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Abstract

This thesis concerns the study of certain classes of systems of nonlinear difference equations
where each time we present the solutions on the closed form.

In the first chapter, we study systems of difference equations with different degrees, where
we have presented the solutions using well-known number sequences such as, Fibonacci num-
bers, Padovan, Tribonacci and generalized Tribonacci numbers.

The second chapter is devoted to the study and the resolution of a system of three dif-
ference equations defined by homogeneous functions. As for the third and fourth chapter,
we presented a study of higher-order of system of three difference equations and a two di-
mensional Max-type system of difference equations.

Each time, we present the explicit form of the solutions, and a qualitative study of
the solutions and their equilibrium points of some particular cases is discussed, including
convergence, local and global asymptotic stability, as well as periodicity and oscillatory.

Key Words: System of difference equations, form of solutions, stability, period-
icity, oscillation, homogeneous function, Max-type system of difference equations,
Fibonacci sequence, Tribonacci ...



Résumé

Cette thèse porte sur l’étude de certaines classes de systèmes d’équations aux différences
non-linéaires où à chaque fois nous présentons les solutions sous la forme férmée.

Dans le premier chapitre, nous étudions des systèmes d’équations aux différences de dif-
férents degrés, où nous avons présenté les solutions utilisant des suites de nombres bien
connues telles que, les nombres de Fibonacci, Padovan, Tribonacci et les nombres généralisés
de Tribonacci.

Le deuxième chapitre est consacré à l’étude et à la résolution d’un système de trois
équations aux différences définies par des fonctions homogènes. Comme pour le troisième
et quatrième chapitre, nous avons présenté une étude d’un système de trois équations aux
différences d’ordre supérieur et d’un système de deux équations de type Max.

À chaque fois, nous présentons la forme explicite des solutions, et une étude qualitative
des solutions et de leurs points d’équilibres de certains cas particuliers est abordée, y com-
pris la convergence, la stabilité asymptotique locale et globale, ainsi que la périodicité et
l’oscillation.

Mots Clés: Système d’équations aux différences, forme des solutions, stabilité,
periodicité, oscillation, fonction homogène, système d’équations aux différences
type-Max, suite de Fibonacci, Tribonacci....
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General introduction

Difference equations are used to describe real discrete models in various branches of modern
sciences such as, for example, biology, economy, control theory. This explains why a big
number of papers is devoted to this subject, see for example [2, 3, 7, 8, 44, 46, 53, 54, 55,
56, 65, 66, 67, 92, 96, 95, 104, 105, 115, 124, 127].
In particular non-linear difference equations and their systems is a very hot subject that
attract the attention of several researchers. A numerous papers are devoted to this line of
research, as examples in the following papers [2, 7, 9, 24, 25, 26, 30, 31, 32, 33, 34, 35, 36,
37, 38, 40, 41, 42, 43, 44, 53, 63, 91, 93, 95, 96, 104, 106, 107, 109, 110, 111, 116, 117, 118,
119, 124, 127],

we can find some concrete models of such equations and systems, but also to understand
the techniques and the methods used in solving and studying the behavior of the solutions
of these models.

It is clear that if we want to understand our models, we need to know the behavior of
the solutions of the equations of the models, and this fact will be possible if we can solve in
closed form these equations.

Generally, it is difficult to determine methods to solve non linear equations and their
systems. However, by the help of some change of variables, non linear difference equations or
systems are transformed to very simple one, with known form of the solutions. Knowing the
closed form of the solutions, provides more information about the behavior of the solutions,
like periodicity, oscillation, boundedness, asymptotic behavior,...

One can find in the literature a lot of works on difference equations where explicit formulas
of the solutions are given, see for instance [2, 3, 44, 53, 55, 65, 66, 67, 92, 95, 96, 104, 105, 124,
127]. Such type of difference equations and systems is called solvable difference equations.



2 General introduction

The first chapter contains three essential sections. In the first section we solve in closed
form the system of difference equations

xn+1 = aynxn−1 + bxn−1 + c

ynxn−1
, yn+1 = axnyn−1 + byn−1 + c

xnyn−1
, n = 0, 1, ....

