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 ملخص

يتم تطوير . تصلالمنفصل والمين لكشلفي ادارسي  -سستوكنوع مسائل من  لحلمكرسة هذه الأطروحة 

لى بحيث الأو الاستقرار تقنيةمع نتهية المم احجالأطريقة  دمجوذلك ب تحليلها نظريًانتهية والمم احجلأل مخططات جديدة

مثل. تحقيق الاستقرار والتقارب الأكن يم بالتالي،. وضغطقفزات الوالثانية على  ايالخلاة في ركزتمممبنية على القيم ال

دا  لى الأتشهد عالنتائج . هذه ية مثلىختبارئل ااسمعد حل بعض بالمحصل عليها تقدم النتائج العددية بالإضافة إلى ذلك 

 الحسابي الملحوظ للمخططات المقترحة.

 الطرق المستقرة. دارسي،معادلات  ،سستوكمعادلات  ،الرديفالتقطيع  نتهية،المم احجلأا الكلمات المفتاحية:

 

 

 

Abstract 

  This thesis is devoted to finite volume solution of Stokes-Darcy type problems both in 

decoupled and coupled forms. Combining finite volume methodology and a stabilization 

procedure based respectively on collocation and pressure jumps control, novel finite volume 

schemes are developed and theoretically analyzed. Hence, stability and optimal convergence 

are achieved. Numerical results are presented for some standard test problems. These attest 

the remarkable computational performance of proposed schemes. 

Keywords: Finite volumes, Collocated discretization, Stokes equations, Darcy equations, 

Stabilized methods. 

 

 

Résumé 
   

 Cette thèse est consacrée à la résolution par volumes finis des problèmes de type 

Stokes-Darcy sous formes découplée et couplée. En combinant la méthodologie des volumes 

finis et une procédure de stabilisation basée respectivement sur la collocation dans les cellules 

et le contrôle des sauts de pression, des schémas nouveaux de volumes finis sont développés 

et analysés théoriquement. Ainsi, la stabilité et la convergence optimale sont établies. Les 

résultats numériques sont présentés pour certains problèmes tests standards. Ceux-ci 

témoignent de la performance calculatoire remarquable des schémas proposés. 

Mots-clés : Volumes finis, Discrétisations groupées, Equations de Stokes, Equations de 

Darcy, Méthodes stabilisées. 
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Introduction

The finite volume method (FVM) is a discretization method which is well suited for the

numerical simulation of partial differential equations for conservation and balance laws.

It was initially developed as an efficient middle ground between the finite difference and

finite element methods. Recently, it has been extensively used in several engineering

fields such as fluid mechanics, heat and mass transfer, semi-conductor technologies or

petroleum engineering [1, 2, 3]. Some of the important features of FVM are that it may

be used on arbitrary geometries, using structured or unstructured meshes, as well as

it leads to robust numerical schemes. An additional feature is the local conservativity

of the numerical fluxes. This last feature makes FVM quite attractive when modelling

problems for which the flux is of importance, such as in the areas previously mentioned.

Starting from the partial differential equation itself, a balance equation is gen-

erated by a consistent approximation of the fluxes defined. Different FVM schemes

were attemptedly developed by the use of finite element ideas in order to achieve a

more rigourous FVM methodology. Among these new approaches, the collocated FVM

schemes seem to attract CFD researchers attention for several reasons (see [4, 5, 6, 7]).

The colocated schemes are used in commercial codes (Fluent, CFX,...) or industrial

codes like those in nuclear safety [8]. Without covering all main reasons why this

scheme is so popular, we can cite:

- colocated arrangement of the unknowns

- very cheap assembling step (no numerical integration to perform)

- easy coupling with other systems of equations.

The purpose of the present work is to model numerically two different problems

for Stokes and Darcy equations occurring in fluid infiltration phenomena, like the ones

encountered in water flowing across soil, oil filtering through sand or rocks, groundwater

flows and biological flows in medical research (sugar transportation to a tumor, drug

delivery to arteries and passage of oxygen in the brain). Hence, the considered simplified

problem is solved for a Stokes flow in one part of the domain and a Darcy flow in the

other part. It then becomes crucial to work with a unified FVM that may successfully



solve both problems separately. Then, the same FVM is adapted to solve the so-

called coupled Stokes-Darcy problem with the same optimal convergence rates in both

regimes. Similar studies were undertaken in [9, 10] for finite element methods. However,

robust and efficient numerical algorithms for this type of flows are challenging because

viscous and porous features require different numerical strategies. In this regard, we

can also cite for the finite element methods: [11, 12, 13, 14, 15, 16, 17], the domain

decomposition methods: [18, 19, 20, 21, 22], the mortar finite element methods: [23,

24, 25], the discontinuous Galerkin methods: [26, 27, 28], the multigrid methods: [29,

30, 31], and the finite volume methods: [32, 33]. In this thesis, we first focus on

building a unified FVM for treating the above cited infiltration problems for Stokes

and Darcy equations. Then, the same approach is extended to a coupled Stokes-Darcy

problem. Discretization is achieved using a collocated FVM which is applied for both

discrete velocity and pressure approximations. However, the collocated FVM usually

lead to unstable schemes as pointed by Rhie and Chow [7]. This difficulty is then

handled by a stabilization technique. Later, mathematicians were able to prove the

stability and convergence for this class of schemes (see, e.g., [34, 35, 36, 37, 38]). In the

proposed finite volume scheme, we present an alternative strategy, based on adding of a

consistent symmetric stabilization term which penalize the pressure jumps accross the

volume boundaries. This term may be seen as a finite volume analogue of the classical

stabilization finite element technique introduced in [39] for the Stokes equations.

The thesis is organized as follows. In Chapter 1, we recall some general results

of the theory of mixed problems. Without going to the details, we also give a brief

presentation of the relevant abstract approximation theory. Chapter 2 is devoted to

the description and discussion of considered mathematical models alongside with some

appropriate boundary conditions. In particular, weak formulations are derived for the

Stokes, Darcy and coupled Stokes-Darcy problems. Then, we give an adaptation of the

results obtained in Chapter 1 to show the well-posedness of these formulations.

In Chapter 3, we present a detailed construction of the proposed FVM. First, we

display all assumptions needed on the discretization meshs and define appropriate

discrete notions (forms, inner products, norms, space). Further, some interpolation

results are proved and consistency residuals are established for discrete fluxes.

Chapter 4, which is the heart of the thesis, is aimed to present and analyze two

novel stabilized finite volume schemes for the Stokes, Darcy and coupled Stokes-Darcy

problems. The proposed schemes are first discussed and then recast under a discrete

variational form. Among many important results, the schemes are shown to satisfy

3



stability condition and erreur estimates in classical norms for all considered problems.

In Chapter 5, we aim to illustrate numerically theoretical results developed in Chap-

ter 4. The computational behavior of the proposed schemes is assessed on benchmark

test problems. In particular, it is observed that the expected optimal rates of conver-

gence are achieved. Finally, concluding remarks are drawn.
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Chapter 1

Mixed problems

1.1 Functional spaces

In order to investigate mathematically the Stokes, Darcy and Stokes-Darcy equations,

we introduce the usual methodology for deriving weak formulations in appropriate

Sobolev spaces [40, 41]. Hence, we introduce the Lebesgue space L2(Ω) which consists

of functions that are square-integrable over the domain Ω [42] with respect to the inner

product

(f, g)0,Ω =
∫

Ω
f(x)g(x)dx (1.1)

and the corresponding norm

‖f‖0,Ω = (f, f)1/2
0,Ω (1.2)

for all f, g ∈ L2(Ω).
By L2

0(Ω) we will denote the subspace of L2(Ω) functions with zero mean over Ω,

i.e.

L2
0(Ω) =

{
f ∈ L2(Ω) :

∫
Ω
fdx = 0

}
(1.3)

Using multi-indices α = (α1, ..., αd) ∈ Nd for the space dimensions d ∈ {2, 3} with

|α| = α1 + ... + αd, and using the multi-index partial derivative ∂α = ∂α1
1 ...∂αd

d , where

∂αi
i = ∂αi/∂xαi

i . We define the Sobolev spaces Hm (Ω)

Hm (Ω) =
{
f ∈ L2(Ω) : ∂αf ∈ L2(Ω), 0 ≤ |α| ≤ m

}
(1.4)

The natural number m ∈ N is called the order of the Sobolev space Hm (Ω) . We equip

Hm (Ω) with the inner product

(f, g)m,Ω =
∑
|α|≤m

∫
Ω
∂αf(x)∂αg(x)dx (1.5)
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CHAPTER 1. MIXED PROBLEMS

and the norm

‖f‖m,Ω = (f, f)1/2
m,Ω (1.6)

The elements of Hm (Ω) are the m times weakly differentiable functions on the domain

Ω.
The above spaces turn out to be Hilbert spaces. Next, by Hm

0 (Ω) we denote the

Hilbert subspace of Hm (Ω) which is the closure of C∞c (Ω) (indefinitely continuously

differentiable functions with compact support in Ω) with respect to the norm of Hm (Ω).
We also define the following Sobolev seminorm on Hm (Ω) by

|f |m,Ω =
 ∑
|α|=m

∫
Ω
|∂αf(x)|2 dx

1/2

∀f ∈ Hm (Ω) (1.7)

Clearly, H0 (Ω) = L2(Ω). In particular, the space H1 (Ω) consists of square-integrable

functions with square-integrable first derivatives and has the following important sub-

space H1
0 (Ω) . In the case of a bounded domain Ω, we have

H1
0 (Ω) =

{
f ∈ H1 (Ω) : f = 0 on ∂Ω in trace sense

}
(1.8)

The space H1 (Ω) has the associated norm

‖f‖1,Ω =

‖f‖2
0,Ω +

d∑
i=1

∥∥∥∥∥ ∂f∂xi
∥∥∥∥∥

2

0,Ω


1/2

(1.9)

and the seminorm

|f |1,Ω =


d∑
i=1

∥∥∥∥∥ ∂f∂xi
∥∥∥∥∥

2

0,Ω


1/2

(1.10)

The latter is actually a norm equivalent to (1.9) in H1
0 (Ω).

For vector valued functions, we introduce the following spaces of vector functions,

which are natural generalizations of the corresponding scalar spaces. For example, the

inner product for vector valued fonctions belonging to

L2 (Ω) =
[
L2 (Ω)

]d
(1.11)

is given by

(f ,g)0,Ω =
d∑
i=1

∫
Ω
fi gi dx (1.12)

and the associated norm

‖f‖0,Ω =
(

d∑
i=1
‖fi‖2

0,Ω

)1/2

(1.13)

for any f ,g ∈ L2 (Ω) .

6



CHAPTER 1. MIXED PROBLEMS

Likewise, Hm (Ω) consists of vector valued functions each of whose components

belongs to Hm (Ω) , i.e.

Hm (Ω) = [Hm (Ω)]d (1.14)

This is equipped with the norm

‖f‖m,Ω =
(

d∑
i=1
‖fi‖2

m,Ω

)1/2

(1.15)

for any f ∈ Hm (Ω) . Similarly

H1
0 (Ω) =

[
H1

0 (Ω)
]d

(1.16)

has the equivalent norm

|f |1,Ω =
(

d∑
i=1
|fi|21,Ω

)1/2

(1.17)

We will also need the following Hilbert space H (div; Ω) defined as

H (div; Ω) =
{
w ∈ L2 (Ω) : div w ∈ L2 (Ω)

}
(1.18)

It is equipped with the norm

‖w‖div =
(
‖w‖2

0,Ω + ‖div w‖2
0,Ω

)1/2
(1.19)

Further, we will denote by H0 (div; Ω) the following sub-space of H (div; Ω)

H0 (div; Ω) = {w ∈ H (div; Ω) : w · n = 0 on ∂Ω} (1.20)

1.2 Abstract mixed formulation

The analysis presented in this section concerns one classical theorem stated here with-

out proof. Details can be found by the reader in [40, 43]. For simplicity, some parts

are omitted.

Let X and M be two real Hilbert spaces with norms ‖·‖X and ‖·‖M respectively

and their topological dual spaces X′ and M ′.

Let also given two bilinear forms

a (·, ·) : X×X→ R

b (·, ·) : X×M → R

7



CHAPTER 1. MIXED PROBLEMS

We shall assume that these bilinear functionals are bounded in the sense that there

exist positive constants Ca and Cb such that

|a (u,v)| ≤ Ca ‖u‖X ‖v‖X ∀u,v ∈ X

|b (v, q)| ≤ Cb ‖v‖X ‖q‖M ∀v ∈ X,∀q ∈M

Now, consider the following variational problem:

Find (u, p) ∈ X×M such that

a (u,v) + b (v, p) = (f ,v) ∀v ∈ X

b (u, q) = 0 ∀q ∈M
(Q)

where f ∈ X′.

