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Chapter 1

Introduction

It is probably the greatest scientific discovery. This is how Dirac, the pioneer of quantum
mechanics and one of the greatest symbols of physics in the last century, described the beauty of
relativity. The concept of relativity is not new, as it dates back to the days of Galileo and Newton.
One of the most important concepts that fall under this concept is what is known as space-time,
which is simply the distance between two points or two events where we enter time as a fourth
dimension in it. It was introduced by Hermann Minkowski, Professor of Einstein, and it became
known as the 4-D Minkowski space. Since Maxwell discovered his mathematical equations
that unify electricity and magnetism in a theory of electromagnetism, problems heaped on the
doors of physics, but in1904 Hendrik Lorentz came with his transformations that solve these
problems. However biggest impact of these solutions was the share of time and space. Thanks
to these transformations, and after mountainous efforts, Poincaré, Lorentz and Einstein reached
a theory known as the theory special relativity based on two important principles. As long as
relativity prolongs the concepts of time and space, then a new structure must be rebuilt, and
this is what Minkowski did. Einstein later realized that this theory is incomplete, and it is
only a special case of a more general and deep theory. Einstein was convinced that the special
relativity theory was incomplete, and though that it is nothing but a part from more general and
deeper equations. Since it applies to a flat space only , it needs to be modified. This happened
in 1915 when he developed his general theory of gravity, wich completely changed the concept
of gravity. This new theory replaced the older “Newton’s theory of Gravitation”, and it remains
to this day our best descrition of how gravity works. Gravity here is nothing but the free fall of
objects on curved surfaces, which are the curved surfaces of Galileo. It was a successful theory
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due to its ability to explain many of the things that Newton theory didn’t, like the anomalous
precession of the prehelion of Mercury, the deflection of light by gravitational fields, and the
gravitational red-shift of light with an unpecedented precision. In addition, general relativityu
theory is considered as the corner stone of cosmology, wich is a new science born in the late of
the sixteen. The beginig of this new science started with the discovery that the earth is not at the
centre of the universe. Trying to give a sence to cosmology, the science of our whole universe’s
past, present and futur, physicists need to understand the universe expantion rate. The evidence
of this expantion was given in 1998 from studying type Ia Supernoae (more details can be found
in [1, 2] ). Cosmologists since Hublle had been trying to measure the slowing expantion of our
universe as they predicted due the gravity effects. The discovery of cosmic acceleration creat
another challenge to find the reason of this acceleration. The simplest explanation that they
found was to a cosmological constant to Einstein equations. If we consider the universe as
filled with ordinary matter or radiation this should lead us to a slowing of the expantion. This
fact lead them to take two posibilties, the first is that there is another form of energy density in
the universe they named as Dark enrgy and it take 75% of the universe content, the other one is
that the general relativity theory breaks down on cosmological scales and must be modified with
a more complete theory of gravity. They knew that a mysterious substance called dark energy is
causing the universe to expand (at an ever increasing rate) in all directions. When astronomers
point thier telescopes into space to measure the Hubble constant, the number that describes how
fast the universe expanding at diffrent distances from us, they come up with disagreement in
their findings compared to the theory.

Several issues and shortcomings emerged in the last thirty years leading to the conclusion
that Einstein’s General Relativity is not the final theory of gravitational interaction. The goal
of this master thesis is to combine two majors theories of cosmology, the galileon field model
and a modified teleparallel theory of general relativity to test the cosmological evolution of the
universe.

The concept of the teleparallelism was first proposed by Einstein to unify gravity and elec-
tromagnetism into a unified field theory in 1928 [1]. Unlike general relativity (GR) in which the
Levi-Civita connection gives rise to curvature but vanishing torsion, in teleparallelism space-
time is endowed with a connection with vanishing curvature, but nonzero torsion. Since the
curvature is identically zero, parallel transport of a vector is independent of the path. This is
the origin of the name teleparallel, which means “parallel at a distance” (Einstein’s quest for
unified field theory via teleparallelism is an interesting history and can be found in [2]). It has
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since been established that GR can in fact be re-cast into teleparallel language [3–6], known
as the Teleparallel Equivalent of General Relativity (TEGR). For an interesting formulation of
TEGR as higher gauge theory, see [7]. Due to the need to understand the acceleration of the
universe, various theories of modified gravity have been introduced, among which is the attempt
to generalize TEGR to f (T )theory of modified gravity in the same spirit as generalizing general
relativity to f (R) gravity.

Given the spatially flat FLRW (Friedmann-Lemaıtre-Robertson-Walker space time) with
suitable choice of the scale factor that describes an accelerating universe, allow an understand-
ing of the evolution of structures on the FLRW background. This has been discussed from the
observational point of view in [10]. On the theoretical level, perturbation theory is a useful tool
for understanding the evolution of structures as it can reveal some properties of the dynamical
modes of a gravitational theory. In the case of f (T ) theory, Li et. al [11] have shown that there
are generically, 5 degrees of freedom in f (T ) gravity. Comparing with GR, which has only 2
degrees of freedom, there are 3 extra degrees of freedom, which the authors suggest could cor-
respond to either one massive vector field or one massless vector field together with one scalar
field. Due to the high symmetry of FLRW metric, there is no extra degree of freedom at the
background level. This corresponds to the fact that the equations to solve for the background
have the same number of initial conditions as those of GR. Note that from the Hamiltonian
perspective FLRW geometry has no dynamical degrees of freedom since the two degrees of
freedom of gravitational waves are not excited in an isotropic universe. Indeed the only dynam-
ics for FLRW universe is its expansion (or contraction). That is, the dynamics is completely
determined by the Hubble parameter. This is the case in both GR and f(T) gravity.
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Chapter 2

Introduction to general relativity

2.1 General relativity

For a hundred years the general theory of relativity has been a pillar of modern physics. It is
a dynamical theory of space-time. The basic idea of it is so elegant and easy to understand.
GR theory is simply a set of physical and geometric principles, wich lead us to a set of field
equations that determine the gravitational field, and to the geodesic equation that descripe the
propagation of light and the motion of particles on the background.

• GR follows from three postulates :

1. Space time is a 4-dimensional differentiable manifold.

2. Einstein’s principle of Equivalence.

3. Einstein’s equations.

The first postulat means that a 4-dimentional manifold is a topological space that locally looks
like euclidian space with all of its usual topology. In other words each point of an n-dimentional
manifold has a neighbourhood that is homeomorphic to euclidian space of n-dimensions.

The principle of equivalence that was mentioned in the second postulate, is one of the most
important ingredients of GR theory. It was introduced by Eienstein, and it is actually put in two
seperate statements: “The Laws of physics in a gravitational frame are equivalent to those in
an accelerating frame” and “The Laws of physics in a non accelerating, or free fall, frame are
locally those of special relativity”. This principle meant that gravity could be reinterperted as
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a curvature of spacetime. Einstein’s principle of equivalence is only half the story. Because he
determines how particles must move in spacetime of given curvature, but it doesn’t determine
how spacetime is itself curved by mass. That was a much more difficult problem. The eventual
solution was Einstein’s equations.

2.2 Mathematical structure of general relativity

Since GR is a theory based on the assumption of curved spacetime caused by matter and or
energy, Euclidean geometry is not sufficient to fully describe the theory, we need a more general
kind of geometry allowing non flat euclidean spaces. This section is to define some basic
mathematical quantities used in GR theory.

2.2.1 Space time metric

In order to mesure angles between curves and distences between points in non trivial space-
times, one needs to define the “metric tensor”. It is a rank 2 symmetric tensor defined on a
smooth manifold, labelled as gµν via the associated line element

ds2 = gµν(x)dxµdxν . (2.1)

The quantity gµν is called the metric space, and it contains all the information we need to
describe the place or the curved surface. The metric is required to be nondegenerate with
signature (- + + +). In general it depends on coordinates, and one finds that under a coordinate
transformation xµ → yµ the metric transforms as:

gαβ (x) = gµν(x)
∂xµ

∂yα

∂xν

∂yβ
. (2.2)

In GR the world line of a particle free from all external non gravitational forces is a particular
type of geodesic in curved space-time, in other words , a falling particle always moves along a
geodesic given by the equation

dx2µ

dτ2 +Γ
µ

Kλ

dxk

dτ

dxλ

dτ
, (2.3)
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where
Γ

µ

kλ
=

1
2

gµν(∂λ gνk +∂gλk−∂νgkλ ), (2.4)

are connection coefficients dependent on coordinates called the Christoffel symbols. By con-
struction, they are symmetric in their lower indices. This connection Γ

µ

kλ
is compatible with the

metric gµν if the covariant derivative of the metric tensor is identically zero

∇;kgµν = 0, (2.5)

To define a covariant derivative, we need to put a connection on a manifold, wich is specified in
some coordinate system by a set of coefficients Γ

µ

kλ
(n3 = 64 independents components in n=4

dim) wich transform according to the the law

Γ
µ ′

k′λ ′ =
∂xk

∂xk′
∂xλ

∂xλ ′
∂xµ ′

∂xµ
Γ

µ

kλ
− ∂xk

∂xk′
∂xλ

∂xλ ′
∂x2µ ′

∂xλ
. (2.6)

In general the connection symbols does not necessarly depend on the metric. The connection
symbols encode all of the information necessary to take into the covariant derivative of a tensor
of arbtrary rank. The formula giving the covariant derivative of a general tensor is given by

∇;σ T µ1µ2..µK
ν1ν2..νl = ∂σ T µ1µ2..µK

ν1ν2..νl +Γ
µ1
σλ

T λ µ2..µK
ν1ν2..νl +Γ

µ2
σλ

T µ1λ ..µK
ν1ν2..νl

−Γ
λ
σν1

T µ1µ2..µK
λν2..νl

−Γ
λ
σν2

T µ1µ2..µK
ν1λ ..νl

. (2.7)

In standard flat spacetimes, a vector ϑ i remains constant along a line if it satisfies

dϑ i

dλ
= 0 (2.8)

where λ is the affine parameter used to characterise the curve. Since GR is based on curved
space-time, the notion of parallel transporting vectors along a curve needs to be changed. In this
context, one needs to introduce the “parallel transportation” that allows to define such kind of
transformation. In that we said that a vector is parallel transported along a curve if its covariant
derivative vanishes

∇;σ vρ = 0. (2.9)
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An arbitrary tensor of rank

(
k

I

)
is parallel transported along a curve if its covariant derivative

vanishes
∇σ T µ1µ2..µK

ν1ν2..νl = 0. (2.10)

2.3 Einstein’s Equations

Before deriving Einstein equations we first introduce the essentials building blocks of these
equations.

2.3.1 Riemann curvature tensor

The conection Γ
µ

kλ
measure an apparent gravitational field wich can always be canceled locally

by a coordinate transformation. How to mesure a real gravitational field (wich can not be
canceled every where)?. The answer is given by considering the geodesic deviation between
two test particles wich follow two neighboring geodesics Γ and δΓ. The geodesic is defined by:

Dvµ

Dλ
= vνDνvµ = 0. (2.11)

where vµ = ∂λ xµ is the four velocity and λ an affine parameter. The neighboring geodesic
obeys the same equation where the spacetime point xµ is replaced by xµ + δX µ . In The first
order, the difference between the equations of the two geodesics is therfore :

0 = δ (vγDγvµ) = δxλ (vγDγvµ). (2.12)

Let us define the curvature tensor, or Riemann tensor Rµρλν by:

[Dλ ,Dν ]Aµ ≡ Rµ

ρλν
Aρ , (2.13)

we see that the Eq (2.11) takes the newtonian form relating the acceleration to the force

D2δxµ

Dτ2 = Rµ

ρνλ
UρUν

δxλ . (2.14)
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Using the definitions of the covariante derivatives of a vector and of a mixed tensor, we obtain
the components of the Riemann tensor:

Rµ

ρνλ
= ∂νΓ

µ

ρλ
−∂λ Γ

µ

ρν +Γ
µ

σνΓ
σ

ρλ
−Γ

µ

σλ
Γ

σ
ρν . (2.15)

This tensor satisfies the following Symmetry properties:
By construction, the Riemann tensor is a type tensor (1 ,3) which is anti-symmetric in its last
two indices

Rµ

ρνλ
=−Rµ

ρλν
. (2.16)

Two other properties are (i) the antisymmetry of the first two lowered indices:

Rµρνλ = Rρµνλ . (2.17)

and (ii) the symmetry by permutation of the first and second pairs of indices

Rµρνλ = Rνλ µρ . (2.18)

cyclic symmetry on the last three indices

Rµ

ρνλ
+Rµ

νλρ
+Rµ

λρν
= 0. (2.19)

All these symmetries reduce the number of independent components of the Riemann tensor to
20 (instead of44 = 256). Finally, the covariant derivatives of the Riemann tensor verify a very
important property, called Bianchi identity.

