1)

N(p4)

N(p3)

Figure 5.7: Feynman diagram of the neutral current process in LRSM.

we following the same way. The results are:

• The amplitude is:
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(5.79)

• The amplitude squared is:∑
|M |2 =

(Kf
r )8g4

3m4
Zr

(Kf
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(5.80)
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• The amplitude squared as a function of MandelStam variables:

∑
|M |2 =

4 (Kf
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]
(5.81)

• The amplitude squared in CM frame After we putting the values of Mandelstam variables
in CM frame we get:

∑
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• Partonic cross section: We calculated the cross section analytically as we did in the previous
cases, we do the same steps,
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After using Matematica to calculate the integral we find:

σ̂ =
(Kf

r )8g4((gZr,fl )2 + (gZr,fr )2)

768πs3 ((Kf
r )2 − tan θw)2

(m2
Zr
− s)2
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N )

√
s(−4 + 2mN + s)2 (5.84)

5.3.3 Variation of the Cross Section in Term of Heavy Neutrino Mass

In this section we, study the variation of the cross section in neutral current process as a function
of the produced heavy neutrino N (N) in the three models: HNM Dirac type, HNM Majoran type
and LRSM. We follow the same steps as in the case of charged current processes.

• First, we generate the codes which allow us the compute the cross section by MadGraph5:

cd master/MG5_aMC_v2_5_4/pp_veñ1_Dirac_lo/ [in Heavy Neutrino Model (Dirac type)]
cd master/MG5_aMC_v2_5_4/pp_veñ1m_lo/ [in Heavy Neutrino Model (Majorana type)]
cd master/MG5_aMC_v2_5_4/pp_n1n1_LR_lo/ [in LR-Symmetric Model]

• We variate the masses in the param_card.dat for every model.

The variation of the cross section in term of the masses of the heavy neutrinos, for the three
model, are given in the following tables:

The variation of the cross section, the three models, are displayed in Fig.(5.9).
Remarks and comments:
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mN(N̄)(Gev) σ̂H(pb) in HNM -Dirac mass- σ̂H(pb) in HNM -Majorana mass-.
200 0.3764± 1.1× 10−03 0.3847± 1.0× 10−03

400 0.02684± 7.4× 10−05 0.02722± 6.9× 10−05

600 0.005189± 1.7× 10−06 0.005238± 1.7× 10−05

800 0.00148± 4.2× 10−06 0.001491± 4.4× 10−06

1000 0.0005163± 1.8× 10−06 0.0005194± 1.9× 10−06

Table 5.3: Variation of the hadronic cross section as a function of mN in HNM.

mN(N̄)(Gev) σH(pb) (mZR = 5 TeV) σH(pb)(mZR=Z TeV) σH(pb)(mZR = 1.5 TeV)
200 0.00006549± 1.2× 10−07 0.03211± 1.3× 10−04 0.0489± 1.9× 10−04

400 0.00006544± 1.8× 10−07 0.001912± 7.5× 10−06 0.03094± 1.2× 10−04

600 0.00004314± 1.1× 10−07 0.0002891± 1.1× 10−06 0.01044± 4.0× 10−05

800 0.00003691± 7.4× 10−08 0.00006237± 2.3× 10−07 0.0003246± 1.1× 10−06

1000 0.00003165± 5.8× 10−08 0.00001622± 6.4× 10−07 0.00003758± 1.5× 10−07

Table 5.4: Hadronic cross section as a function of mN in LRSM for mZR = 3 TeV, mZR = mZ and
mZR = 1.5 TeV

Figure 5.8: The variation of the hadronic sec-
tion as a function of produced heavy neutrino
mass (N) (in Dirac case)and N (in Majorana
case) with

√
S = 13TeV .

Figure 5.9: The variation of the hadronic cross
section as a function of produced heavy neutrino
mass N in LRSM with

√
S = 13TeV for mZR

= 5

TeV, mZR
= mZ and mWR

= 1.5 TeV .

• We observe that the variation of the hadronic cross section in the HNM in both cases (Dirac
and Majorna) strongly depends on the mass of the produced heavy neutrino mN . We have
seen from the theoretical calculations that the Feynman Diagrams and the couplings in Dirac
type HNM and Majorana type HNM are almost the same. The slight differences in the curves
are due to the errors in the numerical calculations by MadGraph5 especially since we used just
10000 of events in our caulations. We observe also that the hadronic cross section decrese
when the mass of the heavy neutrino increse (and vese versa), this use due to the fact that
the phase space is reduced for heavy particles in the final state since one neeeds more energy
to produce them. We deduce that this process cannot help us to know if the hypothetical
heavy neutrinos are Dirac, Majorana or they might exist in both cases (since the hadronic
cross are almost the same at this level), so one has to go the higher order corrections and
look for the decay product of the heavy neutrinos which will be done in the next chapter. We
notice that the values of VlN are model dependant, in this we just give them the same values
for simplicity.
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• Regarding the LRSM, we observe that the behaviours of the hadronic cross section is com-
pletely different compared to the previous tow models, see the blue curve in Fig. (5.8). For
very high mass of the new heavy gauge boson ZR (around 5000 GeV), we see that the hadronci
cross section is very small and depends very weakly on the mass of the heavy neutrino. This is
due to the fact that the virtuality of the mediator gauge boson is very large which restrict the
phase space and the hadronic cross section of the production of the heavy neutrino. Which
supports this explanation, is that if we changed the mass of the right charged gauge boson
mZR and put it equal to mZ we note that the hadronic cross section is strongly depends on
the mass of the produced heavy neutrino mN almos as in HNM cases (see the dashed blue
curve in Fig. (5.9)). For a high mass of the new heavy gauge boson ZR (we put it for example
around 1500 GeV), we see that the hadronic cross section is dependent weakly on the mass
of the heavy neutrino N then the case of mZR = mZ , but its change remains greater than the
case where the right charge gauge boson mass mZR = 5000 GeV (see the dashed black curve
in Fig.(5.9)).

5.4 Main Differences Between the Two Models

In this section, we summarise and discuss the main results and differences between the different our
models.

5.4.1 Differences in decay modes and rates

• HNM, Dirac type:

The produced particle that we interested with their decaying is the anti-heavy neutrino N in this
process . We get the types of decays and the decay rates from Hip program automatically, we just
putting this commands to called it on Mathematica, It gives us the result of the decay rate for any
particle in our model

• We first call FeynRules in Mthematica by the command

FeynRulesPath = SetDirectory["/home/sadek/research/feynrules/feynrules-2-3/
feynrules-2.3"];<< FeynRules‘

SetDirectory["/home/sadek/research/feynrules/feynrules-2-3/feynrules-2.3/Models/
heavyNmajorananlo"];

• now we calling the package of our model by this command

LoadModel["SM.fr", "heavyN.fr"];LoadRestriction["DiagonalCKM.rst", "Massless.rst"];
FeynmanGauge = True;

after we clicking on evaluate cell on all commands, we get the decay rate of the anti-heavy neutino
N :

Ni → H + νl Γ =
emNiVlNiP

2mW sin θW
(5.85)

Ni →W− + l+ Γ =
emNiVlNiP√
2mW sin θW

(5.86)

Ni → Z + νl Γ =
emNiVlNiP

2mW sin θW
(5.87)
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• HNM, Majoran type:

The produced particle that we interested with their decaying in this model is the heavy neutrino
N . We get the types of decays and the decay rates from Hip program automatically by following
the same steps of the previous model:

• we first call FeynRules in Mthematica by the command

FeynRulesPath = SetDirectory["/home/sadek/research/feynrules/feynrules-2-3/
feynrules-2.3"];<< FeynRules‘

SetDirectory["/home/sadek/research/feynrules/feynrules-2-3/feynrules-2.3/Models/
heavyNmajorananlo"];

• now we calling the package of our model by this command

LoadModel["SM.fr", "heavyN.fr"];LoadRestriction["DiagonalCKM.rst", "Massless.rst"];
FeynmanGauge = True;

after we clicking on evaluate cell on all commands, we get the decay rate of the heavy neutino
N :

N → H + νl Γ = − i emNiVlNiP

2mW sin θW
(5.88)

N → H + νl Γ = − i emNiVlNiP

2mW sin θW
(5.89)

Ni →W− + l Γ =
emNiVlNiP√
2mW sin θW

(5.90)

Ni →W+l Γ =
emNiVlNiP√
2mW sin θW

(5.91)

N → Z + νl Γ =
emNiVlNiP

2mW sin θW
(5.92)

N → Z + νl Γ =
emNiVlNiP

2mW sin θW
(5.93)