Additionnally, we define two continuous linear operators associated with a (·, ·) and

b (·, ·)

A : X→ X′, 〈Au,v〉 = a (u,v) ∀v ∈ X

B : X→M ′, 〈Bv, q〉 = b (v, q) ∀q ∈M

Analogously, let B′ denote the dual of the operator B

B′ : M → X′, 〈B′q,v〉 = 〈Bv, q〉 = b (v, q) ∀v ∈ X

Then, problem (Q) can be reformulated as:

Find (u, p) ∈ X×M satisfying

Au +B′p = f in X′

Bu = 0 in M ′

Next, set

Z = KerB = {v ∈ X : b (v, q) = 0 ∀q ∈M} (1.21)

We associate the following problem to (Q):

Find u ∈ Z such that

a (u,v) = (f ,v) ∀v ∈ Z (P)

Clearly, if (u, p) ∈ X×M is a solution of (Q), then u ∈ Z is a solution of (P).

The question is now: what are suitable conditions ensuring the converse of the last

statement?

8



CHAPTER 1. MIXED PROBLEMS

Theorem 1 (Existence and uniqueness). Under the following hypotheses:

H1 (Z-ellipticity of a). There exists a constant α > 0 such that

a (v,v) ≥ α ‖v‖2
X ∀v ∈ Z (1.22)

H2 (LBB condition). There exists a constant β > 0 such that: given any q ∈M

sup
v∈X

b (v, q)
‖v‖X

≥ β ‖q‖M (1.23)

problem (P) has a unique solution u ∈ Z and there exists a unique p ∈ M such that

the pair (u, p) is the unique solution of problem (Q).

The statment (1.23) is often referred to as the stability condition.

It is also instructive to rewrite Problem (Q) in the following form:

Find (u, p) ∈ X×M such that

B [(u, p) , (v, q)] = (f ,v) ∀ (v, q) ∈ X×M (1.24)

where

B [(u, p) , (v, q)] = a (u,v) + b (v,p)± b (u, q) (1.25)

The primary motivation for using this equivalent form of Problem (Q) comes from the

celebrated and more general result proved by Babuška in [44].

Theorem 2. Let W1 and W2 be two Hilbert spaces with norms ‖·‖1 and ‖·‖2 respec-

tively. Further, let B [·, ·] be a bilinear form on W1 ×W2 such that

|B [s, r]| ≤ C1 ‖s‖1 ‖r‖2 ∀ (s, r) ∈W1 ×W2

sup
s∈W1

|B [s, r]|
‖s‖1

≥ C2 ‖r‖2 ∀r ∈W2

sup
r∈W2

|B [s, r]|
‖r‖2

≥ C3 ‖s‖1 ∀s ∈W1

with C2, C3 > 0, C1 <∞. Further, let f ∈W′
2. Then, there exists exactly one element

s0 ∈W1 such that

B [s0, r] = (f ,v)

for all r ∈W2 and

‖s0‖1 ≤
‖f‖∗
C3

where

‖f‖∗ = sup
t∈W2

|(f , t)|
‖t‖2

We note that this theorem is very useful in the analysis of finite volume approxi-

mations of the continuous Stokes, Darcy and Stokes-Darcy formulations.

9



CHAPTER 1. MIXED PROBLEMS

1.3 Approximation of mixed problems

This section is devoted to the approximation of abstract mixed problems discussed in

the previous section. We keep the same notation here. Our presentation slightly varies

from that of Ref. [40, 43], since their results are more general.

Let h now denote a discretization parameter tending to zero and, for each h, let

Xh ⊂ X and Mh ⊂M be two finite-dimensional spaces. Let us define the closed linear

subspace Zh of the linear space Xh analogue to (1.21), defined by

Zh = {vh ∈ Xh : b (vh, qh) = 0 ∀qh ∈Mh} (1.26)

Since 0 ∈ Zh, the set Zh is nonempty. In general, we do not have necessarily Zh ⊂ Z.

For the same reason, if b (·, ·) featured in (Q) satisfies the stability condition (1.23),

it does not automatically satisfy the analogous discrete stability condition with Xh

and Mh. This fact turns out be a source of difficulties in the construction of viable

finite space approximations to mixed variational problems. The validity of a discrete

stability condition has to be independently verified for each particular choice of spaces

(Xh,Mh) .
Following the Galerkin methodology, we now approximate Problem (Q) by the

following:

Find uh ∈ Xh and ph ∈Mh such that

a (uh,vh) + b (vh, ph) = (f ,vh) ∀vh ∈ Xh

b (uh, qh) = 0 ∀qh ∈Mh

(Qh)

with the associated restricted problem:

Find uh ∈ Zh such that

a (uh,vh) = (f ,vh) ∀vh ∈ Zh (Ph)

As Zh " Z in general, (Ph) may be viewed as an external approximation of (P).

Here, again, the first component uh of any solution (uh, ph) of (Qh) is also a solution

of (Ph). The converse is treated in the following theorem which represent the discrete

version of Theorem 1.

Theorem 3 (Existence and uniqueness). Assume the following hypotheses:

H1 (Zh-ellipticity of a). There exists a constant α∗ > 0 such that

a (vh,vh) ≥ α∗ ‖vh‖2
X ∀vh ∈ Zh (1.27)

10



CHAPTER 1. MIXED PROBLEMS

H2 (Discrete LBB condition). There exists a constant β∗ > 0, independent of h, such

that: given any qh ∈Mh

sup
v∈Xh

b (vh, qh)
‖vh‖X

≥ β∗ ‖qh‖M (1.28)

Then, problem (Ph) has a unique solution uh ∈ Zh and there exists a unique ph ∈ Mh

such that the pair (uh, qh) is the unique solution of problem (Qh). Moreover, there

exists a constant C > 0, independent on h, such that

‖u− uh‖X + ‖p− ph‖M ≤ C
(

inf
vh∈Xh

‖u− vh‖X + inf
qh∈Mh

‖p− qh‖M
)

(1.29)

11



Chapter 2

Mathematical models

In this chapter, we apply the above abstract results to solve the incompressible Stokes,

Darcy and coupled Stokes-Darcy equations and to establish the existence of a unique

weak solution in each case.

2.1 Introduction to fluid flows

The Navier-Stokes equations are the fondamental partial differential equations that

describe the flow of incompressible fluids. They consist in an equation of motion

derived from the conservation of momentum originated from Newton’s second law and

an incompressibility equation deduced from the conservation of mass in the system. A

complete derivation of the Navier-Stokes equations can be found in [45].

Now, let Ωt = Ω×[0,∞[; Ω ⊂ Rd being an open and bounded domain with Lipschitz

boundary ∂Ω and d ∈ {2, 3}.
In compact form the Navier-Stokes equations can be written in the following form

∂u
∂t

+ (u · ∇) · u = f −∇p+ 2ν∇ · ε (u) in Ωt (2.1a)

∇ · u = 0 in Ωt (2.1b)

where u denotes the flow velocity, p the fluid pressure, f an applied body force and

ν > 0 the constant kinematic viscosity. Furthermore, ε (u), called the stress tensor,

represents the symmetrical part of the velocity gradient

ε (u) = 1
2
(
∇u +∇uT

)
(2.2)

It should be emphasized that the constant density ρ has been absorbed into the pres-

sure. Whenever u and p represent nondimensionalised variables, then ν is the inverse

12



CHAPTER 2. MATHEMATICAL MODELS

of the Reynold number Re which is usually given by

Re = ρUL

µ
(2.3)

where µ is the fluid viscosity, U and L are respectively a representative velocity and a

representative lenght associated with the fluid.

In this thesis the fluid motion is assumed to be steady, i.e. ∂u
∂t

= 0.

A particularly important case of equations (2.1a) is obtained by considering the

motion of creeping flows (low velocity). The non-linear terms in (2.1a) can then be

neglected. The resulting system is commonly known as the Stokes equations. Al-

though these are linear, they deserve special attention because of the incompressibility

condition (2.1b).

In addition, assuming the viscous resisting force is linear with respect to the velocity,

we obtain what are known as the Darcy equations. The Stokes and Darcy equations

are discussed in details below. For a complete derivation, see [46, 47].

2.2 Stokes equations

The Stokes equations can be written as

−2µ∇ · ε(u) +∇p = f in Ω (2.4a)

∇ · u = 0 in Ω (2.4b)

Substituting for the stress tensor (2.2) and using (2.1b), the Stokes equations can be

simplified to the equivalent form

−µ∆u +∇p = f in Ω (2.5a)

∇ · u = 0 in Ω (2.5b)

We note that the system (2.4) is said to be non-conservative in contrast to the system

(2.5) which is conservative.

In order to obtain a properly defined problem, the equations (2.4) or (2.5) must

be supplemented with boundary conditions on ∂Ω. The suitable choice of the latter,

necessary and sufficient to define a well-posed problem, is not easy, alghough physics

and experience can provide guidelines.

For the purpose of the present work, attention is restricted to the simple type

below. Owing to the nature of the differential equations which are elliptic for the

13
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velocity, appropriate boundary conditions may consist in imposing the velocity on the

whole boundary ∂Ω. Thus, the imposed velocity condition is

u = g on ∂Ω (2.6)

where g is sufficiently smooth on ∂Ω, and satisfies the compatibility condition∫
∂Ω

g · n ds = 0

A particular case of this type of boundary condition is known as the non-slip condition.

At a fixed wall, for example, the velocity vanishes, i.e.

u = 0 on ∂Ω (2.7)

Now, equations (2.5) supplemented by (2.6) or (2.7) form what is called a Stokes

problem. Except in degenerate cases, this problem cannot be solved exactly. Before

going further, let us note that the Stokes problem shows that the pressure p is only

defined to an additive constant. So, assume that the pressure p is normalized to belong

to L2
0(Ω).

The framework presented in Chapter 1 may be applied to establish existence and

uniqueness of a solution in a weak sense. To this end, let us transform the Stokes

problem (2.5)-(2.6) to a variational form by multiplying (2.5a) and (2.5b) respectively

by test functions v ∈ H1
0(Ω) and q ∈ L2

0(Ω) and integrating over Ω. This yields

µ
∫

Ω
∇u · ∇v−

∫
Ω
p∇ · v =

∫
Ω

f v∫
Ω
q∇ · u = 0

On the other hand, by an extension result proved in [40], there exists u0 ∈ H1(Ω) such

that

u0 = g on ∂Ω and ∇ · u0 = 0 in Ω

Consequently, the corresponding weak formulation reads as:

Find (u− u0, p) ∈ H1
0(Ω)× L2

0(Ω) such that

µ (∇ (u− u0) ,∇v)0,Ω − (p,∇ · v)0,Ω = (f ,v)0,Ω ∀v ∈ H1
0(Ω) (2.8a)

(q,∇ · u)0,Ω = 0 ∀q ∈ L2
0(Ω) (2.8b)

If the non-conservative form (2.4) was considered instead of (2.5), the corresponding

weak formulation would have been:

14
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Find (u− u0, p) ∈ H1
0(Ω)× L2

0(Ω) such that

µ (ε (u− u0) ,ε (v))0,Ω − (p,∇ · v)0,Ω = (f ,v)0,Ω ∀v ∈ H1
0(Ω) (2.9a)

(q,∇ · u)0,Ω = 0 ∀q ∈ L2
0(Ω) (2.9b)

Theorem 4 (Existence and uniqueness). The weak Stokes problem (2.8) has a unique

solution (u− u0, p) ∈ H1
0(Ω)× L2

0(Ω).

Proof. The proof is an application of Theorem 1 (for details, refer to [40]).

2.3 Darcy equations

First of all, let us note that Darcy equations can be obtained as a particular case of

Stokes equations by assuming that the viscous resisting force is linear with respect to

the velocity. If, now, u denotes the flow velocity, then

µk−1u +∇p = f in Ω (2.10a)

∇ · u = 0 in Ω (2.10b)

where, k is symmetric and uniformly positive definite tensor representing the Darcy

permeability.

Another way to write (2.10a) may be done by means of Darcy’s law in porous media

[48]

q = −k
µ
∇p (2.11)

This law is based on a proportionality relationship between q, referred to as the Darcy

flux and∇p through the permeability k, which measures the ability of a porous material

for fluid passing, the fluid viscosity µ. The Darcy flux, is not the velocity which the

fluid traveling through the pores is experiencing. The flow velocity u is related to the

Darcy flux q by the porosity ϕ, which is a measure of the void space in a material. As

the material only permits flow through the void space, q is divided by the porosity to

obtain the actual fluid velocity

u =q
ϕ

(2.12)

Darcy’s law (2.11) in combination with the porous media analogue of the continuity

equation (2.10b) gives the Darcy equations (2.10). Moreover, the source term f has

been added to take into account body forces such as gravity.

A complete derivation of Darcy’s law can be found in [49].
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In contrast to the Stokes framework, Darcy equations are usually supplemented by

a Neumann condition on the domain boundary

u · n = 0 on ∂Ω (2.13)

The obtained problem (2.10)-(2.13) is refered to as a Darcy problem. Owing to the

nature of this problem, let us take now functions v ∈ H0 (div; Ω) and q ∈ L2
0 (Ω). Mul-

tiplying both equations in (2.10) by respective test fonctions v and q, and integrating

over Ω yield the following variational formulation:

Find (u,p) ∈ H0 (div; Ω)× L2
0 (Ω) such that

µ
(
k−1u,v

)
0,Ω
− (p,∇ · v)0,Ω = (f ,v)0,Ω ∀v ∈ H0 (div; Ω) (2.14a)

(q,∇ · u)0,Ω = 0 ∀q ∈ L2
0(Ω) (2.14b)

Recall that owing to the positive definiteness of k, there exist two positives constants

λ1, λ2 such that

λ1‖v‖2
0,Ω ≤ µ

(
k−1v,v

)
0,Ω
≤ λ2‖v‖2

0,Ω ∀v ∈ H0 (div; Ω) (2.15)

Likewise, we get the following

Theorem 5. The weak Darcy problem (2.14) has a unique solution (u,p) ∈ H0 (div; Ω)×
L2

0 (Ω).

