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Chapter 1

Introduction

The Standard Model (SM) is today the theoretical framework describing the fundamental particles
and their interactions which form all the structures of the universe. The concept of the standard
model is based on quantum mechanics and special relativity, which are incorporated into quantum
field theory. The Standard Model is based on gauge theory, which is a special case of quantum field
theory. For example, in quantum mechanics, we know that the energy is transmitted as a discrete
quanta. On this basic, the standard model determined the energy that transmitted between parti-
cle by gauge bosons which carry the force and transmitted them between different particles. This
model achieved great success. But despite its success, the standard model is incomplete. It does
not describe gravitational interactions and many questions remain unanswered[1, 5]. What is the
dark matter? why we have only three generations of elementary particles. How can we explain the
asymmetry of matter and antimatter in the universe?

There are many physical phenomena that have not yet been discovered and we need to extend
the standard model and a new physics with a scale higher than the electroweak scale (TeV). The
standard model remains an effective theory at low energy.

Several beyond Standard Model theories (BSM) predict the existence of a hypothetical gauge
boson denoted ”Z ′” (gauge boson). The Z ′ is more massive than the SM Z boson. This boson
appears in many theories beyond the standard model. Its properties such as the coupling and
mass are arbitrary and different according to the BSM model. There are many Z ′ models such as
the sequential model (ZSSM ), Extra Dimensions Models (ZK), the Left-Right symmetric models
of GUT (ZLR) . . . etc. The mass range of Z ′ is from the TeV scale (electroweak scale ) to planck
scale MP . The way to know if the massive gauge boson Z ′ actually exists is to look for it at large
Hadron collide[2, 3].

In this work, we study the top quark pair production at LHC in order to test the prediction of
new physics beyond the Standard Model. Since the top quark pair is the heaviest particle in the
Standard Model, which has a short lifetime and a mass close to the electroweak symmetry breaking
scale. The measurement of their decay properties such as the cross section, branching ratio and
the kinematic distributions... allows us to observe any deviations of SM and any contribution of
new physics that can be observed at LHC[4]. The calculation of the cross section at leading order
of the top quark pair production can give us new prediction about the new physics contribution in
the process but it is not an accurate prediction. There is a more precision prediction represented
in the NLO calculation, the QCD correction of higher order (NLO) can give us a more accurate
prediction, where these corrections contributes to more physical observables. We can also consider
other approximations, such as the parton shower which in some case more accurate than fLO and
fNLO (LO+PS, NLO+PS), and can provide nice description to what happen at detectors.

In chapter (2), we present an introduction to the Standard Model and the theory of weak
interaction and electroweak unification. We discuss in more detail the Higgs mechanism that is
responsible for spontaneous symmetry breaking and which give mass to the particles in this theory.
Finally, we mention success and failure of SM.
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In chapter (3), we study the physics of the hypothetical gauge bosons Z ′ that appear in several
theories beyond the Standard Model. We first discuss the importance of studying such boson and
its possible production at LHC. We mention some BSM models that predict Z ′ gauge boson, and
then we present a genaral parametrisation of the neutral current lagrangian beyond the Standard
Model. Finally , we study one of the simplest model predicting the existence of Z ′ gauge boson,
which is called U(B − L) model.

In chapter (4), we study the production of top quark pair beyond the Standard Model at the
LHC. We present the analytical calculation of the LO cross section for the reaction pp → tt̄,
we use the Hip program to perform the analytical calculations, and MadGraph and MadAnalysis
to perform the numerical calculation of the hadronic cross section and the differential distributions.

In chapter (5), we present the NLO QCD corrections to the top pair production at the LHC
in a general BSM model including Z ′. We first introduce the factorization theorem, the virtual
and the real correction to the partonic cross section, the substraction method and then we present
the numerical calculation of the hadronic cross section in term of both the Z ′ mass and the non
physical scale µ (factorisation and renormlaisation scales). We conclude this chapter by giving
the differential distribution in many observables in the approximations fLO(fixed leading order),
fNLO(fixed next-to-leading order), LO+PS(LO matched to parton shower) and NLO+PS(NLO
matched to parton shower).



Chapter 2

Standard Model

2.1 Introduction to the Standard model

The Standard Model (SM) of particle physics is the most successful mathematical model for de-
scribing physical phenomena observed in experiments. It is a theory of matter, describing the
elementary particles of matter and their interaction in nature. This model involves three of the
four fundamental forces: electromagnetic, weak and strong forces. The fourth force, gravity, is not
included in the model.

In the Standard Model, The particle interactions are expressed within the framework of quantum
field theory. SM is a gauge theory based on the gauge symmetry group SU(3)c ⊗ SU(2)L ⊗
U(1)Y . Where SU(3)c is the color group for the strong interactions. The electromagnetic and
weak interactions are described by a singlet theory called ”electroweak theory ”, which is based on
the combination of the two gauge group SU(2)L ⊗ U(1)Y . SU(2)L and U(1)Y are the isospin and
hypercharge group, respectively.

2.1.1 Elementary Particles and Interactions of the SM

The Standard Model classifies all known particles into two types according to their spin: fermions
and bosons. Fermions are the elementary particles that constitute matter. These particles have a
half integer-spin and satisfy Fermi-Dirac statistics, which are divided into two subgroups: leptons
and quarks [1, 6, 7, 8].

The Quarks are particles carried the electric and color charges, as they are described by three
color charges responsible for the interaction between quarks and gluons (strong interaction): red,
blue, and green. Quarks do not exist in a free state, and we cannot observe them directly, but as
an assemblage of quarks called Hadron. The table (2.1) shows some properties of SM Quark .

Gen Quark Mass Q S C B̃ T
1st u 1.7-3.1 MeV 2

3 0 0 0 0
d 4.1-5.7 MeV -1

3 0 0 0 0
2nd c 1.15-1.35 GeV 2

3 0 1 0 0
s 80-130 MeV -1

3 -1 0 0 0
3rd t 172-174 GeV 2

3 0 0 0 1
b 4-5 Gev -1

3 0 0 -1 0

Table 2.1: properties of SM Quark

The leptons are divided into two types: charged (massive) leptons have electric charge and
participate in both electromagnetic and weak interactions, and neutral leptons (known as neutrinos)
associate for each charged lepton. The neutrinos interact only via the weak interactions. The
leptons do not interact via the strong interactions because they do not have a color charge. The
table (2.2) shows some properties of SM Lepton .
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Gen lepton Mass (MeV) Q Le Lµ Lτ
1st e− 0.511 -1 1 0 0

νe ¡ 2 ×10−16 0 1 0 0
2nd µ− 105.658 -1 0 1 0

νµ ¡ 0.19 0 0 1 0
3rd τ 1777 -1 0 0 1

ντ ¡ 18.2 0 0 0 -1

Table 2.2: properties of SM Lepton

Bosons are particles with integer spins, satisfying Bose-Einstein statistics (we can find two
bosons in the same quantum state). There are Vector bosons (spin 1) that transmit forces, called
”gauge bosons ”. The gauge bosons are defined as mediator of the fundamental interactions, in
which the properties of these gauge bosons and the way in which they interact with the particles
determines the nature of the fundamental interactions.

In the SM, there are 12 fermions (6 quarks and 6 leptons), 12 gauge bosons (W±, Z0, photon γ
and 8 gluons g) and one scalar boson called ”Higgs boson ” gives mass to these particles. For each
particle there are an antiparticle with the same mass, spin , live time but has an opposite electric
charge.

Figure 2.1: Standard Model Particles

2.1.2 Fundamental Interactions

There are four known fundamental interactions,

• Electromagnetic interaction: The electromagnetic interaction is a unification of the electric
and magnetic forces, which is responsible for electric and magnetic effects. It is mediated by
massless boson called photon γ and acts on all electrically charged particles (like leptons and
quarks). It is described by quantum electrodynamics (QED).

• Strong interaction: The strong interaction is described by quantum chromodynamics (QCD).
This interaction is responsible for the cohesion of quarks within the nucleus, it acts on particles
with a color charge and it is mediated by the gluons.

• Weak interaction: The weak interaction is responsible for radioactive beta decay (β+ , β−)
and neutrino interactions, it is mediated by the charged W± and the neutral Z0 gauge bosons.
It is described by the Standard Model.

• Gravitational interaction: The gravitational interaction is the weakest interaction, it acts on
all massive particles and negligible for the nuclear particles.
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2.1.3 Fermi model

In 1932, Fermi proposed the first model to describe the structure of the weak interaction in the
β-decay of nuclei [6, 9, 10, 11]. This model suggested that the weak interaction has the form of
current-current interaction as shown in the figure (2.2),

Figure 2.2: the diagram of β decay for p −→ n+ e+ + νe process [6]

The figure (2.2) represents the proton decay process in the Fermi model. The proton is trans-
formed into a neutron via emission of electron-neutrino pair. In this case, the amplitude is of the
form:

M = GFJ
µ
nJeµ (2.1)

where GF is the Fermi coupling constant, Jµn and Jeµ are the baryonic and leptonic currents, they
are given by,

Jµn = ūpγ
µun , Jµe = ūνeγ

µue (2.2)

In this model, the weak interaction current is of the form vector-vector as in the electromagnetic
and strong interaction. The discovery of parity violation in the weak interaction (In 1956) led to
the necessity to change the form of vector-vector weak current (γµ) to agree with the experiment
in which the current in the weak interaction must be violating the parity and the charge conjugate.
It was found that the most convenient choice is the vector-axial vector (γµ − γµγ5) form. The
amplitude in eq (2.1) becomes :

M = GF
[
ūpγ

µ(1− γ5)un
][
ūνeγ

µ(1− γ5)ue
]

(2.3)

The Fermi Model has been improved by adding an intermediate gauge boson (massive) W in order
to solve the problem of the Fermi coupling constant (which has dimension GF = −2). However, this
theory still available only at low energy. At high energy, the theory violates the unity condition.
Therefore, the Fermi model is not a complete model for describing weak interactions.

Parity Violation

The first suggestion of parity violation in weak interaction was proposed by Lee and Young in the
K+ decay. The K+ meson has two different decay modes in the final state. One decays into two
pions (θ → π+π0) with parity (ηP = +1) and the other into three pions (τ → π+π+π− ) with
parity (ηP = -1 ). θ and τ are two particles have the same properties, but different decay modes
and opposite parities . In order to solve this problem (known as θ − τ puzzle), Lee and Yang (in
1956) proposed that the θ and τ are identical particles, and the parity is not conserved in weak
interaction [6, 10]. In 1957, the violation of parity was confirmed by WU experiment of β decay,
in which WU and her collaborators studied the β decay of polarized colbalt-60 nuclei:

60Co −→60 Ni∗ + e− + ν̄e (2.4)

Parity would be conserved only if, in the decay of the nuclei 60Co, the electron emitted in a direction
opposite to the nucleus spin. But the mirror image of the decay shows that the spin and momentum
of electron in the same direction. This result implies that the symmetry of mirror is violated and
the parity is not conserved in the weak interaction.
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2.2 Glashow-Weinberg-Salam Model

The Glashow-Weinberg-Salam (GWS) model is the first successful model, introducing an accurate
theoretical description of the weak interaction, which is consistent with most existing experimental
data. It has been experimentally proved by the discovery of the Z and W± gauge bosons in
proton-antiproton collisions [6, 9, 10, 12].

2.2.1 GWS lagrangian

The model describes the electromagnetic and weak interactions within a unified theory known as
”electroweak theory”. It is a gauge theory based on the non-Abelian gauge group:

GGWS = SU(2)L ⊗ U(1)Y (2.5)

we can classify fermions according to the helicity operator into two types :

ψ = ψL + ψR = PLψ + PRψ (2.6)

the ψL is the left handed fermion and ψR is the right handed fermion. The PL and PR are the
chiral projections operator, given by:

PL =
1

2
(1− γ5) , PR =

1

2
(1 + γ5) (2.7)

We have seen in experimental observations for the weak interaction that the parity is not conserved.
This fact indicates that only left handed fermions component participate in the weak interaction.
In this model, the left handed leptonss are represented by an SU(2) doublet, while right handed
leptons are represented by an SU(2) singlets (no right handed neutrinos):

L =

(
e−

νe

)
L

,

(
µ−

νµ

)
L

,

(
τ−

ντ

)
L

; R = eR , µR , τR

There are two current forming the weak interaction: the neutral and charged current, the charged
current are given by:

J+
µ =

1

2
ν̄eγµ(1− γ5)e =

1

2
ν̄eLγµeL (2.8)

J−µ =
1

2
ē(1 + γ5)γµνe =

1

2
ēLγµνeL (2.9)

where J±µ correspond to the gauge bosons W±. We can write the charged current in the weak
isospin space:

J+
µ = L̄γµσ

+L (2.10)

J−µ = L̄γµσ
−L (2.11)

where σ± = σ1±iσ2

2 are defined in term of Pauli matrices σi:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(2.12)

the neutral current is defined as:

J3
µ = L̄γµ

σ3

2
L

=
1

2
¯νeLγµνeL −

1

2
ēLγµeL (2.13)
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J3
µ correspond to the neutral boson A3

µ.
There are two charged current and one neutral current, we can write them as:

J iµ =
1

2
L̄γµσiL (2.14)

In this model, we consider the electromagnetic interaction associates with the U(1)EM group and
we defined a conserved quantity ” hypercharge Y ” in term of weak isospin and electric charge as:

Y = 2(Q− T 3) (2.15)

The quantum numbers of SM particles are defined in table (2.3),

Field lL lR νL uL dL uR dR φ+ φ0

T3 −1
2 0 1

2
1
2 −1

2 0 0 1
2 −1

2

Y −1 −2 −1 1
3

1
3

4
3 −2

3 1 1

Q −1 −1 0 2
3 −1

3
2
3 −1

3 1 0

Table 2.3: quantum number Q , Y and T3 for Standard Model particle

The invariant fermions lagrangian under the electroweak gauge group GGWS is defined as:

LF = R̄iγµ(∂µ + ig′Bµ)R+ L̄iγµ(∂µ − τ

2
igAµ − ig′Bµ)L (2.16)

where g and g′ are the gauge coupling constants corresponding to SU(2)L and U(l)Y . The covariant
derivative is given by,

Dµ = ∂µ − τ

2
igAµ − ig′

Y

2
Bµ (2.17)

where the hypercharge Y = −1 for L and Y = −2 for R. We notice here that the fermion cannot
have a mass term because the gauge invariance SU(2)L ⊗ U(1)Y will be violated.

The lagrangian describe the gauge field is given by,

Lgauge = −1

4
W a
µνW

aµν − 1

4
BµνB

µν (2.18)

The mass term of gauge bosons violate the gauge invariance, so in order to generate the mass of
gauge bosons and fermions we must break the symmetry of SU(2)L ⊗ U(1)Y .

2.2.2 Higgs mechanism

We have seen that the gauge bosons in the electroweak theory can not acquire masses since the
mass term violates the gauge invariance of the theory. However, the experimental evidence found
that Z and W are massive gauge bosons. This fact indicates that the electroweak symmetry is
broken SU(2)L ⊗ UY (1), in order to solve this problem. P. Higgs and others proposed ”the Higgs
mechanism ”, which is based on a fundamental concept known as ”spontaneous symmetry breaking”
[1, 6, 10].

In this mechanism, the vacuum was filled with a new scalar field called the ”Higgs field”, which
requires the existence of a zero-spin Higgs boson that interact with the standard model particles
and gives them masses.

The standard model Higgs field can be expressed as an SU(2) doublet with Y = 1 in the term
of two complex fields as:

φ =

(
φ†

φ

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
(2.19)
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The Higgs Lagrangian is given by:

LHiggs = (Dµφ)†(Dµφ)− V (φ†φ)2

(2.20)

where V (φ†φ) is the Higgs potential, is given by:

V (φ†φ) = −µ2φ†φ+ λ(φ†φ)2 (2.21)

we minimize the potential to find the ground state of the field (vacuum):
∂V

∂φ
= 0 → φ(µ2 + λφ2) = 0. (2.22)

We have two different cases: (i) The first case corresponds to µ2 > 0 and λ > 0. In this case, the
minimum of the potential corresponds to the value φ0 = 0 (null), so the electroweak symmetry is
not broken. (ii) The second case corresponds to µ2 < 0 and λ > 0. In this case, the potential
V have two minimum values which corresponds to φ+φ = ±−µ

2

λ = v2, where v is the vacuum
expectation value of φ. The minimum value of φ is:

φ0 =
1√
2

(
0

v

)
(2.23)

and the Higgs potential can be parametrized as,

φ(x) =
1√
2

(
0

v +H(x)

)
(2.24)

We can choose just two components of field to represent the Higgs field, see figure (2.3).