• LRSM:

We get the decay rate by following the same previous computational steps:

N →W+
R + e−(µ−)→ t+ b̄+ e−τ̄ orN →W+

R + e−(µ−)→ ντ + τ̄ + e−(ifmWR
< mN )

the decay rate is:Γ =
(e2Kq

R)(mN −mWR
)(mN + 2mWR

)YeNX
2
e

64m2
Rπ sin2 θWm3

N

(5.94)

N →W−R + e+(µ+)→ b+ t̄+ e+τ̄ orN →W−R + e+(µ+)→ τ + ν̄τ + e+(ifmWR
< mN )

the decay rate is:Γ =
(e2Kq

R)(mN −mWR
)(mN + 2mWR

)YeNX
2
e

64m2
Rπ sin2 θWm3

N

(5.95)
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N →W+
R + τ−(µ−)→ t+ b̄+ e−τ̄ orN →W+

R + τ−(µ−)→ ντ + τ̄ + e−(ifmWR
< mN )

(5.96)

the decay rate is:Γ =
(e2Kq

R)[m2
N +m4

τ − 2m4
wR

+m2
N (−2m2

τ +m2
WR

)]

64m2
Rπ sin2 θWm3

N

×
√

[m4
N + (m2

τ −m2
WR

)2 − 2m2
N (m2

τ +m2
WR

)YeNX2
e ] (5.97)

N →W−R + τ+ → b+ t̄+ e+τ̄ orN →W−R + τ+(µ+)→ τ + ν̄τ + e+(ifmWR
< mN )

(5.98)

the decay rate is:Γ =
(e2Kq

R)[m2
N +m4

τ − 2m4
wR

+m2
N (−2m2

τ +m2
WR

)]

64m2
Rπ sin2 θWm3

N

×
√

[m4
N + (m2

τ −m2
WR

)2 − 2m2
N (m2

τ +m2
WR

)YeNX2
e ] (5.99)

5.4.2 Differences between HNM and LRSM models

We observe that the hadronic cross section and decay rates in these two models are very diffrents.
We can summarise the main differences between these two models in three points:

• There are new weak mediators in LRSM (WR and ZR) which are absent in HNM. These gauge
bosons comme from the extra gauge groupe SUR(2) after the first step of symmetry breaking.
We notice that the ordinary weak gauge bosons (W and Z), in this model, cannot interact
with the heavy neutrinos since they belong to different groups, i.e. the W and Z are charged
under SUL(2) and the heavy neutrinos are charged under SUR(2).

• The values of some constants and the structure of the vertices in these two models are different,
because of the appearance of new right weak mediators in LRSM, therefore leads to different
results.

• In neutral current processes, we notice that in HNM the produced particles are ordinary
antineutrino and heavy neutrino while in LRSM the produced particles are pair of heavy
neutrinos.

5.4.3 Differences between Dirac and Majorana types of neutrino

To find out the difference between the Dirac type of neutrino and Majorana, we studied HNM in
the two cases. The results were the same, but we have several points that can be distinguished
between the two cases:

• We conclude that in the processes where the type is a Dirac, the leptonic number is conserved,
but if it is violated, the type of neutrino is a Majorana type.

• In the first charged current process, the produced heavy particle is an anti-heavy neutrino in
Dirac case while the produced heavy particle in Majorana case is a heavy neutrino.

These were some of differences between the two models and the type of mass that can be compared
with the experimental results. In the next chapter, we study these processes in many high order
approximations: fLO, fNLO, LO+PS and NLO+PS.





Chapter 6

Production of Heavy Neutrino at Higher
Perturbative Orders

In this chapter, we study the production of heavy neutrinos in the three BSM models discussed in
the previous chapters at NLO order and in the parton shower approximation. We start this part by
giving the definition of the hadronic cross section at NLO order with more details, then we discuss
the organisation of an NLO calculation matched (or not) to parton shower. We study the same
processes studied in chapter 5, where will discuss the variation of the total cross section in terms
of the mass of the heavy neutrino, in term of the scale (renormalisation and factorisation scales)
and some differential distributions. Finally, we conclude this chapter by giving the main differences
between the three different models models and the types of neutrino at higher order corrections.

6.1 Hadronic Cross Section and Factorization Theorem

We already have defines the hadronic cross section in the previous chapter within the framework
of the parton model. It was first pointed out by Drell and Yan that parton model idea for deep
inelastic scattering could be extended to processes in hadron-hadron collisions. They claimed that
the hadronic cross section σH could be obtained by weighting the partonic cross section of the
sub-processes σij→k+l+X with the parton distribution functions (PDF ’s) [16] as:

σH =
∑
i,j

∫
dx1dx2FH

1

i (x1, µ
2
F )FH2

j (x2, µ
2
F )σ̂ij→k+l+X(p1, p2, µ

2
F , µ

2
R)

(6.1)

where µF and µR are, respectively, the factorisation and renormalisation scales. The description of a
collision between two protons (or hadrons) using the factorization approach is shown schematically
as in Fig.(6.3.1):

Figure 6.1: Diagrammatic structure of a generic hard scattering process [18].

We notice that the interaction between two partons is subject to two behavior:

• The perturbative regime: which describes the short distance or high energy interactions
(the partonic cross section σ̂ij→k+l+X).

• The non-perturbative regime: which describes the interactions of large distances or low
energy (the parton distribution functions FH1

i (x1, µ
2
F ),FH2

j (x2, µ
2
F )).
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The factorization of short- and long-range physics is the cause of the name "factorization theo-
rem". We define the parton distribution functions at NLO order, in the MS scheme, by:

F(x1, Q
2) = x

∑
qq

e2
q

∫ 1

x

dy
y
q(y,Q2)

[
δ(1− y

x
) +

αs
2π
CMS
q

x

y

]

+ x
∑
qq

e2
q

∫ 1

x

dy
y
g(y,Q2)

[
αs
2π
CMS
g

x

y

]
(6.2)

whith αs is the strong coupling constant, q are the structure function of quarks, g are the structure
function of gluons and Cq,g are some IR divergent coefficients, i.e. the IR divergences of the initial
state are adsorbed in those coefficients.

The parton distributions which used in these hard-scattering calculations are the solutions of
the DGLAP equations:

∂qi(x, µ
2)

∂ logµ2
=
αs
2π

∫ 1

x

dz
z

[
Pqiqj (z, αs)qj(

x

z
, µ2) + Pqig(z, αs)g(

x

z
, µ2)

]
(6.3)

∂qi(x, µ
2)

∂ logµ2
=
αs
2π

∫ 1

x

dz
z

[
Pgqj (z, αs)qj(

x

z
, µ2) + Pgg(z, αs)g(

x

z
, µ2)

]
(6.4)

• where Pab(z, αs) are the regularized Altarelli-Parisi splitting functions. They describe the
collinear splitting of parton b into parton a. At one loop order, they are given by:

Pqiqj (z) = CF

[
(1 + z2)

(1− z)
+

1

3
δ(1− z)

]
Pqig(z) = CF

[
1 + (1− z)2

z

]
Pgqi(z) = TR

[
z2 + (1− z)2

]
Pgg(z) = 2CA

[
z

(1− z)
+

(1− z)
z

+ z(1− z)
]

+ δ(1− z)
[

11

6
CA −

2

3
nf TR

]
(6.5)

The DGLAP equations determine the hard scattering scale Q2 dependence of the PDF ’s. The
x dependence, on the other hand, has to be obtained from fitting deep inelastic scattering and other
hard-scattering data.

The production of heavy neutrino N at NLO order, in hadronic colliders is described by the
theory of perturbative QCD, since it is produced in collisions of hadrons. The soft and collinear di-
vergences of the final state are compensated by combining the loop correction and the real emission.
But there are still collinear divergences from the initial state. The latter are absorbed in PDF ’s
according to the factorization theorem [18].

6.2 NLO Corrections and Parton Shower

NLO calculations are corrections we make by entering an extra factor of αs into the hadronic cross
section, this requires consideration of all diagrams beyond the LO which they are:

• The virtual correction: interfacing the one-loop diagrams with the Born diagrams.

• The real emission: obtained by emitting one extra parton from the Born diagrams, they might
be soft and collinear divergent.
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The strong coupling constant(αs = g2
s/4π) becomes small at large energies (Q2), so we can calcu-

late σ̂ perturbatively by keepin only the first and the second order and neglecting the remaining
contributions:

σ̂ij→k+l+X(p1, p2, µ
2
F , µ

2
R) = αks

∞∑
m=0

αms σ̂
ij→k+l+X
m

= αks σ̂
ij→k+l+X
0 + αk+1

s σ̂ij→k+l+X
1 +O(αk+2

s ). (6.6)

• m = 0: Leading Order (LO) or Born level, it includes contributions proportional to αks .