2.3.2 Einstein’s Equations

Einstein’s equation are the fondamental equations of GR, they describe how the mass, energy,
momentum and pressure are distributed throughout the universe, as well as how they bend
space-time. It is this curvature of spacetime that influences how mater, energy are spread as
illustrated by John Wheeler citation “Space-time tells matter how to move, Matter tells space-
time how to curve”. Einstein’s field equations can be derived from Einstein’s Hilbert Action as
we’re going to see below.
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We introduce the Einstein Hilbert action

SGR =
∫

dx4√−g
(

1
2κ

(R−2∧)+Lm

)
, (2.20)

where R = Rabgab, and Rab is the Ricci tensor and R is the Ricci scalar and

g = det(gµν). (2.21)

The ∧ term is what called the cosmological constant, we will discuss it later, and Lm is the
Lagrangian density of matter.

According to the principle of stationary action variation:

δSGR = δ

∫
dx4√−g

(
1

2κ
(R−2∧)+Lm

)
= 0, (2.22)

we obtain ∫
[

1
2k

δ (R
√
−g)

δgµν
− ∧

k
δ
√
−g

δgµν
+

δ (Lm
√
−g)

δgµν
]δgµνdx4 = 0, (2.23)

or ∫ (
δR

δgµν
− R

2(−g)
δg

δgµν
+
∧
−g

δg
δgµν

+2κ[
δLm

δgµν
− Lm

2(−g)
δg

δgµν

)√
−gδgµνdx4 = 0.,

(2.24)
For a non degenerate matrix A we use a formula for differentiation of determinants :

δdet[A]
δAi j

= det[A][A−1], (2.25)

which allows us to derive

gµν
δgµν =−gµνδgµν , (2.26)

δgab =−gµbδgµν)g, (2.27)

δg = ggµν
δgµν =−ggµνδgµν , (2.28)
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Substituting in the formula (2.24) we get :

∫ (
δR

δgµν
− R

2
gµν +∧gµν −κ

(
−2

δLm

δgµν
+Lmgµν

))
δgµνdx4 = 0, (2.29)

We identify the terms involving the non gravitational Lagrangian as the matter source tensor

−2
δLm

δgµν
+Lmgµν = Tµν , (2.30)

∫ (
δR

δgµν
− 1

2
Rgµν +∧gµν −κTµν

)
δgµνdx4 = 0, (2.31)

It remains to calculate
δR

δgµν
. We know that :

R = Rabgab, (2.32)

then we ∫ (
Rµν +

gabδRab

δgµν
− 1

2
Rgµν +∧gµν −κTµν

)
δgµνdx4 = 0, (2.33)

The Palantini identity can then be used to write gabδgab as a total derivative thus causing the
whole term to vanish by stokes theorem . The Palatini identity is given by :

δRab = ∇aδΓ
ρ

bρ
−∇ρΓ

ρ

ab. (2.34)

Then

∫ (
Rµν +

∇σ [gσbδΓ
ρ

bρ
−gabδΓσ

ab]

δgµν
− 1

2
Rgµν +∧gµν −κTµν

)
√
−gδgµνdx4 = 0, (2.35)

By stokes theorem the total derivative doesn’t contribute to the integral and we have

∫ (
Rµν −

1
2

Rgµν +∧gµν −κ

)
Tµν

√
−gδgµνdx4 = 0, (2.36)

Since δgµνare arbitrary we finally obtain the Einstein’s field Equation are:

Rµν −
1
2

Rgµν +∧gµν =
8ΠG
C4 Tµν . (2.37)
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where the constant κ is
κ =

8ΠG
C4 Tµν . (2.38)

With G is Newton’s gravitational constant, and Tµν the stess energy tensor. Hence Einstein’s
tensor[] defined as:

Gµν ≡ Rµν −
1
2

Rgµν . (2.39)

with Gµν is determined by the curvature of space and time at a particular point in space and
time, and is equated with the energy and momentum at that point.
The solutions to these equations are the components of the metric tensorgµν , which specifies the
spacetime geometry. The inertial trajectories of particles can then be found using the geodesic
equation.
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Chapter 3

Introduction to cosmology

Cosmology is one of the most important application of the theory of general relativity. Under-
standing the evolution of the universe is what cosmology aim to reach, by studiying the large
scale proprties of the universe, aiming to explain the origin and evolution of the entire contents
of the univers, the underlying physical prosses, and thereby to obtain a deeper understanding
of the laws of physics assumed to hold throughout the univers. The roots of this science go
back to ancient times, where it was studied on philosophical and religious foundations, and it
remained so, until Einstein published his general theory of relativity that changed everything.
The mathematical structure of this science is similar to what expected. It is relatively easy at
least if compared to other topics in GR as black holes for exemble. This relative ease is due to
two reasons, the first is that gravity governs the entire universe in a wide range, and this means
that we don’t need to take into account those local influences coming from other forces in the
universe, the second one is that in a sufficiently large scale the universe becomes completely ho-
mogeneous and isotropic. Homogeneity is the property of being identical everywhere in space,
while isotropy is the property of looking the same in every direction. This two properties is
what called “The cosmological Principle “ which the cornerstone principle of cosmology. The
cosmological principle also says that those properties must be valid from the begining of the
universe, and will remain so for ever.
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3.1 Metric and Friedmann Equations

Previously we’ve got the theory of space and time (Einstein’s theory of GR), and the idea was
that matter controle’s the metric, wich tell’s you how far apart two little elements are close
toghether in space actually are. And the metric may not be the normal one, it can be curved
wich causes things to move in different way, but what is now the issue in cosmology ?.

3.1.1 The FRW Metric

If we stick to general relativity, then the dynamics of the universe is described by Einstein’s field
equations, these are non linear partial differential equations. However, they can be simplified
under some symmetry conditions. The Friedmann-Robertson-Wlaker (FRW) metric allows us
to do this with powerful assumptions like isotropy and homogeneity. It was A. Friedmann who
went throughout and demonstrated for the first time that A. Einstein’s general theory of relativity
admits nonstatic solution. He described an expanding, contracting, or collapsing universe, using
his metic given by the following general form:

ds2 =−dt2 +a(t)2
(

1
1−Kr2 dr2 + r2dθ

2 + r2 sin2
θdφ

2
)
, (3.1)

where the curvature parameter K tells us wich metric to use depending on the nature of the
curvature. For an isotropic, homogeneous universe we must exist in one of these possible
universes: 

K =+1 for spherical universe

K = 0 for flat universe

K =−1 for hyperbolic universe

(3.2)

If it is flat then the universre will expand for ever and ever with an decreasing rate, if it is
spherical it is a closed and will eventually colapse back in a big crunch, while if it’s hyperbolic
it is open and will expand for ever with an increasing rate. The function a(t) is the scale factor
of the expanding or contracting universe. the vector (t, r, θ , φ ) are comoving coordinates, r is
a dimensionless radius, and t is the cosmic time. The redshift z undergone by radiation from a
comoving object as it travels to us today is related to the scale factor at wich it was emitted

a
a0

=
1

(1+ z)
(3.3)
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or z ≡ (a0/a)−1. Evaluating the Einstein equations of motion for this metric gives the Fried-
mann equations. This begins by calculating the non zero christofel symbols.

Γ
ρ

µν =
1
2

gρσ (∂µgνσ +∂νgµσ −∂σ gµν), (3.4)

Γ
0
11 =−

1
2

g00
∂0g11 =

aȧ
1−Kr2 , (3.5)

Γ
0
22 =−

1
2

g00
∂0g22 = aȧr2, (3.6)

Γ
0
33 =−

1
2

g00
∂0g33 = aȧr2 sin(θ)2, (3.7)

Γ
1
10 = Γ

1
01 = Γ

2
20 = Γ

2
02 = Γ

3
30 = Γ

3
03 =

1
2

g11
∂0g11 =

ȧ
a
, (3.8)

Γ
1
11 =

1
2

g11
∂1g11 =

Kr
1−Kr2 , (3.9)

Γ
1
22 =−

1
2

g11
∂1g22 =−r(1−Kr2), (3.10)

Γ
1
33 =−

1
2

g11
∂1g33 =−r(1−Kr2)sin2(θ), (3.11)

Γ
2
12 = Γ

2
21 = Γ

3
13 = Γ

3
31 =

1
r
, (3.12)

Γ
2
33 =−

1
2

g22
∂2g33 =−sin(θ)cos(θ), (3.13)

Γ
3
23 = Γ

3
32 = cot(θ). (3.14)
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Next, the computation of the non zero components of the Ricci curvature tensor gives

R00 =−∂0Γ
1
01−∂0Γ

2
02−∂0Γ

3
03−Γ

1
01Γ

1
10−Γ

2
02Γ

2
20−Γ

3
03Γ

3
03, (3.15)

=−3∂t
ȧ
a
−3(

ȧ
a
)2 =−3

ä
a
, (3.16)

R11 = ∂0Γ
0
11−∂1Γ

1
12−∂1Γ

3
13 +Γ

0
11Γ

2
02 +Γ

0
11Γ

3
03−Γ

1
10Γ

0
11 +Γ

1
11Γ

2
12−Γ

1
11Γ

3
13−Γ

2
21Γ

2
12−Γ

3
31Γ

3
13,

(3.17)

=
aä+2ȧ2 +2K

1−Kr2 , (3.18)

R22 = ∂0Γ
0
22 +∂1Γ

1
12−∂2Γ

3
23 +Γ

0
22Γ

1
01 +Γ

0
22Γ

3
03 +Γ

1
22Γ

1
11 +Γ

1
22Γ

3
31−Γ

2
20Γ

0
22−Γ

2
21Γ

1
22−Γ

3
32Γ

3
23

(3.19)

= r2[aä+2ȧ2 +2K], (3.20)

R33 =
aä+2ȧ2 +2K

1−Kr2 . (3.21)

R22 = ∂0Γ
0
33 +∂1Γ

1
33 +∂2Γ

2
33 +Γ

0
33Γ

1
01 +Γ

0
33Γ

2
02 +Γ

1
33Γ

1
11 +Γ

1
33Γ

2
21−Γ

3
30Γ

0
33−Γ

3
31Γ

1
33−Γ

3
32Γ

2
33,

(3.22)

= r2[aä+2ȧ2 +2K]sinθ
2. (3.23)

The scalar curvature is then given by :

R = Rµνgµν =−6[
ä
a
+

ȧ2

a2 +
k
a2 ], (3.24)

where H (t) is the hubble parameter which gives the rate of expansion of the universe

H =
ȧ
a
, (3.25)

and the overdot denotes a derivative with respect to the proper time t and

Ḣ =
ä
a
−H2, (3.26)

The first friedman equation comes from evaluating the (0,0) component of the Einstein equa-
tions

G00 = R00−
1
2

Rg00 = 3
[
(
ȧ
a
)2 +

K
a2

]
. (3.27)
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Now consider the component (i, j), we find the second Friedmann equation

ä
a
=−4πG

3
(ρ +3P). (3.28)

3.1.2 The Stress energy Tensor

The energy momentum sources may be modeled as a perfect fluid, specified by an energy den-
sity ρ and isotropic pressure P in its rest frame. The energy-momentum tensor of such fluid is
given by:

T µν = (P+ρ)U µUν −Pgµν , (3.29)

where:

U µ =
dxµ

ds
=


1
0
0
0

 (3.30)

is the fluid 4-velocity of an observer comoving with the expansion, and verifyU µUµ = −1.
Explicitly the energy momentum tensor reads as :

T µ

ν = diag(−ρ,P,P,P), (3.31)

The trace is
T = T µ

µ =−ρ +3P,

Once we have the form of the stress-energy tensor, the generalization of the energy conservation
law is given by

∇νTµν = 0, (3.32)

∂νT µν +Γ
µ

ρν +Γ
ν
ρνT ρµ = 0. (3.33)

Settingh ν = 0, yields the evolution equation for ρ(t), which is the welle known continuity
equation

ρ̇(t)+3H(P(t)+ρ(t)) = 0. (3.34)
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Know taking the Einstein field equation (2.37), wich can be written in the form:

Gµν = 8πGTµν +gµν∧, (3.35)

G00−g00∧= 8πGT00, (3.36)

3
[
(
ȧ
a
)2 +

K
a2

]
= 8πGρ +∧, (3.37)

The first equation of Friedmann then:

3H2 =
8πGρi

c2 − K
a2 +∧., (3.38)

The second equation of Friedmann follows from the second form of Einstein equations

Rµν −
1
2

Rgµν = ∧gµν +
8ΠG
C4 Tµν , (3.39)

Taking the trace of both members we obtain :

−R = 8πGρ +4∧, (3.40)

and then

Rµν = 8πG(Tµν −
1
2

T gµν)−gµν ∧ . (3.41)

Taking the (0,0) component

R00 = 8πG(T00−
1
2

T g00)−gOO∧, (3.42)

we get:
ä
a
=−4πG

3
(ρ +3P)+

∧
3
. (3.43)

These equations admit a static solution with positive spatial curvature and all the parameters
ρ , p, and ∧ nonnegative. This called the "Eeinstein static universe". Einstein was intrested in
finding a static (ȧ = 0) solutions, both due to his hope that general relativity would embody
Mach’s principle that matter determines inertia, and simply to account for the astronomical data
as they were z understood at the time ,The discovery by hubble that the universe is expanding
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eliminated the empirical need for a static world model. Friedmann equations introduced above
are considered as the basic equations of relativistic cosmology. Their solutions describe how
the universe expanding as function of time, and therefore how the distance between any two
objects can be calculated.