Figure 2.3: Higgs potential V for µ2 < 0 and λ > 0 [13]

In this case the symmetry SU(2)L ⊗ UY (1) is broken to Uem(1) . In order to conserve the
invariance under SU(2)L ⊗ UY (1) transformation, we define the covariant derivative for the Higgs
doublet is given by:

Dµφ = (∂µ + igT aW a
µ + i

g′

2
Bµ)φ (2.25)

2.2.3 Gauge Bosons masses

In order the obtain the mass of the gauge bosons, we have to substitute the complex field in (2.24)
in the covariant derivative. The mass term then becomes,

Lmass = (Dµφ)†(Dµφ)

=

[
(∂µ + igT aW a

µ + i
g′

2
Bµ)φ

]2

(2.26)
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To simplify we use the relation,

T aW a
µ =

1

2
σaW a

µ =
1

2

(
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)
we obtain

Lmass =
1

2

[(
∂µ − i

2(gW 3
µ + g′Bµ) −ig2(W 1

µ − iW 2
µ)

−ig2(W 1
µ + iW 2

µ) ∂µ + i
2(gW 3

µ + g′Bµ)

)(
0

1√
2
(v +H(x))

)]2

=
1

2
(∂µH)2 +

1

8
g2(v +H)2(W 1

µ − iW 2
µ)2 +

1

8
(v +H)2(gWµ

3 − g
′Bµ)2 (2.27)

From this relation, we have

(
1

2
gv)2W+

µ W
−µ +

1

8
v2(gWµ

3 − g
′Bµ)2 (2.28)

where

W±µ =
(W 1

µ ±W 2
µ)

√
2

the first term in eq. (2.28) is of the form M2
WW

+
µ W

−µ, so the mass of W is given by,

MW =
1

2
vg (2.29)

we can write the second term in eq. (2.28) as:

1

8
v2(gWµ

3 − g
′Bµ)2 =

1

8
v2

[
g2(Wµ

3 )2 − 2gg′Wµ
3 Bµ + g′2B2

µ

]
=

1

8
v2
(
Wµ

3 Bµ
)( g2 −gg′
−gg′ g′2

)(
Wµ3

Bµ

)
(2.30)

Now, in order to obtain the mass term of the physical field Aµ and Zµ, we diagonalize the matrix
in eq. (2.30) by using the transformation:(

Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W3µ

Bµ

)
we get

LA,Zmass =
1

8
v2
(
Zµ Aµ

)(g2 + g′2 0

0 0

)(
Zµ

Aµ

)
(2.31)

=
1

8
v2(g2 + g′2)ZµZ

µ + (0)AµA
µ (2.32)

The mass terms for the gauge boson Z and the photon A is of the form:

LA,Zmass =
1

2
M2
ZZµZ

µ +
1

2
M2
AAµA

µ (2.33)

From the relation (2.32), we find the normalized Aµ and Zµ fields and the masses are given by:

Aµ =
g′W3µ + gBµ√

g2 + g′2
, with mass MA = 0

Zµ =
gW3µ − g′Bµ√

g2 + g′2
, with mass MZ =

v

2

√
g2 + g′2 (2.34)
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we have

tanθW =
g′

g
, sin θW =

g′√
g2 + g′2

, cos θW =
g√

g2 + g′2
(2.35)

where the photon and Z fields can be expressed in term of the weak mixing angle θW and the
orginal gauge fields as:

Aµ = Bµ cos θW +W 3
µ sinθW (2.36)

Zµ = −Bµ sin θW +W 3
µ cos θW (2.37)

we have
MW

MZ
= cosθW (2.38)

So the mass of the Z and W are related by the mixing angle θW .

2.2.4 Higgs Bosons mass

The Higgs boson mass is obtained from the Higgs potential after spontaneous symmetry breaking:

V (φ†φ) = λvH3 +
λ

4
H4 +

1

2
(2µ2)H2 − µ2v2

4
(2.39)

the terms H3 and H4 describe the self-interactions of the Higgs boson, the mass of the Higgs boson
are obtained from the H2 term:

MH =
√

2µ2 (2.40)

We can write the scalar lagrangian after spontaneous symmetry breaking as,

LS = (Dµφ)†(Dµφ)− V (φ†φ)

=
1

2
∂µH∂

µH − 1

2
M2
HH

2 − λvH3 − λ

4
H4 +

µ2v2

4
+M2

WW
+
µ W

−µ +
1

2
M2
ZZµZ

µ

+
1

8
H2ZµZ

µ(g2 + g′2) +
g2

4
H2W+

µ W
µ− +

g2

4
HvW+

µ W
µ− +

1

8
HvZµZ

µ(g2 + g′2) (2.41)

the last term describes the interaction of the Higgs bosons with the gauge bosons.

2.2.5 Yukawa intercation

The interaction of the fermions with the Higgs field is described by the Yukawa Lagrangian. This
interaction gives mass to the fermions (leptons and quarks) after spontaneous symmetry breaking.
The Yukawa interaction term for leptons is written as:

LlY = Ge(L̄φeR + eRφ
†L) (2.42)

where L and eR are the lepton doublet and singlet, respectively, φ is the Higgs doublet and Ge is
an arbitrary coupling.

We express the Yukawa term in terms of the Higgs field after SSB, we get:

LlY = Ge

[ (
νe e

)
L

(
0

v+H√
2

)
eR + eR

(
0 v+H√

2

)(νe
e

)
L

]
= Ge

v +H√
2

[ (
νe e

)
L

(
0

1

)
eR + eR

(
0 1

)(νe
e

)
L

]
=
Gev√

2
(eLeR + eReL) +

Ge√
2

(eLeR + eReL)H (2.43)
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we have

ēe = eLeR + eReL (2.44)

we can write (2.43) as,

LlY =
Gev√

2
ēe+

Ge√
2
ēeH (2.45)

The mass of electron is obtained from the first term, it is given by,

me =
Gev√

2
(2.46)

The same thing can be said for the other generations.
The second term describes the interaction of the electron and Higgs boson with a coupling

proportional to the mass:

Ge =
√

2
me

v
(2.47)

Since Yukawa coupling is arbitrary, the mass value is not specified. The neutrino remains massless
(mν = 0) because there are no right handed neutrino νR in the theory, therefore, the neutrino can
not interact with the Higgs doublet.

For the quarks, the interaction term is more complicated because the two components of quark
doublet are massive. So in order to generate the mass of quark we need a Higgs doublet:

φc = −iτ2φ
∗ =

(
−φ0∗

φ−

)
(2.48)

φc is the conjugate doublet Higgs with Y = -1 .

φc →
(
−v+H

2

0

)
(2.49)

The Yukawa term is written as:

LqY = gdQ̄LφdR + guQ̄LφcuR + h.c

LqY = gd
v +H√

2

[ (
ū d̄

)
L

(
0

1

)
dR + gu

(
ū d̄

)
L

(
−1

0

)
uR
]

= gd
v√
2
d̄LdR − gd

H√
2
ūLuR (2.50)

We can write the Yukawa interaction term as,

LQY = mdd̄LdR +muūLuR +
md

v
d̄LdRH +

mu

v
ūLuRH (2.51)

The mass of the u and d quark is obtained from the first two term, we have

mu,d =
gu,dv√

2
(2.52)

It is proportional to the coupling, this means that the H couples most strongly to the heaviest
fermions. the last two terms describe the interaction of u and d quarks with Higgs boson H.

2.3 Standard Model Lagrangian

The most general renormalizable lagrangian of the standard model is given by:

L = LGauge + LHiggs + Lyukawa + Lfermion (2.53)

where LG describes the gauge sector (gauge field), LHiggs describes the scalar (or Higgs field)
Lagrangian, Lyukawa is the Yukawa interaction lagrangian and Lfermion is the fermion sector (quarks
and leptons).
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2.3.1 Gauge Sector

The Lagrangian that describe gauge field is given by:

Lgauge = −1

4
GaµνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν (2.54)

each gauge field is associated with a local gauge symmetry. The Bµν , W a
µν and Gaµν are the U(1)Y

, SU(2)L and SU(3)C gauge fields, where

Gaµν = ∂µG
a
ν − ∂νGaµ + gfabcGbµG

c
ν , a = 1, ...8 (2.55)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
µ, a = 1, ...3 (2.56)

Bµν = ∂µB
ν − ∂νBµ (2.57)

with fabc and εabc are the structure constants of the color group SU(3)C and SU(2), respectively.
We have,

[T a, T b] = ifabcT c , [Ii, Ij ] = iεijkIk (2.58)

T a is the generator of color group SU(3)C , where I3 is the weak charge.

2.3.2 Higgs Sector

In the standard model, the Higgs Lagrangian is described as:

LHiggs = (Dµφ)†(Dµφ)− V (φ†φ)2 (2.59)

where φ is an SU(2)L doublet with spin 0 and hypercharge Y = −1, it is given by:

φ =

(
φ†

φ

)
(2.60)

the first term corresponds to the dynamical interactions of the Higgs field and the last term represent
the Higgs potential associate with the scalar field. The potential is given by,

V (φ†φ) = −µ2φ†φ+ λ(φ†φ)2 (2.61)

where µ and λ are free parameters .

2.3.3 Fermion sector

The fermion field lagrangian describes the interactions between the fermion and gauge boson fields,
it is given by:

LFermion =
∑
quarks

iq̄γµDµq +
∑
ψL

iψ̄Lγ
µDµψL +

∑
ψR

iψ̄Rγ
µDµψR (2.62)

where ψL and ψR are the left and right chirality, where the covariant derivative for each fermion
state is given by,

DµψL = (∂µ − ig′W a
µT

a)ψL , DµψR = (∂µ + ig′Y Bµ)ψR (2.63)
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2.3.4 Yukawa sector

LY ukawa is the lagrangian that describe the interaction between fermions and Higgs doublet (after
spontaneous symmetry breaking gives masses to the elementary fermions), it is given by:

LY ukawa = −YlL̄φlR − YdQ̄φdR − YuQ̄φ̃uR + hc. (2.64)

where φ is the Higgs doublet and φc is the conjugate Higgs doublet, it is given by:

φc = −iτ2φ
∗ =

(
−φ0∗

φ−

)
(2.65)

2.4 Successes and Failures of SM

The Standard Model successfully explained many physical phenomena observed at high energy in
particle accelerators. Most of the experimental data were in agreement with the predictions of the
theory. The existence of the neutral current predicting by the theory was discovered by Gargamalle
experiment. This is within the experiment that proved the validity of the electroweak theory. Then,
the neutral Z and W vector bosons of the weak interactions were discovered (in 1983) in the CERN
UA(1) and UA(2) experiment in the Spp̄S proton antiproton collider. The discovery of the third
charged lepton and quark: τ lepton in (1975) and b quark(1977) at SLAC. Then , the discovery
of top quark in 1995 in which these experiment confirmed the existence of third family of quark
and lepton as predicted in the standard model. All particles predicted by the theory were found in
accelerators, and the last particle discovered was the Higgs boson in 2012 [15, 16].

Despite all the success of this theory, it remains incomplete and failed to explain many phe-
nomena:

• The Standard Model does not contain the fourth fundamental force ”gravity ”.

• In the Standard Model, neutrinos cannot have mass (no right handed neutrino), but recent
experiments have shown that neutrino should have massive.

• The Standard Model contains all particles that consist the visible matter in the universe. But
it does not have any viable candidate for the dark matter that constitutes most of the matter
in the universe.

• The hierarchy problem that usually occurs when a physical parameter such as the coupling
or mass have different values from its values measured in the experiment.

There are lot of question still unswered in the standard model

2.5 SM Feynman Rules

• QED

�µ

f

f

γ − ieγµ

• QCD
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�
i

µ

j

q̄

q

g − igs(T a)jiγµ

� − gsfabc(gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν)

�
c,ρ

a,µ

d,σ

b,ν

− ig2
s

[
fabef cde(gµρgνσ − gµσgνρ)

+facef bed(gµνgρσ − gµσgνρ)

+fadef bce(gµνgρσ − gµρgνσ)
]

• Weak

• Neutral current vertex
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�
ψf

ψf

Aµ − ieQfγµ

�
ψf

ψf

Zµ
−ie

sin θW cos θW
γµ

(
afL

1− γ5

2
+ afR

1 + γ5

2

)

with

afL = −1

2
+ sin2 θW , afR = sin2 θW for f = e−, µ−, τ−

afL =
1

2
− 2

3
sin2 θW , afR = −2

3
sin2 θW for f = u, c, t

afL = −1

2
+

1

3
sin2 θW , afR =

1

3
sin2 θW for f = d, s, b

afL =
1

2
, afR = 0 for massless neutrinos

• Charged current vertex

�
e−

νe

W±µ − i g√
2
γµ(

1− γ5

2
)

�
d,s

u,c

W±µ − i g√
2

cos(θC)γµ(
1− γ5

2
)





Chapter 3

Physics of Z ′ Gauge Boson

3.1 What is and why Z ′ gauge boson?

The Standard Model (SM) successfully describes several physical phenomena in nature, in which it
represents the most convenient theoretical model with experimental results. However, this model
fails to explain some observations and experimental results, such as the origin of dark matter,
neutrino masses and flavor mixing ... etc.

In order to understand the physical phenomena that proved by present experiments and cannot
be explained by the Standard Model, we need to search for new theories Beyond the Standard
Model (BSM) to explain these results.

The physics beyond the standard model contains several models based on the enlarging of
the gauge group of the Standard Model which leads to new particles called exotic particles or
hypothetical particles, which might be extra gauge bosons, extra fermions, extra Higgs bosons,
extra neutrino ...etc. In this work, we focus on the physics of one of the hypothetical gauge bosons
which is the Z ′ Boson [2, 5, 17, 18].

The Z ′ Boson is predicted by many theories beyond the Standard Model like GUT theories,
Little Higgs inspired theories, ... etc. In our studies, we focus on the extension of the Standard
Model symmetry gauge group with an additional U(1) group which brings to the existence of the
Z ′ boson. Such models solve many of the SM problems like the hierarchy problems and quadratic
divergences on the Higgs mass. Since the new heavy gauge boson Z ′ is a prediction of several theories
beyond the standard model, the search for such boson is very important to give us information for
these theories and prove them.

The existence of Z ′ gauge boson is related to the existence of new abelian gauge group U ′(1)

within the extension of the SM gauge group, i.e. the simplest quantum field theory containing such
gauge boson is based on the gauge groupe SU(3)C ⊗ SU(2)L ⊗U(1)Y ⊗U ′(1), where the Z ′ boson
is the gauge field associated to U ′(1).

The Z ′ gauge boson is a hypothetical particle of spin 1, it is massive, neutral and colorless.
It is a new force carrier that mediates the neutral current interaction beyond the standard model
which has similar properties to standard model Z boson but it is more heavier than Z boson.
This particle appears in several theories beyond standard model such as grand unification (GUT),
supersymmetry and extra dimensions theories. In addition, Z ′ has a very short life time, so this
particle needs a high energy to be produced on hadron collider or it can be produced through high
precision experiment at low energy.

3.2 BSM Models with Z ′

There are many BSM models which predict the existence of Z ′ gauge boson. The Z ′ gauge boson
physics different from to another by its couplings to the SM particles and the U ′(1) breaking scale.
The existence of Z ′ is related to extra gauge factor U(1)′ in which there are many possibilities
for the extension of the standard model gauge symmetry group that may include one or more of
this additional factor. Therefore, the new unified gauge group (as the simplest one GSM ⊗ U(1)′)
spontaneously breaks at some scale leading to new neutral gauge bosons such Z ′. In this section,
we present briefly some of those modes[2, 3, 5, 17, 18].
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3.2.1 The sequential model

The feature of this model is that the couplings of Z ′ gauge boson to the standard model fermions
(leptons and quarks) are the same as as the SM Z boson coupling. So, one has just to add a copy of
Z ′ interactions exactly the same as the one of the Z boson. For this, we can consider the canonical
sequential model as a suitable reference to describe the other model.

3.2.2 Grand unified theories model (GUT)

The grand unified theories are theories which aim to unify the three fundamental forces (strong,
weak and electromagnitic) at high energy within a single theory based on a simple gauge group
GGUT and a unified coupling gGUT . Therefore, the complicating standard model gauge group
extend to be simple at higher energy where the extended symmetry can be broken at lower energy
to retain standard model gauge group, see the figure (3.2.2).

GGUT

⇓

SU(3)c × SU(2)L × U(1)Y

The prediction of Z ′ in this theories needs to a gauge group larger than SU(5) (larger than 4
rank) so that Z ′ appears in SO(10), E6 .. .etc. There are several type of the GUT models according
to the construction of the extanded gauge group, we mention here some of them: E6 models and
Left-Right symmetry models.