Proof. The proof is an application of Theorem 1.

2.4 Coupled Stokes-Darcy equations

Now, let us consider an interface problem between a fluid flow, governed by Stokes

equations, and the flow in a porous medium, governed by Darcy equations. Let us

assume that the bounded domain Ω = Ωs ∪ Ωd ⊂ Rd, (d = 2 or 3) is made up by

two non overlapping subdomains, consisting of a fluid flow region Ωs and a porous

medium region Ωd. Boundaries of both subdomains have a non-empty intersection

Γ = ∂Ωs ∩ ∂Ωd. Moreover, let nl be the unit vector of outer normal to Ωl (see Fig.

(2.1)). In the whole of Ω, we denote by u the fluid velocity u and by p the fluid pressure.

Moreover, we use notations us and ud to designate u in Ωs and Ωd respectively.
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Figure 2.1: Computational domain

One obtains the equations 
−µ∆u +∇p = f in Ωs

µk−1u +∇p = f in Ωd

∇ · u = 0 in Ω

(2.16)

supplemented by the following homogeneous conditions on the external boundary

u = 0 on ∂Ωs and u · nd = 0 on ∂Ωd (2.17)

On the interface Γ we consider the following boundary conditions

Continuity of normal velocity

This expresses the mass conservation across the interface Γ. It has the form

us · ns + ud · nd = 0 (2.18)

Continuity of the fluid normal stress

This is a balance of normal forces across Γ [50]. It is expressed by

− µns · ∇us · ns + ps = pd (2.19)

17



CHAPTER 2. MATHEMATICAL MODELS

Beaver-Joseph-Saffman condition

Since the fluid flow is viscous, an additional condition on the tangential fluid velocity on

Γ must be given. Let τ denote the tangent unit vector on Γ. The simplest assumption

is no-slippage along Γ, i.e., us · τ = 0. Nevertheless, this is not in good agreement with

experiment. A boundary condition in better agreement with experimental evidence

was developed by Beavers and Joseph [51]. Mathematically, this condition can be

represented by

−ns · ∇us · τ = α√
k

(us − ud) · τ

where k = (kτ) · τ and α is a posifive parameter, so-called slip coefficient, determined

by experimental evidence.

However, it is still unclear if this leads to a well-posed problem and it has been

observed that the term on the left-hand side ud · τ is much smaller than the other

terms. Thus, its inclusion in this linear approximation is unclear. The most accepted

interface condition was derived by Saffman [52] using a statistical approach and the

Brinkman approximation, and also by Jones [53]. Another relevant work was also

done by Jäger and Mikelic [54]. The new boundary condition is now known as the

Beavers–Joseph–Saffman law and is thus given by

− ns · ∇us · τ = α√
k

us · τ (2.20)

The problem defined by (2.16) to (2.20) will be refered to as the coupled Stokes-Darcy

problem. Now, let us turn to developing a suitable weak formulation. The purpose of

this weak formulation is twofold. Firstly, it is used to show well-posedness of (2.16)

to (2.20). Secondly, it is suitable for splitting efficiently the coupled problem into two

subproblems.

In order to construct the weak formulation of the coupled Stokes-Darcy problem,

define the following new space for the velocity

V =
{
v ∈ H (div; Ω) : vs ∈ H1 (Ωs),v = 0 on ∂Ωs,v · nd = 0 on ∂Ωd

}
(2.21)

The first step for obtaining a weak formulation consists in multiplying the first two

equations in (2.16) by a test function v ∈ V, and the incompressibility equation by a

test function q ∈ L2
0(Ω). The next step is to integrate the obtained equations over the

entire domain Ω. This results into the equations

−µ (∆u,v)0,Ωs
+ µ

(
k−1u,v

)
0,Ωd

+ (∇p,v)0,Ω = (f ,v)0,Ω

− (∇ · v, q)0,Ω = 0

18
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On one hand, the interface conditions (2.19) and (2.20) yield

−µ (∆u,v)0,Ωs
= µ (∇u,∇v)0,Ωs

+ (pd − ps,vs · ns)0,Γ + µα√
k

(us · τ,vs · τ)0,Γ

On the other hand, we have

(∇p,v)0,Ω = − (p,∇ · v)0,Ωs
− (p,∇ · v)0,Ωd

− (pd − ps,v · ns)0,Γ

Gathering the above calculations leads to the variational formulation:

Find (u, p) ∈ V× L2
0(Ω) such that

a (u,v) + b (v,p) = (f ,v) ∀v ∈ V

b (u, q) = 0 ∀q ∈ L2
0(Ω)

(2.22)

where

a(u,v) = µ (∇u,∇v)0,Ωs
+ µ

(
k−1u,v

)
0,Ωd

+ µα√
k

(us · τ,vs · τ)0,Γ (2.23)

b(v,p) = − (p,∇ · v)0,Ω

Theorem 6 (Existence and uniqueness). There exists a unique solution (u, p) ∈ V×
L2

0(Ω) to the weak formulation (2.22).

Proof. (c.f. [50]).
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Chapter 3

Finite volume approximation

Due to the impossibility of finding exact solutions to the models discussed in Chapter

2, several numerical methods have been developed and extensively analyzed to approx-

imate them. Although the finite difference and finite element methods have been the

first techniques applied in computational fluid dynamics, the finite volume methods ap-

peard to be more convenient during the last two decates. With a given discretization

mesh, a finite volume scheme is based on the approximation of the flux conservation

across boundaries. First, we give the assumptions needed on the lying discretization

mesh and we define some special discrete forms, inner products, norms and the discrete

space. We also prove interpolation results on the discrete space. Then, we present a

thorough study on discrete fluxes and establish consistency residuals which will be

applied in the next chapter.

3.1 Discrete aspects

In general, domain discretization can be unconditionnally performed in different ways.

However, present work suggests the use of what is called admissible finite volume

meshes. These involve some more technical assumptions. This was motivated by works

of [55, 56, 57] on diffusion problems.

3.1.1 Discretization and discrete functional spaces

Let Ω be an open bounded polygonal subset of Rd, d = 2 or 3. According to litterature

just mentioned, an admissible finite volume mesh of Ω, denoted by Dh , is given by a

family of disjoint non-empty convex subdomains (control volumes) K of Ω such that

Ω = ∪K∈Dh
K. Let us denote by ∂K = K\K and |K| respectively the boundary and

measure of any K ∈ Dh.
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On the other hand, let us denote by Eint, Eext the finite sets of volume boundaries

σ (edges or faces), with measures |σ| , which are respectively internal to the domain Ω
and on ∂Ω.

Further, let {xK}K∈Dh
be a family of points of Ω such that, for all K ∈ Dh, xK ∈ K

(see Fig. (3.1)). The coordinates of xK are denoted by x
(i)
K , i = 1, ..., d.

Assume K and L to be two neighbouring control volumes of the mesh. A consistent

discretization of the flux over the interface of K and L may be performed with a

differential quotient involving values of the unknown located on the orthogonal line to

the interface between K and L, on either side of this interface. Here, we note that

any internal edge, separating two control volumes K and L, is orthogonal to the line

segment [xK ,xL] from xK to xL at the point xσ. We also denote by dKL the distance

between xK and xL, and by dKσ the distance between xK and xσ.

We also denote by hK the diameter of each control volume and we set

h = supK∈Dh
hK

which will be refered to as the mesh parameter. Regularity of the mesh is measured

by the function regul (Dh) defined as follows

regul (Dh) = inf
({

dKσ
diam(K) ;K ∈ Dh : σ ∈ ∂K

}

∪
{
dKσ
dKL

;K,L ∈ Dh : σ ∈ Eint ∩ ∂K
}
∪
{

1
card (∂K)

})

Figure 3.1: Two neighbouring control volumes

Two examples of admissible meshes are now given.
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Example 7 (Triangular meshes). If Ω is an open bounded polygonal subset of R2,

then Dh can be a family of disjoint open triangular subsets of Ω having an edge as a

common boundary. Assume that all angles of triangles are acute. This last condition

is sufficient for the orthogonal bisectors to intersect inside each triangle, thus naturally

defining the points xK ∈ K (see Fig. (3.2)).

Figure 3.2: Triangular control volume (in Grey)

Example 8 (Voronöı meshes). If Ω be an open bounded polygonal subset of Rd, then

an admissible finite volume mesh can be constructed using the so-called “Voronöı” tech-

nique. Let {Pi; i = 1, ..., n} be a finite family of points in Ω. The Voronöı mesh control

volumes Ki are defined by

Ki = {y ∈ Ω, ‖Pi − y‖ < ‖Pj − y‖ , j 6= i} i, j = 1, ..., n

where ‖·‖ denotes the Euclidean norm (see Fig. (3.3)).

Figure 3.3: 2D Voronöı control volume (in Red) associated with a triangulation
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Now, given an admissible mesh Dh let us introduce the discrete space Xh ⊂ L2 (Ω)
of piecewise constant functions associated to Dh and some equivalent discrete forms of

the H1
0 norm on Xh. Likewise, we also make use of the discrete space

X0
h = Xh ∩ L2

0 (Ω)

For all vh ∈ Xh, we denote by vh,K the value (constant) of vh in any K ∈ Dh.
For vh, wh ∈ Xh, we set

[vh, wh]h =
∑

σ∈Eint

|σ|
dKL

(vh,L − vh,K) (wh,L − wh,K) +
∑

σ∈Eext

|σ|
dKσ

vh,Kwh,K (3.1)

This is clearly an inner product on Xh. The associated norm is

‖vh‖h = [vh, vh]1/2h

We also define the following bilinear form

〈vh, wh〉h =
∑

σ∈Eint

|σ|
dKL

(vh,L − vh,K) (wh,L − wh,K) (3.2)

which generates the semi-norm

|vh|h = 〈vh, vh〉1/2h

Of course, these definitions extend naturally to vector valued functions as follows. For

vh =
(
v

(i)
h

)
i=1,...,d

∈ Xh = Xh
d and wh =

(
w

(i)
h

)
i=1,...,d

∈ Xh, we set

[vh,wh]h =
d∑
i=1

[
v

(i)
h , w

(i)
h

]
h

and

‖vh‖h =
(

d∑
i=1

[
v

(i)
h , v

(i)
h

]
h

)1/2

Analogously to the well-known Poincaré inequality the continuous case, we get

Lemma 9. ([41, 58]) The following discrete Poincaré inequalities hold

‖vh‖0,Ω ≤ C‖vh‖h ∀vh ∈ Xh

‖vh‖0,Ω ≤ C|vh|h ∀vh ∈ X0
h

(3.3)

where C depends only on Ω.

The following result deals with behavior on volume boundary. A proof can be found

in [59].
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Lemma 10 (Trace inequalities). Let K ∈ Dh. If u ∈ H1(K), then

‖u‖0,∂K ≤
(
C

1
h

)1/2 (
‖u‖0,K + hK ‖u‖1,K

)
(3.4)

Similarly, if u ∈ H2(K), we have

‖u‖0,∂K ≤
(
C

1
h

)1/2 (
‖u‖1,K + hK ‖u‖2,K

)
(3.5)

3.1.2 Interpolation in Xh

In order to establish some relevant approximation results for Xh, we adapt well-known

estimates about approximation properties in Sobolev spaces. (see, e.g., [60, 61]). To

this end, let u be a function in L2 (Ω). For each K ∈ Dh, we first define wK as the

convex hull of
{
K,L;L ∩K ∈ ∂K

}
. If P1 (ω) is the space of all polynomials defined

on ω ⊂ Ω in d variables of degree at most 1 and φK ∈ P1 (K) satisfies∫
wK

(u− φK)ψ = 0 ∀ψ ∈ P1 (wK)

then we can define the linear operator π (u) ∈ Xh by π (u)|K = φK (xK) for all K ∈ Dh.
This definition is easily extendable to vector-valued functions with the same nota-

tions.

We get the following result whose proof is based on Jackson’s type inequalities as

suggested in [61].

Lemma 11. Let u ∈ L2 (Ω) and φK be defined as above.

If u ∈ H1 (wK) , then

‖u− φK‖0,wK
≤ Ch |u|1,Ω (3.6)

|u− φK |1,wK
≤ C|u|1,Ω (3.7)

If u ∈ H2 (wK) , then

‖u− φK‖0,wK
≤ Ch2|u|2,Ω (3.8)

|u− φK |1,wK
≤ Ch |u|2,Ω (3.9)

We note that the constants in Lemma 11 depend only on those in Jackson’s type

inequalities.