• m = 1: Next to Leading Order (NLO), it includes includes contribution proportional to αk+1
s .

• m = 2: Next to Next to Leading Order (NNLO), it includes contribution proportional to
αk+2
s and so on.

We can give the general form of the NLO calculations when we consider only the QCD corrections
by the following structure in the 4-flavor scheme (4F ). In this scheme all the quarks are assumed
to be of zero mass except the b and t [17]. The general structure of a QCD cross section in NLO is:

σ̂NLO = σ̂LO(αs, µR, µL) + σ̂HO(α2
s, µR, µL) (6.7)

In the following, we will discuss in details each contribution alone.

6.2.1 Born contribution

The Born contribution is given by,

σ̂LO =

∫
2
dσ̂Born =

∫
2
|M |2 (6.8)

The Feynman diagrams that contributes to Born order for the production of heavy neutrino is
pictured in Fig.(6.2) (this is one diagram from a process in LRSM as an example).

�W−R

d(p2)

ū(p1)

N̄(p4)

e−(p3)

Figure 6.2: Feynman diagram at Born’s order.

6.2.2 Higher Order (HO) corrections

When we talk about the contribution of higher order, we mean two types of complementary con-
tributions: the virtual and the real emission contributions to avoid the problem. The higher order
cross section is given by,

σ̂HO =

∫
2
dσ̂V +

∫
3
dσ̂R (6.9)

where

• σ̂V is the cross section of the virtual part.

• σ̂R is the cross section of the real part.

Before we talk about these two types of higher order corrections, we should discuss the types of
divergences that will face us in the HO calculations, which are:
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• Ultraviolet divergences (UV ): ultraviolet divergences appear in the loop-diagrams when
the 4-momuntum running on loop goes to infinity (high energies).

• Infrared divergences (IR): infrared divergences (soft or collinear) appear in the loop dia-
gram and the real emission diagrams, they happen when the energy of the emitted massless
parton becomes vey small.

Virtual One-Loop corrections

The virtual correction is obtained by interfacing the one-loop diagrams with the Born diagrams,
the calculation of the one-loop integral leads to ultraviolet, soft and collinear divergences. The
ultraviolet divergences can be handled in a simple way within the loop corrections by carrying out
the renormalization procedure by redefinition of the coupling constant which must eliminate the
possible infinites. To do so, we have to add a new term δL, called lagrangian of counterterms, to
the lagrangian of the model:

LR = L+ δL (6.10)

We notice that in our case, the renormalisation of the BSM models is done automatically by
FeynRules.

The Feynman diagrams of virtual contribution is for example, like the one in fig.(6.3).

Figure 6.3: Feynman diagrams of virtual contribution.

Soft and collinear divergences instead lead to another problem. These divergences do not cancel
within σ̂V , we must accompanied them with analogous divergences arising from the integration of
the real cross section σ̂R.

Real emission

As we said before there are tow types of real emission, soft and collinear. Feynman diagrams of the
real emission is for example, like the one in the fig.(6.4).

We can write the soft and collinear propagator in the Feynman diagram as follows:

1

(p1 + p2)2
=

1

2E1E2(1− cos θ)
p2

1 = 0 p2
2 = 0 (6.11)
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Figure 6.4: Feynman diagrams of real emission.

where the particle with 4-mementa p1 and p2 must be massles. We observe that:

• If E1,2 → 0, we have a soft divergence.

• If θ → 0, we have a collinearr divergence.

Real emission diagrams are needed to make a complete NLO calculation, they are essential to
compensate the infrared divergences. However, this mechanism of cancellation is not trivial because
it does not take place at the integrand level. The two integrals on (6.9) are separately divergent,
so we must used a gauge-invariant and Lorentz-invariant regularization to any order of the QCD
perturbative expansion, we do that by means of analytic continuation in a number of space-time
dimensions d = 4−2ε different from four. Using dimensional regularization allowed us to replace
the divergences (arising out of the integration) by double 1/ε2 and single 1/ε (soft and collinear)
poles [19], where ε→ 0.

After making some complicated calculations (this is not the place for it), we get the result of
accompanieding the soft and collinear divergences from the virtual and real corrections:

σ̂V = Aσ̂LO
[
a

ε2
+
b

ε
+ c

]
ε→0

σ̂R = Aσ̂LO
[
− a

ε2
− b

ε
+ c′

]
ε→0

(6.12)

⇒ σ̂HO = σ̂V + σ̂R = Aσ̂LO[c+ c′] (6.13)

In fact, this is not enough to eliminate all divergences, some of it still comes from the real emission
in elementary entangled particles. we eliminate this divergences by absorbing it inside the PDF ’s.
In this way, we have eliminated all divergences.

In principle this computation procedure does not pose any problems, but in reality, this is not
the case. Because in general, we have hundreds of Feynman diagrams, so, analytic calculations
are impossible for all. On the other side, when we use of numerical methods, we can’t do the
computational because real and virtual contributions have to be integrated separately, that’s why we
use an innovative method to perform numerical computations, which is implemented in MadGraph5.
It is the subtraction method.

6.2.3 Subtraction method

The idea of this method is to add and subtract the same term dσ̂A that removes infrared divergences
from both real and virtual emission [19] :

σ̂HO =

∫
2
dσ̂V + dσ̂A +

∫
3
dσ̂R − dσ̂A (6.14)

the cross section contribution dσ̂A has to fulfil two main properties :

• dσ̂A must be a proper approximation of dσ̂R such as to have the same "pointwise" singular
behaviour (in d dimensions) as dσ̂R itself.
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• dσ̂A is its analytic integrability (in d dimensions) over the one-parton subspace leading to the
soft and collinear divergences, so we can rewrite the last two terms :∫

3
dσ̂R − dσ̂A =

∫
2

[
dσ̂R −

∫
dσ̂A

]
ε=0

(6.15)

Performing the integration dσ̂A, we obtain ε-pole contributions that can be combined with
those in dσ̂V , thus, cancelling all the divergences.

The subtraction is automated at MadGraph5 program thanks to the MadFKS [27] program. To
calculate loops, we use the package Madloop[28]. The latter is a package to calculate the one-loop
QCD corrections.

6.2.4 Why NLO?

We can summarize some of the advantages of NLO on LO calculations in several points [20], we
mention for example:

• LO uncertainty becomes larger for multijet production, where Born approximation starts at
high power of αs, it takes NLO corrections to get more accurate results.

• The hadronic cross section at NLO order is bigger than LO order because the corrections
that comes from the NLO calculations. As we did in chapter 5, we study the variation of
the hadronc cross section in the charged and the neutral current processes in the two models.
We have chosen the energy in center mass frame

√
S = 13 TeV and the number 100000 of

events. The numerical results are in the next tables. The results are more accurate and better
predictive of the presence of N as shown at figures (6.6), (6.7) and (6.8), the results are :

Charged current processes:

mN,(N)(Gev) σ̂LO(pb) σ̂NLO(pb)

200 0.5585± 1.5× 10−03 0.6622± 2.0× 10−03

400 0.04077± 1.1× 10−04 0.04723± 1.4× 10−04

600 0.00769± 2.1× 10−05 0.008854± 2.4× 10−05

800 0.002117± 5.9× 10−06 0.002453± 6.7× 10−06

1000 0.0007244± 2.0× 10−06 0.0008363± 2.1× 10−06

Table 6.1: LO and NLO Hadronic cross section as a function of mN in HNM (Dirac type).

mN (Gev) σ̂LO(pb) σ̂NLO(pb)

200 0.5585± 1.5× 10−03 0.6609± 1.9× 10−03

400 0.04077± 1.1× 10−04 0.04695± 1.4× 10−04

600 0.007667± 2.1× 10−05 0.008819± 2.5× 10−05

800 0.002129± 5.9× 10−06 0.002443± 6.7× 10−06

1000 0.0007215± 2.0× 10−06 0.000837± 2.3× 10−06

Table 6.2: LO and NLO Hadronic cross section as a function of mN in HNM (Majorana type).
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mN(N̄)(Gev) σLO(pb) (mWR
= 3 TeV) σLO(pb)(mWR=W TeV) σLO(pb)(mWR