• The E6 unified model breaks to E6 → SO(10) × U(1)ψ → SU(5) × U(1)χ × U(1)ψ. These
models predict the existence of tree type of the new heavy boson Z ′: Z ′ψ coming from breaking
the symmetry E6 to SO(10) × U(1)ψ , Z ′χ from breaking the symmetry SO(10) × U(1)ψ →
SU(5)×U(1)χ×U(1)ψ and Z ′η from breaking to SU(5)→ SU(3)C×SU(2)L×U(1)Y ×U(1)η.

3.2.3 Left − Right symmetric models

The LR symmetric models based on the gauge symmetry group SU(2)L×SU(2)R×U(1)B−L which
comes from the symmetry breaking of the groups SO(10) or E6. In this model, the ratio of the
Right gR and Left gL gauge coupling is: k = gR/gL = 1. This model contain one additional neutral
gauge boson ZLR and two new right handed charged gauge boson, denoted W±R .

We notice that there are BSM models other than GUT which predict those new gauge bosons, we
mension for example Extra Dimensions Models, Supersymmetric models and Stückelberg models.

3.2.4 Extra Dimensions Models

In these models, the four dimensions of our world are extended by adding an additional space or
time to unify the gravitational and electromagnitic forces, Kaluza klein excitation is the simplest
case that contain a single extra dimension propagate in a bulk (1cm) of radius R as shown in the
figure(3.1). The gauge bosons, the Higgs boson or the graviton can propagate freely in this small
dimension or remain confined to the brane (in our usual three space dimensions).
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Figure 3.1: Kaluza-Klein picture [5]

3.2.5 Stückelberg models

We can use the Stückelberg mechanism to make a massive gauge boson without any vev or a higgs
boson. This mechanism has recently been used in U(1)′ extension of the SM or the MSSM.

3.3 Z ′ at the LHC

We are looking for new neutral gauge boson Z ′ in the LHC in which the proton collisions at high
energy may produce new particles and hence the Z ′ can be produced in ”proton-proton” collisions,
provided that its mass must be smaller than the center of mass energy of colliding protons (and at
least Z ′ two times lighter).

One of the main discovery channel of Z ′ at the LHC is the dilepton production through Drell
Yan mechanism (pp̄)pp→ Z ′ → l+l− where l = e, µ that shown in the figure (3.2). The annihilation
of a quark and anti quark to product a pairs of lepton in final state through the exchange of the
virtual γ, Z and the new Z ′ bosons. This channel allow us to determine the Z ′ mass, the width
ΓZ′ and the leptonic cross section σlZ′ = σZ′Bl ( Bl is the branching ratio into leptons).[2, 23]

	γZZ ′

q

q̄

l+

l−

Figure 3.2: Feynman diagram for the Drell-Yan di-lepton production (l = e, µ).

The decay into leptons makes Z ′ a main search in LHC. In the dilepton resonance , the pro-
duction of Z ′ through two dominant channels:

• dimuon channel qq̄ → Z ′ → µ+µ−: the process shown in the figure (3.3) represent the
production of Z ′ through its couplings to bb̄ quark and then it decays into muon pairs.


Z ′

b

b̄

µ+

µ−

Figure 3.3: dimuon production from Z ′ via bb̄ fusion at the LHC.

In many models, the main production of Z ′ is via b− b fusion either from gluon splitting or
sea quark annihilation, and than it decays into muons, muon neutrinos, bottom, or strange
quarks and also into top quarks and dark matter are all possible when kinetically allowed.
So searching for Z ′ in dimuon, dijet(pp→ Z ′j or pp→ Z ′jj) or tt̄ resonance[21, 22, 25].
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• elecron-positron channel: the production of Z ′ through annihilation of quark anti-quark and
its decay to electron-positoon, the process are shown in the figure (3.4):

�Z ′

q

q̄

e+

e−

Figure 3.4: Z ′ decay in e+e− channel

In the sequantial model, the Z ′SSM mass are determined to be greater than 4.05 TeV in leptonic
channels. There are other channels such as the diboson channel [24], in which Z ′ can be produced
in the process pp → Z ′X → W+W−X via its couplings to quarks. This reaction is not the main
discovery channels but it allow us to understand the origin of Z ′ [18, 19, 20].

3.4 Standard Model with additional U(1)′ Factor

The extensions of the standard model symmetry group may involve more than one additional U(1)′

factor, in general we have to multiply the SM gauge group by U(1)′n, and the new model will be
based on

SUL(2)⊗ UY (1)⊗ U(1)′n n ≥ 1 (3.1)

In our case, we want to look for just one extra gauge boson so we need only a one U(1)′, then one
has to fix n = 1. The lagrangien density of the new model in this case is given by,

LNC = LSMNC + LZ′NC (3.2)

where LSMNC is the usual SM neutral current lagrangian while LZ′NC is the new neutral current
lagrangian associate with U(1)′ gauge symmetry.

The neutral current of the new model contains three parts associated respectively to the photon,
the Z boson and to Z ′ gauge boson. The neutral current lagrangian can be written as,

LNC = −eJµemAµ − g1J
µ
1 Zµ − g2J

µ
2 Z
′
µ (3.3)

where g1 is the SM gauge couplings of the U(1)Y factor which is given by

g1 = g/ cos θW = e/ cos θW (3.4)

and g2 is the gauge couplings of the extra gauge groupe U(1)′ factor (it is a free parameter). The
Aµ and Zµ are the SM gauge field while Z ′µ is the new gauge field associated the new group. The
current Jµ for each term is given by:

Jµem =
∑
i

qif̄iγ
µfi

Jµ1,2 =
∑
i

f̄iγ
µ(ζ1,2

L (i)PL + ζ1,2
R (i)PR)fi (3.5)

where ζ1
L,R(i) are the SM chiral couplings, there are given by,

ζ1
L(i) = T i3 − sin2 θWQi

ζ1
R(i) = − sin2 θWQi (3.6)
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where θW , T i3 and Qi are the Weinberg angle, the third component of the isospin and the electric
charge of fermion fi,respectively. PL,R = (1 ∓ γ5)/2 is the left and right chiral projectors. The
ζ2
L,R(i) are The new chiral couplings related to new gauge boson Z ′.

In terms of these parameters, the neutral current lagrangian of the new gauge boson is given
by,

LZ′NC = −g2J
µ
2 Z

0
2,µ

= − gW
cos θW

∑
i

[
f̄iγ

µ(ζZ
′

L (i)PL + ζZ
′

R (i)PR)fi

]
Z ′µ (3.7)

LZ′NC describes the neutral current interaction of the new gauge boson Z ′ with the standard model
fermions fi[2, 4, 20, 26].

3.5 Effective Z ′ and W ′ model

In this section, we present a phenomenological model (effective theory) which allows as to study
the physics of Z ′ and W ′. The two extra gauge boson are predicted by many BSM model especially
those extended by an extra SU(2) gauge groupe as the Pati-Salam model and right-left symmetric
models, see [4, 27].

The Z ′ and W ′ are the new neutral and charged gauge bosons, respectively, which emerge after
the symmetry breaking of an enlarging gauge symmetry group of the standard model. In additional,
these bosons mediate new neutral and charged interactions that is described by the lagrangian,

LW ′CC = − g√
2

[
∑
i,j

ūiV
CKM
i,j γµ(κqLPL + κqRPR)dj +

∑
i

ν̄liγ
µκlLPLl

−
i ]W ′+µ + h.c (3.8)

LZ′NC = − g

cos θW

∑
i

[ ∑
q=u,d

q̄iγ
µ(ζqLPL + ζqRPR)qi +

∑
f=l,νl

f̄iγ
µ(ζfLPL + ζfRPR)fi

]
Z ′µ + h.c (3.9)

LZ′NC and LW ′CC are the additional neutral and charged current Lagrangian that describe the inter-
action of the SM fermions (quarks and leptons) with the new gauge bosons (Z ′ and W ′). Where
V CKM
i,j is the Cabbibo-Kobayashi-Maskawa (CKM) matrix, i and j are the flavor indices. ζfR,L

,ζqR,L and κq,lL,R are arbitrary complex couplings which are different for quarks and leptons, with ζνR
= κlR = 0 (There is no right-handed neutrino in SM). We can write ζfR,L as,

ζfR,L = ζfZSSM (gfV ± g
f
A) (3.10)

where gfV and gfA are vector and axial couplings, in standard model given by,

gfV =
1

2
T 3,f
L −Qf

gfA = −1

2
T 3,f
L (3.11)

We can use the sequential standard model as a convenient reference to describe the other model.
In this model, the ZSSM couplings to the standard model fermions are the same as in ZSM so in
this case, we have: ζfZSSM = 1, κqR = 0 , and κq,lL = 1. So,

ζfL =
κfR cos θW tan2 θW√

1− tan2θW
(κfR)2

(κfR)2

[T 3,f
L −Qf ] (3.12)

ζfR =
κfR cos θW√
1− tan2θW

(κfR)2

[T 3,f
R − 1

(κfR)2
tan2 θWQ

f ] (3.13)
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3.6 Flavor Changing Neutral Current Effect (FCNC)

In the standard model, the neutral current interaction mediated by γ and Z don’t change the flavor
at tree level due to GIM mechanism. In particular, the chiral couplings ζL,R(i) of the standard model
(Shown in (3.6)) are diagonal matrices. The flavor changing neutral current effect (FCNC) occurs
when the matrices are non diagonal (if θc 6= 0) [2, 26, 28]. However, there are some models predict
the new gauge boson Z ′ in which they mediate the flavor changing neutral current interaction at
tree level. That means that the couplings of Z ′ to standard model fermions (quarks and leptons)
are non diagonal matrices or we can say that Z ′ have a non universal couplings in this case. We
can write the general form of the neutral current interaction mediated by the Z ′ gauge boson in
Eq (3.5) as:

JµZ′ = f̄0
Lγ

µζZ
′

fLf
0
L + f̄0

Lγ
µζZ

′
fLf

0
L (3.14)

where f0
L and f0

R are column vectors which represent the weak eigenstates of the left and right
chiral fermions, respectively. We can write f0

L,R in the base of mass eigenstates fL,R as:

f0
L = V f†

L fL, f0
R = V f†

R fR (3.15)

where V f
L,R are unitary.

We write the current JµZ′ in term of mass basis in Eq (3.15), we obtain:

JµZ′ = f̄Lγ
µV f

L ζ
Z′
fLV

f†
L fL + f̄Rγ

µV f
R ζ

Z′
fRV

f†
R fR (3.16)

where VL,R = V f
L,RV

f†
L,R is the flavor mixing matrix.

We can define two types of flavor mixing matrix:

• the CKM matrix is the quark mixing matrix which represents the mixing of quark flavor (or
mixing of two different flavor of quark): VCKM = V u

L V
d†
L .

• the PMNS matrix is the lepton matrix which represent the mixing of lepton flavor (or mixing
of two different flavor of lepton): VPMNS = V ν

LV
e†
L .

and V is defined as a rotation matrix which is given by the form:

V =

(
cos θc sin θc
− sin θc cos θc

)
we can write the Eq (3.16) as:

JµZ′ = f̄Lγ
µBZ′

fLfL + f̄Rγ
µVRζ

Z′
fRfR (3.17)

where

BZ′
fL = V f

L ζ
Z′
fLV

f†
L , BZ′

fR = V f
R ζ

Z′
fRV

f†
R (3.18)

in the case where ζZ′fL,R are diagonal and BZ′
fL,R = ζZ

′
fL,R, the Z ′ couplings are family universal.

However, the BZ′
fL,R not necessarily diagonal. In some models of the additional gauge boson Z ′,

the couplings could be non diagonal so that the couplings will be familly non universal such as
in supersymmetric models. Therefore, the neutral current interaction mediated by the new heavy
gauge boson Z ′ can change flavor in which there is no reason prevent flavor changing in quark or
leptonic sector at tree level.

We can write the neutral current lagrangian in Eq (3.7) in this case as:

LZ′ = q̄γµ[gLqq′PL + gRqq′PR]q′Z ′µ + l̄γµ[gLll′PL + gRll′PR]l′Z ′µ + h.c (3.19)
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where gR,Lqq′ , g
R,L
ll′ are the right and left chiral couplings to different types of quarks and lep-

tons,respectively.

We mention here an important process mediated by Z ′ and allow to change flavor which is the
meson mixing. The meson mixing is one of the most important FCNC processes at tree level in
which such processes are not allowed in standard model. The processes are shown in figure (3.5) in
which the mixing between a meson M and its conjugate state M̄ are allowed at tree level, where
M = K,D,Bd or Bs meson .

�Z ′

q̄j

qi

q̄i

qj

Z ′

q̄i

qj

q̄j

qi

Figure 3.5: meason mixing via Z ′ at tree level

3.7 The Minimal UB−L Model

The minimal UB−L model is one of the simplest extensions of the standard model based on the
enlarging gauge symmetry group:

SU(3)c ⊗ SU(2)L ⊗ U(1)Y ⊗ U(1)B−L (3.20)

where U(1)B−L is an extra gauge factor added to SM gauge symmetry group, the generator of this
group correspond to the leptonic and baryonic quantum number (B - L)[2, 23], see also [30, 36].

In general, all standard model particles have charges under U(1)B−L, the charges of different
particles are shown in the table (3.1).

ψ qL uR dR lL eR H

SU(3)C 3 3 3 1 1 1

SU(2)L 2 1 1 2 1 2

Y 1
6

2
3 -1

3 -1
2 -1 1

2

B - L 1
3

1
3

1
3 -1 -1 0

νR χ

1 1

1 1

0 0

-1 2

Table 3.1: The U(1)B−L charge assignments of SM particles.

This model contains three extra particles in addition to standard model particles:

• Three generation of right-handed neutrino (νR): two are added to cancel the gauge anomalies
and one with zero U(B - L) charge to give neutrino masses and mixings through see saw
mechanism.

• A complex neutral scalar singlet χ to break the new additional symmetry U(1)B−L and gives
mass to the new gauge boson Z ′.

• The new heavy gauge bosons Z ′: in this model it is denoted by ”ZB−L” in which it is
associate with the conserved quantities baryon and lepton number. The charge are given by:
QBL ∝ TBL, where TBL = (B − L)/2.
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The gauge boson ZB−L can be coupled only to fermions that have the same B - L quantum
number so that the Z−Z ′ mixing is vanished at tree level. Furthermore, the Left and Right handed
fermions have the same B − L quantum number.

gRZ′ = gLZ′ (3.21)

In this case, the couplings of ZB−L to Dirac fermions are vectorial couplings (the axial couplings
are equal to zero):

gVZ′ =
gRZ′ + gLZ′

2
= (B − L)g′1

gAZ′ =
gRZ′ − gLZ′

2
= 0 (3.22)

But the Majorana neutrinos (the neutrinos after see-saw mechanism) have pure axial couplings to
the ZB−L.

3.7.1 The U(1)B−L Model Lagrangian

The total lagrangian of the model is given by,

L = LYM + Lf + LY + LS (3.23)

where each term will be discussed in the next sections.

Yang-Mills sector

LYM represent the Yang-Mills Lagrangian for the Z ′ boson is of the form :

LYM = LSMYM + LAbelY M (3.24)

where LSMYM is the usual SM lagrangian while LAbelY M is given by :

LAbelY M = −1

4
FµνFµν −

1

4
F ′µνF ′µν (3.25)

where

F ′µν = ∂µF
′
ν − ∂νF ′µ (3.26)

Fµν = ∂µFν − ∂νFµ (3.27)

Fν is the usual SM gauge field associate to U(1)Y gauge symmerty group , while F ′ν is is the new
gauge field.

In this case, we can write the covariant derivative as:

Dµ = ∂µ + igsT
αGαµ + igT aW a

µ + ig1Y Bµ + igEY
EB′µ (3.28)

where gs, g and g1 are the couplings related to SM gauge field Gαµ , W a
µ and B′µ, respectively. Tα,

T a and Y are the generators of the group. We introduce here an effective charge Y E and effective
coupling gE , with

gEY
E = g̃Y + g′1YB−L (3.29)

where g̃ and g′1 are free parameters determined experimentally.
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The covariant derivative is given by,

Dµ = ∂µ + igsT
αGαµ + igT aW a

µ + ig1Y Bµ + i(g̃Y + g′1YB−L)B′µ (3.30)

Our model (the ”pure ” UBL model) is defined at the electroweak scale when the charge g̃ = 0, so
that gEY E = g′1YB−L there is no mixing between the the SM Z and Z ′ at tree level. in this case
the covariant derivative is written as :

Dµ = ∂µ + igsT
αGαµ + igT aW a

µ + ig1Y Bµ + ig′1YB−LB
′
µ (3.31)

In the sequential standard model SSM when the couplings of Z ′ and Z are the same, we have
g′1 = g1 and g̃ = 0 at the EW scale. In this case, the covariant derivative is written as:

Dµ = ∂µ + igsT
αGαµ + igT aW a

µ + ig1(Y Bµ + YB−LB
′
µ) (3.32)

Dµq = qg′1YB−LB
′
µq This term describe the interactions between the fermions of the standard model

that have the conserved charge q = B − L with the new gauge boson Z ′.