In order to solve equation Eqs. (3.38-3.43) we need to define the behaviour of the mass and
energy density. To do so we use the equation of state of a perfect fluid wich relates the pressure
with its energy density as follows:

Pi = ωiρ, (3.44)

where ω is the constant known as the equation of parameter state. Then we can write

ρ̇

ρ
=−3(1+ω)

ȧ
a
, (3.45)

and by integration we get :
ρ ∝ a−3(1+ω), (3.46)

This equation determines the change in density linked to the variation of the scale factor we
have three spicial cases:

3.1.2.1 Non-Relativistic Matter (ω = 0)

In case the universe dominated by matter

P = 0 (3.47)

Substituting p in fluid equation

ρ̇ +3
ȧ
a
(ρ +

p
C2 ) = 0. (3.48)

ρ̇ +3
ȧ
a

ρ = 0 ⇒ 1
a3

∂

∂ t
(ρa3) = 0 ⇒ ρ ∝ a−3. (3.49)
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3.1.2.2 Relativistic Matter (ω = 1
3)

Known as the Radiation dominated ear where

P =
ρc2

3
. (3.50)

Hence
ρ̇ +4

ȧ
a

ρ = 0 ⇒ 1
a4

∂

∂ t
(ρa4) = 0 ⇒ ρ ∝ a−4. (3.51)

3.1.2.3 Dark Energ (ω =−1)

P =−ρc2. (3.52)

From the Einstien equations with cosmological constant ∧

Gµν −8πGTµν . (3.53)

In the vacuum
Tµν =−gµν

∧
8πG

. (3.54)

The EOS of the universe
ρ =−P =

∧
8πG

. (3.55)

3.1.3 Cosmological parameters

The most important parameters describing the expanding universe are the following:

3.1.3.1 The Hubble constant

The second principle or second clue to cosmology .It comes from the study of spectrum ,when
looking at distant galaxies. It was found that the dark lines of the spectra has been shifted when
compared to the emision spectra, this shift in wavelength was realiseed that is due to to the
doppele effect .

z =
4λ

λ 0
, (3.56)
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With z the redshift and ∆λ the shift in wavelength whish is the obsrved wave length minus the
current wavelength spectral measured in the lab on earth.

λobs = λ0,

The galaxies are moving away from as with a velocity V .wich could be found from

v = cz,

If we plot the red shift against distance we’ll see that the recession velocity is proportional to
distance galaxies. This relation is state in Hubble’s law. A very simple equation

ϑ = H0D, (3.57)

This what E.Hubble discovered in 1929, this equation define the Hubble constasnt, it is the
Hubble parameter measured today, we denoted it’s value by H0, current estimates are in the
range of H0 = 65−75Km/sMpc.it is often written as:

4~x = ~xb−~xa, (3.58)

Velocity of galaxy b seen from galaxy a is:

4 ~ϑ = ~ϑb− ~ϑa = H0~xb−H0~xa = H04~x, (3.59)

So no matter where you are, everything appears to move away from us in just the same.

3.1.3.2 The Matter density parameter

The mass density ρ of the Universe and the value of the cosmological constant are dynamical
properties of the Universe, acting the time evolution of the metric. They can be made into
dimensionless density parameters.
Using the friedmann equation for ∧= 0 and in the presence of curvature

H2− 8
3

πGρ =−Kc2

a
, (3.60)

20



The universe is flat if K = 0 or if it has a critical density given by

ρcrit =
3H2

8πG
, (3.61)

We define the dimensionless density parameter Ωi by

Ωi ≡
ρi

ρc
=

8πG
3H2 ρi, (3.62)

The current physical value of the critical density is

ρ0,crit = 0,921×10−29h2
70g.cm−3

In the case of a universe dominated by a mixture of matter, radiation and dark energy, the total
density is given by:

ρ = ρM +ρR +ρDE =
3H2

8πG
(ΩM +ΩR +ΩDE), (3.63)

Using the dimensionless parameter densities :

ρM =
3H2ΩM

8πG
, ρR =

3H2ΩR

8πG
, ρDE =

3H2ΩDE

8πG
, (3.64)

we obtain:
ΩM +ΩR +ΩDE = 1. (3.65)

and

ρ =
3H2

0
8πG

[
ΩDE0

ρDE (a)
ρDEO

+ΩM0

(a0

a

)
3 +ΩR0

(a0

a

)4
]
, (3.66)

If we consider the dark matter represent the the vacuum energy

ρ =
3H2

0
8πG

[
Ω∧0 +ΩM0(

a0

a
)3 +ΩR0(

a0

a
)4
]
, (3.67)
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whereΩ∧0 the vacuum density parameter,using 1.72 and the first equation of friedman we can
write the Hubble parameter in terms of Ω

H = H0

√
ΩDE0

ρDE(a)

ρDEO

+ΩM0(
a0

a
)3 +ΩR0(

a0

a
)4, (3.68)

With
dt =

dt

H0a
√

ΩDE0

ρDE(a)
ρDEO

+ΩM0(
a0
a )

3 +ΩR0(
a0
a )

4
. (3.69)

3.1.3.3 The decceleration parameter

The deecceleration parameter is a measure of the acceleration or decceleration of the universe
expansion and is defined by

q =−aä
ȧ2 , (3.70)

Using the second Friedmann equation we write

q =
4πG
3H2 (3P+ρ), (3.71)

and using the Friedman second equation we obtain :

q =
4πGρM

3H2 +
8πGρR

3H2 +
4πGρDE

3H2 (1+3ωDE),

=
1
2
[ΩM +2ΩR +ΩDE(1+3ωDE)],

(3.72)

for ωDE =−1 we get

q =
1
2
(ΩM +2ΩR−2Ω∧).

3.2 Fundamentals of Standard cosmology

The “Concordance cosmological Model”, or ∧ CDM model is a parametrization of the Big
Bang Cosmological model in wich the universe contains a cosmological constant, denoted by
Lamda, associated with radiation and cold dark matter. It is frequently refered as the standard
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model of Big Bang, because it is the simplest model that provides a complete description of the
cosmological evolution of the universe from the Big Bang to the present day.

As we have seen previously from the cosmological principle that man does not occupy a
privileged place in the universe. Thus the universe must be spatially homogeneous and isotropic.
This leads to the metric shape of Friedmann, Roberstson and Walker. Einstein introduced in
1917 a cosmological constant in his equations because he thought that he would thus find a
closed static universe which would be in accordance with Mach’s principle, inertia is meaning-
less in an empty universe. However, the discovery of the solutions of an expanding universe
without cosmological constant by Friedmann in 1922 and in the observation of the remoteness
of galaxies by Hubble in 1929 ended by completing the existence of a cosmological constant.
The model of a static universe had just collapsed and the constant cosmological was therefore
no longer useful. She was “put away in the closet” for a while, before being reborn again.

However, during all these years it was not totally forgotten. In fact, to remedy the problem
of primordial singularity in Friedmann’s solution, Lemaitre had developed in 1927 a model of
a universe of static origin in which the scale factor is constant. It was only in 1968 that Yakov
Borisovich Zelídovich [24] considered the importance of the cosmological constant by making
the connection with the energy of the vacuum. In fact, its calculation is a loop of the vacuum
resulting from renormalization gives an energy tensor of the vacuum energy vacuum which has
the same form as that of the cosmological constant.

3.2.1 Red shift and cosmological expansion

The frequency of the shift of the light can provide us with valuable information about the scale
factor a. How do we relate the cosmological redshift to the expansion of the Universe? We start
with the FRW metric. In this case the null geodesic for photons has ds = 0

c2dt2 = a(t)2dr2,

Hence

c
∫ t0+λ0/c

te+λe/c

dt
a(t)

=
∫ r

0
dr = r, (3.73)
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Tis means that the intarval between emission and observation are the same then:∫ t0

te

dt
a(t)

=
∫ t0+λ0/c

te+λe/c

dt
a(t)

, (3.74)

Substracting
∫ t0

te+λe/c dt/a(t) from both sides we get

∫ te+λe/c

te

dt
a(t)

=
∫ t0+λ0/c

t0

dt
a(t)

, (3.75)

at small time dt and that a≈ cont we write

1
a(te)

∫ te+λe/c

te
dt =

1
a(t0)

∫ t0+λ0/c

t0
dt, (3.76)

giving
λe

a(te)
=

λ0

a(t0)
, (3.77)

The red shift is defined by

z =
(λ0−λe)

λe
, (3.78)

and then
1+ z =

a(t0)
a(te)

. (3.79)

3.2.2 Time and distance in cosmology

How do astronomers can study things that are so far away in space?. The expansion of the
universe means that the distance between two objects is contineously changing. In order to
solve this, astronomers defined different kinds of distances .

Starting from :
ds2 =−c2dt2−a(t)2 [dr2 +SK(r)dΩ

2] , (3.80)

where

Sk(r) =


Rsin(r/R) for k =+1

r for k = 0

Rsinh(r/R) for k =−1

(3.81)
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Along a spatial geodesic
ds = a(t)dr, (3.82)

The propre distance at a fixed point is given by

dp(t) = a(t)
∫ r

0
dr = a(t)r, (3.83)

dp(t) = a(t)
∫ r

0
dr = a(t)R0 arcsin

(
r

RO

)
, f or (K = 1) (3.84)

= a(t)r, f or (K = 0) (3.85)

= a(t)R0arcsinh
(

r
RO

)
, f or (K =−1) (3.86)

Then
ḋp = ȧr =

ȧ
a

dp, ϑp(t0) = H0dp(t0), (3.87)

The inverse of the Hubble constant is the Hubble time tH

tH0 =
1

H0
, (3.88)

and the speed of light c times the Hubble time is the Hubble distance DH0

DH0 =
c

H0
, (3.89)

The comoving distance to a red shift z is given by

Dc = DH0

∫ z

0

dz
E(z)

, (3.90)

Where :
E(Z) =

√
ΩM(1+ z)3 +ΩK(1+ z)2 +Λ . (3.91)
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3.2.2.1 Luminosity distance

The luminosity distance DL is defined by the relationship between bolometric integrated over
all frequencies. The flux and bolometric luminosity L are related by

F =
L

4πD2 (3.92)

In general the flux=Luminosity/Area, where the area is

Ap(t0) = 4πSk(r)2

And L for luminosity

L =
E
t
=

Energy
time

where
E0 =

Ee

1+ z
dt0 =

dte
1+ z

(3.93)

then
F =

L
4πSk(r)(1+ z)2 (3.94)

a factor (1+z) is due to the energy loss of photons ,and the other one is due to the time dialation
of the photon rate.
A luminosity distance is defined as:

dL = Sk(r)(1+ z) (3.95)

the distance luminusity in terms of the curvature and Hubble parameter becomes:

dL =
DH0(1+ z)√

Ωk0

sinh
(√

ΩK0

∫ dz
E(z)

)
f or (K > 0) (3.96)

dL = DH0(1+ z)
∫ dz

E(z)
f or (K = 0) (3.97)
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dL =
DH0(1+ z)√
−Ωk0

sin
(√
−ΩK0

∫ dz
E(z)