= 1.5 TeV)
200 0.003853± 1.1× 10−05 0.5802± 1.6× 10−03 0.09377± 2.7× 10−04

400 0.003585± 8.9× 10−06 0.04007± 1.1× 10−04 0.08372± 2.3× 10−04

600 0.003343± 1.0× 10−05 0.00768± 2.1× 10−05 0.06903± 1.9× 10−04

800 0.003075± 8.6× 10−06 0.002143± 6.2× 10−06 0.05141± 1.1× 10−04

1000 0.002807± 7.6× 10−06 0.0007492± 2.1× 10−06 0.03227± 8.5× 10−05

Table 6.3: LO Hadronic cross section as a function of mN in LRSM for mWR
= 3 TeV, mWR

= mW and
mWR

= 1.5 TeV.

mN(N̄)(Gev) σNLO(pb) (mWR
= 3 TeV) σNLO(pb)(mWR

= W TeV) σNLO(pb)(mWR
= 1.5 TeV)

200 0.00439± 1.3× 10−05 0.6641± 2.4× 10−03 0.1085± 3.0× 10−04

400 0.004135± 1.4× 10−05 0.04717± 1.5× 10−04 0.09577± 2.4× 10−04

600 0.003862± 9.4× 10−06 0.008965± 2.4× 10−05 0.07957± 2.0× 10−04

800 0.003573± 1.1× 10−05 0.002501± 7.1× 10−06 0.0592± 1.4× 10−04

1000 0.003267± 9.7× 10−06 0.0008579± 2.6× 10−06 0.03711± 8.7× 10−05

Table 6.4: NLO Hadronic cross section as a function ofmN in LRSM formWR
= 3 TeV,mWR

= mW

and mWR
= 1.5 TeV.

Figure 6.5: The variation of the LO and NLO hadronic cross section as a function of mN in HNM with√
S = 13TeV at orders for mWR

= 3 TeV, mWR
= mW and mWR

= 1.5 TeV.
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Figure 6.6: The variation of the LO and NLO hadronic cross section as a function of mN in LRSM with√
S = 13 TeV at orders for mWR

= 3 TeV, mWR
= mW and mWR

= 1.5 TeV.

Neutral current processes:

mN,(N)(Gev) σ̂LO(pb) σ̂NLO(pb)

200 0.4143± 1.1× 10−03 0.4894± 9.8× 10−04

400 0.0314± 8.6× 10−05 0.03646± 7.0× 10−05

600 0.006253± 1.7× 10−05 0.007252± 1.5× 10−05

800 0.001808± 5.0× 10−06 0.002092± 4.1× 10−06

1000 0.0006386± 1.8× 10−06 0.0007377± 1.5× 10−06

Table 6.5: LO and NLO Hadronic cross section as a function of mN in HNM (Dirac type).

mN (Gev) σ̂LO(pb) σ̂NLO(pb)

200 0.4143± 1.1× 10−03 0.4894± 9.8× 10−04

400 0.0314± 8.6× 10−05 0.03646± 7.0× 10−05

600 0.006253± 1.7× 10−05 0.007252± 1.5× 10−05

800 0.001808± 5.0× 10−06 0.002092± 4.1× 10−06

1000 0.0006386± 1.8× 10−06 0.0007377± 1.5× 10−06

Table 6.6: LO and NLO Hadronic cross section as a function of mN in HNM (Majorana type).

mN(N̄)(Gev) σLO(pb) (mZR=5 TeV) σLO(pb)(mZR=Z TeV) σLO(pb)(mZR = 1.5 TeV)
200 0.00006818± 1.8× 10−07 0.03211± 1.3× 10−04 0.05599± 9.6× 10−05

400 0.0000514± 1.4× 10−07 0.001912± 7.5× 10−06 0.03543± 6.1× 10−05

600 0.00004128± 1.0× 10−07 0.0002891± 1.1× 10−06 0.01192± 2.0× 10−05

800 0.00003427± 8.6× 10−07 0.00006237± 2.3× 10−07 0.0003646± 7.7× 10−07

1000 0.00002855± 7.5× 10−08 0.00001622± 6.4× 10−07 0.0000397± 7.1× 10−07

Table 6.7: LO Hadronic cross section as a function of mN in LRSM for mZR
= 5 TeV, mZR

= mZ and
mZR

= 1.5 TeV.
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mN(N̄)(Gev) σNLO(pb) (mZR=5 TeV) σNLO(pb)(mZR=Z TeV) σNLO(pb)(mZR = 1.5 TeV)
200 0.00008009± 2.6× 10−07 0.03792± 7.7× 10−04 0.0489± 1.9× 10−05

400 0.00006124± 1.7× 10−07 0.002221± 4.3× 10−06 0.03094± 1.2× 10−06

600 0.00005004± 9.4× 10−07 0.0003267± 6.7× 10−06 0.01044± 4.0× 10−07

800 0.00004177± 1.1× 10−07 0.00006885± 1.4× 10−07 0.0003246± 1.1× 10−07

1000 0.00003514± 7.8× 10−08 0.00001743± 3.8× 10−07 0.00003758± 1.5× 10−08

Table 6.8: NLO Hadronic cross section as a function of mN in LRSM for mZR
= 5 TeV, mZR

= mZ and
mZR

= 1.5 TeV.

Figure 6.7: The variation of the LO and NLO
hadronic cross section as a function of mN in
HNM and LRSM with

√
S = 13TeV at orders

for mZR
= 5 TeV, mZR

= mZ and mZR
= 1.5

TeV .

Figure 6.8: The variation of the LO and NLO
hadronic cross section as a function of mN in
HNM and LRSM with

√
S = 13TeV at orders

for mZR
= 5 TeV, mZR

= mZ and mZR
= 1.5

TeV .

• The numerical results at LO order are compatible with the results in the previous chapter
(note figure 6.6 and figure 6.7). At NLO order we notice that the type of neutrino has no
impact at the results. In the charged current processes in dirac type the produced neutrino
is anti-heavy neutrino where in Majorana case is a heavy neutrino, but the result still exactly
the same as at LO order. The smallest value of the hadronic cross section corresponds to
the case of production a pair of heavy neutrinos (figure 6.8), since in this case we need more
energy to produce the heavy neutrino and the phase space is very restricted.

• In LRSM the cross section at LO and NLO depend with another free parameter which is the
mass of the new heavy gauge boson. We observe that for low gauge boson mass (mZR = mZ),
the cross section is larger and close to the HNM cross sections and for high mass of the new
heavy gauge bosons it decreases and becomes mostly independant of the heavy neutrino mass.

The NLO calculation is very important since it has more physics by parton merging as the jets
and initial and final state radiation. It is a necessary to use more sophisticated techniques which
match NLO with Parton Shower (we will discuss it later). At NLO order, the physical cross section
is formally independent of µF and µR. Thus, if we plot its change in terms of µF or µR, we get
a straight horizontal line (as we will note in the following figures). The dashed line represent the
physical cross section if we can calculate all the higher corrections. Note in the same figures below
that the hadronic cross section variation correlates strongly with µF scales at LO order (we dont need
to µR at LO since there is no renormalisation), while NLO curve seems near-realistic calculations
where it is at least less sensitive to unphysical scales (eg. renormalisation µR and factorsation µF
scales). This appears clearly in charged current process (6.11) and neutral current process (6.14) of
the LR Symmetric Model.
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• We plot the curve of the hadronic cross section in the following figures by setting µR = µF ,
mN = 500 GeV, we draw it at LO order as a function of µF and at NLO order as a function
of µR = µF in the three models (HNM Dirac type and Majorana type and LRSM). The
numerical results for the charged and the neutral current processes with the curves of the
variation of the hadronic cross section,

Charged current processes:

µR = µF (Gev) σ̂LO(pb) σ̂NLO(pb)

50 0.01811± 4.3× 10−05 0.02088± 6.6× 10−05

100 0.01756± 4.8× 10−05 0.02027± 6.1× 10−05

150 0.01737± 4.8× 10−05 0.01996± 5.4× 10−05

200 0.01712± 4.7× 10−05 0.01964± 5.3× 10−05

250 0.01694± 4.5× 10−05 0.01965± 5.2× 10−05

300 0.01682± 4.6× 10−05 0.0196± 5.4× 10−05

350 0.01669± 4.5× 10−05 0.01942± 5.4× 10−05

400 0.01658± 4.6× 10−05 0.01938± 5.4× 10−05

450 0.01644± 4.6× 10−05 0.01928± 5.4× 10−05

500 0.01643± 6.6× 10−05 0.01929± 4.9× 10−05

Table 6.9: Hadronic cross section results as a function of µF at LO order, µR, µF at NLO order in HNM,
Dirac type of neutrino.