In particular we represent the solutions of some particular cases of this system in terms of
Tribonacci and Padovan numbers and we prove the global stability of the corresponding
positive equilibrium points. The results obtained here extend those obtained in some papers
(see [7, 44, 92] and [124]).

In the second section we extend the results obtained in the first one, and we show that
the system of difference equations

xn+1 = ayn−2xn−1yn + bxn−1yn−2 + cyn−2 + d

yn−2xn−1yn
, yn+1 = axn−2yn−1xn + byn−1xn−2 + cxn−2 + d

xn−2yn−1xn
,

can be solved in a closed form. We will see that when a = b = c = d = 1 the solutions are
expressed using the famous Tetranacci numbers.

In the third section, we give explicit formulas of the solutions of the two classes of non-
linear systems of difference equations

xn+1 = f−1 (ag(yn) + bf(xn−1) + cg(yn−2) + df(xn−3)) ,

yn+1 = g−1 (af(xn) + bg(yn−1) + cf(xn−2) + dg(yn−3)) ,

and 
xn+1 = f−1

(
a+ b

g(yn) + c
g(yn)f(xn−1) + d

g(yn)f(xn−1)g(yn−2)

)
,

yn+1 = g−1
(
a+ b

f(xn) + c
f(xn)g(yn−1) + d

f(xn)g(yn−1)f(xn−2)

)
,

where n ∈ N0, f, g : D −→ R are a “1 − 1” continuous functions on D, D ⊆ R, where the
results considerably extend some existing results in the literature.

The second chapter is devoted to study the following second order system of difference
equations

xn+1 = f(yn, yn−1), yn+1 = g(zn, zn−1), zn+1 = h(xn, xn−1)

where the functions f, g, h : (0,+∞)2 → (0,+∞) are continuous and homogeneous. In this
study, we establish results on local stability of the unique equilibrium point and to deal with
the global attractivity, and so the global stability, some general convergence theorems are
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provided. Necessary and sufficient conditions on existence of prime period two solutions of
our system are given. Also, a result on oscillatory solutions is proved. As applications of the
obtained results, concrete models of systems of difference equations defined by homogeneous
functions of degree zero are investigated. Our system generalizes some existing works in the
literature (eg: [62, 114]) and our results can be applied to study new models of systems of
difference equations.

The goal of the third chapter is to derive the solution form and study of the system of
nonlinear difference equations

xn+1 = xpn−k+1yn
αypn−k + βyn

, yn+1 = ypn−k+1zn
azpn−k + bzn

, zn+1 = zpn−k+1xn
Axpn−k +Bxn

, n ∈ N0, p, k ∈ N.

Furthermore, the behavior of solutions of the aforementioned system when p = 1 is examined.
This work generalize the results obtained in [112] and [35].

In the same line of the third chapter, we give in the forth one the closed form solutions of
the max-type rational system of non linear difference equations

xn+1 = max
(
xn−1,

xnyn−1

yn−2

)
, yn+1 = max

(
yn−1,

ynxn−1

xn−2

)
,

and giving the periodicity character of the solutions in a particular cases.



Chapter 1

On some systems of difference
equations related to remarkable
sequences

1.1 Introduction

We find in the literature many studies that concern the representation of the solutions of
some remarkable linear sequences such as Fibonacci, Lucas, Pell, Jacobsthal, Padovan, and
Perrin (see, e.g., [4, 28, 50, 59, 64, 71, 72, 123]). Solving in closed form non linear differ-
ence equations and systems is a subject that highly attract the attention of researchers (see,
e.g.,[25, 26, 24, 42, 44, 63, 92, 104, 105, 124]) and the reference cited therein, where we find
very interesting formulas of the solutions. A large range of these formulas are expressed in
terms of famous numbers like Fibonacci and Padovan, (see, e.g., [44, 91, 104]). For solving
in closed form non linear difference equations and systems generally we use some change of
variables that transformed nonlinear equations and systems in linear ones. The paper of
Stević [75] has considerably motivated this line of research.