)
f or (K < 0) (3.98)

In a numerical calculations it is much faster to calculate the distance luminosity from the fol-
lowing differential equations

d
dz

[dL]−
dL

1+ z
=

DH0

√
ΩK0d2

L
DH0

+(z+1)2

E(z)
(3.99)

d
dz

[dL]−
dL

1+ z
=

DH0(z+1)
E(z)

(3.100)

d
dz

[dL]−
dL

1+ z
=

DH0

√
(z+1)2− Ωk0d2

L
DH2

0

E(z)
(3.101)

The intial value of the luminosity distance set top the present day is zero. In observational data
on Supernovae Ia, we use the modulus distance defined as the diffrence between the apparent
magnitude m, and the absolute magnitude M

µ(z,H0) = m−M = 5log10

(
dL

10pc

)
(3.102)

3.2.2.2 Angular distances

An other important distance in cosmology is the angular distance used in CMB anisotropies
observations. If we consider a light travel’s from (r;θ ,φ) to the origin we have the distance

ds = a(te)Sk(r)δθ (3.103)

or
ds = la(te) =

1
1+ z

(3.104)

so
l = Sk(r)

δθ

1+ z
(3.105)
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and the angular distance is given by

dA =
l
δ

θ =
Sk(r)
1+ z

=
dL

(1+ z)2 (3.106)

3.2.3 Age of the universe

Several different methods have been used to calculate the age of universe, (different physics,
different measurement), all of them agree that the lowwer limit to the age of the universe is in
the interval ∼ 12−13 Gyrs:

t0− ti = tH0

∫ dz
E(z)(1+ z)

(3.107)

t0 =
tH0

3
√

1−Ωm0

ln

(
1+
√

1−Ωm0

1+
√

1−Ωm0

)
(3.108)

3.2.4 Problems of the Lamda CDM Model

The SBB cosmological model has been very successful in explaining, among other things, the
Hubble expansion of the universe, the existence of the CBR and the abundances of the light
elements which were formed during primordial nucleosynthesis. Despite its great successes,
this model had a number of long-standing shortcomings which we will now summarize:

3.2.4.1 Horizon problem

The CBR, which we receive now, was emitted at the time of ’decoupling’ of matter and radiation
when the cosmic temperature was Td ≈ 3.000K. The decoupling time (at temperature Td), td ,
can be calculated from

T0

Td
=

2,73K
3,000K

=
a(td)
a(t0)

=

(
td
t0

)2/3

(3.109)

It turns out that td ≈ 200.000h−1 years.
The universe displays a pronounced degree of large-scale homogeneity. CMB is the observa-
tional evidence. Measurements show that it has a thermal blackbody spectrum with a tempera-
ture highly homogeneous.
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The horizon (or homogeneity) problem arises because the cosmic microwave background
radiation (CMBR) has the same temperature whichever direction we look. Now the CMBR has
its origin at the furthest point from which light has time to travel since the beginning of the
universe. Currently, this is at around 46,5 billion light-year’s from us. So two points of the
CMBR separated by 180% from our point of view will be 93 billion light-years apart and no
form of communication or causal effects will have had time to travel between the two since the
beginning of the universe. However, the temperature of both points is, on average, identical,
suggesting that these two points must have been in contact at some time in the past. The current
best solution to this problem is inflation paradigm, where different parts of the universe were
close enough together for their temperatures to even out before inflation drove them apart at a
rate far in excess of the speed of light.

3.2.4.2 Flatness Problem

Consider the Friedmann equation in the form:

Ω −1 =
k

aH2 (3.110)

The comoving Hubble radius (aH)−1 grows with time , and thus Ω = 1 is an unstable points.
Indeed

|Ω −1|pl

|Ω −1|0
∼ (

apl

a0
)2 ∼ (

T0

Tpl
)2 ∼ O(10−64) (3.111)

where Tplis Planck temperature and T0 = 2.725 K is the today temperature of the CMBR. Where
in the first step we took a radiation dominated universe and in the last step we set |Ω − 1|0 =
O(1), to have a flat universe at present. The value of Ω at earlier times need to be extremely
fine tuned.

When the strong energy condition of GR, (1+ 3ω) > 1, is satisfied, ω = 1 is an unstable
fixed point:

ω̇ =− 2K
aH3 (Hȧ+ Ḣa) (3.112)

using

Ḣ =
ä
a
−H2 =−1

2
(ρ +P)+

K
a2 (3.113)
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we obatin
ω̇ =− 2K

aH3
a
6
(ρ +3P) = H(Ω −1)Ω(1+3ω)

In the last step we used Ω =
ρ

ρcrit
with ρcrit = 3H

d|Ω −1|
d lna

= Ω |Ω −1|(1+3ω). (3.114)

It follows that in an expanding universe |Ω −1| grows if (1+3ω)> 0 or ω >−1
3

. The strong
condition is satisfied for normal matter and radiation.

3.3 The Cosmological Constant

The physical nature of the cosmological constant remains a persistent enigma immanent to Ein-
stein’s Theory of General Relativity. It is generally thought to represent the gravitational contri-
bution of vacuum fluctuations, when it was introduced with aim of describing the accelerating
expansion of the universe, then using observations one can constrain its value.

Despite the good precision with the ∧ CDM predicts the current cosmological observations,
theoretically there are some issues, one of the most important ones is what some scientists call
it "worse prediction of physics"and Einstein’s greatest blunder the Cosmological Constant, and
when todays theories give an estimated value that is about 120 orders of magnitude larger than
the measured value, in quantum field theory.
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Chapter 4

Dark energy in scalar-tensor theories

4.1 Horndeski theories

Over the past few decades the theory of Einstein “General Relativity” has shown a remarkable
success wether on a theoretical or experimental levels, Despite these, there have been numerous
attempts to modify or extend GR, sppured by varios motivations, one of them is to test gen-
eral relativity quantitatively by constructing a parametrized space of theories around GR, which
could be constrained by observations, another motivation is finding a solution to the dark sector
of the universe, Dark Energy and Dark Matter. Since the observations allow the variation of
the DE equation of state many models been proposed to explain the present accelerated of the
universe.

In 1974 Horndeski came up with a theory of extended gravity. He formulated the most gen-
eral scalar-tensor theory in 4-dimensions that yields second order field equations that respects
Ostrogradski’s theorem. His theory remained unnoticed until its recent discovery as generalized
covariant galileons, in it is proven that the two theories are actually equivalent in four dimen-
sions. This is not trivial since the construction of the two theories is totally different. Horndeski
started by trying to find the unique set of scalar-tensor theories that give up to second order
equations in curved four-dimensional spacetime.

Among the scalar field class we find Galileon theory. First proposed by Nicolis et al. It
represents a long distance modification of GR on Minkowski space through the addition of the
Galileon scalar field φ . The field’s designation is born from the fact that the Lagrangian that
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results from its introduction remains invariant under a generalization of the Galilean invariance
given by ∂µφ → ∂µφ +bµ ,φ → φ +c. Galileons are scalar Lagrangians that give purely second
order equations of motion. Extending (galileons in flat space) to curved spacetime with the
metic gµν is called covariatization, the resulting theories is known as the covariant galileon.

Any alternative theory has to fulfill a number of requirements in order to be satisfactory. A
very strong limitation to the space of possible theories is given by Ostrogradski’s theorem for
a non-degenerate theory whose Lagrangian contains second or higher derivatives with respect
to time, their associated Hamiltonian is unboundedfrom below, making the system unstable and
lacking a well-defined vacuum state. Degenerate theories are those for which Ostrogradski’s
construction does not apply, as it is the case for any theory described by second order equations
of motion.

The most general 4-dimensinal scalar-tensor theories that keeping the field equations of
motion at second order are described by the linear combinations of the following Lagrangians:

S =
5

∑
i=2

∫
d4x
√
−gLi,=

5

∑
i=2

Si, (4.1)

Si =
∫

d4x
√
−gLi. (4.2)

L2 = K(φ ,X), (4.3)

L3 = −G3(φ ,X)�φ , (4.4)

L4 = G4(φ ,X)R+G4X

[
(�φ)2−

(
∇µ∇νφ

)2
]
, (4.5)

L5 = G5(φ ,X)Gµν∇
µ

∇
ν
φ − G5X

6

[
(�φ)3−3(�φ)

(
∇µ∇νφ

)2
+2
(
∇µ∇νφ

)3
]
, (4.6)

where g is the determinant of the metric gµν and:

φµ ≡ ∇µφ , φµν ≡ ∇µ∇νφ , �= ∇µ∇
µ , (4.7)

where Gi are a set of four indpendent arbitrary functions of the scalar field its Kinetic energy X ,
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and The derivatives of these functions are

X =−1
2

∂µφ∂
µ

φ , Gφ =
∂G
∂φ

, GX =
∂G
∂X

, (4.8)

The above Lagrangian was first discovered by Horndeski in a different form (), is equivalent to
that derived byHorndeski(). The non-minimal couplings to gravity in L4 and L5 are necessary
to eliminate higher derivatives that would otherwise appear in the field equations.

Many alternative models have been proposedto approach the origine of Dark Matter, we can
clasify them into two classes (i) modified matter models and (ii) modified gravity modeles, the
first model is introduced to derive the late-time cosmic acceleration. The models that represets
this class are:

• Quintessence model:
The dynamics of quintessence scalar field is governed by an ordinary scalar field, which
slowly rolls down the potential. Slow-roll is the condition in which kinetic energy of the
system is less than the potential energy, yielding the negative pressure. Its EoS parameter

describes accelerated expansion of the universe in the interval −1 < wq <
1
3

it takes the
choice :

K(φ ,X) = X−V (φ), G3(φ ,X) = G5(φ ,X) = 0, G4(φ ,X) =
1
2
, (4.9)

• K-essence model:
Gives the accelerated expansion of the universe with the help of kinetic energy X and its
modified forms

G2(φ ,X) = K(φ ,X). (4.10)

The second class is presented by the following models:

• Brans-Dick Theory:
The simplest class, in scalar-tensor theories. It is thought to embody the Mach’s principle.
Mathematically the BD theory is expressed by the following action principle:

K(φ ,x) =
ωBD

φ
X− v(φ), G3 = G5 = 0, G4 =

φ

2
. (4.11)
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S =
1
2

∫
dx4
√
|g|[φR− ωBD

φ
(∂φ)2−2V ]. (4.12)

• Covariant Galileon: The covariant Galileon without the field potential corresponds to :

K =−c2X , G3 = c3, G4 =
1
2
−C4X2, G5 = 3c5X2, (4.13)

Where C2,3,4,5 are dimensionless constants For the covariant Galileon there exists a stable
de Sitter solution where X= constant.

