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Abstract

This thesis concerns the study of certain classes of systems of nonlinear difference equations

where each time we present the solutions on the closed form.

In the first chapter, we study systems of difference equations with different degrees, where
we have presented the solutions using well-known number sequences such as, Fibonacci num-

bers, Padovan, Tribonacci and generalized Tribonacci numbers.

The second chapter is devoted to the study and the resolution of a system of three dif-
ference equations defined by homogeneous functions. As for the third and fourth chapter,
we presented a study of higher-order of system of three difference equations and a two di-

mensional Max-type system of difference equations.

Each time, we present the explicit form of the solutions, and a qualitative study of
the solutions and their equilibrium points of some particular cases is discussed, including

convergence, local and global asymptotic stability, as well as periodicity and oscillatory.

Key Words: System of difference equations, form of solutions, stability, period-
icity, oscillation, homogeneous function, Max-type system of difference equations,

Fibonacci sequence, Tribonacci ...



Résumé

Cette these porte sur I’étude de certaines classes de systemes d’équations aux différences

non-linéaires ou a chaque fois nous présentons les solutions sous la forme férmée.

Dans le premier chapitre, nous étudions des systemes d’équations aux différences de dif-
férents degrés, ou nous avons présenté les solutions utilisant des suites de nombres bien
connues telles que, les nombres de Fibonacci, Padovan, Tribonacci et les nombres généralisés

de Tribonacci.

Le deuxiéme chapitre est consacré a l'é¢tude et a la résolution d'un systeme de trois
équations aux différences définies par des fonctions homogenes. Comme pour le troisieme
et quatrieme chapitre, nous avons présenté une étude d’un systeme de trois équations aux

différences d’ordre supérieur et d’un systeme de deux équations de type Max.

A chaque fois, nous présentons la forme explicite des solutions, et une étude qualitative
des solutions et de leurs points d’équilibres de certains cas particuliers est abordée, y com-
pris la convergence, la stabilité asymptotique locale et globale, ainsi que la périodicité et

Poscillation.

Mots Clés: Systeme d’équations aux différences, forme des solutions, stabilité
) ) )
periodicité, oscillation, fonction homogene, systeme d’équations aux différences

type-Max, suite de Fibonacci, Tribonacci....
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General introduction

Difference equations are used to describe real discrete models in various branches of modern

sciences such as, for example, biology, economy, control theory. This explains why a big
number of papers is devoted to this subject, see for example [2, 3, 7, 8, 44, 46, 53, 54, 55,
56, 65, 66, 67, 92, 96, 95, 104, 105, 115, 124, 127].
In particular non-linear difference equations and their systems is a very hot subject that
attract the attention of several researchers. A numerous papers are devoted to this line of
research, as examples in the following papers [2, 7, 9, 24, 25, 26, 30, 31, 32, 33, 34, 35, 306,
37, 38, 40, 41, 42, 43, 44, 53, 63, 91, 93, 95, 96, 104, 106, 107, 109, 110, 111, 116, 117, 118,
119, 124, 127],

we can find some concrete models of such equations and systems, but also to understand
the techniques and the methods used in solving and studying the behavior of the solutions

of these models.

It is clear that if we want to understand our models, we need to know the behavior of
the solutions of the equations of the models, and this fact will be possible if we can solve in

closed form these equations.

Generally, it is difficult to determine methods to solve non linear equations and their
systems. However, by the help of some change of variables, non linear difference equations or
systems are transformed to very simple one, with known form of the solutions. Knowing the
closed form of the solutions, provides more information about the behavior of the solutions,

like periodicity, oscillation, boundedness, asymptotic behavior,...

One can find in the literature a lot of works on difference equations where explicit formulas
of the solutions are given, see for instance [2, 3, 44, 53, 55, 65, 66, 67, 92, 95, 96, 104, 105, 124,

127]. Such type of difference equations and systems is called solvable difference equations.



2 General introduction

The first chapter contains three essential sections. In the first section we solve in closed

form the system of difference equations

AYnTn—1 + bxn—l +c ATnYn—1 + byn—l +c
Tn+1 = » Yn+1 = )
YnTn—1 TnYn—1

n=20,1,...

In particular we represent the solutions of some particular cases of this system in terms of
Tribonacci and Padovan numbers and we prove the global stability of the corresponding
positive equilibrium points. The results obtained here extend those obtained in some papers
(see [7, 44, 92] and [124]).

In the second section we extend the results obtained in the first one, and we show that

the system of difference equations

AYn—2Tn—1Yn + bxn—lyn—2 + CYn—2 + d ATp—2Yn—1Tn + byn—lxn—Q + CTp—o + d
Tp41 = y Ynt+1 = )
Yn—2Tn-1Yn Tn—2Yn—-1Tn

can be solved in a closed form. We will see that when a = b = ¢ = d = 1 the solutions are
expressed using the famous Tetranacci numbers.
In the third section, we give explicit formulas of the solutions of the two classes of non-

linear systems of difference equations

Tnpr = [ (ag(yn) + bf (n1) + cg(yn—2) + df (zn-3))

Y1 = 9" (af(@n) + bg(yn-1) + cf (Tn-2) + dg(yn-3)) ,

and

_ r—1 b c d
Tnir = f (“ t oo T swof@ T g(yuf(xnl)g(yn_z)) )

_ 1 b c d
Yn+1 =9 (a t e T e T f(mg(ynl)f(x“)) )

where n € Ny, f,g: D — R are a “1 — 1”7 continuous functions on D, D C R, where the

results considerably extend some existing results in the literature.

The second chapter is devoted to study the following second order system of difference

equations
Tot1 = f(Yns Yn-1), Ynt1 = 9(Zns 2n-1)s Zns1 = M(Tn, Tp1)
where the functions f, g, h : (0,400)” = (0,+00) are continuous and homogeneous. In this

study, we establish results on local stability of the unique equilibrium point and to deal with

the global attractivity, and so the global stability, some general convergence theorems are
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provided. Necessary and sufficient conditions on existence of prime period two solutions of
our system are given. Also, a result on oscillatory solutions is proved. As applications of the
obtained results, concrete models of systems of difference equations defined by homogeneous
functions of degree zero are investigated. Our system generalizes some existing works in the
literature (eg: [62, 114]) and our results can be applied to study new models of systems of

difference equations.

The goal of the third chapter is to derive the solution form and study of the system of
nonlinear difference equations

P P P
Ln—k+1Yn _ Yn—k+1%n An—k+1%n

Ynt1 = —p y Andtl = T p T
az, .+ bz, Az, . + Bz,

_Tnektlon n € Ny, p,k € N.
ayg—k—i_ﬁyn ‘

Tnt1 =

Furthermore, the behavior of solutions of the aforementioned system when p = 1 is examined.

This work generalize the results obtained in [112] and [35].

In the same line of the third chapter, we give in the forth one the closed form solutions of

the max-type rational system of non linear difference equations

TnYn—1 YnTn-1
Tp4+1 = MaxX | Tp-1, y Yn+1 = Max | Yn—1, " s

n—2 n—2

and giving the periodicity character of the solutions in a particular cases.



Chapter 1

On some systems of difference
equations related to remarkable

sequerces

1.1 Introduction

We find in the literature many studies that concern the representation of the solutions of
some remarkable linear sequences such as Fibonacci, Lucas, Pell, Jacobsthal, Padovan, and
Perrin (see, e.g., [4, 28, 50, 59, 64, 71, 72, 123]). Solving in closed form non linear differ-
ence equations and systems is a subject that highly attract the attention of researchers (see,
e.g.,[25, 26, 24, 42, 44, 63, 92, 104, 105, 124]) and the reference cited therein, where we find
very interesting formulas of the solutions. A large range of these formulas are expressed in
terms of famous numbers like Fibonacci and Padovan, (see, e.g., [44, 91, 104]). For solving
in closed form non linear difference equations and systems generally we use some change of
variables that transformed nonlinear equations and systems in linear ones. The paper of

Stevi¢ [75] has considerably motivated this line of research.

In the second section we solve in closed form the system of difference equations

aYpTp—1 +brp_1 +c aTpYn—1+ bYn—1 +¢
T+l = y Yn+1 = s n:O,l,...,
YnTn-1 TnYn—1

where the initial values x_1, 2o, y_1 and yy are arbitrary nonzero real numbers and the

parameters a, b and ¢ are arbitrary real numbers with ¢ # 0. In particular we represent
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the solutions of some particular cases of this system in terms of Tribonacci and Padovan
numbers and we prove the global stability of the corresponding positive equilibrium points.
The results obtained here extend those obtained in some papers (see [7, 44, 92] and [124]).

In the third section we extend the results obtained in the first one, and we show the the

system of difference equations

AYn—2Tn—1Yn + bxn—lyn—Q + CYn—2 + d ATp—2Yn—-1Tn + byn—lzn—Q + cTp—o + d
Tpt1 = y Yn+1 = )
Yn—2Tn—-1Yn Tn—2Yn—1Tn

where n € Ny, the initial values x_5, x_1, xg, y_2, y_1 and yg are arbitrary nonzero real
numbers and the parameters a, b, ¢ and d are arbitrary real numbers with d # 0, can be
solved in a closed form. We will see that when a = b = ¢ = d = 1 the solutions are expressed
using the famous Tetranacci numbers.

In the forth section, we give explicit formulas of the solutions of the two classes of non-

linear systems of difference equations

Tny1 = [ (ag(yn) + 0f (2n1) + cg(yn—2) + df (zn-3)),

Ynt1 = 9" (af(@n) + bg(yn-1) + cf (#n-2) + dg(yn-3)) ,

and

_ f—1 b c d
Tni1 = f (a T o T g T g(yn)ﬂxn_l)g(ynz)) )

_ 41 b c d
Yn+1 =9 (a t T T FEen ) T f(xn)g(yn—l)f(xn2)> )

where n € Ny, f,g: D — R are a “1 — 1”7 continuous functions on D, D C R, the initial
values x_;, y_;, © = 0,1,2,3 are arbitrary real numbers in D and the parameters a, b, ¢ and
d are arbitrary real numbers, where the results considerably extend some existing results in

the literature.

Now, recall some known definitions and results about stability, which will be very useful
for the sequel, for more details see for example [11, 16, 29, 58].

Let F : (0,4+00)" — (0,400)" be a continuous function and consider the system of
difference equations

Yn+1 = F(Yn), n e NO (]_].)

where the initial value Yy € (0, —i—oo)k. Let Y be an equilibrium point of (1.1), that is a
solution in (0, +00)" of Y = F(Y).
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Definition 1.1. Let Y be an equilibrium point of system (1.1), and let ||.|| any convenient

vector norm.

1. We say that the equilibrium point Y is stable (or locally stable) if for every e > 0 there
exists § > 0 such that for every initial condition Yy: ||[Yo—Y || < & implies |V, =Y || < e.

Otherwise, the equilibrium Y 1is unstable.

2. We say that the equilibrium point Y is asymptotically stable (or locally asymptotically
stable) if it is stable and there exists v > 0 such that ||Yy — Y| < 7y implies

limY, =Y.

3. We say that the equilibrium point Y is a global attractor if for every Yy,

limY, =Y.

4. We say that the equilibrium point Y is globally (asymptotically) stable if it is stable

and a global attractor.

Assume that F'is C* on (0, —|—oo)k. To system (1.1), we associate a linear system, about

the equilibrium point Y, given by
Zn+1 = F](?)Zn, n < No, Zn = Yn — ?

where F is the Jacobian matrix of the function F evaluated at the equilibrium point Y.

To study the stability of the equilibrium point Y, we need the following theorem.

Theorem 1.1. Let Y be an equilibrium point of system (1.1). Then, the following statements

are true:

(1) If all the eigenvalues of the Jacobian matriz Fy lie in the open unit disk |\ < 1, then

the equilibrium Y is asymptotically stable.

(7i) If at least one eigenvalue of Fy has absolute value greater than one, then the equilibrium

Y is unstable.
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1.2 A second order system

The difference equation
c

Tpi1=a+— +
Tn TnpTn—1

was studied by Azizi in [7]. Noting that the same equation was the subject of a very recent
paper by Stevic [92].
In [124] the authors studied the system

1+2,1 1+ yna
Tpy1l = 5 Ynt1 =
YnTn—1 TnYn—1
Motivated by [124], Halim et al. in [44], got the form of the solutions of the following

difference equation

a—+ bxr,—1
Tpt+1 = 5
TnTn—1
and the system
a+ b,y a+ byn—1
xn+1 e yTH-l = T
YnTp—1 TnYn—1

Here and motivated by the above mentioned papers we are interested in the following system
of difference equations
AYnTp—1 + br,—1 +c ATpYn—1 + byn—l +c

Tntl1 = y Ynt1 = s n:O,l,..., (12)
YnTn—1 TnYn—1

where z_1,z9,y_1 and gy are arbitrary nonzero real numbers, a, b and c are arbitrary real
numbers with ¢ # 0. Clearly our system generalized the equations and systems studied in

[7, 44, 92] and [124].

1.2.1 Homogeneous third order linear difference equation with

constant coefficients.

Consider the homogeneous third order linear difference equation

Ryy1=aR, +bR, 1 +cR, 2,n=0,1,.., (13)

where the initial values Ry, R_; and R_5 and the constant coefficients a, b and ¢ are real

numbers with ¢ # 0. This equation will be of great importance for our study, so we will

—+o00

-2, of equation (1.3) is usually

solve it in closed form. As it is well known, the solution (R,,)

expressed in terms of the roots «, § and ~ of the characteristic equation

N —aX\? — b\ —c=0. (1.4)
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Here we express the solutions of the equation (1.3) using terms of the sequence (.J,) 2

defined by the recurrent relation
Jpis =adpio + 01 +cJ,, n €N, (1.5)

and the special initial values

Jo=0, Jy=1land J; =a. (1.6)
Noting that (R,,) >, and (J,)=% have the same characteristic equation. Also if a = b =
¢ = 1, then the equation (1.5) is nothing other then the famous Tribonacci sequence (7},)%5.

The closed form of the solutions of {J, },'>) and many proprieties of them are well known
in the literature, for the interest of the readers and for the purpose of our work, we show

how we can get the formula of the solutions and we give also a result on the limit

lim It )

n—00 Jn

For the roots «a, 5 and v of the characteristic equation (1.4), we have

a+f+v=a
aff +ay+ py=-b (1.7)
afy =c.

We have:

Case 1: If all roots are equal. In this case
J, = (01 + con + anz) a”.

Now using (1.7) and the fact that Jy =0, J; = 1 and J5 = a, we obtain

n TL2 n

Case 2: If two roots are equal, say § = . In this case
Jn = c1a” + (ca + cgn) .
Using (1.7) and the fact that Jy =0, J; = 1 and J, = a, we obtain

Jn:Mau((ﬁ_a)ﬁB_a)ﬁ”. (1.9)




1.2 A second order system 9

Case 3: If the roots are all different. In this case
Jp = c1a” 4 8" + 3y

Again, using (1.7) and the fact that Jy =0, J; = 1 and J, = a, we obtain

= c a” —5 n i n
In = (’Y_Oé)(ﬁ—a) + (7_6)<ﬁ—a)ﬁ + (7—@)(7—5)7 . (110)

In this case we can get two roots of (1.4) complex conjugates say v = 3 and the third

one real and the formula of .J,, will be

e -5
PTGt TG -a

Consider the following linear third order difference equation

g+ i G". (1.11)

B - B)
Sn+1 = —CLSn + bSn—l — CSn_g, n = 0, 1, ceey (112)

the constant coefficients a, b and ¢ and the initial values Sy, S_; and S_, are real numbers.
As for the equation (1.3), we will express the solutions of (1.12) using terms of (1.13). To

do this let us consider the difference equation
Jnis = —QJpio +bjni1 — cin, n €N, (1.13)
and the special initial values
jo=0, ji=1andj, = —a. (1.14)
The characteristic equation of (1.12) and (1.13) is
N4 aX? —bA4c=0. (1.15)

Clearly the roots of (1.15) are —«, —5 and —v. Now following the same procedure in solving
{Jn}, we get that
jn = (_1)n+1<]n-

Lemma 1.2. Let o, 8 and v be the roots of (1.4), assume that « is a real root with

max(|al; |B]; |v]) = |a|. Then,

1. Jn+1
1m

n—oo
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Proof. 1f o, § and ~ are real and distinct then,

@ n+1 —B n+1 v n+1
e G-aB-a"  G-BA@-a" G-aG-5"
R - an + LAY y "
(v =) (B — o) (v = B)(B—a) (v —a)(y—6)
a o™ -5 g gy
i @ G ) B e T = f)F—a) e (y—a)(y— f) ot
noe on « ar 5" g 7
(y—a)B-a)ar  (y=B)B-a)ar  (y—a)(y—B)a”
« -3 é n+l ~ v n+1
= lim aw_o‘)(ﬁ_a)Jr(v—ﬂ)(ﬁ—Of) (a) HCECET) (a
n—o0 % _6 é n 0l l n
G—a)B-a)  (-BB-a) <a> R <a>

The proof of the other cases of the roots, that is when o = = v or 8, v are complex

conjugate, is similar to the first one and will be omitted. ]

Remark 1.2.1. If « is a real root and 3, v are complex conjugate with

max(|af; |8];B) = 8] = [8],

then lim s

n—00 Jn

doesn’t exist.

In the following result, we solve in closed form the equations (1.3) and (1.12) in terms of
the sequence (Jn):i% The obtained formula will be very useful to obtain the formula of the

solutions of system (1.2).
Lemma 1.3. We have for all n € Ny,
R, =cJoR o+ (Jpio — aJyi1)R_1 + Jui1 Ro, (1.16)
Sy = (=1)"[cJnS_2+ (—Jpyo + adni1)S—1 + Jui150] - (1.17)
Proof. Assume that «, § and v are the distinct roots of the characteristic equation (1.4), so
R, =dia" + " + 5y, n=—2,—1,0,....

Using the initial values Ry, R_; and R_,, we get

1

lc1 +=c,+ 10& =R, (1.18)
a7y

A +ch+ ¢ = Ry
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after some calculations we get

a = (v = z?fﬁl— Oé)R2 (4 (_7;)(20:2%)1%1 - aié;ﬁ?— a)RO
@ = ‘w-%i(g—a)&?* <v(—aﬁ+><76);ia>R‘1‘ (v—ﬁj(ﬁ—oz)RO
I e Ll ot o LR o o L
that is,
o = ((v—f;fg—a)@n‘(v—%@—a)ﬁ”w—fx—m”ﬂ)]{2
+(rlaa t meata” Gy

2

& n 32 n 7 n
" (w—am—a)“ G G- Th_an-p" )R°

Rn = CJnR_Q + (Jn+2 — CLJn+1)R_1 + Jn+1R0.

The proof of the other cases is similar and will be omitted.
Let A:= —a and B :=b, C' := —c¢, then equation (1.12) takes the form of (1.3) and the
equation (1.13) takes the form of (1.5). Then analogous to the formula of (1.3) we obtain

Sn = CjnS—Q + (jn+2 - Ajn—l—l)s—l + jn+1SO-
Using the fact that j, = (—=1)""'J,, A = —a and C := —c we get

STL = (_1)n (CJTL‘S!? - (Jn+2 - a'JnJrl)Sfl + Jn+150) .

1.2.2 Closed form of well defined solutions

In this section, we solve through an analytical approach the system (1.2) with ¢ # 0 in
closed form. By a well defined solution of system (1.2), we mean a solution that satisfies
TnYn 70, n=—1,0,---. Clearly if we choose the initial values and the parameters a, b and
¢ positif, then every solution of (1.2) will be well defined.

The following result give an explicit formula for well defined solutions of the system (1.2).
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Theorem 1.4. Let {xp, Yn}n>—1 be a well defined solution of (1.2). Then, forn =0,1,..

)

we have

cJont1 + (Jonts — adong2)r_1 + JoptoT 1Yo

Ton41 = )
- cJon + (Jant2 — adoni1)T-1 + Jont12-1Y0
. oy + (Jonga — adoni3)y—1 + Joni3Toy 1
2n+2 — )
- cJont1 + (Jonts — aJoni2)y—1 + JontaToy—1
y _ CJong1 F (Jongs — adong2)y—1 + Joni2Toy-1
2n+1 — )
- cJon + (Jant2 — adoni1)y—1 + Jons120Y—1
_ CJongr + (Jonga — aJong3)T_1 + JonisT 10
Yon42 =

cJont1 + (Jongs — @onya)T 1 + JoniaT 1Yo
where the initial conditions x_1,xg,y—1 and yo € (R —{0}) — F, with F is the Forbidden

set of system (1.2) given by
F=J{(z_1,20,y-1,90) € R—{0}): 4, =00rB, =0},
n=0

where

An = Jn+1YoT -1 -+ (Jn+2 — CLJn_H)JI_l + CJn, Bn = Jp+12L0Y-1 + (Jn+2 — aJn+1)y_1 + CJn.

Proof. Putting

gy =y = - 10,1, (1.19)
Up—1 Un—1

we get the following linear third order system of difference equations
Upy1 = aUp + DUp_1 + CUp_g,  Vpg1 = AUy +bUp_1 + Clp_e, n=0,1,..., (1.20)

where the initial values u_s, u_1, ug, v_o, v_1, vy are nonzero real numbers.

From(1.20) we have for n =0, 1, ..

Upt1 + Vns1 = a(vy, + up) + b(up—1 + vy—1) + (Vy—2 + Up_2),
Upi1 = Uny1 = A(Vn — Up) + b(Un—1 — V1) + (V2 — Up_2).

Putting again
R,=u,+v, S,=u,—v,,n=-2,-10,.., (1.21)

we obtain two homogeneous linear difference equations of third order:

Rn+1 — CLRn + bRn—l + CRn—2a n = 07 17 T



1.2 A second order system

13

and
Sn+1 = _a'Sn + bSn—l -

Using (1.21), we get for n = —2,—1,0, ...,

1
§(Rn + Sn)7 Up =

Up =

From Lemma 1.3 we obtain,

Uop—1 =

1
5 [CJQn_l(R_Q - S_Q) +

1
Uy — 5 [CJQTL(R_Q + 5_2) +

(J2n+l

(J2n+2 -

Von—1 =

1
5 [CJgn_l(R_z + S_g) +

1
Von — 5 [CJzn(R_Q — S_2> +

cSp_o,n=0,1,---.

1
g™

(Jont1 — adan)(R-1 + S_1) + Jon(Ro — So)| ,n =

aJoni1)(R-1 4+ S_1) + Jont1(Ro —

(1.22)

S,).

]_727...’

(Jont2 — adapi1)(R-1 — S—1) + Jant1(Ro + So)] ,n =0,1,-- -,

- aJZn)(R—l - S—l) + J2n(RO + SO)] ,y = 1a 27 )

SO)]an:()717"'7

Substituting (1.23) and (1.24) in (1.19), we get for n =0, 1, ...,

o cJon1(Rog — S_2) + (Jonts — aJopia) (Ro1 + S_1) + Jonta(Ro — So)
e cJon(R_g — S_3) + (Jany2 — aJony1)(R_1 + S_1) + Jop1(Ro — So) (1.25)
- _ cJont2(R_o 4+ S_2) + (Jonta — aJonys)(R_q — S— 1) + Jant3(Ro + So) '
e cJoni1(R_g + S_2) + (Jont+s — aJany2)(R-1 — S—1) + Jani2(Ro + So)’
P cJons1(R_2 4+ S_2) + (Jants — aJopio) (R_y — S— 1) + Jont2(Ro + So)
T cJon(R_a+ S_2) + (Jont2 — aJopi1)(R-1 — S_1) + Jont1(Ro + So) (1.26)
y _ CIomi2(R-g — S°2) + (Jonra — adanys) (R1 + S_1) + Jonis(Ro — So) '
i cJont1(R_g — S_2) + (Janys — aJony2) (Roy + S_1) + Jonia(Ro — So)
Then,
R_{+5 Ry — S
} B CJ2n+1 + <J2n+3 aJ2n+2)m J2n+2m
2n+1 — R, + S, R S ;
cJon + (Jang2 — GJ2n+1)17 J2n+1M
cIamio + (Jomsa — )7_1—5_ J o5 |
- 2n+2 2n+4 2n+3 R_Q + S_ 2n+3 R_Q + S—Q
n2 R_l—S_ Ro+ Sy 7
cIont1 + (Jonts a2+2)R2 52 2+2R,2+S,2
R_l — S_l RO + SO
Jon Jonts — @Jopto) ————— + Jopi9g——
N 1_C2+1+(2+3 a2+2>R_2+S_2+ i e
ntl R ,—-5_ Ry+Sy 7
cJon + (Jang2 — GJ2n+1)# + J2n+1M
o+ (Joma — @) LT 0L L 7}%0—50 |
) B CJan42 2n+4 2n+3 Ro,—S, 2n+3 Ro,—S,
nt2 = R 145 Ry — Sy
cJoni1 + (Jonss — aJ2n+2)m J2n+2ﬁ
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We have
" _u,l_R,l—l—S,l - _ﬂ_ R0+So
_1_U_2_R_2—S_27 O_U_l_R_l—S_17
V1 R,1 — Sfl Vo RO — So
y—l = = = =

U_9 R 5+ 5_27 Yo = U_1 R_{+5_
From (1.29), (1.30) it follows that,

RO_SO _R_1+S_1 % RO—S()

Ra.—5, Ro—S, R.,t+8, '
Ro+5Sy  Ro+S  R,-S,

— X = _
R4S, R,—-S, Rat8, ‘0¥

(1.29)

(1.30)

(1.31)

Using (1.27), (1.28), (1.29), (1.30) and (1.31), we obtain the closed form of the solutions of

(1.2), that is for n = 0, 1, ..., we have

. _cIomgr + (Jongs — adong2)T 1 + JoniaT 190
2n+1 — )
- cJon + (Jony2 — aJoni1)T—1 + Joni12_1Y0
. _ CJongo + (Jonga — aJony3)y—1 + Joni3Toy-1
2n+2 — )

2 gt + (Jangs — adans2)yo1 + JonsaToy 1
Y _ CJong1 F (Jongs — adong2)y—1 + Jon 2oy
2n+1 — 9
- cJon + (Jont2 — adoni1)y—1 + Jont120Y—1
y oy + (Jonga — adony3)T_1 4 Joni3T 190
2n+2 — .
- cJoni1 + (Jonss — aJoni2)T—1 + Jonio® 1Yo

Remark 1.2.2. Writing system (1.2) in the form

- __ aYnTp—1+bTn_1+c
Tpg1 = f (In, Ln—1yYn, yn—1> — = nynmn_ln )

. _ azpYn—1+byn_1+c
yn+1 - g (xnyxn—la y?’b? yn—l) - = nxnyn,:

So it follows that points (o, ), (3, 3) and (v, ) are solutions of the of system

. ayr+br+c
r=——

YT
_ary+by+c
Yy = i

where «, 5 and ~ are the roots of (1.4).

Theorem 1.5. Under the same conditions in Lemma 1.2, for every well defined solution of

system (1.2), we have

lim =z = lim =z = lim = lim = qa.
n—-+4oo 2n+1 n—-+oo 2n+2 n%+ooy2n+1 n~>+ooy2n+2
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Proof. We have

lim 2oy = lim cloni1 + (Jongs — aJony2)T 1 + Jongotor 1

n—00 n=oc cJyy + (Jong2 — @Jont1)T_1 + Jonp1YoT 1
; cJont1 + (Jongs — aJong2)T_1 + Jongolor 1

n=00 cJo, + (Jopsa — aJon1)T_1 + Joni1yor 1

J2 1 J2 3 J2 2 J2 1 J2 2 J2 1 J2 2 J2 1
c n-+ + n-+ % n-+ x n-+ a n-+ > n-+ x + n-+ % n-+

- -1 Yox -1

_ hm J2n J2n+2 J2n+1 J2n J2n+1 J2n J2n+1 JQn
n—roo CJ2n n <J2n+2 y Jon1 aJ2n+1> o J2n+1y .

- - -1 0T -1

JQn J2n+1 J2n J2n J2n
_ca+ (0 —ao®)z_q + Py
e+ (a2 —aa)r_1 + ayor_,
= «.

In the same way we show that
nll_{glo Lont2 = nh_{go Yon+1 = nh_g)lo Yon+y2 = Q.
O

1.2.3 Particular cases

Here we are interested in some particular cases of system (1.2). Some of these particular

cases have been the subject of some recent papers.

ATnTn—1+bTn_1+4cC
TnTn—1

1.2.3.1 The solutions of the equation z,,; =

If we choose y_1 = x_; and yy = xo, then system (1.2) is reduced to the equation

ATpTp_1 +br,_1+c
Tpi1 = ;x : L neN,. (1.32)

The following results are respectively direct consequences of Theorem 1.4 and Theorem
1.5.

Corollary 1.6. Let {z,},>_1 be a well defined solution of the equation (1.32). Then for

n=20,1,..., we have
- cJont1 + (Jonss — adonso)r_1 + Joprox_120
2n+1 — P
cJon + (Jant2 — adopi1)T -1 + Jon 17120
cJonto + (Jonta — aJonis)r_1 + Joni3Tox_1
Lop+2 =

cJon+1 + (Jonts — adopg2)r_1 + JopioToxr_4
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Corollary 1.7. Under the same conditions in Lemma 1.2, for every well defined solution of
equation (1.32), we have

lim =z = lim =z = Q.
n—-4o0o 2ntl n—-+oo 2n+2

The equation (1.32) was been studied by Azizi in [7] and Stevic in [92].

_ YnTp-1+Tn-_1+1 TnYn—1+Yn—1+1

1.2.3.2 The solutions of the system z,, | = &=L ¢ .| =

YnTn—1 InYn—1
Consider the system
YnTn-1 + Tp—1 + 1 TnYn—1 + Yn—1 + 1
T+l = sy Yn+1 = n € NO. (133)
YnTn—1 TnpYn—1

Clearly system (1.33) is a particular case of system (1.2) with a = b = ¢ = 1. In this case

the sequence {J,} is the famous classical sequence of Tribonacci numbers {7},}, that is
Tn+3 = Tn+2 —+ Tn+1 -+ Tn, n e N, where T() = O, T1 =1 and T2 = 1,

and we have

T — ot ﬂ”'H ,yn—',-l s
"TBoa—a B-a0-0 G-an-p Vb

with

14 19+ 3v33 + {19 — 3V/33 5o Lrwy19+3V83 4w {19 - 3V33
o = =
3 ’ 3 ’

1+ w219 + 3v/33 + wy/19 — 3/33 —1+1iv3
= W = N
3 )

2

g

Numerically we have o = 1.839286755 and the two complex conjugate are
—0.4196433777 + 0.6062907300¢, —0.4196433777 — 0.60629073007

with 2 = —1.

The following results follows respectively from Theorem 1.4 and Theorem 1.5.

Corollary 1.8. Let {xn, Yntn>—1 be a well defined solution of (1.33). Then, for n =
0,1,2,3,..., we have

. _ opgr + (Tongs — aTong2)r 1 4 Ton2T 190
2n+1 — 9
* cTon + (Tonta — aTony1)T 1 + Tont17 190
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cTonyo + (Tonta — aTon13)y—1 + TonisToy—1

Lop+2 = )
T oy + (Tonys — aTons2)y—1 + TonsaToy—
y _ onyy + (Tongs — aTony2)y—1 + TongoToy—1
2n+1 — )
* cTon + (Tonto — aTong1)Y—1 + Tont120Y—1
_ Tonyo + (Tonga — aTony3)x 1 + Toni3r 130
Yont2 =

cToni1 + (Tonts — aToni2)T—1 + TontaT 1%

Corollary 1.9. For every well defined solution of system (1.2), we have

lim =z = lim =z = lim = lim = a.
n—-+o00 2+l n—-+00 2n+2 n—>+ooy2n+1 n—>+ooy2n+2

For the equation

L1+ Tpo1 +1
Tpi1 = ; .~ L neN, (1.34)

we have the following results.

Corollary 1.10. Let {x,}n>—1 be a well defined solution of the equation (1.34). Then for

n=20,1,..., we have
. ~ Tonyy + (Tongs — Tong2)T 1 + Tongox 120
2n+1 — 3
Ton + (Tant2 — Ton1)—1 + Tong12-170
~ Topio+ (Tonga — Tony3)T 1 + Tony3T0r 4
Lon+2 =

Tongr + (Tonss — Tons2)@—1 + TonqoTor_1
Corollary 1.11. Under the same conditions in Lemma 1.2, for every well defined solution

of the equation (1.34), we have
lim 29,41 = lim 29,10 = a.

n—-+o0o n—-+o0o

Let I = (0,+00), J = (0, 4+00) and choosing x_1, zg, y_1 and yy € (0,4+00). Then clearly

the system
_ _ Ty+r+1 _ _ Ty +y+1
.Z‘:f(l’,y :7Jy:g(x7y):f
Ty Ty
has a unique solution (a,«) € I x J, that is (o, «) is the unique equilibrium point (fixed

point) of our system

YnTn—1 + Tp—1 + 1
Tpt1 = f(mnyxnfhyn’ynfl) = )
YnTn—1
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TnYn—1 + Yn—1 + 1

Yn+1 = g(xn7xn—17ynayn—1) =

Clearly the functions

f:PxJ—1T and
defined by

VoU1 + up + 1
VoU1

fuo; ug;vo;v1) = and

are continuously differentiable.
In the following result we prove that the unique

locally asymptotically stable.

[

g(uo;U1§U0;Ul) =

TnYn—1

PxJ—1

Uty +v1 + 1
UgU1

equilibrium point (o, ) of (1.33) is

Theorem 1.12. The equilibrium point (c, ) is locally asymptotically stable.

Proof. The Jacobian matrix associated to the system

(o, @), is given by

1 a+1
0 a3 B
1 0 0
A= a+1
T3 0
«Q
0 0 0

Then, the characteristic polynomial of A is

(203 — a? — 2a —

(1.33) around the equilibrium point

_ 4
PA) =X+ "
and the roots of P(\) are
1 l14+a+vV—-4ad3+a2+2a+1 1
>\1:*>< ,)\2:—*
2 o3
1 —l—a+vV—-4a3+a2+2a+1 1
)\3:*X 7)\4:_,

a3

0
0 0
1
g
1 0
1), 1
Mt

y l4+a+vV—4a3+a?2+2a+1
aS

)

" —l—a+v—-4a®+a2+2a+1
0% '

We have |\;| < 1, i = 1,2,3,4, so the equilibrium point («, «) is locally asymptotically

stable.

]

The following result is a direct consequence of Theorem 1.12 and Corollary 1.9.

Theorem 1.13. The equilibrium point (o, ) is globally asymptotically stable .
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Let I = (0,400) and choosing z_1, ¢ € (0, +00). Writing the equation (1.34) as

TpTp-1 + Tp—1 + 1

Tp1 = h(xp, Tp1) = P (1.35)
n4n—1
where
h:1* — 1
is defined by
1
h(ug; ur) = Ut a1
UoUq

The function h is continuously differentiable. The equation T = h(Z,Z) has the unique
solution T = « in (0, +00). The linear equation associated to the equation (1.35) about the

equilibrium point T = « is given by

_ @ ( ) + @ ( )
Yn+1 = 6u0 o, &) Yn aul o, &) Yp—1,

the last equation has as characteristic polynomial

oh oh
Q) =\ — a—uo(a,a))\— Tm(a,a).

In the following result we show that the unique equilibrium point T = « is globally stable.
Theorem 1.14. The equilibrium point T = « is globally stable.

Proof. The linear equation associated to (1.34) about the equilibrium point T = « is

a+1 1
Yn+1 = — 3 Yn — *3%—1
(8% (6%

and the characteristic polynomial is

QQ%=V+<Q+1>A+<1>.

1% o’

We have
A+

— | <
1% 1%

1 1
’“* WAEC: |\ = 1.

a—+1 1
Sl
«

<1:‘)\2

a3
So, by Rouché’s theorem the roots of the characteristic polynomial Q()) lie in the open unit
disk. Then the equilibrium point Z = « is locally asymptotically stable. Now, from this and

Corollary 1.11 the result holds. O]
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bxp_1+c — byn—1+C
YnTp—1 "’ Yn+1 InYn—1

1.2.3.3 The system z,,,; =

When a = 0, the system (1.2) takes the form

bx,_1+c by,_1 + ¢
Tpi1 = 71, Ynt1 = 1 T C n € Np. (1.36)
YnTn—-1 TnYn—1

From Theorem 1.4, we get the following result.
Corollary 1.15. Let {xp,Yn}tn>—1 be a well defined solution of (1.36). Then, for n =

0,1,..., we have

_ CPopy1 + Ponya® 1+ Popga 1Yo

Ton+1 = )
- cPoy + Popiox_1 + Popi12_1Y0
o CPopto + Ponyay—1 + Ponys®oy—1
2n+2 — )
- CPopi1 + Popy3y_1 + PopiaToy—1
y _ CPapy1 + Pony3y—1 + PopiaToy—1
2n+1 — )
- cPoy + Poptoy—1 + Pont1T0y—1
cPoyyo 4 Popysx_1 + Popysx_1yo
Yon42 =

cPoni1 + Ponyst 1+ Panya® 10
Here we have write {P,}, instead of {J,},, as in this case {J,}, takes the form of a

generalized (Padovan) sequence, that is
P,i3=bP, 1 +cP,, neN,

with special values Py =0, P, = 1 and P, = 0. The system (1.36) was been investigated by
Halim et al. in [44] and by Yazlik et al. in [124] with b = 1 and ¢ = £1. The one dimensional
version of system (1.36), that is the equation

bz,
Tpt1 = 7x 1T C’ n € Ng. (137)
TpnLp—1

was been also investigated by Halim et al. in [44]. Form Corollary 1.15, we get that the well
defined solutions of equation (1.37) are given for n =0, 1, ..., by

cPoyi1 4 Popyst_1 + Poypyox_127
b
cPop + Popyox_1 + Popi12_120

Ton+1

CPont2 + Ponya®_1 + Ponyz®or_q
CPopi1 + Ponys®_1 + Popo®or_q
In [124] and [44] we can find additional results on the stability of some equilibrium points.

Ton+42
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Remark 1.2.3. If ¢ = 0, The system (1.2) become

ay, +b axr, +b
Gppy = 00 = . ne No. (1.38)

n n

We note that if also b = 0, then the solutions of the system (1.38) are given by

{(x(];yO) ) (CL?a) ) (av CL) PR } :

The system (1.38) is a particular case of the more general system

ayn + b oar, + 8
e Yppl = ——————, c N 1.39
ctn q Yn+1 Z A n 0 ( )

which was been completely solved by Stevic in [91]. So, we refer to this paper for the

Tn41 =

readers interested in the form of the solutions of the system (1.39) and its particular case
system (1.38). As it was proved in [91], the solutions are expressed using the terms of a
corresponding generalized Fibonacci sequence. Noting that the papers [63, 104] and [105]

deals also with particular cases of the system (1.39) or its one dimensional version.

1.3 A third order system

Recently in [2] and as generalization of the equations and systems studied in [7, 44, 91, 124],

we have solved in a closed form the system of difference equations

AYnTrn—1Yn + bTp_1 + ¢
xn—i—l — x y 9
n—1Yn
AT nYn—1Tn + byn—l +c (140)
Ynt1 = )
Yn—1Tn

Here and motivated by the above mentioned papers we show that we are able to expressed

in closed form the well defined solutions of following system of difference equations

AYn—2Tn_1Yn + DTy 1Yn_o+ CYp_o +d
e = Yy X v )
n—2+4n—1Y9n
ATy 2Yn 1Ty + OYp 1Tp_o + Ccxp_o+d (1.41)
Yn+1 = ’
Tpn—2Yn—1Tn

where n € Ny, the initial values x_o, x_1, xg, y_2, y_1 and gy, are arbitrary nonzero real
numbers and the parameters a, b, ¢ and d are arbitrary real numbers with d # 0.
Clearly if d = 0, then system (1.41) is nothing other than system (1.40). For the readers

interested in the solutions of this system, we refer to [2], where the system (1.40) was been
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completely solved.