In the second section we solve in closed form the system of difference equations

xn+1 = aynxn−1 + bxn−1 + c

ynxn−1
, yn+1 = axnyn−1 + byn−1 + c

xnyn−1
, n = 0, 1, ...,

where the initial values x−1, x0, y−1 and y0 are arbitrary nonzero real numbers and the
parameters a, b and c are arbitrary real numbers with c 6= 0. In particular we represent
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the solutions of some particular cases of this system in terms of Tribonacci and Padovan
numbers and we prove the global stability of the corresponding positive equilibrium points.
The results obtained here extend those obtained in some papers (see [7, 44, 92] and [124]).

In the third section we extend the results obtained in the first one, and we show the the
system of difference equations

xn+1 = ayn−2xn−1yn + bxn−1yn−2 + cyn−2 + d

yn−2xn−1yn
, yn+1 = axn−2yn−1xn + byn−1xn−2 + cxn−2 + d

xn−2yn−1xn
,

where n ∈ N0, the initial values x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero real
numbers and the parameters a, b, c and d are arbitrary real numbers with d 6= 0, can be
solved in a closed form. We will see that when a = b = c = d = 1 the solutions are expressed
using the famous Tetranacci numbers.

In the forth section, we give explicit formulas of the solutions of the two classes of non-
linear systems of difference equations

xn+1 = f−1 (ag(yn) + bf(xn−1) + cg(yn−2) + df(xn−3)) ,

yn+1 = g−1 (af(xn) + bg(yn−1) + cf(xn−2) + dg(yn−3)) ,

and 
xn+1 = f−1

(
a+ b

g(yn) + c
g(yn)f(xn−1) + d

g(yn)f(xn−1)g(yn−2)

)
,

yn+1 = g−1
(
a+ b

f(xn) + c
f(xn)g(yn−1) + d

f(xn)g(yn−1)f(xn−2)

)
,

where n ∈ N0, f, g : D −→ R are a “1 − 1” continuous functions on D, D ⊆ R, the initial
values x−i, y−i, i = 0, 1, 2, 3 are arbitrary real numbers in D and the parameters a, b, c and
d are arbitrary real numbers, where the results considerably extend some existing results in
the literature.

Now, recall some known definitions and results about stability, which will be very useful
for the sequel, for more details see for example [11, 16, 29, 58].

Let F : (0,+∞)k → (0,+∞)k be a continuous function and consider the system of
difference equations

Yn+1 = F (Yn), n ∈ N0 (1.1)

where the initial value Y0 ∈ (0,+∞)k. Let Y be an equilibrium point of (1.1), that is a
solution in (0,+∞)k of Y = F (Y ).
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Definition 1.1. Let Y be an equilibrium point of system (1.1), and let ‖.‖ any convenient
vector norm.

1. We say that the equilibrium point Y is stable (or locally stable) if for every ε > 0 there
exists δ > 0 such that for every initial condition Y0: ‖Y0−Y ‖ < δ implies ‖Yn−Y ‖ < ε.
Otherwise, the equilibrium Y is unstable.

2. We say that the equilibrium point Y is asymptotically stable (or locally asymptotically
stable) if it is stable and there exists γ > 0 such that ‖Y0 − Y ‖ < γ implies

lim
n→∞

Yn = Y .

3. We say that the equilibrium point Y is a global attractor if for every Y0,

lim
n→∞

Yn = Y .

4. We say that the equilibrium point Y is globally (asymptotically) stable if it is stable
and a global attractor.

Assume that F is C1 on (0,+∞)k. To system (1.1), we associate a linear system, about
the equilibrium point Y , given by

Zn+1 = FJ(Y )Zn, n ∈ N0, Zn = Yn − Y

where FJ is the Jacobian matrix of the function F evaluated at the equilibrium point Y .
To study the stability of the equilibrium point Y , we need the following theorem.

Theorem 1.1. Let Y be an equilibrium point of system (1.1). Then, the following statements
are true:

(i) If all the eigenvalues of the Jacobian matrix FJ lie in the open unit disk |λ| < 1, then
the equilibrium Y is asymptotically stable.

(ii) If at least one eigenvalue of FJ has absolute value greater than one, then the equilibrium
Y is unstable.
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1.2 A second order system

The difference equation
xn+1 = a+ b

xn
+ c

xnxn−1

was studied by Azizi in [7]. Noting that the same equation was the subject of a very recent
paper by Stevic [92].