Fermion sector

Lf is the lagrangian describing the interaction of SM fermion and the additional one is given by :

Lf =
3∑

k=1

[
iq̄kLγµD

µqkL + iūkRγµD
µukR + id̄kRγµD

µdkR + il̄kLγµD
µlkL + iēkRγµD

µekR + iν̄kRγµD
µνkR

]
(3.33)

where qkL and lkL are the three generations of Left-handed quark and lepton doublets (k = 1, 2, 3)
and ukR , dkR and ekR are the Right- handed components of up-type, down-type quarks and charged
leptons, respectively.

The charges of fermions under U(1)B−L are introduced to cancel the gauge anomelies of Yukawa
interactions term such as,

QuB−L = QqB−L +QHB−L =
1

3

QdB−L = QqB−L −Q
H
B−L =

1

3

QeB−L = QlB−L +QHB−L = −1 (3.34)

The charges of these fermions under U(1)B−L shown in table (3.1). This lagrangian is the same as
the standard model lagrangian with an additive term containing three new generation of neutrino
are denoted by νkR, it is given by:

Lnewf = ν̄kRγµD
µνkR (3.35)

Consequently, Lnewf is the new term describing the interactions of the new right handed neutrinos
participate to cancel the B −L gauge anomelies of the theory [35] and to remain the theory gauge
invariant.

Yukawa sector

LY is the Yukawa lagrangian which is given by:

LY = −ydjkq̄jLdkRH − yujkq̄jLukRH̃ − yejk l̄jLekRH − yνjk l̄jLνkRH̃ − yMjk (ν̄R)cjνkRχ+ h.c (3.36)

where H̃ = iσ2H∗
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Higgs sector

LS is the scalar lagrangian is of the form:

Ls = (DµH)†DµH + (Dµχ)†Dµχ− V (H,χ) (3.37)

where χ is the new additional scalar (singlet field) and V (H,χ) is the scalar potential of Higgs H
and χ, it is given by,

V (H,χ) = m2H†H + µ2|χ|2 + λ1(H†H)2 + λ2|χ|4 + λ3H
†H, |χ|2 (3.38)

= m2H†H + µ2|χ|2 +
(
H†H|χ|2

)(λ1
λ3
2

λ3
2 λ2

)(
H†H

|χ|2

)
, µ > 0 (3.39)

where the new charges (B − L) of H and χ are respectively 0 and 2.

Symmetry Breaking and the mass of Z ′

The U(1)B−L model includes a new singlet scalar boson χ in addition to the higgs boson so it is
necessary to implement the spontaneous symmetry breaking of the SU(2)L×U(1)Y ×U(1)B−L. The
new scalar χ contributes to break the U(1)B−L symmetry and to give mass to the new gauge boson
Z ′. The mechanism of U(1)B−L breaking is more complicated than the spontaneous electro-weak
symmetry breaking (EWSB)[31, 32, 33, 34].

The last term in Eq (3.39) involve the large field values, so that the matrix must be positive :(
λ1

λ3
2

λ3
2 λ2

)
the minimisation of V must achieve the following conditions:

4λ1λ2 − λ3
2 ≥ 0

λ1λ2 ≥ 0 (3.40)

The Higgs doublet H and the new scalar singlet χ can be parameterized as,

H =
1√
2

(
−iW−

v + (h+ iz)

)

χ =
1√
2

(x+ (h′ + iz′))

where H is the usual SUL(2) doublet which gives masses to SM fermions and responsible for the
SM gauge symmetry breaking while χ is the new UB−L scalar singlet responsible to generate the
masses of the new gauge boson Z ′. W± = W 1 ∓ iW 2 , z and z′ are the Goldstone bosons of W±,
Z and Z ′, respectively.

After spontaneous symmetry breaking we have,

H0 =
1√
2

(
0

v + h

)
(3.41)

χ0 =
x+ h′√

2
(3.42)

where x ,v are real and non negative, it is the VEV for χ and H. We can express it as,

|H0| =
v2

2
=
−λ2m

2 + λ3
2 µ

2

2λ1λ2 − λ3
2

2

(3.43)
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|χ0| =
x2

2
=
−λ1µ

2 + λ3
2 m

2

2λ1λ2 − λ3
2

2

(3.44)

The covariant derivate for the higgs doublet H with Y = 1
2 :

DµH = (∂µ + igsT
αGαµ + igT aW a

µ + ig1Y Bµ − ig̃B′µ)H (3.45)

where Tα = 1
2σi , σi is the Pauli matrices. The kinetic term in equation (3.37):

(DµH)†DµH =
1

2
∂µh∂µh+

1

8
(h+ v)2

[
g2|W 1µ − iW 2µ|2 + (gW 3µ − g1B

µ − g̃B′µ)2

]
(3.46)

For the Higgs doublet covariant derivate we consider the coupling gEY E = g̃Y , where g′1 = 0
and Y = 1

2 . For the new singlet scalar χ , gEY E = g′1YB−LY (with Y B−L
χ hypercharge of the new

singlet χ). The covariant derivative of a scalar field χ can be written as,

Dµχ = (∂µ + ig′1YB−LB
′
µ)χ (3.47)

where YB−L = 2

Dµχ = (∂µ + 2ig′1B
′
µ)χ (3.48)

in this case, the kinetic term is given by:

(Dµχ)†Dµχ =
1

2
∂µh′∂µh

′ +
1

2
(h′ + x)2(g′12B′µ)2 (3.49)

1

8
v2(gW 3µ − g1B

µ − g̃B′µ)2 =
1

8
v2
(
Bµ W 3µ B′µ

) g2
1 −g1g g1g̃

−g1g g2 −gg̃
g1g̃ −gg̃ g̃2

 Bµ
W3µ

B′µ


We consider the orthogonal transformation, the rotation between the gauge and the mass bases is
given by:  Bµ

W 3µ

B′µ

 =

cosϑW − sinϑW cosϑ′ sinϑW sinϑ′

sinϑW cosϑW cosϑ′ − cosϑW sinϑ′

0 sinϑ′ cosϑ′

AµZµ
Z ′µ


where −π

4 < ϑ < π
4

after diagonalize the mass matrix, the mass of A, Z and the new gauge boson Z ′ are given by:

MA = 0 (3.50)

MZ,Z′ =
√
g2 + g2

1.
v

2

[
1

2

(
g̃2 + 16(xv )2g′21

g2 + g2
1

+ 1

)
∓ g̃

sin 2ϑ′
√
g2 + g2

1

] 1
2

(3.51)

where :

tan 2ϑ′ =
2g̃
√
g2 + g2

1

g̃2 + 16(xv )2g′21 − g2 − g2
1

(3.52)

and

sin 2ϑ′ =
2g̃
√
g2 + g2

1√
(g̃2 + 16(xv )2g′21 − g2 − g2

1)2 + (2g̃)2(g2 + g2
1)

(3.53)

the Z and Z ′ mass can be written as,

MZ =
v

2

√
g2 + g2

1 (3.54)

MZ′
B−L = 2g′1x. (3.55)



28 Chapter 3. Physics of Z ′ Gauge Boson

3.8 Z ′ production and decay

The new heavy gauge boson ”Z ′” can be directly produced in the final state where one has to its
decay products since it life time is very small since it very massive. At the LHC, one can produce
it singly or in paire by the follwing reactions

pp −→ Z ′ +X −→ SM particles (3.56)
pp −→ Z ′ + Z −→ SM particles (3.57)

Also, it can be produced in indirectly as a virtul particle as in the following reaction for example

pp −→ Z ′ −→ t+ t̄ (3.58)

Z ′ Decay into SM fermions

The Z ′ gauge boson can decay following many modes to SM particles. We consider the case of the
Z ′ decay into quark-anti-quark,

Z ′ → qq̄ (3.59)

�Z ′
q̄

q

Z ′ decays only to SM fermions at tree level, the decay width for Z ′ → qq̄ is given by :

ΓZ′→qq̄ =
g2
Z′MZ′

12π

√
1−

4m2
q

M2
Z′

[
at2Z′(1 +

2m2
q

M2
Z′

) + b2tZ′(1−
2m2

q

M2
Z′

)
]

(3.60)

where MZ′ and mq are the masses of Z ′ and the quarks, respectively.
There are other channel of Z ′ decay, the figure (3.6) shows some of Z ′ decays modes:

�Z ′
W−

W+

�Z ′
Z,γ

Z ′

�f̄
Z ′

f

f̄

Z,γ

�f̄
Z ′

f

f̄

W±

Figure 3.6:
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3.9 Feynman rules

3.9.1 Feynman rules for the sequential model

�Z ′
q̄

q

i(2π)4 gw
4 cos θw

γµ(gq′V + gq′Aγ5)

gw =
√

4παW is the electroweak coupling, aqZ′ and bqZ′ are the axial and the vector couplings,
respectively.

3.9.2 Feynman rules for the UB−L Model

• Z ′ − q − q: In the UB−L Model, the vector coupling bqZ′ = 0, this model have only the axial
coupling.

�Z ′B−L
q̄

q

− 1

3
g′1γ

µ

• Z ′ − l − l:

�Z ′B−L
l̄

l

g′1γ
µ

where l = e, µ, τ

• Z ′ − νh − νh: Z ′B−L couple to heavy neutrinos νv and light neutrino νl,

�Z ′B−L
νh

νh

g′1 sin 2αν

• Z ′ − νl − νh:

�Z ′B−L
νh

νl

g′1 cos 2αν

where sin 2αν = − 2√
4+

Mνh
Mνl

, cos 2αν = −
√

Mνh
4mνl+Mνh

mνl and Mνh are masses of light and heavy neutrinos.





Chapter 4

Leading order top-quark pair
production at the LHC

In this chapter, we study the top quark pair production in a standard model extension including
an extra gauge boson Z ′. We present the analytical calculation of the LO partonic cross section
for the reaction pp → tt̄ in the existence of Z ′, where we use the hip program to perform this
calculation. To compute numerically the hadronic cross and the differential distributions, we use
MadGraph and MadAnalysis.

4.1 Overview of hadronic physics

4.1.1 Large Hadron Collider

The Large Hadron Collider (LHC) is the center of particle physics experiments located at the
European Council for Nuclear Research (CERN), in Geneva. It was designed to collide protons
with higher energy up to the center-of-mass energy

√
s = 14 TeV with a design luminosity of 1034

cm−2 s−1, in which, the proton beam could be accelerated to 7 TeV in opposite directions. The
figure (4.1) shows the LHC and its detectors.

The primary object of the LHC is to produce new particles, and detect the phenomena that
occur in particle accelerators. The collider contains four main particle detectors: ATLAS, CMS,
ALICE and LHCb [18, 24]. The designs of these detectors are different, and each detector has its
own characteristic. For example, CMS is dedicated to the study of heavy ion collisions, and the
Large Hadron Collider (LHCb) is dedicated to the study of quark physics ... etc.

Figure 4.1: The CERN accelerator complex .
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4.1.2 Hadronic Cross Section

The hadronic cross section measures the probability of particle production in collisions. We consider
the following processes,

A+B −→ C +X (4.1)

In QCD parton model, this process is described by some sub-processes ”hard scattering” at high
energy. We can calculate the cross section for a hadronic scattering of two particles A and B by
calculation the cross section of the sub-processes involving the reaction of two partons a and b

coming from the hadron A and B, respectively as shown in figure (4.2)[9, 37, 38]. In this case,
the hadronic cross section σ(A + B → C + X) can be obtained by convolving the partonic cross
section σ(a + b → c + d) with the Parton distribution function fAa (xA, Q

2). Then, the hadronic
cross section can be written as,

σhadAB−→CX =
∑
a,b

∫
dxAdxBf

A
a (xA, Q

2)fBb (xB, Q
2)σpartab−→cd (4.2)

where Q2 is the factorization scale, xA and xB are the fraction of moneta of particle a and b,
fAa (xA, Q

2) and fBb (xB, Q
2) are the parton distribution functions which describe the probability

for producing a and b partons from A and B hadrons (we can obtain them by fitting data) and
σpartab−→cd is the partonic cross section.

Figure 4.2: Structure of hard scattering process

4.1.3 Kinematic Variables

The kinematic variables are invariant quantities under Lorentz transformations. In the flowing, we
suppose that the z-axis that represents the beam axis in accelerator physics[9, 37, 39, 40].

• Transverse Momentum PT : The momentum of a particle can be expressed as:

P = PT + PL (4.3)

where PT = (px, py, 0) is the orthogonal components and PL = (0, 0, pz) is the longitudinal
components. PT is the transverse momentum that is present in the transverse plane to the
beam direction (x, y), it is given by,

PT =
√
p2
x + p2

y = p sin θ (4.4)

where θ is the polar angle (the angle between the particle direction and the beam direction).

• Transverse Mass MT : The transverse mass MT is defined by,

MT =
√
p2
x + p2

y +M2
I (4.5)

where MI is the invariant mass which is given by,

M2
I = (p1 + p2 + · · ·+ pn)2 (4.6)
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We need to know the momentum of all the particles in the final states to calculate the invariant
mass MI . The transverse mass can be express in term of PT as:

MT =
√
P 2
T +M2

I (4.7)

• Rapidity y: The rapidity is a dimensionless variable related to the relative velocity of a
particle, used in accelerator physics. The rapidity of a particle is defined as:

y =
1

2
ln
E + pz
E − pz

(4.8)

where

pz = p cos θ , E =
√
p2 +m2 (4.9)

we can write the rapidity in term of MT as:

y =
1

2
ln
E + pz
MT c2

(4.10)

In the relativistic limit, the rapidity is equal to the pseudorapidity.

• Pseudo-rapidity η: The pseudo-rapidity is a variable can be measured without need to know
the mass and momentum of the particle. It is related to the angle between the particle
direction and the beam axis. The pseudo-rapidity is defined as :

η =
1

2
ln

[
|p|+ pz
|p| − pz

]
= − ln tan

(
θ

2

)
(4.11)

where cos θ = pz
p , θ is the polar angle (the angle between the particle direction and the beam

axis).

• Transverse Energy ET : The transverse energy is defined as,

ET =
√
P 2
T +M2 (4.12)

We notice that, in terms of the new variables, the components of the 4-momentum can be
written as,

P = (MT cosh η, px, py,MT sinh η) (4.13)

4.2 Tools for the cross section calculation

4.2.1 Hip Program

Hip program is a useful program which contains a set of packages written in the computer algebra
language Mathematica, it helps us to calculate the amplitude and the cross section analytically
[42]. Here are some basic commands of this code,
• SetMass [. . . ]: to define the particle masses.
• SetReal[...]: to define the real variable.
• setMandelstam[...] : to write the scalar product in term of Mandelstam variables (s, t, u).
• SpinorU[..]: Dirac Spinor u.
• SpinorUbar[..] : Dirac Spinor ū.
• SpinorV[..]: Dirac Spinor v.
• SpinorVbar[..]: Dirac Spinor v̄.
• DiracGamma[..] : Gamma matrices ( γµ).
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• DiracGamma 5 : Gamma 5 ( γ5).
• DiracTrace[..]: to calculate the trace of Dirac matrices.
• AbsSquared[...]: to calculate the amplitude squared.
• DotProduct [..]: to calculate the scalar product.
• contract[...]: to contract over lorentz indices .
• Prepareindex[..]: to define the Lorentz indices.

4.2.2 MadGraph 5 Program

MadGraph 5 is a program written in Python language, which can automatically generate matrix
elements and Feynman diagrams. We use it to perform the numerical calculation of the cross
section for the standard model processes and beyond, since it can compute the LO and NLO cross
section for any model [41]. We use MADGRAPH v2.7.3 version to calculate the cross section for
top pair production σtt̄. To generate a processes and calculate the cross section, we follow the
following steps:
• open the terminal and type : cd master / MG5 aMC v2 7 3

• we run the program by: ./bin/mg5 aMC

• import the model: import model V Prime NLo

• to generate the process: generate p p > t t̃. We have three cases:

– if we consider only the electroweak processes : generate p p > t t̃ QCD <= 0

– if we consider both electroweak and QCD processes:
generate p p > t t̃ QED <= 10 QCD <= 10

– if we consider only the QCD processes: generate p p > t t̃ QED <= 0

• to show the the Feynman diagrams: display diagrams we create files for each case :

• to create the repository containing the code: output ”file’s name”

• launch the numerical calculation of the cross section : ./bin/generate-events

• type 0 in order to change some parameters such as the mass of Z ′ , the scale factor and the
center of mass energy we use these command :

• Scite Cards/run-card.dat

• Scite Cards/Param-card.dat

4.3 Analytical calculation of the partonic cross section

In this section, we will calculate the partonic cross section analytically for both top pair production
sub-processes σ(gg → tt̄) and σ(qq̄ → tt̄) in the existence of an additional electroweak sub-process
mediated by the new Z ′ boson. We use hip program to calculate the amplitude squared.