Noting also that the system (1.41) can be seen as a generalization of the equation

ALy 2Ty 1Ty + 0Ty 12Tp_o + cxp_o+d
Lo = n—24n—14n n—14n—-2 n—2 ,TLGN(). (142)
Tp—2Tp—1Tn

In fact the solutions of (1.42) can be obtained from the solutions of (1.41) by choosing
y_i = x_;, 1t = 0,1,2. The equation (1.42) was been the subject of substantial part of the
paper of Azizi [7], which also motivated our present study. The same equation was studied
on field of complex Numbers by Stevic in [95].

We will see that the explicit formulas of the well defined solutions of system (1.41) are

+o0

expressed using the terms of the sequence (J,,), ~) which are the solutions of the fourth order

linear homogeneous difference equation defined by the relation
Jnia = adpis + b0+ ey +dJ,, n € Ny, (1.43)
and the special initial values
Jo=0, J1 =0, Jy=1and Js=a. (1.44)

Now we solve in closed form the equation (1.43). This equation (with the same or different
initial values and parameters) was the subject of some papers in the literature, see for
example [115, 46, 95].

The characteristic equation associated to the equation (1.43) is

M —aX =\ —cA—d=0 (1.45)

and let o, £, v and ¢ its four roots, then

at+B+y+d=a
af+ay+ad+py+ o+ =-b

gl By gl (1.46)
afy+afd+ayd+ pyd=c

afyd = —d

We have:

Case 1: If all roots are real and equal. In this case

Jp = (01 + con + cgn® + c4n3) a”.
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Now using (1.46) and the fact that Jy =0, J; =0, Jo, = 1 and J3 = a, we obtain

J, = <W> an (1.47)

602

Case 2: If three roots are real and equal, say 5 =~ = 9. In this case
Jn = cla” + (02 + c3n + C4TL2> 6”
Now using (1.46) and the fact that Jy =0, J; =0, J, = 1 and J3 = a, we obtain

Jn:_aga"+<(ﬂo‘ matp) )6”, (1.48)

(5 —a) —a)  28(8 -« 26(6-a)
Case 3: If two real roots are equal, say v = ¢§. In this case

Jn = c1a” + " + (3 + c4n) "

Now using (1.46) and the fact that Jy =0, J; =0, Jo =1 and J3 = a, we obtain

= @ a™ B n o _72 n n
B Ty R )y ((v —aPO AP - - 5)219;

Case 4: If double two real roots are equal, say o = § # v = J. In this case
Jn = (1 + con) " + (e3 + eqn) ™.

Now using (1.46) and the fact that Jy =0, J; =0, Jo = 1 and J3 = a, we obtain

_ Y+ n o B v+ a n .
= ((7—01)3 - (W—a)2> +< (v — )3 + (’Y—Oé)2>7 ) (1.50)

Case 5: If the roots are all real and different. In this case
Jp = c1a” 4 8" + 3" 4 cu0”.

Again, using (1.46) and the fact that Jy =0, J; =0, J, =1 and J; = a, we obtain

_ —o a B n - n

S T e S ) o) B L T oy vy
5 n

-6 (15)

Case 6: If two real roots are equal, say o = [ and two roots are complex

conjugate ones, say 0 = 7. In this case

Jn = (c1 4+ con)a”™ + c3y™ + eq7".
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Again, using (1.46) and the fact that J, =0, J; =0, J, = 1 and J3 = a, we obtain

_ Y — o n o — .
w = (G=are =or e T
T
MCEm el (1.52)

Case 7: If two real roots «a, § are different and two roots are complex conjugate

ones, say 0 = 7. In this case
Jp = c1a” 4+ " + 3y + 7"

Again, using (1.46) and the fact that J, =0, J; =0, J, = 1 and J3 = a, we obtain

_ —a o s n — n
T G- a0t TEAG-AG-a T G-0-Ah-a)
+ 2 o (1.53)

F—7T-8F—a)

Case 8: If two complex roots are equal, say a = and § = § = @. In this case
J, = (Cl + CQTL)O(” + (03 + C4’I’L>@n.
Again, using (1.46) and the fact that Jy =0, J; =0, J, = 1 and J3 = a, we obtain

= <<§ e a>2> ot ((Zva—_a; s a>2> « (154

Case 9: If the roots are all complex and different, say § =@ and = 7. In this

case
= 1" + @ 4 3" + ey

Again, using (1.46) and the fact that Jy =0, J; =0, J, = 1 and J3 = a, we obtain

o —Q o a & -y n
e e R [ R et MR e el [t
+ 7 ~n (1.55)

F-NG-0)F -
1.3.1 Form of the solutions - (Main result)

Here, we give a closed form for the well defined solutions of the system (1.41) with d # 0.
To this end we will use the same change of variables as in [2] to transform the system (1.41)

to a linear one and than following the same procedure as in [2] to obtain the closed form of
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the solutions. To get the solutions of the corresponding linear system we need to solve some
fourth order linear difference equations. In particular, we derive from the main result (Main
Theorem), for which we leave the proof to the next section, the solutions of some particular
systems and equations where their solutions are related to the famous Tetranacci numbers.
We recall that by a well defined solutions of system (1.41), we mean a solution that satisfies
Tnyn # 0, n > —2. The set of well defined solutions is not empty, in fact it suffices to choose
the initial values and the parameters a, b, ¢ and d positive, to see that every solution of

(1.41) will be well defined.

1.3.1.1 Closed form of well defined solutions of the system (1.41)

The following result give an explicit formula for well defined solutions of the system (1.41).

Theorem 1.16. (Main Theorem.) Let {x,,yn}tn>—1 be a well defined solution of (1.41).
Then, for n € Ny, we have

dJont2 + (conso + dJoni1) Yy—2 + (Jonta — adonts) T_1y—2 + Jont3YoT_1Y—2

Tont1 = dJons1 + (Jans1 + dJon) Yo + (Jongs — aJonsa) T1y—2 + JonsoloT1y—a
Tonis = dJants + (cJonys + dJont2) T2 + (Jonts — aJonia) Y—17-2 + Jzn+4x0y_1x_27
dJonta + (CJont2 + dJoni1) T2 + (Jonta — @Jants) Y-12—2 + Jons3ToY-17 -2
Yo dJonio + (CIanga + dJopi1) Too + (Jonta — @Jonys) Y—12_o + J2n+3x0y71x727
dJon+1 + (CJ2n+1 + szn) T_9 + (J2n+3 — aJ2n+2) Y 1T o + JopiaZoy_17_2
Yoo = dJonts + (cJonss + dJons2) Y—2 + (Jonts — aJonga) To1Y—2 + JonpaloT_1y—2

dJonys + (¢onya + dJoni1) Y—2 + (Jonga — adong3) To1y—2 + Jons3YoT—1y—2
where the initial values x_o,x_1,20,Yy_2,y—1 and yo € (R—{0}) — F, with F is the

Forbidden set of system (1.41) given by

F={(z_2,2-1,20,y-2,y-1,%0) € (R—{0}) : A, = 00rB, =0},

n=0

where

A, =dJpir + (edpgr +ddn) y—o + (Jpgs — adnyo) T1Yy—9 + JpioyoT_1y—2,
Bn = dJn_H + (CJn_H -+ dJn> T_o + (Jn+3 — CLJn+2) Y 1T 2 + Jn+21’0y_1.%‘_2.

1.3.1.2 Particular cases

Now, we focus our study on some particular cases of system (1.41).
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ATn—2Tn—1Tn+bTp_1Tn_2+crpn_2+d
Tn—2Tn—-1Tn

1.3.1.2.1 The solutions of the equation z,,; = If we

choose y_o =x_9, y_1 = x_1 and yy = xg, then system (1.41) is reduced to the equation

n—2Tn— bTy 1Ty n_o +d
xnﬂzax 2Lp-1Tn + 0Ty _1Tp_o + CTp_o +  neN, (1.56)

Tp—2Lp—1Tn

So, it follows from the Main Theorem that

Corollary 1.17. Let {x,}n,>_1 be a well defined solution of the equation (1.56). Then for

n € Ny, we have

dJonyo + (cJonyo + dJony1) To + (Jonta — @Jony3) T1T o + Jon 32T 122
dJon+1 + (cJont1 + dJon) T + (Jonts — aJong2) To1Z_o + JonoZoT 129

Ton4+1 =

dJonts + (CJonys + dJong2) T_o + (Jongs — aJonia) To12_9 + JopiaToT 129
dJoni2 + (cJonso + dJoni1) Too + (Jonia — @Jonis) To1T_o + Jop 3BT 122

Tony2 —

Noting that this equation was studied in Azizi in [7] and Stevic in [95].

1.3.1.2.2 The solutions of the system (1.41) with a =b=c=d =1 Consider the

system

_ Yn—2Tp—1Yn + Tp—1Yn—2 + Yn—2 + 1
A Yn—2Tn—1Y ’
n—24n—1Yn
Tp—2Yn—1Tn + Yn—1Tpn—2 + Tpn_2 + 1 (157)
Ynt1 = , N E N07
Tpn—2Yn—1Tn

which is a is particular case of the system (1.41) with a = b = ¢ = d = 1. In this case the

sequence {J,} is nothing other than the sequence of Tetranacci numbers {7}, that is
Tn+4 = Tn+3 + Tn+2 + Tn+1 -+ Tn, n e NQ, where T(] =17 = O, T =1 and T3 = 1,

and we have

-« " B n - n
G -aB-a" TF-B0-PB-a T F-G ==

G- —a) . "N

a= \/—uﬂ —wlﬁ—f \/—w2 —w*l,

with
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v = \/—w2 — 15——w—\/—w2—w1

1 1
_n (=65 [563)3 (65 [563)3
“Ty12 T\ se V108 54 V108) -
Numerically we have @ = 1.927561975, 5 = —0.774804113 and the two complex conjugate
are v = —0.076378931 + 0.8147036474, § = 7 with i = —1.

The one dimensional version of the system (1.57), is the equation

Tp—9Tn-1Tn + Tp1Tp—o + Tp_o + 1
Tpyg = —=2nl Lon—2 2 neN,. (1.58)

Tp—2Tp—1Tp

The following results follows respectively from the Main Theorem.

Corollary 1.18. Let {x,, Yn}tn>—1 be a well defined solution of (1.57). Then, for n € Ny,

we have
. ~ Tonyo + (Tongo + Tong1) Y—o + (Tonsa — Tonys) 1y 2 + Tonysyor 1Yo
2n+1 — )
i Tong1 + (Tong1 + Ton) y—2 + (Tonys — Tont2) T1y—2 + TontoYoT_1y—2
. ~ TDongs + (Tongs + Tonga) T2 + (Tongs — Tonga) Y129 + TonyaZoy— 17— 2
2n+2 —
T Do + (Tons2 + Tont1) 2 + (Tonsa — Tongs) Y122 + TonssZoy—12_o
Y ~ Topgo + (Tonga + Tongr) T2 + (Tonya — Tongs) Yy—17—2 + Tony3T0Y-17_2
2n+1 — )
i Toni1 + (Tong1 + Ton) 2 + (Tonys — Tont2) Y172 + Tonyooy 172
Y _ Tonyz+ (Tongs + Tong2) Y—o + (Tonys — Tonya) T 1y—2 + TonyaYoT 192
2n+2 —

Tonta + (Tont2 + Tont1) Y—2 + (Tonta — Tonta) To1y—2 + TontayoT-1y-2
Corollary 1.19. Let {x,}n,>_1 be a well defined solution of the equation (1.58). Then for

n € Ny, we have

Tonto + (Tonto + Tont1) oo + (Tonta — Tonys) o122 + Topi3T0T 172
Toni1+ (Tons1 +Ton) -9 + (Tonts — Tont2) To1T 9 + Topi0XoT 129

Lon+1 =

Y

Tonys + (Tonts + Tont2) T2 + (Tonts — Tonta) To12 o + TopiaToT 172
Tonto + (Tonso + Tons1) -2+ (Topta — Tonss) o129 + Top3T0x 125"

Ton42 =

Remark 1.3.1. When a = d = 0, the system (1.41) takes the form

br,—1 + by—

YnTn—1 TnYn—1
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As it is noted in [2], the solutions are expressed using Padovan numbers. This system and
same particular cases of it has been the subject of the papers [44, 124].
If d =c¢ =0, The system (1.41) become

ay, + b ax, +b
Tptr1l = yi, Ypn+1 = ——, N € N(). (160)

Yn T
Again it is noted in [2] that:
- The system (1.60) is a particular case of the more general system
ayn + b ar, + 3
] = Yy = ——2 neN 1.61
Lnt1 cyn+dy+1 7%-1—)\” 0 ( )
which was been completely solved by Stevic in [91] and the solutions are expressed using a

generalized Fibonacci sequence.

- Also, particular cases of system (1.61) has been studied in [63, 40, 105, 104].

- If also b = 0, then the solutions of the system (1.60) are given by

{(z0,%0), (a,a),(a,a),..., }.

1.3.2 Proof of the Main result

In order to solve the system (1.41), we need firstly to solve the following two homogeneous

forth order linear difference equations

Rn+1 - aRn + bRn—l + CRn—2 + an—37 ne N07 (162)

Sn+1 = —G,Sn + bSn_l — CSn_Q + dsn_g, n c No, (163)

where the initial values Ry, R_1, R_o, R_3, Sp, S_1, S_5 and S_3 and the constant coefficients
a, b, c and d are real numbers with d # 0. In fact we will express the terms of the sequences
(R,) 2 4 and (S,) >, using the sequence (J,,);2.

The difference equation (1.62) has the same characteristic equation as (J,) %5, that is
the equation (1.45).
To solve the difference equation (1.63) using terms of (1.43), we need the following fourth

order linear difference equation defined by

jn+4 - _ajn+3 + bjn+2 - Cjn—i—l + djna nc N07 (164)
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and the special initial values
jo=0, 51=0, jy=1andjs=—a (1.65)
The characteristic equation of (1.63) and (1.64) is
M+ aX® —b\2 +ch—d=0. (1.66)

Clearly the roots of (1.66) are —«, —f3, —y and —9. Now following the same procedure in
solving {J,}, it is not hard to see that

Jn = (_1)n<]n'
Now, we are able to prove the following result.

Lemma 1.20. We have for all n € Ny,

Rn = dJn_HR_g + (CJn_H + dJn) R_2 + (Jn+3 — CLJn+2) R_l + Jn+2R0 (167)

Sp = (=1 [dJn1S_3 — (g1 + dJn) S—a + (Jnss — aJng2) S—1 — Jug2So] . (1.68)

Proof. Assume that «, 3, v and § are the distinct roots of the characteristic equation (1.45),

SO

R, = dia" + " + 4y + ", n > —3.
Using the initial values Ry, R_1, R_5 and R_3, we get

1 /
a3l
1 / / / /
gcl + @02 + ?Cg _'_ 504 - R72
1 1 1 1

ac’l + =ch+ ;cg + =¢} =R,

54 J
chH+c+dy+d) = Ry

1 / 1/ /
+@02+$C3+§C4

(1.69)
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after some calculations using the Cramer method we get

: Bryéa’

(78 + 76 + 86)a’

S o s Rl iy v By R
(B 47 + 8)a? B o
MO LA R (| R | Ay
;o ayo 3 (yar + 790 + ad) °
o () KA ) vy (s R
_ (aty+9)p° 5
C-A-PB-a T e 0 -BE-a "
g afoy’ R._ _laBtad+po)y o
0N -B(—a) =N =By —a)
(a+pB+0)° B o
N R e e e R
ro_ afye® (ya + 78 +ap)s?
o ) S R I P o )T By R
(e B+y)e’ 53
C-06-B6-a) T C PG
that is,
_ By o a3 " aB6~y3 "
fon = Q&wMW—mw—a> G- An-0-a TG
afys? .
‘Xé—ww—ﬂx&—m5>3*
n (_ (78 + v + Bd)a? o (ya + v + )3 g _ (af + ad + B6)7? o
G- -aB-a" Te-80-80-a -G-8 -
(va+vB8+aB)s®
'Wa—ww—ﬁx&—m5>R2
Bry+d)e® . (a+y+9p n (a+ 8+ n
*‘wamV—@w—a> G-t -AE—a) TG0 B —a)

(e By
<6—w@—ﬂx&—w5>R*

OZ3

a” +

/83 73 "

+<_®—aWW%M6—®
5 :
5—ww—mw—af>3“

Bl

(0=5)y=B)(B —a)

e - =)

Rn = dJn+1R73 + (CJn+1 + dJn) ng + (Jn+3 — aJn+2> Rfl + Jn+2R0.

The proof of the other cases is similar and will be omitted.
Let A:= —a, B:=0, C := —c and D := d then equation (1.63) takes the form of (1.62)
and the equation (1.64) takes the form of (1.43). Then analogous to the formula of (1.62)
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we obtain
Sn = Djn+15-3 + (Cint1 + Djn) S—2 + (Jn+3 — Ajn+2) S—1 + Jn+25.
Using the fact that j, = (—=1)"J,, A= —a and C' := —c we get

Sn = (_1)n+1 [dJn+1S_3 — (CJn—H + dJn) S_Q + (Jn+3 — (lJn+2) S_l — Jn+250] .

O
Proof of the Main Theorem.
Putting
Tp= = > o (1.70)
Un—1 Un—1

we get the following linear forth order system of difference equations
Upt1 = AUy + by 1 +cvy o+ du, 3, Upy1 = atl, +bv, 1+ cup_o+dv,_3, n €Ny, (1.71)

where the initial values u_s, u_o, u_1, ug, v_3, V_o, V_1, vy are nonzero real numbers.

From(1.71) we have for n € Ny,
Up+1 + Up+1 = CL(Un + un) + b(un—l + Un—l) + C(Un—Q + un—2) + d(un—3 + U'n—3)7
Un41 — Uny1 = CI,(Un - un) + b(un—l - vn—l) + C(vn—Q - un—2) + d(un—3 - Un—3)'

Putting again
R, =u, +v,, Sp,=u,—uv,, n>-2, (1.72)

we obtain two homogeneous linear difference equations of forth order:
Rn+1 = aRn -+ bRn,1 -+ CRn,Q + anfg, n e No,

and

Sn+1 = —&Sn + bSn,1 — CSn,Q + dSn,g, n € No. (173)

Using (1.72), we get for n > —3,

1 1

From Lemma 1.20 we obtain,
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+Jont1(Ro — So)],n €N,

1

Uoy = —
2 2
+Jont2(Ro + So)],n € Ny,

+J2n+1(R0 + S())] ,ne N,

1

Vo = -
2n 92
+J2n+2(R0 — So)] ,ne NQ,

SO

Uop—1 = dJopt_3 + (cJop + dJon—1) V_2 + (Jonto — aJoni1) U—1 + Jopi1v0, n € N,

Ugp = dJopi10_3 + (CIang1 + dJan) u—g + (Jonts — adani2) V_1 + Janiatg, n € N,

Von—1 = dJonv_3 + (cJop + dJan_1) u_o + (Jans2 — aJops1) v_1 + Jopiirug, n € N,

Von = dJopi1u_3 + (¢Jans1 + ddon) v_o + (Jonis — adopio) u_1 + Jopiovg, n € Np.

Substituting (1.74) and (1.75) in (1.70), we get for n € Ny,

R_Q — S_Q
R_g + S_g

R,+S5

dJont2 + (cJopia + dJoni1) + (Jonta — aJonts)

1
Um-1= 5 [dJon(R_3 + S_3) + (cJon + dJon_1) (R—a — S_2) + (Jons2 — aJons1) (R_1 + 5_1)

(1.74)

[dJ2n1(Ro3 — S_3) + (cJans1 + dJon) (R_2 + S_2) + (Jont3 — aJani2) (R — S1)

1
Von—1 = 5 [dJQn(R—B - 5—3) + (CJ2n + dJQn—l) (R—Q + 5—2) + (J2n+2 - aJ2n+1) (R—l - 5—1)

(1.75)

[dJoni1(R_3 + S_3) + (cJans1 + dJon) (R_2 — S_2) + (Jany3 — aJany2) (R1 + S1)

(1.76)

(1.77)

(1.78)

(1.79)

RO_SO

74_!]” - v
Rao+Ss PR .+8.,

Tont1 = R ,— S R+ S Ry — S,
AJypr + (o +dJny+ Jonss — Aoy, ¥+Jn T P0
ont1 T (€Jont1 2 )R_3 9, (Jont3 — aJanya) RatSs 7R .19,
(1.80)
Ros+S- R, -5 o + 5
- dJonts + (cJonys + dJoni2) ﬁ + (Jon+s — @nsa) ﬁ * JZMZ}%
Tong2 = R,+S5, R, -5 Ry + 5

dJont2 + (conio + dJani1) + (Jonta — aJonts)

ng — 573

kit e I AN MO
R,_S., PR _g.

(1.81)

Y

bl
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R o+ 5_ R ,—5S_ Ry + S
dJonv2 + (¢Jonsa + dJontn) ﬁ + (J2nta — aJony3) ﬁ + szsﬁ
Yon41 = R 155, h—— s

dJont1 + (cJops1 + dJay) + (J2n+s — aJonyo)

kit et I A MO
Ra._S. R _g.

bl

ng — 573
(1.82)
and
R_2 — S_g R_1 + S_l RD — SO
dJopss + (cdopts + dJopis) ———— + (Jopnts — adopia) ———— + Jopypa———
s 2n+3 (C2+3 2+2)R_3+S_3 (2+5 a2+4)R_3+S_3 2+4R_3+S_3
n+2 — R - — 5_2 R_1 + S_l RO - SO '
dJop Jonso + dJons1) =2 4 (Jongd — aJonss) ——— ot Ty
ont2 + (cJonsa +dJo +1)R,3—|—S,3+( 2nta — AJ2 +3)R,3+S,3+ 3R g
(1.83)
We have
" :u,QZR,Q—FS,Q " :u,12R71+S,1 " :ﬂ: R0+So (184)
-2 V_3 R,3 — 573’ ! V_9o R,Q — S,Q’ 0 V_q R,1 — S,17 .
_U_Q _R_Q—S_Q _’U_1 _R_l—S_l . Vo . RO—S(] (1 85)
Y-2 U_3 R,3 + 573’ -1 U_9 R,Q + 572’ Yo = U_1 N R,1 + 571 .
From (1.84), (1.85) we get,
R71+Sfl _R71—|—571 % R72—572 — 21y
Rs+S535 Ro—S, Ras+S55 ~ V72 (1.56)
RO_SO . RO_SO XR71+571XR,2—S,2_ J,’ '
Rs+Ss Ra+S1 Ro—Sa Rats, Uty
Ry—-S5,7 R,—-5, y R o+ S5, oy
R3—-S3 Ro+S59 R.3—53 o (1.87)
Ro+So  Ro+ 5o xR_l_S_lxR_2+S_2—x . '
Rs—S3 R,4—S5, Ry+S5,9 R.3—-53 oY1t

Using (1.80), (1.81), (1.82), (1.83), (1.86) and (1.87), we obtain the closed form of the
solutions of the system (1.41), that is for n € Ny, we have

. ~ dJapgo + (conga + dJong1) Yoo + (Jonga — adoni3) To1Y—o + JonisYoT 1Yo
2n+1 — 9
" dJon i1 + (Joni1 + dJon) Y—o + (Jonts — adoni2) To1y—2 + JonrohoT 1Yo
. _ dJonys + (conys + ddoni2) o + (Jonis — aJonia) Y172 + JonpaZoy_ 172
2n+2 — 9

* dJanta + (Conto + dJopi1) T_o + (Jonta — adopss) Y-12_2 + Jopt3Toy—17_2
Y _ dJopge (cJanto + dJons1) oo + (Jonta — aJony3) Y122 + Jon13T0Y—12_2
2n+1 — 9
* dJons1 + (cons1 + dJoy) 2o + (Jonts — aJonio) Y_12_2 + Jopt2Zoy—_17_2
y _ dJangs + (congs + dJong2) Y—o + (Jongs — adonia) To1Y—2 + JoniaYoT 192
2n+2 — .
- dJonta + (cJonsa + dJong1) Y—2 + (Jonga — aJony3) To1y—o + Jong3yoT_1y—2
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1.4 Representations of solutions to two general classes

of nonlinear systems of difference equations

In the present section, we continue our interest in solvable difference equations, more pre-

cisely, we will solve the following two general systems of difference equations

Tn+1 = f_l (ag(yn) + bf(ajn—l) + Cg<yn—2) + df(xn—i%)) )

Yn+1 = gil (le(l’n) + bg(ynfl> + Cf(xan) + dg<yn73)) )

and

Sy, c !
ton =/ < Tl ) ) !J(?/n)f(%l)g(y”)) |

=g ! (a—l— b + ‘ + d >
Yni1 =9 f@n) " F@)gnr)  f(@a)g(yn1)f(2a2))

where n € Ny, f,g: D — R are one to one (“1 — 1”) continuous functions on D C R, the

initial values x_;, y_;, ¢ = 0, 1, 2, 3 are arbitrary real numbers in D and the parameters a, b,
c and d are arbitrary real numbers.

In our study, we are inspired and motivated by the ideas, the equations and the systems of
some recent published papers. The papers, [2, 3] and especially [96] are our main motivation
in the present work. The obtained results considerably generalize some existing results in

the literature, see [2, 3, 7, 8, 44, 65, 66, 67, 92, 96, 95, 104, 105, 124].

1.4.1 First class of systems

In this part, we will focus our interest on our first general system of difference equations,

that is the system

Tn1 = [ (ag(Yn) +bf (1) + cg(yn—2) + df (zn-3)),

Yn+1 = g_l (af(l’n) + bg(ynfl) + Cf(xan) + dg<yn73)) )

(1.88)

where n € Ny, f, g : D — R are continuous functions, with D = D; = D,, that is f and
g have the same domain, and it is also assumed that f, g are “1 — 1”7 on D C R, the initial
values x_;, y_;, © = 0,1,2,3 are arbitrary real numbers in D and the parameters a, b, ¢ and

d are arbitrary real numbers.
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1.4.1.1 Explicit formulas of solutions of system (1.88) with d # 0
In the following result, we solve in closed form (1.88).

Definition 1.2. A solution {x,,yn},>_5 of system (1.88), is said to be well-defined if for

all n € Ny, we have

ag(Yn) +0f (xn-1) + cg(Yn—2) + df (xn_3) € Dy,

and

af<xn) + bg<yn71) + Cf('ran) + dg(yna’i) € Dg—l'

Theorem 1.21. Let {2, Yn},_5 be a well-defined solution of the system (1.88), then we

have the following representation

Ton—1 = [ (dJanf(x—3) + (cJon + dJon—1) g(y—2) + (Jans2 — aJoni1) f(z-1)
+Jan, ,n €N,
2n+19(Y0)) (1.89)
Ton = [T (dJoni19(y—3) + (cJons1 + dJay) f(2_2) + (Jonss — aJons2) g(y—1)
+J2n+2f($0)) NOAS N07
Yono1 =g " (dJang(y_3) + (cJon + dJon_1) f(x_2) + (Jons2 — adons1) g(y—1)
+Jop Zg)),n € N,
ons1f(w0)) (1.90)
Yo =g " (dSangr f(z_3) + (cJont1 + dJon) 9(y—2) + (Jonss — adonsa) f(2-1)
+J2n+2.g(y0)) NUAS NO-
Proof. Since the functions f, g are “1 — 1”7, then from (1.88) we get
f(@n41) = ag(yn) + bf(Tn-1) + cg(yn—2) + df (xn—3), (1.91)
9(Yn+1) = af (xn) + bg(yn—1) + cf (xn-2) + dg(yn—3), n € Ny.
By the change of variables
X = f(zn), Y, =9(yn), n > =3, (1.92)
system (1.91) is transformed to the following one
Xn+1 = aYn + bXn—l + CYn—2 + an—?n
(1.93)

Yn+1 = CLXn + an,1 -+ CXn,Q + dYnfg, n e No.
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Clearly (1.93) is in the form of system (1.71), by (1.76), (1.77), (1.78) and (1.79), we obtain

the following representation of solutions

Xon—1 = dJopn X_3 + (cJop + dJon—1) Y_o + (Jon+2 — aJopt1) X1 + Jon1Yo,n € N, (1.94)

Xon = dJop1Y 35+ (cJont1 + dJon) X_o + (Jonts — adonsa) Yo1 + JonioXo,n € Ny,

Yono1 = dJo,Y_ 3+ (cJop + dJon—1) X o + (Jopyo — adoni1) Yo1 + Jon1Xo,n €N,

(1.95)
Yon = dJoni1 X 5+ (c¢Joni1 + dJon) Yoo + (Jopys — adonio) X 1 + JoniaYo, n € Np.
Now, by (1.92) we get that
Ton—1 = [ [dJanf(x_3) + (cJon + dJon—1) g(y—2) + (Jonta — aJoni1) f(z-1)
+Jan, ,neN,
2 +19(?Jo)] (1.96)
Ton = [T dJons19(y—3) + (cJons1 + dJan) f(@—2) + (Jonts — aJani2) 9(y—1)
+J2n+2f($0)] , T S NOa
Yono1 =g L [dJang(y_3) + (cJon + dJon_1) f(x_2) + (Jonto — aJoni1) 9(y_1)
+Jop )|, n €N,
ant1f (@) (1.97)
Yo =g ' dJans1 f(_3) + (consa + dJon) 9(Y—2) + (Jonts — aJanya) f(2-1)
+Jont29(v0)] ,n € Ny.
O

Remark 1.4.1. Moreover, if ¢ = f and y_; = z_;, i = 0,3 then, the system (1.88) will be

the equation
Tn+1 = fil (af(wn) +bf(vp1) +cf (Tn_2) + df (Tn-3)) (1.98)

and then the representation of the well-defined solutions are given by

Top—1 = [TH[dJonf(x_3) + (¢Jon + dJop—1) f(x_2) + (Jont2 — adoni1) f(z_1)
+J2n+1f(x0)]7n GN, (199)
Ton = [T dJans1 f(x_3) + (cTant1 + dJan) f(22) + (Janys — aJonta) f(x_1)

+Jontaf(20)],n € Np.

In [96], Stevic studied the equation (1.98).
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Now as applications of Theorem 1.21, we give the following examples.

Example 1.4.1. Let
Ft) =174 g(t) ="+, j, k € No. (1.100)

Then, Dy = Dy, = R, clearly the functions f and g are “1 — 1” continuous functions on R

and the system (1.88) becomes

_1
Tpt1 = [aynkJrl + bt 4 ey - da QJH] A (1.101)

1
Yngl = [azﬁj“ + byt 4 e 4 d 2’”1} * e No.

Then from (1.89) and (1.90), we obtain that general solution of the equation (1.101) is

Top—1 = {djznfij;;rl + (CJzn + dJQn—l) y%k;rl + (J2n+2 - GJ2n+1) $2lerl
1
+J " y2k‘+1 2j+1 .n € N,
onent (1.102)
Ton = [dJ2n+1y 14 (cJopg1 + dJoy) x 23“ + (Jans — aJania) y2k+1
+J2n+2x(2)j+1} m NAS N0>
Yon—1 = [szny%“ (cJon + dJop—1) 2]2+ + (Jont2 — adoni1) Y1 2hH
+Jons1zg? ! T ,n €N,
sty (1.103)
Yon = [d‘]2n+1x St (gt + don) Y25+ (Jangs — adanse) 22
+J2n+2y2k+1:| T ,n € No.
Example 1.4.2. Let
1 1 .
f(t) = 2 g(t) = el k € No. (1.104)

Then, Dy = D, = R — {0}, clearly the functions f and g are “1 — 1” continuous functions
on R — {0} and the system (1.88) becomes

a b da_ | ¥
Tpt+1 = J2FT1 + 2J+1 + y2k+1 + 22T )
n

n—2 Tn-s (1.105)
“ . d 2k+1
Yntl = |51 + 2k+1 + =T+ me , nE N0>
Ty ynfl 337172 yn*3
or equivalently
1
2k+1, 2541 2k+1 2541 251
T 1 — Yn n lyn 2 “n—3
n+ oz 2;:1y2k+1 2J+1+b 2k+1y2k+1 2]+1+Cy2k+1 2]+1 2J+1+d 2k+1 2Jj1y721k:51 ’ (1 106)
1 .

2]+1y2k+1x2J+1 2k+1

2hT1

Yn+1 = RT1_25FT 2kT1 ;25 F1 2n+1 2Z+i n22+1n 2i+1 2 AT AT 2T n € Ny

n 9 .
aYp—1 an— Yn—3 er:lf ! nj 2 Yn—3 +anj Yn— +d$ ! Yn— n]—2
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Then from (1.89) and (1.90), we obtain that general solution of system (1.106) is

T2n-1 [d‘] w57 4 (Con + A1) Y5 A+ (Jania — adongr) a2

+Jon1Yo (%H)} 2 ;n €N,

(1.107)
Ton = |:dJ2n+1y (2k+1) + (cJopy1 + dJoy) x_ 2j+1 4 (Jonss — adonsa) y_! —(2k+1)

+<]2n+2x0( J+1)] m , € N07

Yon-1 = [dJQn e + (cJopn + dJop—1) I SR (Jonta — aJoni1) Y_q “Eey

_1
oy @] e N,
a7 (1.108)

Yan - [dJQon :(]’ZJH (CJQ”H + dj2n) 2k+1) + <J2n+3 — aJ2n+2) T §2g+1)

a2ty Y] T e N,
If j = k =0, then system (1.105) becomes

YnTn—1Yn—2Tn—3
ATn—1Yn—2Tn—3+bYnYn—2Tn—3+CynTn—1Tn—3+dynTn—1Yyn—2’ (1 109)

— InYn—1Tn—2Yn—3
— n .
y7’L+1 AYn—1Tn—2Yn—3+bTnTn_2Yn—3+CTnyYn—1Yn—3+dTnyn—1Tn—2’ € NO

Tpt+1 =

The form of the well-defined solutions of (1.109), can be obtained by putting j = k = 0, in
the formulas of the solutions of (1.105). The solutions of the equation, see [96]

TpTpn—-1Tn—2Ln-3

M e , N E NO, (1110)

ATp—1Tp—2Tn—3 + DTpTp_2Tp_3 + CTRTy_1Tp—3 + dTpTp_1Tp—2

can be obtained from the solutions of (1.109) by taking y_;, = z_,;, i =0,1,2,3.
1.4.1.2 Particular cases of system (1.88)
1.4.1.2.1 The case d =0 and ¢ # 0 In this case the system (1.88) takes the form:

Tn1 = [ (ag(yn) + 0f (2n-1) + cg(yn-2))

Ynt1 = g_l (af(xn) + bg(yn—l) + Cf<xn—2)) , n € No.

(1.111)

Using the change of variables (1.92), with n > —2, we get the third order linear system
Xn+1 = aYn + bXn—l + CYn_Q, Yn+1 = (an + an—l + CXn_Q, n Z —2. (1112)
Consider the sequence (jn> - defined by

jn+3 = ajn+2 + bjnH + cjn, n € Ny, (1.113)



1.4 Representations of solutions to two general classes of nonlinear systems of
difference equations 39

and the special initial values

j():07<71:17j2:a~

The sequence (jn) ., s obtained from the sequence (.J,),,5, defined by (1.43):

nz

Jn+4 = aJn+3 + an+2 + CJnJrl + dJn, J[) = O, Jl = 0, J2 =1 and Jg =a,n € No.

For d = 0, we obtain

Jnsa = adpyz +bJpio + cJpir.

Putting

jn = Jn+1, n No,

we get the sequence (1.113). Noting that in this case, the corresponding sequences (R,,)n>0,

(Sn)nzo will be
Rn-‘rl = aRn + bRn—l + CRn—27 Sn-i—l = _aSn + bSn—l - CSn—27 ne NOa

with the initial values Ry, R_1, R_s, So,S_1, S_2. The formulas of the solutions of these

equations are expressed using the sequence (jn) Lo See [3].

The formulas of the solutions of (1.112) and (1.111), can be obtaining from those of solutions
of (1.71) and solutions of (1.88) by changing .J, by J,_1.

In summary we have the following result.

Corollary 1.22. Let {n, Yn},>_o be a well-defined solution of system (1.111), then

Ton1 = [~ {ij—lg(y—z) + (j2n+1 - ajZn) fla-a) + jzng(yf))] ;neN,
Ton = [ [Cj2nf(90—2) + (j2n+2 - aj2n+1) 9(y-1) + j2n+1f($o)} ;n € Ny,
Yon1 = g [eTon 1 f(2) + (Fons1 — aon) 9(y-1) + Jonf(20)] ;m €N,
Yo =9 [Cj2n9(y—2) + (j2n+2 - ajzn+1) flr—1) + j2n+19(yo)] ;n € Noy.

Remark 1.4.2. If g= f and y_; = x_;, 7 = 0,1,2 then, system (1.111) becomes

Tn1 = [ af (@) +bf (2p-1) + cf (n-2)] (1.114)
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and by Corollary 1.22, the every well defined solution is given by

Top—1 = f_l {ngnflf(difg) + <j2n+1 — ajzn) f(l’fl) + anf(xo)} ,n c N,
Top = f_l {Cjznf(l’—ﬂ + (j2n+2 — Cljzn_H) f(l’_l) + j2n+1f(x0)} ,n € Ny,

which can written in a unified form as

T, = f! {Cjnf(llf_g) + (jn+2 — ajn+1) flx_1)+ J~n+1f(:zo)} , n € Np.

Noting again that this equation, was studied by Stevic in [96].

1.4.1.2.2 Case d=0,c# 0 and a =0 In this case we get the system

Tn+1 = fil [0f (xn-1) + cg(yn-2)],

Yni1 = g " [bg(Yn—1) + cf(zn-2)], n € No.

Here, (jn) - will be the sequence defined by

nz

Pris = bPpy1 +cP,, n €Ny,
and the special initial values
Py =0, P =1and Py =0,
so, the solutions are expressed in terms of (P),,., and are given by

Ton1 = [ [€Pan_19(y_2) + Pons1f(x_1) + Pang(wo)],n €N,

Ton = fH[Ponf(2_2) + Ponsog(y—1) + Pony1 f(20)],n € Ny,
Yon—1 = 971 [Pon—1f(x-2) + Pant19(y-1) + Panf(x0)] ;7 €N,

Yon = 9" [cP2ng(y—2) + Pantaf(x_1) + Pant19(y0)] . n € Ny,

for the system (1.117) and by

Tn = [ EPaf (x-2) 4+ Prsaf (x—1) + Prs1 f(20)], n € N,

(1.115)

(1.116)

(1.117)

(1.118)

(1.119)
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for its one dimensional version, that is the equation

Tn1 = [TH(0f (@n1) + cf(2n2)).-
Ifb# 0, (P),>, will be a generalized Padovn sequence and if b = ¢ = 1, then (P,),,5, will

be the famous Padovan sequence.

Noting that system (1.117) generalize for example the works of [44] and [124].

1.4.1.2.3 Casec=d=0and b# 0 In this case, we get the system

Tns1 = [T ag(yn) + bf (zn-1)],

Yn+1 = g_l [af(xn) + bg(ynfl)] , N S I\IO-

(1.120)

By the same philosophy, we obtain the sequence (Fn> 0= (jn+1) o’ defined by
ﬁn+2:aﬁn+l+bﬁnv ﬁb: 17 ﬁl =a, TlENo,

and the solutions of (1.120) and its one dimensional version, are obtained from the solutions
of (1.111) and (1.114), by writing F,_; instead of J,. If a # 0, (Fn)n>0 is a generalized
Fibonacci sequence and if a = b =1, (ﬁ”)rpo will be the famous Fibonacci sequence.

System (1.120) and its one dimensional versions, generalized for example the works of [104,

105].