Boundedness of π is now addressed.

Proposition 12. Let u ∈ H1
0 (Ω). Then, the following estimate holds

‖π (u)‖h ≤ C|u|1,Ω (3.10)
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If, in addition, u ∈ H1 (Ω), then

|π (u)|h ≤ C|u|1,Ω (3.11)

Proof. Let u ∈ H1
0 (Ω) . First, by the definition of π (u)|K = φK (xK) and π (u)|L =

φL (xL), we have

‖π (u)‖2
h =

∑
σ∈Eint∩∂K

|σ|
dKL

(φL (xL)− φK (xK))2 +
∑

σ∈Eext
(σ∈εK)

|σ|
dKσ

φK (xK)2

≤ 2
∑

σ∈Eint∩∂K

|σ|
dKL

(φK (xL)− φK (xK))2 + 2
∑

σ∈Eint
(σ=K|L)

|σ|
dKL

(φL (xL)− φK (xL))2

+ 2
∑

σ∈Eext∩∂K

|σ|
dKσ

(φK (xK)− φK (xσ))2 + 2
∑

σ∈Eext∩∂K

|σ|
dKσ

φK (xσ)2

= T1 + T2 + T3 + T4

We now bound each term Ti, i = 1, ..., 4. Hence, we have

T1 = 2
∑

σ∈Eint∩∂K
|σ| dKL(∇φK · nKL)2

The quantity |σ| dKL can be seen as the measure of a domain included in K ∪ L, and

is, therefore, lower than the measure of wK , so using Lemma 11, we get

T1 ≤ C1|u|21,Ω (3.12)

Now, using the fact that L∞ (K) and L2 (K) norms are equivalent on P1 (K) and

Lemma 11, the term T2 can be estimated as follows

T2 ≤ C2|u|21,Ω (3.13)

Using the same arguments as for the bound of T1 (replace dKL by dKσ), a similar result

can be obtained for the third term

T3 ≤ C3|u|21,Ω (3.14)

Finally, using the fact that u vanishes on ∂Ω, the trace inequality (3.5) and Lemma 11

yields

T4 ≤ C4|u|21,Ω (3.15)

Gathering (3.12) to (3.15) yields the result.

The proof of the second inequality of the proposition can be easily derived from the

proof of the first one.
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Proposition 13. Let u ∈ H2 (Ω) ∩H1
0 (Ω). Then, the following estimate holds

‖π (u)‖h ≤ Ch|u|2,Ω (3.16)

Proof. Let u ∈ H2 (Ω) ∩ H1
0 (Ω) . We will follow the methodology used above in the

proof of Proposition 12 we have

‖π (u)‖2
h ≤ T1 + T2 + T3 + T4

where Ti, i = 1, ..., 4 defined as previous. Using Lemma 11, we get

T1 ≤ C1h
2|u|22,Ω (3.17)

The term T2 can be estimated as follows

T2 ≤ C2h
2|u|22,Ω

The term T3

T3 ≤ C3h
2|u|22,Ω (3.18)

Finally,

T4 ≤ C4h
2|u|22,Ω (3.19)

Gathering (3.17) to (3.19) yields the result.

The following result gives more insight into the way π (u) approximates the function

u itself.

Proposition 14. Let u ∈ H1 (Ω) . Then the following estimate holds

‖π (u)− u‖0,Ω ≤ Ch|u|1,Ω (3.20)

Let us now suppose that u ∈ H2 (Ω) ∩H1
0 (Ω). As a consequence, u is continuous

and we can define uh ∈ Xh by uh,K = u (xK) , K ∈ Dh. Then we have

‖π (u)− u‖h ≤ Ch|u|2,Ω (3.21)

The next lemma is a classical consequence of a lemma due to Nečas [62].

Lemma 15. For every q ∈ L2
0 (Ω) there is a u ∈ H1

0 (Ω) such that

∇ · u = q and |u|1,Ω ≤ C ‖q‖0,Ω (3.22)

Furthermore, boundedness of π (Proposition 12) gives

‖π (u)‖h ≤ C‖q‖0,Ω (3.23)
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3.2 Discrete fluxes and consistency residuals

Finite volume schemes are classically presented as discrete balance equations with a

suitable approximation of the fluxes, see [1, 2, 55, 63]. However, in this section some

residual estimates are derived.

3.2.1 Discrete operators

The fluxes need to be approximated as a function of the discrete unknowns uh,K asso-

ciated with each control volume K ∈ Dh. A straightforward choice is to approximate

the fluxes on the edges σ ∈ ∂K for all K ∈ Dh.

Let us begin by defining the discrete divergence operator (∇h·) : Xh → Xh by

(∇h · uh)K := 1
|K|

∑
σ∈Eint∩∂K

|σ| uh,L + uh,K
2 · nσ (3.24)

The adjoint of this discrete divergence with respect to the discrete L2 inner product

defines a discrete gradient ∇h. Thus, for any ph ∈ Xh, we define its discrete gradient

∇h ph ∈ Xh by

(∇h ph)K := 1
|K|

∑
σ∈Eint∩∂K

|σ| ph,L − ph,K2 nσ (3.25)

It remains to give a finite volume discretization of the viscous stress tensor ε (u). To

this end, let us note that the divergence of the stress tensor can be written as

∇ · ε (u) := 1
2 (∆u +∇(∇ · u)) (3.26)

Further, for any given function uh ∈ Xh, let (∆huh) ∈ Xh be the function defined by

(∆huh)K := 1
|K|

 ∑
σ∈Eint∩∂K

|σ| uh,L − uh,K
dLK

−
∑

σ∈Eext∩∂K
|σ| uh,K

dKσ

 (3.27)

which is called the discrete Laplace operator.

For discretizing the second summation in (3.26), we propose the following discrete

operator (∇h (∇h · uh))K

(∇h (∇h · uh))K := 1
|K|

∑
σ∈Eint∩∂K

|σ| (∇h · uh)L − (∇h · uh)K
2 nσ,K (3.28)

As already mentioned in the introduction, it is very important to emphasize that this

version has not been analyzed and applied elsewhere.
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3.2.2 Consistency residuals

Here, we successively establish estimates for the consistency residuals associated to the

diffusive term, the pressure gradient term and, the velocity divergence term. These

estimates are based on consistency results for local quantities.

Lemma 16. Let u ∈ H2 (Ω) ∩H1
0 (Ω) . Denote by R∆ the following quantity

if σ ∈ Eint ∩ ∂K, R∆ (u) = |σ|
dKσ

(π (u)|L − π (u)|K)−
∫
σ
∇u · nσ

if σ ∈ Eext ∩ ∂K, R∆ (u) = − |σ|
dKσ

π (u)|K −
∫
σ
∇u · nσ

Then,

|R∆ (u)| ≤ Ch |u|2,Ω (3.29)

where |·| is the Euclidean norm in Rd.

Proof. Let us begin with the case of σ ∈ Eint ∩ ∂K. By the definition of π (u) the

quantity R∆ reads as

R∆ (u) =
(
|σ|
dσ

(φK (xL)− φK (xK))−
∫
σ
∇u · nσ

)
+ |σ|
dσ

(φL (xL)− φK (xL))

= T1 + T2

Since φK is a linear polynomial, the first term of the right hand side of the preceding

relation can be expressed as

T1 = |σ| ∇φK ·
−−−→xLxK
dσ

−
∫
σ
∇u · nσ = −

∫
σ
∇ (u− φK) · nσ

Applying the Cauchy-Schwarz inequality followed by (3.5) and Lemma 11, we obtain

|T1| ≤ C1h |u|2,Ω

On the other hand, using the fact that the vector space P1 (K) is finite-dimensional,

on which the L∞ (K) and L2 (K) norms are equivalent, the fact that L is included in

both wL and wK and Lemma 11, we get

|T2| ≤ C2h |u|2,Ω

The proof is then easily completed by collecting the above bounds of T1 and T2.

On σ ∈ Eext ∩ ∂K, we have

R∆ (u) = |σ|
dKσ

(−φK (xK))−
∫
σ
∇u · nσ

=
(
|σ|
dKσ

(φK (xσ)− φK (xK))− 1
|σ|

∫
σ
∇u · nσ

)
− |σ|
dKσ

(φK (xσ))

= T1 + T2
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T1 can be estimated similarly to the first part. As the function u vanishes on ∂Ω, we

also have

T2 = − 1
dKσ

∫
σ
φK = − 1

dKσ

∫
σ

(φK − u)

Now, combining the Cauchy-Schwarz inequality, the trace inequality (3.5) and Lemma

11 yields

|T2| ≤ C3h |u|2,Ω

Once again, (3.29) follows from the bounds for T1 and T2.

Lemma 17. Let p ∈ H1 (Ω). Denote by R∇ the following quantity

if σ ∈ Eint ∩ ∂K, R∇ (p) = 1
2 (π (p)|L + π (p)|K) nσ −

1
|σ|

∫
σ
pnσ

if σ ∈ Eext ∩ ∂K, R∇ (p) = π (p)|K nσ −
1
|σ|

∫
σ
pnσ

Then,

|R∇ (p)| ≤ Ch |p|1,Ω (3.30)

Proof. The quantity R∇ can be decomposed as follows

R∇ (p) = |σ|2 (φK (xK) + φL (xL))nσ −
∫
σ
pnσ

= |σ|
(
φK

(xK + xL
2

)
− φK (xσ)

)
nσ +

∫
σ

(φK − p)nσ + |σ| (φL (xL)− φK (xL))nσ

= T1 + T2 + T3

Next, let us bound successively the three terms T1, T2 and T3

First, we have

T1 = |σ|
(
∇φK · −−−→xσxG

)
nσ

where

xG = xK + xL
2

As the distance between xσ and xG is smaller than h, by Lemma 11, we get

|T1| ≤ C1h |p|1,Ω

The term T2 is estimated by applying successively the Cauchy-Schwarz inequality, (3.4)

and Lemma 11

|T2| ≤ C2h |p|1,Ω

Now, using the fact that L∞ (K) and L2 (K) norms are equivalent on P1 (K) and

Lemma 11, the term T3, is bounded by

|T3| ≤ C3h |p|1,Ω

Collecting the bounds of T1, T2 and T3 completes the proof.
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Lemma 18. Let u ∈ H1
0 (Ω). Denote by Rdiv the following quantity

for σ ∈ Eint ∩ ∂K, Rdiv (u) =
(
|σ|
2 (π (u)|L + π (u)|K)−

∫
σ

u
)
· nσ

Then,

|Rdiv (u)| ≤ ch |u|1,Ω (3.31)

Furthermor, if u ∈ H2 (Ω), then

|Rdiv (u)| ≤ ch2 |u|2,Ω (3.32)

Proof. By the definition of π. We have

Rdiv (u) =
(
|σ|
2 (φK (xK) + φL (xL))−

∫
σ

u
)
· nσ

=
(
|σ|
2 (φK (xK) + φK (xL)) · nσ −

∫
σ

u · nσ
)

+ |σ|2 (φL (xL)− φK (xL)) · nσ

= T1 + T2

We have

T1 = |σ|φK
(xK + xL

2

)
· nσ −

∫
σ

u · nσ =
∫
σ

(u− φK) · nσ

Applying the Cauchy-Schwarz inequality, (3.5) and Lemma 11 gives the results for

u ∈ H1
0 (Ω) or for u ∈ H2 (Ω).

On the other hand, we get

T2 = |σ|2 (φL (xL)− φK (xL)) · nσ

Using the equivalence of the L∞ (K) and L2 (K) norms on P1 (K) and since K is

included in both wK and wL, we obtain the results.
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Chapter 4

New stabilized FVM for

Stokes-Darcy problems

This chapter, which is the principal contribution of the present work, is devoted to the

introduction and study of the two new schemes for the numerical solution of the Stokes

and Darcy equations by means of stabilized finite volume methods. These are based on

collocated approximation of the velocity and pressure unknowns. First, the equations

are separately considered and a unified stable and convergent technique is shown to

work in both situations. We prove that the obtained stabilized FV formulations satisfy

a discrete stability condition and error estimates in classical L2 norms. Then, this is

extended to solve the coupled Stokes-Darcy problem with the same convergence rates.

Main results of this chapter have already been the objects of two papers [64, 65].

4.1 Unified stabilized FVM for the Stokes and Darcy

equations

Let Ω ⊂ Rd, d = 2, 3 be an open bounded domain with a polygonal or polyhedral

boundary ∂Ω. For discretizing, let assume Dh to be a family of volumes as previously

defined with regularity regul (Dh) > θ > 0.

In order to formulate the FVM scheme of interest, let us recall the compact weak

formulation of the Stokes and Darcy equations discussed in Chapter 2 :

Find (u, p) ∈ H1
0(Ω)× L2

0(Ω) such that

α (u,v)0,Ω + µ (ε (u) , ε (v))0,Ω − (p,∇ · v)0,Ω = (f ,v)0,Ω ∀v ∈ H1
0(Ω) (4.1a)

(q,∇ · u)0,Ω = 0 ∀q ∈ L2
0(Ω) (4.1b)
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where the case α = 0 corresponds to the Stokes setting and the case µ = 0 is the Darcy

one. Here, for simplicity of presentation, we consider a non-slip boundary condition.