Figure 6.9: Comparison between the variation of the hadronic cross section as a function of µF at LO order,
µR, µF at NLO order in HNM, Dirac type with the physical cross section All-orders.
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µR = µF (Gev) σ̂LO(pb) σ̂NLO(pb)

50 0.01807± 4.9× 10−05 0.02095± 5.9× 10−05

100 0.01769± 4.9× 10−05 0.02022± 5.7× 10−05

150 0.01735± 4.7× 10−05 0.02006± 6.0× 10−05

200 0.01712± 4.7× 10−05 0.01978± 5.5× 10−05

250 0.01696± 4.8× 10−05 0.01964± 5.6× 10−05

300 0.01681± 4.6× 10−05 0.01949± 5.6× 10−05

350 0.01664± 4.7× 10−05 0.01951± 5.7× 10−05

400 0.01661± 4.5× 10−05 0.01929± 5.5× 10−05

450 0.01642± 4.6× 10−05 0.01926± 5.3× 10−05

500 0.01633± 4.7× 10−05 0.01922± 5.5× 10−05

Table 6.10: Hadronic cross section results as a function of µF at LO order, µR, µF at NLO order in HNM,
Majorana type.

Figure 6.10: Comparison between the variation of the hadronic cross section as a function of µF at LO
order, µR, µF at NLO order in HNM, Majorana type with the physical cross section All-orders.

µR = µF (Gev) σ̂LO(pb) σ̂NLO(pb)

50 0.006164± 1.8× 10−05 0.003898± 2.2× 10−05

100 0.005274± 1.5× 10−05 0.004149± 1.4× 10−05

150 0.004911± 1.5× 10−05 0.004211± 1.4× 10−05

200 0.004628± 1.4× 10−05 0.00424± 1.3× 10−05

250 0.004427± 1.4× 10−05 0.004237± 1.4× 10−05

300 0.004289± 1.3× 10−05 0.004239± 1.0× 10−05

350 0.004178± 1.2× 10−05 0.004226± 1.2× 10−05

400 0.004071± 1.3× 10−05 0.004212± 1.2× 10−05

450 0.003965± 1.2× 10−05 0.004193± 1.1× 10−05

500 0.003918± 1.2× 10−05 0.004181± 1.1× 10−05

Table 6.11: Hadronic cross section results as a function of µF at LO order, µR, µF at NLO order in LRSM.
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Figure 6.11: Comparison between the variation of the hadronic cross section as a function of µF at LO
order, µR, µF at NLO order in LRSM. With the physical cross section All-orders.

Neutral current processes:

µR = µF (Gev) σ̂LO(pb) σ̂NLO(pb)

50 0.01445± 4.0× 10−05 0.01659± 3.8× 10−05

100 0.01396± 3.8× 10−05 0.01612± 3.3× 10−05

150 0.01382± 3.9× 10−05 0.01589± 3.1× 10−05

200 0.01362± 3.8× 10−05 0.01568± 3.2× 10−05

250 0.01352± 3.8× 10−05 0.01564± 3.1× 10−05

300 0.01339± 3.8× 10−05 0.01555± 3.2× 10−05

350 0.0132± 3.6× 10−05 0.01545± 3.1× 10−05

400 0.01322± 3.8× 10−05 0.01543± 3.0× 10−05

450 0.01308± 3.6× 10−05 0.0154± 3.0× 10−05

500 0.01305± 3.6× 10−05 0.01534± 2.9× 10−05

Table 6.12: Hadronic cross section results as a function of µF at LO order, µR, µF at NLO order in HNM,
Dirac type of neutrino.

Figure 6.12: Comparison between the variation of the hadronic cross section as a function of µF at LO
order, µR, µF at NLO order in HNM, Dirac type with the physical cross section All-orders.



6.2. NLO Corrections and Parton Shower 73

µR = µF (Gev) σ̂LO(pb) σ̂NLO(pb)

50 0.01445± 4.0× 10−05 0.01659± 3.8× 10−05

100 0.01396± 3.8× 10−05 0.01612± 3.3× 10−05

150 0.01382± 3.9× 10−05 0.01589± 3.1× 10−05

200 0.01362± 3.8× 10−05 0.01568± 3.2× 10−05

250 0.01352± 3.8× 10−05 0.01564± 3.1× 10−05

300 0.01339± 3.8× 10−05 0.01555± 3.2× 10−05

350 0.0132± 3.6× 10−05 0.01545± 3.1× 10−05

400 0.01322± 3.8× 10−05 0.01543± 3.0× 10−05

450 0.01312± 3.6× 10−05 0.0154± 3.0× 10−05

500 0.01302± 3.6× 10−05 0.01534± 2.9× 10−05

Table 6.13: Hadronic cross section results as a function of µF at LO order, µR, µF at NLO order in HNM,
Majorana type.

Figure 6.13: Comparison between the variation of the hadronic cross section as a function of µF at LO
order, µR, µF at NLO order in HNM, Majorana type with the physical cross section All-orders.

µR = µF (Gev) σ̂LO(pb) σ̂NLO(pb)

50 0.0001133± 3.0× 10−07 0.00003266± 5.8× 10−07

100 0.00009069± 2.3× 10−07 0.00004987± 3.3× 10−07

150 0.00008118± 2.1× 10−07 0.00005472± 2.7× 10−07

200 0.00007482± 2.1× 10−07 0.00005689± 1.7× 10−07

250 0.00007072± 1.9× 10−07 0.00005801± 2.1× 10−07

300 0.0000673± 1.8× 10−07 0.00005877± 2.3× 10−07

350 0.00006446± 1.7× 10−07 0.00005817± 2.0× 10−07

400 0.00006268± 1.8× 10−07 0.00005832± 1.7× 10−07

450 0.00006077± 1.6× 10−07 0.00005876± 1.6× 10−07

500 0.00005918± 1.6× 10−07 0.00005849± 2.7× 10−07

Table 6.14: Hadronic cross section results as a function of µF at LO order, µR, µF at NLO order in LRSM.
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Figure 6.14: Comparison between the variation of the hadronic cross section as a function of µF at LO
order, µR, µF at NLO order in LRSM. with the physical cross section All-orders.

6.2.5 Fixed oder and non Fixed order

When we generate a process at MadGraph5, the type of computation Fixed Order (FO) means that
the produced particles at the final state are real (physical) or "on-shell" (p2 = m2 for a particle at
the final state). If we not chosen this computation property we get a non physical particles at the
final state, in this case we said : the particles are "off-shell" (p2 6= m2 for a particle at the final
state). Because in our case we will comparate the theorecal results with the experimental results,
we will chose in the numerical calculations (at next section) the the Fixed Order property.

6.2.6 Parton Shower; Why ?

The basic idea leading to Parton Shower comes from the repeated implementation of equations (6.3
and 6.4) leads to arbitrarily many parton splittings, and therefore arbitrarily many particles in the
final state and this is the basic idea leading to Parton shower. In other words it approximates
higher-order real-emission corrections to the hard scattering by simulating the branching of a single
external parton into two partons with high energy, each of these partons may either split into two
partons with less energy. This partons locally conserve flavor, four momentum, respect unitarity,
which simply means that a partons are off-shell (p2 6= m2 for a particle at the final state) [18].

At very low energy, the emission of partons stops due to the confinement phenomenon and
hadronization begins. Hadronization is the process of forming hadrons from quarks and gluons, this
occurs when low energy partons confine themselves to form hadrons which are not stable so they
are decays in general. This process is shown in figure (6.15). We can do the numerical computation
of Parton Shower automatically by using pythia8 to simulate the following phenomena:

• Partons emission.

• Hadronization.

• Decays processes.

The Parton Shower is very important for several reasons [15], we mention for example:

• It gives a good simulation for what’s happening on detectors. Because in just one collision,
we can detect thousands of particles, see figure (6.15).
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Figure 6.15: Parton Shower, hadronization and decays processes [22].

• In the LO and NLO calculations, one can consider a limited number of particles in the final
state. If the number of particles increases, the calculation becomes technically very compli-
cated (impossible to do technically). But the Parton Shower, even if it is just an approximation
in the soft and collinear, it allows to consider a very large number of particles in the final
state.

• Theoretically, Parton Shower gives a better prediction at low energy than the calculation of
LO and NLO which might diverge.

6.3 Differential distribution at fixed order and parton shower

In this section we will study, the differential cross sections for the same processes discussed above
(the charged current and neutral current processes). We will study the the variation of the hadronic
cross section as a function of the kinematics: transverse momentum (PT ), rapidity (Y ) and psudo-
rapidity (η) at Higher Order (HO) perturbative corections. Then we make a comparison between
the obtained results in three BSM models (HNM Dirac type, HNM Majorana type and LRSM). We
will consider the following approximations:

• Fixed Leading Order (FLO).