Kinetic Coupling to Einstein’s tensor is anothor particular and very interesting case within the
class of the Horndeski theories. It corresponds to the following choice

K = X−V, G3 = 0, G4 =
1
2
, G5 =−

α

2
φ (4.14)

That leads to the action :

S =
1
2

∫
dx4
√
|g|[R+2(X−V )+αGµν∂

µ
φ∂

ν
φ ]. (4.15)

• Kinetic braiding theory:
It is described by the Lagranian bellow:

KKBD = K(φ ,X)+G3(φ ,X)�φ +G4(φ)R. (4.16)

Sm =
∫

dx4[
√
−gρm(n)+ Jν

∂ν`]. (4.17)

ρm the energy density, wich depends of the density number of the fluid n, ` is a scalar field, and
Jν is a vector such that:

Uα =
Jα

n
√
−g

, (4.18)

using the normalisation UαUα =−1 we obtain:

n =

√
JαJβ gαβ

g
, (4.19)

The Variation of the matter Lagrangian with respect to Jα leads to:

∂ν`=
ρm,nJν

n
√
−g

. (4.20)
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4.1.1 Background equations of motion

We are intrested in the late time cosmology in wich the field φ responsible for DE. Taking into
account the barotopic perfect fluid with the equation of state :

w =
Pm

ρm
. (4.21)

In the following we focus on non relativistic matter (w = 0) minimally coupled to the field φ ,
the total action is:

S = Sm +SH . (4.22)

Let us derive the equations of motion describing the background evolution form, the easiest way
is to substitute φ = φ(t) and the flat FLRW metric defined as :

ds2 =−N(t)2dt2 +a(t)2
δi jdxidx j. (4.23)

N(t) is the lapse wich is introduced to derive the Friedmann equation.then it takes the value
equals to 1 after the variation of the action S. In this review the scalar field φ depends only of
t(the cosmic time), where the first component of Jν is:

J0 = n0a3. (4.24)

The schutz-sorkin action in this case reduces to:

Sm =−
∫

dx4a3(Nρm +n0 ˙̀). (4.25)

Variying Sm with respect to ` gives

N0 ≡ n0a3 = cte. (4.26)
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4.1.1.1 Variation with respect to N(t)

This gives the constraint equation corresponding to the Friedmann equation :

SH =−
∫

d4xδ
(
a3NL〉

)
, (4.27)

=−
∫

a3d4x [δNK(φ ,X)+NδK(φ ,X)] , (4.28)

=−
∫

a3d4x
[

K(φ ,X)+
∂K
∂

X
∂X
∂N

]
δN, (4.29)

ε =
5

∑
i=2

εi = ρm. (4.30)

with
E2 = 2XKX −K, (4.31)

E3 = 6X φ̇HG3X −2XG3φ , (4.32)

E4 =−6H2G4 +24H2X(G4X +XG4XXX)−12HX φ̇G4φX −6Hφ̇G4φ , (4.33)

E5 = 2H3X φ̇(5G5X +2XG5XX)−6H2X(3G5φ −2XG5φX), (4.34)

The above quantities contain derivatives of the metric and the scalar field up to first order.
Variation with respect to a(t), yields the evolution equation

P =
5

∑
i=2

Pi = 0, (4.35)

P2 = K, (4.36)

P3 =−2X(G3φ + φ̈G3X), (4.37)

P4 = 2(3H2 +2Ḣ)G4−12H2XG4X −4HẊG4X −8ḢXG4X −8HXẊG4XX (4.38)

+2(φ̈ +2Hφ)G4φ +4XG4φφ +4X(φ̈ −2Hφ̇)G4φX ,

P5 =−2X(2H3
φ̇ +2HḢφ +3H2

φ̈)G5X −4H2X2
φ̈G5XX +4HX(Ẋ−HX)G5φX (4.39)

+2[2(ḢX +HẊ)+3H2X ]G5φ +4HX φ̇G5φφ ,
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The background quantities Ei and Pi are defined in an analogous way in which the energy density
and the isotropic pressure of a usual scalar field are defined. In our case the, the distinction
between the gravitational and scalar-field portions of the Lagrangian is ambiguous, and hence,
in that sense, the gravitational contribution is included in the above expressions. We can write
it as :

2QT Ḣ−D6φ̈
+D7φ̇ =−Pm. (4.40)

know the Variation with respect to φ(t), gives the scalar-field equation of motion it follows that:

1
a3

d
dt
(a3J) = Pφ . (4.41)

Where

J = φ̇kx +6HXG3X −2φ̇G3φ +6H2
φ̇(G4X +2XG4XX)−12HXG4φX (4.42)

+2H3X(3G5X +2XG5XX)−6H2
φ̇(G5φ +XG5φX).

and

Pφ = Kφ −2X(G3φφ + φ̈G3φX)+6(2H2 + Ḣ)G4φ +6H(Ẋ +2HX)G4φX (4.43)

−6H2XG5φφ +2H3X φ̇G5φX .

Non-relativistic matter obeys the continuity equation :

ρ̇m +3H(Pm +ρm) = 0. (4.44)

Dark energy and

ρDE = 2XKX −6X φ̇HG3X −2XG3φ −6H2(G4−
1
2
)+24H2X(G4X +XG4XX)−12HX φ̇G4φX

(4.45)

−6Hφ̇G4φ +2H3X φ̇(5G5X +2XG5XX)−6H2X(3G5φ +2XG5φX).
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PDE = K−2X(G3φ + φ̈G3X)+2(3H2 +2Ḣ)(G4−
1
2
)−12H2XG4X −4HẊG4X −8ḢXG4X

−8HXẊG4XX +2(φ̈ +2Hφ̇)G4φ +4XG4φφ +4X(φ̈ +2Hφ̇)G4φX −2X(2H3
φ̇ +2HḢφ̇

+3H2
φ̈)G5X −4H2X2

φ̈G5XX +4HX(Ẋ−HX)G5φX +2(2(ḢX +HẊ)+3H2X)G5φ

+4HX φ̇G5φφ .

(4.46)

EOS parameter

ωDE =−1−
2(2G4−2φ̇2G4X + φ̇2G5φ −Hφ3G5X)Ḣ−D6φ̈ +D7φ̇

ρDE
. (4.47)
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Chapter 5

Dark energy in modified teleparallel
scalar-tensor theories

5.1 Teleparallel gravity

The great success of general relativity in describing experimental data does cearly show that we
are on the right track, and our geometry theory of gravity works exteremly well, all prediction of
GR including gravitational waves, have been experimentally verified, nonetheless, when applied
to the entire universe, we are faced with conceptual and observational challenges that are simply
summarised as dark enrgy and dark matter problem.

Even though we have a perfectly good model also there (∧ CDM), it is very unplesant to
realise that we don’t have reasonable idea as the nature of some 95% of the budget of the uni-
verse, this with all the development in other field of physics has motivated scientist to extend or
modificat general relativity in a attempt to solve the missing peaces of this universe
Teleparallel gravity or Teleparallel equivalent of General Relativity (TEGR), this approach ap-
peared when Einstein wanted to unify electromagnetism with gravity in 1920. TEGR is com-
pletly equivalent to GR at the level of the field equations,and instead of curvature, it uses torsion
to describe the gravitational interaction, the basic ingredient in the structure of this theory is the
tetrad field e, wich defined on a tangent space at each point of the general manifold, This field
has 16 degrees of freedom, while the metric has only 10, the idea then was to exploit the addi-
tional degrees of freedom to acommondate the electromagnetic field,

In this frame work, gravity is no longer the effect of geometry of space-time, but rather a
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force, its equation of motion are identical to those in GR, and their actions only differing by the
total derivative term, so why TEGR when it is equivalent to GR. In spite of this equivalence,
it shows many distinguished features that make of it a theory worthy studing. First of all, it
is a gauge theory of translations, meaning that it can be more easily unified with the other
three fundamental forces of the standard mode. As a gauge theory it could even survive in the
absence of the equivalence principle. Moreover, in the framework of TEGR one can separate
gravitational from inertial effects and because of that, one can define a gravitational energy
momentum density.

In this section we introduce the fundamental objects in teleparallel gravity, Here the Latin
indices are coordinate on the tangent space, wheras Greek indices correspond to spacetime co-
ordinates ,and both takes values a, µ = 0,1,2,3, with the signature (+, -, -, -) of Minkowski
metric ηab

5.1.1 Mathematical stucture

Teleparallelism is a framework to describe gravity ,where the dynamical variables are the vier-
bein or tetrad field.the tetrad field ea(x) is a set of four orthonormal vectors at each point of
the manifold M,that contains a basis of the tangent space of the space TpM.Any vector at a
spacetime point has components in the coordinate and non-coordinate orthonormal basis .

V =V ;µe;µ =V ;ae;a. (5.1)

so its components are related by the vierbein field transformation

V;µ = e;µ
;a V ;a, V;a = e;a

muV ;µ , (5.2)

V ;µ
;ν = e;µ

;a V ;a
;ν = e;b

;νV ;µ
;b = e;µ

;a e;b
;νV ;a

;b . (5.3)

from this we can see that vierbein field allow us to switch bteen Greek and Latin bases. The dual
coframe ea(x) is the basis of the co-tangent space Tp∗M they can be decomposed in a coordinate
basis as :

e;a = e;a
;µdxµ , and e;a = e;µ

;a ∂µ , (5.4)
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where
e;a

;µe;µ
;b = δ

;a
;b , e;a

;µe;ν
;a = δ

;ν
;µ , (5.5)

this condition of orthoganility is the link btween the metric and tetrad :

gµν = e;a
;µe;b

;νη;ab. (5.6)

Consequently, there is an infinite set of tetrads that satisfy these conditions. Since the relation
metric-tetrad is invariant under local Lorents transformations of the tetrad TEGR theory is based
upon weitzenbock connection, witch is curvaturless and metric compatible.
Now we can, if we want, consider every tensor with Latin indices instead of spacetime ones
with the relation between the two being understood as

T a1..am
b1..bm

≡ ea1
α1...e

an
αn

T α1...an
β1...bn

eβ1
b1
...eβm

bm
. (5.7)

One can also say that we have a copy of the tangent space at each point with the canonical
metric ηab in it, and the tetrads realise an isomorphism between the two (pseudo) normed linear
spaces.
Moreover, we can now have two types of the connection coefficients, Γα

µν for the usual tensors
(The affine connection coefficient) and ωa

µb(The spin connection coefficient) for those with
tangent space indices.
The covariant derivative of a vector V in the coordinate basis is:

∇V = (∇;µV ;ν)dx;µ ⊗∂;ν ,

= (∂;µV ;a +Γ
ν
µρV ;ρ)dx;µ ⊗∂;ν .

(5.8)
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In the mixed bases we have

∇V = (∇;µV ;a)dx;µ ⊗∂;ν ,

= (∂;µV ;a +ω
;a
;µbV ;b)dx;µ ⊗∂;ν ,

= (∂;µ(e;a
;νV ;ν)+ω

;a
;µbe;ρe;b

;ρV ;σ )dx;µ ⊗ (e;σ
;a ∂;σ ),

= e;σ
;a (e

;a
;ν∂;µV ;ν +V ;ν

∂
;µe;a

;ν +ω
;a
;µbe;b

;ρV ;σ dx;µ ⊗∂;ρ ,

= (∂;µV ;ρ + e;ρ
;a ∂;µe;a

;νV ;ν + e;ρ
;a e;b

;σ ω
;a
;µbV ;σ )dx;µ ⊗∂;ρ ,

= (∂;µV ;ν + e;ν
;a ∂;µe;a

;σV ;σ + e;ν
;a e;b

;σ ω
;a
;µbV ;σ )dx;µ ⊗∂;ν(∂;µV ;ν +(e;ν

;a ∂;µe;a
;σ + e;ν

;a e;b
;σ ω

a
µbV ;σ )).

(5.9)

From (5.8) and (5.9) we find the affine conection in terms of the spin connection

Γ
ν
µσ = eν

a ∂µea
σ + eν

a eb
σ ω

a
µb. (5.10)

Then
ω

a
µb = ea

νeσ
b Γ

ν
µσ − eσ

b ∂µea
σ . (5.11)

In order to freely change the nature of the indices by the tetrads, we wish this procedure to
commute with taking a covariant derivative. Obviously, this goal would be achieved by the
following requirement

∂µea
µ +ω

a
µb−Γ

σ
µbea

σ = 0. (5.12)

Which can be referred to as vanishing of the "full covariant derivative" of the tetrad. With this
understanding in mind, we can conveniently use tensors with indices of both types, and the
covariant derivatives would be unambiguously defined for a tensor even if we are allowed to
transform from one type to another. The recipe is that we use Γ-terms for Greek indices, and
ω-terms for Latin indices:

∇;µT ;aα = ∂;µT ;aα +Γ
α

µβ
T ;aβ +ω

a
µbT ;bα . (5.13)

Condition is solved straightforwardly to obtain:

Γ
α
µν = eα

a (∂µea
ν +ω

a
µbeb

ν)≡ eα
a Dµea

ν . (5.14)
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with Dµ being the Lorentz-covariant (with respect to the Latin index only) derivative. Relation
can also be reversed to obtain the spin connection

ω
a
µb = ea

αΓ
α
µνeν

b − eν
b ∂µea

ν . (5.15)

which corresponds to a given affine connection on the manifold. In particular, one can find
the spin connection which corresponds to the Levi-Civita connection of a given metric gµν .
Basically, if (4) is valid, then both Γα

µν and ω represent one and the same connection in dif-
ferent disguises. This conclusion is further substantiated by comparing the curvartures for both
connections

Ra
bµν(ω) = ∂;µω

;a
;νb∂;νω

;a
;µb +ω

;a
;µcω

c
νb−ω

a
νcω

c
µb. (5.16)

and
Ra

β µν
(Γ) = ∂µΓ

α

νβ
−∂νΓ

α

µβ
+Γ

α
µρΓ

ρ

νβ
−Γ

α
νρΓ

ρ

µβ
. (5.17)

In other words, the two Riemann tensors are related by mere change of the types of indices.
Therefore, those are one and the same tensor under our conventions which are common for all
the tensors we use.
Note also that the non-metricity in this formalism (with the vanishing of the "full covariant
derivative" of the tetrad) is automatically equal to zero because :

∇αgµν ,= ηab(∂α(ea
µeb

ν)−Γ
β

αµea
β

eb
ν −Γ

β

αν ,

=−eb
µec

ν(ηabω
a
αc +ηacω

a
αb) = 0.