4.3.1 Sub-process qq̄ → tt̄

Electroweak contribution

Consider the reaction :
q(p1) + q̄(p2)→ t(p3) + t̄(p4)

For this reaction, the are three possible Feynman diagrams mediated by γ, Z boson and the new
gauge boson Z ′. The diagrams are shown in the figure (4.3),
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q̄j(p2)

qi(p1)

t̄k(p4)
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q̄j(p2)

qi(p1)

t̄k(p4)

tl(p3)

Figure 4.3: Electroweak Feynman diagrams for qq̄ → tt̄

Calculation of the Amplitudes:

The amplitude and its complex conjugate for the first diagram (by photon exchange) are given by,

M1 =
ie2

(p1 + p2)2
QqQtδjiδlkv̄j(p2)γµui(p1)ūl(p3)γµvk(p4). (4.14)

M̄1 = − ie2

(p1 + p2)2
QqQtδi′j′δk′l′ ūi′(p1)γµ

′
vj′(p2)v̄k′(p4)γµ′ul′(p3) (4.15)

The amplitude summed and averaged over spins and colors is,∑̄
|M1|2 =

1

4N2

∑
spin,color

|M1|2

=
e4Q2

qQ
2
t

4N2(p1 + p2)4

∑
spin,color

δjiδlkδi′j′δk′l′
[
v̄j(p2)γµui(p1)

ūl(p3)γµvk(p4)
]
×
[
ūi′(p1)γµ

′
vj′(p2)v̄k′(p4)γµ′ul′(p3)

]
(4.16)

where i, j, k, l are color indices and N is the number of colors of quarks which equals to N = 3. We
sum over spin and color of the initial and final states by making use of the relations,

∑
spin

ui(p)ūj(p) = δij( 6p+m) (4.17)

∑
spin

vi(p)v̄j(p) = δij(6p−m)
∑
col

δjiδij′δii′δjj′ = δjj = N

We notice that the mass of the initial state particles are neglected (mq = 0). The calculation then
reduces to a product of traces,

∑̄
|M1|2 =

e4Q2
qQ

2
t

4(p1 + p2)4
Tr[ 6p2γ

µ 6p1γ
µ′ ]× Tr[(6p4 −mt)γµ′(6p3 +mt)γµ] (4.18)

We remind that,

Tr[γαγβ] = 4gαgβ

Tr[γλγαγργβ] = 4[gλαgρβ − gλρgαβ + gλβgαρ]

Tr[γ5γαγργβγµ] = 4iεαρβµ (4.19)
Tr[γα1γα2γα3...γαn] = 0, For each odd number n

after simplifying the traces, we get:

Tr[6p2γ
µ 6p1γ

µ′]× Tr[(6p4 −mt)γµ′( 6p3 +mt)γµ] = 32[p2.p3p1.p4 + p2.p4p1.p3 +m2
t p2.p1] (4.20)
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We define the Mandelstam variables as,

s = (p1 + p2)2 = (p3 + p4)2

u = (p2 − p3)2 = (p4 − p1)2 (4.21)
t = (p1 − p3)2 = (p4 − p2)2

The scalar products can be expressed in terms of Mandelstam variables as:

p1.p2 =
s

2
, p3.p4 =

s− 2m2
t

2

p2.p3 = p1.p4 =
m2
t − u
2

, p2.p4 = p1.p3 =
m2
t − t
2

(4.22)

where

s+ t+ u =
∑
i=1,4

mi = 2m2
t (4.23)

We obtain ∑̄
|M1|2 =

2e4Q2
qQ

2
t

s2

[
u2 + t2 + 2m4

t − 2m2
t (u+ t− s)

]
(4.24)

For the second diagram , the amplitude and its conjugate are given by:

M2 =
ie2QqQtδjiδlk

4 sin2 θw cos2 θw[(p1 + p2)2 −m2
z]

[
v̄j(p2)γµ

(
aqL(1− γ5) + aqR(1 + γ5)

)
ui(p1)

]
×
[
ūl(p3)γν(atL(1− γ5) + atR(1 + γ5))vk(p4)

][
gµν − (p1 + p2)µ(p1 + p2)ν

m2
z

]
. (4.25)

M̄2 =
−ie2QqQtδi′j′δk′l′

4 sin2 θw cos2 θw[(p1 + p2)2 −m2
z]

[
ūi′(p1)γµ′

(
aqL(1− γ5) + aqR(1 + γ5)

)
vj′(p2)

]
×
[
v̄k′(p4)γν′

(
atL(1− γ5) + atR(1 + γ5)

)
ul′(p3)

][
gµ
′ν′ − (p1 + p2)µ

′
(p1 + p2)ν

′

m2
z

]
. (4.26)

Where θW is the weak mixing angle. The amplitude squared is given by,∑̄
|M2|2 =

e4Q2
qQ

2
t

16× 4N2 sin4 θw cos4 θw
[
(p1 + p2)2 −m2

z

]2 ∑
spin,color

δjiδlkδi′j′δk′l′[
v̄j(p2)γµ(aqL(1− γ5) + aqR(1 + γ5))ui(p1)

][
ūl(p3)γν(atL(1− γ5) + atR(1 + γ5))vk(p4)

][
ūi′(p1)γµ′(a

q
L(1− γ5) + aqR(1 + γ5))vj′(p2)

][
v̄k′(p4)γν′(a

t
L(1− γ5) + atR(1 + γ5))ul′(p3)

]
[
gµν − (p1 + p2)µ(p1 + p2)ν

m2
z

][
gµ′ν′ − (p1 + p2)µ

′
(p1 + p2)ν

′

m2
z

]
(4.27)

we use the relations :

(1− γ5)2 = 2(1− γ5)

(1 + γ5)2 = 2(1 + γ5) (4.28)
(1− γ5)(1 + γ5) = 0

6p(1− γ5) = (1 + γ5) 6p (4.29)

we obtain∑̄
|M2|2 =

e4Q2
qQ

2
t

16 sin4 θw cos4 θw[(p1 + p2)2 −m2
z]

2

[
(aqL

2
+ aqR

2
)Tr[ 6p2γµ 6p1γµ′] + (aqR

2 − aqL
2
)

× Tr[6p2γµγ5 6p1γµ′]
][

(atL
2

+ atR
2
)Tr[6p3γν 6p4γν′] + (atL

2 − atR
2
)Tr[ 6p3γνγ5 6p4γν′]− 2m2

ta
t
La

t
RTr[γνγν′]

]
[
gµν − (p1 + p2)µ(p1 + p2)ν

m2
z

][
gµ′ν′ − (p1 + p2)µ

′
(p1 + p2)ν

′

m2
z

]
(4.30)
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We contract over Lorentz indices by using the relations in (4.20), after simplifying, we get:

∑̄
|M2|2 =

e4Q2
qQ

2
t

sin4 θw cos4 θw[s−m2
z]

2

[
aqL

2
(2atLa

t
Rm

2
t s+ atR

2
(m2

t − t)2 + atL
2
(m2

t − u)2)

+ aqR
2
(2atLa

t
Rm

2
t s+ atL

2
(m2

t − t)2 + atR
2
(m2

t − u)2)
]

(4.31)

For the third diagram the amplitude and it’s conjugate are given by:

M3 =
ie2QqQtδjiδlk

4 sin2 θw cos2 θw[(p1 + p2)2 −m2
z′ ]

[
v̄j(p2)γµ(aqL′(1− γ5) + aqR′(1 + γ5))ui(p1)

]
×
[
ūl(p3)γν(atL′(1− γ5) + atR′(1 + γ5))vk(p4)

][
gµν − (p1 + p2)µ(p1 + p2)ν

m2
z′

]
. (4.32)

M̄3 =
−ie2QqQtδi′j′δk′l′

4 sin2 θw cos2 θw[(p1 + p2)2 −m2
z′ ]

[
ūi′(p1)γµ′(a

q
L′(1− γ5) + aqR′(1 + γ5))v′j(p2)

]
×
[
v̄′k(p4)γν′(a

′t
L(1− γ5) + a′tR(1 + γ5))ul′(p3)

][
gµ′ν′ − (p1 + p2)µ

′
(p1 + p2)ν

′

m2
z′

]
. (4.33)

where a′qL,R and a′tL,R are the left and right coupling of quark with Z ′.
For the third diagram, the amplitude is the same as the second diagram exchanged by Z boson,

where Z ′ has a different coupling to quark and different mass. In this case , the squared amplitude
is given by,

∑̄
|M3|2 =

e4Q2
qQ

2
t

sin4 θw cos4 θw[s−m2
z′ ]

2

[
aqL′

2(2atL′atR′m2
t s+ atR′2(m2

t − t)2 + atL′2(m2
t − u)2)

+ aqR′
2(2atL′atR′m2

t s+ atL′2(m2
t − t)2 + atR′2(m2

t − u)2)
]

(4.34)

Now we calculate the interference,∑̄
|M1M̄2| =

1

4N2

∑
spin,color

|M1M̄2|

=
∑

spin,color

e4Q2
qQ

2
t δjiδlkδsmδnr

16N2[(p1 + p2)2 −m2
z][p1 + p2]2 sin2 θw cos2 θw

v̄j(p2)γµui(p1)ūl(p3)γµvk(p4)ūs(p1)

(aqL(1 + γ5) + aqR(1− γ5))γαvm(p3)v̄n(p4)(atL(1 + γ5) + atR(1− γ5))γβur(p3)
[
gαβ

− (p1 + p2)α(p1 + p2)β

m2
z

]
(4.35)

we sum over spin and color then we obtain

∑̄
|M1M̄2| =

e4Q2
qQ

2
t

16[(p1 + p2)2 −m2
z](p1 + p2)2 sin θw cos θw

Tr[6p2γ
µ 6p1(aqL(1 + γ5) + aqR(1− γ5)γα)]

Tr[(6p3 +mt)]γµ( 6p4 −mt)(a
t
L(1 + γ5) + atR(1− γ5))γβ]× [gαβ − (p1 + p2)α(p1 + p2)β

m2
z

]

(4.36)

after simplifying , we get :

2Re
[∑̄
M1M̄2

]
=

2e4Q2
qQ

2
t

[s−m2
z]s sin2 θw cos2 θw

[
aqL
[
[(atR(m4

t +m2
t (s− 2t) + t2))

+ atL(m4
t +m2

t (s− 2u) + u2)] + (aqR(atL(m4
t +m2

t (s− 2t) + t2) + atR(m4
t +m2

t (s− 2u) + u2)))
]]

(4.37)
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2Re
[∑̄
M1M̄3

]
=

2e4Q2
qQ

2
t

[(p1 + p2)2 −m2
z′ ][p1 + p2]2 sin2 θw cos2 θw

[
aqL′
[
[(atR′(m4

t +m2
t (s− 2t) + t2))

+ atL′(m4
t +m2

t (s− 2u) + u2)] + (aqR′(a
t
L′(m4

t +m2
t (s− 2t) + t2) + atR′(m4

t +m2
t (s− 2u) + u2)))

]]
(4.38)

the interference between 2 and 3 are given by:∑̄
|M2M̄3| =

1

4N2

∑
spin,color

|M2M̄3|

=
∑

spin,color

e4Q2
qQ

2
t δjiδlkδnmδrs

16× 4N2[(p1 + p2)2 −m2
z][(p1 + p2)2 −mz′2] sin4 θw cos4 θw

[
v̄j(p2)γµ(aqL(1− γ5)+

aqR(1 + γ5))ui(p1)ūl(p3)γν(atL(1− γ5) + atR(1 + γ5))vk(p4)
][
ūn(p1)(aqL′(1− γ5) + aqR′(1 + γ5))γαvm(p2)

v̄r(p4)(atL′(1 + γ5) + atR′(1− γ5))γβus(p3)
][
gαβ − (p1 + p2)α(p1 + p2)β

m2
z

][
gµν − (p1 + p2)µ(p1 + p2)ν

mz′2
]

(4.39)

summing over spins and colors:

∑̄
|M2M̄3| =

e4Q2
qQ

2
t δjiδlkδnmδrs

16× 4N2[(p1 + p2)2 −m2
z][(p1 + p2)2 −mz′2] sin4 θw cos4 θw

Tr[6p2γµ(aqL(1− γ5) + aqR(1 + γ5)) 6p1(aqL′(1 + γ5) + aqR′(1− γ5))γα]

Tr[(6p4 −mt)(a
t
L′(1 + γ5) + atR′(1− γ5))γβ(6p3 +mt)γν(atL(1− γ5) + atR(1 + γ5))] (4.40)

after simplifying, we get:

2Re[
∑̄
M2M̄3] = −

2e4Q2
qQ

2
t

sin4 θw cos4 θw(m2
z − s)(mz′2 − s)

[
aqLa

q
L′(a

t
R(atL′m2

t s+ atR′(m2
t − t)2)

+ atL(atR′m2
t s+ atL′(m2

t − u)2)) + aqRa
q
R′(a

t
L(atR′m2

t s+ atL′(m2
t − t)2) + atR(atL′m2

t s+ atR′(m2
t − u)2))

]
(4.41)

the total amplitude summed over spins and colors is written as :∑̄
| Mtot|2 =

∑̄
|M1|2 +

∑̄
|M2|2 +

∑̄
|M3|2 + 2Re[

∑̄
M1M̄2]

+ 2Re[
∑̄
M1M̄3] + 2Re[

∑̄
M2M̄3] (4.42)

the total amplitude is given by :

∑̄
| Mtot|2 =

2e4Q2
qQ

2
t

sin4 θw cos4 θw(s−m2
z)

2(s−m2
z′)

2s2

[
sin4 θw cos4 θw(s−m2

z)
2(s−m2

z′)
2
[
u2 + t2

+ 2m4
t − 2m2

t (u+ t− s)
]

+ s2(s−m2
z′)

2
[
aqL

2
(2atLa

t
Rm

2
t s+ atR

2
(m2

t − t)2 + atL
2
(m2

t − u)2)

+ aqR
2
(2atLa

t
Rm

2
t s+ atL

2
(m2

t − t)2 + atR
2
(m2

t − u)2)
]

+ s2(s−m2
z)

2
[
aqL′

2(2atL′atR′m2
t s+ atR′2(m2

t − t)2

+ atL′2(m2
t − u)2) + aqR′

2(2atL′atR′m2
t s+ atL′2(m2

t − t)2 + atR′2(m2
t − u)2)

]
+ s sin2 θw cos2 θw(s−m2

z)(s−m2
z′)

2[
aqL
[
[(atR(m4

t +m2
t (s− 2t) + t2)) + atL(m4

t +m2
t (s− 2u) + u2)] + (aqR(atL(m4

t +m2
t (s− 2t) + t2)

+ atR(m4
t +m2

t (s− 2u) + u2)))
]]

+ s sin2 θw cos2 θw(s−m2
z)

2(s−m2
z′)×[

aqL′
[
[(atR′(m4

t +m2
t (s− 2t) + t2)) + atL′(m4

t +m2
t (s− 2u) + u2)] + (aqR′(a

t
L′(m4

t +m2
t (s− 2t) + t2)

+ atR′(m4
t +m2

t (s− 2u) + u2)))
]]
− (s−m2

z)(s−m2
z′)
[
aqLa

q
L′(a

t
R(atL′m2

t s+ atR′(m2
t − t)2)

+ atL(atR′m2
t s+ atL′(m2

t − u)2)) + aqRa
q
R′(a

t
L(atR′m2

t s+ atL′(m2
t − t)2) + atR(atL′m2

t s+ atR′(m2
t − u)2))

]]
(4.43)
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Calculation of the partonic cross section

The partonic cross section is given by:

σ =
1

2s(2π)2

∫
d3p3

2E3

∫
d3p4

2E4
δ4(p1 + p2 − p3 − p4)

∫ ∑̄
|Mtot|2 (4.44)

where ∫
d3p3

2E3
=

∫
d4p3δ

+(p2
3 −m2

t ) (4.45)

we substitute this relation in (4.44), we get:

σ =
1

2s(2π)2

∫
d4p3δ

4(p3 − (p1 + p2 − p4))δ+(p2
3 −m2

t )

∫
d3p4

2E4

∑̄
|Mtot|2 (4.46)

The integration over p3 is evident, thanks to the delta function. Then, we use the spherical
coordinate system as:

d3p4 = |−→p4|2d|−→p4|dΩ (4.47)

we have also

E4 =
√
|−→p4|2 +m2

t (4.48)

so we obtain

σ =
1

4s(2π)2

∫
|−→p4|2d|−→p4|√
|−→p4|2 +m2

t

dΩδ+((p1 + p2 − p4)2 −m2
t )
∑̄
|Mtot|2 (4.49)

we can write the delta function in term of Mandelstam variables as :