1.4.1.24 Caseb=c=d=0and a# 0 In this case, we get the system
Tni1 = 1 (ag(Wn), Ynsr = g ' (af(x,)), n € No. (1.121)
Using the fact that f, g are one to one functions, and the change of variables
X = f(@n), Yo = 9(Yn), n =20
the system (1.121), will be

XnJrl = aYn, Yn+1 = aXn, n € No.

So,
Xop = (l2nXo, Yo, = aano, Xopg1 = a2n+1Y0, Yont1 = CLQ”HX(J, n € No.
Hence
won = [T (@™ f(20))s y2n = 97 (a*"g(y0)), n € No
and

Lont+1 — f_l(a2n+1g(y0))7 Yon+1 = g_l(a2n+1f(x0>>7 n e NO-
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1.4.2 Second class of systems

In this part, we are interested in the following system of difference equations given by

— f-1 b c d
wu1 = 7 (04 0+ Tt + o) (1.122)

-1 b c d
Ynt1 =9 (“ T T T Famen f(wn)g(yn—l)f(wn—z)) ,

where n € Ny, f, g : D — R are continuous functions, with D = D; = D,, that is f and
g have the same domain, in addition we assume that f, g are “1 — 1”7 on D C R, the initial
values x_;, y_;, i = 0,1, 2, are arbitrary real numbers in D and the parameters a, b, ¢ and d

are arbitrary real numbers.

Definition 1.3. A solution {x,,yn},>_, of system (1.122), is said to be well-defined if for

all n € Ny, we have

a+—" 4 c + d € Dy,
9Wn)  9yn)f(@n-1)  9(yn) f(@n-1)9(Yn—2)
and
a+ b + ¢ + d € Dy

f@n)  f@n)g(yn—1)  f(20)9(Yn—1)f(Tn-2)
We solve in closed form (1.122) and we investigated particular cases of it. The philosophy,

is the same as in the previous section (1.4.1), so we will brief in presenting our formulas of

the solutions.

1.4.2.1 Explicit formulas of solutions of system (1.122) with d # 0

The following result is devoted to the formulas of well-defined solutions of (1.122).

Theorem 1.23. Let {x,,y,},~ , be a well-defined solution of system (1.122). Then, for all
n € Ny we have -

dJont2 + (cJant2 + dJont1) g(Y—2) + (J2n+a — adonys) f(z-1)g(y—2) + J2n+39(y0)f(ff71)g(y72)}

Ton =f1 [
2t =/ dJan+1 + (cJ2nt1 + dJ2n) g(y—2) + (J2n+3 — aJan+2) f(2-1)g(y—2) + Jont+29(y0) f(x-1)g(y—2)

dJonts + (cJ2n+3 + dJant2) f(@—2) + (J2nt5 — aJan+a) g(y—1) f(z—2) + J2n+4f(930)9(y71)f($72)}

_ =1
Pant2 = f [dJ2n+2 + (cJ2nt2 + dJ2nt1) f(x-2) + (J2nta — aJ2nt3) g(y—1)f(x—2) + Jontsf(z0)g(y—1)f(z—2)

yamir = g1 {dhnw + (cJon+2 + dJant1) f(@—2) + (Jonta — ad2nt3) g(y—1) f(z—2) + J2n+3f($0)9(y—1)f(x—2)}
nt dJans1 + (¢Jang1 + dJon) f(@—2) + (J2nt3 — adany2) 9(y—1)f(@—2) + Jont2f(z0)g(y—1)f(w—2) |’

dJonys + (cJant3 + dJ2n+2) g(y—2) + (J2nts5 — aJanta) f(z—1)g(y—2) + J2n+4g(yo)f($71)9(y72)}

dJant2 + (cJ2nt2 + dJany1) g(y—2) + (Janta — ad2ni3) F(x-1)g(y—2) + J2nt39(wo) f(z—1)g(y—2) |

Yotz =g " [
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Proof. Using the fact that the functions f, g are one to one and using the change of variables

(1.92), with n > —2, the system (1.122) becomes

X T A

n = Qa — Y

+1 VTV T VXY (1.123)
c

b
Y1 =a+ — n € Ny,

+ + ,
Xn XnYn—l XnYn—an—2
or equivalently,

aYan71Yn72 + banIYan + CYan + d

Xn = )
i Yan71Yn72 (1 124)
aXnYnlen72 + anlean + CanQ + d ’
ntn—-13An-2

This system was solved in [3], and for n € Ny, the solutions of (1.124) takes the form
dJonta + (conso + dJoni1) Yoo + (Jonsa — adonis) X 1Yo + JopsYo X 1Y

X n = )
2ot dJoni1 + (cons1 + dJon) Yoo + (Jongs — adopso) X qY_o + Jop 2 Yo X 1Y
(1.125)
X _ dJopyz + (cJants + dJanta) X_o + (Jonts — adopta) Y1 X o + Jopa XoY 1 X o
2n+2 — )
- dJonto + (conyo + dJoni1) Xoo + (Jonga — adonys) Y1 X o+ Jopis XoY_1X o
(1.126)
v _ dJapio + (clanio + dJony1) X o+ (Jonga — aJony3) Y1 X o + Jon 3 XoY 1 X
2n+1 — )
- dJons1 + (cJons1 + dJoy) X_o + (Jongs — adonya) Y1 X o+ Jopio XoY 1 X
(1.127)
Vo dJonis + (clongs + dJoni2) Yoo + (Jongs — @Jonsa) X 1Y o + Jon s Yo X 1Yo
2n+2 —

dJonso + (cJopso + dJoni1) Yoo + (Jonita — adonis) X 1Y o + J2n+3Y0X—1§(/I21728)

where (J5),,cn, is the sequence defined by (1.43).

Using (1.92), (1.125), (1.126), (1.127) and (1.128), we get that for n € Ny, every well-

defined solution of system (1.122) has the following representation

dJon+2 + (cont2 + dJan+1) 9(Y—2) + (Janta — adan+3) F(x-1)9(y—2) + J2n+39(yo) f(x-1)g(y—2)

dJon+1 + (eJant1 + dJ2n) 9(y—2) + (Jonts — adant2) f(2-1)9(y—2) + J2n+29(y0) f(z-1)g(y—2) } > (1129)

Toppr = f1 [

Tonpa = f! [

dJont3 + (cJont3 + dJont2) f(@—2) + (Jonts — adonya) g(y—1) f(z—2) + J2n+4f($o)9(y—1)f($72)}
dJont2 + (cJ2nt2 + dJont1) f(x—2) + (J2nta — aJ2n+t3) g(y—1) f(z—2) + J2n+3f($o)y(y71)f($72)( '
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dJont2 + (eJant2 + dJan41) f(z—2) + (Jonta — adon3) 9(y—1)f(z—2) + J2n+3f($0)9(y—1)f(x—2)}

dJon+1 + (eJ2nt1 + dJ2n) f(2-2) + (J2n+3 — adant2) 9(y—1)f(2—2) + J2nt2f(20)g(y-1) f(z—2) ( )
1.131

Y2n41 = g ! [

dJant3 + (cJan+3 + dJant2) g(Y—2) + (Jon+5 — adonta) f(z-1)g9(y—2) + J2n+49(y0)f(m—1)g(y—2)] (1.132)
dJon+t2 + (cJant2 + dJant1) 9(y—2) + (Janta — aJan+3) f(@-1)g9(y—2) + J2n+3g(yo) fz—1)g(y—2) ] =

Yoz =g " [
]

Remark 1.4.3. 1. In [3], to solve the system (1.124), the authors used the change of

variables

Un—1 Up—1
to obtain the forth linear system (1.71).

2. When g = f and y_; = x_;, i = 0,2 then system (1.122) becomes the equation

. _f_l [a—i— b . c n d
e F@a) " f@)f@ar)  f@a)f(@ar) f(Ta—2)

and the form of every well-defined solution of (1.133) is given by

] ,neNy, (1.133)

dJon+2 + (cJ2nt2 + dJ2n+1) f(x—2) + (Jon+a — aJonts) fz—1) f(z—2) + J2n+3f($0)f(171)f(172)}
dJont1 + (cJ2nt1 + dJ2n) f(x—2) + (Jant3 — aJant2) f(z—1)f(z—2) + J2n+2f(fﬂo)f($71)f($f(2) ;
1.134

1
Tont1 = f [

dJonts + (cJ2n+3 + dJant2) f(x—2) + (J2nt5 — aJan+a) f(z—1)f(z—2) + J2n+4f(xo)f(w71)f($72)}

dJant2 + (¢Jont2 + dJ2nt1) f(@—2) + (J2nta — ad2ny3) f@—1)f(z—2) + J2n+3f(xo)f($71)f(9i72) )
1.135

1
Tont2 = f [

which can be represented in the unified form

dJni2 + (cInt2 +dnt1) f(@—2) + (Jnya — adni3) flx—1) f(xz—2) + Jn+3f($0)f($—1)f($—2)} (1.136)

_ r—1
i =1 { dJn+1 + (¢Int1 + dJn) f(@—2) + (Jnts — adny2) f(x-1) f(z-2) + Jnt2f(z0) f(z-1) f(2—2)

Now we give some applications of Theorem (1.23).

Example 1.4.3. Let
Ft) =171 g(t) =71, 5, k € N,

We have the functions f and g are one to one continuous functions on R = Dy = D,. In

this case, system (1.122) becomes

_1
b c d 2+l

Tpr1 = |0+ 557 + wmm 77 + mrr T oE
n-+ { yn+ ynJ’xn]fl yn+:c]+y + )

—1 In-2

(1.137)
b c d 2kl
Ynt1 = |Q + 2T + xij+ly2k~g1 + zij+1yik+1x2j+1 , M€ No.

n— -1 “n—-2
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Then by Theorem 1.23, we obtain that the solutions of system (1.137) have the following

form
. [dbm-z + (cJan+2 + dJopt1) y%Jr + (Jonta — aJon3) 2j+192k2+1 + J2n+3y2k+1 2j+1y2k2+1
2n+1 —
dJon i1 + (Jans1 + dJon) Y5 4 (Jonis — adonsa) £y o Jop g2kt ey 2hrt
(1.138)
. B [dj2n+3 + (cJants + dJang2) 2257+ (Jongs — adonia) 25 a5 + Jop sy T2 2V
2n+2 —
dJonss + (Conss + dJanst) 225 + (Jansa — adonss) y2it o™ 2”1 + Jop ygaed Ty 2
(1.139)
y ldJ2n+2 + (c¢Jont2 + dJant1) z ‘2+1 + (Jonta — aJoni3) y%le 23“ + Jony3 $2j+1y3k+1 QJH
2n+1 —
dJon+1 + (cJons1 + dJap) ™ 2J+ + (Jonyz — adop o) y* e ZJH + Jan42 CUQJH)Z/%IﬁHOEij;l
(1.140)
” B [dj2n+3 + (cJants + dJan2) YT+ (Jongs — adania) @ 25 4 o paygt a2
2n+2 —
dJons2 + (clons2 + dJoni1) Y5 + (Jansa — adonis) CUQJleyZ’?Ll + Jopaaydt ey
(1.141)
Example 1.4.4. Let
1 .
f(t) = t2j+17 g(t) = t2k+17 Ve k € NO-

We have the functions f and g are one to one continuous functions on R — {0} = Dy = D,.

Then, system (1.122) becomes

1

Tn41 = )

SRFT 2T | gy BT 27T R T
atbyn T feynt T el  dynt e 2R,

_ 1
Yn+1 = [ o s T F R B L g T
a+bxy, +cxy Y1 T Y1 T_o

_1
2j+1
)
1

2k+1
:| , neE No.

(1.142)

Then by Theorem 1.23, the solutions of system (1.142) have the following representation

|
|

|

|

|

2j+1 241
. l dJon1ye¥ j1+ Y 4 (eJanst + dJon) v 2 4 (Janas — adont2) Yo 4 Jante
2n+1 = 2j+1 2 i
dJon42yst ta? IR L (edopys + dJon i) Yty 2N (Jopsa — aJonys) TR Y S
(1.143)
2j+1 2j+1 2j+1 1
. B ldJ2n+2fU I 2R G2 4 (e Jonga + ClUQnH)ZL”oJ+ Y 4 (Janga — adonss) o0+ Jonss
2n+2 — 2j+1 2j+1 2j+1
dJ2n+3330]+ y3k:1+1$j2+ + (cJant3 + dJany2) g i+ Y2 4 (Japys — aJ2n+4) Y Jonaa

(1.144)

|

25+1

25+1

2k+1

25+1

2j+1
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2j+1 2j+1 2j+1 2j+1
) B [ ATy 1287 Ty PEF 2 (o1 4 diJon) 28 TR 4 (Jopys — adonyo) 330]+ + Jonyo
2n+1 — 2j+1 2j+1 2j+1

dJonyoxd TryP A 2 1 (e o 4 dJonyr) 220 T PR 4 (Jopia — adonys) 230 T 4 Jons

(1.145)

2j+1 2j+1

y B ldJ2n+2y2k+1$ jfr YR 4 (cdanso + dJons) y2i e _Jfr + (Jonta — aJ2ni3) Y2 + Jonts
dJons3yeF TP 4 (cdangs + dJani2) ¥ a4 (Jongs — adanta) YR 4 Jonia

(1.146)

_ 1 _ 1
1.4.2.1.1 The system w,, = A byn T cynan_1+dyn@n_1yn_2’ Il = G brntcmnyn_1+dTngn_12n_2

Here we will focus our study on the system of difference equations

1
a—+ byn + CYnTn—1 + dynxn—lyn—27
1

Tnt1 =
n € N, (1.147)

I b + Contnt + ATnln1Tms’

which is a particular case of system (1.142) with j = & = 0. Noting that system (1.147),
generalize the studies in [65, 66, 67]. Then, putting j = & = 0 in the formulas of well-defined

solutions of system (1.142), we obtain the following result.

Corollary 1.24. Let {z,,y } be a well-defined solution of (1.147), then for n € Ny, we

n>—2
have
o Anayoro1y—2 + (¢Jantr + dJzn) Yoro1 + (Jonts — adonta) Yo + Janea (1.148)
1 = T
T danayor 1y + (clansa + dJangr) Yoot + (Jama — @Jonts) Yo + Janss
. dJon+220y-12-2 + (¢Jant2 + dJont1) Toy—1 + (Jon+a — aJonts) To + Jonys (1.149)
2n+2 — ’ '
T ddangstoy 17+ (Canys + ddanga) Toy—1 + (Jants — @Janta) o + Janta
Yoni1 = dJon100y—12—2 + (Cans1 + dJan) Toy—1 + (Jonss — aJonsa) 2o + Jongo (1.150)
41 = T
T dopsat0y—17—2 + (conga + dJant1) Toy—1 + (Jansa — aonss) To + Jants
dJont2yor-1Y—2 + (¢Jant2 + dJons1) Yor—1 + (Jonta — aJonts) Yo + Jonts
horss — . (L1.151)

dJont3yor_1y—2 + (cJonts + dJony2) Yor—1 + (Jonts — aJonya) Yo + Jonsa

Moreover, if we choose a = b= c =d =1, the sequence (Jn):f(’) will be nothing other than

the famous Tetranacci sequence defined for n € Ny by

Toia = Tpig + Tpso + Tpsr + T, T =T1 =0, Tp=Ty =1, (1.152)

] 2k+1
] 2k+1
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and for this choice of the parameters, the solutions takes the form

Tont190T-1Y—2 + (Tons1 + Ton) Yov—1 + (Ton+s — Tont2) Yo + Tono

—_— , 1.153
T Tonroyor—1y—2 + (Tansz + Tont1) Yoot + (Tonra — Tonts) Yo + Tonss ( )
. ~ Dangoxoy-17—2 + (Tonta + Tont1) Toy—1 + (Tonva — Tonys) To + Tonys (1.154)
2n+2 — ’ ‘
* Ton+30y-12—2 + (T2n+3 + Tont2) Toy—1 + (Tonts — Tonta) To + Tonta
y B Ton1T0Y—12_2 + (T2n+1 + TQn) Toy-1 + (T2n+3 — T2n+2) o + Tonta (1 155)
2n+1 — ’ .
* Tont2woy-12-2 + (Tonya + Tons1) Toy—1 + (Tonta — Tonts) o + Tonss
Yoy — TontoyoT1Y—2 + (Tonta + Toni1) Yor—1 + (Tonsa — Tonys) Yo + Tonys (1.156)

Tontsyor-_1Y—2 + (Tonts + Tont2) Yor—1 + (Tonss — Tonta) Yo + Tonta

Now, we will study the stability of the equilibrium points of system (1.147) with a = b =
¢ =d =1, that is the system

— _ 1
Tpy1 = fl (.Tn, Tpn—1,Tn—25Yn, Yn—-1, yn—2) T 14 yn+Tn1Yn+Yn—2Tn_1Yyn’ (1 157)

— _ 1
yn+1 - f2 ('Tn7 xn—17 xn—27 yna yn—la yn—2> - 1+$n+yn71mn+xn72ynilxn °

For the stability of the equilibrium points, we assume that the initial values are positive real

numbers.
11 11 1 11
The points (a, 5), (E, B), (%7) and (5’ 5) are solutions of the of system
1
T = ,
1+y+ icy + xy?

v 1+ 2+ yr + 22y’

where «, 3, v and § are roots of polynomial characteristic associated to the equation (1.152),
see [3]. It follows that (Z,7) = (;, ;) is the only equilibrium point for system (1.157) in
(0, +00)*.

For the equilibrium point (Z,7) = (

, —), we have the following result.

Q|+
Sl

) is globally asymptotically stable.

SEE

Y

Q|+

Theorem 1.25. The equilibrium point (Z,7) = (
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Proof. The Jacobian matrix associated to the system (1.157) around the equilibrium point

11
S I IR
(@.9) = (o). s given by

R e
r 0 0 0 0 0
o 1 0o 0 0 0

A=

e 0 ok 0 o
o o o 1 0 0
o o o o 1 0

The characteristic polynomial of A is

a—1 a+1 1
P(A\) = —h(A\)h(=N), where h()\) = \* — A A— —. 1.158
(0) = ~h(VA(=A), where h(3) R (1.158)
Consider the two functions
a—1 a+1 1
hi(A) = A3, ho(N) = N — A+ —.
1( ) ’ 2( ) o al + ol
We have
a—1 a+1 1
hs(N)] < ‘ - ‘ + ‘ Ny ‘ ‘4 <l=|m,YAEC: ]\ = 1.
It follows by Rouché’s theorem, that all the roots of h(A) lie in the open unit disk, and
11
so it is for the roots of P(A). Thus the equilibrium point (—, —) is locally asymptotically
a’«
stable.
It remains to prove that
lim z,= lim y, = l
n—-+oo n—-+00
To this end we will, use the fact
Ty
lim 2 = of VEeN. (1.159)

Using the formula of the solutions, we have

I o Doppyor—1y—2 + (Tong1 + Ton) Yoo—1 + (Tongs — Tony2) Yo + Tonso
im z9,,; = lim
n—r00 100 Tony0Yo@—1Y—2 + (Tons2 + Tons1) YoT—1 + (Tonsa — Tongs) Yo + Tonys

T T T T: T:
2n+ly0x 1y 9 _|_ < ;Z+1 + Qn) yol._l _|_ ( ;24»3 _ 2n+2) y + 2n+2
= lim = =

T T: T: T T: T
n—o0 2n+2y0$ 1y 9 +( 12n42 + 2n+1)y0x 1 +( 42n44 3—’213)y _|_ 2n+3

ayor_1y_s + (@ + 1) yor_1 + (a® — a®) yo + a?
a?yor_1y-2 + (@ + a') yor_1 + (@' — a?) yo + &
1

«
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Similarly, we show that

. . : 1
nll_{glo Lon+2 = nh_{glo Yon+1 = nh_?olo Yon+2 = P
that is
. . 1
Jim 2, = lim g, = = (1.160)
This complete the proof. m

As a consequence of Corollary 1.24, when choosing the initial values to satisfies y_; =
x_;, 1 =0,1,2, we get the formulas of the well-defined solutions of the equation
1

n+1 = , n € Ny. 1.161
Tntl a+ bz, + crp_12, + dTp—_9Tpn_1Tn " 0 ( )

These formulas are given in the next result.
Corollary 1.26. For alln € Ny, the form of every well-defined solution of equation (1.161)
is given by

dJon100T 129 + (cJoni1 + dJan) Tox—1 + (Jonis — aJania) To + Jonio

Topil = . (1.162
e dJoni270r_12_9 + (clonta + dJons1) 2ox—1 + (Jonsa — aJongs) Zo + Jonts ( )
_ dJany2m0r 179 4 (cJonyo + dJong1) Tox_1 4 (Jonga — aJonys) To + Jongs
Tony2 = ) (1163)
dJoni3007_12_5 + (cJongs + dJoni2) Tox_1 + (Jongs — adonts) To + Jonta
which can represented in a unified form as
dJn_HﬂZox_l.T_z + (CJn_H + dJn) ToT_1 + (Jn+3 — aJn+2) To + Jn+2
Tt = . (1.164)
dJn+2£Eol'_1lL'_2 + (CJn+2 + dJn_H) Tox_1 + (Jn+4 - CLJn+3) To + Jn+3
Moreover, ifa =b=c=d=1, then (1.161) becomes
! (1.165)
Tpil = .
i 1+ Tp + Tp—1Tp + Tn—2Tn—1Tn
and the solutions are expressed in terms of Tetranacci numbers as follows
ooz 179 + (Tons1 + Ton) oz—1 + (Tongs — Tong2) To + Tongo
Loptr1 = y (1166)
Tonr220T 172 + (Tont2 + Tong1) ToT—1 + (Tonta — Tongs) To + Tonys
. _ TDongowor 179 + (Tongo + Tony1) ToT 1 + (Tonta — Tonys) o + Tonys (1.167)
2n+42 — y .
" Tony300T 172 + (Tongs + Tont2) Tox—1 + (Tonys — Tonta) To + Tonya
or equivalently in the unified form,
Tos1xor_12_9 + (Ths1 + 1) xox—1 + (Thgs — Thyo) To + Thto (1.168)

Tpi1 = )
T T w2y + (Thyo + Tog1) vox—1 + (Thpa — Thys) o + This
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1

Remark 1.4.4. It is not hard to see that T = — is the unique equilibrium point for (1.165)
o

in (0,400) when taking the initial values positive real numbers.

1
The linearized equation of (1.165) about the equilibrium point 7 = — is
o

a—1 a+1 1
Wp4+1 = — Wyp — 71071_1 — gwn_Q' (1169)
We have O‘T_l, aa—tl, é are real numbers and
‘a—1'+‘a+1‘ <1
o at at ’

thus, T = i is locally asymptotically stable.

Now, using (1.159) and (1.168), we get
Thiixor_12_9 + (Ths1 + 1) ox—1 + (Thss — Thyo) To + Thgo

lim z, = lim
41
n—00 n=oo T oxo_12Z_9 + (T2 + Tot1) Tox—1 + (Tosa — Thvs) o + Thts
T T T T
T%onﬁ 172 + ( ol | ;”) ToT_1 + ( S — 7}”) To + 2

T, T,
n—oo n+2x0x 13,/. 2_|_( in42 + "+1>$0$ 1_|_< n:4 _ n+3)x + n+3

argr_17_9 + (a+ 1) zor_1 + (a3 — a?) 2o + o2
a?ror 109+ (@ + a) xor_1 + (a* — a3) g +
1

o .

In summary, the equilibrium point ¥ = i is globally asymptotically stable.

1.4.2.2 Particular cases of system (1.122)

1.4.2.2.1 The case d =0 and ¢# 0 In this case the system (1.122) take the form:

Tnt1 = f_ [CL + g(y ) + (yn)f(:rn—l)} ’

(1.170)
_ -1
Ynt1 =9 [a+f(x)+f( )(yq)}’ n € No.

Corollary 1.27. The formulas of well-defined solutions of system (1.170), are given, for all

n € Ny, by
Joni1 + (Jonss — adon )+ Jon ~
A ffl c 2~+1 <~2 +3 a~ 2 +2) f(x-1) ~2 +29(o) f(x-1) ’ (1.171)
cJay + (J2n+2 - CLJ2n+1) f<x71> + J2n+19(3/0)f($7 )
Jonso + (Jonsa — adon )+ Jon ~
M ¢Jon+ (~2 vk +3) 9(y-1) & +3f(20)g(y-1) | (1.172)
cJopy1 + <J2n+3 — @J2n+2) 9(y-1) + Jontaf(20)g(y-1)



1.4 Representations of solutions to two general classes of nonlinear systems of
difference equations 51

. Cj2n+1 =+ <j2n+3 - aj2n+2) g(y-1) + j2n+2f(x0)g(y,1)
Yon+1 = ¢ = = = = : (1.173)
cJon + <J2n+2 - GJ2n+1> 9(Y-1) + Jans1f(20)g(y-1)
B Cj2n+2 + (j2n+4 — Gj2n+3> fle_1) + Ln+39(3/0)f(51771)
Yony2 = 9 = = = = : (1.174)
cJont1 + (J2n+3 - GJ2n+2> (1) + Jont29(yo) f(7-1)
Ifg=fandy_;=x_;, i =0,1,2 then, system (1.170) becomes
o= [ ot -0+ ° neN (1.175)
e f@n)  f(@a)f(en-a) ]’ v .
hence, every well-defined solution of equation (1.175) is given by
_1 _Cj2n+1 + (j2n+3 - aj2n+2> fle_1) + Ln+2f($o)f($—1)_
Tont1 = f = = = = ) (1.176)
| o + (J2n+2 - aJ2n+l> f(x—1) + Jont f (o) f(2-1) |
1 _Cj2n+2 + (j2n+4 - aj2n+3) flw_1) + j2n+3f(370)f(37—1>—
Topgo = f = = =~ = ) (1‘177)
| ¢ont1 + (J2n+3 - a<]2n+2> flx_1) + Janyaf (o) f(x 1) |

or in the unified form

. Cjn—l—l + (jn+3 — ajn+2) flx_q) + jn+2f(xo)f(l’—1)
el + (jn—i-Q - Cljn+1) F@o1) + Jug1 f20) f (1)

Tpt+1 = f , & N07 (1]‘78)

where (jn> - is the sequence defined by

nz

jn+3 = ajn+2 + bjn+1 + cjn, jo =0, jl =1, jg =a, n € Ny.

1.4.2.2.2 The system z,,, = m, Yps1 = m In the following, we
are interested in a particular system of (1.170) and some particular equations of its one
dimensional version.
Let f(t) = 7 and g(t) = 1, then, system (1.170) becomes

1 1
a+ by, + CTp_1Yn Yl =0T by + CYp_1Tn

(1.179)

Tp+1 =

So, by Corollary 1.27, we get the following result.
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Corollary 1.28. For all n € Ny, the representation of well-defined solutions of system
(1.179) is

cjnya:;—i—jn —ajn y+jn
S 2n Yol -1 (2+2 2+1> 0 2n+1 (1.180)

Cj2n+1y0$—1 + <j2n+3 - aj2n+2) Yo + j2n+2’

Cj2n 1ToY-1 + j2n 3 —ij2n 2 $0+j2n 2
Tonis = —m (Jzns =) i (1.181)

Cj2n+2370.y—1 + (an+4 - @j2n+3) o + j2n+37

C=72n$0y—1 + (j2n+2 — aj2n+1> To + jzn+1

Jamt = CJons1ToY—1 + (<72n+3 - aj2n+2) o + Janta (182
B Cj2n+1yof—1 + (Ln-i—.?) - ann—‘,—Q) Yo + j2n+2 (1.183)
Yz = CJontayoT_1 + (Ln+4 - aj2n+3) Yo + j2n+3. '
Moreover, the solutions of the following equation
Tyl = ! (1.184)

a+ bx,, + cr,_12,

follows directly from those of the system (1.179) by taking y_; = x_;, i = 0,1. Then, repre-

sentation of well-defined solutions is

cTontor 1 + (Jontz = @Joni1) To + Jonia

Lo+l = —= = = = s (1185)
cJon1ToT_1 + (J2n+3 - GJ2n+2) xo + Jopyo
Cj2n+1$0$—1 + <j2n+3 - aj2n+2) o + j2n+2
Lop42 = —= = = = . (1186)
conyoror_1 + (J2n+4 - GJ2n+3) xo + Jonts
Recently in [65], the authors studied the particular difference equations
! (1.187)
Tppl = , )
i -1+ Tn + Tpn_12p
! (1.188)
Tpy1 = , .
i 1 + Ty — Tp1Ty
1
il = , 1.189
Tl l—2,+x,12, ( )
1

-1 - T — xn—lxn’
and as a generalization of (1.187), (1.188), (1.189), (1.190) the authors studied again in [66],

the equation
1

B « 1
; + ;xn + ;xn—lxn

v #0. (1.191)

Tnt1 =
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Clearly these equations are particular cases of equation (1.184).

In fact to obtain equation (1.187) it suffices to take @ = —1, b = 1 and ¢ = 1 in (1.184),
when choosing a =1, b =1 and ¢ = —1 in (1.184) we get equation (1.188). Equation (1.189)
follows from (1.184) for the choice a = 1, b = —1 and ¢ = 1. Again if we take a = —1,
b= —1and c= —11in (1.184) we get the equation (1.190), finally for the choice a = g, b=2
and ¢ = % in (1.184) we find the equation (1.191).

Noting, that the authors studied in [67] the following systems

1
$n+l - 3
14y, +Tp_1yn
B Yo Fn-1¥ (1.192)
Yn+1 = 1 + T, +yn71£L’n7
1
In—l—l — 9
-1 + n -~ +4n—-1Yn
o IntY (1.193)
Yn+1 =

-1+ Ty — yn—lmn.
Systems (1.192) and (1.193) are particular cases of system (1.179) for the choices a = b =

c=1and a=—1,b0=1,c= —1 respectively.

Now, we will investigate each of these cases separately.

1. Consider a = —1, b =1, ¢ = 1, equation (1.184) becomes (1.187). For this choice of
the parameters, we get the sequence (jn) 0070 defined by:

Javs = —Jnsz + Jnpr+ Juy Jo=0, i =1, Jy = 1.
It is easy to see that

~ 1 1 1
= (=4 =-n)(=1)"+- .
I <4+2n>( )+4, n € Ny
From this it follows that

jgn = —Nn, j2n+1 =n-+1.

Replacing in (1.185) and and (1.186), we obtain

—nr_1r9+n+1
n+1)z_jz0+z0— (n+1)

Ton41 = (

(n+ D)zor_1 + 20— (n+1)
—(n+ 1Dzor_1 +n+2
and these are the formulas given in [65] for the solutions of (1.187).

Lon+2 =

)
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2. Consider a = 1, b = 1, ¢ = —1, equation (1.184) becomes (1.188). For this choice of
the parameters, we get the sequence (jn) OO_O defined by:

jn+3 = jn+2 + jn—i—l - j;u <70 = Oa jl = 15 =72 =1.
It is easy to see that

~ 1 1 1
w=—-+=-n——(—1)", .
J, 1 2n 4( ) n € Ny

From this it follows that
=72n:n7 =72n+1 =n+ 1.
Replacing in (1.185) and (1.186), we get

nr_1zo — (n+1)
n+ 1)z 20— 20— (n+1)’

(n+ 1Dzor_1 — 20— (n+1)
(n+ 1)zor_1 — (n+2)

and these are the formulas given in [65] for the solutions of (1.188).

Ton4+2 =

Y

3. Consider a = 1, b = —1, ¢ = 1, equation (1.184) becomes (1.189). For this choice of
the parameters, we get the sequence (jn) 0070 defined by:

Jn+3:Jn+2_jn+l+jn7 <70:Oa L71 =1, t72: L.

We have
~ 1 1 o -1 n
=5t 2g=n W Y
=3t (T )0+ (T g e nemy

From this it follows that
~ 1 1 ~ 1
J n— T — = —1 ’Vl7 J n = —
2 5 2( ) 2l = 5 +
depending on n is even or odd, we get

j4n - 0; <74n+1 - ]-; <74n+2 - 17 j4n+3 =0.
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Replacing in (1.185) and (1.186), we obtain

1
T_1Tg — To + 1’

Ton4+1 =

r_1x9 — Ty + 1

x4n+2 - T o7 )
—140

Tan4+3 = T—1,

Lan+4 = To,
and these are the formulas given in [65] for the solutions of (1.188).

4. Consider a = b = ¢ = —1, equation (1.184) becomes (1.190). For this choice of the
parameters, we get the sequence (jn) OO_O defined by:

Tz = —Jnro — Jnp1 — Jn, Jo=0, 1 =1, Jy = —1.

We have
~ -1 1 1
Jn — —(—1)" N A\
SRR Tr e IO T )
-1 " 11N, ., 1 1 n
From this it follows that
~ -1 1 N 1 1 "
Jop = o + 5(—1) s Jong1 = B + 5(—1) )

depending on n is even or odd, we get
Jin =0, Jine1 = 1, Junio = —1, Japys = 0.

Replacing in (1.185) and (1.186), we get

1
—X_1Txog — Ty — 1’

Ton+1 =

. —X_1Txyg — Ty — 1
x4n+2 — T T )
—-140
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Tan4+3 = T—1,

LTon44 = X,

and these are the formulas given in [65] for the solutions of (1.190).

5. Consider a = b = ¢ = 1, system (1.179) becomes (1.192). For this choice of the

~ \ +oo
parameters, the sequence (Jn> will be nothing other than the famous Tribonacci

sequence defined for n € Ny by
Tz =Tnio+Thi1 + 10, To=0, Th=Tp=1. (1.194)

The solutions are given by

. ~ Tonyor—1 + (Tongo — Tong1) Yo + Tonga
2n+1 — )
T Donayor— + ET2n+3 — Tont2) Yo + Tonto
. _ Donpimoy 1+ (Tongs — Tonta) To + Tonto
2n+2 — )
2 Tonsatoy 1 + (Topta — Tonss) xo + Tonts (1.195)
Y _ Tonroy 1+ (Tonyz — Tont1) To + Tona '
2n+1 — )
* Tont170Y—1 + (Tonts — Tont2) To + Topyo
y ~ Ton1yor—1 + (Tonts — Tont2) Yo + Tonso
2n+2 — .
2 TonotoZ—1 + (Tongs — Tonts) Yo + Tonis

6. Consider a = —1,b = 1, ¢ = —1, system (1.179) becomes (1.193). For this choice of
the parameters, we get the sequence (jn) OO_O defined by:

Jn+3:_ n+2+jn+1_jn7<70:07 jlzlaL:_l

Using the fact that J, = (—1)""'T,, ([2]), we get from (1.28) that the representation
of well-defined solutions of system (1.193) is

. = (Tonyor—1 + (Tons1 — Tong2) Yo + Tony1)
2n+1 —
- Ton1YoT—1 — (Tons1 + Ton) Yo + Tono
.  —(Tonp1woy—1 + (Tonyo — Tonys) o + Toni2)
2n+2 — )
- Toni2x0y—1 — (Tont2 + Tont1) To + Tonys (1.196)
y = (Tanzoy—1 + (Tont1 — Tonga) ®o + Tony1) '
2n+1 — )
- Ton120Y—1 — (Tont1 + Top) ©o + Ton o
y = (Tons1yor 1 + (Tont2 — Tonss) Yo + Tont2)
2n+2 —
- Tontoyor—1 — (Tont2 + Tont1) Yo + Tonss

and these are the formulas given in [67] for the solutions of (1.193).
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1.4.2.2.3 Case d=0,c# 0 and a =0 In this case, we obtain the system

_ f1[_» c

Tn41 = f |:g(yn) + Q(Hn)f(l’n—l):| ! (1197)
_ 1] b c

yur1 =97 [y + Fememnn) " € No.

Here, (jn) o will be the sequence (P,), 5, defined by

n_

Pnys =bPpy1 +cPn, Po=0,Pr =1, P, =0,n € Ny. (1.198)

So, well-defined solutions are expressed in terms of (P,),, and takes the form

_1 | Pont1 + Pongsf(2-1) + Pont2g(¥o) f(2-1)
Topay = 1[02“ 2n+3 . n €Ny, 1.199
me1 = f cPon + Pontof(w-1) + Pans19(yo) f(x-1) ‘ ( )
_ Pn +Pn 49( )+P2n+3f g
Tomis = 1lc2+2 2nt . n € N, 1.200
w2 = f Pant1 + Pant3g(y-1) + Pantaf(20)g(y ’ ( )
1| €Pang1 + Ponysg(y-1) + Pansaf( -730 ]
= ,n €N, 1.201
Yot =9 l cPan + Pony2g(y-1) + Pans1f(70)g ° ( )
-1 Cp2n+2 + P2n+4f( ) + 7)2n-i-3g ]
n+2 — , n € Np. 1.202
Yotz =9 [CPQnH + Pants f(x-1) + Pont29(y ’ ( )
for system (1.197) and by
_ Pn + 7)n f(xfl) + Pn 2f<33'0)f($,1>
Tn = 1 [C +1 +3 * , n € N s
n=/ cPpn + Ppyaf(w_1) + Pny1f(20) f(x-1) ’
for its one dimensional version, that is the equation
b c
m1 = f1 , n € N.
=] [f(:vn) ! f(xn)f(:ﬂn_l)] e

Also, (1.197) generalize some works in the literature, see, for example [44] and [124].

1.4.2.24 Case c=d=0,b#0 In this case, we get the system

b b
L, :f_lla+]ayn :g_l[a+], n € Ny. (1203)
" g(y)] 7 f(n) ’
In this case, the well-defined solutions will be expressed using terms of the sequence

(ﬁ”>nzo = (jnﬂ)nzo, defined by

F;H_g = aﬁn+1 + bFn, F() = ]., ﬁl =a,nec No.
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and the solutions for (1.203) and its one dimensional version, are obtained from Corollary
1.27, by writing F,_; instead of .J,.
System (1.197) and its one dimensional version, generalized some existing works, for example

[104, 105).

Remark 1.4.5. If b=c=d =0, a # 0, we get

Tp = fﬁl(a)v Yn = gil(a% n = 1727 T



Chapter 2

On a homogeneous system of

difference equations of second order

2.1 Introduction

A lot of studies are devoted to the subject of difference equations, mainly, in two directions.
The goal of the first one, is to find explicit formulas for well defined solutions, and then using
these formulas to deduce the behavior of the solutions. The second direction is concerned
by studying the stability of the corresponding equilibrium points and this is done by using
the Lyapunov stability theory, we can consult [2, 12, 13, 14, 30, 31, 32, 35, 41, 45, 48, 68,
91, 92, 111, 108, 118, 116, 127, 126]. Noting also that a huge number of models of difference
equations investigated by researchers are defined by homogeneous functions of different order
see for example [6, 15, 27, 39].

In the present chapter, we will study the following general system of difference equations

defined by

Tp+1 = f(ynyyn—l)a Yn+1 = g(zna Zn—l)a Zn+l = h(xnvxn—l) (21)

where n € Ny, the initial values x_1, xo, y_1, Yo, 2_1 and zy are positive real numbers, the
functions f, g, h: (0,400)” — (0,+00) are continuous and homogeneous of degree zero.

Clearly if we take z_; = z_;, i = 1,2, and h = g, then the system (2.1), will be

Tpt+1 = f(ymynfl% Yn+1 = g(l’n, xnfl) (22)

Noting also that if we choose z_; = y_; = x_;,7 = 1,2, and h = g = f, then system (2.1),
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will be

Tpi1 = [(Tn, Tno1). (2.3)
In [114], the behavior of the solutions of system (2.2) has been investigated. System (2.2)
is a generalization of equation (2.3), studied in [62]. The present system (2.1) is the three
dimensional generalization of system (2.2).

Now we recall some known definitions and results, which will be very useful for the sequel,

for more details we can consult for example the following references [11, 16, 29, 58].

Definition 2.1. A function ® : (0,400)” — (0,+00) is said to be homogeneous of degree
m € R if for all (u,v) € (0,+00)* and for all X > 0 we have,

O (Au, Av) = NP (u,v).
Theorem 2.1. Let @ : (0,+00)” — (0, +00) be a C* function on (0, +00)>.