Let us set Wh = Xh × X0
h. The product space Wh will be equipped with the

following norm

‖(uh, ph)‖2
Wh

= ‖uh‖2
l + ‖∇h · uh‖2

0,Ω + ‖ph‖2
0,Ω

with

l =

 h for Stokes

0, d for Darcy

Following the Petrov-Galerkin methodology, a discrete formulation of (4.1) reads:

Find (uh, ph) ∈Wh such that

a (uh,vh)− (ph,∇h · vh)0,Ω = (f ,vh)0,Ω ∀vh ∈ Xh (4.2a)

(qh,∇h · uh)0,Ω + J (ph, qh) = 0 ∀q ∈ Xh (4.2b)

where

a (uh,vh) =

 µ[uh,vh]h + µ(∇h · uh,∇h · vh)0,Ω for Stokes

α(uh,vh)0,Ω for Darcy

and

J (ph, qh) = δ
∑
K

∫
∂K\∂Ω

h∂K [ph] [qh]ds

is a stabilization term, with δ > 0. Here, [·] denotes the jump through interior edges,

whereas the scalar product [·, ·]h and the discrete divergence ∇h· are as in (3.1) and

(3.24) respectively.

Now, the natural corresponding stabilized FV scheme for the solution of (4.2) con-

sists in finding (uh, ph) ∈Wh such that for each control volume K ∈ Dh∫
K

(Ah (uh))K +
∫
K

(∇h ph)K =
∫
K

f (4.3a)∫
K

(∇h · uh)K + δ
∑

σ∈Eint∩∂K

∫
σ
h∂K [ph] = 0 (4.3b)

where

(Ah (uh))K =

 −µ (∆huh)K − µ(∇h (∇h · uh))K for Stokes

α
∫
Kuh,K for Darcy

and the operators ∇h, ∆h and ∇h (∇h·) are as in (3.25), (3.27) and (3.28) respectively.

In addition, for insuring discrete pressure uniqueness, the system (4.3) is supplemented

by the relation ∑
K

∫
K
ph,K = 0 (4.4)
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We also need to introduce the generalized bilinear form B defined on Wh by

B [(uh, ph) , (vh, qh)] = a (uh,vh)− (ph,∇h · vh)0,Ω + (qh,∇h · uh)0,Ω + J (ph, qh) (4.5)

The latter definition yields the following equivalent form (4.2):

Find (uh, ph) ∈Wh such that

B [(uh, ph) , (vh, qh)] = (f ,vh)0,Ω ∀ (vh, qh) ∈Wh (4.6)

4.1.1 Study of the scheme

Discrete solution regularity

Let us first state a boundedness result of the discrete divergence in the L2 norm for

any uh ∈ Xh.

Lemma 19 (Boundedness of ∇h · uh). There exists C such that for all uh ∈ Xh we

have

‖∇h · uh‖0,Ω ≤ C‖uh‖h (4.7)

Proof. For any uh ∈ Xh we get

‖∇h · uh‖2
0,Ω =

∑
K

1
|K|

 ∑
σ∈Eint∩∂K

|σ| uh,L + uh,K
2 · nσ −

∑
σ∈∂K

|σ|uh,K · nσ

2

≤ 4
∑
K

1
|K|

 ∑
σ∈Eint∩∂K

(
|σ| uh,L − uh,K

2

)2
+

∑
σ∈Eext∩∂K

(|σ|uh,K · nσ)2


=
∑
K

∑
σ∈Eint∩∂K

|σ|2

|K|
(uh,L − uh,K)2 + 4

∑
K

∑
σ∈Eext∩∂K

|σ|2

|K|
(uh,K)2

Further, the usual regularity yields

‖∇h · uh‖2
0,Ω ≤ C2

 ∑
σ∈Eint

|σ|
dKL

(uh,L − uh,K)2 +
∑

σ∈Eext

|σ|
dKσ

(uh,K)2


as required.

Proposition 20 (Discrete estimate). Let (uh, ph) ∈Wh be a solution to (4.6). Then,

there exists C, which depends only on d,Ω, the following inequalities hold

‖uh‖l ≤ C‖f‖0,Ω (4.8)

J (ph, ph) ≤ C‖f‖2
0,Ω (4.9)
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Proof. Setting v = uh and qh = ph in (4.6), we get

a (uh,uh) + J (ph, ph) = (f ,uh)0,Ω

Hence, for Stokes we have

µ‖uh‖2
h + µ‖∇h · uh‖2

0,Ω + J (ph, ph) = (f ,uh)0,Ω

Using Young’s inequality followed by the Poincaré inequality (3.3), we get

µ‖uh‖2
h + J (ph, ph) ≤

diam (Ω)2

2ε ‖f‖2
0,Ω + ε

2‖uh‖
2
h

which leads to (
µ− ε

2

)
‖uh‖2

h + J (ph, ph) ≤
diam (Ω)2

2ε ‖f‖2
0,Ω

if ε < 2µ.

For Darcy, the choice of ε < 2α gives

α‖uh‖2
0,Ω + J (ph, ph) ≤

1
2ε‖f‖

2
0,Ω + ε

2‖uh‖
2
0,Ω

Consequently, taking ε < 2min {µ, α} yields the required bounds.

Proposition 21 (L2 pressure estimate). Let (uh, ph) ∈Wh be a solution to (4.6).

Then, there exists C, depending only on d,Ω, µ and θ,such that the following inequality

holds

‖ph‖0,Ω ≤ C‖f‖0,Ω (4.10)

Proof. Let ph ∈ X0
h be given. According to Lemma 15, there exists w ∈ H1

0 (Ω) with

∇ ·w = ph and |w|1,Ω ≤ C ‖ph‖0,Ω (4.11)

Next, we set

w
(i)
h,K = 1

|K|

∫
K
w(i) (x) dx, ∀K ∈ Dh, i = 1, . . . , d (4.12)

and

w
(i)
h,σ = 1

|σ|

∫
σ
w(i) (x) dγ (x) , ∀σ ∈ Eint, i = 1, . . . , d (4.13)

where w =
(
w(i)

)
i=1,...,d

.

So, we have

(ph,∇h ·wh)0,Ω =
∑
K

ph,K
∑

σ∈Eint∩∂K

∫
σ

wh,σ·nσ +
∑
K

ph,K
∑

σ∈Eint∩∂K

∫
σ

(wh,L + wh,K

2 −wh,σ

)
· nσ
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and by using (4.13) we get

(ph,∇h ·wh)0,Ω = ‖ph‖2
0,Ω +

∑
σ∈Eint

∫
σ

(ph,K − ph,L)
(wh,L + wh,K

2 −wh,σ

)
· nσ

Applying the results given in [55], there exists C > 0 such that

∀K ∈ Dh, ∀σ ∈ ∂K, |wh,K −wh,σ|2 ≤ Ch2−d
∫
K
|∇w (x)|2dx (4.14)

Now, combining the Cauchy-Schwarz inequality, the obvious inequality(wh,L + wh,K

2 −wh,σ

)2
≤ 1

2
(
(wh,K −wh,σ)2 +

(
(wh,L −wh,σ)2

))
and (4.14) yields∣∣∣∣∣∣

∑
σ∈Eint

∫
σ

(ph,K − ph,L)
(wh,L + wh,K

2 −wh,σ

)
· nσ

∣∣∣∣∣∣ ≤ CJ(ph, ph)
1
2 ‖w‖1,Ω

On the other hand, applying (3.23) gives

(ph,∇h ·wh)0,Ω ≥ ‖ph‖
2
0,Ω − CJ(ph, ph)

1
2‖ph‖0,Ω

Next, by setting vh = wh in (4.2a), we get

(ph,∇h ·wh)0,Ω = a (uh,wh)− (f ,wh)0,Ω

so that

‖ph‖2
0,Ω − CJ(ph, ph)

1
2‖ph‖0,Ω ≤ a (uh,wh)− (f ,wh)0,Ω

Now, it remains to bound each term of the right-hand side of this relation. To this

end, using (3.23) we have

(f ,wh)0,Ω ≤ C‖f‖0,Ω‖ph‖0,Ω

For Stokes we have

a (uh,wh) ≤ µ‖uh‖h ‖wh‖h + µ‖∇h · uh‖0,Ω‖∇h ·wh‖0,Ω

Applying inequalities (4.7),(4.8) and (3.23), we get

a (uh,wh) ≤ C‖f‖0,Ω‖ph‖0,Ω

For Darcy, applying Cauchy-Schwarz inequality,(3.3),(4.8) and (3.23), we get

a (uh,wh) ≤ C‖f‖0,Ω‖ph‖0,Ω

which yields

‖ph‖2
0,Ω − CJ(ph, ph)

1
2‖ph‖0,Ω ≤ C‖f‖0,Ω‖ph‖0,Ω

so that

‖ph‖0,Ω ≤ C‖f‖0,Ω + CJ(ph, ph)
1
2

Finally, applying inequality (4.9) gives the claimed estimate.
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Scheme stability

The crucial point is to show that the stabilizing term J(ph, ph) enhances sufficiently

the degrees of freedom in the pressure field so that a stability condition is satisfied. In

the analysis, we will use the following composite norm

||| (uh, ph) |||2 = ‖(uh, ph)‖2
Wh

+ J (ph, ph) ∀ (uh, ph) ∈Wh

Note that the triple norm contains of course the L2-norm of ∇h · uh. This term seems

superfluous for Stokes since we already control the discrete norm of the velocities, but

of vital importance for Darcy. In fact, the control of the divergence is what allows us

to prove optimal error estimates in the energy norm for sufficiently regular solutions.

The main result of this section is the following theorem, assuring the well-posedness of

the proposed approximation.

Theorem 22. The finite volume formulation (4.6) satisfies the following stability con-

dition

γ ||| (uh, ph) ||| ≤ sup
(vh,qh)∈Wh

B [(uh, ph) , (vh, qh)]
||| (vh, qh) |||

∀ (uh, ph) ∈Wh (4.15)

Proof. Let (uh, ph) ∈Wh.

1) Control of ‖uh‖2
l :

Taking (vh, qh) = (uh, ph) in (4.5) we get

B [(uh, ph) , (uh, ph)] = a (uh,uh) + J (ph, ph)

Hence, we have for Stokes

a (uh,uh) ≥ µ‖uh‖2
h

and for Darcy

a (uh,uh) = ‖uh‖2
0,Ω

Thus,

B [(uh, ph) , (uh, ph)] ≥ Ca‖uh‖2
l + J (ph, ph) (4.16)

where

Ca =

 µ for Stokes

1 for Darcy

2) Control of ‖ph‖2
0,Ω:

We will follow the methodology used above in the proof of Proposition 21 by ap-

plying Lemma 15. Let wh ∈ Xh defined as in (4.12) and (4.13) for the given ph.
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Taking (vh, qh) = (wh, 0) in (4.5) we obtain

B [(uh, ph) , (wh, 0)] = a (uh,wh)− (ph,∇h ·wh)0,Ω (4.17)

To proceed, we have to bound each term of the right hand side of this relation. So,

a) for Stokes:

|a (uh,wh)| ≤ µ‖uh‖h‖wh‖h + µ‖∇h · uh‖0,Ω‖∇h ·wh‖0,Ω

Applying inequality (4.7) and (3.23) yields

|a (uh,wh)| ≤
2µ2

ε
‖uh‖2

h + εC‖ph‖2
0,Ω

b) for Darcy:

Applying inequality (3.3) and (3.23) yields

|a (uh,wh)| ≤
1
ε
‖uh‖2

0,Ω + εC‖ph‖2
0,Ω

In both cases, we get

a (uh,wh) ≥ −
Cb
ε
‖uh‖2

l − εC‖ph‖
2
0,Ω

where

Cb =

 2µ2 for Stokes

1 for Darcy

Furthermore, it follows

(ph,∇h ·wh)0,Ω ≤ −‖ph‖
2
0,Ω + 1

ε
J (ph, ph) + εC‖ph‖2

0,Ω

so that

− (ph,∇h ·wh)0,Ω ≥ (1− εC) ‖ph‖2
0,Ω −

1
ε
J (ph, ph)

Gathering all above results, we finally get

B [(uh, ph) , (wh, 0)] ≥ −Cb
ε
‖uh‖2

l (1− εC) ‖ph‖2
0,Ω −

1
ε
J (ph, ph) (4.18)

3) Control of ‖∇h · uh‖2
0,Ω:

Taking (vh, qh) = (0,∇h · uh) in (4.5) gives

B [(uh, ph) , (0,∇h · uh)] = ‖∇h · uh‖2
0,Ω + J (ph,∇h · uh)

By the definition of discrete divergence operator, ∇h · uh ∈ Xh is constant on each

volume and hence we have

C‖∇h · uh‖2
0,K ≥ h ‖(∇h · uh)K‖

2
0,∂K
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Using the latter together with Cauchy-Schwarz and Young inequalities allows the fol-

lowing bound for the stabilization term

|J (ph,∇h · uh)| ≤
1
ε
J (ph, ph) + εC‖∇h · uh‖2

0,Ω

So,

B [(uh, ph) , (0,∇h · uh)] ≥ (1− εC) ‖∇h · uh‖2
0,Ω −

1
ε
J (ph, ph) (4.19)

Finally, we conclude by taking (vh, qh) = (βuh + wh, βph +∇h · uh) with

β ≥
(
Cb
Ca

+ 2
) 1
ε

+
( 1
Ca

+ 1
)

(1− εC)

By combining the latter with (4.16),(4.18) and (4.19), it follows

B [(uh, ph) , (vh, qh)] ≥ min
{
βCa −

Cb
ε
, 1− εC, β − 2

ε

}
||| (uh, ph) |||2

Therefore,

B [(uh, ph) , (vh, qh)] ≥ (1− εC) ||| (uh, ph) |||2

The required result follows by taking ε sufficiently small, e.g. ε < 1
C

, and noting that

there exists C such that

||| (uh, ph) |||≥ C ||| (vh, qh) |||

4.1.2 Error estimates

Here, we establish error estimates for the discrete FV solution in the usual norms.