δ+((p1 + p2 − p4)2 −m2
t ) = δ+(s− 2

√
s
√
|−→p4|2 +m2

t ) (4.50)

to simplify δ+(s− 2
√
s
√
|−→p4|2 +m2

t ) , we use the relation

δ[g(x)] =
∑
i

δ(x− xi)
|g′(xi)|

(4.51)

we set x = |−→p4| , and xi is the solution of g(|−→p4|+) = 0 (we take the positive solution) :

xi = |−→p4|+ = +

√
s

4
−m2

t and |g′(|−→p4+|)|=2
√
s

√
1− 4m2

t

s
(4.52)

then

δ+(s− 2
√
s
√
|−→p4|2 +m2

t ) =
δ+(|−→p4| −

√
s

2

√
1− 4m2

t
s )

2
√
s

√
1− 4m2

t
s

(4.53)

the cross section becomes :

σ =
1

8s
√
s(2π)2

√
1− 4m2

t
s

∫
|−→p4|2d|−→p4|√

|−→p4|2 +m2
t

√
1− 4m2

t
s

dΩδ+(|−→p4| −
√
s

2
)
∑̄
|Mtot|2 (4.54)

where dΩ = sin(θ)dθdφ is the solid angle , we have :

|−→p4|2 =
s

4
(1− 4m2

t

s
) (4.55)
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substitute in Eq. (4.6) and we integrate on φ, we obtain :

σ =

√
1− 4m2

t
s

16s(2π)

∫ π

0
sin θdθ

∑̄
|Mtot|2 (4.56)

We change the integration variables

x = cos θ , θ = 0⇒ x = 1 (4.57)
dx = d cos θ , θ = π ⇒ x = −1 (4.58)

then , the total cross section becomes as :

σ = −

√
1− 4m2

t
s

16s(2π)

∫ 1

−1
dx
∑̄
|Mtot|2 (4.59)

Now, we will calculate the total cross section for this reaction. we work in the center of mass frame
and neglect the mass of quarks. In the CM frame, we have:

p1 =

√
s

2


1

0

0

1

 , p2 =

√
s

2


1

0

0

−1

 , p3 =

√
s

2


1

ρ sin θ

0

ρ cos θ

 , p4 =

√
s

2


1

−ρ sin θ

0

−ρ cos θ

 (4.60)

where θ is the angle between the incoming and the outgoing particles and

ρ =

√
1− 4m2

t

s
(4.61)

we have

t = −s
4

(1 + ρ2 − 2ρ cos θ) , u = −s
4

(1 + ρ2 + 2ρ cos θ) (4.62)

We substitute this relation in the total amplitude and then we integrate over x. After simplification,
we obtain :

σEW = −
e4Q2

qQ
2
t

48πs2 cos4 θw sin4 θw(m2
z − s)2(m′2z − s)2

√
1− 4m2

t

s

[
(aq

2

L + aq
2

R )(m′2z − s)2s2(6atLa
t
Rm

2
t

+ at
2

L (−m2
t + s) + at

2

R (−m2
t + s)) + (a′q

2

L + a′q
2

R

)
(m2

z − s)2s2(6a′tLa
′t
Rm

2
t + a′t

2

L (−m2
t + s)+

a′t
2

R (−m2
t + s)) + 2(aqLa

′q
L + aqRa

′q
R)(m2

z − s)(m′2z − s)s2(atL(3a′tRm
2
t + a′tL(−m2

t + s)) + atR(3a′tLm
2
t

+ a′tR(−m2
t + s)))− 2(aqL + aqR)(atL + atR) cos2 θw(mz2 − s)(m′2z − s)2s(2m2

t + s) sin2 θw+

2(a′qL + a′qR)(a′tL + a′tR) cos2 θw(m2
z − s)2s(2m2

t + s)(−m′2z + s) sin2 θw+

8 cos4 θwm
2
t (m

2
z − s)2(m′2z − s)2 sin4 θw + 4 cos4 θw(m2

z − s)2(m′2z − s)2s sin4 θw

]
(4.63)

QCD contribution

The QCD contribution to the sub-process qq → tt̄ is given by the Feynman diagram mediated by
the gluon, see figure (4.4).

q(p1) + q(p2)→ t(p3) + t̄(p4)
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�
g

q̄j(p2)

qi(p1)

t̄k(p4)

tl(p3)

Figure 4.4: QCD sub-process

Calculation of the amplitude of qq̄ → tt̄:

For this diagram, the amplitude and it’s complex conjugate are given by,

M4 =
ig2
s

(p1 + p2)2
(T a)ji(T

a)lkv̄j(p2)γµui(p1)ūl(p3)γµvk(p4). (4.64)

M̄4 = − ig2
s

(p1 + p2)2
(T a′)i′j′(T

a′)k′l′ ūi′(p1)γµ′vj′(p2)v̄k′(p4)γµ′ul′(p3). (4.65)

The amplitude squared summed over spin and color is,∑̄
|M4|2 =

1

4N2

∑
spin,color

|M4|2

=
g4
s

4N2(p1 + p2)4

∑
spin,color

(T a)ji(T
a)lk(T

a′)i′j′(T
a′)k′l′ [v̄j(p2)γµui(p1)ūl(p3)γµvk(p4)]

× [ūi′(p1)γµ′vj′(p2)v̄k′(p4)γµ′ul′(p3)] (4.66)

=
g4
s

4N2(p1 + p2)4

∑
color

(T a)ji(T
a)lk(T

a′)i′j′(T
a′)k′l′δj′jδkk′δii′δll′

Tr[6p1γ
µ′ 6p2γ

µ]× Tr[(6p3 +mt)γµ( 6p4 −m3)γµ′] (4.67)

where the color factor is given by,∑
col

(T a)ji(T
a)lk(T

a′)i′j′(T
a′)k′l′δj′jδkk′δii′δll′ =Tr[T

aT a′]× Tr[T aT a′]

=
δaa
4

=
N2 − 1

4
(4.68)

We contract over the Lorentz indices and we express the scalar products of the 4-momenta in terms
of the MandelStam variables, we get,∑̄

|M4|2 =
16g4

s

9s2
[u2 + t2 + 2m4

t − 2m2
t (t+ u− s)] (4.69)

Calculation of the cross section:

Now, we will calculate the cross section. From the general formula presented obove, we have

σS = −

√
1− 4m2

t
s

16s(2π)

∫ 1

−1
dx
∑̄
|M4|2 (4.70)

In the same way, we consider particles in the center of mass frame and performing the integration
over all the variables we get,

σS = − g4
s

6(2π)s2

√
1− 4m2

t

s
(s+ 2m2

t ) (4.71)
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Sub-process gg → tt:

Now, we will calculate the cross section for the gg → tt̄ reaction. The three possible Feynman
diagrams for this reaction are shown in the figure (4.3.1),

�i

jp1 + p2

g(p2)

g(p1)

t̄(p4)

t(p3)

�
i

j

t̄ (p3 − p1)

t(p3)

t̄(p4)

g(p1)

g(p2)

�i

t (p4 − p1)

j

t̄(p4)

t(p3)

g(p1)

g(p2)

Calculation of the amplitudes amplitude:

For the first diagram the amplitude and it’s conjugate are given by,

M1 =
g2
s

(p1 + p2)2
(T a)ijf

dca
[
gγρ(p2 − p1)ν + gρν(−p2)γ + gνγ(p1)ρ

]
ūi(p3)γνvj(p4)εcρ(p1)εdγ(p2)

=
g2
s

(p1 + p2)2
(T a)ijf

dcaūi(p3)
[
gγρ(6p2− 6p1) + γρ(−p2)γ + γγ(p1)ρ

]
vj(p4)εcρ(p1)εdγ(p2)

M̄1 =
g2
s

(p1 + p2)2
(T a

′
)j′i′f

d′c′a′ v̄j′(p4)
[
gγ
′ρ′( 6p2− 6p1) + γρ

′
(−p2)γ

′
+ γγ

′
(p1)ρ

′]
ui′(p3)ε∗c

′
ρ′ (p1)ε∗d

′
γ′ (p2)

(4.72)

where
2∑
λ

ελµ(q)ε∗λν (q) = −gµν (4.73)

The amplitude squared is,∑̄
|M1|2 =

1

4(N2 − 1)2

∑
spin,color

|M1|2

=
g4
s

4(N2 − 1)2(p1 + p2)4

∑
spin,color

(T a)ij(T
a′)j′i′f

dcafd
′c′a′gρρ′gγγ′δ

cc′δdd
′
ūi(p3)

[
gγρ(6p2− 6p1)

+ γρ(−p2)γ + γγ(p1)ρ
]
vj(p4)v̄j′(p4)

[
gγ
′ρ′(6p2− 6p1) + γρ

′
(−p2)γ

′
+ γγ

′
(p1)ρ

′]
ui′(p3)

(4.74)

we get ∑̄
|M1|2 =

g4
s

4(N2 − 1)2(p1 + p2)4

∑
color

(T a)ij(T
a′)j′i′f

dcafdca
′
δii′δjj′

× Tr
[
( 6p3 +mt)

[
gγρ(6p2− 6p1) + γρ(−p2)γ

+ γγ(p1)ρ
]
(6p4 −mt)

[
gγρ( 6p2− 6p1) + γρ(−p2)γ + γγ(p1)ρ

]]
(4.75)

we have:

fabcfa′bc = Nδaa′ (4.76)

the color factor, ∑
color

(T a)ij(T
a′)j′i′f

dcafdca
′
δii′δjj′ =

N(N2 − 1)

2
(4.77)
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After simplification and replacing by the MandelStam variables, we get

∑̄
|M1|2 =

3g4
s

32s2
[−2m4

t + 3(s2 − t2 − u2) + 4tu+ 2m2
t (t+ u)] (4.78)

For the second diagram the amplitude and its conjugate are given by :

M2 =
−ig2

s

(p3 − p1)2 −m2
t

(T a)ki(T
b)jkūj(p3)γν(6p3− 6p1 +mt)γ

µvi(p4)εaµ(p2)εbν(p1) (4.79)

M̄2 =
ig2
s

(p3 − p1)2 −m2
t

(T a
′
)i′k′(T

b′)k′j′ v̄i′(p4)γµ
′
( 6p3− 6p1 +mt)γ

ν′uj′(p3)ε∗a
′

µ′ (p2)ε∗b
′

ν′ (p1)

The amplitude squared summing over spin and color, and we use (1.70), we get :∑̄
|M2|2 =

1

4(N2 − 1)2

∑
spin,color

|M2|2

=
g4
s

4(N2 − 1)2((p3 − p1)2 −m2
t )

2

∑
spin,color

(T a)ki(T
b)jk(T

a′)i′k′(T
b′)k′j′δ

aa′δbb
′
gµµ′gνν′[

ūj(p3)γν(6p3− 6p1 +mt)γ
µvi(p4)

][
v̄i′(p4)γµ

′
( 6p3− 6p1 +mt)γ

ν′uj′(p3)
]

=
g4
s

4(N2 − 1)2((p3 − p1)2 −m2
t )

2

∑
spin,color

(T a)ki(T
b)jk(T

a)i′k′(T
b)k′j′

[
ūj(p3)γν(6p3− 6p1 +mt)

γµvi(p4)
][
v̄i′(p4)γµ(6p3− 6p1 +mt)γνuj′(p3)

]
(4.80)

=
g4
s

16(N2 − 1)[(p3 − p1)2 −m2
t ]

2
Tr[(6p3 +mt)γ

ν(6p3− 6p1 +mt)γ
µ(6p4 −mt)γµ(6p3− 6p1 +mt)γν ]

(4.81)

After simplifying, we get:

∑̄
|M2|2 =

g4
s

16(t−m2
t )

2
(3m4

t + tu−m2
t (2s+ 5t+ 3u)) (4.82)

for the third diagram the amplitude and its conjugate are given by :

M3 =
−ig2

s

(p4 − p1)2 −m2
t

(T a)jk(T
b)kiūj(p3)γµ( 6p4− 6p1 +mt)γ

νvi(p4)εaµ(p2)εbν(p1) (4.83)

M̄3 =
ig2
s

(p4 − p1)2 −m2
t

(T a
′
)k′j′(T

b′)i′k′ v̄i′(p4)γν
′
(6p4− 6p1 +mt)γ

µ′uj′(p3)ε∗a
′

µ′ (p2)ε∗b
′

ν′ (p1)

The amplitude squared is :

∑̄
|M3|2 =

g4
s

4(N2 − 1)2((p4 − p1)2 −m2
t )

2

∑
spin,color

(T a)jk(T
b)ki(T

a′)k′j′(T
b′)i′k′δ

aa′δbb
′
gµµ′gνν′[

ūj(p3)γµ( 6p4− 6p1 +mt)γ
νvi(p4)

][
v̄i′(p4)γν

′
(6p4− 6p1 +mt)γ

µ′uj′(p3)
]

=
g4
s

16(N2 − 1)((p4 − p1)2 −m2
t )

2

× Tr[(6p3 +mt)γ
µ(6p4− 6p1 +mt)γ

ν(6p4 −mt)γν( 6p4− 6p1 +mt)γµ] (4.84)

∑̄
|M3|2 =

g4
s

16(u−m2
t )

2
(−29m4

t + tu+m2
t (6s+ 5t− 13u)) (4.85)
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∑̄
|M1M̄2| =

1

4(N2 − 1)2

∑
spin,color

|M1M̄2|

=
ig4
s

4(N2 − 1)2(p1 + p2)2[(p3 − p1)2 −m2
t ]

∑
spin,color

(T a)ijf
dca(T a

′
)i′k′(T

b′)k′j′δ
cb′δda

′
gρν′gγµ′[

ūi(p3)
[
gγρ(6p2− 6p1) + γρ(−p2)γ + γγ(p1)ρ

]
vj(p4)

][
v̄i′(p4)γµ

′
( 6p3− 6p1 +mt)γ

ν′uj′(p3)
]

=
ig4
s

4(N2 − 1)2(p1 + p2)2[(p3 − p1)2 −m2
t ]

∑
color

(T a)ijf
dca(T d)jk′(T

c)k′i

Tr
[
( 6p3 +mt)[g

γρ(6p2− 6p1) + γρ(−p2)γ + γγ(p1)ρ](6p4 −mt)[γγ( 6p3− 6p1 +mt)γρ]
]
(4.86)

the color factor, ∑
color

(T a)ijf
dca(T d)jk′(T

c)k′i = Tr[T aT dT c]fdca

=
1

4
(dadc + ifadc)fdca

=
iN

4
(4.87)

where

dadcfdca = 0 , fadcfdca = N (4.88)

2Re
[∑̄
|M1M̄2|

]
=

3g4
s

128s(t−m2
t )

[2m4
t + 2m2

t (s− t) + (s− u)(s− t+ u)] (4.89)

∑̄
|M1M̄3| =

1

4(N − 1)2

∑
spin,color

|M1M̄3|

=
ig4
s

4(N2 − 1)2(p1 + p2)2[(p4 − p1)2 −m2
t ]

∑
spin,color

(T a)ijf
dca(T a

′
)k′j′(T

b′)i′k′δ
cb′δda

′
gρν′gγµ′[

ūi(p3)
[
gγρ(6p2− 6p1) + γρ(−p2)γ + γγ(p1)ρ

]
vj(p4)

][
v̄i′(p4)γν

′
(6p4− 6p1 +mt)γ

µ′uj′(p3)
]

(4.90)

=
ig4
s

4(N − 1)2(p1 + p2)2[(p4 − p1)2 −m2
t ]

∑
color

(T a)ijf
dca(T d)k′i(T

c)jk′

Tr
[
(6p3 +mt)

[
gγρ( 6p2− 6p1) + γρ(−p2)γ + γγ(p1)ρ

]
(6p4 −mt)γρ( 6p4− 6p1 +mt)γγ ] (4.91)

2Re
[∑̄
|M1M̄3|

]
=

3g4
s

128s(u−m2
t )

[10m4
t − (s− t)(s+ t− u)− 2m2

t (s+ 6t− u)] (4.92)

∑̄
|M2M̄3| =

1

4(N − 1)2

∑
color

|M2M̄3|

=
g4
s

4(N − 1)2[(p3 − p1)2 −m2
t ][(p4 − p1)2 −m2

t ]

∑
spin,color

(T a)ki(T
b)jk(T

a′)k′j′(T
b′)i′k′δ

aa′δbb
′

gµµ′gνν′ [v̄i′(p4)γν
′
( 6p4− 6p1 +mt)γ

µ′uj′(p4)][ūj(p3)γν(6p3− 6p1 +mt)γ
µvi(p4)] (4.93)
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=
g4
s

4(N − 1)2[(p3 − p1)2 −m2
t ][(p4 − p1)2 −m2

t ]

∑
color

(T a)ki(T
b)jk(T

a)k′j(T
b)ik′

Tr
[
( 6p4 −mt)γν(6p4− 6p1 +mt)γµ( 6p3 +mt)γ

ν(6p3− 6p1 +mt)γ
µ] (4.94)

2Re
[∑̄
|M2M̄3|

]
=

g4
s

8(u−m2
t )(t−m2

t )
[−2m4

t − s(s+ t+ u) +m2
t (6s− t+ 3u)] (4.95)

the total amplitude is given by:

∑̄
| Mtot|2 =

g4
s

128s2(−m2
t + u)2(−m2

t + t)2

[
8s2(−m2

t + t)2(−29m4
t +m2

t (6s+ 5t− 13u) + tu)

+ 8s2(−m2
t + u)2[3m4

t + tu−m2
t (2s+ 5t+ 3u)] + 12(−m2

t + t)2(−m2
t + u)2[−2m4

t + 4tu

+ 2m2
t (t+ u) + 3(s2 − t2 − u2)]+

3s(−m2
t + u)2(−m2

t + t)[2m4
t + 2m2

t (s− t) + (s− u)(s− t+ u)]

+ 3s(−m2
t + u)(−m2

t + t)2[10m4
t − (s− t)(s+ t− u)− 2m2

t (s+ 6t− u)] + 16s2(−m2
t + u)

× (−m2
t + t)[−2m4

t − s(s+ t+ u) +m2
t (6s− t+ 3u)]

]
(4.96)

4.4 Hadronic Cross Section Calculations

In this section, we will use the MADGRAPH version 2.7.3 program to perform numerical calcula-
tions on the hadronic cross section of the top-quark pair production at leading order (LO).