1. Then, ® is homogeneous of degree m if and only if

0P

92 )+ 00 (,0) = m(u,v), (1,0) € (0, +0)°.

ov

u

(This statement, is usually called Euler’s Theorem).

2. If ® is homogeneous of degree m on (O,+oo)2, then g—f and g—f are homogeneous of

degree m — 1 on (0, +00)>.

2.2 Local and global stability of the unique equilibrium
points

A point (z,7,%) € (0,400)® is an equilibrium point of system (2.1) if it is a solution of the
following system
T=f(9:9),9=49(z72),z = Wz,T).

Using the fact that f, g and h are homogeneous of degree zero, we get that

(f7 Y, 2) = (f(la 1)79(17 1)7 h(la 1))

is the unique equilibrium point of our system (2.1).
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Let F : (0,400)° — (0, +00)® be the function defined by
F(W) = (fl(W)7 f2(W)7 gl<W)7 g2<W)7 hl(W)7 h‘Q(W)) ) W = (U, v, w, ta r, 8)

with

HW) = f(w,t), fo(W) =u, s(W) = g(r; 5), g2(W) = w, by (W) = h(u, v), g2(W) =1
Then, system (2.1) can be written as follows
Whir = FOWV), W = (Zns Zne1, Uns Yne1, Zns Zn-1) , 1 € Ny.
So, (Z,9,%z) = (f(1,1),9(1,1),h(1,1)) is an equilibrium point of system (2.1) if and only if

is an equilibrium point of W, = F(W,,).
Assume that the functions f, g and h are C* on (0, +00)?. To system (2.1), we associate

about the equilibrium point W the following linear system
Xni1 =JrX,, n €Ny
where Jr is the Jacobian matrix associated to the function F' evaluated at
W= (f(1,1), f(1,1),9(1,1),9(1, 1), (1, 1), h(1,1)).
We have
Jp =

0 0
1 0
0 0
0 0

5.7 5(T.7)

As f, g and h are homogeneous of degree 0, then using Part 1. of Theorem 2.1, we get

) 0
y&i(y, 7) + @l (7,9) =0



62 On a homogeneous system of difference equations of second order

which implies

Similarly we get

0 0 F@w L@y o0 0
1 0 0 0 0 0
0 0 0 0 %(z,z) —%(z,37)
JF — T T
0 0 1 0 0 0
(@) —Gi@T) 0 0 0 0
0 0 0 0 1 0
The characteristic polynomial of the matrix Jg is given by
oh,_ . 0g, 8f 8h 89 8f
— 6__ 7" 3 2
Oh, . 0Jg of Oh 09 af

_3%<x’x)§(§’z)67w<y’y)>\+8( )g( )%(?,?)-

Now assume that

oh dg of 1
au" M r 525,01 < 3
and consider the two functions
P(N\) = N,
= _@ 09 ai T. TN @ 09 ai 2
oh, _0g, _ Of,  _ 8h77897 fof
We have
oh dg of _ _
<8 - = = : = 1.
O] < 8|5 @) (52 S 5| < 1= e, YA e T N =1

So, by Rouché’s theorem it follows that all roots of P()) lie inside the unit disk.

Hence by Theorem 1.1, we deduce that the equilibrium point (z,7,%) = (f(1,1), g(1,1), h(1,1))
is locally asymptotically stable.

Using Part 2. of Theorem 2.1 and using the fact that f, g and h are homogeneous of degree
zero, we get that % 99 and ‘% are homogeneous of degree —1. So, it follows that

» Br
of 8f(l D g, _ gD oh 511

aw( 7.9) = 7 E(z’)_ z ’%(x’x): T

In summary, we have proved the following result.
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Theorem 2.2. Assume that f(u,v), g(u,v) and h(u,v) are C* on (0, +00)>. The equilibrium

point
(7,9,2) = (f(1,1),9(1,1), (1, 1))
of system (2.1) is locally asymptotically stable if

af dg.. Ok £(1,1)g(1, D)A(1,1)
S D) SH(L 1) 5 (1, 1) < : .

In order to achieve our results on the stability of the equilibrium point (Z,7,%z) =
(f(1,1),9(1,1),h(1,1)) we need to prove that this equilibrium point is a global attractor.

To this goal, we will prove the following general convergence theorems.
Theorem 2.3. Consider system (2.1). Assume that the following statements are trues:

1. Hy: There exist a, b, a, B, A, v € (0,4+00) such that

a < flu,v) <b o< glu,v) < B, A< h(u,v) <, ¥Y(u,v) € (0,+00)>.

2. Hy: f(u,v), g(u,v), h(u,v) are increasing in u for all v and decreasing in v for all u.
3. Hs: If (my, My, ma, My, mg, M3) € a, b]2 X [a,B]Q X [/\,7]2 is a solution of the system

my = f(m27M2), M, = f(M2,m2), mo = g(ms, M3)7 My = g(M3,m3), ms = h(ml, Ml);
M3 = h(Ml,ml),

then
my = My, mg = My, mg = Mj.
Then every solution of system (2.1) converges to the unique equilibrium point
(7,7,2z) = (f(1,1),9(1,1),h(1,1)).
Proof. Let

0._ 0._ 0._ 0._ 0._ 0._
my =a, My :=b, mg :=a, My =3, mg:= X\, M3 :=r

and for each 1 = 0,1, ..

*9
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mg"t = h(mi, My), M5* = h(Mj,m}).

We have
a< fla,8) < f(B,a) <,
a<g\y) <g(rA) < B,
A < h(a,b) < h(b,a) <7,
and so,
mi =a < f(my, My) < f(My,m3) < b= M,
my = a < g(mg, My) < g(Mg,m3) < = Mj,
and
mg = A < h(mj, M7) < (M}, m}) <y = My
Hence,
m) <m} < M} < MY,
my < my < My < My,
and

Now, we have

)
IA
g
=
s
Il
=
IA
=
=
)
S
e/o
I
=

my = f(my, My) < f(my, My) =m

my = g(m§, M3) < g(mj, M3) = m3 < g(Mz,m3) = M7 < g(Mg,m3) = M,

my = h(my, M) < h(my, My) = m3 < h(My,my) = Mg < h(MY, mY) = M,

and it follows that

and

By induction, we get for ¢+ = 0,1, ..., that
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and
A=my<mz <. <mi'<mi<Mi<MIT'< . <M< M) =n.

It follows that the sequences (m?)ieny, (M4)ieng, (M3)ien, (resp. (M{)ieny, (Ma)ieng, (M2)ien,)

are increasing (resp. decreasing) and also bounded, so convergent. Let

m; = lim m}, my = lim m), ms = lim m3,
i—+00 i——+00 i——+00

M, = lim M, MQ_ hm Mi, M3 = lim M.

i——400 i——400

Then
a<my <M <b,a<my< My <3, A<mz< My<nr.

By taking limits in the following equalities
mi™h = f(my, My), M = f(My,m5),
my™ = g(my, My), My™ = g(Mz, m3),
mg" = h(mi, My), Mg = h(Mj,m}),
and using the continuity of f, ¢ and h we obtain

my = f(m2, M2), ma = f(M2,m2), mo = g(m?n M3), My = g(Mg,m3)7 ms3 = h(ml, Ml)v
Ms = h(Ml,ml)

so it follows from Hj that
my = My, mg = My, mz = Ms.
From H;, we get
ml=a<az,<b=M), my=a<y, <B=M) mi=A<z,<y=M)n=12--
For n = 2,3, ..., we have

ml = f(mS, MY) < i1 = f(Yn,Yn_1) < FIMS,m3) = M},
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my = g(mg, M5) < yoi1 = 9(2, 20-1) < g(My,m5) = Mg,
and
m} = h(ml, M?) < zu1 = (. 20m1) < (MY, md) = M}
that is
my < a, < Mp,my <y, <My, my<z, <My, n=234,--.
Now, for n = 4,5, ..., we have

m% - f(m%7M21> < Tpt1 = f(yn;yn—1> < f(MQI,mé> = MIQ,

and

m3 = g(mi, M3) < yn1 = 9(zn, 2n—1) < g(Mg, m3) = M3,
h

m2 = h(m}, M}) < 201 = h(@n, tn_1) < WM} m!) = M2

that is
2 2 2 2 2 2 _
m1anSMlam2Syn§M27m3§ZnSM3vn_5767"'

Similarly, for n = 6,7, ..., we have

m} = f(m3, M3) < @iy = f(Yn, yn—1) < F(MF,m3) = M7,

mg = g(mgv M??) < Yng1 = g(zm Zn—l) < g<M327m?2>) = M237
and

mg = h<m%7M12> < fntl = h(‘rmxnfl) < h(M127m%) = Mg)
that is

mi”gxngMf’,mggyngMzg,mggzngMg,n:7,8,~--.

It follows by induction that for ¢ = 0,1, ... we get

mianng,mégyngMzi,méganMg,nZQi—i-l.
Using the fact that i — +oo implies n — +o00 and my; = My, my = My, m3z = M3, we obtain

that

lim x, =M, lim y,= M,,, lim z,= Ms.
n—-+o0o n—-+4o0o n—-+4o0o

From (2.1) and using the fact that f, g and h are continuous and homogeneous of degree

zero, we get

M, = f(M2>M2) = f(1> 1)7 M,y = g(M37M3) = 9(17 1)7 M; = h(MlﬁMl) = h(lv 1)
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Theorem 2.4. Consider system (2.1). Assume that the following statements are trues:

1. Hy: There exist a, b, v, B, \, v € (0,+00) such that

a < flu,v) <b o <glu,0) < B, A< h(u,v) <5, Y(u,v) € (0, +00).

2. Hy: f(u,v), g(u,v) are increasing in u for all v and decreasing in v for all u and

h(u,v) is decreasing in w for all v and increasing in v for all u.
3. Hs: If (my, My, mg, My, ms3, M3) € [a,b]* x [a, B]° x [\,7]* is a solution of the system

my = f(ma, Ma), My = f(Ms, ma), ma = g(ms, Ms), My = g(Msz,ms3), mg = h(M;,mq),
M3 = h(ml,]\/[l)

then
my = My, mg = My, mz = Mj.
Then every solution of system (2.1) converges to the unique equilibrium point
(T, y7§) - (f(17 1)79(17 1)7 h(17 1))
Proof. Let
m? :=a, M} :=b, my :=a, My := B3, m3 :=\, M :=~

and for each 1 = 0,1, ..

°9

We have
a< f(a,B) < f(B,a) <D,
a<g\7y) <g(r,A) <6,
A < h(b,a) < h(a,b) < v,
and so,
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and
mg = A < h(M7,m)) < h(mi, M) <~ = Mj
Hence,
mf <mj < M} < MY,
my < my < My < My,
and

Now, we have

my = f(my, My) < f(my, My) = myi < f(My,my) = My < f(My,m3) = Mj,

m% = g<mg’Mi(’))) < g(mil’)’Mi’)l) = mg < g(Miilamili) = M22 < g(Mi?’mg) - M21’

my = h(M},my) < h(M,my) = m3 < h(my, My) = Mg < h(m}, M) = M,,

and it follows that

m{ <mj <mj <M} <M} <M,
m9 <my <mi <M< My <M,

and

By induction, we get for i = 0,1, ..., that

a=md<mi< . <mit<mi< M <M< <M <M =0,

a=mi<mi<..<mi'<mi<MI<MTT<. <M <M =5,

and

A=my<ms <. <mit<mi<Mi<MIT'< . <M< M) =n.

It follows that the sequences (m?)ieny, (M4)ieng, (M3)ien, (resp. (M{)ieny, (Ma)ieng, (M2)ien,)

are increasing (resp. decreasing) and also bounded, so convergent. Let

my = lim mj, me = lim mj, mg = lim mj,
1—+00 1—+00 1—+00
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M, = lim M}, My = lim Mj, M3 = lim M;.

1——+00 1——+00 1——+00

Then

a<my <M <b,a<my <My, <3, A<mz< Mg <n.

By taking limits in the following equalities

it = f(mi, ME), M = F(M3 ),

my™t = g(ms, My), My™ = g(Mg, mj),
Z+1 - h’(Mllaml) M§+1 = h(mlb Mll):

and using the continuity of f, g and h we obtain

my = f(my, Ma), mg = f(Ma,my), mg = g(ms, M), My = g(Ms, m3), mg = h(M;,my),
M3 = h(ml,Ml)
so it follows from Hj that
my = My, mg = My, mz = Ms.
From H;, we get
ml=a<z,<b=M), m)=a<y,<B=M, m3 A<z, <v= Mg,n:1,2,~--
For n = 2,3, ..., we have
m% - f(mg]?Mg) < Tpg1 = f(ynayn—1> < f(Mgﬂm(2)> - M117
my = g(mg, My) < Yns1 = g(2n, 20-1) < g(Mg, m3) = M,
and
mé = h(M{)’m(l)) < Ant+l = h(xnaxn—l) < h(m(l)a M{)) = M31
that is

m%gxngMll,mégyngle,mégzngMg,n:3,4,~-

Now, for n = 4,5, ..., we have

m% = f(m%7M21> S Tpyp = f(ynayn*ﬁ < f(Méam%) = M127

and

mg - g(mév M?}) < Ynt1 = g(zna Zn—l) < g<M317m?1>) = M227
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mg - h(Mllum%) S Zn41 = h(l’n,l’n_l) S h(mi Mll) = M32

that is
Similarly, for n = 6,7, ..., we have
m? = f(mg7M22> < Tppr = f(ynayn—l) < f(Mgamg) - Miga
m% = g(m§7M32> S Yn+1 = g(Zn, anl) S g<M§7m§) = M23>
and
mg = h(Mlzam%> < Zpy1 = h('rmxn—l) < h(mi M12) = Mg
that is

It follows by induction that for ¢ = 0,1, ... we get

my < @, < My, my <y < My, miy < 2, < My, n > 20+ 1.

Using the fact that i — +o00 implies n — +o00 and my; = My, my = My, m3 = M3, we obtain
that

lim x, =M, lim y,= M, , lim z,= Ms.

n—+00 n—-+o0o n—-+o0o
From (2.1) and using the fact that f, g and h are continuous and homogeneous of degree

zero, we get

M1 = f(MQ,MQ) = f(]_, 1)7 M2 = g(Mg,Mg) = g(]_, ]_), M3 = ]’L(Ml, Ml) = h(l, ].)

Theorem 2.5. Consider system (2.1). Assume that the following statements are trues:
1. Hy: There exist a, b, o, B, \, v € (0, +00) such that

0 < F(u,v) < b, a < g(u,v) < B, A < h(u,0) < 7, ¥(u,0) € (0,4+00)°

2. Hy: f(u,v) is increasing in u for all v and decreasing in v for all u and g(u,v), h(u,v)

are decreasing in u for all v and increasing in v for all u.
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3. Hs: If (my, My, ma, My, mg, M3) € |a, b]2 X [a,B]Q X [/\,v]2 is a solution of the system

my = f(me, Ma), My = f(Ms,ms), mao = g(Ms,ms3), My = g(ms, Ms), mg = h(M;,mq),
M3 = h(ml,]\/[l)

then

my = My, mg = My, mz = Mj.
Then every solution of system (2.1) converges to the unique equilibrium point
(Ta @z) = (f(17 1),9(1, 1)7 h<17 1))
Proof. Let
mY :=a, M{ :=b, mY:=a, M) =, m3 =\, MY =~
and for each 1 = 0,1, ...,
mitt = f(my, My), My = f(M;,m),
myt = g(Mg,my), My™ = g(my, M),

my™ = h(My,my), Mg = h(my, My).

We have
a < f(a,B) < f(B,a) <0,
a<g(y,A) <g(\7y) <B,
A < h(b,a) < h(a,b) <7,
and so,
my = a < f(my, My) < f(Mg,m3) < b= M,
my = o < g(My,my) < g(mg, My) < 8= M),
and
m3 = A < h(M{,m}) < h(m{, M{) <~ = My
Hence,
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and

Now, we have

m% :f(mgng) Sf(méaMg) :m% Sf(M%,m%) :M12 Sf(Mgamg) :Mllv

my = g(Mg,m3) < g(Mg,mz) =mj < g(mg, M3) = M3 < g(m§, Mg) = M,
mé = h(M{)’m?) < h(Mllvm}) = m% < h(miv Mll) = M32 < h(m(l)leo) = M217

and it follows that

and

a=md<ml< . <mit<mi< M <MT'< . <M <M =0,

a=ms<ms< .. <mht<mh <M< M <. < My < M) =3,

and
M < Myt < L < M3 < M) =+

>
I
3
wo
IA
3
w
IN
A
3
“1
N
3
w

It follows that the sequences (mil)iENm (mé)iENoa (mé)ieNo (resp. (Mf)iENoa (MQi)iENov (M?l;)iENo)

are increasing (resp. decreasing) and also bounded, so convergent. Let

my; = lim mj, me = lim mj,mg = lim mj,
1——400 i——400 i——400

My = lim M/ My= lim M, My= lim M.

i——400 i——400 i——400
Then
a<mg <M <ba<my< My <3, A<mz< Mg <.

By taking limits in the following equalities

myt = f(my, My), Mi™h = f(My,ms),
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= g0 m). ME! = gom M),
= (AL ), M = ok, 0,

and using the continuity of f, g and h we obtain

my = f(mq, M), mgo = f(Msy,ms2), mo = g(Msz, m3), My = g(ms, Ms), mg = h(My,my),

M3 = h(ml,Ml)
so it follows from Hj that
my = My, mg = My, m3 = Ms.

From H;, we get

m?:agxn§b:M{),mg:a§yn§5:M§,mg:)\gzn§7=M§,n=1,2,---.

For n = 2,3, ..., we have
m% = f(m(2)7M§> < Ty = [(Yns Y1) < f(Mgamg) = M11?

m% = 9(M§]7mg) < Yng1 = g(zm Zn—l) < g<mga M;?) = M3}7

and

mé = h(Mfum(l]> < fn+l = h(l‘n,l’n_l) < h(m(l)7 M{)) = M31

that is

mianSMll,méSynSM;,méganMg,n:3,4,~~.

Now, for n = 4,5, ..., we have
mi = f(my, M) < @1 = f(Yns yn1) < f(My,mp) = M,

and

mg = g(M?}vmé) < Yng1 = g(zn’ Zn—l) < g(mil’)’ Mi’}) = M227

mg = h(Mll,m%) < Zpp1 = h(xml’n—l) < h(mi Mll) = M32

that is

m; <z, < M7,my <y, <M mj<z, <Mjn=56- .

Similarly, for n = 6,7, ..., we have

m? = f(m3, M2) < @iy = f(Yn,Yn_1) < f(MZ,m3) = M},
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mg - g(M§7m§) < Yng1 = g(zm Zn—l) < g<m§7 M32) - M237
and
mg - h(MIQ’mf) < Znt1 = h(xmmn—l) < h(mi MIQ) = M??

thatis
3 < <M3 3 < < M3 3 < < MS =7
m;y =Ty = 1y Mo = Yp > Q,mg_zn_ 3,7’1, ,8,"'.

It follows by induction that for i = 0,1, ... we get

mianSMf,mg§yn§M§,mé§zn§M§,n22i+l.

Using the fact that i — +oo implies n — 400 and m; = My, my = My, mg = M3, we obtain
that

lim z, = M;. lim =M lim 2z, = Ms.
nssteo n 17n—>+ooyn 2”n—>+oo n 3

From (2.1) and using the fact that f, g and h are continuous and homogeneous of degree

zero, we get

M1 = f(MQ,MQ) = f(]_, 1), MQ = g(Mg,Mg) = g(]_, ].), M3 = h(Ml, Ml) = h(l, 1)

Theorem 2.6. Consider system (2.1). Assume that the following statements are trues:

1. Hy: There ezist a, b, a,, B, A, v € (0, +00) such that

a< flu,v) <b o< glu,v) < B, A< h(u,v) <, ¥Y(u,v) € (0,+00)>.

2. Hy: f(u,v), h(u,v) are increasing in w for all v and decreasing in v for all u and

g(u,v) is decreasing in u for all v and increasing in v for all u.
3. Hs: If (my, My, ma, My, mg, M3) € a, b]2 X [a,ﬁ]z X [/\,7]2 is a solution of the system

my = f(ma, Ma), My = f(Ms, ma), ma = g(Ms,ms3), My = g(ms, Ms), mg = h(mq, M),
My = h(My,m;)
then

my = My, mg = My, mg = Ms.

Then every solution of system (2.1) converges to the unique equilibrium point

(T7y7§) = (f(17 1)79(17 1)7 h(17 1))
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Proof. Let

0. _ 0. _ 0._ 0._ 0._ 0._
my i=a, My :=b, my :=a, My =3, mg =\, Mg =7

and for each 1 = 0,1, ...,

We have
a< fla,B) < f(B,0) <,
a<g(y,A) <ghy) <B,
A < h(a,b) < h(b,a) <7,
and so,
mi = a < f(my, My) < f(My,mp) <b= M,
my = o < g(Mg,mg) < g(mg, M3) < B = Mj,
and
md =\ < h(m9, M) < h(M?,mb) <~y = MY
Hence,
m1§m1§M11<Mf,
m2§m§§M21<M§,
and

Now, we have

mb = f(m3. M§) < f(mb M}) = m3 < f(M},mb) = M} < [(MZ,m3) = M.

my = g(Mg,m3) < g(Mz,m3) = m3 < g(mj, My) = M7 < g(m3, M3) = M,,

mé - h(mS]?M?) < h<m%7 Mll) - mg < h(Mllvm%) - M?? < h(Mi)vm(l]) - M217
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and it follows that
md < md < md < M < M} < MY,

my <mi <mi< MZ< M} <M,

and

<M <M =

— — — - — I

IS
I
»-Aso
A
)—‘3)—‘
IN
A
st
L
A
3
A
<
A
=
|
A

a=my<mi<..<mit<mi <M< MU <. < My <M =5,

and
A=mi<my<..<mi'<mi<Mj< M <. <My <M=y

It follows that the sequences (mil)ieNm (mé)iENoa (mé)ieNo (resp. (Mf)iENoa (MQi)iENov (M?l;)iENo)

are increasing (resp. decreasing) and also bounded, so convergent. Let

my; = lim mj, me = lim mj, mg = lim mj,
1——400 i——400 i—400

M, = lim Mj, My, = lim M;, Ms; = lim M;.
i—+400 i—+400 i—400

Then
G§m1§M1§b,Oé§m2§M2§5,)\SmgﬁMs.S%

By taking limits in the following equalities
mi™ = f(my, My), Mi™H = f(Mj, m3),
mé—H = (M?ané)’ Mé—H = g(méa Mg),
mz" = h(my, My), M5t = h(M{,m)),
and using the continuity of f, g and h we obtain

my = f(mg, M), mg = f(Ms,ma), me = g(Ms, m3), My = g(ms, Ms), ms = h(my, M),
Mz = h(Mhml)

so it follows from Hj that

my = Ml, Mo — Mg, ms = Mg.
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From H;, we get

m?:agmn§b:M{),mg:a§yn§ﬁ:M§,mg:/\§zn§7:M§,n:1,2,---.

For n = 2,3, ..., we have
m% = f(mg7M§> S Tntl = f(ynaynfﬁ S f(Mgvmg> = M117

m% = 9(M§]7mg) < Yng1 = g(zm znfl) < g(mg, M:g) = Mi’%?

and
mil’x = h(m?7M?> S O h('rnamn—l) S h(M{)?m(l)) = M31

that is
my <z, <M}, miy <y, <M, my<z,<Ms,n=234,---.

Now, for n = 4,5, ..., we have
m% = f(m%7M21> < Tnt1 = f(ymynfﬁ < f(M217m5> = M127

and

mg - g(M§7mé) < Yng1 = g(zn’ zn—l) < g<m§7 M:’}) - M227
mg - h(m;Mll) < Zpt1 = h('rmmn—l) < h(Mll)m%) = M32

that is
2 2 2 2 2 2 _
mlanSMlamQSyn§M27m3§2n§M37n_5767”"

Similarly, for n = 6,7, ..., we have
m? = f(m§7M22> < Lo+l = f(ymynfﬁ < f(M227m§> = Mf’

mg = g(M??vm§> < Yng1 = g(zm znfl) < g(m%, M32) = MS?

and
mg = h(miMlQ) S fntl = h('r’mmn—l) S h(M127m%) = M??

that iS
3 <« < M3 3 < < 3 3 < < 3 =
my < x, Dmy <y, <My, ms <z, <M n="78--.

It follows by induction that for i = 0,1, ... we get

m <, < Mj,mh <y, < Mj my <z, <Min>2+1.
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Using the fact that i — +o00 implies n — +o00 and m; = My, my = My, m3 = M3, we obtain
that

lim =z, = M;, lim = M lim 2z, = Ms.
ny-Foo n 17n—>+ooyn 2”n—>+oo n 3

From (2.1) and using the fact that f, g and h are continuous and homogeneous of degree

zero, we get

M1 = f(MQ,MQ) = f(]_, 1), MQ = g(Mg,Mg) = g(l, ].), M3 = h(Ml, Ml) = h(l, 1)

Theorem 2.7. Consider system (2.1). Assume that the following statements are true:

1. Hy: There ezist a, b, a, B, A, v € (0, +00) such that

a< flu,v) <b a<gluv)<p, A<h(u,v) <, Y(u,v) € (O,+oo)2.

2. Hy: f(u,v), g(u,v), h(u,v) are decreasing in u for all v and increasing in v for all u.
3. Hs: If (my, My, ma, My, mg, M3) € |a, b]2 X [04,6]2 X [)\,'y]2 is a solution of the system

my = f(May,ma), My = f(ma, M), ma = g(Ms,ms3), My = g(ms, Ms), mg = h(Mi,mq),
M3 = h(ml,Ml)

then
my = My, mg = My, mg = Ms.

Then every solution of system (2.1) converges to the unique equilibrium point
(,9,2) = (f(1,1),9(1,1),h(1,1)).

Proof. Let

mY :=a, M} :=b, m) = a, My =, m3 =\, My =~
and for each 1 = 0,1, ...,
my'h = (Mg, my), My = f(my, M),
my = g(Mg,m3), My™ = g(m3, M),

my™ = h(M{,my), My = h(mi, My).
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We have
a< f(B,a) < flo, B) <b,
a<g(y,A) < g(\y) <8,
A < h(bya) < h(a,b) <~
and so,
mi = a < f(Mg,mh) < f(md, My) < b= M),
my = a < g(My,m3) < g(mg, My) < 8 = Mj,
mg = A < h(M?,m?) < h(md, M}) <~ = M]
Hence,
m) <m; < M} < M,
my < my < My < M,
and

Now, we have

my = f(My,m3) < f(My,my) = myi < f(my, My) = My < f(my, My) = Mj,

m% = g(Mi?vmg) < g(Mg,m:l,)) - mg < g(miliaMBI) = ]\422 < g(mg’Mi’?) - M217

my = h(M},my) < h(My,my) = mg < h(my, My) = Mg < h(m], My') = Mg

and it follows that
m{ <m} <mi< M} <M} <M,

N O
IN
IN

1 2 2 1 0
my < my <msy < My < My, < M,

0
mg

IN
IN

my < mj < My < My < My,

By induction, we get for ¢ = 0,1, ..., that

a=ml<mi<. . <mit<ml<M <M< <M <M =b,
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a=m)<mb <. <mit<mh<Mj<MITU< <MY < MY =B,

and
A=mi<mi< .. <mit'<mi<Mi< MU < < My < M) =+.

It follows that the sequences (m?‘l)iGNm (mé)ieNo (mé)iGNo (resp. (Mf)iGNm (Mé)iGNm (M?Z;)ieNo)

are increasing (resp. decreasing) and also bounded, so convergent. Let

my = lim m’, my = lim mb ms= lim mj,
i——+00 i——+00 i——+00

M, = lim M{, My = lim MQ, Ms; = lim MZ.

i——400 i——400 i——400

Then
a<my <M <b a<mg <M <B, AN<mg<Mg<r.

By taking limits in the following equalities
mi™ = f(My,my), MiTH = f(my, Mp),
2+1 — g(M§7m3) MH—I _ g(m37Mz)
mz" = h(Mj,my), M5t = h(m}, M)
and using the continuity of f, g, and h we obtain

my = f(Mz,mga), My = f(ma, M), ma = g(Ms,ms3), My = g(ms, Ms), mg = h(M;,m,),
M3 = h(ml,Ml)

so it follows from Hj that
my = My, mg = My, mz = Ms.
From H,, we get
m=a<z, <b=M) mi=a<y,<B=M)mi=A<z, <yv=M)n=12,--
For n = 2,3, ..., we have
my = f(M3,m3) < @niy = f(yn, yn-1) < f(m3, Mg) = Mj,

m% = 9(M§]7mg) < Yng1 = g(zm znfl) < g<mga M:?) = M217

mé - h(Mi)vm(D < Zpt1 = h('xmxn—l) < h(m(l)7 M{)) - M?}
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that is

Now, for n = 4,5, ..., we have
mi = f(My,m}) < Znpr = f(Yns ynr) < fmy, M) = M,

m3 = g(M3,m?) < yn1 = 9(zn, 20-1) < g(my, M7) = M3,

m3 = h(M},m}) < 21 = h(zs, 2,01) < h(m}, M) = M3

that is
mi <, < M7, m3 <y, <Mj,mj<z, <M, n=506,--.
Similarly, for n = 6,7, ..., we have
my = f(M3F,m3) < xpi1 = f(Yn, Y1) < f(m3, M3) = M,
mg = g(MZ??mg) S Yng1 = g(zn, Zn—l) < g<m§7 M??) = M237
mg = h(vamb < Zpgl = h<xn7xn71) < h(mi M12) = M23
that is

mi <a, < MP,mi <y, <M mi<z, <My, n=78--.

It follows by induction that for i = 0,1, ... we get

mianSMf,méSyngMé,mégzngMg,nZM—i—l.

Using the fact that ¢ — +oo implies n — 400 and m; = My, mo = My, mg = M3, we obtain

that

lim x, =M, lim y, = M,, lim z,= Ms.
n—+o00 n—+oo n—+oo

From (2.1) and using the fact that f, g and h are continuous and homogeneous of degree

zero, we get

M1 = f(MQ,MQ) = f(]_, 1)7 MQ = g(Mg,Mg) = g(]_, ].), M3 = ]’L(Ml, Ml) = h(l, ].)

The following theorems can be proved similarly.

Theorem 2.8. Consider system (2.1). Assume that the following statements are true:
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1. Hy: There exist a, b, o, B, \, v € (0,+00) such that
a< flu,v) <b, a<g(u,v) < B, A< h(u,v) <, Y(u,v) € (0,400)>.
2. Hy: f(u,v), g(u,v) are decreasing in u for all v and increasing in v for all u, however
h(u,v) s increasing in u for all v and decreasing in v for all u .
3. Hs: If (my, My, ma, My, mg, M3) € |a, b]2 X [04,6]2 X [/\,7]2 is a solution of the system

my = f(Ma,ma), My = f(me, M), me = g(Ms, m3), My = g(mg, Ms), ms = h(my, M),
M3 = h(Ml,ml)

then
my = My, mg = My, mg = Ms.

Then every solution of system (2.1) converges to the unique equilibrium point
(z,7,2) = (f(1,1),9(1,1),h(1,1)).

Proof. Let
mY :=a, M{ :=b, my:=a, My =, m3 =\, MY =~
and for each i = 0,1, ...,

mytt = (Mg, my), My = f(my, M),

m?_l (M§7 m3) MZ_H = g(mé’ M§)7

my™ = h(my, My), My = h(M], m}).

We have
a< f(B,a) < fla, B) <b,
a<g(r,A) <g(A7) <5,
A < h(a,b) < h(b,a) <7,
and so,

mi =a < f(M3,m3) < f(m3, M3) < b= M,

mg =a < g(M??,mg) < g(mgaMi’?) < B - M&
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and
mg = A < h(my, My) < h(M7,m]) <~ = Mj
Hence,
m{ <my < M} < M,
0 1 1 0
my < my < My < M,
and

Now, we have

my = f(My,m3) < f(My,my) = myi < f(my, My) = My < f(my, My) = Mj,

m% = g<MZ?7mg) < g(M317mi1’)) = mg < g(milivM31) = ‘]\422 < g(mg7M??) - MQI’

mé - h(m?,M{J) < h(m%’Mll) - m% < h(M11>m%) = M?? < h(Ml()’m?) - lea

and it follows that
m} <my <mi < M7 < M < M,

m < m} < m3 < M < M} < M,

and
m3 <mi <mi < M2 < Mg < M)

By induction, we get for ¢+ = 0,1, ..., that

a=ml<mi<. . <mit<mi<MI <M< . <M <M =b,
a=md<mi< .. <mit<mi <M< MTI<. <M <M =35,

and

A=m§<my<..<mi'<mi < Mj< Myt << My <MY=

It follows that the sequences (mil)iGNO? (mé)ieNo (mé)iGNO (resp. (Mf)iGNm (Mé)iENm (Mg)iENo)

are increasing (resp. decreasing) and also bounded, so convergent. Let
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my; = lim m}, my = lim mj, ms = lim m3,
i—+00 i——+00 i——+00

M, = lim M}, My = lim Mj, M3 = lim M,

i——+00 i—-+00 i——+00

Then

a<mg <M <ba<my< My <3, A<mz< Mg <.

By taking limits in the following equalities
mitt = f(Mg,my), M = f(mj, M),
ZH = 9(M§7m3) MZH = g(m37 MZ)
mst = h(my, M7), M5+ = h(M;, my),
and using the continuity of f, g, and h we obtain

my = f(Mz,mga), My = f(ma, M), ma = g(Ms,ms3), My = g(ms, Ms), mg = h(mq, M),

Mz = h(Ml,mﬁ

so it follows from Hj that

my = Ml, meo — Mg, ms = Mg.

From H;, we get

ml=a<z, <b=M) mi=a<y, <B=M)mi=A<z, <yv=M)n=12,--

For n = 2,3, ..., we have

1

my = f(Mgvmg> < Tpyp = f(ynayn*ﬁ < f(mgng) = Mllv

mé = Q(M??’mg) < Ynt1 = (20, 2n-1) < g(mg, M:?) = M217
and
mg = h(m}, M) < zot1 = Wan, 2a1) < WM, mY) = Mj
that is
m}anSMll,mégyngMg,méganMg,n:iﬁ 4,---
Now, for n = 4,5, ..., we have

m? = f(My,m}) < @pir = f(Yn, Yor) < f(ma, My) = M,
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mg - g(M?}7m?) < Yng1 = g(zm Zn—l) < g<mil’>7 M?) - M227

and

mg = h(m%,Mll) < Zpg1 = M@p, 1) < h(M}amD = ]\432

that is
2 2 9 2 9 2
m] < x, < M7, m; <y, <My, msg <z, <Mj,n=56,---

Similarly, for n = 6,7, ..., we have
mi = f(MZ,m3) < iy = f(Yn, Yor) < f(mE, MZ) = M,

m% = g(M??,mg) < Ynt1 = g(zm anl) < g(m%, Mf) = M23>

and

mg = h(m%MlQ) S Zntl = h('rmxn*l) § h(M127m%) - M33

that is
3 3 3 3 3 3 _
mlanSMlamQSyn§M27m3§2n§M37n_7787”"

It follows by induction that for ¢ = 0,1, ... we get

m} < x, < Mj,mb <y, < Mimh <z, < Mi, n>2i+1.

Using the fact that i — +o0 implies n — +o00 and my = My, my = M,y, m3 = M3, we obtain
that
lim x, =M, lim y, = M,, lim z,= Ms.

n—-+00 n—-+o0o n—-+00
From (2.1) and using the fact that f, g and h are continuous and homogeneous of degree

zero, we get

M1 = f(MQ,MQ) = f(]_, 1), MQ = g(Mg,Mg) = g(l, ].), M3 = h(Ml, Ml) = h(l, 1)

Theorem 2.9. Consider system (2.1). Assume that the following statements are true:

1. Hy: There exist a, b, a, 5, A\, v € (0,+00) such that

a < f(u,0) <b a<gluv) < B, A< h(u,v) <5, V(u,0) € (0, +00)*.

2. Hy: f(u,v) is decreasing in u for all v and increasing in v for allu, however g(u,v), h(u,v)

are increasing in u for all v and decreasing in v for all u .
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3. Hs: If (my, My, ma, My, mg, M3) € |a, b]2 X [a,B]Q X [/\,v]2 is a solution of the system

my = f(May,ma), My = f(ma, M), ma = g(ms, Ms), My = g(Ms, ms3), mg = h(mq, M),
M; = h<M17m1)

then

my = Ml, meo = MQ, ms = Mg.

Then every solution of system (2.1) converges to the unique equilibrium point
(z,7,2) = (f(1,1),9(1,1),h(1,1)).

Proof. Let

0._ 0. _ 0._ 0._ 0._ 0._
my i=a, My :=b, my :=a, My := [, mg =\, Mg =7

and for each 1 = 0,1, ...,

We have
a < f(B,a) < fla, f) <b,
a < g(\7) <g(1,A) < B,
A < h(a,b) < h(b,a) <,
and so,
mi =a < f(Mg,m§) < f(m§, My) <b= M
my = a < g(my, My) < g(M,mg) < 8 = My,
and
my = A < h(mf, M) < g(M},mf) <y = My
Hence,

m{ <my < M{ < M,

< My < M3,

MSO
IA
wgr—t
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and

Now, we have

ml = F(M2,m) < F(M,md) = m? < Flmd, M}) = M? < f(ml, M3) = M},

my = g(m§, M3) < g(m}, My) =m3 < g(M3, mj) = M3 < g(M5,m3) = Mj,
mz = h(my, My) < h(my, My) = m3 < h(M{,my) = M3 < h(M{,m}) = My,

and it follows that

and

azml<m1<...gmi_lSm’ingiSMf_1<...§M11§M{): ,

LS My < My << My < MY =B,

IN
N
MS@ .
L
AN
5@

a=my<m,
and

A=my<mz <. <mi'<mi<Mi<MT'< . <My < M) =7,

It follows that the sequences (mil)iEN()? (mé)iENoa (m?’;)ieNo (resp. (Mf)ieNoa (Mé)iENov (Mé)iENo)

are increasing (resp. decreasing) and also bounded, so convergent. Let

my = lim mj, me = lim m5,mg = lim mj,
i—>+00 i—>+00 i—>+00

My = lim M/, My = lim M, My= lim M.

i—+00 i—+o0 1—+00
Then
a<my <M <b,a<my <M< S, N<mg< M3<~.

By taking limits in the following equalities
my™ = f(My,my), Mi™h = f(my, My),

my = g(mg, M), My™ = g(M;,my),
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mstt = h(my, M7), M5+ = h(Mj, my),
and using the continuity of f, ¢ and h we obtain

my = f(M27m2)> M, = f(m% M2), mo = g(m3,M3), My = Q(M:a,mz), ms3 = h(mle)a
M3 = h(Ml,ml)

so it follows from Hj that
my = My, mg = My, mz = Ms.
From H;, we get
m?:agxnSb:M{),mg:agynSBzMg,mg:/\gzngsz??,nzl,Q,n-.
For n = 2,3, ..., we have
my = f(Mg,m3) < zni1 = f(Yn, yn-1) < f(ms, M3) = My,

my = g(mQ, M2) < yns1 = 9(2n, 2n1) < g(MZ,m3) = My,

and

my = h(m%, M?) < 2,11 = h(@n, 20 1) < (MO, m%) = M
that is

mi anngl,m%§ynSMg,méganMg,n:3,4,~~ i
Now, for n = 4,5, ..., we have

mi = f(My,m3) < Zni1 = f(Yn, Yn1) < f(my, My) = M7,

mi = g(mg, Mz) < yny1 = g(2n, 201) < g(Myz,mz) = M;,
and

mg = h(my, M) < 2o = h(@n, @n1) < h(My,my) = Mg
that is

mi < an < M7, m3 <y < M3, m3 <z, < Mg, n =56,
Similarly, for n = 6,7, ..., we have

m} = f(MZ,m3) < @iy = f(Yn Yor) < f(mE, M3) = M,
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mg - g(m?’)v M??) < Yng1 = g(zm Zn—l) < 9<M327m§) - M237

and

mg = h(mf,Mf) < Zpt1 = h(xn,$n—1) < h(Mf,m%) = M??

thatis
3 < <M3 3 < < M3 3 < < MS =7
m;y =Ty = 1y Mo = Yp > Q,mg_zn_ 3,7’1, ,8,"'.