Let us start with the Stokes case. The fundamendal result of error estimates is a

consequence based on the following intermediate proposition.

Proposition 23. Let (u, p) ∈ (H2 (Ω) ∩H1
0 (Ω)) × H1 (Ω) and (uh, ph) ∈ Wh be the

respective solutions of (2.4) and (4.6) for Stokes. Then, for any ε < 1
2min {µ, 1} there

exists a constant C, depending only on d, µ,Ω and θ, such that

‖uh − π (u)‖h ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
(4.20)

J (ph, ph)1/2 ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
(4.21)

Proof. First, let (ûh, p̂h) ∈ Xh × X0
h be defined by ûh = π (u) and p̂h = π (p) . Inte-

grating (2.4a) on K ∈ Dh and using the fact that ∇ · u = 0 gives

− µ
∑
σ∈∂K

∫
σ
∇u · nσ +

∑
σ∈∂K

∫
σ
pnσ =

∫
K

f (4.22)
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i.e.

−µ
∫
K

∆hûh +
∫
K
∇h p̂h =

∫
K

f +
∫
K
RK (u, p)

where

RK (u, p) = −µ
∑
σ∈∂K

R∆(u) +
∑
σ∈∂K

R∇(p)

Set eh = ûh − uh and εh = p̂h − ph. Then, subtracting (4.3a) for Stokes equation from

the above equation, we get

−µ
∫
K

∆heh + µ (∇h (∇h · uh))K +
∫
K
∇h (εh) =

∫
K
RK (u, p)

For any vh ∈ Xh, we get

µ[eh,vh]h − µ (∇h · uh,∇h · vh)0,Ω − (εh,∇h · vh)0,Ω = (R (u, p) ,vh)0,Ω (4.23)

Setting vh = eh in this last relation yields

µ‖eh‖2
h + µ‖∇h · uh‖2

0,Ω − (εh,∇h · eh)0,Ω = (R (u, p), eh)0,Ω + µ (∇h · uh,∇h · ûh)0,Ω

(4.24)

Now, let us integrate (2.4b) on K ∈ Dh. This gives

∑
σ∈∂K

∫
σ
u · nσ = 0

Since u vanishes on the boundary of Ω, we obtain∫
K

∇h · ûh =
∑

σ∈Eint∩∂K
Rdiv(u) ∀K ∈ Dh

Then, subtracting (4.3b) for Stokes equation from the above equation gives∫
K

∇h · eh =
∑

σ∈Eint∩∂K
Rdiv(u) + 2δ

∑
σ∈Eint∩∂K

∫
σ
h [ph]

This yields

(qh,∇h · eh)0,Ω =
∑

σ∈Eint

Rdiv(u) (qh,K − qh,L) + J (ph, qh)

and setting qh = εh in this relation gives

(εh,∇h · eh)0,Ω =
∑

σ∈Eint

Rdiv(u) (εh,K − εh,L) + J (ph, εh) (4.25)

Gathering (4.24) and (4.25), we get

µ ‖eh‖2
h + µ ‖∇h · uh‖2

0,Ω + J (ph, ph) = (R (u, p) ,eh)0,Ω + µ (∇h · uh,∇h · ûh)0,Ω

+
∑

σ∈Eint

Rdiv(u) (εh,K − εh,L) + J (ph, p̂h) (4.26)
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Next, let us study the terms in the right-hand side of (4.26). The first term is

(R (u, p) , eh)0,Ω = −µ
∑
K

∑
σ∈∂K

R∆(u) · eh,K +
∑
K

∑
σ∈∂K

R∇(p) · eh,K (4.27)

Using the Cauchy-Schwarz inequality and the consistencly result (3.29), it follows∣∣∣∣∣∣−µ
∑
K

∑
σ∈∂K

R∆(u) · eh,K

∣∣∣∣∣∣ ≤ Ch‖eh‖h‖u‖2,Ω

Likewise, by using the Cauchy-Schwarz inequality and the consistencly result (3.30),

we get ∣∣∣∣∣∣
∑
K

∑
σ∈∂K

R∇(p) · eh,K

∣∣∣∣∣∣ ≤ Ch‖eh‖h‖p‖1,Ω

Getting back to (4.27), we have

(R (u, p) , eh)0,Ω ≤ C
h2

ε
‖u‖2

2,Ω + 2ε‖eh‖2
h + C5

h2

ε
‖p‖2

1,Ω (4.28)

for all ε > 0.
Using the Cauchy-Schwarz inequality,(3.16) and (4.7) on the second term in (4.26),

we get

µ (∇h · uh,∇h · ûh)0,Ω ≤ C
h2

ε
‖u‖2

2,Ω + ε‖∇h · uh‖2
0,Ω (4.29)

Let us decompose the third term in (4.26) to get∑
σ∈Eint

Rdiv(u) (εh,K − εh,L) =
∑

σ∈Eint

Rdiv(u) (p̂h,K − p̂h,L) +
∑

σ∈Eint

Rdiv(u) (ph,K − ph,L)

We have

∑
σ∈Eint

Rdiv(u) (p̂h,K − p̂h,L) ≤
 ∑
σ∈Eint

1
dKL

(p̂h,K − p̂h,L)2

 1
2
 ∑
σ∈Eint

dKL (Rdiv(u)) 2

 1
2

Using the consistencly result (3.31), we get∑
σ∈Eint

Rdiv(u) (p̂h,K − p̂h,L) ≤ Ch2
(1
ε
‖u‖2

2,Ω + ε‖p‖2
1,Ω

)
(4.30)

so that ∑
σ∈Eint

Rdiv(u) (ph,K − ph,L) ≤ C
h2

ε
‖u‖2

2,Ω + εJ (ph, ph) (4.31)

Finally, the Cauchy-Schwarz inequality implies

J (ph, p̂h) ≤ εJ (ph, ph) + C
h2

ε
‖p‖2

1,Ω (4.32)

Gathering (4.28) to (4.32) yields the control error inequality

(µ− ε) ‖eh‖2
h + (µ− ε) ‖∇h · uh‖2

0,Ω + (1− 2ε) J (ph, ph) ≤ Ch2
(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
By choosing ε sufficiently small, e.g. ε < 1

2min {µ, 1}, it is clear that the latter implies

(4.20) and (4.21).
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Theorem 24. In addition to assumptions of Proposition 23, let uD ∈ Xh defined by:

uDK = u (xK) , K ∈ Dh. Then

‖uh − uD‖h ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
(4.33)

and

‖uh − u‖0,Ω ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
(4.34)

‖ph − p‖0,Ω ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
(4.35)

Proof. First of all, note that (4.33) is straightforwardly deduced from the definition

of uD and (4.20) by applying the triangular inequality and a classical interpolation

result . Likewise, (4.34) follows by similar arguments from the triangular inequality,

interpolation results and the discrete Poincaré inequality (3.3). It remains to establish

(4.35).

Here again, we will use Lemma 15. Like in Proposition 21, there is a w ∈ H1
0(Ω)

satisfying

∇ ·w = εh and ‖w‖1,Ω ≤ C15‖εh‖0,Ω

We again define wh = π (w) satisfying (4.12) and (4.13). We have

‖εh‖2
0,Ω ≤ (εh,∇h ·wh)0,Ω + J(εh, εh)

1
2C‖εh‖0,Ω

which yields

‖εh‖2
0,Ω ≤ (εh,∇h ·wh)0,Ω + C

h2

ε
‖p‖2

1,Ω + 1
ε
J (ph, ph) + εC‖εh‖2

0,Ω

We now use wh as a test function in (4.23). We get

(εh,∇h ·wh)0,Ω = µ[eh,wh]h − µ(∇h · uh,∇h ·wh)0,Ω − (R (u, p) ,wh)0,Ω

Gathering the latter with the above relations yields

‖ε‖2
0,Ω ≤ C‖eh‖h‖εh‖0,Ω + C‖uh − ûh‖h‖εh‖0,Ω + C‖ûh‖h‖εh‖0,Ω

+ Ch‖εh‖h
(
‖u‖2,Ω + ‖p‖1,Ω

)
+ C

h2

ε
‖p‖2

1,Ω

+ 1
ε
J (ph, ph) + εC12‖εh‖2

0,Ω

Finally, applying successively the Young inequality, (3.16), (4.20), (4.21) and the con-

tinuity of the interpolation operator leads to the desired result.

The corresponding result on error estimates for the Darcy part is now established.
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Theorem 25. Let (u, p) ∈ (H1 (Ω) ∩H1
0 (Ω))×H1 (Ω) and (uh, ph) ∈Wh be the Darcy

solutions of (2.10) and (4.6) repectively. Then, there exists C, which depends only on

d,Ω, δ and θ, such that

‖uh − π (u)‖0,Ω ≤ Ch
(
‖u‖1,Ω + ‖p‖1,Ω

)
(4.36)

‖uh − u‖0,Ω ≤ Ch
(
‖u‖1,Ω + ‖p‖1,Ω

)
(4.37)

‖ph − p‖2
0,Ω ≤ Ch

(
‖u‖1,Ω + ‖p‖1,Ω

)
(4.38)

Proof. 1) Control equation for errors.

First, let (ûh, p̂h) ∈ Xh ×X0
h be defined by ûh = π (u) and p̂h = π (p) . Integrating

(2.10a) on K ∈ Dh gives ∫
K

u +
∑
σ∈∂K

∫
σ
pnσ =

∫
K

f (4.39)

We introduce for all K ∈ Dh the following consistency residuals

R0,K (u) = ûh −
1
|K|

∫
K

u

From (4.39) we get ∫
K

ûh,K +
∫
K
∇h p̂h =

∫
K

f +
∫
K
RK (u, p)

with

RK (u, p) = R0,K (u) + 1
|K|

∑
σ∈∂K

∫
σ
R∇ (p) nσ

Set eh = ûh − uh and εh = p̂h − ph. Subtracting equation (4.3a) for Darcy equation

from the above equation yields∫
K

eh,K +
∫
K
∇h εh =

∫
K
RK (u, p)

For all vh ∈ Xh, we get∫
Ω

eh · vh −
∫

Ω
εh(∇h · vh) =

∫
Ω
R (u, p) · vh

and setting vh = eh in this relation, it follows

‖eh‖2
0,Ω −

∫
Ω
εh(∇h · eh) =

∫
Ω
R (u, p) · eh

Using (4.25), we get

‖eh‖2
0,Ω + J (ph, ph) =

∫
Ω
R (u, p) · eh +

∑
σ∈Eint

|σ|Rdiv (εh,K − εh,L) + J (ph, p̂h)

2) Proof of bounds.
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Let us study the terms at the right-hand side of the above equation. The first term

can be written as∫
Ω
R (u, p) · eh =

∑
K

|K|R0,K (u) · eh,K +
∑
K

∑
σ∈∂K

|σ|R∇ (p) nσ · eh,K

≤
(∑

K

|K| (R0,K (u))2
) 1

2

‖eh‖0,Ω + Ch‖eh‖0,Ω‖p‖1,Ω

from the result shown in (4.28). We have∫
Ω
R (u, p) · eh ≤ C3

h2

ε
‖u‖2

1,Ω + 2ε‖eh‖2
0,Ω + C

h2

ε
‖p‖2

1,Ω (4.40)

Finally, using like (4.30),(4.31) and (4.32) gives (4.36). Using the same technique

as in Proposition 23, we deduce (4.37) and (4.38). This completes the proof of the

theorem.

4.2 A FVM for a coupled Stokes-Darcy problem

Now, let us turn to the coupled Stokes-Darcy problem (2.16) to (2.20). Here, recall

that the domain Ω is split into two parts Ωs and Ωd for the Stokes-Darcy system as

presented in [64].

For discretizing Ω let assume Dh = Dh,s∪Dh,d where Dh,s and Dh,d are two famillies

of regular volumes for the partitioning of Ωs and Ωd as previously defined. Further,

denote by EΓ the finite set of volume boundaries σ (edges or faces) on the interface Γ.
Let us define the global space of velocities Vh analogue to (2.21), defined by

Vh = Xh ∩V

equipped with the norm

‖u‖Vh
=
(
‖u‖2

h + ‖u‖2
0,Ωd

) 1
2

We will also denote by Wh the product space Vh ×X0
h.