In the standard model, we can write the leading order partonic cross section as:

σLOtot = σLOew (α2
W ) + σLOs (α2

s) (4.97)

where αS and αW are the couplings of the electroweak and strong forces, σLOew is the partonic cross
section for the electroweak subprocesses mediated by γ and Z gauge bosons in qq̄ → tt̄ reactions,
while σLOS is the QCD subprocesses mediated by gluon boson in qq̄ → tt̄ and gḡ → tt̄ reactions.

The existence of the new Z ′ boson contributes to an additional electroweak sub-process by
exchanging Z ′, as shown in the figure (4.3). In this case, the σLOew cross section in (4.97) will be
affected and change, while σLOs is not affected and it is remains unchanged.

In order to know the change caused by the extensions of the SM that predict the existence of
a boson such Z ′. We will calculate the variation of hadronic cross section in term of Z ′ mass and
for the different center of mass energies

√
S = 14 TeV , 13 TeV, 8 TeV and 7 TeV for both the

electroweak and QCD processes.

4.4.1 Purely electroweak processes

We will calculate the hadronic cross section for the electroweak processes. We have changed the
values of MZ′ for each value of center mass energy 14 TeV, 13 TeV, 8 TeV and 7 TeV. The steps of
this calculation are shown above.

The table (4.1) summarizes the different values of the hadronic cross section for different Z ′
masses and center of mass energies,
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√
s 14 Tev 13 Tev 8 Tev 7 Tev

MZ′ Gev σ (fb) MZ′ (Gev) σ (fb) MZ′ (Gev) σ (fb) MZ′ (Gev) σ (fb)

1000 3297 1000 2769 1000 806 1000 555

1200 3169 1200 2658 1200 767 1200 529.3

1400 3103 1400 2603 1400 751 1400 518

1600 3066 1600 2571 1600 744.2 1600 512.9

1800 3052 1800 2556 1800 744.1 1800 512.9

2200 3031 2200 2543 2200 741.2 2200 512.6

3000 3023 3000 2534 3000 741.9 3000 512.6

3400 3027 3400 2538 3400 742.1 3400 515.5

4000 3022 4000 2541 4000 743.7 4000 516.4

Table 4.1: Variation of LO cross section in terms of the mass

The figure (4.5) represents the variation of the hadronic cross section in term of Z ′ mass for
different values of the energy

√
s. We observe that the values of cross section increase when the

center of mass energy increases because the production of final state particles (top quark pair )
increases at higher energy values. The production of top quark pair is a result to the decay of
Z ′. For this reason, We have seen that the cross section is inversely proportional to the Z ′ mass.
We observe that when the mass of Z ′ increases, the cross section decreases, but it becomes almost
constant for large values of MZ . This means that the cross section becomes independent of the
mass of Z ′ for large values.

for
√
s= 14 Tev for

√
s= 13 Tev

for
√
s= 8 Tev for

√
s= 7 Tev

Figure 4.5: Variation of the hadronic cross section σEW in term of MZ′
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4.4.2 Purely QCD processes

We calculate the hadronic cross section for the process mediated by the the strong interaction
(gluon) σs. We follow the same previous steps in MadGraph. The result are shown in the table
(4.2). We observe that the cross section is the same for each change of Z ′ mass. Since Z ′ mediates
only the electroweak interaction. So the existence of Z ′ doesn’t affect the cross section for the
QCD process. The table (4.2) represents the variation of hadronic cross section for each value of
the center of mass energy

√
s. The value of cross section is large compared to the electroweak

process because The strength of the strong interaction is larger αS >> αW .

√
s (Tev) 14 Tev 13 Tev 8 Tev 7 Tev

σ (fb) 593100 502400 154200 108800

Table 4.2: ..

4.4.3 Electroweak and QCD processes

We calculate the total cross section for both electroweak and QCD processes. The result are shown
in the table (4.3). The variation of the cross section in term of Z ′ mass are shown in the figure
(4.6). We observe that the cross section is not affected too much by the change of MZ′ , because
the strong interaction coupling to the produced quarks is much stronger than the weak interaction
coupling, and therefore the strong interaction is the dominant process in this case.

√
s 14 Tev 13 Tev 8 Tev 7 Tev

MZ′ Gev σ (fb) MZ′ (Gev) σ (fb) MZ′ (Gev) σ (fb) MZ′ (Gev) σ (fb)

1000 594700 1000 502500 1000 154900 1000 109100

1200 595100 1200 502200 1200 154900 1200 109000

1400 594600 1400 502100 1400 154800 1400 109100

1600 594300 1600 502500 1600 154700 1600 109000

1800 594800 1800 502200 1800 154800 1800 109100

2200 594500 2200 502300 2200 154800 2200 109000

3000 594200 3000 502300 3000 154800 3000 109100

3400 594200 3400 502600 3400 154800 3400 109100

4000 594000 4000 502400 4000 154800 4000 109000

Table 4.3: Variation of the cross section in term of m′Z
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Figure 4.6: Variation of the cross section in term of m′Z

4.4.4 Differential distributions

In this section, We will calculate the differential cross section for top pair production that represents
the variation of cross section in term of the kinimatic variable PT , η, MI ... etc.

For this calculation, We use MADGRAPH v2.7.3, MADANALYSIS and Root to produce the
differential distribution.

The figure (4.7) represents the variation of the distribution cross section in term of top quark
transverse momentum PT (t) with the center of mass energy

√
s = 7 TeV and for different value of

Z ′ masses MZ′ = 1000, 1400 and 2200 GeV.
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Figure 4.7: Transverse momentum distribution of the top quark production

The Z ′ gauge boson is expected to be produced at rest when two protons collide, and then
decay into a top quark pair. For this reason, both top quarks produced in the final state must
have higher transverse momentum coming from Z ′. In Figure (4.7), we observe that when the
transverse momentum of top quark increases, the cross section decreases and for each mass of Z ′,
PT (t) achieves a maximum value then decrease again. For example, we observe that the cross
section achieves the maximum value of Z ′ mass at PT (t) = 500Gev for MZ′ = 1000GeV and also
reach its maximum at PT (t) = 700Gev for MZ′ = 1400GeV . So for each mass of Z ′, the transverse
momentum of top quark PT (t) achieves the maximum value near the value PT (t) =

MZ′
2 . Therefore,

the transverse momentum PT (t) is considered as a measure of MZ′ .

The Rapidity and Pseudo-Rapidity distributions of the top-quark pair are shown in figure (4.8)
and (4.9). We observe that the distribution cross section achieves its maximum value around η = 0.
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Figure 4.8: Rapidity distributions of top-quark pair production
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Figure 4.9: pseudo-Rapidity distributions of top-quark pair production

Figure 4.10: Invariant mass distributions of top-quark pair production

4.5 The Z ′ Decay Width

In this section, we will calculate the Z ′ decay width for quarks. Lets consider the process,

Z ′ → qq̄ (4.98)

The Z ′ gauge boson can decays into SM quark as shown in the figure (4.11)

�Z ′
q̄

q

Figure 4.11: Z ′ decay to quarks

For this process, the amplitude and it’s conjugate is given by:

MZ′ = i(2π)4 gw
4 cos θW

ū(p1)γµ(atZ′ + btZ′γ5)v(p2)εµ(q)

M̄Z′ = −i(2π)4 gw
4 cos θW

v̄(p2)(atZ′ − btZ′γ5)γαu(p1)ε∗α(q) (4.99)
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The amplitude squared,∑̄
|MZ′ |2 =

(2π)8g2
w

3× 16 cos2 θW

∑
spin,polar

[
ū(p1)γµ(atZ′ + btZ′γ5)v(p2)v̄(p2)(atZ′ − btZ′γ5)γαu(p1)

]
εµ(q)ε∗α(q)

(4.100)

We use the relations,∑
spin

ui(p)ūj(p) =δij( 6p+m) ,
∑
spin

vi(p)v̄j(p) = δij(6p−m)

2∑
λ

ελµ(q)ε∗λν (q) = −gµν +
qµqν
M2
Z′

(4.101)

The amplitude squared becames :∑̄
|MZ′ |2 =

(2π)8g2
w

3× 16 cos2 θW
Tr
[
(6p1 +mt)γ

µ(atZ′ + btZ′γ5)(6p2 −mt)(a
t
Z′ − btZ′γ5)γα

][
− gµα +

qµqα
M2
Z′

]
=

(2π)8g2
w

3× 16 cos2 θW

[
(at2Z′ + b2tZ′)Tr[6p1γ

µ 6p2γ
α]− 2atZ′b

t
Z′Tr[6p1γ

µ 6p2γ5γ
α]

−m2
t (a

t2
Z′ − b2tZ′)Tr[γµγα]

]
×
[
− gµα +

qµqα
M2
Z′

]
(4.102)

We have

Tr[6p1γ
µ 6p2γ5γ

α]
[
− gµα +

qµqα
M2
Z′

]
= 0

Tr[6p1γ
α 6p2γα] = −8p1.p2, T r[ 6p1 6q 6p2 6q] = 8m2

t (m
2
t + p1.p2), T r[6q 6q] = 8(m2

t + p1.p2)

(4.103)

After simplification, we obtain:∑̄
|MZ′ |2 =

8(2m2
q(a

t2
Z′M

2
Z′ + b2tZ′(m

2
q −M2

Z′)) + (at2Z′M
2
Z′ + b2tZ′(2m

2
q +M2

Z′))p1.p2)

M2
Z′

(4.104)

with

p1.p2 = (MZ′ − 2m2
q)/2 (4.105)

we get : ∑̄
|MZ′ |2 = 4(b2tZ′(−4m2

q +M2
Z′) + at2Z′(2m

2
q +M2

Z′)) (4.106)

We have

ΓZ′ =
1

2MZ′

∫
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ4(q − p1 − p2)

∑̄
|M |2 (4.107)

We use, ∫
d3p1

2E1
=

∫
d4p1δ

+(p2
1 −m2

q) (4.108)

ΓZ′ =
1

2(2π)2MZ′

∫
d3p2

2E2
d4p1δ

+(p2
1 −m2

q)δ
4(q − p1 − p2)

∑̄
|M |2 (4.109)
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with p1 = q − p2. We get,

ΓZ′ =
1

2(2π)2MZ′

∫
d3p2

2E2
δ+((q − p2)2 −m2

q)
∑̄
|M |2 (4.110)

In the Z ′ frame, we have:

q =

(
MZ′

0

)
, p1 =

(
E1
−→p1

)
, p2 =

(
E2
−→p2

)
with

q2 = M2
Z′ , p2

1 = p2
2 = m2

q , p1 + p2 = 0 (4.111)

and

δ+[(q − p2)2 −m2
t ] = δ+(M2

Z′ − 2MZ′E2) (4.112)

where

E2 =
√
|−→p2|2 +m2

q (4.113)

we obtain :

δ+[(q − p2)2 −m2
t ] = δ+(M2

Z′ − 2MZ′

√
|−→p2|2 +m2

q) (4.114)

for simplifying , we use :

δ[g(x)] =
∑
i

δ(x− xi)
|g′(xi)|

(4.115)

the relation (4.114) becomes :

δ+
[
M2
Z′ − 2MZ′

√
|−→p2|2 +m2

q

]
=

δ+
(
|−→p2|2 − MZ′

2

√
1− 4m2

q

M2
Z′

)
2MZ′

√
1− 4m2

q

M2
Z′

(4.116)

we use the spherical coordinate :

d3−→p2 = |−→p2|2d−→p2 sin θdθdφ (4.117)

ΓZ′ becomes :

ΓZ′ =
1

4(2π)2MZ′

∫
0

|−→p2|2d|−→p2|√
|−→p2|2 +m2

q

∫ π

0
sin θdθ

δ+
(
|−→p2|2 − MZ′

2

√
1− 4m2

q

M2
Z′

)
2MZ′

√
1− 4m2

q

M2
Z′

∫ 2π

0
dφ
∑̄
|M |2 (4.118)

integrate over θ and φ , we get :

ΓZ′ =
1

8πM2
Z′

∫
0

|−→p2|2d|−→p2|√
|−→p2|2 +m2

q

δ+
(
|−→p2|2 − MZ′

2

√
1− 4m2

q

M2
Z′

)
√

1− 4m2
q

M2
Z′

∑̄
|M |2 (4.119)

with

|−→p2|2 =
M2
Z′

4
(1−

4m2
q

M2
Z′

) (4.120)
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The partial decay rate,

ΓZ′ =

√
1− 4m2

q

M2
Z′

16πMZ′

∑̄
|M |2 (4.121)

we substitute the amplitude squared, we find :

ΓZ′ =

√
1− 4m2

q

M2
Z′

4πMZ′

[
at2Z′(2m

2
q +M2

Z′) + b2tZ′(−4m2
q +M2

Z′)
]

(4.122)

gZ′ = − 1√
3
MZ′ (4.123)

Finally, we get

ΓZ′ =
g2
Z′MZ′

12π

√
1−

4m2
q

M2
Z′

[
at2Z′(1 +

2m2
q

M2
Z′

) + b2tZ′(1−
2m2

q

M2
Z′

)
]

(4.124)





Chapter 5

NLO QCD Correction to the top pair
production at the LHC

In this chapter, we present the numerical calculation of the hadronic cross section for top pair
production at leading order (LO) and next to leading order (NLO) in QCD corrections at LHC in
the presence of the Z ′ gauge boson.

5.1 Factorization

5.1.1 Factorization Theorem

The factorization theorem helps to express the inclusive cross section in a hadron collisions as
two different parts, short distance (or hard) part and long (or soft) distance part. The first part
is represented by the partonic cross section that describes the interaction between partons with-
out interest of hadrons structure, it can be calculated in perturbative QCD. The second part of
hadron collisions depends on hadron structure, called ”parton distribution functions”. It can not
be calculated perturbatively such as the partonic cross section, but it can be determined from
experiment[4, 43, 44].

According to the factorization theorem, the inclusive cross section for the collision of two Hadron
h1 and h2 can be expressed as:

σh1h2→X =
∑

a,b∈{q,g}

∫
dxa

∫
dxbf

h1
a (xa, µ

2
F )fhbb (xb, µ

2
F )

∫
dσ̂ab→Y (

m2
t

s
, µR, µF , αS(µR)) (5.1)

where µF and µR are the factorization and renormalization scales. a and b are the initial state
partons, quark or gluon where X are the partons produced in the final state. For the top-quark pair
production, Y = {tt̄}, see figure (5.1). We observe that there is a similarity between this expression
and the expression in the partons model. However, the parton distribution functions fha (x, µ2

F ) and
the cross section dσ̂ab→Y depend on the factorization and renormalization scale factors .

The partonic cross section in relation (5.1) is renormalizable after subtracting the collinear
divergences. It can be written in terms of renormalization scale µR, which is introduced to conserve
the mass dimension of the coupling constant αS(µR).

Figure 5.1: Top Quark Pair Production process in factorization picture
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The theorem introduces the factorization scale µF to cure the collinear divergence absorbed by
the PDF in the initial state. In this scale, the partonic cross section and the parton distribution
function are separated, and they will become dependent on µF . The partons emmitted with
P 2 < µ2

F are considred as a part of the partonic distribution function while the partons emmitted
with µ2

F < P 2 are considred as a part of the partonic cross section, which are produced from the
Hard scattering process [38, 43, 45].