It follows by induction that for i = 0,1, ... we get

mianSMf,mg§yn§M§,mé§zn§M§,n22i+l.

Using the fact that i — +oo implies n — 400 and m; = My, my = My, mg = M3, we obtain
that

lim z, = M;., lim =M lim 2z, = Ms.
nsstoeo n 17n—>+ooyn 2”n—>+oo n 3

From (2.1) and using the fact that f, g and h are continuous and homogeneous of degree

zero, we get

M1 = f(MQ,MQ) = f(]_, 1), MQ = g(Mg,Mg) = g(]_, ].), M3 = h(Ml, Ml) = h(l, 1)

Theorem 2.10. Consider system (2.1). Assume that the following statements are true:

1. Hy: There ezist a, b, a, B, A, v € (0, +00) such that

a< flu,v) <b o< glu,v) < B, A< h(u,v) <, ¥Y(u,v) € (0,+00)>.

2. Hy: f(u,v), h(u,v) are decreasing in u for all v and increasing in v for all u, however

g(u,v) is increasing in u for all v and decreasing in v for all u .
3. Hs: If (my, My, ma, My, mg, M3) € |a, b]2 X [a,ﬁ]z X [/\,7]2 is a solution of the system

my = f(May,ma), My = f(ma, M), my = g(mg, Ms), My = g(Ms, ms3), mg = h(M;,mq),
M3 = h(ml,Ml)
then

my = My, mg = My, mg = M;.

Then every solution of system (2.1) converges to the unique equilibrium point

(T7y7§) = (f(17 1)79(17 1)7 h(17 1))
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Proof. Let

0._ 0._ 0._ 0._ 0._ 0._
my i=a, My :=b, my :=a, My := 3, mg =\, Mg =7

and for each i = 0,1, ...

We have
a< f(B,a) < flo, B) < b,
a<g(\v) <g(,A) <8,
A < h(b,a) < h(a,b) <7,
and so,
mi = a < f(Mg,m3) < f(m§, M3) <b= M
my = a < g(mg, My) < g(Mg,m) < 8 = Mj,
and
my = A < h(M7,mY) < h(my, My) <y = Mj
Hence,
m} <mj < M < M,
my < mjy < My < M,
and

Now, we have
my = f(My,my) < f(My,my) =mi < f(mg, My) = M{ < f(my, My) = M,

my = g(mg, M) < g(my, My) =m

[N )
(VAN
=2
5
3

e
I

5
VAN
=R
=
I

5

o
VAN
=
£l
=
I
=
VAN
=
.—ngo
=
<
|
=

and it follows that
< mh < m? < M < MY < MY,
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my <mjy <mj < M3 < My < Mj,

and

Q
I
3
o
IN
w§>—t
IN
IN
MSN
L
IN
3
|
|
=
|
A\
AN
=
AN
=
o
I
S

and
A=my<ms <. <mit<mi<Mi<MIT'< . <M< M) =n.

It follows that the sequences (m?)ieny, (1M4)ieng, (M3)ien, (resp. (M)ieny, (Ma)ieng, (M2)ien,)

are increasing (resp. decreasing) and also bounded, so convergent. Let

m; = lim m}, my = lim m), ms = lim m3,
i—+00 i——+00 i——+00

M, = lim Ml, My = lim MQ, Ms; = lim MZ.

i—+4-00 i——+o00 i——+00
Then
a<my <M <ba<my< M, <3, A<mz< Mg<nr.

By taking limits in the following equalities
mitt = f(My,my), MiTH = f(my, My),
my" = g(my, My), My"' = g(Mg,mg),
mg™ = h(Mj,my), M5t = h(mi, My),
and using the continuity of f, g and h we obtain

my = f(Ma,ma), My = f(me, M), me = g(ms, M3), My = g(Ms, mg3), ms = h(M;,my),
Mz = h(m1>M1)

so it follows from Hj that
my = Ml, mo = MQ, ms = Mg.
From H;, we get

ml=a<z, <b=M) mi=a<y, <B=M)mi=A<z,<vyv=M)n=12,--
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For n = 2,3, ..., we have

m% = f(Mgamg> < Tppr = f(ynayn—l) < f(mgaMg) = Mll’

my = g(m3, M3) < yni1 = 9(zn, 20—1) < g(M5, m3) = Mj,

and

mg = h(My,m}) < zn1 = h(@n, a1) < h(md, MY) = Mj
that is

my < ap <M}, my <y, <My, my<z, <My, n=234--.

Now, for n = 4,5, ..., we have

mi = f(My,m3) < Tpiy = f(Yn,Yn-1) < fmg, My) = M7,

ms = g(mg, M3) < yos1 = (20, 20-1) < g(Myz,m3) = My,
and

mz = h(Mi,my) < zni1 = M@n, Ta1) < h(my, My) = Mg
that is

mfgxnng,mggyngMg,mgganMg?,n:5,6,~-

Similarly, for n = 6,7, ..., we have

and

that is

m? = f(M2,m3) < i1 = f(Yn,Yn_1) < f(m3, M) = M},

mg = g(mgaM??) < Yng1 = g(zn’ Zn—l) < g(M;f,m%) = M237

mg = h(MIQam%) < Zpp1 = h($naxn—1) < h(m% M12) = MZ’?

m?anSMl?)amgSynSM§7m§SZnSM§}7n:7787

It follows by induction that for ¢ = 0,1, ... we get

my < @, < My, my <y < My, miy < 2, < My, n > 20+ 1.

Using the fact that i — +oo implies n — +o00 and my; = My, my = My, m3z = M3, we obtain

that

lim x, =M, lim y,= M,,, lim z,= Ms.

n—-4o0o n—-+4o0o n—-+4o0o
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From (2.1) and using the fact that f, g and h are continuous and homogeneous of degree

zero, we get

M1 = f(MQ,MQ) = f(]_, 1), Mg = g(Mg,Mg) = g(l, ].), M3 = h(Ml, Ml) = h(l, 1)

The following theorem is devoted to global stability of the equilibrium point.

Theorem 2.11. Under the hypotheses of Theorem 2.2 and one of Theorems 2.5-2.10, the
equilibrium point (z,7,%z) = (f(1,1),9(1,1),h(1,1)) is globally stable.

2.2.1 Applications

As application of the results of this section we consider the following systems of difference

equations

Tpt1 = Q1 + W
Tp1 = a1 + blynfnclyn_l
Tpt1 = a1+ blyn—i?—hclyn_l
Tpt1 = Q1 + blyn—lgjnclyn_l
Tpt1 = Q1 + blyngi:_ciynl
Tpy1 = a1+ W
Tpt1 = Q1 + blyngi:cllynl
Tpy1 = Q i

L
blyn + C1Yn—1

y Yngp1 = G2 +

» Ynt1 = Q2 +

y Ynp1 = G2 +

s Ynt1 = Q2 +

y Ynp1 = G2 +

y Yngp1 = G2 +

y Ynt1 = Q2 +

y Ynp1 = G +

Zn

)
bazy + Cazn_1

Zn

b
bazy + Ca2n—1

Zn—1

b
bazy + Co2n_1

Zn—1

’
bQZn + C2Zn—1

Zn—1

)
bazy + Ca2n—1

Zn—1

)
bQZn + CozZnq

Zn

)
bazy + Ca2n—1

“n

b
bazy + Co2n_1

Tn
Zn+1 = A3 + )
b3xn + C3Tn—1

Tn-1

Zpy1 = Q3+
b3y, + C3Tp—1

Tn—1
Zn+1 = as + )
bgl‘n + C3Tp_1

Ln

Zntl =03+ ——————
ben + C3Tpn—1 ’

Tp—1

Zppl = A3+
b3y, + C3Tp—1

Tn
Zn+1 = A3 + )
ben + C3Tn—1

Tn

Znyl =0a3 + —————
b3y, + C3Tp—1

Tn—-1
Zn+1 = as + )
ngEn + C3Tp—1

where x_;, y_;, 4 = 0,1, a;, bj, ¢j, j =0,1,2 are positive real numbers.

n € Ny,
(2.4)

n € Ny,

nENo,

n € No,
(2.11)



94 On a homogeneous system of difference equations of second order

Let fi, fay g1s g2, hi, ha 1 (0,400)° = (0,400) be the functions defined by

filu,v) =+ biu i v’ falu,v) = + biu j— v
u v
g1(u,v) = as + —— go(u,v) = as + bt § a0
and
hy(u,v) = ag + b j_ e ho(u,v) = ag + b i e
Then,

system (2.4) will be

Tp4+1 = fl(ynayn—l)a Yn+1 = gl(Znyzn—l)a Zn+1 = hl(xnaxn—1)7

system (2.5) will be

Tp4+1 = fl(ymyn—l)a Yn+1 = gl(ZmZn—l)a Zn41 = h2(xmxn—1)a

system (2.6) will be

Tpy1 = fl(ynaynfl)a Yn+1l = 92(%;%4); Zn41 = h2($n>$n71)7

system (2.7) will be

Tp4+1 = fl(ynayn—1>a Yn+1 = gQ(Znazn—l)a Zn+1 = hl(mnaxn—1)7

system (2.8) will be

Tnt1 = f2(yn,yn_1), Yn+1 = 92(Zmzn—1), Zn41 = h2($n7$n—1)7

system (2.9) will be

Tp+1 = fQ(ynaynfl)a Yn+1 = 92(Znaznfl)> Zp+l = hl(ﬂﬁn,l'n,l),

system (2.10) will be

Tp4+1 = f2<ynayn—1>a Yn+1 = gl(znazn—l)a Zn+1 = hl(xnaxn—l)y

system (2.11) will be

Tnt1 = f2(ymyn_1), Yn+1 = gl(ZmZn—l)a Zn41 = h2($m$n—1)-
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Clearly f1, fa, 91, g2, h1, ho are continuous and homogeneous of degree zero. Also it is

not hard to see that:

Oh iy v g R
o (u,v) = (bru+ c10)? 0, ES (u,v) =
091 _ v 9,
5 (u,v) = (bt + co0)? >0, BN (u,v) =
ohy B C3v ohy _
%(u, v) = (bt + c50)? >0, 90 (u,v) =
Ofs . biv 0fs _
%(u, v) = (bru+ c0)? <0, %(U,U) =
g byv 092

S (1 0) = Tt <% 5 (u,v) =
Ohs B bsv Ohy -
5 (u,v) = (b3t + 3072 <0, BN (u,v) =

We have
1
a; < fi(u,v) <ag+ —, az < g1(u,v)

b1 b2

1 1 1
a; < folu,v) < ay + o as < go(u,v) < ag+ —, az < ho(u,v) < az+ —,

1 Co
System (2.4) has the unique equilibrium point

(leylvzl> - (fl(la 1)agl(]—7 1)7 h1(17 1)) = (al + o b
1+’
System (2.5) has the unique equilibrium point
(2,72:%2) = (fi(1,1),91(1,1), (1, 1) = (a1 + ——
1 4o’
System (2.6) has the unique equilibrium point
(T37y3>§3> = (f1<17 1)792(17 1)7 h’2(17 1)) = (al +— b
1o’
System (2.7) has the unique equilibrium point
@05 70) = (AL 1), (1) b (1, 1) = (a1 4+ 7 ——
1+’
System (2.8) has the unique equilibrium point
T, Ys, Z5) = 1,1 1,1), he(1,1)) =
($5,y5,25) (f2( ) >a92( ) )7 2( ) )) <a1+b1+01

(blu + 611))2

(bQ'LL + C2U)2

(biu + c1v)?

(bgu + C3U>2

1 1
<a2—|——,a3<h1(u U)<CL3+

c1u
<0,

ColU
<0,

CcC3U
(b3u + 03’0)2

blu

< 0,

> 0,

bgu
(bgu + CQU)2

bg’u

>0

> 0.

, Yu,v € (0, +00),
bs’

Vu,v € (0, +00).
C3

2+ —,a
b2+CQ

+

L e L),
b2+62 3 b3—|—63
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System (2.9) has the unique equilibrium point

1 1 1
T, Tgn %) = (fa(1,1), g2(1, 1), b (1,1)) = — -
(@6, Us Z6) = (f2(1,1), 62(1, 1), I (1, 1)) <a1+bl+01 52+62’a3+bs+63>

System (2.10) has the unique equilibrium point

1 1 1
T7,Ur, Z7) = 1,1 1,1),h(1,1)) = — .
(@2,77:70) = (B0 Do (LD, bn(11)) = (014 5 s+ )

System (2.11) has the unique equilibrium point

1 1 1
T, T %) = (fo(1,1),1(1,1), ha(1, 1)) = — -
(s, U8, Zs) = (f2(1, 1), 91(L, 1), (1, 1) (a1+bl+cl = +bz+02’a3+53+63>

2.2.1.1 Stability of the equilibrium point (7,7,,%;)

Consider system (2.4) and its equilibrium point (Z1,7,,%1) = <a1 + 2+

as +

1 1
b1+01 ba+4-cz’ bz+c3 )

We have the following results

Corollary 2.12. The equilibrium point (T1,7,,%1) = (a1 + e +c , a9 + b2+62, az + b3+03) of
system (2.4) is locally asymptotically stable if

(al(bl + Cl) + 1) (az(bg + Cz) + 1) (ag(bg + 03) + 1) (b1 + Cl)(bg + 02)(63 + Cg) — 8616203 > 0.

Proof. We have

df1 C1
1,1) = )y =—"L
fl( ’ ) Cl1+ b1+017 8u< ’ ) (bl‘l'Cl)Q7
991 C2
gl( ) ) ax2+b2+027 au( ) (b2+02)2’
1 8h1 Cs
1,1) = 1,1)= ———.
hl( ’ ) @Gt b3 + 03 ou ( ’ ) (bg + 03)2

From Theorem 2.2 (71,7,,Z1) is asymptotically stable if

fi o ohy f1(171)91(1>1)h1(171)
anfangia) < 8 |
that is

C1 Co C3
(b1 +ec1)? (b2 +c2)? (b3 +c3)?

slorira) (s (o)
-\ a a a s
8 ! b1+01 2 bQ—I—CQ 3 b3—|—03

(al(bl + Cl) + 1) (az(bg + C2> + 1) (ag(bg + 03) + 1) (b1 + Cl)(bg + 02)(173 + Cg) — 8616203 > 0.

]
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Theorem 2.13. Assume that

1 1 1
8cicocs (al + > <a2 + ) < ) < a1a2a3(61 + cl) (by + 02)2(b3 + 03)2.
by by b3

Then, the equilibrium point (T1,7,,Z1) of system (2.4) is globally attractive.

Proof. To prove the global attracivity of the equilibrium point we will use Theorem 2.3.

From above we have

1 1
a:=a; < fi(u,v) <b:= +b—a—a2<gl(uv)<ﬁ—a2+b
1 2

1
Ai=a3z < hy(u,v) <7vy:=az+ b Yu,v € (0, +00),
3

and
dfi of dg o Ohy Ohy
Sh(u,0) > 0, S u,v) <0, S ww) > 0, Zhwv) <0, S uw) > 0, S (u,0) <0

So, it follows that conditions H; and H, are satisfied. It remains to check condition Hs. To
this end, let
(mb M17 ma, M27 ms, M3) € [CL, 6]2 X [a7 6]2 X [)\a 7]2

be a solution of the system

i mo M i MQ 4 ms M i M3
m =a —_—, =a —, My = Q —, =a —_—,
! ! blmg —+ C]_M2 ! ! b1M2 + C1Mo 2 2 b2m3 + CgMg 2 2 b2M3 + Co13
mq Ml
ms=ag+ —— My = S 2.12
3 ? bgml + Cng 3 b3M1 -+ 03m1 ( )

From (2.12), we get

gy = ame = Mo)(me 4 M) (2.13)
(bymg + 1 Ms)(bi My + c1mg)
02(m3 — M3)(TI’L3 -+ M3)
My — My = , 2.14
2 2 (b2m3 —|— C2M3)<b M3 —|— CQWLg) ( )
and
- M M
iy — My = 3t = M) (m + My) (2.15)

(b3m1 + 03M1)<b3M1 + 03m1) '
From (2.13), (2.14) and (2.15), we obtain

(m1 — My)(msa — Ma)(ms — Ms) = cicaez(my — My)(ma — Ma)(ms — M3)(m1 + My)(ma + Ma)(ms + M3)

So it follows that
(m1 — M1)<m2 — M2)<m3 — Mg) = 0

(byma + c1 M2) (b1 M2 + c1ma) (bamg + ca M3) (b2 M3 + cams)(bgmy + c3 M) (b3 My + c3my)
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or

016203(m1 + Ml)(mg + Mg)(m3 + Mg)
(b1m2 =+ ClM2)<b1M2 —+ Clmg)(bgmg + CQM3)<b2M3 + Cng)(bgml + Cng)(bng + Cgml)
We will show that

=1.

cicacz(my + My)(me + Mz)(m3 + M3)

h(my, My, mo, Mo, ms, M3) =
(m1, M1, m2, M2, m3, M3) (b1ma + ¢1 M2) (b1 M2 + c1ma)(bamng + coM3)(ba M3 + cams)(bgmy + c3M1) (b3 My + c3my) #

1.

In fact, we have

8cicaczaa 8cicacsbfBy

<h M M. 3, M3) < .
b232y2(b1 4 c1)2(b2 + c2)?(b3 +¢3)2 ~ (ma, My, ma, My, ma, Ms) < a2a2X2(by + c1)2(b2 + c2)2(b3 + c3)2

Noting that

8cicacsaa = 8cycaczaasas,

and

b* 329 (by + 1) (ba + ¢2)*(bs + ¢3)* > (2[;?) (2;;2) (ch;?,) (2b1.¢1)(202¢2) (2b3cs).

So it follows that
8cieaczaa 8cycacsaranas 1

b23292(by + ¢1)2(ba + ¢2)2(bs + ¢3)? = (2&) (M) (%) (2b1¢1)(2b2c2)(2b3c3) 8

by b

Using the fact that
8cieacsbfy < a*a® A (by + ¢1)?(by + c2)?(bs + c3)?,

we get
8cicacsbfBy

1.
202X (by + 1)2(bs + ¢2)2(bs + ca)

Hence,

h(my, My, ma, My, mg, Ms) # 1, (mq — My)(mg — Ms)(ms — Ms) =0
which implies with (2.13), (2.14) and (2.15) that
my = My, mg = My, mg = Mj3

and so condition Hj is satisfied and then the equilibrium point (Z, 7, %) is globally attrac-

tive. O

Theorem 2.14. Assume that
(al(bl + C1) + 1) (ag(bg + 02) + 1) (ag(bg + 63) + 1) (bl + Cl)(bg + 02)(63 + 03) — 8016263 > 0.

and
1 1 1 2 2 2 2 2 2
8016263 (al + b> <a2 + b) <a3 + b) < a1a2a3(bl + Cl) (bg + Cz) (bg + 63) .
1 2 3

Then the equilibrium point (T1,7y,,%1) s globally asymptotically stable
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Proof. 1t follows from Corollary 2.12 and Theorem 2.13. [

In the same way, we can prove similar results for the remaining systems. So, for each
system we give a theorem that includes conditions for global stability of the the corresponding

equilibrium point.

2.2.1.2 Stability of the equilibrium point (Z2,7,, Z2)

Consider system (2.5) and its equilibrium point (Ts, 7y, Z2) = <a1 + ﬁ, as + @, as + b;@).

We have the following result.
Theorem 2.15. Assume that

1. Local stability condition:

(a1 (bl + Cl) + 1) (a2(62 + CQ) + 1) (ag(bg + Cg) + 1) (b1+01)(b2+02)<b3+03)—80102b3 > 0.

2. Global attractivity condition:

1 1 1
8016263 (a1 + b1> (CLQ + bg) ((13 + 03> < afa%ag(bl + 01)2(b2 + 62)2(b3 + 63)2.

Then the equilibrium point (Ta,Ty, Z2) 15 globally asymptotically stable.

2.2.1.3 Stability of the equilibrium point (Z3,7s, Z3)

2 + , a3 +

Consider system (2.6) and its equilibrium point (73, 75, Z3) = (al + 5 +c3)

bitc1 +01 b2+62

We have the following result.
Theorem 2.16. Assume that

1. Local stability condition:

(al(bl + Cl) + 1) ((12(52 + 02) + 1) (ag(bg + 63) + 1) (bl—l-Cl)(b2+02)<b3—|—63)—86152b3 > 0.

2. Global attractivity condition:
1 1 1 2.2 92 2 2 2
801b2b3 <a1 + bl) <a2 + c2> <6L3 + C3) < a1a2a3(b1 + Cl) (bg + 62) (bg + Cg) .

Then the equilibrium point (T3, Y5, Z3) s globally asymptotically stable.
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2.2.1.4 Stability of the equilibrium point (Z4,7,,z4)

Consider system (2.7) and its equilibrium point (%4, 7,,Z4) = <a1 + o Jrc sa2 + s +62, as + +03)

We have the following result.
Theorem 2.17. Assume that
1. Local stability condition:

(al(bl + Cl) + 1) (ag(bg + CQ) + 1) (a3(b3 + 03) + 1) <b1+01)(b2+02)(b3+03)—801b263 > 0.

2. Global attractivity condition:

1 1 1
801b203 <a1 + b ) (CLQ + C) <a3 + b ) < a%a%ag(bl -+ 01)2(b2 + 62)2(b3 + 03)2.
1 2 3
Then the equilibrium point (T4,7y4, Z4) 15 globally asymptotically stable.

2.2.1.5 Stability of the equilibrium point (75,75, Z5)

Consider system (2.8) and its equilibrium point (T5, 75, Z5) = (a1 + e +c1 2 + ﬁ, as + ﬁ)

We have the following result.
Theorem 2.18. Assume that
1. Local stability condition:
(a1(by +c1) + 1) (aa(ba + c2) + 1) (ag(bs + ¢3) + 1) (by+c1)(ba+c2) (bs+c3)—8b1babs > 0.

2. Global attractivity condition:

1 1
> (ag + C) < a1a2a3(b1 + Cl) (bQ + 02)2(b3 + 03>2.
3

C2

1
8b1b2b3 <a1 + ) ((12 —+
€1
Then the equilibrium point (Ts,Ts, Z5) s globally asymptotically stable.

2.2.1.6 Stability of the equilibrium point (Zg, ¥g, Zg)

Consider system (2.9) and its equilibrium point (Zg, g, Z6) = <a1 + ﬁ, as + ﬁ, az + nger3)~

We have the following result.

Theorem 2.19. Assume that
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1. Local stability condition:
(CLl (bl + Cl) + 1) (ag(bg + CQ) + 1) (a3(b3 + 03) + 1) <b1+01)(b2+02)<bg+03)—8blb263 > 0.

2. Global attractivity condition:

1 1
) (ag + b > < a1a2a3(b1 + Cl) (bQ + 62)2(b3 + 03>2.
3

C2

1
8b1b203 <a1 + ) (CLQ +
(&1

Then the equilibrium point (Tg, g, Z6) s globally asymptotically stable.

2.2.1.7 Stability of the equilibrium point (Z7,7,,%7)

Consider system (2.10) and its equilibrium point (Z7, 7, Z7) = (a1 + e +C ,ag + b2+62, as + b3+63>

We have the following result.
Theorem 2.20. Assume that
1. Local stability condition:
(a1(by +c1) + 1) (az(by + c2) + 1) (as(bs + ¢3) + 1) (b1+c1)(ba+c2) (bs+c3) —8bicacs > 0.

2. Global attractivity condition:

1 1 1
8b102€3 ((11 + C> <CL2 + b) (Cbg + b ) < alazag(bl + Cl) (bg + 02)2(b3 + 03)2.
1 2 3

Then the equilibrium point (T7,7y;,Z7) s globally asymptotically stable.

2.2.1.8 Stability of the equilibrium point (Zs, 7g, Zs)

Consider system (2.11) and its equilibrium point (Zs, 7g, Zs) = (a1 + e +r:1’ as + b2+62, as + b3+63>

We have the following result.
Theorem 2.21. Assume that
1. Local stability condition:
(a1(by +c1) + 1) (aa(ba + c2) + 1) (ag(bs + ¢3) + 1) (by+c1) (ba+c2) (bs+c3) —8bicabs > 0.

2. Global attractivity condition:

1 1 1
8b102b3 <a1 + C) (CLQ + b > <CL3 + C) < a1a2a3(b1 + Cl) (bg + 62)2(b3 + 03)2.
1 2 3

Then the equilibrium point (Ts, Ug, Zs) s globally asymptotically stable.
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2.3 Existence of periodic solutions

Here, we are interested in existence of periodic solutions for system (2.1).

Definition 2.2. A solution (¥y, Yn, 2n),—_, .. 0of system (2.1) is said to be periodic of period
p e N if

Tntp = Tns Ynsp = Yns 2ty = 2, 1= —1,0,+ .

In the following result we will established a necessary and sufficient condition for which

there exist prime period two solutions for system (2.1).

Theorem 2.22. Assume that «, B and v are positive real numbers such that (o — 1)(f —

1)(y — 1) #0. Then, system (2.1) have a prime period two solution
s (ap, B, yr), (p.g,7), (ap, Bg,77), (965 7), -
if and only if
f(LB) = af(B,1), g(1,7) = Bg(v,1), h(1, ) = vh(a, 1),

where

p= f(ﬁa 1)a q = 9(77 1)7 r= h((l/, 1)'

Proof. 1. Let a, (3, v be positive real numbers and assume that

., (ap, Bg,yr), (p,q,7), (ap, Bg,yr), (P, q,7), ..

is a solution for system (2.1). Then, we have

ap = f(q, Bq) = f(1,5) (2.16)
p=f(Ba.q) = f(B,1) (2.17)
Ba=g(r,yr) =g(1,7) (2.18)
q=gyr,r)=9(,1) (2.19)
yr = h(p,ap) = h(1,a) (2.20)
r = h(ap,p) = h(a, 1). (2.21)

From (2.16)-(2.21), it follows that

f(L,B) =af(B,1), g(1,7) = Bg(v, 1), h(1,a) = vh(a, 1).
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2. Now, assume that
f(1,8) =af(B,1), g(1,7) = Bg(7,1), h(L, @) = yh(a,1).
and let
To = f(ﬁa 1)’ -1 = f(175)7 Yo = 9(77 1)) Y-1 = 9(177>’ 20 = h(av 1)7 Z-1= h<1=a>'
We have
z1 = f(yo,y-1) = f(9(7,1),9(1,7)) = f(9(7,1), Bg(7, 1)) = f(1,8) = 24,
hn = 9(207 Z—l) - g(h(a7 1)7 h<17 Oé)) - g(h(Oé, 1)77]1(&7 1)) - g<17/7) =Y-1,
1= h<$07x*1) = h(f(ﬂu 1>7f(175)) = h<f(6? 1)705f(67 1)) = h(laa) = Z-1
z2 = f(y1,90) = f(9(1,7),9(7,1)) = f(Bg(7,1),9(7,1)) = f(B, 1) = o,
Yo = g(zh ZO) = g(h(17 Oé), h<a7 1)) = g(f}/h(o@ 1>7 h(Oé, 1)) = g<17’7) = Yo,

2y = h(z1,20) = h(f(1,5), f(B,1)) = M f (8, 1), f(5,1)) = h(1,a) = 2.
By induction we get
Top—1 = T1, Tan = T0; Y2n—-1 = Y-1, Yon = Yo, Z2n—1 = -1, 220 = 20, N € No.
O
Now, we will applied our result in finding prime period two solutions of some special

cases of system (2.1).

2.3.1 The first special system

In [27], the author investigated the existence of periodic solutions of the equation

Tn Tp—
Tn+1 = A1 + bl + 1 ! . (222)
Tp-1 Tp

The author of [60], make some additional remarks and results on the same equation. Here,

as a generalization of equation (2.22) and the system

n n— Tn Tp—
Y +Cluayn+1:a2+62 + co 17

Tpt1 = a1 + by
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studied by [114], we consider the three dimensional system

n n— Zn Zp— Ty Ly

Tpt1 = a1+b1 Y —|—Cly 1, Ynt1 = a2+b2 +cCo 1, Zn+l = (13+b3 +c3 1, n e No,
Yn—1 Yn Zn—1 Zn Tp—1 Tn

(2.23)

where the initial values x_;, y_;, 2_;, % = 0,1 and a;,b;, ¢j, 7 = 1,2,3 are positive real

numbers. For this system we have the following result.

Corollary 2.23. Assume that (o« — 1)(8 — 1)(y — 1) # 0, then system (2.23) had prime

period two solution of the form

w(af(8,1), Bg(y, 1), vh(e, 1)), (£(8:1), 9(v, 1), M, 1)), (af(8,1), Bg(7, 1), vh(er, 1)),
(f(B,1),9(7,1), h(a, 1)), ...

if and only if

(b —c)B* +arfla—1)+cia—b, = 0, (b8 — )y +agy(B—1) +caff — by =0,
(bsy — e3)a® +aza(y — 1) +e3y — b3 = 0. (2.24)

Proof. System (2.23) can be written as

Tp+1 = f(ynyyn—l)a Yn+1 = g(Zn, Zn—l)a Zn+l = h(xnvmn—1)7

where

U v U v U v
flu,v) =a1 +b1— +c1—, g(u,v) = ag + ba— + co—, h(u,v) = az + b3— + c3—.
v U v U v U

So, from Theorem 2.22,

"’(O‘f(ﬁ>1)vﬁg(7’1)a7h( )) (f(ﬂ? ) ( v, ),h( )), (o[f(ﬁ’1)759(7’1)77h(a’1)),
(f(B,1),9(7,1), h(a, 1)), ...

will be a period prime two solution of system (2.23) if and only if
f(Lﬁ) = Oéf(ﬁ, 1)7 g<17/7) = 69(77 1)7 h(lva) = Vh(av 1)

Clearly this condition is equivalent to

(bla — 01)62 + &1B(Oé — 1) +cia — bl = 0, (bgﬂ — 62)72 + ag’y(ﬁ — 1) + 625 — bg = O,

(byy — c3)a® 4+ aga(y — 1) + gy — by = 0.
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Example 2.3.1. If we choose aa =2, =3, v = %, the condition (2.24) will be
3a; + 17by — Tcy = 0, dag — by + 11co = 0, —2a3 + 2b3 — Tc3 = 0.

The last condition is satisfied for the choice

4 1
alziablzla61:37a2:7762:2a02:

3 4

1 1
— =—,b3=4 =1
11,@3 27 3 , C3

of the parameters.

The corresponding prime period two solutions, will be

Ton1 =21 =af(B,1) = 3327 Yon—1 = y-1 = Pg(7,1) = ffa Zon—1 =21 = Yh(a, 1) = Z’
and

372n:9€0:f(»3,1):136,3/211:3/0:9(%1):2?1, Zon = 20 = h(a,1) =9
that is

(2199) (10,68 g) (21 9y )
374472)°\3744°7)7\ 37 44°2)" '
2.3.2 The second special system

Consider the system

2 2 2
_ Zn— Zn— Ty Ty
Tnt1 =a1+blyyn +c1 <yn 1) s Yn+1 = ag+bo Z 1+02< - 1) , Zng1 = a3+bs3 Z 1+32< = 1) ,n € Ny,
n—1

n n Zn n n

(2.25)
where the initial values z_;, y_;, 2_;, % = 0,1 and a;,0;, ¢;, 7 = 1,2,3 are positive real

numbers. System (2.25) is a modification of system (2.23) and we have the following result.

Corollary 2.24. Assume that (o — 1)(8 — 1)(y — 1) # 0, then system (2.25) had prime

period two solution of the form

o(ef (8,1), Bg(v, 1), vh(e, 1)), (f(8,1),9(7, 1), hle, 1)), (af(B,1), Bg(v, 1), vh(a, 1)),
(f(B,1),9(7, 1), h(a, 1)), ...

if and only if

a1 B (a0 — 1)+ b B(af® — 1) +ci(a— B4 =0, axy*(B — 1) + byy(By* — 1) + (B —7*) =0,
aza®(y — 1) + bza(ya® — 1) + c3(y — o) = 0. (2.26)
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Proof. System (2.25) can be written as

Tpt1 = f(ym yn—l)a Yn+1 = g(zm Zn—l)a Zn+l = h(xmxn—l)7

where

2 2 2
f(U’U):al—i‘blg—Fﬁ <U> ag(UaU):a2+b2g+02 <U> ; h(u,v):a3+b3£—|—cg <U> .
v U U U U U

So, from Theorem 2.22,

o (af (8,1), Bg(y, 1), vh(e, 1)), (f(8,1),9(7,1), ke, 1)), (aef(B,1), Bg(v, 1), vh(a, 1)),
(f(B,1),9(7, 1), h(a, 1)), ...

will be a period prime two solution of system (2.23) if and only if

f(L,B) =af(B,1), g(1,7) = Bg(v, 1), h(1,a) = vh(a, 1).

Clearly this condition is equivalent to

a P (a—1)+bifas? —1) +e(a—BY) =0, a7*(8 1) + b27(87° = 1) + 2(8 =) =0,

aza?(y — 1) + bsa(ya? — 1) + c3(y — o) = 0.

O
Example 2.3.2. For « =3, =2, v = 1, the condition (2.26) will be
8@1 + 22b1 - 1301 = 0, 9@2 - 21(?2 + 16162 = O, 18@3 - 18b3 + 24203 = 0.
The last condition is satisfied for the choice
30 19 1 1 7 1
a1 , Ul , C1 13,@2 97 2 , Co 770’3 67 3 9703 29
of the parameters.
The corresponding prime period two solutions, will be
297 1 512 1 248
Topn—1 = T-1 f( ) 26921 Y-1 9(3) 63221 Z-1 3( ) 507
and
93 1 256 744
n — e 271 = —, n — prmnd *’]_ = —, n — :h?),].:i
Tan =00 = [(2:1) = 56 von =0 = (35, 1) = 35 2 = 20 = W3, 1) = 557
that is

(27 512 218y (98 25 Tab) 07 512 208y
267 63 7297/7\26" 637297/ \ 26" 637297/ '
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2.4 Existence of oscillatory Solutions

Here, we are interested in the oscillation of the solutions of system (2.1) about the equilibrium

point (Z,7,2) = (f(1,1),9(1,1), h(1,1)).

Definition 2.3. Let (2, Yn, 2n)n>—1 be a solution of system (2.1). We say that the sequence
(Tn)n>—1 (resp. (Yn)n>—1, (Zn)n>—1) oscillate about T (resp. G, Z) with a semi-cycle of length
one if:

(= T) i —T) < 0,0 > —1 (1esp. (g~ D) s —7) < 0,1 > —1, (20— D)Ypsr —7) <
0,n>—1).

Remark 2.4.1. For every term x,, of the sequence (x,),>_1, the notation "+" means x,,, —
T > 0 and the notation "-" means z,, —T < 0. The same notations will be used for the terms

of the sequences (Yn)n>—1 and (z,)n>—1.

Theorem 2.25. Let (Tn,Yn, 2n),>_; be a solution of system (2.1) and assume that f(x,y),

g(x,y) h(zx,y) are decreasing in = for all y and are increasing in y for all x.

1. If

To<T,T_1>T,Y <Y, Y-1>Y, 2<%z 2-1>7%,

then we get
Top < T, Top—1 > T, Yon <Y, Yon—1 > Y, 2on < Z, Zon—1 > 2, n € N.

That is for both (xp)n>—1, (Yn)n>—1 and (z,)n>—1 we have semi-cycles of length one of
the form
= — e,

2. If

To>T, 01 <T,Y >Y,Y-1 <Y, 2 >2%2, 21 <%,

then we get
Top > T, Top—1 < T, Yon > @, Yon—1 < y? Zop > 2y Rop—1 < Z, N E N.

That is for both (T)n>-1, (Yn)n>—1 and (zn)n>—1 we have semi-cycles of length one of
the form
T
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Proof. 1. Assume that
To<T, T 1>, % <Y,Y-1>Y, 2 <z 2-1>2Z

We have
z1 = f(Yo,y-1) > f(@y—) > f(.9) = f(1,1) =7,
= 9(20,21) > 9(%,21) > 9(%,2) = g(1,1) =7,
21 = h(xg,x_1) > h(ZT,z_1) > h(Z,T) = h(1,1) = Z,
r2 = f(yi, %) < f@w) < fm,9) = f(1,1) =7,
y2 = g(21,20) < 9(Z, 20) <9(z,2) = g(1,1) =7.
29 = h(x1,x0) < h(T,x9) < h(Z,Z) = h(1,1) =Z.

By induction, we get

Top < T, Toan—1 > T, Yon <Y, Y2n—1 > Y, 22n < Z, Zop—1 > 2, N € N.

2. Assume that

To>T, 21 <T,Y% >Y,Y-1<Y, 2 >2 2-1<Z

We have

= 9(20,2-1) < g(%,221) <9(z,2) = 9(1,1) =7,

21 = h(xg,x_1) < h(Z,z_1) < h(Z,T) = h(1,1) = Z,
z2 = f(y1,0) > f(@, %) > f(7.7) = f(1,1) =7,
y2 = 9(21,20) > 9(Z, 20) > 9(z,2) = 9(1,1) = 7.
2 = h(z1,70) > W(T, 20) > h(F,7) = h(1,1) = 7.

By induction, we get
Top > T, Top—1 < T, Yon >, Yon—1 <Y, Z2n > 2, Zon—1 < 2, n € N.

]

Now in order to confirm the results of this section, we consider the following particular

system.



2.4 Existence of oscillatory Solutions 109

Example 2.4.1. Consider the system

ynfl P Zn—1 g Tp—1 k
Tpy1 = a1 + by s Ynt1 = Az + by <z> , Zng1 = az + b3 < . ) ,n € Ny, (2.27)

where p,q,k €N, v_;, y_;, z—;, 1 = 0,1, a;, bj, i = 1,2, 3 are positive real numbers.
Let f, g and h be the functions defined by

v\P v\? v\F
fla) =ar+bi (2) glur) =a+ b (2) ) bl = as+bs () ww € (0,+00).

It is not hard to see that

af
%(u, v) <0,

of

9] dg (
ov

dg
P (

h oh
D0 (u,v) <0, —(u,v) > 0.

0
u,v) >0— 5

(u,v) >0, 5

u,v) <0,
System (2.27) has the unique equilibrium point (7,7, Z) = (a1 + b1, as + by, as + b3).

Corollary 2.26. Let (¥n, Yn, 2n),—_1... be a solution of system (2.27). The following state-

ments holds true:

1. Let

To<T,T1>T,Y% <Y,Y-1>Y, 2 <z 2-1>2Z

Then the sequence (x,)n (Tesp. (Yn)n, (2n)n) oscillate about T (resp. about Y, Z) with

semi-cycle of length one and every semi-cycle is in the form
+— ==
2. Let
To>T, 21 <T,Y% >Y,Y-1<Y, 2 >2 2-1<Z
Then the sequence (x,)n (Tesp. (Yn)n, (2n)n) oscillate about T (resp. about Y, Z) with
semi-cycle of length one and every semi-cycle is in the form
- — =
Proof. 1. Let
To<T, T 1>, % <Y,Y-1>Y, 2 <z 2-1>2Z

We have
v
Yo

>

< |
I
\_}—‘
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which implies that
P
Ty =a; + b <y1> >a; + b
Yo

=7x.
Using the fact that
L _
71 > é - 17
20 z
we get
z-1\1? _
Y1 = as + by () >ay+by =7
<0
Also,
T_ T
71 > i 17
i X
we get
r_q k
z1 = as+ b3 (> >a3+ b3 =72
0
Now, as
Dl
A Yy
we obtain
Yo P
To = a; + by () <a+b =7.
N
Similarly,
2 zZ 20\ 1
—0<::1:>y2:a2~|—bg <0) <a2+62:y,
21 z 21
and
o k
T T T
= < :1:>ZQICL3+[?3<O) < az+bs =72,
il T T

and by induction we get that
Lop—T < O, Yo, —Y < O, Zopn—2 < O, Top_1—X > O, Yop—1—Y > 0, Zop_1—2 > 0, n e No,

that is the sequences (x,,), (resp. (Yn)n, (2n)n) oscillate about T (resp. about 7, %)

with semi-cycle of length one and every semi-cycle is in the form
-+ —-t+—-+--.
and this confirm Part 1. of Theorem 2.25.