In [124] the authors studied the system

xn+1 = 1 + xn−1

ynxn−1
, yn+1 = 1 + yn−1

xnyn−1
,

Motivated by [124], Halim et al. in [44], got the form of the solutions of the following
difference equation

xn+1 = a+ bxn−1

xnxn−1
,

and the system
xn+1 = a+ bxn−1

ynxn−1
, yn+1 = a+ byn−1

xnyn−1
,

Here and motivated by the above mentioned papers we are interested in the following system
of difference equations

xn+1 = aynxn−1 + bxn−1 + c

ynxn−1
, yn+1 = axnyn−1 + byn−1 + c

xnyn−1
, n = 0, 1, ..., (1.2)

where x−1, x0, y−1 and y0 are arbitrary nonzero real numbers, a, b and c are arbitrary real
numbers with c 6= 0. Clearly our system generalized the equations and systems studied in
[7, 44, 92] and [124].

1.2.1 Homogeneous third order linear difference equation with

constant coefficients.

Consider the homogeneous third order linear difference equation

Rn+1 = aRn + bRn−1 + cRn−2, n = 0, 1, ..., (1.3)

where the initial values R0, R−1 and R−2 and the constant coefficients a, b and c are real
numbers with c 6= 0. This equation will be of great importance for our study, so we will
solve it in closed form. As it is well known, the solution (Rn)+∞

n=−2 of equation (1.3) is usually
expressed in terms of the roots α, β and γ of the characteristic equation

λ3 − aλ2 − bλ− c = 0. (1.4)



8 On some systems of difference equations related to remarkable sequences

Here we express the solutions of the equation (1.3) using terms of the sequence (Jn)+∞
n=0

defined by the recurrent relation

Jn+3 = aJn+2 + bJn+1 + cJn, n ∈ N, (1.5)

and the special initial values

J0 = 0, J1 = 1 and J2 = a. (1.6)

Noting that (Rn)+∞
n=−2 and (Jn)+∞

n=0 have the same characteristic equation. Also if a = b =
c = 1, then the equation (1.5) is nothing other then the famous Tribonacci sequence (Tn)+∞

n=0.
The closed form of the solutions of {Jn}+∞

n=0 and many proprieties of them are well known
in the literature, for the interest of the readers and for the purpose of our work, we show
how we can get the formula of the solutions and we give also a result on the limit

lim
n→∞

Jn+1

Jn
.

For the roots α, β and γ of the characteristic equation (1.4), we have
α + β + γ = a

αβ + αγ + βγ = −b

αβγ = c.

(1.7)

We have:
Case 1: If all roots are equal. In this case

Jn =
(
c1 + c2n+ c3n

2
)
αn.

Now using (1.7) and the fact that J0 = 0, J1 = 1 and J2 = a, we obtain

Jn =
(
n

2α + n2

2α

)
αn. (1.8)

Case 2: If two roots are equal, say β = γ. In this case

Jn = c1α
n + (c2 + c3n) βn.

Using (1.7) and the fact that J0 = 0, J1 = 1 and J2 = a, we obtain

Jn = α

(β − α)2α
n +

(
−α

(β − α)2 + n

β − α

)
βn. (1.9)



1.2 A second order system 9

Case 3: If the roots are all different. In this case

Jn = c1α
n + c2β

n + c3γ
n.

Again, using (1.7) and the fact that J0 = 0, J1 = 1 and J2 = a, we obtain

Jn = α

(γ − α)(β − α)α
n + −β

(γ − β)(β − α)β
n + γ

(γ − α)(γ − β)γ
n. (1.10)

In this case we can get two roots of (1.4) complex conjugates say γ = β and the third
one real and the formula of Jn will be

Jn = α

(β − α)(β − α)
αn + −β

(β − β)(β − α)
βn + β

(β − α)(β − β)
β
n
. (1.11)

Consider the following linear third order difference equation

Sn+1 = −aSn + bSn−1 − cSn−2, n = 0, 1, ..., (1.12)

the constant coefficients a, b and c and the initial values S0, S−1 and S−2 are real numbers.
As for the equation (1.3), we will express the solutions of (1.12) using terms of (1.13). To
do this let us consider the difference equation

jn+3 = −ajn+2 + bjn+1 − cjn, n ∈ N, (1.13)

and the special initial values

j0 = 0, j1 = 1 and j2 = −a. (1.14)

The characteristic equation of (1.12) and (1.13) is

λ3 + aλ2 − bλ+ c = 0. (1.15)

Clearly the roots of (1.15) are −α, −β and −γ. Now following the same procedure in solving
{Jn}, we get that

jn = (−1)n+1Jn.