The factorization and renormalization scales have no physical meaning, they are arbitrary and
we are free to choose their values. However, the total cross section is a physical observable, so that
it cannot depend on non physical scales.

dσ(s,mt)

dµF
=
dσ(s,mt)

dµR
= 0 (5.2)

the value of µF and µR can be chosen independently, but usually we keep them in their formula or
choosing a common value µ = µF = µR.

In order to determine the dependence of the PDFs on the factorization scale µF , we have to
introduce the renormalization group equation, which is given by:

µ2
F

dfa(x, µ
2
F )

dµ2
F

=
∑

b∈{q,g}

∫ 1

x

dz

z

αS
2π
P̂ba(z)fb(

x

z
, µ2

F ) (5.3)

This is the evolution equation of the pdf with the factorization scale µF , which is used to evolve
the probability of the distribution of quarks in the proton, it is also called the “DGLAP” equation.
The P̂ba(z) are the regularized Altarelli-Parisi splitting functions, which describe the probability of
a parton b transformed into a parton a with a momentum fraction z via emission a gluon (a and b
are gluon or quark) as shown in the figure (5.2).

Figure 5.2: Pictorial representation of the DGLAP evolution of PDFs [44]

5.1.2 Parton Distribution Functions

The parton distribution functions (PDFs) are parameterizations of hadrons in term of its compo-
nents, quarks and gluons. It depends on the structure of hadrons and the factorization scale µF .
These functions describe the probability of finding a parton i with a momentum fraction xi = pi

pA
in an incoming hadron A, where p is the longitudinal momentum of the particle (PT = 0).

The PDFs are universal, we cannot calculate them perturbatively as the partonic cross section,
but it can be determined from experiments, such as: deep inelastic scattering e(k) + N(p) →
e(k′) +X(DIS), Drell-Yan (DY) and jet production at current energy ranges [18, 38, 43]. The PDF
also called ”structure function ” which is the sum of the PDF of each proton:

F2 =
∑

a=q,q̄,g

fa/p (5.4)

we can write the structure function at NLO as:

F2(x,Q2) = x
∑
q

e2
q

∫ 1

x

dε

ε
fq(ε, µ

2
F )

[
δ(1− x

ε
) +

αS
2π
Pqq(

x

ε
)ln

Q2

κ2
+ C

(x
ε

)]
(5.5)
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where fq(ε, µ2
F ) is the renormalized PDF, given by:

fq(x, µ
2
F ) = fq(x) +

αS
2π

∫ 1

x

dε

ε
fq(ε)

[
P

(
x

ε

)
ln
Q2

µ2
F

]
(5.6)

we can calculate the evolution of the PDFs perturbatively from DGLAP equations[29], we consider
all possible quark and gluon splittings:

t
∂

∂t

(
fqi(x, t)

fg(x, t)

)
=
αS
2π

∑
j

∫ 1

x

dε

ε

(
pqiqj (

x
ε , αS(t)) pqig(

x
ε , αS(t))

pgqj (
x
ε , αS(t)) pgg(

x
ε , αS(t))

)(
fqi(x, t)

fg(x, t)

)
(5.7)

the Pqiqj functions have a perturbative expansion in αS

Pqiqj(z,αS) = δijP
0
qq(z) +

αS
2π
P 1
qiqj (z) + .. (5.8)

The splitting functions P̂ba(z) are given by:

P̂gg(z) = 2CA

[
z

(1− z)+
+

1− z
z

+ z(1− z)
]

+ δ(1− z)
(

11

6
CA −

2

3
nfTR

)
P̂qq(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
(5.9)

P̂gq(z) = TR

[
z2 + (1− z)2

]
P̂qg(z) = CF

[
1 + (1− z)2

z

]

5.2 Next to leading order calculation

We have seen that it is necessery to go beyond the leading order in perturbative theory and include
the higher orders cross section in order to reduce the non physical scales (the factorization and
renormalization scales) dependence on the partonic cross section and thus to make the calculation
more precise [4, 38, 45, 46].

We can write the perturbation expansion of leading order cross section as:

σ̂ = αaSσ0 + αa+1
S σ1 + αa+2

S σ2 + .... (5.10)

where the coupling and the cross section depend on the non physical scales:

αS = αS(µR) , σi = σi(µF , µR) (5.11)

The σ0 represents the LO cross section and σ1 is the NLO cross section. If we include the first-
order correction in the perturbative expansion. The cross section σ1 will have less dependence on
the factorization scale. However, these scale dependencies will entirely eliminated if we include all
high-orders.

The NLO cross section is the first order that contribute to an additional physical terms present
in the QCD correction to the quark distribution functions in which, the PDF is compensated by
loop corrections. The total QCD cross section in Next to Leading Order can be written as:

σNLO =

∫
m
dσB +

∫
m+1

dσR +

∫
m
dσV (5.12)

where dσB is the LO (or Born ) cross section, dσR and dσV are the real and virtual contributions
to the cross section, respectively. They have the same structure as the born contribution. The
integration is over the final state phase space,
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5.2.1 Virtual Contribution

The virtual contributions (or loop ) diagram have two external line in initial and final state as in
born contributions (2 → 2 process). but it is distinguished from other diagrams by an additional
internal line, which forms a single closed loop. We can also called ” 1 - loop diagram ”, see figure(5.3)
[4, 43] .
In this contributions, the amplitude squared is obtained by interfering Born diagrams with real
diagrams.

dσV = dφn
∑

2Re(MV
1M∗0) (5.13)

Figure 5.3: NLO virtual corrections to the top pair production at order O(αSα
2
W )

.

But the calculation of the amplitude squared in eq (5.13) will lead to ultra-violet (UV) and
infra-red (IR) divergences. The IR divergences will be canceled by the infrared singularities of
the real contributions. The UV divergences can be eliminated by adding counterterms diagram
(renormalization). This contribution can be calculated automatically by MadGraph.

5.2.2 Real Contribution

The real contributions diagram is represented by an additional external line (quark or gluon) in
the initial or final state. It has different final state compared to the born and virtual diagrams
as shown in the figure (5.4). The amplitude squared is obtained by interfering the real emission
diagrams.

dσR = dφn+1

∑
|MR

1 |2 (5.14)

Figure 5.4: NLO real corrections to the top pair production at order O(αSα
2
W )

We have seen that the NLO cross section contains more physical terms represented in the real
and virtual contribution, which corresponds to adding gluons to the LO contribution cross section.
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However, these contributions are infinite terms, they involve a collinear and soft divergences.
According to KLN theorem, the divergences coming from the final state radiation can be cancelled,
when we combine all possible real and virtual processes. But the initial state divergences do not
cancel out. Since these divergences are absorbed in the PDFs by the virtue of the factorization
theorem, and they can only be cancelled through the QCD corrections to the quark distribution
functions “the collinear counterterms ” that are manifested in a new process with a new coupling
to compensate these divergences. In order to cancel these divergences and obtain a finite cross
section, we use the ”Substraction Method ”.

5.2.3 Substraction Method

The substraction method is a method used to cancel the divergences of the virtual and real con-
tribution. The idea of this method is to introduce a fake cross section substracted from the real
contribution and added back to the virtual contribution. In which, this term is constructed by
summing over different contributions that describes soft and collinear divergences:

σNLO =

∫
m
dσB +

∫
m+1

[dσR − dσsubR ] +

∫
m+1

dσsubV +

∫
m
dσV (5.15)

where ∫
m+1

dσsubV + dσsubR = 0 (5.16)

the additional cross section dσsub have the same pointwise singular behaviour (in D dimensions ) as
dσR. For the calculation of QCD correction, the MADGRAPH program use Madloop to calculate
loop diagram and MadFKS to employ the substraction method.

5.2.4 NLO cross section

In this section, we will calculate the hadronic cross section of the top pair production σ(pp → tt̄)

at LO and NLO orders. We use the same program as in the previous chapter.
For the top quark pair production, the the general perturbative expansion of partonic cross

section in NLO is given by:

σ = σLOS (α2
S) + σLOW (α2

W ) + σ(α2
SαW ) + σ(α2

WαS) + σ(α3
S) + σ(α3

W ) (5.17)

where the first two term correspond to the LO partonic cross sections, the σ(α2
WαS) and σ(α3

S)

terms correspond to the QCD correction by an additional QCD power αS while the σ(α3
W ) and

σ(α2
SαW ) terms correspond to the electroweak correction.
As we see in the previous chapter, the existence of Z ′ doesn’t affect the cross section for the

QCD process. In this case, the cross section at order σ(α3
S) does not affected, while the cross section

at order σ(α2
WαS) will be affected. so, we will calculate the LO and the NLO QCD correction to

the electroweak and QCD sub processes.

Electroweak (QED) processes

We will calculate the hadronic cross section for the electroweak processes. We consider a fixed Z ′

mass MZ′ = 1000 GeV and the center of mass energy
√
s = 13Tev. The factorization and the

renormalization scales are fixed to be equal to the mass µ = µF = µR. We change the value of the
scale factor each time for both cases. The results are shown in the table (5.1),
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µ (Gev) 0.1 0.2 0.3 0.6 1 3 6 8 10

σLO(fb) 747 738 726 713 699 671 653 647 638

σNLO (fb) 9004 7114 6851 5770 5605 4535 4371 4064 3917

Table 5.1: Variation of the cross section at LO and NLO in term of scale factor µ.

Now we fix the value of the scale factor µ = 1GeV and we we change the value of MZ′ for√
s = 13Tev. The results are shown in the table (5.2),

MZ′ (Gev) 500 700 900 1000 2000 2500 3000

σLO(fb) 1761 1166 806 642 413 405 402

σNLO (fb) 7317 6469 5876 5259 4175 6322 6812

Table 5.2: Variation of cross section at LO and NLO in term of MZ′ .

We observe a significant difference in the values of the cross section between leading order and
next to leading order, in which the values of the cross section at NLO are larger than LO. This
difference is due to the NLO QCD correction that have more terms, see figure (5.5),
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Figure 5.5: Variation of LO and NLO cross section for the EW processes in term of µ and MZ′

The figure (5.5) shows the variation of LO and NLO cross section in term of the scale factor
µ ( left side) and the Z ′ mass MZ′ (right). We observe that the NLO cross section decrease more
than LO (LO is mostly constant) when the value of scale factor increases because the NLO QCD
correction of the electroweak sub-processes are affected by the existence of Z ′ the new gauge boson
and thus, the dependence of the NLO cross section on the non physical scale factor has reduced
compared to LO. Since the NLO contains more physical term comparably to LO.

QCD processes

We calculate the hadronic cross section for the QCD process. The same as the previous work, we
change the value of the scale factor for a fixed mass of MZ′ = 1000 GeV at

√
s = 13 energy, then we

change the mass of Z ′ with the same value of the energy and scale factor µ = 1GeV . The results
are shown in the tables (5.3),
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µ (Gev) σLO(fb) σNLO (fb)

0.1 1809000 845000

0.2 1272000 927800

0.3 1050000 932500

0.6 781700 881600

1 633800 838400

3 419400 686200

6 324800 584200

8 300300 557300

10 276800 530100

MZ′ (Gev) σLO(fb) σNLO (fb)

500 641600 836100

700 631700 841300

900 636100 835000

1000 641200 837900

2000 638800 833700

2500 633400 829700

3000 639700 838400

Table 5.3: QCD contribution
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Figure 5.6: Variation of LO and NLO cross section for the QCD processes in term of µ and MZ′

We observe that the variation of LO and NLO cross section in term of the Z ′ mass are mostly
constant despite that the value of the NLO cross section is larger than LO order. Because the
existence of Z ′ doesn’t affect the cross section in both LO and NLO QCD correction.

5.3 Parton shower

Parton shower is an approximation of QCD, which describes the partons branching in the initial and
final state in the hard scattering. The Parton shower approximation include all order contribution
in the collinear limit[44, 47]. We use pythia8 to generate the Parton shower (all possibilities of
splitting). We need the Parton shower if the calculation of cross section does not give a good
description, although the Parton shower is only an approximation, it provides more events in the
final and initial state. The figure (5.7) represents the production of top quark at high energy
process.
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Figure 5.7: event generator in proton - proton collisions

The general steps are:
• Hard process the collision of proton-proton at high energy to produce the top quark pair in

final state.

• Radiation the emission of gluon or quark from the initial and final state parton and then
produce particles with less energy .

• Hadronization the confinement of the parton emitted into hadrons.

• Underlying event the decays of hadron in final state .

5.3.1 Differential distributions

In this section, we will calculate the differential cross section for top pair production at LO , NLO
, LO+PS and NLO+PS with a fixed mass MZ′ = 2000Gev and energy

√
S = 13Tev ,µ = 1.
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Figure 5.8: differential cross sections of top-quark pairs at FLO , FNLO , LO + PS and
NLO + PS
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Conclusion

In this master thesis, I studied the pair production of top quark in BSM models including an extra
neutral gauge boson (Z ′) at fLO (fixed leading order), fNLO (fixed next-to-leading order), LO+PS
(LO matched to parton shower) and NLO+PS (NLO matched to parton shower). I used MadGraph
to compute numerically the hadronic cross section in all the approximation and MadAnalysis to
produce the distributions and plot the Hisrtograms.

In the theoretical part, I studied many beyond standard model theories which predict the ex-
istence of Z ′ gauge boson, as the sequential standard model, GUT models, left right-symmetric
models . . . etc. I presented also a phenomenological model (effective model) which allows us to study
the physics of Z ′ gauge boson independently of the BSM model. I discussed how one can rearch for
this particle at the LHC, how it can be produced and how it decays. I also studied a minimal UB−L
model which predicts the existence of a Z’ gauge boson, in addition to new right handed neutrinos
and a new scalar field ”χ ” to break the new symmetry in order to make a massive gauge boson (Z’).

In the paractical part, I studied the effect of the Z ′ on the pair production of the top quarks at
the LHC. I presented the analytical and numerical calculation of the LO cross section and its NLO
QCD correction for the production of top quark pairs beyond the standard model in the existence
of Z’. And then I discussed the variation of the hadronic cross section in terms of the mass of Z ′ and
the renormalisation and factorisation scales. I produced many differential distributions in several
observables in four approximations: fLO, fNLO, LO+PS and NLO+PS.

I showed how the total cross section and the top-pair invariant mass distribution can be strongly
affected by the NLO QCD corrections. I showed that the NLO approximation does not fully cure
the dependence of the cross section on the non-physical scale µF and µR, but it reduces them and
still better than LO approximation.

I presented the LO and NLO approximation merging with the Parton shower effects. I showed
that the differential distributions of the top quark at NLO+PS approximation are larger in com-
paraison with the other approximations. The parton shower approximation gives a good description
of what happen in detectors and its results are more precise at low energy.
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Abstract:
The theories beyond standard model (BSM) predict the existence of many hypothetical particles
that have not yet been detected in the experiment. Since the actual existence of such particles can
cure the shortcomings of the standard model. In this work, we focus on the physics of one of the
hypothetical gauge boson which is Z ′ Boson. The Z ′ is a neutral gauge boson related to the new
U ′(1) gauge symmetry and there are many different types of this boson according to BSM models.
The objective of this work is to study the effect of the Z ′ on the top quark pair production at the
LHC. In order to know the most precise approximations, we calculate the hadronic cross section in
the existence of the new Z ′ gauge boson at fLO , fNLO , LO+PS and NLO+PS. We use hip and
MadGraph for the numerical calculations and MadAnalysis to produce the differential distributions.

Keywords: BSM physics, Z ′ Gauge Boson, Top Quark, Parton Shower, Z ′.

Résumé :
Les théories au-delà du modèle standard (BSM) prédisent l’existence de nombreuses particules hy-
pothétiques qui n’ont pas encore été détecté dans l’expérience. Étant donné que l’existence réelle
de telles particules peut remédier aux lacunes du modèle standard. Dans ce travail, nous nous
concentrons sur la physique d’un des bosons de jauge hypothétiques qui est le Z ′ Boson. Le Z ′
est un boson de jauge neutre lié à la nouvelle symétrie de jauge U ′(1), il existe de nombreux types
différents de ce boson selon les modèles BSM.
L’objectif de ce travail est d’étudier l’effet du Z ′ sur la production des paires de quarks top au LHC.
Afin de connâıtre les approximations les plus précises, on calcule la section efficace hadronique de
la production d’une paire de quarks top dans les approximations fLO, fNLO, LO+PS et NLO+PS.
Nous avons utilisé hip et MadGraph pour les calculs numériques de la section efficace et MadAnalysis
pour produire les distributions différentielles.

Mots clés : physique BSM, boson de jauge Z ′, quark top, parton shower, LHC
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