(5.18)

A basic idea of teleparallel gravity is to give an equivalent description of general relativity in
terms of torsion tensor.
since ∇αgµν = 0, one can follow the standard textbook derivation of the Levi-Civita connection
and prove that:

Γ̃
α
µν = Γ

α
µν(g)−Kα

µν . (5.19)

Where
Kαµν =

1
2
(T αµν +T ναµ +T µαν) =−Kανµ . (5.20)

is known under the name of contortion, It is obviously antisymmetric with respect to two in-
dices. And Γα

µν(g) are the usual Christoffel symbols of the symmetric connection, while Γ̃α
µν is
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the so called Weitzenbock connection

Γ̃
α
µν = ea

ρ∂νeρ

µ (5.21)

which is a connection without curvature and presenting only torsion, as a direct consequence of
this definition, the Weitzenb ock covariant derivative of the tetrad field vanishes identically:

∇µea
ν ≡ ∂µea

ν −Γ
ρ

νµea
ρ = 0 (5.22)

This is the so called absolute parallelism condition.
Substituting connection () into the the definition of curvature, we get:

Rα

β µν
= Rα

β µν
+∇µKα

νβ
−∇νKα

µβ
+Kα

µβ
+Kα

µβ
+Kα

µρKρ

νβ
−Kρ

νρKρ

µβ
. (5.23)

for the Riemann tensor with ∇µ being the covariant derivative associated to Γα
µν(g). Making

the necessary contractions we obtain the scalar curvature

R = R+2∇µTµ +T. (5.24)

where the torsion vector is :
Tµ ≡ T λ

λ µ
=−T λ

µλ
. (5.25)

and the torsion scalar can be written in several equivalent ways:

T =
1
2

Kαβ µT βαµ ,

=
1
2

Tαβ µSαβ µ ,

=
1
4

Tαβ µT αβ µ +
1
2

Tαβ µT βαµ −T µTµ .

(5.26)

The torsion tensor can be defined as :

T a
µν

= ∂µea
ν −∂νea

µ . (5.27)

In terms of space time we have :
T σ

µν = eσ
a T a

µν . (5.28)
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eσ
a (∂µea

ν −∂νeµa+ω
a
µbeb

ν −ω
a
νbeb

µ) = eσ
a ∂µea

ν + eσ
a ω

a
µbeb

ν − eσ
a ∂νeµa− eσ

a ω
a
νbeb

µ . (5.29)

we know that
Γ

σ
µν = eσ

a ∂µea
ν + eσ

a ω
a
µbeb

ν . (5.30)

The torsion tensor T σ
µν it the anti-symmetric part of the affine connection coefficients , that is:

T σ
µν =

1
2
(Γσ

µν −Γ
σ
νµ)≡ T σ

[µν ]. (5.31)

In GR, it is postulated tha T α
µν = 0. It is a general convention to call U4 a 4-dimensional space-

time manifold endowed with metric and torsion the superpotential :

Sαµν = Kµαν +gαµT ν −gανT µ (5.32)

Which satisfies the antisymmetry condition Sα
µν =−Sα

µν In teleparallel gravity one exploits the
Weitzenbock connection given by ωa

µν = 0, which is obviously curvature-free, Rα

β µν
(Γ̃) = 0

Note that this definition blatantly breaks local Lorentz invariance because the connection is not
a tensor, and it is not a covariant condition that it vanishes.
The TEGR Lagrangian is :

LT =− 1
2K

∫
d4xeT. (5.33)

Variying this action with respect to tetrads and scalar field where L(gµν ,φ ,∂φ), to get to equa-
tions of motion then:

We define some notations
δ |e|= eeµ

a δea
µ , (5.34)

δeµ
a =−eµ

b eν
a δeb

ν , (5.35)

δgµν = ηab(ea
µδeb

ν + ea
νδeb

µ), (5.36)

δgµν =−(gµνeν
b +gνµeµ

a )δea
α , (5.37)

45



The variation of the action in the teleparallel gravity :

δS =
1
2k

∫
d4xδ (eT ), (5.38)

=
1
2k

∫
d4x(δeT + eδT ), (5.39)

Using (5.26):

δT =
1
4

δ (T αµνTαµν)+
1
2

δ (T αµνTανµ)−δ (T µTµ). (5.40)

Hence
Tµ = T α

µα = eα
a (∂µea

λ
−∂λ ea

µ), (5.41)

T αµν = gαγeγ
a(∂µea

ν −∂νea
µ), (5.42)

T αµν = eα
a (∂

µ(gνγea
γ)−∂

ν(gµγea
γ)), (5.43)

δT α
µν = δ (eα

a ∂µea
ν)−δ (eα

a ∂νea
µ),

= δeα
a ∂µea

ν + eα
a ∂ν(δea

µ)−δeα
a ∂νea

µ − eα
a ∂ν(δea

µ .

Using the notation above and substituting we get :

δT α
µν =−eα

b (e
σ
a (∂µea

ν −∂ν(δea
µ))δeb

σ +−eα
a (∂µδea

ν −∂ν(δea
µ), (5.44)

=−eα
b T σ

µνδeb
σ +−eα

a (∂µδea
ν −∂ν(δea

µ). (5.45)

δ (T µTµ) =−2(T γT β

αµ +T β Tµ)eµ
a δea

β
+2(T β eµ

a −T µeβ
a )∂β δea

β
. (5.46)

δ (TαµνT µαν) = 2(T β µα −T αµβ )Tµανeν
a δea

β
+(T αβ

µ −T βα

µ )eµ
a ∂αδea

β
. (5.47)

δ (TαµνT αµν) =−4T αµνTαµβ eβ
a δea

ν +4T µν

α eαa∂µδea
ν . (5.48)

it is easy to find the field equations after adding the matter Lagrangian:

1
e

∂µ(eeρ
a Sµν

ρ )− eλ
a Sνµ

ρ T ρ

µλ
+

1
4

eρ
a T =

k2

2
eρ

a T ν
ρ . (5.49)

with
T ν

ρ =
1
e

δLm

δea
λ

. (5.50)

46



and
Sµν

ρ =
1
4
(
T νµ

ρ −T µν

ρ +T µν

ρ

)
+

1
2

(
δ

µ

ρ T αν
α −δ

ν
ρ T αµ

α

)
. (5.51)

The Teleparallel Lagrangian suffers from a defecct, because it is unable to govern the dynamics
of the entier vierbein. In fact the equivalence between this action and Einstein -Hilbert action
tells us that , it govern only the metric, as a result TE action is invariant under local Lorentz
transformation.

5.1.2 Extension of TEGR theory

We saw earlier that TEGR can be alternatively formulated as gravitational theory in terms of
the torsion .Taking the TEGR as a base we can build up a modified gravity by generalisation
of the torsion T to a fonction f(T ), inspired by the extension of the Ricci scalar to f (R). As
it seen most of works in modifing gravity starts from extension of the Einsteins-Hilbert action
using the usual curvature .The reason for f (T ) being the best condidat is that the equation of
motion are of second ordre unlike f (R) , however in f (T ) gravity one can obtain more degrees
of freedoms compared with f (R) theories.
The f (T ) gravity theory generalises T in the lagrangian density to an arbitrary function of T:

L ⇒L f (t) =
e

16πG
f (t). (5.52)

The derivation of field equations is very similar to that described above for teleparallel gavity.

δS =
∫

d4x
e

16πG
f (t) = 0. (5.53)

δS =
1

16πG

∫
d4xδ (eδ f (t)), (5.54)

=
1

16πG

∫
d4xδe f (T )+ eδ f (T ). (5.55)

δ f (T ) =
∂ f (T )

∂T
∂T
∂ea

µ

. (5.56)
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Folowing the same steps , the equations of motion read now :

1
4

eν
a f (T )+ e−1

∂µ(eSµν
a ) fT (T )+ eλ

a T ρ

µλ
Sµν

ρ fT (T )+Sµν
a ∂µ(T ) fT T (T ). (5.57)

5.1.3 Gravitational interaction in teleparallel gravity

We mentioned earlier that tleparallel gravity can be interpreted as a gauge theory for the trans-
lation group The reason for translations can be understood from the gauge paradigm, of which
Noether’s theorem is a fundamental piece. Recall that the source of the gravitational field is
energy and momentum. According to Noether’s theorem, the energy–momentum current is co-
variantly conserved provided the source Lagrangian is invariant under spacetime translations. If
gravitation is to present a gauge formulation with energy–momentum as the source, then itmust
be a gauge theory for the translation group.
In teleparallel gravity the gauge transformation is defined as alocal tangent space coordinate

xa −→ xa + ε
a(x4). (5.58)

With εa(x4) the infinitesimal transformation parameter.
The Lagrangian in teleparallel gravity is :

L = LG +Lm (5.59)

LG =
e

16πG

[
1
4

TαµνT αµν +
1
2

TαµνT µαν −T µTµ

]
(5.60)

From the varaiation of the action with respect to the tetrad ea
µ , we obtain from the gauge La-

grangian LG the teleparallel version of the gravitaional field equation using the Euler-Lagrange
:

∂LG

∂ea
ρ

−∂σ

∂LG

∂ (∂σ ea
ρ)

= 0. (5.61)

∂σ (eSρσ
a )− eJρ

a = eT ρ(m)
a . (5.62)

where Sρσ
a the superpotential

eSρσ
a =

∂LG

∂ (∂σ ea
ρ)

. (5.63)
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With the term
eJρ

a =− ∂LG

(∂ea
ρ)

. (5.64)

In our case represents the the Noether energy-momentum density of gravitational current the
determination of (5.61) we start by deriving LG

∂

∂ (∂σ ea
ρ)

(T αµνTαµν) = 2T µν

b

∂T b
µν

∂ (∂σ ea
ρ)

, (5.65)

= 2T µν

b δ
b
a (δ

σ
µ δ

ρ

ν −δ
σ
ν δ

ρ

µ ),

= T σρ
a .

the second term :

∂

∂ (∂σ ea
ρ)

(T αµνTµαν) = 2T νµ
c

∂T c
µν

∂ (∂σ ea
ρ)

+T c
µν

∂T νµ
c

∂ (∂σ ea
ρ)

, (5.66)

= T ρσ
a −T σρ

a .

∂

∂ (∂σ ea
ρ)

(T µTµ) = 2T νµ

ν eγ

b

∂T b
µγ

∂ (∂σ ea
ρ)

, (5.67)

= 2T νµ

ν eγ

bδ
b
a (δ

σ
µ δ

ρ

γ −δ
σ
γ δ

ρ

µ )2T νσ
ν ea

ρ −T νρ

ν ea
σ .

The adition of these results gives us :

Sρσ
a =

1
2
(T σρ

a +T ρσ
a −T ρσ

a )−T σν
ν eρ

a +T νρ

ν eσ
a . (5.68)

Now we move to Jρ
a , and do the same steps but the derivative changes :

Jρ
a =−1

e
∂LG

∂ea
ρ

, (5.69)

=− 1
16πG

[
1
4
(T µν

b

∂T b
µν

∂ea
ρ

+T b
µν

∂T µν

b
∂ea

ρ

+T b
µν

∂T b
νµ

∂ea
ρ

)+
1
2

∂T b
µν

∂ea
ρ

−T γ

γµ

∂T νµ

ν

∂ea
ρ

−
∂

γ

γµ

∂ea
ρ

T νµ

ν

]
+ eρ

a LG.
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We use the following notation

∂e
∂eρ

a
= eeρ

a ,
∂eµ

b

∂eρ
a
=−eµ

a eρ

b , (5.70)

∂gµν

∂eρ
a

=−gρνeµ

b
−gρνeν

b , (5.71)

simplifiying
∂T b

µν

∂ea
ρ

= ω
b
aµδ

ρ

µ −ω
c
aνδ

ρ

ν , (5.72)

∂T µν

b
∂ea

ρ

= ηbc
∂

∂eρ
a
(gµαgνβ T b

αβ
),

= (
∂gµα

∂eρ
a
(gνβ +gµα ∂gνβ

∂eρ
a
)Tbαβ +ηbcgµαgνβ

∂T b
αβ

∂eρ
a
,

= (−gνβ (gαρeµ
a −gµρeα

a )−gµα(gνρeβ
a −gβρeν

a ))Tbαβ +ηbcgµαgνβ (ωb
aαδ

ρ

β
−ω

b
aβ

δ
ρ

α ),

− eµ
a T ρµ

b −gµρT baν −gνρT µ

ba− eν
a T µρ

b +ηbc(gµαgνρ
ω

c
aα −gµρgνβ

ω
c
aβ
).