Lemma 1.2. Let α, β and γ be the roots of (1.4), assume that α is a real root with
max(|α|; |β|; |γ|) = |α|. Then,

lim
n→∞

Jn+1

Jn
= α.
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Proof. If α, β and γ are real and distinct then,

lim
n→∞

Jn+1

Jn
= lim

n→∞

α

(γ − α)(β − α)α
n+1 + −β

(γ − β)(β − α)β
n+1 + γ

(γ − α)(γ − β)γ
n+1

α

(γ − α)(β − α)α
n + −β

(γ − β)(β − α)β
n + γ

(γ − α)(γ − β)γ
n

= lim
n→∞

αn+1

αn

α

(γ − α)(β − α)
αn+1

αn+1 + −β
(γ − β)(β − α)

βn+1

αn+1 + γ

(γ − α)(γ − β)
γn+1

αn+1

α

(γ − α)(β − α)
αn

αn
+ −β

(γ − β)(β − α)
βn

αn
+ γ

(γ − α)(γ − β)
γn

αn

= lim
n→∞

α

α

(γ − α)(β − α) + −β
(γ − β)(β − α)

(
β

α

)n+1

+ γ

(γ − α)(γ − β)

(
γ

α

)n+1

α

(γ − α)(β − α) + −β
(γ − β)(β − α)

(
β

α

)n
+ γ

(γ − α)(γ − β)

(
γ

α

)n
= α.

The proof of the other cases of the roots, that is when α = β = γ or β, γ are complex
conjugate, is similar to the first one and will be omitted.

Remark 1.2.1. If α is a real root and β, γ are complex conjugate with

max(|α|; |β|; |β|) = |β| = |β|,

then lim
n→∞

Jn+1

Jn
doesn’t exist.

In the following result, we solve in closed form the equations (1.3) and (1.12) in terms of
the sequence (Jn)+∞

n=0. The obtained formula will be very useful to obtain the formula of the
solutions of system (1.2).

Lemma 1.3. We have for all n ∈ N0,

Rn = cJnR−2 + (Jn+2 − aJn+1)R−1 + Jn+1R0, (1.16)

Sn = (−1)n [cJnS−2 + (−Jn+2 + aJn+1)S−1 + Jn+1S0] . (1.17)

Proof. Assume that α, β and γ are the distinct roots of the characteristic equation (1.4), so

Rn = c′1α
n + c′2β

n + c′3γ
n, n = −2,−1, 0, ....

Using the initial values R0, R−1 and R−2, we get

1
α2 c

′
1 + 1

β2 c
′
2 + 1

γ2 c
′
3 = R−2

1
α
c′1 + 1

β
c′2 + 1

γ
c′3 = R−1

c′1 + c′2 + c′3 = R0

(1.18)
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after some calculations we get

c′1 = α2βγ

(γ − α)(β − α)R−2 −
(γ + β)α2

(γ − α)(β − α)R−1 + α2

(γ − α)(β − α)R0

c′2 = − αβ2γ

(γ − β)(β − α)R−2 + (α + γ)β2

(γ − β)(β − α)R−1 −
β2

(γ − β)(β − α)R0

c′3 = αβγ2

(γ − α)(γ − β)R−2 −
(α + β)γ2

(γ − α)(γ − β)R−1 + γ2

(γ − α)(γ − β)R0

that is,

Rn =
(

α2βγ

(γ − α)(β − α)α
n − αβ2γ

(γ − β)(β − α)β
n + αβγ2

(γ − α)(γ − β)γ
n

)
R−2

+
(
− (γ + β)α2

(γ − α)(β − α)α
n + (α + γ)β2

(γ − β)(β − α)β
n − (α + β)γ2

(γ − α)(γ − β)γ
n

)
R−1

+
(

α2

(γ − α)(β − α)α
n − β2

(γ − β)(β − α)β
n + γ2

(γ − α)(γ − β)γ
n

)
R0

Rn = cJnR−2 + (Jn+2 − aJn+1)R−1 + Jn+1R0.