• Fixed Next to Leading Order (FNLO).

• Leading Order matched to Parton Shower (LO+PS).

• Next to Leading Order matched to Parton Shower (NLO+PS).

we will discuss too the impact of the type of HO corrections on results and the main differences
between them. This is helpful to compare theory with experiment, and to put constraints on the
free parameters of the model under consideration.

6.3.1 Charged current process

As we did in chapter (5) the charged current process in HNM is (p+ p→W− → e−+N where the
type of neutrino is Dirac), (p + p → W− → e− + N where the type of neutrino is Majorana) and
(p + p → W−R → e− + N) in LRSM. Before we discuss and analyse the results, we give the main
computational steps that we do to get the differential distribution:

• We start by generating our process at MadGraph on the defferent modeles by the following
steps:
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cd master/MG5_aMC_v2_5_4/./bin/mg5_aMC/ (for starting MadGraph).
MG5_aMC>import model SM_HeavyN_Dirac_NLO/ (to importing the HNM, Dirac type of neu-
trino).
MG5_aMC>import model SM_HeavyN_NLO/ (to importing the HNM, Majorana type of neu-
trino).
MG5_aMC>import model EffLRSM_NLO/ (to importing the LR Symmetric Model).
MG5_aMC>generate p p > e- n1 [QCD] (for generating the process at HO corrections).

• After naming our process we do the command launch to get a table we can from it choose
the type of HO calculation that we need as in fig.(6.16). :

Figure 6.16: HO calculations that we can do on MadGraph.

• Now to get the numerical results that we use to calculate the histograms of differential hadronic
cross section variations we use MadanAlysis, we follow these steps: /master/madanalysis5$./bin/ma5
(to run MadanAlysis).
import /home/yassin/master/MG5_aMC_v2_5_4/pp_en1 _Dirac_NLO/Events/run_01/
events_flo_dirac.lhe.gz (for importing the HO file that madanalysis used to drawing his-
tograms. The command still the same for the other Models and the file in the format .lhe.gz
differs according to the HO calculation and the model that we need).

• To plot the distribution, we use:
ma5>plot PT(nn1) 20 0 500 [logY].
ma5>plot ETA(nn1) 20 -3 3 [logY].
ma5>plot Y(nn1) 20 -3 3 [logY].
to get the variation of hadronic cross section as a function of PT , Y and η. While when we
calculate LO+PS and NLO+PS we use the following commands to plot the histograms before
the decay of the heavy neutrino:
ma5>plot PT(nn1) 20 0 500 [interstate].
ma5>plot ETA(nn1) 20 -3 3 [interstate].
ma5>plot Y(nn1) 20 -3 3 [interstate].

• The final step is using the numerical results that we get by madanalysis to draw the his-
tograms of a variation of hadronic cross section as a function PT , Y or η at LO, NLO, LO+PS
and NLO+PS by using Root.

We choose in all the calculations the fixed scale scheme, where we set renormalization µR and
factorization µF scales equal to heavy neutrino mass (µR = µF = mN = 500 GeV ). The results are
displayed below:

Differential distributions of the hadronic cross section as a function of PT :
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Figure 6.17: Hadronic cross section variation as
a function PT with

√
S = 13 TeV in HNM, Dirac

neutrino type.

Figure 6.18: Hadronic cross section variation
as a function PT with

√
S = 13TeV in HNM,

Majorana neutrino type.

Figure 6.19: Hadronic cross section variation as a function PT with
√
S = 13TeV in LRSM.

• In the first three figures, we show the differential distributions of the hadronic cross section
on the transverse momentum PT . We observe that the Parton Shower contributions (LO+PS
and NLO+PS) are more important than the fixed order contributions (fLO and fNLO). This
appears clearly for relatively small values of PT for the tree models. For example, for the
bins between 100-150 GeV the cross section is about 10−3 pb for fixed order and 10−2 pb for
parton shower. This is due to initial state radiations which has a dominant contribution in
this case since we have only leptons in the final state.

• We observe also, that fLO is very close to the fNLO and the LO+PS is very close to NLO+PS
for the three models. This can be interpreted by the fact that the k-factor (which is NLO/LO
contribution) is very small for the studied processes.

• th their tow types of neutrino (Dirac and Majorana), the differential distributions of the
hadronic cross section are large for small values of PT and they decreases for large values of
PT . In the Majorana case, the distribution cancel at the value 500 GeV which is not the
case for Dirac case. While in LRSM the differential distributions of the hadronic cross section
are small for small values of PT and increases with increasing PT . In the later model, the
distribution in the 4 approximations (fLO, fNL, LO+PS and NLO+PS) convergence to each
other to become the same at large PT , (see figure 6.19).

• We observe that the distributions in HNM models are larger than the distributions in LRSM
since in the later one the processus are mediated by a very heavy gauge bosons which reduce
the total cross section and the differential distrbutions.
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• Only for a very low PT , significant changes observed between the fixing order of LO and NLO
contributions and LO and NLO matched to the Parton Shower (LO+PS and NLO+PS).
LO+PS and NLO+PS seems to be more stable at this scale of PT [21], we can see that
more clearly if we zoom up the variation of th hadronic cross section at the region of PT
between 0 GeV and 100 GeV (see the figure 6.20). We observe that fNLO is not stable at all
(it is going up and down) while the NLO+PS is more stable. This due to the fact that in
fNLO approximation, the low physics contribution is ignored (we put it in the PDFs) while
in parton shower it is taken into account by considering emissions of a shower of soft and
collinear particles.

Figure 6.20: Hadronic cross section variation as a function of η with
√
S = 13TeV in HNM, Dirac case as

an example.

Differential distributions of the hadronic cross section as a function of Y :

Figure 6.21: Hadronic cross section variation
as a function of Y with

√
S = 13TeV in HNM,

Dirac neutrino type.

Figure 6.22: Hadronic cross section variation
as a function of Y with

√
S = 13TeV in HNM,

Majorana neutrino type.

In general, the differential distributions on the rapidity Y is helpful to compare theory with
experiment. Here’s we give some comment on this distribution for the three models.

• The differential distributions of the hadronic cross section on the rapidity Y seems semilar in
the three models when its value increase with increasing of Y and reaches a peak at zero then
start decrease with the increasing of Y .

• We observe that the distributions for LRSM (6.23) are smaller compared to HNM, this can
be understood since the processes are mediated by very heavy gauge bosons (of mass around
5000 GeV).



6.3. Differential distribution at fixed order and parton shower 79

Figure 6.23: Hadronic cross section variation as a function of Y with
√
S = 13TeV in LRSM.

• We observe a discrepancy between NLO+PS and LO+PS for the two classes of HNM which
was not expected. We observe that in Majorna case the parton shower distributions are larger
than the fixed order contributions which is not the case for Dirac type, see Fig.6.21 and
Fig.6.3.1. This point is very important and needs more study since it might help us to know
if the heavy neutrinos are of Dirac or Majorana types.

Differential distributions of the hadronic cross section as a function of η:

Figure 6.24: Hadronic cross section variation as
a function η with

√
S = 13TeV in HNM, Dirac

neutrino type.

Figure 6.25: Hadronic cross section variation as
a function η with

√
S = 13TeV in HNM, Majo-

rana neutrino type.

• We observe that the distribution on the psudo-rapidity η are more different in HNM than in
LRSM. The smaller is as usual is the one of LRM for the same reasons claimed above. We
observe also that differential distribution in HNM for both classes show two peaks for |η = 2|
in the 4 approximation (figure 6.24), while in LRSM there is only oen peak at η = 0.

• As we have observed for the rapidity distribution in HNM, parton shower in the Majorana
case has a larger distrubution than the fixed order approximation which is not the case for
Dirac type (figure 6.25).

• In LRSM the behavior of the differential distributions of the hadronic cross section is different
from HNM, where we observe only one peak when the value of η wase zero (figure 6.26).
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Figure 6.26: Hadronic cross section variation as a function of eta with
√
S = 13TeV in LRSM.

6.3.2 Neutral current process

In this section, we consider the neutral current process in HNM is (p+ p→ Z → νe−N where the
type of neutrino is Dirac or Majorana) and (p+ p→ ZR → N +N) in LR Symmetric Model. We
follow the same computational steps as we did with the charged current process in the previous
section (6.3.1). The results are:

Differential distributions of the hadronic cross section as a function of PT :

Figure 6.27: Hadronic cross section variation as
a function PT with

√
S = 13TeV in HNM, Dirac

neutrino type.