2. Let

To>T, 21 <T,Y% >Y,Y-1<Y, 2 >2 21 <Z
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We have

which implies that

Using the fact that

LoZog,
20 z
we get
q
U1 = ag + by (_1) < ag + by =7.
20
Also,
x_ T
1 < == 17
i i
we get
Tr_q k
z1 = az + b3 () <az+b3=7%
0
Now, as
P ¥_q,
Y1 Y
we obtain )
To = a; + by <y0> >a,+b =7.
U
Similarly,
2 z 20\ 4
0>—1:>y2—a2+b2(0) >CL2+62:@,
Z1 z Z1
and
= k
T T T
-0 > :1:>22:a3+b3(0) >a3+b3:§.
I T T

Thus, by induction we get that
Ton—7 >0, Y2, =Y >0, 22,—2 > 0, 2,1 =T <0, Y2,1—Y < 0, 22,—1—2 <0, n € Ny,

that is the sequences (z,), (resp. (Yn)n, (2n)n) oscillate about T (resp. about 7, Z)

with semi-cycle of length one and every semi-cycle is in the form
4+ — 4+ — 4 —

and this confirm Part 2. of Theorem 2.25.



Chapter 3

Formulas and behavior of solutions of
a three dimensional system of

difference equations

3.1 Introduction

One of the basic nonlinear difference equation is

Typ—1T
Tnt+1 = u, n e No. (31)
Tn +xn72

First time, equation (3.1) is solved by Elabbasy et al. in [17]. Then, Stevic differently
expressed general solution to equation (3.1) in [94]. In addition, Elabbasy et al. showed that

the following difference equation

Tp—1T
Tnt1 = #, n e NO. (32)
Tp — Tp—2

is solvable in [18].
In [35], the authors presented the solutions of the two-dimensional system of difference
equations which extended of equation (3.1) and equation (3.2)

P o P T

InJrl - ) ) n D
ay,_. + by, oz, . + Bz,

The authors of [112] studied the case kK = 2, p = 1, in system (3.3) with a special choices
of a,b, o, 5. In addition, for the case £ = 3, p = 1, with a special choices of a,b,a, 3 in

system (3.3) is investigated in [19]. Further, in [5, 20] authors obtained the solutions of
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other two-dimensional system of difference equations which is related to equation (3.1) and
equation (3.2).

In [126], Yazlik et all. presented the solutions of following three-dimensional system of
difference equations which generalized both equations (3.1)-(3.2) and systems are given [5,
19, 20, 112],

TnlYn—1 YnZn—1 ZnTn—1

b n - 9 Zn - 9 n E N 9 34
apTy, + boYn—2 Yot 1Yy, + 122 i 0 (34)

xn+1 = =
a2y + boxy,_o

where the parameters a;,b; and the initial values x_;,y_;, 2_; (i = 0, 1,2) are real numbers.
A natural question is to study both three-dimensional form of equations (3.1)-(3.2),
system (3.3) and more general system of (3.4) solvable in explicit-form. Here we study such

a system. That is, we deal with the following system of difference equations

xp n P Zn Zp .:Cn
_Pnkt1¥n _ _Yn—kt1%n — okt e Ny, pk e N, (3.5)

anrl - D ) n+1 — D ) ZTL+1 - D 3
Yn_i + BYn az, .+ bz, Ax! . + Bx,

3.2 Form of the solutions

To solve system (3.5) we need to use the following lemma.

Lemma 3.1. For a,b € R, consider the linear difference equation
Yn+3 = QYp + b7 n € No.
Then,

y; + bn, a=1,

\V/TLGNO, Y3nt+i = n fOTiZO,l,Z.

a
a™y; + ( ) b, otherwise,
a—1

Through the rest of the chapter by a solution of (3.5), we mean a well defined solution,

that is a solution such that
(ayﬁ,k + 5yn) (azﬁ,k + bzn) (A:L’i,k + Bwn> # 0, n € N.

Rearrange system (3.5) as follows

P P P P p p
Ty ket _ ayn—k 5 Yn—kt1 _ aZn—k b Cn—k+1 _ Al’n—k +B

b ) .
Tp+1 Yn Yn+1 Zn Zn+1 Tp

Putting

P P P
x y zZ
n—=k n—=k n—k
Uy = , Up = , Wy = , Vn € Ny, (3.6)
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we get
Upy1 = QU + B, Upy1 = aw, + b, Wy = Au, + B, Vn € N. (3.7)

So, for all n € Ny,

Upis = QUuio+ = alaw,y +b+ 6 =ala(Au, + B) +b] + S,
= aaAu, + aaB + ab+ .

Upts = QWpyo +0=a[Au, + Bl +b=al[A(av, + B3) + B] + b,
= aadv, +aAS+aB +Db.

Wpys = Aupyo+ B = Alav, + ]+ B = Ala (aw, +b) + 8] + B,
= waadAw, +aAb+ A+ B.

From this, we get, for all n € Ny, the following linear first order nonhomogeneous difference

equations,
Uz(ni1) = oaAug, +aaB + ab+ f,
Us(ni1)+1 = AUz + aaB + ab+ 3,
Us(ni1)r2 = QaAUznyo + aaB +ab+ 3,
V3(nt1) = aaAvs, +aAB+aB +0,

V3(ms1)+1 = @aAvg, 1 +aAB+aB+0b,

V3(nt1)42 = QaAvs,49 +aAS +aB +0,

Wynt1) = aaAws, +aAb+ A+ B,
W3nt1)41 = aaAws,1 +aAb+ AB+ B,

Want1)+2 = QGAW3, 10 +aAb+ AS + B,
Then, we get for all n € Ny,

u; + (aaB + ab+ B)n, aaA =1,

n_ fori =0,1,2; (3.8)
(aaA)nui + <(aaA)1

U3n+i =

1 ) (vaB + ab+ ), otherwise,
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v; + (aAB + aB + b)n, aaA =1,

VUsn+i = . (OZGA)” -1 ' for i = O, 1, 2, (39)
(vaA)v; + (cmA—l) (aAB +aB+0b), otherwise,
w; + (wAb+ A + B)n, aaA =1,

W3n4i = aaA)" — 1 for i = 0,1,2. (3.10)

(aA)"w; + <( ) (aAb+ AB + B), otherwise,

aaA —1
From (3.6) and equations (3.8), (3.9) and (3.10), it follows that for all n € Ny,
2¥, + (caB + ab + B)nxg

aaA =1,
Zo
U = (aad)"a?, + <(aa)> (aaB + ab+ f)zo &1
aaA —1 ;
, otherwise,
Zo
ay” . + Byo + (aaB + ab + f)nyq oaaA =1
Yo ’ |
U3n+1 (aA)" (ay’lk + Byo) + (%) (@aB +ab+ B)yo 1
, otherwise,
Yo
aaz’y + (ab+ )z + (eaB + ab + f)nz acd =1
20 7 |
U3n+2 (aaA)" (aazfik + (ab + ﬁ)zo) + (%) (vaB + ab + )z (3.13)
, otherwise,
20
D A B
vl + (aAf + al + bjnyo aad =1,
Yo AV 1
V3p = (aaA)”yfk + ((CM@)—) (aAﬁ +aB + b)y() (314)
aaA —1 ;
, otherwise,
Yo
P A B
az’, + b+ (aAB +a +b)nzo’ aaA =1,
20
U3n+1 (OéCLA)n (CLZ]_)k + bZ()) + (%) (CLAB +aB + b)ZO (315)
aa , otherwise,
20
aAz?; + (aB + b)zy + (aAB + aB + b)nwg aad =1
Zo ’ o
g A - 1
142 = (aaA)" (aAz?  + (aB + b)xo) + (%) (aAB +aB + b)zo .
aa , otherwise,

Zo
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22+ (aAb+ AP + B)nz aad — 1
ZO ) Y
Wan (aaA)"2P ) + ((oza ) ) (aAb+ AB + B)z (3.17)
aaA —1 ,
, otherwise,
20
Az, + Bxg + («Ab+ ASB + B)nxg cad = 1
o ’ -
Wan+1 (aA)™ (Ax’ik + on) + (%) (aAb+ AB + B)xyg (3.18)
, otherwise,
Zo
Aoy’ + (AB + B)yo + (aAb + AB + B)nyp A — 1
yo ) )
W3an42 = n P (aaA)" —1 (3.19)
, otherwise,
Yo
Now, by rearranging equation (3.6), we have
p p P
Ty = xnfk, Yp = M, Zn = ank, Vn € Ng. (3.20)
Replacing n by kn 4+ r, for r =0,1,.... k — 1, we get
¥ z -
Tpsy = Kot g S G, ne Ny (3.21)
Ukn+r Vkn+r Wkn+r
[terating the right-hand side of the aforementioned equations, we get
pn+l pn+1 zpn+1
Lknt+r — nri(]il), Yknt+r = nyri(knl), Zkn+r — nT;]:n_i), Vr = 0, k — 1,” c No. (322)
p
il;IO ukH—r H kz—i—r il;[() Wi

We consider three cases: k = 0(mod3), k = 1(mod3) and k = 2(mod3).
Casel (k = 0(mod3)): Suppose k = 3l,(l = 1,2,...). Then, from (3.22) and depending on
the value of » modulo 3, we have

pn+1
L3(r—1)+j
T3(In+r)+j = W’
H S(IH-T
n+1
_ B yg(r—l)-i—j )
Vr = 0,[ - 1, n e NO . y3””+"')+j - n p(n—i) ’ ] = 0, 17 2. (323)
il;lo U3(li+r)+j
pn+1
Z3(r—1)+j
B(n+r)+i = Tm ey 0
p(n—i)
H w3(lz+r)
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Case2 (k = 1(mod3)): Suppose k = 3l+1,(l =0,1,2, ...

). Then, from (3.22) and depending

on the value of n modulo 3, we have Vr = 0, 3[,n € N:

Z(3141)(3n)+r

= 3n
T(3141)(3n+1)+r

- 3n+1

L(BI4+1)(3n+2)+r = 3,52

3n+1
4
xr73l7
(3n—1)
p
H u (3l1+1)i+r
3n—+2
p
Lyp_31-1
pBnt1-i) ’
U(3141)itr
3n+3
D
Ly_31-1

(3.24)

(3n+2 U
(31+1)z+r

3n+1
P
Lp_31—1

€T =
(31+1) (3n) +r <n o—

H u3l+1
=0

o) (I

p(Bn—(3i+1)) n—1
(3141 (3i4+1)+r 'Ho u
1=
3n+2
D
Ty _31—1

p(Bn—(3i+2))
(31+1) (3i+2)+r

;

T(31+1)(3n+1)+r = ( "

n 1 n n X3 1 n 3 ’
1 up(3 +1—(34)) 1 up(:s +1—(3i+1)) H up(3 +1—(3i+2))
0 (314+1)(3%)+r 0 (31+1)(3i+1)+r (3141)(3i+2)+r

(3.25)

3n+3
D
Lyp_31-1

(31+1)(3%)+r

x(3l+1)(3n+2)+7” = n p(3n+2 (31)) n p<3n+2 (3i+1)) n
ITu I vy @iy ) | 11 u
=0 =0 =0

p(Bn+2—(3i+2)) ’
314+1)(3i+2)+r

3n+1
p
Lr_31-1

T(31+1)(3n)+r = <

L p3(n—1) n—1
.Hou(3l+1)(3i)+r z‘I—Io

(3l+1)(31+1)+ru(3l+1)(31+2)+r
3n+2
D
Ty _31-1

( pBn—i)=1) p(Bn—i)=2) )’

L (3141)(3n+1
(BBt )t ( p(B(n—i)+1)
(

L=

)

p3(n7i)

n—1
w 3[+1)(3i)+ru(3l+1)(3i+1)+r> (EO

(3.26)

pBn—i)=1) ’
U(3141)(3i+2)+r

p3n+3

Ty 311

T(3141)(3n+2)+r

i

( p(8(n—i)+2)

)

Y(314-1)(3n)+r

Y@EI+1)Brn+D)+r = 3,17

Y(3I+1)(3n+2)+r

(3(n—i)+1) p3(n—1i) ’
P
U(3141)(31) +r U(31+1) (3i+1)+r Y (3l+1)(3z+2)+r>

3n+1
P
yr—?)l—
3n i
H vp(a )
(Bl+1)i+r
3n+2
P
Yr—31-1
p(3n+1-i) ’ (327)
V(3141)i+r
3n+3
P
Yr_31-1

T 3n+42

p(Bn+2—1) ’
L Y(314+1)itr
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3n+1
P
y _ Yr—31-1
(3141)(B3n)+7 nop3(ni) n=1 p(B(n H—1) p(3(n—i)-2) ’
H0U3l+1)(31)+7" 'Ho( (314+1)(3i+1)+r Y (3l+1)(3z+2)+r>
¢ b= P32
y — Yr_31-1
BB+ = T s S R ; (3.28)
1:[0 3[+1)(31)+rv(3l+1)(3z+1)+r) H U3l+1)(31+2)+r
= 3n+3
_ Yr—31—1
Y(@i+1)(3n+2)+r n p(S(n )+2) p(3(n i)+1) p3(n—1) ’
@1:[0< (314+1)(3i)+r Y (31+1) (3i+1)+r Y (3l+1)(3i+2)+r)
3n+1
P
_ Zr_31—1
Z(3l+1)(3n)+r = 3, P
p n—1
H W(s141)itr
3n+2
P
> —_ ZT‘ 3l—1
BBt +r = 3,57 D’ (3.29)
(31—}-1)1—&—7"
- 3n+3
P
5 _ Rr—31—1
BI+1)(Bn+2)+r = 3,39 2 )
1:[0 W(s141)itr
3n+1
P
Zs1)( Zr_31—1
(B8141)(3n) p3(n—i) n=l /L @B(n—i)-1) p(B(n—i)-2) ’
l:[Ow(?)l-i-l)(Si)-i—r .1:[0 Wi3141) (3i+1)+r W(314+1) (3i+2)+r
= = 3n+2
P
231 r—31—1
GG = Ty QPO ) nol o B-i)-1) ’ (3.30)
1:[0( (3l+1)(3@)+rw(3l+1)(32+1 +r) H W(3141)(3i+2)+r
= 3n+3
> _ Zr 3l—1
Bl+1)(3n+2)+r — pB—)+2)  pB(n—i)+1) p3(n—i) )
21:[0( (3l+1)(31)+rw(3l+1)(32+1) (3l+1)(3i+2)+r)

Here we consider two sub-cases:
Sub-case2.1 (I # 0): From (3.26), (3.28), (3.30) and depending on the value of » modulo 3
, we get, for all n € Ny, the following expressions:

If r = 0(mod3). Put 3r instead r, we obtain, Vr = 0,1,n € Ny:

p3n+1
. Lar—31-1
(3141)(3n)+3r N sto n=l . Gm-i-1) p(3(n—i)—2) ’
il:lou(3l+1)(3i)+3r ZHO( (314+1) (3i+1)+3r ¥ (3l+1)(3%+2)+37‘)
3n+2
- _ Lar—_31—1
(3l+1)(3n+1)+3r o pBn—d+1)  p3(n—i) =l pem-i-1) ’ (3.31)
7;[10 (“(3Z+1><3z>+3r“(3z+1><3z+1)+3r) <H u(3l+1)(31+2)+3r>
p3n+3
o L3r—31-1
T (3141)(3n4+2)+3r — 5 pB(n—i)+2) pBr—i)+1) p3(n—1i) )
11:[0 (u(3z+1 (3z)+3ru(3l+1)(3z+1)+3ru(3l+1)(3i+2)+3r)
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Thus, Vr = 0,1,n € Ny:
3n+1
D
T o x3(r—l)—1
3((31+1 =
((Bl+1)n+r) no3(n—i) n=l /o B—i-1) pB(n—i)=2) ’
1:[0“3((3l+1)i+r) ,1:10 W3((3141)i+i+r)+1W3((31+1)i+20+r)+2
= = p3nt2
. _ L3(r—1)—1
3((31+1)ntl+r)+1 =
((BHDnti+r)+ ﬁ ( pBr—+1)  p3(n—i) ) nﬁl pB(n—i)—1) ’ (332)
L2 W3((3141)i+r) U3((31+1)i+1+r)+1 2 U3 ((3141)i+21+r)+2
p3n+3
- L3(r—1)—1
L3((Bl+1)n+204+r)+2 = 7 pB=i)+2)  pB(n—i)+1) p3(n—i) )
il:IO <u3((31+1)i+r)u3((3l+1)i+l+r)+1u3((3[+1)i+2l+r))+2)
3n+1
D
_ Y3(r—1)—1
Y3((3l+1)n+r) = n3(n—i) n—1 p(3(n—i)—1) p(B(n—i)-2) ’
,HOU3((3I+1)i+r) I1 <v3((3l+1)i+l+r)+1v3((3l+1)z’+21+r)+2>
= pint2
- Y3r—1)—1
Y@L+ = pBr—i)+1)  p3(n—i) n=l o @m-i-1) ’ (3.33)
— <U3((3l+1)i+r)U3((3l+1)i+l+r)+1> 2.130 U3((3141)i+21+r)+2
p3n+3
B Y3r—1)—1
Y3(BUHn+24m)+2 = 1 Gt @it ) '
zl—Io (713((3l+1)z‘+7~)U3((3l+1)i+l+r)+1v3((3z+1)i+2l+r)+2)
3n+1
D
. - Z3(r—1)—1
I+1 =
3((3l+1)n+r) ﬁ wps(n_i) nﬁl w”(a(n_i)_l) wp<3(n—i)—2) )
L4 (@i 3((314+1)i+1+r)+1 W3 ((314+1)i+20+7)+2
= p3n+2
_ Z3(r—1)—1
F(@H L= pB—+1)  p3(n—i) n=l o @n—i-1) ’ (3.34)
o (w3((3l+1)i+r)w3((3l+1)z‘+l+r)+1> z‘l;lo W3 ((3141)i+20+7)+2
p3n+3
_ Z3(r—1)—1
Z3((3l4+1)n+204r)+2 = & D) D) Y ;
P2 (w3((3l+1)i+r)w3((3l+1)i+l+r)+1w3((3l+1)i+21+r)+2)
If r = 1(mod3). Put 3r + 1 instead r, we obtain, Vr = 0,1 — 1,n € N:
3n+1
p
. _ L3(r—1)
3((31+1 1=
(( + )n+7")+ ﬁ upg(nil) n—1 (up<3(n7i>7l> up(g("*i)*2> )7
L4 (i) 1 3((314+1)i+1+r)+2U3((31+1)i+2l+r+1)
= ! pAnt2
T o x3(r—l)
3((31+1)ntl+r)+2 =
(i Dnti+r)+ N (8(n—i) 1) p3n—i) =l Bm-i)-1) ’ (3.35)
il;IO <u3((3l+l)i+r)+1u3((3l+1)i+l+r‘)+2> z‘l;lo W3((3141)i+20+r+1)
p3n+3
. x3(’r’—l)
L3((Bl+1)n+2l+r+1) = p(B(n—i)+2) p(B(n—i)+1) p3(n—i)

3((314+1)i+7)+1 U3((B3141)i+1+7)+2¥3((314+1)i+ 20 +r+1)

;
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3n+1
D

y _ Y3(r—1)

3((31+1 1=

(Bl+1)n+r)+ H U p3(n—i) nﬁl Up(3(n H-1) Up(3(n H—2) )
3((3l41)i+r)+1 3((3l41)i+14+r)+273((3l41)i+2i+r+1)
p3n+2

Y3(r—1)

Y@t +2 = Ty p(3(n—i)+1) p(n—i) n=l o (an—i)-1) ’ (3.36)
1:[0 (U3((3l+1)z+r)+l 3((31+1)i+1+r) +2> H U3((3141)i+2l+r+1)
= p3nts

B Y3r—1
Y3((3l1+1)n+20+r+1) = SGn012) B+ D) )
11:10 (U3((3l+1)z+r)+1U3((3l+1)z+l+r)+2US((3l+1)z+2l+r+1))
3n+1
D

; N Z3(r—1)

3(BHDntr)+1 p3(n—i) n=l / @Bn—i)-1) p(B(n—i)-2) ’
H w3((3l+1)z+r)+1 HO (w3((3l+1)z+l+r) 2w3((31+1)z+2l+r+1)>

= P2
_ ~3(r—1)

Z(EHDn+H+2 T T p(B(n—i)+1) Pp3(n—i) nol o 3(n—i)-1) ’ (3.37)
1:[0 (w3((3l+1)z+r)+1w3((3l+1)z+l+r)+2) ( I1 w3((3l+1)z+2l+r+1))
= p3nt3

. “3(r—1)

3B n+2tr+1) = m T i) SB(n—i)+1) (1) ’
zHo <w3 (3l+1)z+7")+1wS((3l+1)z+l+r)+2w3((3l+1)z+2l+r+1))
If r = 2(mod3). Put 3r + 2 instead r, we obtain, ¥r = 0,1 — 1,n € Ny:
3n+1
D
L3(r—1)+1
((BH41)n+) p3(n—i) nel o o@n-i-1) pB(n—i)=2) ’
H u3 ((3141)i+r)+2 ,1:10 <u3((3l—|—1)z+l+r+1)u3((3l+1)z+2l+r+1)+1)
- p3nt2

. L3(r—1)+1

3(BHDnti+r+l) = 7y p(3(n—i)+1) 3(n—i) n—1 p(B(n—i)—1) ’ (3'38)
HO (U:s (3l+1)z+r)+2u3((31+1)z+l+r+1)) H U’3((3l+1)z+2l+r+1)+1
= P33

. L3(r—1)+1

S(EHDn+2tr+1)+1 = T 50 i) HB(n—i)+1) pS(n—1) )
11:[0 ( U ( 3l+I)H—T)+2u3((3l+1)z+l+r+1)u3((3l+1)i+2l+r+1)+1)
3n+1
P
y Y3(r—+1
3((31+1 2 =
(( + )n+r)+ H U 3(n i) ’I’Lﬁl Up<3(" i)—1) /Up(g(" i—2) )
3((3l141)i4r)+2 =0 3((3l41)i4+14+r+1) ¥3((3l4+1)i+204+r+1)+1
B p3nt2
_ Y3(r—1)+1

Y3((Bl+1)n+l4r+1) = —, =011 oy R ) (3.39)
AHO (“ ((3l+1)z+r)+2v3((3l+1)z+l+r+l)) ( HO US((3l+1)i+2l+r+l)+1>
1= 1=

p3n+3
_ Y3(r—1)+1
Y@L Dnt2r DAL = T G0 e+ i) ’
Il (Ug( 31+1)z+r)+2U3((3l+1)1+l+r+l)U3((3l+l)z+2l+r+l)+l>

=0
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Z3((Bl4+D)n+r)+2 = <

Z3((Bl+D)n+l+r+l) =
I1

=0

23((314+1)n+2l+r+1)+1

11
1=0
Sub-case2.2 (I = 0): Using the fact that in this case r =0, k =1

(3.28) and (3.30) system (3.5) become, for all n € Ny

N N
ntl = —p » Yntl = 7p v et T A '
Yy 1+ BYn az,_ 1+ bz, Ax, 4+ Bz,
Thus,
3n+1
Vg
L_1
€T ==
3n no 3=\ Mol p@-i)-1) pB(r—i)-2) ’
IT us; IT (usiq U3it2
=0 =0 Sng2
p n
x = =
n € Ny : 3n+tl n pBr—+1) p3n—i)y (M=l p(S(n )—1)
il:IO U3 3z+1 1:1 3i+2
- 3n+3 -
)
€T =
3n+2 n pB=)+2) pBn—i)+1) p3(n—i)\’
'Ho Usg; U3it1 U312
1=
3n+1
D
Yan = Y1
sn <ﬁ S z)) "ﬁl( pE==1) p(3n—i)= 2))
U3, V3441 V340
i=0 i=0 Z: B "
p n
Y - Y_q
. 3 1 —
n € Ny : n+ n p(B(r—i)+1) pS(n A= p(S(n i)—1)
I (vs; U3i+1 I v3ip9
i=0 1=0
yp31n+3
Ysn+2 = Tn pBn—0)+2) pB—i)+1) p3n—i)\’
'Ho Us; Usit1 U3it2
1=
3n+1
Z}il
Z3n —
" nop3(n—i) n—1 p(3(n )—1) p(S(n i)—2)
H 3z H W344+1 W3i+2
1=0 =0 N
p n
21
n e No :

3n+1
p
Z3(r—1)+1
p3(n—1) n—1 pBr—i)—1) pB(n—i)—2)
1 u3 ((314+1)i+r)+2 ,1:[0 U3 ((3141)it1+r+1) U3((31+1)i+20+r+1)+1
= p3n+2
Z3(r—1)+1
(3(n—i)+1) p3(n—1) n=1  (3(n—i)—1)
wh w? H wh
3((3l41)i+r)+2 7 3((314+1)i+1+r+1) 3((3l41)i+2i+r+1)+1
p3n+5
Z3(r—1)+1
L (3(n—1i)+2) p(38(n—i)+1) 3(n—i)
wh wh wh
3((3l1+1)i4r)+23((314+1)i+I4+r+1) *3((314+1)i+2l4+r+1)+1

n+ n pB—+1)  pan—i)\ (M=l ame-n-1
,H Ws; W3y 'Ho W3i4-2
1=

3n+3
Zli 1

Z3n+2 =
3i W3;41 W3i4-2

( pBn—+2)  pB(n—i)+1) p3(n7¢)>'

) . (3.40)

, we get from (3.26),

(3.41)

(3.42)

(3.43)

(3.44)
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Case3 (k = 2(mod3)): Suppose k = 31+2,(l =0,1,2,...). Then, from (3.22) and depending
on the value of n modulo 3, we have, Vr = 0,3l 4+ 1, n € Ng:

p3n+1

- —(31+2)
x(3l+2)(3n)+r ~ 3n (3n—1)
p n—1
H U(3142)itr
3n+2
P
T 3142)
T(3142)(3nt1)+r = 3ndl anriy (3:45)
Il :
K twrane
p n
) _ Treeuy
(314+2)(3n+2)+r = 3,72 pant2—i)’

L U(3142)itr

p3n+1

) B Ly (3142)
(5l+2)(3n)+r L2 p(Bn 37,) n—1 371 (3i+1)) n—1 p<3n (3i+2)) ’
Hou 3142)( H 3l+2 )(3i+1)+r H U(3142)(3i+2)+r
; =0

p3n+2
x o —(3142)
(B14+2)(B3nt1)+r no (31 (30) no o (Brtl-(3i41)) nol o @nt1-(3i42) ’ (3'46)
1H0u3l+2 3i)+r Zl:lousuz )(3i+1)+r il:IO U(3142)(3i+2)+r

(3l+2)

L (3n+2—(3i+1)) L (Bn+2—(3i+2)) \ ’
IT uy IT u
i—=0 (3142)(3i+1)+r i—0 (3142)(3i+2)+r

U
(

TEH)Br+r = 7 p(3n+2—(30)
H U (314+-2)(3i)+r

3n+1
P
S Lr_31-2
(31+2)(3n) no3(n—i) n=l  B(n—i)-1) pB(n—i)=2) ’
HOU (3142) (3i)+r H U(314-2) (3i+1)+r U (3l+2)(3i+2)+r
t p3n+2
T3 — T _31—2
(3 +2)(3n+1)+r n (3(77, i)41) ‘3(n ) n—1 (3(71 i)—1) ’ (347)
HOU 3[+2)(31)+ru(3l+2)(3z+1)+ H u (3142) (3i+2)+r
¢ p3n+3
Z(3142)(3n+2)+r = TR
+ n+ +1. o 3 n— n—i n— )
I GO O gD
=0 (3142) (33)+r ' (3142) (3i+1)+r ~(3142) (3i+2)+r
3n+1
P
Y@
Y@EH+2)@n)+r = 3, e
H Y(3142)i+r
3n+2
p
_ Yr—3142)
YBH+2)GBrr)+r = 3o R (3.48)
(31+2)z+7’
T, 3n+3
P
_ Yr—3142)
Y@Bi+2)@Bn+2)+r = 3,09 . p<3n+272~)’
L VEi2itr
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p3n+1
y _ Yr—31-2
(31+2)(3n)+r n8(n—i) n=l o (8(n—i)-1) p(sm )—2) ’
H v(3l+2)(3z)+7‘ H V(3142) (3i4+1)+r Y (31+2) (3i+2) +r
p3n+2
y _ Yr_31-2
(314+2)(3n+1)+r NGt psn) 1 SB—D) ) (3,49)
Ho U(3142) (30) +r V(314+2) (3i+1)+r H 'U (3142) (3i+2)+r
v p3n+3
_ Yr—31-2
Yai+2)3nt2)+r m PO B ) ’
H U(3l+2)(3z)+rv(3l+2)(3z+1)+r (3142)(3i+2)+r
3n+1
D
)
Z(3142)(3n)+r = 30 (@)
p n—1
H W(s142)itr
3n+2
D
_ Fr—(3142)
2(314+2) (3n+1)+r = e —— (3.50)
W(s142)itr
T 3n+3
D
_ Fr—(3142)
Z(Sl+2)(3n+2)+r - 3n42 p(3n+27i) )
'Ho W(s142)itr
1=

p3n+1
2(31+2)(3n) - _127“73172 _ ;
1 w p3(n—i) H QPEOTID (a2
=0 (3142)(3%)+r (31+2)(3i+1)+r “(3142) (3i42)+r
p3n+2
— Zp—31—2
Z(3142)(3n+1)+r N Gty i) n_1 1) s (3_51)
(@How 3142) 3@)+rw(3l+2)(3z+1 ) (H w 3l+2)(3z+2)+r)
p3n+3
5 Rr—31—2
(B142)(Bn42)+r PB—)+2)  p(Bn—i)+1) =) ’
(H Wiz142)(3i)+r W(314+2) (3i+1)+r (31+2)(31+2)+7‘>

Here we consider two sub-cases:
Sub-case3.1 (I # 0): From (3.47), (3.49), (3.51) and depending on the value of » modulo 3
, we get, for all n € Ny, the following expressions:

If r = 0(mod3). Put 3r instead r, we obtain, Vr = 0,1, n € Ny:

3n+1
D
T _ L3(p—1)—2
3((Bl+2)ntr) p3(n—i) n—1 pBn—i)—1) pBn—i)—2) ’
H “3 ((3142)i+7) H u3((3l+2)z+l+7‘)+2u3((3l+2)z+2l+r+1)+1
p3n+2
. o L3(r—1)—2
3(@l+2nti4n)+2 = Ty pB—+1)  p3(n—i) n=l @B(n—i)-1) ’ (3.52)
H “3( 3142)i4+r) U ((3l+2)z+l+r )+2 H U3 ((3142)i+20+r+1)+1
p3n+3
_ L3(p—1)—2
T3((314+2)n+20+r+1)+1 = 77 TR ———— T ;
(HO U3((31+2 H—r)u3((31+2)z+l+r)+2uS((Sl+2)z+2l+r+l)+1>
YA
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3n+1
P
y _ Y3(r—1)—
3((31+2 =
((31+2)ntr) no o 3(n—i) n=l o @Bn-i)-1) p(3(n—i)—2) !
H U3 (3142)i+r) H U3((3142)i+1+r)+2YV3((3142)i+20+r+1)+1
p3n+2
_ Ysr—n-2
Y3((BH2)nttr)+2 N it p8(n—i) n=l o (3n—i)-1) ’ (3.53)
H U3((31+2 z+r)v3((3l+2)z+l+'r +2 H U3((3142)i+2l+r+1)+1
p5n+3
_ Y3(r—1)-
Y3((3l+2)n+2l+r+1)+1 = 75 SO 12) B D41 3 )
<ZH0 U3((3l+2)2+7’)US((3l+2)z+l+7")+2U3((3l+2)l+2l+7‘+1)+1)
3n+1
p
, B “3(r—1)—2
3((Bl+2)ntr) no3(n—i) pB(n—i)=1) p(3(n—i)~2) ’
H w3 ((3142)i+r) H w3((3l+2)z+l+r)+2w3((3l+2)1+21+7"+1)+1
p3n+2
p, o ~3(r—1)—2
3((314-2)n+1+r)+2 S 3 S SR ) (3_54)
H w3 3l+2)z+r)w3((3l+2)z+l+r)+2 H w3 ((8142)i+20+r+1)+1
p3n+3
p, . 23(r—1)—
3(Bl+2)n+2l+r+1)+1 pB(—i)+2)  pBn—i)t1) p3(n—i) ’
H W3((314-2)i+r) W3((3142)i-+1+r)+2W3((3142)i+20+r+1)+1

If r = 1(mod3). Put 3r + 1 instead r, we obtain, Vr = 0,[,n € Ny:

3n+1
L3(r—1)—
T3((314-2)n+r)+1 = 3 n_1 31 pBn—)-2) )
(H “3( (3142)i+r) +1> (H U 3l+2)z+l+r+1)u3((3l+2)z+2[+r+1)+2)
p3nt2
L3(r—1)—
T3((Bl42)n+l4+r+1) = JrT——— oY= "1 a0 5 (3.55)
(H U3((314-2)i+r)+ 1u3((3l+2)z+l+r+1)> (H Us((31+2 z+2l+r+1)+2>
p3n+3
B L3(r—1)—
T3((Bl4+2)n+2+r+1)+2 = 77 D+ 4D T ;
(H Us3((314-2) z+r)+1u3((3l+2)z+l+7’+1)u3((3l+2)z+2l+r+1)+2>

3n+1
D
_ Y3(r—1)-
Y3(Blmtn+1 = p3(n—1) n—1 p(B(n—i)—1) p(3(n—i)—2) ’
H U3( (3142)i+r)+1 H U3 3l+2)z+l+r+1)U3((3l+2)z+2l+7‘+1)+2
p3n+2
o Y3(r—1)—
Y3(Blmtitr+l) = 7y p(B(n—i)+1) p3(n—i) n=l o (3(n—i)-1) ’ (3.56)
H vy (3l+2)z+7")+1U3((3l+2)z+l+r+1) H U3 ((3142)i+20+r+1)+2
p3n+3
B Y3(r—1)—
Y3(Bl+2)n+204r+1)+2 no pBn—i)+2) pB(r—i)+1) p3(n—i) ’
HO Us(( 3l+2)z+r)+lUS((3l+2)z+l+r+l)U3((3l+2)z+2l+r+l)+2
Y2
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3n+1
Zg(r—l)—l
(BH+2)ntr) p3(n—i) n=l (3(n-i)-1) p(B(n—i)-2) ’
(H w3 ((31+2)i+7) +1> (H Ws( 3l+2)z+l+r+1)w3((3l+2)z+2l+r+1)+2)
p3n+2
_ Z3(r—1)—
Z3((3l42)n+l4r+1) = T v R v (3.57)
(H Wy 3l+2)z+T)+1w3((3l+2)z+l+r+1)) (H Wy 3l+2)z+2l+r+1)+2>
p3n+5
Z3(r—1)—
23((314+-2)n4-2l4r+1)+2 eT——r e v ;
<H Ws((31+2 z+r)+1w3((3l+2)z+l+r+1)w3((3l+2)z+2l+r+1)+2)

If r = 2(mod3). Put 3r + 2 instead r, we obtain, ¥r = 0,1 — 1,n € Ny:

3n+1
4
xS(T 1)
((3142)nt+r)+2 = p3(n—i) pB(n—i)—1) pB(n—i)=2) ’
<H “3 3l+2)z+1")+2> (H uy (3l+2)l+l+r+l)+1u3((31+2)1+21+r+2))
p3n+2
_ L3(r-1)
T3((BI42)nHl+r+1)+1 = - JT—— pry— T P ;
(H Us(( 3[+2)z+r)+2u3((3l+2)z+l+r+1)+1) (H Us((31+2 z+2l+r+2))
p3n+3
B L3(r—1)
L3((Bl4+2)n+2l+r+2) = 7 p p(3(n—i)+2) pB(n—i)+1) p3(n—i) ’
H Us3((3142 2+r)+2U’3((3l+2)z+l+r+1)+1u3((3l+2)2+21+r+2)
(3.58)
3n+1
D
_ Y3r—1
Y3((Bl+2)n+r)+2 p3(n—i) —1 GBm—i)-1) p(B3(n—i)-2) ’
H U3 ((3142)i+7r)+2 H vy (3l+2)z+l+r+1)+1U3((3l+2)z+21+r+2)
p5n+2
_ Y3r—1)
Ys((Bl+2)n+i+r+1)+1 = SO0 D "1t )
(HOU (3l+2)z+r)+2U3((3l+2)z+l+r+1 +1> (H Us ((31+2 z+2l+’r+2))
v p3n+5
B Y3r—1)
Y3((314+2)n+204+r+2) = 7 Y12 D) ) )
(H U3((3142)i+r)+ 2U3((3l+2)z+l+r+1)+1US((3l+2)z+2l+r+2))
(3.59)
3n+1
P
o Z3(r—1)
Z3((3142)n+r)+2 = i) 1 () (3 -2) ’
3((31+2)i+r)+2 3((3l14+2)i+l4+r+1)+1*3((3l42)i+2l4+r+2
<le> )<Hw<zw 1 W31 2)i 420 ))
p3n+2
. Z3(r—l)
FEHHH L T T T (=) n=l  (3(n—i)-1) ’
(H ws((dl+2)z+r)+2w3((3l+2)z+l+r+1)+l) (H w3((3l+2)i+21+r+2)>
v p3n+3
. Z3(r—1)
Z3((Bl+2)n+24r+2) = 7o p(3(n—i)+2) p(B(n—i)+1) p3(n—i) ’
H Wa((3142)i+r)+2W3((3142)i+1+r+1)+ 1w3((3l+2)z+2l+r+2)
(3.60)

Sub-case3.2 (I = 0): Using the fact that in this case r = 0,1, k = 2 , we get from (3.47),
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(3.49) and (3.51), for all n € Ny:
3n+1
.1'112
x
3(2n) A=) —1 @n--1) pBm-i)-2))’
H s H us Ul (o,
3(2i) 3(2i)4+2  U3(2i+1)+1
3n+2
1'112
x
3(2n)+2 n p(3(n 0)+1)  p3(n—i) n—1 pB(n—i)—1) ’ (3'61)
H U3(2i)+2 'Ho U3(2i41)+1
i
3n+3
Z’lig
a;‘ =
3(2n)+4 o pBn—)+2)  pBn—i)+1)  p3(n—i) ’
1:[ Us(27) Us2i)+2  Us(2i+1)+1
3n+1
.’L'pl
I’ ==
3@2n)+1 noam-i)\ (=l 6m-)-1) p6m-i)-2))
Ho U3 (24)+1 H Us(2i)+3  Us(2i+1)+2
2
3n+2
.Tzil
(2n)+3 = L pB(n—i)+1)  p3(n—i) n—l pBn—i)=1) ’ (3'62)
0“3(2z 1 U3(20)+3 .1:[0 U3(2i4+1)+2
i= p3n+3 =
L1
@2n)+5 — 7 p pB(n—i)+2) B(n—i)+1) pB(n—i) ’
Ho Us2i)+1 Us2i)+3  U3(2i+1)+2
Finally,
3n+1
p
T Typ_o
3(2
(TL)+ 3(n ) n—1 p(3n i)—1) p(3(n i)—2) ’
H u3(21)+r H Us(25)+2+r U3(2i41)+1+r
3n+2
p
T o T2
3@2n)+2+r N B(n—i)+1)  p3(n—i) el Gem-g-n \ T 0,1 (3.63)
H Us(2i)+r  Us(2i)+2+4r H U3(2i4+1)+1+r
’L
3n+3
P
T o Tyr_o
3@2n+l)+1+r = 7 pBn=i)+2)  pB(n—i)+1) p3(n—i) ’
H Wyoiyrr  Un@iyr2tr Ua(2it1)114r
3n+1
P
y o Yr—2
3(2n)+r o=\ (M=l Emen-1) pBr-n-2) )’
H ’Ug 20)+r H Us(2i)+2+4r V3(2i+1)+1+r
3n+2
P
y o Yr—2
San)+24r " pB(n—i)+1) p3(n—i) p(3(n—i)=1) ’ » T = O’ 1 (3'64)
11 U323+ V3(2i)42+4r H U3 (2i+1)+1+r
- 3n+3
P
o Yr—2
Y3@2n+1)+14+r = 74 p(B(n—i)+2) pB(n—i)+1) pB(n—i) ’
Us@2i)+r  U32i)+2+r U3(21+1)+1+r
i
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p3n+1
23(2n)+r = Fr2 ,
noosn—i)\ (Mol p@m--1) pB-i)-2)
(il;IO w3(2i)+r> (il;[o W3(2i) 4247 w3(2i+1)+1+r>
p3n+2
23(2n)+24r = “ro2 , _
p(B(n—i)+1)  p3(n—i —1 Gm—i-1) , 7 =20,1 (3.65)
(H W3(25)+r w3(2z)+2+r> ( I1 w3(21+1)+1+r)
3n+3
_ 2o
232t 1) +1tr N GB-+2)  pB-dt)  pn—i) )
(iHO Wa@iy+r  Wa@i+2+r w3(2i+l)+l+r>

The following theorem summarizes our previous discussion.