The proof of the other cases is similar and will be omitted.
Let A := −a and B := b, C := −c, then equation (1.12) takes the form of (1.3) and the

equation (1.13) takes the form of (1.5). Then analogous to the formula of (1.3) we obtain

Sn = CjnS−2 + (jn+2 − Ajn+1)S−1 + jn+1S0.

Using the fact that jn = (−1)n+1Jn, A = −a and C := −c we get

Sn = (−1)n (cJnS−2 − (Jn+2 − aJn+1)S−1 + Jn+1S0) .

1.2.2 Closed form of well defined solutions

In this section, we solve through an analytical approach the system (1.2) with c 6= 0 in
closed form. By a well defined solution of system (1.2), we mean a solution that satisfies
xnyn 6= 0, n = −1, 0, · · · . Clearly if we choose the initial values and the parameters a, b and
c positif, then every solution of (1.2) will be well defined.

The following result give an explicit formula for well defined solutions of the system (1.2).
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Theorem 1.4. Let {xn, yn}n≥−1 be a well defined solution of (1.2). Then, for n = 0, 1, . . . ,
we have

x2n+1 = cJ2n+1 + (J2n+3 − aJ2n+2)x−1 + J2n+2x−1y0

cJ2n + (J2n+2 − aJ2n+1)x−1 + J2n+1x−1y0
,

x2n+2 = cJ2n+2 + (J2n+4 − aJ2n+3)y−1 + J2n+3x0y−1

cJ2n+1 + (J2n+3 − aJ2n+2)y−1 + J2n+2x0y−1
,

y2n+1 = cJ2n+1 + (J2n+3 − aJ2n+2)y−1 + J2n+2x0y−1

cJ2n + (J2n+2 − aJ2n+1)y−1 + J2n+1x0y−1
,

y2n+2 = cJ2n+2 + (J2n+4 − aJ2n+3)x−1 + J2n+3x−1y0

cJ2n+1 + (J2n+3 − aJ2n+2)x−1 + J2n+2x−1y0

where the initial conditions x−1, x0, y−1 and y0 ∈ (R− {0})−F , with F is the Forbidden
set of system (1.2) given by

F =
∞⋃
n=0
{(x−1, x0, y−1, y0) ∈ (R− {0}) : An = 0 orBn = 0} ,

where

An = Jn+1y0x−1 + (Jn+2 − aJn+1)x−1 + cJn, Bn = Jn+1x0y−1 + (Jn+2 − aJn+1)y−1 + cJn.

Proof. Putting
xn = un

vn−1
, yn = vn

un−1
, n = −1, 0, 1, ..., (1.19)

we get the following linear third order system of difference equations

un+1 = avn + bun−1 + cvn−2, vn+1 = aun + bvn−1 + cun−2, n = 0, 1, ..., (1.20)

where the initial values u−2, u−1, u0, v−2, v−1, v0 are nonzero real numbers.
From(1.20) we have for n = 0, 1, ...,

un+1 + vn+1 = a(vn + un) + b(un−1 + vn−1) + c(vn−2 + un−2),

un+1 − vn+1 = a(vn − un) + b(un−1 − vn−1) + c(vn−2 − un−2).

Putting again
Rn = un + vn, Sn = un − vn, n = −2,−1, 0, ..., (1.21)

we obtain two homogeneous linear difference equations of third order:

Rn+1 = aRn + bRn−1 + cRn−2, n = 0, 1, · · · ,
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and
Sn+1 = −aSn + bSn−1 − cSn−2, n = 0, 1, · · · . (1.22)

Using (1.21), we get for n = −2,−1, 0, ...,

un = 1
2(Rn + Sn), vn = 1

2(Rn − Sn).