Figure 6.28: Hadronic cross section variation
as a function PT with

√
S = 13TeV in HNM,

Majorana neutrino type.

• We observe that, the distributions in the parton shower approximation (for both LO and
NLO) in the 3 models are larger than the distributions in the fixed order approximation (for
both LO and NLO).

• We observe that for low PT , the parton shower is more stable and reliable than the fixed for
the same reason stated above (see the zoomed distribution in Fig. 6.30)).

• We observe the two HNM classes have the same distributions for parton shower and fixed
order (we can not distinguish between them).

• The second main difference is to note that the values of differential distributions of the hadronic
cross section in LRSM (figure 6.29) are very small than the values of HNM and from the
values of the charged gauge boson processes, because in this process a pair of heavy neutrinos
is produced, and since its mass is large, the possibility of producing two of them is more
unlikely.
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Figure 6.29: Hadronic cross section variation as a function PT with
√
S = 13TeV in LRSM.

Figure 6.30: Hadronic cross section variation as a function η with
√
S = 13TeV in HNM, Dirac case as an

example.

Differential distributions of the hadronic cross section as a function of Y :

Figure 6.31: Hadronic cross section variation as
a function Y with

√
S = 13TeV in HNM, Dirac

neutrino type.

Figure 6.32: Hadronic cross section variation
as a function Y with

√
S = 13TeV in HNM,

Majorana neutrino type.

• As in section (6.3.1), the differential distributions of the hadronic cross section on the rapidity
Y seems similar in HNM (Dirac and Majorana types) and LRSM where it reaches the highest
value at Y = −2, then it stabilizes until it reaches Y = 2 and starts decreasing again. But, in
LRSM the distribution values are smaller.
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Figure 6.33: Hadronic cross section variation as a function Y with
√
S = 13TeV in LRSM.

• If we compare the fixed order and parton shower approximations, we figure out the parton
shower contribution are larger than the fixed order in three models, which means that the
parton shower approximation is more important in this case.

Differential distributions of the hadronic cross section as a function of η:

Figure 6.34: Hadronic cross section variation as
a function η with

√
S = 13TeV in HNM, Dirac

neutrino type.

Figure 6.35: Hadronic cross section variation
as a function eta with

√
S = 13TeV in HNM,

Majorana neutrino type.

Figure 6.36: Hadronic cross section variation as a function eta with
√
S = 13TeV in LRSM.

In general, the behavior of the distributions of the hadronic cross section on the psudo-rapidity η
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looks as in the previous section (in charge current processes). the main and the important differences
are:

• In HNM Dirac case in the previous section (6.3.1 in figure 6.24), the Parton Shower ap-
proximation is close to the fixed order, while in this case (figure 6.34) the Parton Shower
approximation distributions are larger than the distribution of of Fixed order. We can notice
that too in HNM Majorana type of neutrino (figure 6.34).

• The difference between this case and the previous case is that: in charged gauge boson process
the produced heavy particle is anti-heavy neutrino N (anti-particle) while in this case the
produced is a heavy neutrino N . In the Majorana type, the output is always a heavy neutrino
N which explains the match between the two cases here (see the figure 6.34 and the figure
6.35).





Chapter 7

General Conclusion

The purpose of this master project is the study of heavy neutrinos physics in the BSM models:
Heavy neutrino model type Dirac, heavy neutrino model type Majorana and the left right symmet-
ric model in the LHC at NLO and parton shower approximations, using the computations tools
MadGraph, Pythia8, HIP and MadAnalysis to to compute the hadronic cross section and extract the
differential distributions.

We dedicated the first part of this work (chapters 2, 3 and 4) to the theoretical part, where in
chapter 2, we gave an overview of the Standard Model, we explained how the spontaneous symmetry
breaking mechanism (Higgs mechanism) generate the fermions and bosons masses. Also, we discuss
some success and failure of the SM. Even with these successes, the SM has many problems, one
of it is the absence of the neutrinos masses. Therefore, we mention the necessity of the existence
of physics beyond the SM. We have presented two probable models that gives a solution foçr the
absence of the neutrino masses in SM. The first one is the Heavy Neutrino Model, it has been dis-
cussed in chapter (3). We notice that in this model we study two type of possible heavy neutrinos
Dirac or Majoran where the basic diffrenece is that the Majorana neutrino are the anti-matter of
them selves. The second probable Model is the Left Right Symmetric Model which is presented
in chapter (4). The common feature in HNM and LRSM is that they predict the existence of new
right-chiral type of neutrinos (heavy neutrinos), therfore we have studied the production of the
heavy neutrino in those three BSM models.

We dedicated the second part of this work (chapters 5 and 6) to study the production of the
heavy neutrinos in three BSM models in proton-proton collision. In chapter (5), We have studied
the production of the heavy neutrinos at LO order by studying two types of processes:

• The charged current proceses:

– p+ p→W− → e− + N̄ (HNM Dirac type).

– p+ p→W− → e− +N (HNM Majorana type).

– p+ p→W−R → e− + N̄ (LRSM).

• The neutral current proceses:

– p+ p→ Z → νe− +N (HNM Dirac type).

– p+ p→ Z → νe− +N (HNM Majorana type).

– p+ p→ ZR → N̄ +N (LRSM).

We have calculated some partonic cross section and decay rates analytically the in charged current
processes for HNM Dirac type, the other are almost the same because of that We did not do the
calculation. However, We calculated the hadronic cross section for all these processes in the three
models for diffrent masses and scales numerically by making use of MadGraph. We notices that we
have used the UFO model generated by FeynRules, and extracted the differential distributions by
MadAnalysis.



86 Chapter 7. General Conclusion

As We mentioned above, one of the purposes of this work is to compare between the heavy
neutrinos predicted by three models. We can summarise the main differences in the following
points:

• Ther are new weak mediators in the LRSM (WR and ZR) not available in HNM.

• The values of some constants in the vertices between the two models are different.

• In neutral gauge boson processes we note that in HNM the produced particles are antineutrino
and heavy neutrino while in LRSM the produced are pair of heavy neutrino.

• If the type of neutrino is a Dirac type, the leptonic number is conserved in all possible pro-
cesses, but if the type of neutrino is a Majorana type, we should find processes in nature that
violate the leptonic number.

• In the first charged gauge boson process, the produced is an anti-heavy neutrino in Dirac case
of neutrino while the produced is a heavy neutrino in Majorana case.

• We observe a discrepancy between NLO+PS and LO+PS for the two classes of HNM which
was not expected. We observe that in Majorna case the parton shower distributions are larger
than the fixed order contributions which is not the case for Dirac type, see Fig. 6.21 and
Fig.6.3.1. This point is very important and needs more study since it might help us to know
if the heavy neutrinos are of Dirac or Majorana types.

In the final chapter (chapter 6), we have studied the production of the heavy neutrino at HO by
studing the same proceses at the three models, for the aim of knowing with more details, about
the main distinguishing points between HNM and LRSM, and between Dirac type of neutrino and
Majorana type. We have discussed first the types of HO corrections from a theoretical perspective.
We have given an outlook for the NLO Corrections, Fixed Order and Parton Shower. In the
numerical part, we have explained the computational steps that we did with the same previous
processes, we studied the differential distributions of the hadronic cross section as a function of
transverse momentum PT , rapidity Y and psudo-rapidity η. We used madanalysis to get the
numerical results that we use to calculate the histograms of the distributions of the hadronic cross
sections, and we used Root for ploting the histograms. The comments on histograms it are given
in detail. Finally we have given a conclusion about the main differences between our models and
the type of neutrino at these higher order computationnelle, and we have given the main differences
between FLO, FLO and LO+PS, NLO+PS orders and their impact on the numerical results in our
processes at the three models.