The proposed discrete approximation of (2.16) is :

Find (uh, ph) ∈Wh such that

a (uh,vh) + b (vh, ph) = (f ,vh)0,Ω ∀vh ∈ Vh (4.41a)

b (uh, qh)− J (ph, qh) = 0 ∀qh ∈ Xh (4.41b)

where

a (uh,vh) = µ[uh,vh]h + µ
(
k−1uh,vh

)
0,Ωd

+ µα√
k

(uh,s · τ,vh,s · τ)0,Γ

b (vh, ph) = −(ph,∇h · vh)0,Ω

J (ph, qh) = Js (ph, qh) + Jd (ph, qh)
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with

Jl (ph, qh) = δl
∑
K

∫
∂K\Γ

h∂K [ph] [qh] ds l = s, d

and δl > 0 is a stabilization parameter.

The stabilized coupled formulation (4.41) can be written in the global form:

Find (uh, ph) ∈Wh such that

B [(uh, ph) , (vh, qh)] = (f ,vh)0,Ω (4.42)

where

B [(uh, ph) , (vh, qh)] = a (uh,vh) + b (vh, ph) + b (uh, qh)− J (ph, qh) (4.43)

We equip Wh with the following norm

|||(uh, ph)|||2 = ‖uh‖2
Vh

+ ‖∇h · uh‖2
0,Ω + ‖ph‖2

0,Ω + J (ph, ph) (4.44)

4.2.1 Study of the scheme

Discrete solution regularity

This section is concerned with the existence and uniqueness of the finite volume solu-

tion. First, let us establish some estimates which express continuity (control) of discrete

velocity and pressure with respect to the external source f .

Proposition 26. Let (uh, ph) ∈Wh be a solution to (4.42). Then, there exists C such

that the following inequalities hold

‖uh‖Vh
≤ C‖f‖0,Ω (4.45)

J (ph, ph) ≤ C‖f‖2
0,Ω (4.46)

Proof. Setting vh = uh and qh = −ph in (4.42), we get

a (uh,uh) + J (ph, ph) = (f ,vh)0,Ω

Using (2.15), the Young inequality and Poincaré inequalities (3.3), it follows that

µ‖uh‖2
h + λ1‖uh‖2

0,Ωd
+ J (ph, ph) ≤

diam (Ω)2

2ε ‖f‖2
0,Ω + ε

2‖uh‖
2
h + ε

2diam (Ω)2‖uh‖
2
0,Ωd

It is now clear that the choice ε < 2 min
{
µ, λ1diam (Ω)2

}
yields the result.

Proposition 27. Let (uh, ph) ∈Wh be a solution to (4.42). Then, there exists C such

that the following inequality holds

‖ph‖0,Ω ≤ C‖f‖0,Ω (4.47)
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Proof. Let (wh, ph) ∈ Wh, where wh = π (w) ,w ∈ H1
0 (Ω). Following the same steps

as previously, we get

(ph,∇h ·wh)0,Ω ≥ ‖ph‖
2
0,Ω − CJ (ph, ph)1/2‖ph‖0,Ω (4.48)

Next, setting vh= wh in (4.41a) gives

(ph,∇h ·wh)0,Ω = a(uh,wh)− (f ,wh)0,Ω

so that

‖ph‖2
0,Ω − CJ (ph, ph)1/2‖p‖0,Ω ≤ a(uh,wh)− (f ,wh)0,Ω

Now, it remains to bound each term of the right-hand side of this relation. Combining

the Cauchy-Schwarz inequality, (3.3) and (3.23) yields

(f ,wh)0,Ω ≤ ‖f‖0,Ω‖ph‖0,Ω (4.49)

Using again the Cauchy-Schwarz inequality and (2.15) leads to

a(u,wh) ≤ C‖uh‖Vh
‖wh‖Vh

+ C‖uh,s‖0,Γ‖wh,s‖0,Γ

Since uh ∈ Vh is constant on each volume, we have

C‖uh‖2
0,K ≥ h ‖uh,K‖2

∂K (4.50)

For σ ∈ EΓ we can also see that

∑
σ∈EΓ

∥∥∥h1/2
σ · uh,l

∥∥∥2

0,σ
≤ C‖uh,l‖2

0,ΩΓ
l
≤ C‖uh‖2

0,Ωl
(4.51)

where ΩΓ
l denotes the union of the volumes in Ωl neighboring the boundary Γ.

Further, using (3.3) and (4.51) we get

Ch1/2‖uh,s‖0,Γ ≤ ‖uh‖Vh

To conclude, the use of the trace inequality (3.4) combined with interpolation result

leads to

h−1/2‖wh,s‖0,Γ ≤ ‖w‖1,Ω

So,

a(uh,wh) ≤ C‖uh‖Vh
‖wh‖Vh

+ ‖uh‖Vh
‖wh‖1,Ω (4.52)

and by (3.3), (4.45) and (3.23) we get

a(uh,wh) ≤ C‖f‖0,Ω‖ph‖0,Ω (4.53)
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Gathering (4.49) and (4.53) gives

‖ph‖2
0,Ω − CJ (ph, ph)1/2‖ph‖0,Ω ≤ C‖f‖0,Ω‖ph‖0,Ω

and, equivalently,

‖ph‖0,Ω ≤ C‖f‖0,Ω + CJ (ph, ph)1/2

Finally, applying inequality (4.46) gives the claimed result.

Scheme stability

Theorem 28. The following stability inequality holds

γ |||(uh,ph)||| ≤ sup
(vh,qh)∈Wh

B [(uh, ph) , (vh, qh)]
|||(vh,qh)|||

∀ (uh, ph) ∈Wh (4.54)

Proof. 1) Control of ‖uh‖2
Vh

:
Taking (vh, qh) = (uh,−ph) in (4.43) we obtain

B [(uh, ph) , (uh,−ph)] = a (uh,uh) + J (ph, ph)

Hence, using (2.15) we have

a (uh,uh) ≥ min {µ, λ1} ‖uh‖
2
Vh

Thus,

B [(uh, p) , (uh,−ph)] ≥ min {µ, λ1} ‖uh‖
2
Vh

+ J (ph, ph) (4.55)

2) Control of ‖ph‖2
0,Ω:

Setting (vh, qh) = (wh, 0) in (4.43) we obtain

B [(uh,ph) , (wh, 0)] = a (uh,wh) + b (ph,wh)

To proceed, we need to bound each term of the right-hand side of tis relation. Thus,

from (4.52), we may write

a (uh,wh) ≥ −
max {µ2, λ2

2}
ε

‖uh‖2
Vh
− εC‖ph‖2

0,Ω (4.56)

For b (ph,wh) we use the same technique as in Proposition (21). It follows

b (ph,wh) ≥ (1− εC) ‖ph‖2
0,Ω −

1
ε
J (ph, ph) (4.57)

Collecting all estimated terms, we obtain

B [(uh,ph) , (wh, 0)] ≥ −max {µ2, λ2
2}

ε
‖uh‖2

Vh
+ (1− εC) ‖ph‖2

0,Ω −
1
ε
J (ph, ph) (4.58)
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3) Control of ‖∇h · uh‖2
0,Ω:

Taking (vh,qh) = (0,−∇h · uh) in (4.43) gives

B [(uh,ph) , (0,−∇h · uh)] = ‖∇h · uh‖2
0,Ω + J (ph,∇h · uh)

We apply (4.50) together with the Cauchy-Schwarz and Young inequalities, then

|J (ph,∇h · uh)| ≤
1
ε
J (ph, ph) + εC‖∇h · uh‖2

0,Ω

which leads to

B [(uh, ph) , (0,−∇h · uh)] ≥ (1− εC) ‖∇h · uh‖2
0,Ω −

1
ε
J (ph, ph) (4.59)

Finally, by taking (vh, qh) = (βuh + wh, βph −∇h · uh) with β sufficiently large and ε

conveniently chosen, we get

B [(uh, ph) , (wh, qh)] ≥ min
{
βmin {µ, λ1}−

max {µ2, λ2
2}

ε
, 1− εC, β − 2

ε

}
|||(uh,ph)|||2

Therefore,

B [(uh, ph) , (βuh + vh, βph −∇h · uh)] ≥ (1− εC) |||(uh,ph)|||2

The required result follows by noting that there exists C such that

|||(uh,ph)||| ≥ C |||(vh,qh)|||

4.2.2 Error estimates

As a consequence of the above stability results, we obtain the error estimates relevant

to convergence.

Proposition 29. Let (u,p) and (uh,ph) be the solutions of problems (2.16) and (4.42)

respectively. Assume that (u, p) ∈ H2 (Ω) × H1 (Ω). Then, there exists C, depending

only on d,Ω, µ, λ1 and θ, such that

‖π (u)− uh‖Vh
≤ Ch

(
‖u‖2,Ω + ‖p‖1,Ω

)
(4.60)

J(ph, ph)
1
2 ≤ Ch

(
‖u‖2,Ω + ‖p‖1,Ω

)
(4.61)

Proof. First, let (ûh, p̂h) ∈ Xh ×X0
h be defined by ûh = π (u) and p̂h = π (p) .
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Multiplying the two first equations in (2.16) by v ∈ Vh, integrating by parts on

K ∈ Dh,s and L ∈ Dh,d respectively, adding the two equations and using the interface

condition yields

µ[ûh,vh]h + µ
(
k−1ûh,vh

)
0,Ωd

− (p̂h,∇h · vh)0,Ω + µα√
k

(ûh,s · τ,vh,s · τ)0,Γ

= (f ,vh)0,Ω +R1 (vh) + µα√
k

((ûh,s − us) · τ,vh,s · τ)0,Γ

where R1 (vh) is the consistency residual defined by

R1 (vh) = µ[ûh,vh]h + µ
∑

K∈Dh,s

∑
σ∈∂K

∫
σ\Γ
∇u · vh,Knσ + µ

(
k−1ûh,vh

)
0,Ωd

−
∑

L∈Dh,d

∫
L

k−1ud · vh,L

− (p̂h,∇h · vh)0,Ω −
∑
K∈Dh

∑
σ∈∂K

∫
σ\Γ
pvh,K · nσ

Set eh = ûh − uh and εh = p̂h − ph. Subtracting (4.41a) from the above equation, we

then get

µ[eh,vh]h + µ
(
k−1eh,vh

)
0,Ωd

− (εh,∇h · vh)0,Ω + µα√
k

(eh,s · τ,vh,s · τ)0,Γ (4.62)

= R1 (vh) + µα√
k

((ûh,s − us) · τ,vh,s · τ)0,Γ (4.63)

By setting vh = eh in the last relation, we have

µ‖eh‖2
h + µ

∥∥∥k−1/2eh
∥∥∥2

0,Ωd

− (ε,∇h · eh)0,Ω + µα√
k
‖eh,s · τ‖2

0,Γ

=R1 (eh) + µα√
k

((ûh,s − us) · τ, eh,s · τ)0,Γ (4.64)

Now, multiplying the last equation in (2.16) by qh ∈ X0
h, integrating by parts on

K ∈ Dh,s and L ∈ Dh,d, and adding the two deduced equations we get

(qh,∇h · û)0,Ωs
+ (qh,∇h · û)0,Ωd

= R2(qh)−
∫

Γ
usqh,K · nsds−

∫
Γ

udqh,L · ndds

where R2(qh) is the consistency residual

R2(qh) = (qh,∇h · ûh)0,Ωs
−

∑
K∈Ms

∑
σ∈∂K

∫
σ\Γ

uqh,K ·nσ+(qh,∇h · ûh)0,Ωd
−
∑

L∈Md

∑
σ∈∂K

∫
σ\Γ

uqh,L·nσ

Next, adding (4.41b) to the above equation gives

(qh,∇h · eh)0,Ω = R2(qh)−
∫

Γ
usqh,K · nsds−

∫
Γ

udqh,L · ndds+ J(ph, qh)

and setting qh = εh in this relation yields

(εh,∇h · eh)0,Ω = R2(εh)−
∫

Γ
usεh,s · nsds−

∫
Γ

udεh,d · ndds+ J(ph, εh)
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The latter may be written as well in the equivalent form

(εh,∇h · eh)0,Ω = R2(εh)−
∫

Γ
usεh,s · nsds−

∫
Γ

udεh,d · ndds+ J(ph, εh) (4.65)

Gathering (4.64) and (4.65) we get

µ‖eh‖2
h + µ

∥∥∥k−1/2eh
∥∥∥2

0,Ωd

+ µα√
k
‖eh,s · τ‖2

0,Γ + J(ph, ph)

= R1(eh) +R2(εh) + µα√
k

((ûh,s − us) · τ, eh,s · τ)0,Γ (4.66)

−
∫

Γ
usεh,s · nsds−

∫
Γ

udεh,d · ndds+ J(ph, p̂h) (4.67)

Next, let us study the terms in the right-hand side of the above equation.