(5.73)

∂T νµ

b
∂ea

ρ

= ηbc
∂

∂ea
ρ

(eρ

λ
T νµλ ),

= ηbaT νµρT νµρ +ηbceb
λ

∂T νµλ

∂ea
ρ

.

(5.74)

∂T νµλ

∂ea
ρ

=
∂

∂ea
ρ

(ηcbeν
c T µλ

c ),

=−η
cbeν

a − eρ

b T µλ

C +η
cbeν

b
∂T µλ

b
∂ea

ρ

,

=−eν
a T ρµλ −η

cbeν
b (e

µ
a T µ

b T ρλ

b +gµρT λ
ba +gλρT µ

ba + eλ
a T µρ

b ),

+η
cbeν

b ηbdgµαgλρ
ω

d
aα −η

cbeν
b ηbdgµρgλβ

ω
d
αα ,

=−eν
a T ρµλ − eµ

a T νρλ −gµλ T νλ
a gαβ

ω
c
αβ

,

∂T νµ

b
∂ea

ρ

=−e ν
a T ρµ

b− e µ
a T νρ

b− e ρ

b T νµ
a−gµρT ν

ab + e ν
c (gµλ gσρ −gµρgσλ )ωc

aλ
.

(5.75)
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The fifth term:

∂T νµ

ν

∂ea
ρ

=
∂

∂ea
ρ

(gνλ T νµλ ) =
∂gνλ

∂ea
ρ

T νµλ +gνλ

∂T νµ

ν

∂ea
ρ

,

=−T ρµ
a− e µ

a T νρ

ν −gµρT ν
aν + e ρ

b gµν
ω

b
aν − eν

b gµρ
ω

b
aν .

(5.76)

∂T λ

λν

∂ea
ρ

=
∂

∂ea
ρ

(eλ
b T b

µλ
) =−eλ

a eρ

b T b
µλ

+ eλ
b

∂T b
µλ

∂ea
ρ

,

=−T ρ

µa + eρ

b ω
b
aµ − eλ

b ω
b
aλ
.

(5.77)

Jρ
a =

1
8πG

[
eλ

a Sνρ

b T νλ
b +ω

b
aσ Sρσ

b

]
− eρ

a

e
L . (5.78)

Due to the anti-symmetry of Sρσ

b in the last two indices, (eJρ
a ) and,T νλ

b is conserved as a conse-
quence of the field equation:

∂ρ(eJρ
a + eT ρ(m)

a ) = 0. (5.79)

We can write (5.71)in the following form

Gµν = T m
νµ . (5.80)

This result tells us that there is an equivalence between the gravitationl field in the presence of
matter source in GR and TEGR. This means that both of the curvature and torsion are related
to the same degrees of freedom of gravitation field. Let us know take the geodesic equation of
general relativity .

dua

ds
+ Γ̃

a
µνuµuν = 0. (5.81)

Using the relation between the Weitzenbock and christoffel connection

Γ
a
µν = Γ̃

a
µν +Ka

µν . (5.82)

dua

ds
+Γ

a
µνuµuν = Ka

µνuµuν . (5.83)
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5.2 The ghost condensate galileon in modified teleparallel grav-
ity

We consider the cosmology of a galileon field with self cubic interaction and a ghost condensate
term in the framework of modified teleparallel gravity. The action describing the model is given
by :

S =
∫

dx4e( f (T )+Lφ +Lm +Lr). (5.84)

Where Lm and Lr are the Lagrangian of matter and radiation, and Lφ the Lagrangian of the ghost
condensate galileon

Lφ = c1X + c2X2 + c3X�φ . (5.85)

where ci are constants. The kinetic term of the scalar field φ is defined X =−1/2gµν∇;µφ∇;νφ ,
� = gµν∇;µ∇;ν , is the d’alembertian where and e is the determinant of the tetrad field ea

µ , T

is the scalar of torsion. It is obvious that the action above invariant under the transformation
φ → φ + c .
Variying this action with respect to the tetrad fileds and the scalar field ( L(gµν ,φ ,∂φ)), we get
the equations of motion

δS =
∫

dx4
[

δ (e f (T ))
δea

µ

δea
µ +

δ (eLφ )

δea
µ

+
δ (eLm)

δea
µ

+
δ (eLr)

δea
µ

+
δ (eLφ )

δφ
δφ)+

δ (eLφ )

δ (∂φ)
δ (∂φ)

]
.

(5.86)
First we start with the variation of f (T ) . Let us recall the following results :

δ |e|= eeµ
a δea

µ , (5.87)

δeµ
a =−eµ

b eν
a δeb

ν , (5.88)

δgµν = ηab(ea
µδeb

ν + ea
νδeb

µ), (5.89)

δgµν =−(gµνeν
b +gνµeµ

a )δea
α , (5.90)

The total variation are given by:

δS = δS1 +δS2 +δS3 +δS4. (5.91)
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5.2.0.1 Variation of S1

δS1 =
δ (e f (T ))

δea
µ

= e fT
δT
δea

µ

+ f (T )
δe

δea
µ

. (5.92)

δe
δea

µ

= eeβ
a

δea
β

δea
µ

= eeβ
a δ

β

µ . (5.93)

Where fT is the derivative with respect to the torsion scalar.

5.2.0.2 Variation of S2

Variation with respect to the scalar field

δS(2) =
∫

d4xδ

(√
−gciLi

φ +Lm

)
= 0. (5.94)

The variation of the first term of the action is given by:

δS(2) =
∫

d4x
√
−g
(
c1δX + c2δX2 + c3δ (X�φ)+Lm

)
. (5.95)

δS(2)1 =−1
2

∫
d4x
√
−gc1δ ((∇;µ

φ)(∇;νφ)), (5.96)

=−1
2

∫
d4x
√
−gc1[δ (∇

;µ
φ)∇;νφ +∇

;µ
φδ (∇;νφ)], (5.97)

=−
∫

d4x
√
−gc1

[
(∇;µ

φδ (∇;µφ))
]
, (5.98)

=−
∫

d4x
√
−gc1 [(∇

;µ
φ∇;ν(δφ)] (5.99)

=−
∫

d4x
√
−gc1

[
∇;µ(∇

;µ
φ(δφ))−�φ(δφ)

]
. (5.100)

Using the relation :

∇;µW ;µ =
1√
−g

∂µ(
√
−gW ;µ). (5.101)

and the first term is a surface term which vanishes at infinity we obtain:

δS(2)1 =
∫

d4x
√
−gc1�φ(δφ). (5.102)
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The variation of the second term:

δS(2)2 =
1
(4)

∫
d4x
√
−gc2

(
∇;µφ∇

;µ
φ
)
, (5.103)

=
1
2

∫
d4x
√
−gc2δ

(
∇;µφ∇

;µ
φ
)(

∇;µφ∇
;µ

φ
)
, (5.104)

=
1
(4)

∫
d4x
√
−gc2[∇;µ(∇

;µ
φ(δφ))−�φ(δφ)](∇φ)2, (5.105)

=−1
2

∫
d4x
√
−gc2

[
(�φ)(∇φ)2] . (5.106)

Variation of the third term using the same method before:

δS(2)3 =−1
2

δ

∫
d4x
√
−gc3[{(∇;µ

φ∇;νφ)}�φ ], (5.107)

=−1
2

δ

∫
d4x
√
−gc3

{
2∇

;µ
φ∇;µ(δφ)�φ +(∇;µ

φ∇;νφδ (∇;µ
∇;νgµν))

}
, (5.108)

=−
∫

d4x
√
−gc3

{
(−(�π)2−∇;µ(�φ)+∇;µ(∇

;νµ
∇;ν))(δφ)− 1

2
∇;µ(∇

;µ((∇φ)2)δφ)

}
,

(5.109)

=−
∫

d4x
√
−gc3

[
(�π)2 +(∇;ν∇;µφ)(∇;ν∇;µ −∇;µ(�φ)+�(∇;ν)

]
(δφ). (5.110)

where we have used :

∇;µ(�φ)+�(∇;νφ) = Rµν
φ;µφ;ν . (5.111)

In what follows we move on to the calculation of the different contributions T (i)
αβ

(i = 1,2,3) of
the energy momentum of the galileon. Variation with respect to the metric of the first term of
the action:

δS(2)1 =−1
2

∫
d4x
[
δ (
√
−gφ

;α
φ;α)

]
, (5.112)

=−1
2

∫
d4x
[√
−gδ (gαβ

φ;β φ;α)
]
, (5.113)

=−1
2

∫
d4x
[
δ
√
−g(gαβ

φ;β φ;α)+
√
−gδ (gαβ

φ;β φ;α)
]
, (5.114)

=−1
2

∫
d4x
√
−g
{
−1

2
gαβ (φ

;α
φ;β |+(φ;αφ;β )δ

}
gαβ . (5.115)
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with
δ
√
−g√
−g

=
1
2

δ (−g)
(−g)

=−1
2

gµνδgµν . (5.116)

Tαβ = φ,αφ,β −
1
2

gαβ (∇φ)2. (5.117)

Variation of the second term:

δS(2)2 =
∫

d4xc2δ

[
√
−g
(
−1

2
∇µφ∇

µ
φ

)2
]
, (5.118)

=
∫

d4x
√
−gc2

[
−1

2
gαβ δgαβ

(
−1

2
∇µφ∇

µ
φ

)2

+δ

(
∇αφ∇β φgαβ

)(
−1

2
∇αφ∇

α
φ

)]
,

(5.119)

=−1
2

∫
d4x
√
−gc2

[
gαβ

(
−1

2
φαφ

α

)2

+
(
φ;αφ;β

)
(∇φ)2

]
. (5.120)

Then

T;αβ = gαβ

(
−1

2
φ;αφ

;α
)2

+
(
φ;αφ;β

)
(∇φ)2 . (5.121)

The third term:

δS(3)2 =−1
2

∫
d4xδ

[√
−g(∇φ)2(�φ)

]
, (5.122)

=−1
2

∫
d4x
[
δ (
√
−g)(∇φ)2(�φ)+

√
−gδ (∇;αφ∇;β φgαβ )(�φ)+

√
−g(∇φ)2

δ (�φ)
]
,

(5.123)

=−1
2

∫
d4x
√
−gc3

[
gαβ (∇φ)2(�φ)+(∇;αφ∇;β φ)(�φ)+(∇φ)2(∇α∇;β φ)

]
δgαβ .

(5.124)

To calculate the last term in (5.122), we use the the following equation:

δ (∇;β φ) =−δΓ
µ

αβ
(φµ). (5.125)

With
δΓ

µ

αβ
=−1

2
gµρ

[
∇;β (δgαρ)+∇;α(δgβρ)−∇;ρ(δgαβ )

]
. (5.126)
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Then

δS(3)4 =−1
2

∫
d4x
√
−g(∇φ)2

δ (∇;β φ)gαβ , (5.127)

=−1
4

∫
d4x
√
−g
[
(∇φ)2gµρ

[
∇;β (δgαρ)+∇;α(δgβρ)−∇;ρ(δgαβ )

]
(φµ)gαβ

]
,

(5.128)

=−1
4

∫
d4x
√
−g
[
(∇φ)2

φ
;ρ(∇;α(δgαρ)+∇

;β (δgβρ)−∇;ρ(δgαβ )g
αβ )
]
. (5.129)

using the Ostrograsdeski theorem ,and after the variation we have :

δS(3)4 =−1
4

∫
d4x
√
−g
[
−∇

;α(∇φ)2
φ

;ρ(δgαρ)− (∇φ)2
φ

;ρα(δgαρ)−∇
;β (∇φ)2

φ
;ρ(δgβρ)

]
,

(5.130)

=−1
4

∫
d4x
√
−g
[
4φ;µαφ

;µ
φ;β +2(∇φ)2

φ;αβ −2φ;µρφ
;µ

φ
;νρgαβ − (∇φ)2(�φ)2gαβ

]
δgαβ .