Bibliography

[1] T. Morii, C. S. Lim and S. N. Mukherjee,The Physics of the Standard Model and Beyond,
World Scientific Publishing Co. Pte. Ltd (2004)

[2] Gunion, John F.,Extended Higgs sectors, 10th International Conference on Supersymmetry and
Unification of Fundamental Interactions (SUSY02) 12 (2002) 80-103 [arXiv:hep-ph/0212150]

[3] T. Morii, C. S. Lim , S. N. Mukherjee, The Physics of the Standard Model and Beyond, World
Scientific Publishing Co. Pte. Ltd.5 (2004)

[4] H. Meriem and M. S. Zidi, Phénoménologie et calcul de précision dans les modeles super-
symétrique : production de sleptons au LHC, Jijel University (2020)

[5] P. Langacker, The Standard Model and Beyond, Series Editors: Brian Foster, Oxford University,
UK, (2010) by Taylor and Francis Group, LLC [ISBN 978-1-4200-7906-7]

[6] D. Parrochia, Majorana equation and its consequences in physics and philosophy, History and
Philosophy of Physics Publishing (2019) [arXiv:1907.11169v1]

[7] David o. Caldwell (Ed.), Current Aspeets of Neutrino Physies, springer (2001)

[8] A. Gouvêa, Neutrino Mass Models, Ann.Rev.Nucl.Part.Sci.66 (2016) 197-217, https://www.
annualreviews.org/doi/pdf/10.1146/annurev-nucl-102115-044600

[9] Atre, Anupama and Han, Tao and Pascoli, Silvia and Zhang, Bin, The Search for Heavy
Majorana Neutrinos, JHEP 05 (2009) 30 [arXiv:0901.3589]

[10] Hati, Chandan and Patra et all, Neutrino Masses and Leptogenesis in Left Right Symmetric
Models: A Review From a Model Building Perspective, Front. in Phys.journal (2018), https:
//doi.org/10.3389/fphy.2018.00019

[11] J. C. Pati and A. Salam, Lepton number as the fourth "color" Phys. Rev. 10 (1974) 275

[12] Degrande, Celine and Mattelaer et all, Fully-Automated Precision Predictions for Heavy
Neutrino Production Mechanisms at Hadron Colliders, Phys. Rev. D 94 (2016) 053002
[arXiv:1602.06957]

[13] E. Daw, Lecture 7 - Rapidity and Pseudorapidity, March 23, 2012, http://www.hep.shef.ac.
uk/edaw/PHY206/Site/2012_course_files/phy206rlec7.pdf

[14] J.D. Jackson in High Energy Physics, Les Houches 1965 Summer School, GORDON AND
BREACH Science Publishers (1965), p. 348.

[15] R. Chahra and M. S. Zidi, Physique du boson W-prime au LHC: calcul de précision à l’ordre
NLO en QCD, Jijel University (2018)

[16] K. Ellis, Precision Perturbative QCD, lecture in national accelerator laboratory
(1973), https://indico.cern.ch/event/507870/sessions/105735/attachments/1247980/
1838806/Precision.pdf

[17] Laura Reina, NLO QCD calculations, part ICTEQ Summer School (2009), UW-
Madison, https://www.physics.smu.edu/scalise/cteq/schools/summer09/talks/reina/
cteq09_nlo_1.pdf

[18] Campbell, M. John, J. W. Huston and W. J. Stirling, Hard Interactions of Quarks and Gluons:
A Primer for LHC Physics, Rept. Prog. Phys 70 (2007) 89 [arXiv: hep-ph/0611148]

https://www.annualreviews.org/doi/pdf/10.1146/annurev-nucl-102115-044600
https://www.annualreviews.org/doi/pdf/10.1146/annurev-nucl-102115-044600
https://doi.org/10.3389/fphy.2018.00019
https://doi.org/10.3389/fphy.2018.00019
http://www.hep.shef.ac.uk/edaw/PHY206/Site/2012_course_files/phy206rlec7.pdf
http://www.hep.shef.ac.uk/edaw/PHY206/Site/2012_course_files/phy206rlec7.pdf
https://indico.cern.ch/event/507870/sessions/105735/attachments/1247980/1838806/Precision.pdf
https://indico.cern.ch/event/507870/sessions/105735/attachments/1247980/1838806/Precision.pdf
https://www.physics.smu.edu/scalise/cteq/schools/summer09/talks/reina/cteq09_nlo_1.pdf
https://www.physics.smu.edu/scalise/cteq/schools/summer09/talks/reina/cteq09_nlo_1.pdf


88 Bibliography

[19] S. Catani and M. H. Seymour, NLO calculations in QCD: A General algorithm, Nucl. Phys. B
Proc. Suppl. 51 (1996) 233-242 [arXiv: hep-ph/9607318]

[20] Keith Ellis, QCD for the LHC and the Tevatron, QCD at the LHC in honor of Bryan
Webber September (2010), https://indico.fnal.gov/event/2444/contributions/76562/
attachments/47478/56982/Ellis_QCD.pdf

[21] M. S. Zidi, NLO QCD corrections to single vector-like top partner production in association
with top quark at the LHC, JHEP 10 (2018) 123, [arXiv: 1805.04972]

[22] Bauer, Julia, Prospects for the Observation of Electroweak Top Quark Production with the CMS
Experiment, KIT, Karlsruhe, Dept. Phys.(2010) [doi: 10.5445/IR/1000018393]

[23] Mattelaer, Olivier and Mitra, Manimala and Ruiz, Richard, Automated Neutrino Jet and Top
Jet Predictions at Next-to-Leading-Order with Parton Shower Matching in Effective Left-Right
Symmetric Models, primary Class hep-ph 10 (2016) [arXiv: 1610.08985]

[24] FeynRules: https://feynrules.irmp.ucl.ac.be/wiki/NLOModels

[25] J. Alwall and R. Frederix et all, The automated computation of tree-level and next-to-leading
order differential cross sections, and their matching to parton shower simulations, JHEP 07
(2014) 79 [arXiv: 1405.0301]

[26] Brdar, Vedran and Helmboldt, Alexander J. and Iwamoto, Sho and Schmitz, Kai, Type-I
Seesaw as the Common Origin of Neutrino Mass, Baryon Asymmetry, and the Electroweak
Scale, PhysRevD 100 (2019)075029 [arXiv: 1905.12634]

[27] Frederix et all, Automation of next-to-leading order computations in QCD: The FKS subtrac-
tion, JHEP 10 (2009) 03 [arXiv: 0908.4272]

[28] rschi, Valentin and Frederix et all Automation of one-loop QCD corrections, JHEP 05 (2011)
44 [arXiv: 1103.0621]

https://indico.fnal.gov/event/2444/contributions/76562/attachments/47478/56982/Ellis_QCD.pdf
https://indico.fnal.gov/event/2444/contributions/76562/attachments/47478/56982/Ellis_QCD.pdf
 https://feynrules.irmp.ucl.ac.be/wiki/NLOModels


Abstract:
Despite the experimental success of the SM, which predicted the presence of many particles before they were
detected in collisions, it is not the ultimate theory since it has many problems like the absence of a neutrinos
masses. To solve this problem, many extensions to the Standard Model have been proposed like the Left
Right Symmetric Models.

In this work, we focus on two probable models that gives a solution for the absence of the neutrino mass
in SM. The first one is the Heavy Neutrino Model and the second one is the Left Right Symmetric Model.
The common feature of HNM and LRSM is that they predict the existence of new right-chiral neutrinos of
Dirac or Majorana types.

We have studied the production of the heavy neutrino in the three models, where both the charged and
neutral current processes have been considered. We computed the variation of hadronic cross section section
on the heavy neutrino mass and the scales and many differential distributions in the approximations fLO,
fNL, LO+PS and NLO+PS by making use of MadGraph and MadAnalysis.

Keywords: Standard Model, heavy neutrino, Heavy Neutrino Model, Left Right Symmetric Model,
Dirac type of neutrino, Majorana type of neutrino.

Résumé:
En raison du succès expérimental du modèle standard (SM), c’est l’une des théories les plus importantes de
la physique quantique. Il prédit la présence de nombreuses particules avant qu’elles ne soient détectées dans
les collisions. Cependant, le modèle standard n’est pas la théorie ultime des particules élémentaires car il a
des problèmes fondamentaux comme l’absence d’une masse de neutrinos.

Pour résoudre ce problème, des nombreuses extensions du modèle standard ont été proposées. Nous
concentrons sur deux modèles probables qui donnent une solution à l’absence de masse de neutrinos dans
le modèle standard, le premier est le modèle de neutrinos lourds (HNM) et le deuxième modèle probable
est le modèle symétrique gauche droite (LRSM). La caractéristique commune de HNM et LRSM est qu’ils
prédisent l’existence d’un nouveau type de neutrinos de chiralité-droit (neutrinos lourds), c’est pourquoi
nous avons étudié la production du neutrino lourd dans les trois modèles.

Nous avons étudié la production du neutrino lourd dans les trois modèles en étudiant deux types de
processus (courants neutre et chargé). Nous avons calculation variation de la section efficace hadronique en
fonction de la masse des neutrinos et l’échelle, etet les distributions différentielles dans les approximations
fLO, fNL, LO+PS and NLO+PS en utilisant MadGraph and MadAnalysis.

Mots clés: Modèle standard, neutrino lourd, modèle neutrino lourd, modèle symétrique gauche droite,
neutrino de type Dirac, neutrino de type Majorana.
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