I) Boundedness of R1(eh) and R2(εh) :
Thanks to consistency results we get

R1(eh) ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
‖eh‖

Vh
(4.68)

R2(εh) ≤ Ch2
(1
ε
‖u‖2

2,Ω + ε ‖p‖2
1,Ω

)
+ εJ(ph, ph) (4.69)

II) Using (3.5) and interpolation results gives

µα√
k

((ûh,s − us) · τ, eh,s · τ)0,Γ ≤ Ch3 ‖u‖2
2,Ω + µα√

k
‖eh,s · τ‖2

0,Γ (4.70)

III) Using the Cauchy-Schwarz inequality followed by (3.16) we get

J(ph, p̂h) ≤ J (ph, ph)
1
2

C ∑
σ∈Eint

|σ|h(p̂h,K − p̂h,L)2

 1
2

≤ εJ (ph, ph) + C
h2

ε
‖p‖2

1,Ω (4.71)

IV) Using the Cauchy Schwarz inequality followed by the Young inequality we get∣∣∣∣−∫
Γ

usεh,s · nsds−
∫

Γ
udεh,d · ndds

∣∣∣∣ ≤ εh‖εh,s‖2
0,Γ+h

−1

ε
‖us‖2

0,Γ+εh‖εh,d‖2
0,Γ+h

−1

ε
‖ud‖2

0,Γ

By the trace inequality (3.5) we have

h−1 ‖us‖2
0,Γ ≤ Ch2 ‖us‖2

2,Ωs

h−1

ε
‖ud‖2

0,Γ ≤ Ch2 ‖ud‖2
2,Ωd

which, in vertue of (4.51), leads to∣∣∣∣−∫
Γ

usεh,s · nsds−
∫

Γ
udεh,d · ndds

∣∣∣∣ ≤ εC‖εh‖2
0,Ω + C

ε
h2 ‖u‖2

2,Ω (4.72)

To conclude we need to control ‖εh‖2
0,Ω.
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Let w ∈ H1
0 (Ω) be given such that:

∇ ·w (x) = εh(x) and ‖w‖1,Ω ≤ C‖εh‖0,Ω (4.73)

Like in proposition 21, we have

‖εh‖2
0,Ω ≤ (εh,∇h ·wh)0,Ω + J (εh, εh)

1
2C‖εh‖0,Ω (4.74)

We now use wh as a test function in (4.63) to get

(εh,∇h ·wh)0,Ω = a (eh,wh)−R1 (wh) (4.75)

Taking into account (4.74) and using (4.52) , (4.68) and (4.73) give

‖εh‖2
0,Ω ≤ C ‖eh‖Vh

‖εh‖0,Ω + Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
‖εh‖0,Ω + CJ (εh, εh)

1
2‖ε‖0,Ω

So,

‖εh‖0,Ω ≤ C ‖eh‖Vh
+ Ch

(
‖u‖2,Ω + ‖p‖1,Ω

)
+ CJ (εh, εh)

1
2 (4.76)

Using the Cauchy-Schwarz inequality and (3.16) we get

‖εh‖2
0,Ω ≤ C ‖eh‖2

Vh
+ Ch2

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
+ Ch2‖p‖2

1,Ω + εCJ(ph, ph)

Now, substituting this result in (4.72) gives

∣∣∣∣−∫
Γ

usεh,s · nsds−
∫

Γ
udεh,d · ndds

∣∣∣∣ ≤ εC ‖eh‖2
Vh

+ εCh2
(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
+ εCJ(ph,ph) + C

ε
h2 ‖u‖2

2,Ω (4.77)

Gathering all above results, we may rewrite (4.67) as follows:

(µ− Cε) ‖eh‖2
h + (λ1 − Cε) ‖eh‖2

0,Ωd
+ (1− Cε) J(ph,ph) ≤ Ch2

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
It is now clear that choosing ε sufficiently small, e.g. ε < min

{
µ
C
, λ1
C
, 1
C

}
, the latter

implies (4.60) and (4.61).

Theorem 30. In addition to assumptions of Proposition 29, let uD ∈ Vh defined by:

uDK = u (xK) , K ∈ Dh. Then

‖uD − uh‖Vh
≤ Ch

(
‖u‖2,Ω + ‖p‖1,Ω

)
(4.78)

‖uD − uh‖0,Ω ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
(4.79)

‖p− ph‖0,Ω ≤ Ch
(
‖u‖2,Ω + ‖p‖1,Ω

)
(4.80)
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Proof. First of all, note that (4.78) is straightforwardly deduced from the definition of

uD and (4.60) by applying the triangular inequality and interpolation results. Likewise,

(4.79) follows by similar arguments from the triangular inequality, interpolation results

and the discrete Poincaré inequality (3.3).

Finally, using (4.76), (4.60), (4.61) and interpolation results, we get

‖p− ph‖2
0,Ω ≤ 2‖p− π (p)‖2

0,Ω + 2‖π (p)− ph‖2
0,Ω ≤ Ch2

(
‖u‖2

2,Ω + ‖p‖2
1,Ω

)
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Chapter 5

Numerical tests

This chapter presents several representative results of numerical experiments under-

taken for the Stokes, Darcy and coupled Stokes-Darcy models previousely studied us-

ing Matlab R2017. The main objective is to confirm the validity of the error estimates

established in the theoretical convergence study by means of benchmark test problems

with given analytical solutions.

For the convergence analysis, the velocity error is measured by

e
(i)
h,K = u

(i)
K (xK)− u(i)

h,K

and the pressure error by

εh,K = pK(xK)− ph,K

The following discrete error norms are used for the investigation of convergence

rates

1) velocity norm in H1
0

‖eh‖h =

√√√√ 2∑
i=1

[
e

(i)
h , e

(i)
h

]
h

2) velocity norm in L2

‖eh‖0,Ω =

√√√√ 2∑
i=1

∫
Ω

(
e

(i)
h

)2
dΩ

3) pressure norm in L2

‖εh‖0,Ω =
√∫

Ω
ε2hdΩ
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5.1 Decoupled problem

In this section two numerical exemples are analyzed for a study of discrete solution ac-

curacy and convergence rates for both Stokes and Darcy problems. The computational

domain is Ω =]0, 1[×]0, 1[ and the problem (2.4), (2.10) is to be discretized and solved

using uniform partitionings of Ω into n× n equal squares (n = 10, ..., 100). Moreover,

in order to restore a unique pressure field a zero mean pressure is imposed on Ω. In all

cases, the source term f is chosen such that equations (2.4), (2.10) hold.

Problem I

The first numerical exemple concerns both Stokes and Darcy problems with the same

exact velocity and pressure fields:

u1 (x, y) = 2000(x− x2)2
(
y − y2

)
(1− 2y)

u2 (x, y) = −2000(y − y2)2
(
x− x2

)
(1− 2x)

p(x, y) = 100(x2 + y2 − 2
3).

We set δ = 0.5. In Fig. (5.1) and Fig. (5.2), the approximate velocity vectors and

pressure elevations are shown on the 80×80 partitioning for Stokes with µ = 0.1 and for

Darcy with α = 100 repectively. The displayed graphs are in excellent agreement with

the exact solution plots. The computed convergence rates are presented in Fig. (5.3).

Better results than theoretical rates predicted by the above study have been obtained.

For Stokes flow, the convergence rates are near to 3/2 for the both the velocity in ‖·‖h
norm and pressure in L2 norm, while the computed rate is close to 2 for the velocity in

L2 norm. For the Darcy problem, the convergence rate is near to 3/2 for the pressure

in the L2 norm, whereas it seems close to 1 for the velocity in the same norm. In fact,

This unexpected fact deserves further investigation for explanation.
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Figure 5.1: Approximate velocity vectors and pressure elevation for Stokes with µ = 0.1.
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Figure 5.2: Approximate velocity vectors and pressure elevation for Darcy with α = 100.
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Figure 5.3: Convergence history for Stokes (top) with µ = 0.1 and for Darcy (bottom) with

α = 100.
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Problem II

The second numerical test is devoted to analyzing the same features when the exact

velocity and pressure are given for the Stokes flow by:

u1 (x, y) = π sin(2πy) sin2 (πx)

u2 (x, y) = −π sin(2πx) sin2 (πy)

p(x, y) = sin(2πx) sin(2πy)

and for the Darcy flow by:

u1 (x, y) = 1/2 sin(2πy) sin 2 (πx)

u2 (x, y) = −1/2 sin(2πx) sin2 (πy)

p(x, y) = 2x− 4y3

Now, we set δ = 10. The approximate velocity vectors and pressure elevations on the

80× 80 partitioning for Stokes with µ = 1 and for Darcy with α = 10 are displayed in

Fig. (5.4) and Fig. (5.5) respectively. The behavior is again remarkable. According to

the convergence error history shown in Fig. (5.6), predicted optimal rates are widely

achieved for both Stokes and Darcy cases. Here also, better results than the predicted

rates are attained.
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Figure 5.4: Approximate velocity vectors and pressure elevation for Stokes with µ = 1.
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Figure 5.5: Approximate velocity vectors and pressure elevation for Darcy with α = 10.
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Figure 5.6: Convergence history for Stokes (top) with µ = 1 and for Darcy (bottom) with

α = 10.
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5.2 Coupled problem

Many computational tests were performed for several values of physical and stabiliza-

tion parameters. In this section, we only report some representative results of numerical

experiments for the coupled Stokes-Darcy model of an incompressible fluid. For sim-

plicity, the computational domain is taken to be Ω = Ωs∪Ωd, where Ωs = (0, 1)×(1, 2),
Ωd = (0, 1) × (0, 1) with the interface Γ = (0, 1) × {1}. As the focus of this section is

on the properties of convergence and error estimates, the domain is computed using a

uniform grid by first dividing it into n× n equal squares (n = 10, 20, ..., 70) .
Here, it is important to emphasize that difficulty resides in finding solutions that

satisfy all interface conditions (2.18), (2.19) and (2.20). To this end, we use the same

trick of generalizing the equations to include a nonhomogeneous term. Thus, we replace

equations (2.19) and (2.20) by

−µns · ∇us·n + ps = pd + g1

−ns · ∇us · τ = α√
k

us · τ + g2

where g1 and g2 are given functions on Γ according to the analytical solutions. The

modified variational formulation has added two terms − (g1,vs · ns)0,Γ +µ (g2,vs · τ)0,Γ

in the right-hand side of the first equation of (2.22).

We consider two exemples. The first one consists in taking the same pressur solu-

tion for both Stokes and Darcy sub-problems with different values of the stabilization

parameter, whereas we take different solutions in the second one with the same stabi-

lization parameter.

Problem I

Here, we select the terms f in the Stokes and Darcy equations, g1 and g2 in the interface

conditions according to the analytical solutions:

us =
((
x− x2

)2 (
3y2 − 10y + 8

)
,−2

(
y3 − 5y2 + 8y − 4

) (
x− x2

)
(1− 2x)

)
,

ud =
((
x− x2

)2 (
3y2 − 2y

)
,−2

(
y3 − y2

) (
x− x2

)
(1− 2x)

)
,

p = 10 (x+ y − 3/2) .

by taking µ = 0.1, k = 0.0001 and α = 1. For the stabilization parameter, we

choose δ1 = 5 for the Stokes regime and δ2 = 0.01 for the Darcy one. The approximate

velocity vectors and pressure elevations for the finest mesh n = 70 are displayed in Fig.

(5.7). We notice that the plots look very similar to the exact solution plots.
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Figure 5.7: Approximate velocity vectors and pressure elevation.

62



CHAPTER 5. NUMERICAL TESTS

The computed convergence rates are presented in Fig (5.8). It is observed that

even better results than above predicted theoretical rates have been obtained in all

considered cases.

Figure 5.8: Convergence history of the velocity and of the pressure.

Problem II

In this case, we select the terms f in the Stokes and Darcy equations, g1 and g2 in the

interface conditions to impose the exact solutions:

us =
(
π sin (2πy) sin2 (πx) ,−π sin (2πx) sin2 (πy)

)
,

ps = 2x+ 29
11y

3 − 73/11,

ud =
(

sin2 (πx)
(
y − y2

)
(1− 2y) ,−π

(
y − y2

)2
sin (πx) cos (πx)

)
,

pd = 5xy − 3x− 4.

by taking µ = 0.01, k = 0.01 and α = 1. For the stabilization parameter, we choose

the value δ = 7 for both Stokes and Darcy regimes. The approximate velocity vectors

and pressure elevations for the finest mesh n = 70 are displayed in Fig. (5.9) . Similar

plots to the exact solutions plots are anew obtained.
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Figure 5.9: Approximate velocity vectors and pressure elevation.
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The computed convergence rates are presented in Fig (5.10). It is observed that

better results than above predicted theoretical rates have been obtained.

Figure 5.10: Convergence history of the velocity and of the pressure.
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Conclusion

The collocated finite volume method stabilized by means of pressure jumps proves

to be an efficient and accurate technique for solving Stokes-Darcy problems in both

decoupled and coupled forms. Numerical schemes based on the proposed framework

are simple to implement and ensure optimal convergence for standard test problems.

As future work, it would be nice to model more realistic problems. The extension

of the present technique to the full Navier-Stokes equations combined with the Darcy

equations would also be an interesting subject to investigate. Finally, the transient

case remains the main target.
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