(5.131)

Tαβ =
1
4
(
4φ;µαφ

;µ
φ;β +2(∇φ)2

φ;αβ −2φ;µρφ
;µ

φ
;νρgαβ − (∇φ)2(�φ)2gαβ

)
. (5.132)

The first therm in the action is nothing but the equation of motion of the tetrad field, while the
second one is the equation of motion of the scalar field, we can write the equation of motion as
follows:

T µ(T )
a ea

ν = T ν(φ)
µ +T ν(m)

µ +T ν(r)
µ . (5.133)

Where
T µ(T )

a ea
ν =

1
4

f eµ
a + fT (∇;ν(eρ

a Sνµ

ρ )− eλ
a T ρ

νλ
Sνµ

ρ )+ eρ
a ∂ν fT Sµν

ρ . (5.134)

T φ

µν = (c1X + c2X2)gµν +(c1 +2c2X)∂;µφ∂;νφ + c3(gµν∇;αφ∇;β φ∂;α∂;β φ −Γ
λ

βα
∂λ φ .

+�∇;µφ∇;νφ −∇
;α

φ(∇;µ
φ∂α∂ν −Γ

λ
να∂λ φ)(∂α∂µ −Γ

λ
µα∂λ φ)). (5.135)

The energy momentum tensor here consered for each fluid

∇;µT µν

i = 0. (5.136)

leading to
T µν

i = (Pi +ρi)U µUν +Pigµν . (5.137)
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where i = m,r represents the matter and radiation in the universe..
We know that the energy momentum tensor is symmetric and invariant under local Lorentz

transformation, then the anti-symmetric part in the tensor (5.134 ) must vanish. Thus it leads us
to the constraint

(Sσν

λ
gλ µ −Sσν

λ
gλν)∂σ fT = 0. (5.138)

Let us know take a flat, homogeneous and isotropic FLRW space-time metric, where

ds2 =−dt2 +a(t)2
δi jdxidx j. (5.139)

then the metric can take the form using the tetrad field:

ea
µ = diag(1,a(t),a(t),a(t)). (5.140)

The background equations of motion are given by replacing (5.138) in (5.131), and imposing
that the scalar field is an homogeneous function of the cosmic time. The scalar field torsion in
this bockground is T = 6H2.

− 1
2

f (T )−ρm(t)+T f (T )− 1
2

c1φ̇(t)2 +3c3H(t)φ̇ 3− 3
4

c2φ̇
4, (5.141)

− 1
2

f (T )+Pm(t)+6H2(t) fT (T )+2 fT (T )Ḣ(t)+
1
2

c1φ̇
2 +

1
4

c2φ̇
4 +24H2(t)Ḣ(t) fT T (T )+ c3φ̇

2
φ̈(t),

(5.142)

−3c2H(t)φ̇ 3 + c1(−3H(t)φ̇(t)− φ̈)−3c2φ̇ 2φ̈ + c3(9H(t)2
φ̇

2 +3Ḣ(t)φ̇ 2 +6H(t)φ̇ φ̈(t)).

(5.143)

Where the scalar of Torsion is T = 6H2, H = a/ȧ is the Hubble constant and it’s derivative Ḣ

with respect to t. We can write the equations (5.140) and (5.141) in a standard way

3H2 = ρDE +ρm +ρr. (5.144)

3H2 +2Ḣ2 =−(PDE +Pm +Pr). (5.145)

Let us consider now the particular choice

f (T ) = T + kT m. (5.146)
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Then

fT (T ) = (1+ km(T )m−1) fT T (T ) = [(m−1)km(T )m−2]. (5.147)

Now the density ρDE and PDE are given by:

ρDE = 2m−1K(3T )m−mk(6T )m +
1
2

c1φ̇
2−3c3Hφ̇

3 +
3
4

c2φ̇
4. (5.148)

PDE = (2m−1)k(T 6)m−1(3H2 +2mḢ)+
1
4

φ̇
2(2c1 + c2φ̇

2 +4c3φ̈). (5.149)

The EOS parameter is defined

ωDE =
PDE

ρDE
. (5.150)

5.3 Dynamical system analysis

Let us now write the Friedman equations:

3H2−2−1+m3mKH2m +mk(6H2)m− 1
2

c1φ̇(t)2 +3c3H(t)φ̇ 3− 3
4

c2φ̇
4−ρm. (5.151)

3H2 +2Ḣ +(2m−1)k(6H2)−1+m(3H2−2mḢ)+
1
4

φ̇
2(2c1 + c2φ̇

2 +4c3φ̈)+Pm. (5.152)

To fix some of the constants of the model we consider de Sitter epoch where H = Hds = const

and where Pm = 0,ρm = 0, ρr = 0 we obtain from Friedman equations :

c1 =−
12H2

ds +21+m3m(−1+2m)kH2m
ds +3c3Hdsφ̇

2
ds

φ̇ 2
ds

, (5.153)

c2 =
2(6H2

ds +(2m−1)k(6H2
ds)

m)+3c3Hdsφ̇
3
ds

φ̇ 4
ds

, (5.154)

This let us with two free parameters k and c3.

To study the dynamics of FRLW equations in the framework of dynamical system theory,
we define the following dimensionless quantities:

x1 =
c1φ̇ 2

6H2 , x2 =
c2φ̇ 4

4H2 , x3 =−
c3φ̇ 3

H
, x4 =

(1−2m)k
61−mH2−2m , (5.155)
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Ωr =
ρr

3H2 , Ωm =
ρm

3H2 ,

Then it follows that :
x1 + x2 + x3 + x4 = ΩDE . (5.156)

and
1 = ΩDE +Ωm +Ωr. (5.157)

The quantities x1,2,3,4 and Ωr obey the differential equations:

x′1 = 2(−εH + εφ )x1, (5.158)

x′2 =−2(εH−2εφ )x2, (5.159)

x′3 =−(εH−3εφ )x3, (5.160)

x′4 = 2(−1+m)εHx4, (5.161)

Ω
′
r =−2(2+ εH)Ωr, (5.162)

where a prime represents a derivative with respect to N = lna, and

1
3
(3+3x1 + x2− εφ x3−3x4 + εH(2−2mx4)+Ωr) = 0, (5.163)

−2(3+ εφ )x1−4(1+ εφ )+ x2− (3+ εH +2εφ )x3 = 0, (5.164)

Solving in terms of εH and εφ we obtain:

εH =
−(6x1 +6x2

1 +12x2 +14x1x2 +4x2
2 +6x3 +12x1x3

4x1 +8x2 +4x3 + x2
3−4mx1x4−8mx2x4−4mx3x4

(5.165)

+6x2x3)+3x2
3−6x1x4−12x2x4−6x3x4 +2x1Ωr +4x2Ωr +4x2Ωr +2x3Ωr

4x1 +8x2 +4x3 + x2
3−4mx1x4−8mx2x4−4mx3x4

. (5.166)

εφ =
−12x1−8x2−3x3 +3x1x3 + x2x3 +12mx1x4 +8mx2x4−3x3x4 +6mx3x4 + x3Ωr

−4x1−8x2−4x3− x2
3 +4mx1x4 +8mx2x4 +4mx3x3

.

(5.167)
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The equation of state of Dark energy is then given by:

ωDE =
−4(3+2mεH)x4 +12x1−4x3εφ +4x2

12x4 +12x1−12x3 +12x2
. (5.168)

We note that we used the constraint ΩDE +Ωr +Ωm = 1.
We again obatin a relation between the dynamical variables in de Sitter era where:

εφds = 0, εH = 0, Ωr = 0, (5.169)

and then x1|ds and x2|ds are given by:

x1|ds =
1
2
(−4+ x3 +4x4)|ds. (5.170)

x2|ds =−3
2
(−2+ x3 +2x4)|ds. (5.171)

5.3.1 Numerical Solution

In the following we proceeds to a numerical integration of the dynamical system equations. We
aim to show the evolution of the variables xi , Ωi, wDE and H with the cosmic time. The initial
conditions are taken at Ni = lnai =−20, are x1i =−0.15052410−15,x3i = 2.0053910−4,x4i =

10.6157,x2i = 1− x3i− x4i−Ωri−Ωri
0.28621
8.310−5 e−20,Ωri = 0.999997.
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Figure 5.1: Left: variation of the dynamical variables vs N. Right: variation of the dimension-
less density energies with N.
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Figure 5.2: Evolution of the EoS dark energy wDE and H/HΛCDM.

For the dark energy equation of state parameter it is easy to observe that wDE →−1 when
x3,x4 → 0. This behavior starts in the matter domnated era and continue in the dark energy
energy era, as the cosmological constant do. Thus the ghost galileon field perfectly mimics
the constant cosmological in the matter era. This result is of great importance since we have a
dynamical dark energy as can be seen from figure.5.1 but with an EOS wDE =−1in the matter
dominated era. We also plot in figure.5.2 the ration H/HΛCDM,and we see a great agrement
with the ΛCDMmodel. The maximal error is less then 5%.
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Chapter 6

Conclusion

The great theoretical and experimental research activity currently carried out in cosmology and
particle physics is entirely devoted to understanding the true nature of dark energy , the cause
of the accelerated universe . Although the cosmological constant∧is the simplest candidate for
dark energy, it is still a challenging problem to explain the very small value of ∧ consistent with
today’s dark energy scale.this was one of the bigest problem’s in the lamda CDM model,besides
the problem’s that we discocted earlear

Acording to the first chapiter we saw that in the theory of Eeinstein there is no gravita-
tional force interaction in general relativity, but gravitational field wich can be expressed by
the torsion-less Levi–Civita metric–connection, whose curvature determines the intensity of the
gravitational field. On the other hand, in the teleparallel description of gravitation,the presence
of a gravitational field is expressed by the flat Weitzenbock connection, whose torsion is now the
entity responsible for determining the intensity of the gravitational field. The gravitational inter-
action, therefore, can be described either, in terms of curvature, or in terms of torsion. Whether
gravitation requires a curved or a torsioned spacetime, therefore, is a matter of convention.

In general space time can in principle present two different properties curvature and Torsion
but the torsion is absent in GR theory . makes the theory incomplit in some physicits vision and
need to be extanded .This extension in GR was by adding exra degrees of freedom like the scalar
field φ like the Horndesky theories in the third chapitre, wich turned out to be a generalisation
of the Galileon fields to curved space .
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In the last chapitre we saw that general theory of relativity can be described in terms of
tetrad field and of the torsion tensor ,this tetrad field satisfies a field equations that are strictly
equivalent to Eeinstein’s equation .In this geometrical description .the tetrad field yield several
definition that can’t not be astablished in the ordinary metric .An important point of the telepar-
allel equivalent of general relativity is that it allows for the definition of an energy-momentum
gauge current Jρ

a for the gravitational field which is covariant under a spacetime general coordi-
nate transformation, This means essentially that Jρ

a is a true spacetime tensor, but not a tangent–
spacetensor. Then, by rewriting the gauge field equation in a purely spacetime form,it becomes
Einstein’s equation, and the gauge currentJρ

a reduces to the canonical energy-momentum pseu-
dotensor of the gravitational field. Teleparallel gravity,therefore, seems to provide a more ap-
propriate environment to deal with the energy problem since in the ordinary context of general
relativity, the energy-momentum density for the gravitational field will always be represented
by a pseudotensor.

Many models proposed in an attempt to solve the puzle of Dark energy,chapitre four contain
some of these models, as well it contains the scalar tensor theories chapitre to f (T ) gravity is
the simplest modification of TEGR,by replacing the so-called torsion scalar T with f (T ). the
equations of motion of f(T) gravity are second-order instead of fourth-order. Secondly, the local
Lorentz invariance is violated in f(T) gravity .Therefore, extra degrees of freedom will appear.
Till now, it is not clear how many extra degrees of freedom there are in f(T) gravity..

In the last chapitre we did a combination between the modified TEGR and the Galeleon
field model introduced by Nicolas et al. this model motivated by the feeding of a class of a
scalar mode linked to the brane at 4 dim which appears at the DGP decoupling limit at 5dimen-
sions,the auteurs of one thus constructs the model of the galileon, which describes the dynamics
of a scalar field not minimally coupled to the metric and which leaves the equations of motion
invariant under the Galilean transformationφ ⇒ φ +bµxµ + c. In this paper we the cosmolog-
ical evolution of an isotropic and homogineous universe in Telleparallel gravity theory with a
cubic Galileon field ,we confirmed the existence of an accelerated expansion of the universe
with a behavior of the dark energy equation of state in the dark matter identical to the one of the
cosmological constant.
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