Theorem 3.2. Consider system (3.5), where the parameters «, B, a, b, A, B and the
initial values x_;, y_;, z_;, i € {0,1,...,k} are non-zero real numbers. Then, the following

statements hold:

(a) If k =3, (I = 1,2,...), then for all n € Ny, the solution of system (3.5) is given by
(3.23).

(b) If k=3l+1, (I=1,2,...), then for all n € Ny, the solution of system (3.5) is given by
(3.32), (3.33), (3.34), (3.35), (3.36), (3.37), (3.38), (3.39) and (3.40).

(c) If k=31+4+2, (I =1,2,...), then for all n € Ny, the solution of system (3.5) is given by
(3.52), (3.53), (3.54), (3.55), (3.56), (3.57), (3.58), (3.59) and (3.60).

(d) If k = 1, then for all n € Ny, the solution of system (3.5) is given by (3.42), (3.43)
and (3.44).

(e) If k = 2, then for all n € Ny, the solution of system (3.5) is given by (3.63), (3.64)
and (3.65).

Where the terms of the sequences wu,, v, and w, modulo 3 in formulas of the solutions are

given by (3.8), (3.9) and (3.10).

Remark 3.2.1.
If we take a = a = A and 8 = b = B and choose initial values such that x_; = y_; = z_;,

i=0,1,...,k, then system (3.5) will reduced to the nonlinear difference equation

p
Ly fr1Tn

_TnoktlTn e N, p,k € N
amg—k+ﬁxn 0P

Tnt1 =
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3.3 Behavior of the solutions a particular case

In this section, we focus our attention on a special case of system (3.5). In particular, we
examine the boundedness, the asymptotic behavior, and periodicity of solutions of system

(3.5) with p = 1, that is, the system

Tn—k+1Yn Un—k+12n Zn—k+1Tn
Tpp1= ——————— Ypp1 = ——————, Znp1 = ————, n €Ny, ke N. (3.66
o QYn—k + BYn it azp g+ 0z, " Az, 4 + Ba, 0 (3.66)

Throughout this section, we also assume that the parameters «, 5, a, b, A, B and the initial
values x_;, y_;, 2, © € {0,1,...,k} are positive. We start with the following theorem

concerning the boundedness of solutions of system (3.66).
Theorem 3.3. Consider the system (3.66) such that

(1) min(B8,b,B) > 1 ; or

(2) min(o,a,A) > 1, az_ > 2o, ay_x > Yo and Azx_j > xq.
Then, every positive solution is bounded.

Proof. Let {x,, Yn, zn}n>—x be a solution of (3.66).
Hypothesis (1) is satisfied. Suppose that min(3, b, B) > 1, then it follows from system (3.66)
that for all n € Ny,

Tp—k+1 Yn—k+1 Zn—k+1

S Yn—k+1 and Zn+1 S S Zn—k+1,

Tn41 S S Tn—k+1y Yn+1 S

and so the subsequences {Zxn—i }n>0, {Ykn—i }n>0 and {Zkn—i }n>0, ¢ = 0, ..., k—1 are decreasing.

Moreover, we have for all n € Ny,

T, < max T < max {yl} and z, < max {Zz}
T i=0,k-1 | B ’yn_izo,...,k—1 b "= i=0..k-1 | B J°

Thus, the solution is bounded. Hypothesis (2) is satisfied. If, on the other hand, min(a, a, A) >

1, az_g > 2o, ay_k > yo and Ax_j > x, then it follows from (3.66) that for n = 0,

Z—k+170

XT_ _ 2
Tok+1do < Z_pt1, 1 < Yokt1%0 < Y_py1, and 2 <

I <
QY_g az_y Ax_y,

S Z—k‘-‘rla

and from this, together with the assumption that min(a, a, A) > 1, we get for n = 0,

XT_ _ ya
o < SRR e < IR o and 2 <

QY _k+1 AZ_k+1 Ax_p

Z—k4+2T1 <
T > A—k+2-
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Continuing the process, we obtain, for n = k — 1,

ToYk—1 YoZk—1 20Tk—1
< g, Yp < < o, and z;, <
ay—1 az_—1 T

T <

S 20-

It follows by induction that the subsequences {Zrn—i}tn>0, {Ukn—itn>0 and {Zkn—i}n>o0, i =

0,...,k — 1, are decreasing. Furthermore, we have for all n € Ny,

< . < . < .
T < _max {o_i}, yo < max {y-;} and 2 < max {z}.

=U,...,

Hence, in this case, the solution is also bounded. This completes the proof of the theorem. [

In the next theorem, we give the necessary and sufficient conditions for the solutions of

system (3.66) to be periodic of period k (not necessary prime).

Theorem 3.4. Let {xy, Yn, 2n tn>—k be a solution of (3.66). Then, (Tn, Yn, 2n) = (Tn—k, Yn—k, Zn—k)
for all n € Ny, if and only if (xo, Y0, 20) = (T g, Yk, 2—k) and « + 3 =a+b=A+ B =1.

Proof. First, assume that (2., Yn, 2n) = (Tn_ks Yn—k, 2n—k) for all n € Ny, Particularly, we

have (o, Y0, 20) = (T, Y—k, 2—1) and

T = ar = ey = R s = gy = kT
—k+1 1 U+ Buo’ —k+1 e . —k+1 "= Az, + Brg
These equations imply that
1 1 1

a+6:a+b:A+B:10requivalently, a+pf=a+b=A+B=1.

Conversely, suppose that (zo, yo, 20) = (T, Y—k, 2—) and o+ =a+b = A+ B = 1. Then,
from (3.66), we get

" T_k+1Y0 T—k+1 "
1 = = = —k+17
ay_r+ By a+p
Y—k+1%0 Y—k+1
= = = Y—k+1
az_+bzy a+b ’
Z—k+1L0 Z—k+1
21 =

" Az, +Bzy, A+ B = Akl

Again, from (3.66) and using the aforementioned relation, we get

. T k4291 L k42 .
2 = = = —k+27
Y 1+ Py a+f
y Y-k+221 Y—k+2 y
2 = = = —k+2
az_py1+bz1 a+b ’
f—k+271 R—k+2
z9 =

- AJI_k+1 + B.Il - A + B = Fokte

Continuing the process and by principle of induction, we arrive at the desired result. O
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The next result provides the limiting properties of solutions of system (3.66).

Theorem 3.5. Let {2y, Yn, 2n n>—k be a solution of (3.66). Then, the following statements
hold.

(a) If aaA > 1, then lim (zy, yn, 20) = (0,0,0).
(b) Ifaad =1, then Tim (20, g 20) = (0,0,0).

(c) If aaA < 1, then

0, R>1. 0, S>1 0, T>1
li_>m Ty = , li_)m Yn = , li_>m Zn =
e 0, R<1 "7 0, S<1 "7 oo, T <1
aaB +ab+ aAB 4+ aB +b aAb+ AS+ B
here: R := =——and T := .
where: 1 1 — aaA , & 1—aad " 1— aaA

Proof. We will only prove detailed properties (a), (b), and (c) for the limits of z,. The
limits of y, and z, follows a similar inductive lines. First, note that from (3.22) the limit
of Tppir as n — oo depends on the limit of uy, . as n — oo, which, on the other hand,

depends on the value of aaA.

(waA)" —1
Wh A>1, ——
(a) en aad > 1, ~———

have u,, — oo as n — oco. Then, in view of (3.22), x, — 0 as n — oo. Similarly, we

— 00 as n — 00. So, from (3.11), (3.12) and (3.13), we

obtain y, — 0 and z, — 0 as n — oo.

(b) When aaA =1, then from (3.11), (3.12) and (3.13) we get

lim u, = lim wus, = lim u = lim wus: = lim (aaB + ab n = 00.

Hence, from (3.22), we have x,, — 0 as n — oo. Similarly, we have y, — 0 and 2z, — 0

as n — oQ.

(c) When aaA < 1, then (aaA)™ — 0 asn — oo. So, in reference to (3.11), (3.12), (3.13),

(3.14), (3.15), (3.16), (3.17), (3.18) and (3.19), we have
aaB+ab+

Jim = T g, = Hm usngy = Hm usnge = l—aaA By
' ' . ' aAB +aB+b
Jim v, = Jim von = lim vens = lim vanes = —— T = 5,
. . ‘ . aAb+ A+ B
lim w, = nh_g.lo W3y, = nh_{l;.lo W3p+1 = nh—{{olo W3n+2 = =1T.

1 —aadd

n—oo
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Let » € {0,....k — 1} be fixed. If R > 1, then lim ﬁ Ugmsr = 00 Therefore,
0

n—00 . =~
nlg& :Ek,frr =0 or 1equ1vailently, 7}520 r, = 0. If, on the other hand, R < 11 then
n
lim = lim — = — > 1. Hence, we have the product limit lim [] =
n—=00 Upr n—00 9, R N—=00 120 Uyt
oo. Thus, lim xg,., = lim z, = co.
n—oo n—oo

With the same steps we prove the limits of y,, and z, of this case as it was mentioned

in the theorem.
O]

The next theorems provides the behavior of solutions of system (3.66) for the cases R = 1,

S=1and T = 1.

Theorem 3.6. Let {x,,, Yn, 2n fn>—k be a solution of (3.66), withk =3l (I =1,2,...). Assume
that aaA < 1 Then, the following statements hold.

(a) If R=1 (resp. S=1andT = 1) and x_y # xy (resp. y_r # Yo and z_p # 2p)
then the subsequences {xgnisr} (resp. {Ykn+sr} and {zgnisr} ), for all r = @, are

convergent.

(b) If R=1 (resp. S=1andT =1) and x_y, = x¢ (resp. y_r = yo and z_ = 2) then

k
LTn+3r = T3r—k (T@Sp. Ykn+3r = Y3r—k and Zkn+43r = Z3T‘—k§)7 fOT all r = Oa 3

(c) IfR=1 (resp. S=1andT =1) and ay_y # (1 — B)yo (resp. az_ # (1 —b)zy and
Ax_j # (1= B)xg) then the subsequences {Trni3r+1} (resP- {Yrnizrs1} and {Zknisri1}

), for allr =0, g, are convergent.

(d) If R=1 (resp. S=1andT = 1) and aaz_ # (1 — f — ab)zy (resp. aAx_j #
(1 —b—aB)xy and aAy_y # (1 — B — AB)yo) then then the subsequences {Tpni3r12}

(resp. {Yknisria} and {zknisraa} ), for all r =0, g, are convergent.

(e) If R=1 (resp. S=1andT =1) and ay_r = (1 — B)yo (resp. az_ = (1 — b)z
and Az_y = (1 — B)xg) then then Tipisri1 = T3r—kt1 (€SP Yknisril = Ysr—kr1 and

k
Zkn3r41 = 23r—k41 ), for allr =0, 3.

(f) fR=1 (resp. S=1andT =1) and caz_, = (1 =3 —ab)zy (resp. aAx_ = (1—b—
aB)xy and aAy_i, = (1-=B—AB)yo) then Tppisrio = Tar—kt2 (T€SD. Yrnt3re2 = Ysr—k+2

k
and Zgnisr42 = 23r—k42 ); Jor all r =0, 3-
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Proof. We prove the results for the subsequences {xy,13-1:}, (¢ = 0,1,2). The same lines of
proof can be followed respectively to prove the results for the subsequences {yni3,4i}, (i =

0,1,2) and {zgn13r+i}, (0 =0, 1,2). First, we note that in all cases

- (aA)™(x_p — @0) 1w = (aaA)™ (ay_ + (8 — 1)yo) 1, unin = (aA)™ (aaz_ 4 (@b + B — 1)20) i
xo Yo 20
(a) By Theorem 3.2, we have
3 )= L3(r-1) T3(r—1)
3 n+r) — n - n (ll—l—'l’) _ .
Il us@ivry T (aa )7 (- = o) +1
=0 i=0 Ty
Here we distinguish two cases:
(i) if x_x > xo: Then,
L3(In+r) = x?l(r_l))
nTr n A i+r = :
exp thl((aa ) (s = o) +1>]
i=0 X
Using a property of logarithms, we have
I ((aaA)”(a:_k — x9) N 1) o (vaA)"(z_g, — w0)
Zo Zo
Now, because Y (awaA)" is a geometric sum, with aaA < 1, then the sum
i=0
Z 37 k— :BO Oéa,A)(lH_T)
=0 Lo
is convergent.
(ii) if z_ < x¢: Then,
T3(r—1) = Zo
T3(ln4r) = -
) n [ (0a ) (z ) — ) H) ( aa A) ) (2 — x0) + x0>
I1 . +1
i=0 0

n _(aaA)(li—H“) (x—k _ 170) n
= B 11;!] (1 + (aaA)(li-i—r) (.73 = T3(r-1) H 1+ (

—k xo) —|—JIO

(aa )T+ (2o — x_4)

= T3(r_1) €XP lz In (1 + (aA) T oy — 20) 4 xo)} :

=0

1=0

Using again property of logarithm, we have

(aa )T+ (2o — x_4)

OéCLA) (lit+r) (.T

(vaA)"(xg — z_g) (vaA)"(xg — x_g)
i (1 i (vaA)"(x_p — xp) + a:()) -

+oo (caA)"(x_p — o) + 20

—k — Io) +$0

)
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and

(waA)"(xg — z_g) N (waA)"(xg — x_g)
(aa ) (z_p — xo) 429 ° Zg ’

n
as above, because Y (aaA)" is a geometric sum, with aaA < 1, then the sum
i=0

i (x() - x—k) (O[aA)(li+T)7

i=0 Zo
is convergent, so it is for the sum

(aA) ) (2 — x_4)

= (aa )+ (z_y — xo) + 20

Thus the desired result follows.
(b) The result is immediate because us, = 1 in this case.
(c) The proof is similar to item (a). That is, by Theorem 3.2, we have

T3(r—0)+1 T3(r—1)+1

T3(In+r)+1 = = s — .
.H0u3(li+r)+1 I ((aaA) (ay—k + (B — L)wo) i 1)
= Yo

=0

Also, we distinguish two cases:

(i) if ay_ > (1 — B)yo, then

L3(r—1)+1
n A li+r B -1 .
n ((Oéa )i (ay—i + (B — 1)yo) +1)]
i=0 Yo

(]

T3(in+r)+1 =

x|

Using a property of logarithm, we have

I ((aaA)”*’" (ay—r+ (5 = L)yo) 1) . (aa )" (ay— + (5 ~ o)
Yo Yo

n
Because Y- (aaA)™ is a geometric sum, with caA < 1, then the sum
i=0

z": (aa )™ (ay_i + (B — 1)yo)

i=0 Yo

is convergent.
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(ii) if ay_x < (1 — B)yo, then

Ty ) . T3(r—1)+1
3(In+r)+1  — litr
n ((aad)"™™ (ay—i + (8 — 1)yo)
f ( .
i=0 Yo

_ H ( Yo )
(r—1)+1 aa )+ (ay_i + (B — 1)yo) + o

- —(aA)" (ay_4 + (8 — 1)yo)

= T3(—1)41 H (1 + (aaA)+ (ay_p + (B — Dyo) + y(J)

oo S (14 oA ) )]

i—0 aa ) (ay_ + (8 — 1)yo) + yo

We have,

I (1 L (aad)"((A = F)yo — ay-i) ) N (aad)" (1= B)yo — ay-)
(aad)" (ay—r+ (B—Dyo) +v0) " (ead)" (ay_r + (8 — Dwo) + w0’

and

(aA)" (L= Blyo—ay—x)  (ead)" (1= Py — ay—)
(caA)" (ay_r+ (B—D)yo) +yo Yo '

The sum

Y

n OéCLAlH_T o 0 — QY_p
;( ) ((1%6)1; Y—r)

is convergent, so it is for the sum

Zn: OéaA)hM (1= B)yo — ay—)
= (aa )+ (ay_p + (6 — 1)yo) + w0

Hence, conclusion follows.
(d) The proof is similar to item (c) so, we omit it.

(e) (f) Asinitems (c) and (d), the results are immediate because, in these cases, us,11 = 1,

Usni2 = 1 respectively . O
The following theorem extend the results obtained in theorem 3.6.

Theorem 3.7. Let {xp, Yn, 2n tn>—k be a solution of (3.66). Assume that aaA <1, R =1
(resp. S =1 and T = 1) then, for allk = 31+ 7, (I = 0,1,--+), (j = 1,2) we have:
If v = mo (resp. Yy = yo and 2, = ), ay—x = (1 — B)yo (resp. az_, = (1 —b)z
and Az_, = (1 — B)xg) and aaz_p = (1 — f — ab)zy (resp. aAx_ = (1 —b—aB)zy and
aAy_, = (1 — B — AB)yo), then the subsequences of {x,} (resp. {y,} and {z,}) mentioned

by their relations in Theorem 3.2 are periodic with period k, otherwise they are convergent.
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Proof. Not that in the proof we use the same method and techniques as in proof of Theo-

rem 3.6 to prove the following theorem, so we will do it for some cases and others are similar.

Consider k = 1, (I = 0,5 = 1), (we mean by a sequence periodic with period k£ = 1

a constant sequence). By Theorem 3.2 the subsequences of {x,} are {z3,}, {23,141} and

{3142} so the same thing for the sequences {y,} and {z,}. We prove the results for the

subsequence {x3,}. The same lines of proof can be followed inductively to prove the results

for the subsequences {x3,11}, {Z3n12} and those of {y,} and {z,}. We note that in all cases
(aaA)"(z_f, — z0) (aaA)™ (ay—r + (B — 1)yo) (aaA)" (aaz_j + (ab+ B — 1)z0)

Uy = ————————— + 17 U3n+1 = + 1, U3n+2 = + 1,
Zo Yo 20

It is clear because in this case us, = us,11 = Uzpi2 = 1.
Suppose that the condition of Theorem 3.7 is not satisfied, then we distinguish seven possible

cases:

(a) @y # o (resp. y—i # yo and 2y, # 2) and ay_j, # (1 — B)yo (vesp. az_y # (1 — )z
and Az_j # (1 — B)zg) and aaz_ # (1 — 5 — ab)zy (resp. aAx_ # (1 —b—aB)x
and aAy_ # (1 — B — AB)yo).

By Theorem 3.2, we have, for all n € Ny:

T_1

E3n = n n—1
(H U3i> 11 (usit1usiz2)
=0 =0
- T3
(ﬁ (M 1)) i (((aaA)i (ay—1 + (8 — Dyo) +1) ((aaA)i(aazl (@bt B Do) +1)>
i= zo i=0 Yo 20
_ z_1
B ﬁ <Wl—zo>+1> "ff ((ocaA)i (ay—1 + (8= Dyo) +1) "ﬁl ((aaA)i (aaz_1 + (ab+ B — 1)z) +1>
i=0 Zo i=0 Yo i—0 20

Here we distinguish eight possible sub-cases:
(1) if x4 > 29, ay_1 > (1 — B)yo and aaz_1 > (1 —  — ab)zp, then

T—1
T3n = .
n (ad)i(z—1 — x0) (a )t (ay—1 + (B — Dyo) n_l (aaA)? (caz—1 + (ab+ B — 1)20)
exp [gln(zo )—l—Zl ( " +1>+§)ln( o, +1)
Using a property of logarithms, we have
A (x_q — AY'(x_q —
In <(aa )" (x_1 — x0) N 1) . (aA)™(x_y xo)’ (3.67)
) Zo
In <(‘MA)” (ay—1+ (8 —1)yo) n 1) - (aaA)" (ay—1 + (8 — 1)yo) (3.68)
Yo = Yo ’
In <(aaA)" (vaz_q1 + (ab+ B — 1)z) N 1) N (aaA)" (aaz_1 + (ab+ B — 1)z) (3.60)
20 o 20 ' '
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Now, because f: (vaA)™ is a geometric sum, with aaA < 1, then the sums
i=0
Y — (-1 = 20) (@)™, (ay1+ (5 = Dyo) (waA)"™ and Z (aaz + (ab+ 5 = 1)z )(aaA)"
i=0 Lo i=0 Yo 20
(3.70)

are convergent. The desired result then follows.

(i) if x_1 > xo, ay—1 < (1 — B)yo and aaz_; > (1 — f — ab)zy, then

— T_q
R exp [Z N ((aaA)i(x_l —m) | 1) 5 ((aaA)i (aaz1 + (ab+ A= D)z) | 1)1
i=0 X » %
1

Yo

nlj; ((aaA)i (ay1+(B= Do) , 1)

T_1

Zo

Yo

i=0 (aaA)t (ay—1+ (B — L)yo) + yo

20

T_1

)

(aaA)!(z_

Zo

exp [i In (
1

—(aaA)' (ay-1+ (8 — 1)yo)

1 — Zo) N 1) N nil I ((aaA)i (az_y + (ab+ B — 1)z)
i=0

20

X
—
+

=0 (aaA) (ay-—1 + (8 — 1)yo) + Yo
T

)

)

[ n ((ozaA)i(x_l )

Zo

(aaA) ((1

20

— B)yo — ay_1)

By (3.67), (3.69), (3.70) and

(aaA)" ((1 - B)yo — ay_1)

; = (1 T {aaAy (ay_1 + (8 — ygo) + yo)] '

(aA)" (1 = B)yo — ay 1)

n <1 " (aaA)" (ay—1 + (B — 1)yo) + ?/0) e (aaA)" (ay—1 + (B —D)yo) + yo’

and the fact that

(aaA)™ ((1 = B)yo — ay_1)

(aA)" ((1 = B)yo — ay_1)

(aaA)™ (ay—y + (B — L)yo) + vo

Thus we get the desired results.

Yo

(iii) if z_1 < zo, ay—1 > (1 = B)yo and aaz_; > (1 — B — ab)zy, then

)
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— L1
Tyn = nﬁl ((aaA)i (ay—1 + (B —1)yo) N 1) nﬁl ((aaA)i (aaz_q + (ab+ [ —1)z) N 1)
i=0 Yo i=0 20

X _

- nﬁl ((aaA)i (ay_;+ (B —1Dyo) n 1) ”ﬁl ((aaA)i (aaz_y ‘Z (ab+ B —1)z) n 1)

=0 i=0

A (1 e

o exp [n_i; I ((aaA)i (ozy_;+ (6 — Do) i 1) " ”g o <(CWA)i (aaz_y ‘fZ‘ (ab+ B —1)z) n 1)]
n (aaA)(xg —x_1)
X exp [% n (1 * (aaA)i(z_y — x0) + xoﬂ ‘

By (3.68), (3.69), (3.70) and
(vaA)™ (g — z_1) N (vaA)"(xg — x_1)
(1 )~

aaA)"(x_1 — xg) + o * (aaA)(z_1 — x0) + 30

the fact that
(waA)"(xg — x_1) N (waA)"(xg — x_1)
(aaA)M(z_y — ) + 29 T ’

we get the result. For the remaining sub-cases:

(iv) z-1 < 2, ay—1 < (1 — B)yo and aaz_y > (1 — § — ab)z,
(V) z_1 > mo, ay_1 > (1 — B)yo and awaz_y < (1 — 5 — ab)zp,
(vi) z_1 >z, ay_1 < (1 — B)yo and aaz_y < (1 —  — ab)z,
(vii) x4 < xg, ay—1 > (1 — B)yo and aaz_1 < (1 — f — ab)zo,
(viil) z_1 < zo, ay—1 < (1 — B)yo and aaz_y < (1 — 3 — ab)zy,
we follow the same techniques as in (i), (ii) and (iii).

For the others items:

(b) @_j = o (resp. y— = yo and z_y = z) and ay_; # (1 — B)yo (resp. az_, # (1 — b)zo
and Az_j # (1 — B)zg) and aaz_ # (1 — 5 — ab)zy (resp. aAx_ # (1 —b—aB)x
and aAy-y, # (1 — B — AB)vo),

(€) @ # o (resp. y—i # yo and z_y # z) and ay— = (1 — B)yo (vesp. az_ = (1 —b)zo
and Az_p = (1 — B)xg) and aaz_g # (1 — f — ab)zy (resp. aAx_j # (1 —b— aB)x
and aAy_ # (1 — B — AB)yo),
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(d) and x_j = o (resp. y_r = yo and z_j = z) and ay_1 = (1 — B)yo (resp. az_p = (1 —
b)zo and Ax_j, = (1— B)xg) and cwaz_y # (1= —ab)z (resp. aAx_j # (1—b—aB)xg
and aAy_ # (1 — B — AB)yo),

(€) Tk # o (vesp. y—i # yo and z_j, # z) and ay_, # (1 — B)yo (vesp. az_y # (1 —b)z0
and Az_j # (1 — B)xg) and aaz_p = (1 — 8 — ab)zy (resp. aAzx_ = (1 —b— aB)x
and aAy_, = (1 — B — AB)yo),

(f) 2 =20 (vesp. y_r = yo and z_ = z) and ay_; # (1 — B)yo (vesp. az_y, # (1 — )20
and Az_j # (1 — B)xg) and aaz_ = (1 — 8 — ab)zy (resp. aAx_j, = (1 —b— aB)xg
and aAy_r = (1 — B — AB)yo),

(8) @— # o (resp. y—1 # yo and z_y, # 2) and ay_, = (1 — B)yo (vesp. az_p = (1 —b)z
and Az_j, = (1 — B)zg) and aaz_p = (1 — 5 — ab)zy (resp. aAzx_ = (1 —b—aB)x
and cAy_, = (1 — B — AB)yo),

the proof of is similar to (a), and the results are immediate because in this cases, each time

Ugp OF Uzpiq OF Ugpio equal to 1.

]



Chapter 4

A max-type system of difference

equations of third order

4.1 Introduction

In this chapter we study a max type system of difference equations. This type of differ-
ence equations and systems have been investigated by a lot of authors, see for instance,
[10, 21, 22, 23, 49, 51, 52, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 97, 98, 99, 100, 101, 102, 103, 107, 113, 120, 121, 122, 125].

In the same line of the works in the above references, we solve in a closed form the

following third order max-type system of difference equations

TnlYn— nLn—
Tpy1 = Max (a:n_l, yl) y Yn+1 = Max (yn—la yx 1) > (4-1)

n—2 n—2

where n € Ng = NU {0} and the initial values z_;,y_; € (0,400), i =0,1,2.

To do this, we distinguish for cases depending on the relation between the quantities x_;

Toy—1
y—2 ’

Yor—1
r_o

and and, y_; and

4.2 Main results and closed form of the solutions

4.2.1 The case z_; < " and y; < 9!

In the following result, we give the closed form of the solutions of system (4.1) under the

assumptions r_; < xzy—; and y_; < ygf—;l
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Theorem 4.1. Let (z,)n>—2 and (y,)n>—2 be a solution of system (4.1) such that x_; <

and y— < 2=+, Then the following statements hold:

(Hy) : If{;”’—j’2 > 1, y% > 1, then

n n
_ ToYo _ ToYo
Tgn—1 = T <x72y72) ; nE N07 Yan—1 = Y1 <x72y72> NS NOa
zoyo \" N zoyo \" N
Tan = To (x_zy_2> , 1L € 05 Yan = Yo (:c_zy_z) , 1 € 05
n n
_ zoy—1 (_xoyo _ yor—1 (_xoyo
Ton1 = Y_a (;I:_Qy_2> ;N E N07 Yan1 = T_o (Ct_zy_z) NS N07
n n
_ zoyo (_Zoyo _ zoyo (_Toyo
Lany2 = 7 (m) , n € N, Yany2 = - (m) , n € No.

(H2): Let - <1, 2o >1 (with ;222 >1). Then

n n
_ Yo — Yo
Tan = To (y_Q) , n € No, Yan = Yo (y_z) , n € N,
n+1 n+1
__ ZoYy-1 Yo _ T-1Y-2 Yo
Lant1 = =~ (y_Q) ;n € Ny Yan+1 = <y_2) , n € No,
n+1 n
— Yo — Yo
Tyny2 = Zo (y_Q) , 1 € No, Yan+2 = Yo (y_Q) , 1 € No,
n+1 n+1
_ ToZT-1 Yo — Yo
Tan+s = =, (y72> , n € N. Yan43 = Y—1 <y72) , n € N,

(Hs): Let o > 1, 20 <1 (with ;*2%—~ >1). Then

zo n+1 zo n
Tyn = T2 (E) , n € N, Yan = Yo (E) , n € N,
n+1 n+1
— T-2Y-1 o — T-1¥Y0 o
Tany1 = = (E) € No, | Yan1 = =, (E) ;1 € Ny,
zo n+1 z0 n+1
Tapt2 = T2 (E) , 1 € Ny, Yant+2 = Yo (E) , 1 € No,
n+1 n+1
— __ Y-1Y%o
Tant3 = T (%) , 1 € Ny, Yant3 = 77, (z%) , 1 € No.
Proof. From the hypothesis z_; < ®¥1 and y_; < %=1 we get
LoY-1 LoY-1
1 —=MmMax | 1, = s
Y—2 Y—2
Yol 1 Yo 1
Yy = max | y_q, = .
T_9o T_9o

Using (4.5) and (4.6), we get

Yo Lo
T9 = XpMmax (1, > , Yo = Yo Max (1, ) .
Y2 T_2

Again, it follows from z_; < % and y_; < yi”:l that xx;’ZOQ > 1. In fact, we have

LoY-1 < Lo Yor-1  Yoxo "
— s — = —1;

Y2 Y2 T_3 T_2Y—2

that is, 2% > 1. Taking this in mind, we got the following three possibilities.

—2Y-2 —

$1<

ZoYy—1

(4.2)

(4.3)
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(Hy): 2o >1, 20 > 1,
(Hg):ﬂgl,y—OZI.
(H3): 2o >1, 20 <1,

From hypothesis (H;) , we obtain:

Y—2

ToYo
— . 4.9
Yo v ( )

Using (4.5)-(4.9), we get

(xoy—1 Zo y0$—1> (yOI—1 Yo iEoy—l)
T3 = max s y Y3 = Mmax ) )
Y2 Y-2 T2 T2 T2 Y-2

we have
T_ T T_ T
T sy 5 0000 S B0,
T_9 Y-2 T2 Y2
Tol_ ToY_
0y1> = Yo 03J1Z yox_l’
Y2 T2 Y2 T2
S0,
T
py = 00 o (4.10)
T_2Y—2
ZoYo
Ys = Y-1. (4.11)
T_2Y—2

Using (4.8)-(4.11), we get

_ ToYo o _ ToYo Yo
Ty = max (1, — |, ys = max |1, — |,
Y—2 T2 T2 Y—2

by (H;) we obtain:

pg = %0 (4.12)
T_2Y—2
e
gy = 200, (4.13)
T_2Y-—2

Using (4.10)-(4.13), we have

rs = ZTolYo max <SC1, $oy—1> _ ToY-1 TolYo (4_14>

T_2Y—2 Y2 Y2 $—2y—2’
x T_ T_1 X

ys = oYo max (y_hyo 1) :?/0 1 ZoYo ' (4'15)
T_2Y—2 T_g T_g T_2Y-2
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From (4.12)-(4.15), we obtain

yo) ZToYo TolYo
Y—2 96—21/—2’

2
YoLo Zo ToYo TolYo

max | 1, .

T2 T_2Y—2

Now, from (4.14)-(4.17), we get

2

_ oY Yox -1

Tr = — max Y1
YZoZ—2

I
8

2
< ToYo )
—1 )
T_2Y-—2

2
_ y%xo ( 3703/1) o ( ZoYo >
Y7 = max { -1, =Y .

229y Yoo T oy o

Using (4.16)-(4.19), we have

2,2 2
ToYo Zo ZoYo
Ty = — max (1, — | = xg ,
Y—ol 2 T2 T_2Y—2

2.2 2
Ys = goxo max (17 yo> = yo( Todo ) .
T 2Y-—2 Y—2 T_2Y—2

From (4.5)-(4.21) and by induction we obtain the results in (4.2).

Now, let consider the second cases (Hz). We have

. ( 55090) - ( Yo ) _ ZoYo
To =max | rg,—— | =rgmax [1,— | = ,
Y2 Y2 Y2

ToYo Zo
Yo = Max (yo, ) = Yo max (1, ) = Yo-
T_9o T_9o

Using (4.5), (4.6), (4.22) and (4.23) we get

. T2Y1\ _ Zo T-1Yo ) LoYo
r3 = max | xq, = —max | y_1, =T_3 ,
Yo Y-2 T2 T_2Y_2

_ ( y2$1) Y ( x2y1> ~ YoY—1
y3 = max [y, = “—max | z_q, = .
Zo T _9 Y—2 Y2

By (4.5), (4.6) (4.22),(4.23), (4.24) and (4.25), we have

. ( 5533/2) o (SCOZIO xol/o) _ ZoYo
T4 = IMNaxX | o, — | = INax s = s
U1 Y2 Y2 Y2

( y3x2> ( Yo ) vs
Yqg = Max | Yo, = Yo max ]., — | = .
| Y—2

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

(4.27)
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From (4.22),(4.23), (4.24)-(4.27), we get
T5 = max (azg,, :(:4y3> =x_ 2% hax <1, I_Qy_1> = xoy2_1yo (4.28)
Y2 T-2Y-—2 T-1Y—2 Y=2
2
Y5 = max (yg, y4$3> — Y0¥1 hax (1, oo ) _ Tt (4.29)
T2 Y—2 T-2Y-1 T-2Y—2
Using (4.24)-(4.29), we get
2
T = max (m, x5y4> = 090 ax (1, o) = % (4.30)
Ys Y—2 Y—2 Y-
2 2 2
Yo = Max <y4, y5x4> = max <yo, %o ) - % (4.31)
T3 Y—2 Y2 Y—2
Then, by (4.26)-(4.31), we have
2
27 = max <x5, 5136?/5> _ xoy2_1y0 nax (17 T-1% |\ _ $0$—12y07 (4.32)
Ya Y—2 L—2Y-1 T—2Y~2
YeLs $—1y3 T_2Y y_lyS
Y7 = max (y5, ) = max | 1, == (4.33)
T4 T—-2Y—2 T-1Y-2 Y=
So, from (4.28)-(4.33), we have
T7Ys $oyg xoyg 930@/8
Ty = max | Tg, —— | = max | —5—, —3 5 (4.34)
Ys Y—2 Y=o Y=
YrZe yS Yo ?JS’
Ys = max <y6, ) = max (1, — | = 5~ (4.35)
Ty Y2 Y2 Yo

By induction we get the formulas in (4.3).

Now, consider the case (H3), that is: *> > 1 and 2 <1. Using (4.5) and (4.6), we get

( yo)
To = xgmax | 1, — | = zg,
Y—2
( $0> ToYo
Yo =Yomax | I, — | =
T_9 T_9o

Using (4.5), (4.6), (4.36) and and (4.37), we get

T2Y1 Zo Y—2T 1
T3 = max | 21, = —max | y_1,

Yo Y—2

( yz%) Yo ( ToY—1
Y3 = max { Yi, = —max | z_1,
Zo T_9

T

= To )

T_9 T_9
ToYoY-1

Y—2 T_2Y—2

(4.36)

(4.37)

(4.38)

(4.39)
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From (4.5), (4.6), (4.36)-(4.39), we have

2
T4 = max (xg, x3y2> = Ipmax <1, 1:0> — 2o , (4.40)
hn T2 T_2
Ja = max <y2, y3x2> — max <9U0y07 3703/0) _ oY (4.41)
T T_9 T_9 T_9

Using (4.36)-(4.41), we get

2
T = max <a:3, x4y3> = maX ( Loy~ 1) — To¥1 : (4.42)
Y2 T—2Y—-2
Y5 = max <y3, y4x3> Too 1y ( ) = :L'oy(Q)ZE_1' (4.43)
xQ 1'72
By (4.38)-(4.43), we have
T5Y4 3
T = max | Ty, = = : (4.44)
T_9o l’ 2 T_9o
2
Y = max <y4, y5$4> = 200 hax (1, x0> = xOQyO. (4.45)
T3 T_9 T_9 T
Then, by (4.40)-(4.45), we have
L6Ys 3 Yy-1 T T
Ty = max | x5, — | = — max , = , (4.46)
Ya T2 Y2 T2 Lo
2
Y7 = max (yB, y6x5) _ T0H0 ax <x_1, x0y1> = :L'Ozyqu‘ (4.47)
Ty Ty Y2 TZ2Y-2
So, from (4.42)-(4.47), we get
Z7Ys 3 Lo 3
Tg = max | rg, —— | = — max | 1, = —, (4.48)
Ys L—2 T2 T2,
. Yrle\ wéyo %yo B 903%
Yg =max (Y, —— | =max | —5—, —5— | = — (4.49)
135 1’72 51772 ./1/'72
By induction we obtain the results in (4.4).
[

Remark 4.2.1. Assume that zp = z_» and yy = y_,. Using the fact that z_; < *2¥=L

y—2
y-1 < L;Ll it follows that:
-2

LoY-1 Yo -1
r_1 = y Y1 = .
Y2 T_9
The following result, which is a direct consequence of Theorem 4.1 and Remark 4.2.1, is

devoted to the existence of periodic solutions of system (4.1).
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Corollary 4.2. Let (x,)n>—2 and (Yn)n>—2 be a solution of system (4.1) such that x_; <

ZoYy—1

and y— < 2=+, Then, If o = x—2 and yo = y-2, we have for alln € Ny
Ton = T—2, Yon = Y-2,

Tont1 = T—-1, Yon+1 = Y-1.

That is the solutions are periodic with period 2. When xog # x_s and yo # y_o, the solutions
are unbounded, that is

(Tpy Yn) — (+00, +00).

4.2.2 The case x_; > % and y_; > %1

T_o

In the following section, we give the closed form of the solutions of system (4.1) under the

assumptions r_; > x;y—‘; and y_; > y(’f—‘;

Theorem 4.3. Let (x,,)n>—2 and (Yn)n>—2 be a solution of system (4.1) such that x_, >

ZoYy—1
Y

and y—y > 2=+, Then the following statements hold:

. f T=1y
(M) If =% < 1. Then

S Lo (ﬂ;ﬁ)i” =0,2,... Tops1 = L1 (i(izi;/;)il’ln =0,2,.. (4_50)
Zo (ﬁfiyl;;) *  n=1,3,. xT_ (io_zi;;) > n=13,

Yon = / (E));n B Yont1 = - (i(f;;);” —h2e (4.51)
Yo (%) ,n=173,.. Y- (iﬁ;;) ,n=13,..

(H): If =% > 1. Then

T-1Y0 n—1 x_1y0 \"
Tan—3 = Tan—1 = T—1 | ,neN, Yan—1 = Yan+1 = Y—1 | ) , n € Ny,

ToY—1 ToY—-1
n n
Tan—2 = Tan = L0 (i;y%yf) ,neN. Yan = Yan+2 = Yo (%) ; n € N,
Proof. From hypothesis z_; > %=+ and y_; > “*==* of Theorem 4.3. We have
ToY_
r1 = max (x_l, 0y 1) =x_q, (4.53)
Y—2

Y1 = max (?J—l; y;x_1> = Y-1- (4.54)

(4.52)
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Using (4.53) and (4.55), we get

( $1yo> ( l’—l?JO)
T9 = max | T, = xomax | 1, ,
Y-1 ToY-1

< 911‘0) ( y—1370>
Y2 = max | Yo, = Yo IMax ]-7 )
xr_q Yol -1

so, we have two cases:

(Hy): T <1,

oy—1 —

(Hy): T=10 > 1,

ToYy—-1 —

If 2= < 1) then by (4.55) and (4.56) we have

ZoY—1
o T-1Yo\
To = romax | 1, = Ty,

TolY-1

Y-1Zo ToY-1
Y2 = yomax | 1, = -
Yol -1 T-1Yo

Using (4.53), (4.54), (4.57) and (4.58), we get

< x2y1> < Jfoy1> <x0y1>
T3 = max | Ty, =2_jmax | 1, =T 4 ,
Yo T-1Yo T-1Yo0

Y21
Y3 = max (yl, x) =max (y-1,Y-1) = y-1-
0

From (4.53), (4.54) and (4.57)-(4.60), we have

( x3y2> < 9009—1) (ﬁoyﬂ)
T4 =max | Tg, — | = xogmax | 1, = a9 )
Y T_1Y0 T-1Yo

Y32 Y-1%o Y-1To ToY—
= 22) s g (2222) 2220 _
T T-1Y0 T T_1Yo

By (4.57)-(4.62), we get

( x4y3> ( (xoy_1> (moy_1>> (xoy_l
Iy = max | Ts, = max | T_-1 , L1 =T
Y2 T_1Yo T_1Y0 T_1Yo0

Yy T3 TolY—1 LoY-1
Ys = max (ys, — | = y_jmax | 1, =Y .
T9 T-1Yo 1Yo

Using (4.59)-(4.64), we have

( :v5y4> ( <$0y—1> (ifoy—1>> (xoy—1
Tg = IMax | T4, = max | Tg , Lo = 29
Y3 T-1Y0 T-1Y0 T-1Yo

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

—~

4.63)

(4.64)

(4.65)
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2
Y = Mmax <y4, y5,334> =y (xoy—1> X (1’ <x0y—1>> — (%?/—1) ‘ (4.66)
x3 T-1Y0 T-1Yo T-1Y0

From (4.61)-(4.66), we get

2
T7 = max (ZL‘5, $6y5> =r_ <w0y1> max (1, <$0y1>> =x_ <x0y1> , (4.67)
Ys T-1Y0 T-1Yo T-1Y0
Y7 = max <y5, y6x5) — max (yl (xoy—1> Y (xoy—1>> — (xoy—1> . (4.68)

Ty T-1Yo0 T 1Yo T-1Yo

By (4.63)-(4.68), we get

2
Tg = max <ac6, W) = Iy (xoy_1> max <1, :Egy_1> = Iy (xoy_1> , (4.69)
Ys T-1Y0 T-1Yo T-1Y0
Yyrx Loy ? oy ? Toy ?
7T6 0Y-1 0Y—-1 0Y-1
Ys = max (yﬁu ) = max (Z/o < ) » Yo ( > ) =Y ( ) . (4-70)
Ts T-1Yo T-1Y0 T-1Yo

Using (4.65)-(4.70), we get

2 2 2
Tg = max <x7, x8y7> =max | T_; <x0y_1> ,T_1 (xoy_1> =, (:Jcoy_1> . (4.71)
Ye T_1Yo 1Yo T_1Yo

2
Yo = Max (y7, y8x7) =y, <IE03/—1> nax (17 xoy—1> — <xoy—1> ' (4.72)
L6 T-1Yo T-1Yo T-1Yo0
From (4.67)-(4.72), we get

2 2 2
T1p = Max <m8, $9y8> = max | zg (xoy_1> , T (a:oy_1> = (xgy_1> , (4.73)
Yr T-1Y0 T-1Y0 T-1Y0

2 3
Y10 = max ((yg7 y9908> — 9 <:C03/1> max <1’ x0y1> — <x0y1> ‘ (4.74)
I7 T-1Yo0 T-1Yo0 T-1Y0
By (4.69)-(4.74), we have
x x 2 T T s
11 = max (xg, 10y9> =r_, < 0y1> max <1, 0y1> =, ( 0y1> , (4.75)
Ys T-1Y0 T-1Y0 T-1Y0

2 2 2
Y11 = max <y9, ywxg) = max (y-l <x0y1> VY1 <x°y1> ) =Y <x0y1> . (4.76)
Tg T-1Y0 T-1Y0 T-1Y0

From (4.71)-(4.76), we get

2 3
T2 = max <$10, SE11?J10> = X9 (xgy_1> max (1, xO?J_l) = Iy (:Boy_1> , (4.77)
Yo T-1Y0 T-1Y0 T-1Y0
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3 3 3
Y1110 ToY-1 ToY—-1 TolY—1
Y12 = mMax (?Jlo, ) = Inax (yo () » Yo <> ) =% < ) . (4-78)
L9 T-1Yo T-1Yo T-1Y0
Then, by (4.73)-(4.78), we get
3 3 3
T12Y11 ToY-1 ToY-1 ToY-1
T13 = MmMax | L1y, = max | r—1 ,T_1 =T s
( Y10 ) ( (37—1'3/0) (37—190) ) (17—1y0>
T T 2 T T 3
Y15 = max <y11, Y12 11) o ( oy—1> i (1’ 0?/—1) . ( oy—1> ' (4.80)
Z10 1Yo T-1Yo T-1Yo
So, from (4.75)-(4.80), we have
3 3 3
T13Y12 ToY— ToY-1 ToY—1
T14 = Max (Ilg, > = max (xo ( > , T ( ) ) = x0 ( > . (4.81)
Y11 T-1Y0 T_1Yo0 T_1Y0

3 4
Y14 = mMax <y12, y13I12> = Yo (xoy_1> max (1, xoy_1> = Yo (on_1> . (4-82)
T T-1Y0 T-1Yo T-1Y0

By induction we obtain the results in (4.50) and (4.51).
If 2= > 1. By (4.55) and (4.56) we get

ToY-1
Tg = Tpmax (1, $_1y0> = X (m_1y0> , (4.83)

—~

4.79)

ToY— TolY-1
Y2 = Yo max (17 y_1x0> = Yo- (4.84)
Yol -1

Using (4.53), (4.54), (4.83) and (4.84), we get

T3 = max (xl, x2y1> =max (r_1,2_1) = T_1, (4.85)
Yo
Y3 = max <y1> y2x1> = Y-1max (1, SUlyo) =Y <x1y0> . (4.86)
) ToY-1 ToY-1
From (4.53), (4.54) and (4.83)-(4.86), we have
T4 = max (:UQ, x3y2> = max (1’0 <x1y0> , xlyo) =z (:cly()) , (4.87)
Y1 LoY-1 Y-1 ToY-1
Ys = max <y2, M) = Yo max (17 x_1y0> = Yo <$_1y0> : (4.88)
T LoY-1 ToY-1

By (4.83)-(4.88), we get

T5 = max (xg, x4y3> = r_j;max <1, x_1y0> =2 (x_1y0> , (4.89)

Y2 ToY-1 ToY-1
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Ya3 ZT_1Yo0 T_1Y0 T_1Yo0
Ys = max <y3, ) = max (y_l ( ) Y1 ( )) =y ( > : (4.90)
1) ToY-1 ToY—-1 ToY-1

From (4.85)-(4.90), we have
2
T = max <$4, x5y4> = 20 (x_1y0> max <1, x_ly(]) = 29 (x_l‘%) , (4.91)
Ys ToY-1 ToY-1 ToY-1

YsTy T-1Y0 T-1Y0 T-1Y0
Y = max <y4, > = max (yo < > . Yo ( >> = ( ) ) (4.92)
xs3 ToY—-1 ToY—-1 TolY-1

Using (4.87)-(4.92), we get

L6Ys T-1Y0 T-1Y0 T-1Y0
Ty = max <x5, ) = max <:c1 ( ) LT < )) =x_ ( ) , (4.93)
Ya ToY-1 LoY-1 LoY-1

2
Y7 = max (3/57 y6x5) =y, <x_1yo> nax (1’ x_1y0> =y, (x_l?Jo) . (4.94)
Ly ToY-1 ToY-1 ToY-1

From (4.89)-(4.94), we get

2 2 2
Tg = max (3:6, x7y6> = max | g (x_ly(]) , To (I_ly()) = Ty (x_1y0> , (4.95)
Ys LoY-1 ToY-1 ToY-1

2
Ys = max <y6’ y7$6> _ (:B_lyo> hax (17 x_1y0> — (:B_lyo> ' (4.96)
5 LoY-1 LoY-1 LoY-1
By (4.91)-(4.96), we get
2
Tg = max <:c7, W) =x_ <$_1yo> max <1, m_ly(]) =2 (x_1y0> , (4.97)
Ye LoY-1 LoY-1 LoY-1

2 2 2
Yo = Max <y7, W) — max (y—1 (x_1y0> e <x_1yo> ) — <x_1yo> . (4.98)
Te ToY—-1 ToY—-1 ToY—

Using (4.93)-(4.98), we have
x x 2 x x K
19 = max <x8, 9y8) = x (—1?40) max (1, _1y0> = <_1y0> , (4.99)
Y7 ToY-1 LoY-1 ToY-1

2 2 2
Y10 = max (ys, y9x8> = max | %o (m) 2 Yo (xly[)) = Yo <W> : (4.100)
X7 ToY-1 ToY-1 ToY-1

Then, from (4.95)-(4.100), we get

2 2 2
21; = max (xg, xmyg> =max | r_; (I_ly()) , L1 (W]> =x_ (W)> , (4.101)
Ys ToY—-1 ToY-1 ToY-1

2 3
z T_ T_ T
Y11 = max (yg, g 9) =Y-1 <1y0> max (17 ly()) =Y-1 (1%) . (4.102)
g LoY-1 ToY-1 ToY-1
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So, by (4.95)-(4.100), we have

3 3 3
T2 = mMax (:Ulo, x11y10> = max ([L’o <x1y0> , To <x1yo> ) = Iy <x1y0> . (4.103)
Yo ToY-1 LoY-1 ToY-1

2 3
Y12 = Max <y107 Z/11$10> = (x_ly()) max (1, x_ly(]) = Yo <$_1y0> ) (4.104)

Ty ToY—-1 LoY-1 ToY-1
By induction we obtain the formulas in (4.52). O

As a direct consequence of Theorem 4.3, in the following result, we show existence of

periodic solutions for system (4.1).

Corollary 4.4. Let (x,)n>—2 and (Yn)n>—2 be a solution of system (4.1) such that x_; >

ZToYy—1

and y—y > 2=+, Then, if x_1yo = xoy-1, we have for all n € Ny
Ton = Lo, Yon = Yo,

Ton+1 — T—1, Yon+1 — Y—-1-

That is the solutions are periodic with period 2. If in addition xqg = x_o and yo = y_o the
solutions will be periodic with of period 2. When x_1yy # xoy_1, the solutions are unbounded,

that is

(Tpy Yn) — (+00, +00).

4.2.3 The case x| > % and y_; < Q-1

— ZT_9

The following result deals to give the closed form of the solutions of system (4.1) under the

assumptions r_; > xzy—‘; and y_; < y‘;’”—‘;

Theorem 4.5. Let (24)n>-2 and (yn)n>—2 be a solution of system (4.1) such that x_y > =*=+
and y— < %=+ Then the following statements hold:
S Jf %o > o
(Hy): If > y_ol, then
Tan—1 = Tant1 = T1 ;*On,neNov Yan-3 = Yan—1 = “2° ffon,neN,
+ (=) () (4.105)

n n
Tan = Tany2 = To (%) , n € N, Yan = Yan—2 = Yo (;%02) ;neN.
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(Hy) : Let 2o < 2o,
Ty y_1
(Han) : If w9 < w_9, then

_ z_1y0\" N _ z_1y0\" N

Zan—2 = To 5y ) M ER, Yan-1 = Y-1 {55, ) » ™ € Do,
T _ z_12g (:E_lyo)n neN Yin = Y (z_1y0)n neN

4n—1 o ToyY—1 ) ) 4an 0\ zoy_1 ) 0, (4 ]_06)

n n ’
_ T_1Y0 _ z-1y0 (Z-1%

Tyn = X (Zoyfl) , n € Ny, Yant+1 = =, (ﬂcoy71) , n € Ny,
x — (=) neN = yo (=222)" neN

dnt+1 = T—1\0 7 ) > 05 Yant2 = Yo\ 09—, ) > 03

(Hy2) : If xg > x_o, then

Z—1Y0

Yan—3 = Y-1 (m>n, n €N,

_ z_1yo \" N
Tyn—2 = T—2 , &€ No, Zoy T_1y n
_ ZoY—1 —1Y0
Yan—2 = ( ) , 1 € N7

T_2y—1

Ton—-1 = Tin+1 = L1 (;:71@,?!_()1) , n € N, o :17::7171 (4-107)
n Yan—1 = Y1 (m) , n € N,
Tan = o (520" € Ny, "
Yin =y (2522)" n € N,
Proof. From hypothesis x_; > % and y_; < 2% We have
1 = max (:cl, $Oy_1> =r_q, (4.108)
Y—2
Y1 = max (yl, yox_1> = o=t (4.109)
T_9o T_9
Using (4.108) and (4.109), we get
Ty = max (mo, x1y0> = r_;max <£E()’ yo> , (4.110)
Y-1 To1 Y-
Yo = max (yo, y1x0> = Yo max (1, xO) . (4.111)
Tr_1 T_9
If we consider
ooy W
T Y-1
then, using (4.108) (4.109) and from
yo, < Pt T2 o Yo (4.112)
T_9 T_1 Y-
we get
To = T_o

So, for this, we have three cases:
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(Hy) @

\V;
5

(Hoq) @ 2 < % and 29 < z_s.

T—1 Y-1

(H2.2> ;X0 S Y0 and 2o Z Tr_9.

T_1 Y1

If 2o

Y]
S

0. We get from (4.108) and (4.111)

1Yo Zo Yo
Tog = MaX |Zo, — | =T_qgMmax | ——, — | = Top,

Y- T Y-
_ ( yl%) . ( o ) _ ToYo
Yo = max |yp,— | =yomax |1, — | = .
Tr_q T_9 T_9

Using (4.108), (4.109), (4.113) and (4.114) we get

L2Y1 Lo T_1T0
T3 = max | 1, =zr_imax | 1, = ,

Yo T2 T2
Y21 YoX-1 YoT—-1 Yo -1
Y3 = max | vy, = max , = .
Zo T_9 ) T_9

By (4.108), (4.109) and (4.113)-(4.116) we have

2

. T3Y2 |\ Lo Lo
T4 = max | Ta, =gomax |1, — —_—
Y1 T2 T2

Y32 ToYo ToYo ZoYo
Y4 = max | yo, = max , = .
T T_9 T_9 Tr_9

From (4.113)-(4.118) we get

T4Y3 1Ty T-1To T_1Tg
Ts = max | T3, — | = max , = ,
Y2 T2 T2 T2

_ ( y4:c3> YTy ( Zo > ~ YoToT—1
Y5 = max ( ys, = max | 1, = .
T

2
2 T_2 T2 TZg

By (4.115)-(4.120) we have

2 2 2
Tg = max | Ty, = max , = ,
Y3

N YsTa\ _ TolYo To \ mgyo
Yo = Max | Yu, = max (1, — | = ——.
T 2

3 L—2
Using (4.117)-(4.122) we get

2
TeYs T_1Zo Lo T_1Zg

T7 = max | s, = max | 1, =
Ya T2 T2

(4.113)

(4.114)

(4.115)

(4.116)

(4.117)

(4.118)

(4.119)

(4.120)

(4.121)

(4.122)

(4.123)
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Yr = max <y5, yﬁ%) = max (yoxgx_la yoxgx_1> - yoxgx_l. (4.124)
Ty %, %, %,
From (4.119)-(4.124) we have
L7Ys 3 Lo 3
rg =max | g, —— | = — max 1, — | = 5, (4.125)
Ys T_2 T2 T—o
. Yrle\ wéyo $%yo B iﬂgyo
Ys =max (Ye, —— | =max | —5—, —5— | = —5—. (4.126)
115 2772 31772 I72
By (4.121)-(4.126) we have
rsyr I_ll’g x_lxg I_lCL’g
Tg = max | r7, —— | = max SR =—, (4.127)
Ys TZg TZg T
2
Yo = max <y7, y8x7> = yomgﬂv_l max (1, o > = yoxgx_l' (4.128)
xﬁ I72 I_Q 1372
Then, using (4.123)-(4.128) we get
3 3 3
T9Ys To Lo Lo
T10 = max | rg, —— | = max , = , 4.129
10 ( 8 Y7 > <x2_2 <$2_2> x2_2 ( )
YoIg $%yo Zo 1’%3/0
Y10 = Max (y8,> = —>5-max |1, — | = ——. (4.130)
{L‘7 1'72 x_Q IL‘72
So, from (4.125)-(4.130) we have
2 3
2] = max (:Ug, x10y9> = x_;xo max (1, il ) = x_lx(]’ (4.131)
y8 x—2 I_Q x_z
Y109 YoTgT_1  YolGT_1 YoToT 1
Y11 = Max (yg, ) = max > 3 = (4.132)
l‘s l’iz $72 1772
By induction we obtain the formulas in (4.105).
If we consider - < 2 and zo < 2. By (4.108) and (4.109), we get
Ty = max <x0, x1y0> = r_j;max <%7 yO) = x_1y07 (4.133)
Y-1 T-1 Y= Y-1
Yo = max <y0, yl%) = Yo max (1, x0> = Yp- (4.134)
r_1 xT_9
Using (4.108), (4.109), (4.133) and (4.134) we have
2
T3 = max (xl, nyl) = r_;max (1, 140 ) _ b , (4.135)
Yo Y-_1T_2 T_2Y_1
Js = max (yh y2x1> _ max (?/093—17 y0$—1> _ Tl (4.136)

Zo
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From (4.108), (4.109) and (4.133)-(4.136) we get

T4 = max <x2, W) = max <x_1y0’ x_ly(]) = I_1yo’ (4.137)
Y1 Y-1 Y Y-
2

Y4 = max (yg, nyQ) == Yy max (1, x_ly()) — 2% (4.138)
T LoY-1 ToY-1

Using (4.133)-(4.138) we have

2 2
1 1
T5 = max <ac3, x4y3> — T2 ax <, ) = w, (4.139)
Y2 Y-1 T2 Zo ToY-1
2 2
Y5 = max (yg, y4:C3) = 20 ax (1, T-140 > = 1% (4.140)
T2 Zo T2y T_2T0Y—-1

From (4.135)-(4.140) we have

2 2
Tg = max (:134, x5y4> = T ax (1, w1y0> = $_12yo7 (4.141)
Ys Y-1 ToY-1 ToY=-1
Y54 x_1y3 x_1y3 x—l?/%
Yo = Max (y4, ) = max , = . (4.142)
T3 ToY-1 ToY-1 ToY—1
By (4.137)-(4.142) we get
L6Ys 221Yo 1Yo 22195
T7 = max | s, = —"max | 1, = ——, (4.143)
Ya ToY-1 T-2Y-1 T2T0Y~1
2 2 1 1 2 2
Y7 = max <y5, yﬁ%) = 20 hax (, — | = I;yo. (4.144)
Ty ToY-1 T_g T ToY-1

Then, using (4.139)-(4.144) we have

2 2 .2 2 2 2
Tg = max (xﬁ, x7y6> = max <x1y0 xlyO) = 2% (4.145)

2

Ys 1‘09317 950@%1 ToY~q
Y7xe 56719(2) T-1Y0 5752_193

Ys = max <y6, > = max | 1, = (4.146)
s ToY-1 ToY-1 ToY—1

So, by (4.141)-(4.146) we get

3 2 1 1 3 2
Tg = max <x7, x8y7> = x_12yo max (, — | = 555130’ (4.147)
Ye ToY=1 T2 To ToY=1
2 2 3,3
x _ x
Yo = max (y7, W) = %yomax (1, L1k ) = _12y02 . (4.148)
Tg ToY-1 T2y T _2XpY~

By induction we obtain the results in (4.106).
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If we have - < 4 and zo > 2. Then, from (4.108) and (4.109) we get
Ty = max <:c0, $1y0> = r_;max (:LI)? yo> = $_1y07 (4.149)
Y-1 T-1 Y- Y-1
Yp = max <y0, y1m0> = Yo max (1, x0> — 2ot (4.150)
T_1 T2 Tr_o
Using (4.108), (4.109), (4.149) and (4.150) we get
2
T3 = max (xl, x2y1> = r_j;max (1, L1 ) — % , (4.151)
Yo T-2Y-1 T-2Y-1
Js = max <y1, ?J2$1> _ max (331?/0’ l’lQo) _ % (4.152)
Zo T_9 T_9 T_9
From (4.108), (4.109) and (4.149)-(4.152) we get
x4 = max (xz, x3y2> = 20 ax (1, o ) = x,lxoyo’ (4.153)
U1 Y1 T_9 T_9Y_1
2
Ya = max (yza y3x2> = max (f"o, Llyo) = (4.154)
1 T2 Y-1 T_2Y-1
By (4.149)-(4.154) we have
2 2 2
vy = max ( y) ~ max ( it 250 ) - (4.155)
Y2 T2Y-1 T2y T-2Y-1
2 .2
Y5 = max (yg, y4x3> = 20 ax (1, L1 ) = J;_lyo . (4.156)
T2 T_2 T2y T oY1
Using (4.151)-(4.156) we get
2 2
Tg = mMax <x4, .2135y4> = T ax (xo, x_ly(]) = x_1y20 , (4.157)
Ys T-2Y-1 Y-1 T-2Y~q
2 2
Y = max <y4, y5m4> = P ax (1, o ) = m;1$0yo. (4.158)
T3 T_2Y—1 T2 TZ9Y—1
From (4.153)-(4.158) we have
L6Ys 22 1Yo 1Yo 22 1y
T7 = max | s, = — max | 1, = —5, (4.159)
Ya T—2Y-1 T—2Y-1 T oY1
2 .2 .2 2 2 .2
yo = max <y57 y6x5> R ( Tl a0 ) _ Tl (4.160)
Ty TZoY-1 TZ2Y-1 TZoY-1
Then, by (4.155)-(4.160) we get
2 .92 2 2
Ty = max <x6, x7y6> = x_1y20 max (1, o ) = x_lxoyo, (4.161)

2 2
Ys T2y~ T oY~y
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x T_1Yy2 x_ % y3
Ys = max <y6, g 6) = — 90 max Zo, -1 2,1y20 ) (4.162)
s TZ9Y-1 Y-1 TZ2Y~1

So, using (4.157)-(4.162) we have

3 .2 3 .2 3,2
T9 = max <x7, x8y7> = max ( 1Yo Tl ) 1% (4.163)

Yo 129921 w25y% 229y%
2,2 3,3
Yo = Mmax (y% ?Jzﬂ?) _ 3;713/0 max (1’ T_1Yo > _ iflygo . (4.164)
ZTg TZ5Y_1 T2y T_2Y~1
By induction we obtain the results in (4.107). O

We show in the following result, existence of periodic solutions for system (4.1), which is
a direct consequence of Theorem 4.5.

ZToYy—1

Corollary 4.6. Let (2,,)n>—2 and (Y, )n>—2 be a solution of system (4.1) such that x_, >

and y_, < % If = ﬁ and vo = x_o. Then for all n € Ny:

Lon = T-2, Y2n = Yo,

Tont1 = T—1, Yont1 = Y-1.
That is the solutions are eventually periodic of period 2. If in addition yo = y_o, then the
solutions will be periodic of period 2. When (x’”—fl > % and xqg > x_Q) or (x’”—fl < yyfol), the

solutions are unbounded, that is

4.2.4 The case z_; < % and y_; > %
Similarly to the above sections, in the following one, we give also the closed form of the

Yoxr—1
5 "

solutions of system (4.1) under the assumptions z_; < % and y_; >
Theorem 4.7. Let (2,)n>—2 and (yn)n>—2 be a solution of system (4.1) such that x_y < 2+

and y—y > 2=+, Then the following statements hold:

(Hy): If 2o < . Then

Taon o (yyo)i’ln -0 Lon4+1 = % (ﬂ)fal” —he (4.165)
$<ﬁ>2 ,n=1,3, %(1}%)2 »n=13,
Yon = . (%) il_’ln S0 Yont1 = - (;/()2):2;71” —hE (4.166)



4.2 Main results and closed form of the solutions 157
. Yo < zo
(Hy) : Let yfl <x
(Hz.l) cIfyo <y_o. Then
Typ—1 = T—1 (%) , N & N0> Yan—2 = Yo (%) , N & Na
_ zoy—1\" _ y-1yo (woy—1\"
Lgn = To (x—1yo) , 1 € N07 Ysn—1 = Yo (I—1y0> , 1 € N7 (4167)
Tangr = 220 (20 0 e No, [y = w0 (222)", n € Ny,
Tynt2 = To (%) , n € Ny, Yant+1 = Y-1 (ziyﬁ) , n € N,
(H2.2) . [f Yo Z Y_2. Then
Typn—3 = T—-1 (ﬁ/ﬁ) , 1 € Na Yan—2 = Y-2 (%) , S N07
_z_1yo ( moy—1 \" _ zoy—1 \"
Ton—2 = y_1 (m,1y,2) , S Na Ysn—1 = Y-1 (27713/72) , S N07 (4 ]_68)
Typ—1 = T—1 (;f)lyiyil?) , e NOa Yan = Yo (%) , e NOa
Tan = Tg (%) ,n € Ny, Yan+1 = Y-1 (%) , n € Np.
Proof. From hypothesis z_; < % and y_; > 2=+ of Theorem 4.7. We have
Tol— Toly—_
r] = max (a:l, 0y 1) — oY L (4.169)
Y2 Y2
Y1 = max (yl, y0$—1> =Y_1. (4.170)
T_2
x
Ty = Mmax (930, 13/0) = Iomax <1, yo> , (4.171)
Y- Y2
Yo = max (yo, yl%) = y_; max <y0, %) . (4.172)
Tr_1 Yy-1 T
If we consider
Lo Yo
T Y
By (4.169), (4.170) and from
wo o< Y L 02 o o (4.173)

we get

So, we have three cases

(Hl)i ﬂgﬁ

T_1
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(Hg‘l) . Yo <L Zo and Yo S Y_2.

Yy-1 — T_1

(Hyo) @ - < o and yy > y_o.

Y-1 Tr—1

If we consider the case % < 2 then by (4.169), (4.170), (4.171) and (4.172) we have

2y = 2o max <1, yo) = 2o, (4.174)
Y2 Y—2
Yo = Y_1 Max (?Jo’ xO) = Yo. (4.175)
Y-1 T
From (4.169), (4.170), (4.174) and (4.175) we have
T3 = max | x1, a:2y1> = max <x0y_17 ZE()y_1> = ZEoy—17 (4.176)
Yo Y2 Y2 Y—2
Y3 = max (yl, yﬂl) = y_1max (1, yO) — o (4.177)
Lo Y-2 Y-2
Using (4.169), (4.170), (4.174)-(4.177) we get
T4 = max (l’g, x3y2> = max (on(), %yO) = IL‘oyo’ (4.178)
Y1 Y-2  Y-2 Y-2
Y322 Yo Y%
Y4 = Max (yg, ) =yomax |1, — | = =—. (4.179)
1 Y—2 Y—2
By (4.174)-(4.179) we get
75 = max <x3, x‘*y?’) = 201 ax (1, yo) = 2oVt (4.180)
Y2 Y—2 Y—2 Y=2
Js = max (y?” y4x3> - (ylyO’ leO) _ Yo (4.181)
X9 Y2 Y2 Y2
From (4.176)-(4.181) we have
2
Tg = max <x4, x5y4> — TOY0 1 ax (1, y0> = x02y07 (4.182)
Ys Y—2 Y—2 Y=2
2 2 2
Y = max <y4, y5$4> = max (yo, yo) I (4.183)
T3 Y-2 Y-2 Y2
Then, using (4.178)-(4.183) we get
e — max <I57 $6y5> e (svoyz_lyo’ 33092—1?/0> _ ToY-1tp, (4.184)
Ya Y= Y=2 Y—2
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2
y7——1nax_(y5,y6m5) = 20 ax <l,gk)> ::y_;yo. (4.185)
L4 Y—2 Y—2 Y=o
So, by (4.180)-(4.185) we have
L7Ye ToYs ToYo ToYs
Tg =max | Te, —— | =Mmax | —5—, 5 | = —5, (4.186)
Ys Y—2 Y=o Y2
Y1le Y3 Yo Yo
Ys = max <y6,> = —max |1, — | = 5. (4.187)
Ts Y2 Y2 Y=2
By induction we obtain the formulas in (4.165) and (4.166).
If 2o < - and yo < y—». Then by (4.169), (4.170), (4.171) and (4.172) we have
Yo
Ty = Tpmax (1,) = o, (4.188)
Y—2
Yo = y_1 max ( U ) = 2o (4.189)
Y-1 T 1
From (4.169), (4.170), (4.188) and (4.189) we have
T3 = max <x1,m2y1> = max <xoy_17xoy_1> ::xoy_l, (4.190)
Yo Y-2 Yo Yo
2
) T_1Y—2 T_1Y-2
By (4.169), (4.170) and (4.188)-(4.191) we get
2
T4 = max <x2,x3y2> = Ipmax (1,xgy_1> ::xoy_l, (4.192)
Y1 T-1Y0 T-1Y0
Js = max (y% y3l‘2> ~ max <$09—1, xoy_1> _ ToYr (4.193)
I 1 T Tr_q
Using (4.188)-(4.193) we have
2.2
5 = max <x3,$4y3> — TO¥1 ax (1, Loy ) L , (4.194)
Y2 Yo T-1Y-2 T-1Y—2Yo
2 1 1 2
Y5 = max <y37y4x3) = Y71 ax (,) = 1o (4.195)
X9 T_1 Y-2 Yo T_-1%0
From (4.190)-(4.195) we get
Z5Y4 ToY-1 THY-1 T3y
Tg = max | ry, — | = max : = (4.196)
Ys T-1Y0 T-1Yo T-1Y0
2.2
Yg = max (y47y5x4> = T0U7L ax (1’x0y_1> ::Igy_l (4.197)
L=1Y0

1Yo
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By (4.192)-(4.197) we have

_ ( $6y5> adyty ( 1 1> wdy?
T7 = max | Ts, = max | —.— | =
Ya T—-1Y0

( 96905) zoy?, ( ToY-1 > r5y°
Y7 =max | ys, — | = max | 1, = — .
Ty T_1Y0 T_1Y—2 TZ1Y—-2Y0

Then, using (4.194)-(4.199) we get

2 3,2

T7Y6 LoY-1 ToY—-1 LoY—1

Tg = max | Tg, = max | 1, = — 5
Ys T-1Y0 T-1Yo TZ1Y0

2,2 2,2 2,2
y7$6> — max (xoy—1 xoy—1> _ To¥=

Ys = max <967 2 L) ) .
Ts TZ1Y%0 T=1Yo T=1Y0

So, by (4.196)-(4.201) we have

2,2 3,3
r8Y7 LoY~1 LoY-1 LoY=1
Tg =max | T;, — | = 5 max | 1, 3 5
Yo 1Yo T-1Y—2 TZ1Y-2Y0

2
1Yo

By induction we obtain the results in (4.167).

98967) - x5y’ max ( 11 ) x5y’

T ENEAE '
Tg TZ1Y0

972’ Yo

If we consider the Caseyy—o1 <

(4.172) we have

Tr_

. ( 55190) N ( Yo > __ ToYo
Ty = max | g, =gzgomax |1, — | = —,

Y- Y2 Y2
_ < 3/1%) _ ( Yo o > _ ToY-1
Y2 = Mmax | Yo, =Yy-rmax| —, = .
T— Y-1 T T

From (4.169), (4.170), (4.204) and (4.205) we have

T2Y1 ToYy-1 ToY-1 ToY-1
T3 = max | Ty, = Imax = s

Yo Y—2 ’ Y—2 Y—2

( y21‘1) ( ToY-1 ) Ty
Y3 = max | yi, =y_jmax | 1, = .
To T_1Y-2 T_1Y-2

By (4.169), (4.170) and (4.204)-(4.207) we get

o ( x3y2> _ ToYo ( xoy_1> _ x%y_l
T4 = max | T2, = max | 1, = ,
Y1 Y—2 T-1Yo T_1Y-2

( yg:tz) Toy—_1 ( Yo ) ToY—1Y0
Yq4 = Max | Yo, = max (1, — | = .
X X1 Y—2 T_1Y—2

(4.198)

(4.199)

(4.200)

(4.201)

(4.202)

(4.203)

-0 and yo > y—p. Then by (4.169), (4.170), (4.171) and

(4.204)

(4.205)

(4.206)

(4.207)

(4.208)

(4.209)
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Using (4.204)-(4.209) we have

2,2
75 = max (:cg, x“y?’) — 20U ax (1, Toy1 ) = 2% (4.210)
Y2 Y—2 T 1Y-2 T 1Y=g
Ya3 oy’ 1 Toy? 1 Toy? 1
Y5 = max <y3, ) = max —, — | = —. (4.211)
T2 T_1Y—2 T1Y-2 T_1Y-2
From (4.206)-(4.211) we get
2 2
T = max <x4, x5y4> = ¥l ax <1, yO) = xoy_gyo, (4.212)
Ys T 1Y-2 Y2 T1Y-—2
2,2
yﬁ — max (y47 y5x4> _ IL‘OZU—I max (yo, CL’OﬁU—l) — Q;Oyfl ) (4213)
T3 T_1Y—-2 1 T_1Y-2

Then, by (4.208)-(4.213) we have

2,2 2,2 2,2
x7 = max <x5, xG%) = max ( To¥-1 | ToY ) — Yo¥ , (4.214)

Ya To1y2y Tay2, LT-1Y=2
o - 2203
Y7 = max (y5, y6$5) = 2091 hax 1, Toy-1 209;1 (4.215)
T4 T_1Y—2 T_1Y—2 TZ1Y=2
So, using (4.210)-(4.215) we get
2 3,2
Ys LT-1Y=2 L1 LT21Y~2
2,2 2.2
Ys = max (yﬁ, y7:1:6> = ﬁoy*l max (1, yo> = $02y,12y0' (4.217)
T L_1Y-2 Y—2 LT1Y=2
By induction we obtain the results in (4.168).
[

As a direct consequence of Theorem 4.7, the following result show the existence of periodic

solutions for system (4.1).

Corollary 4.8. Let (23)n>-2 and (Yn)n>—2 be a solution of system (4.1) such that vy < ==+

and y_, > % If = ﬁ and yo = y_o then for all n € Ny:

Ton = To, Yon = Y-2,
Ton+1 = L1, Yon+1 = Y-1-
That is the solutions are eventually periodic of period 2.In addition if o = x_o, then the

xTr_

solution will be periodic of period 2 . When (3%01 < yyf"l and yo > y_g) or <L01 > ﬁ)} the

solutions are unbounded, that is

(Tp, Yn) — (+00, +00).



Conclusion and perspectives

Our works generalizes a lot of existing works in the literature on solvable difference equa-

tions and systems.

In the first chapter we have presented formulas of well-defined solutions of some general
systems of difference equations and others defined by one to one functions on a set D of real
numbers. Noting that the obtained formulas of the solutions of our systems are expressed
using some remarkable sequences, like Fibonacci, Tribonaci, Padovan, Teternacci and their
generalizations. Our results, can be used to obtain the formulas of well-defined solutions of
other systems, that their solvability, seems for the first sight impossible. So, under appro-
priate choice of the the set D, we can solve complicated difference equations and systems
involving for example functions like tan, In and others.

In the same context of the works previously studied, it should be noted that it is possible

to extend those works to the study of the systems

o OTn=3Yn—2Tn-1Yn + by _1Yn—2Tn—3 + CYn_2Tp_3 +dr,_3 + €
n+1 — 9
xn73ynf2xn71yn
 AYn-3Tn—2Yn—1Tn + OYn 1Tn_2Yn-3 + CTp_2Yn-3 + dyn_3 + €
Yn+1 = )
Yn—3Tn—2Yn—1Tn

Tnp1 = [ (ag(yn) + 0f (n-1) + cg(Yn—2) + df (2n_3) + eg(Tn_41)),
Yni1 =g " (af (2n) +bg(yn-1) + cf (Tn_2) + dg(yn—3) + ef(vn_4)),

and

_ r—1 b c d e
Tnir = f (a 1o T @ s @ ey T g(ymf(mnl)g(ynz)f(mns)) )

_ —1 b c d e
vni1 =97 (04 75+ T T e e T e e )
where n € Ny and the parameters a, b, ¢, d and e are arbitrary real numbers with e # 0, and

their one dimensional version can be solved in a closed form and that the solutions can be
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expressed using the Pentanacci numbers and their generalizations. It should be noted that

in this case the corresponding characteristic equation
N—aX =3 —eN—d\—e=0,

generally can’t be solved by radicals as it is known in the Galois theory of algebraic equations.

In the second chapter, we have studied a general system of difference equations of sec-
ond order defined by homogeneous functions. Conditions and some convergence theorems
for which the unique equilibrium point of the system is globally asymptotically stable are
established. Conditions for the existence of prime period two solutions are also provided.
Finally a result on oscillatory solutions is proved. All obtained results are confirmed on
particular systems. Noting that our system generalize the equation in [62] and our results
can be applied to study new systems and to extend a lot of existing work in literature. For
interested readers and as generalization of our system and the equations in [1] and [61], we

propose to study the following two systems of difference equations
Tp+l1 = f(ynfk‘yynfm)? Yn+1 = g(/znfk: anm)a Zn+l = h(ﬂ?n,fﬂn,l), n e N07 kam €N

Tl = [(Uns Un—1y ooy Yn—k), Ynt1 = 9(Zns Zn-1, - Zn—k)s Znt1 = M(Tp, Tp_1, ..., Tpn_g), n € Ng, k € N

where the initial values are positive real numbers and the functions f, g, h : (0, —l—oo)2 —

(0, +00) are continuous and homogeneous of degree zero.

The system (3.5) can be generalized to r-dimensional form of equations and examine the
boundedness, the asymptotic behavior, and periodicity of solutions when p = 1.

Also, as a natural question, is to study the three-dimensional form of Max-type system (4.1).

As we have said in the introduction that is difficult to determines methods to solve non
linear equations and their systems and the famous method is by the help of some change
of variables, non linear difference equations or systems are transformed to very simple one,
with known form of the solutions.

However, it is fair to point out that there are other ways to solve these equations, using
methods of differential equations such as using the Lie symmetries, see for example the

works of P. E. Hydon [47].
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