From Lemma 1.3 we obtain,


u2n−1 = 1

2 [cJ2n−1(R−2 − S−2) + (J2n+1 − aJ2n)(R−1 + S−1) + J2n(R0 − S0)] , n = 1, 2, · · · ,

u2n = 1
2 [cJ2n(R−2 + S−2) + (J2n+2 − aJ2n+1)(R−1 − S−1) + J2n+1(R0 + S0)] , n = 0, 1, · · · ,

(1.23)


v2n−1 = 1

2 [cJ2n−1(R−2 + S−2) + (J2n+1 − aJ2n)(R−1 − S−1) + J2n(R0 + S0)] , n = 1, 2, · · · ,

v2n = 1
2 [cJ2n(R−2 − S−2) + (J2n+2 − aJ2n+1)(R−1 + S−1) + J2n+1(R0 − S0)] , n = 0, 1, · · · ,

(1.24)

Substituting (1.23) and (1.24) in (1.19), we get for n = 0, 1, ...,
x2n+1 = cJ2n+1(R−2 − S−2) + (J2n+3 − aJ2n+2)(R−1 + S−1) + J2n+2(R0 − S0)

cJ2n(R−2 − S−2) + (J2n+2 − aJ2n+1)(R−1 + S−1) + J2n+1(R0 − S0) ,

x2n+2 = cJ2n+2(R−2 + S−2) + (J2n+4 − aJ2n+3)(R−1 − S−1) + J2n+3(R0 + S0)
cJ2n+1(R−2 + S−2) + (J2n+3 − aJ2n+2)(R−1 − S−1) + J2n+2(R0 + S0) ,

(1.25)


y2n+1 = cJ2n+1(R−2 + S−2) + (J2n+3 − aJ2n+2)(R−1 − S−1) + J2n+2(R0 + S0)

cJ2n(R−2 + S−2) + (J2n+2 − aJ2n+1)(R−1 − S−1) + J2n+1(R0 + S0) ,

y2n+2 = cJ2n+2(R−2 − S−2) + (J2n+4 − aJ2n+3)(R−1 + S−1) + J2n+3(R0 − S0)
cJ2n+1(R−2 − S−2) + (J2n+3 − aJ2n+2)(R−1 + S−1) + J2n+2(R0 − S0) .

(1.26)

Then, 

x2n+1 =
cJ2n+1 + (J2n+3 − aJ2n+2)R−1 + S−1

R−2 − S−2
+ J2n+2

R0 − S0

R−2 − S−2

cJ2n + (J2n+2 − aJ2n+1)R−1 + S−1

R−2 − S−2
+ J2n+1

R0 − S0

R−2 − S−2

,

x2n+2 =
cJ2n+2 + (J2n+4 − aJ2n+3)R−1 − S−1

R−2 + S−2
+ J2n+3

R0 + S0

R−2 + S−2

cJ2n+1 + (J2n+3 − aJ2n+2)R−1 − S−1

R−2 + S−2
+ J2n+2

R0 + S0

R−2 + S−2

,

(1.27)



y2n+1 =
cJ2n+1 + (J2n+3 − aJ2n+2)R−1 − S−1

R−2 + S−2
+ J2n+2

R0 + S0

R−2 + S−2

cJ2n + (J2n+2 − aJ2n+1)R−1 − S−1

R−2 + S−2
+ J2n+1

R0 + S0

R−2 + S−2

,

y2n+2 =
cJ2n+2 + (J2n+4 − aJ2n+3)R−1 + S−1

R−2 − S−2
+ J2n+3

R0 − S0

R−2 − S−2

cJ2n+1 + (J2n+3 − aJ2n+2)R−1 + S−1

R−2 − S−2
+ J2n+2

R0 − S0

R−2 − S−2

.

(1.28)
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We have
x−1 = u−1

v−2
= R−1 + S−1

R−2 − S−2
, x0 = u0

v−1
= R0 + S0

R−1 − S−1
, (1.29)

y−1 = v−1

u−2
= R−1 − S−1

R−2 + S−2
, y0 = v0

u−1
= R0 − S0

R−1 + S−1
(1.30)

From (1.29), (1.30) it follows that,


R0 − S0

R−2 − S−2
= R−1 + S−1

R−2 − S−2
× R0 − S0

R−1 + S−1
= x−1y0

R0 + S0

R−2 + S−2
= R0 + S0

R−1 − S−1
× R−1 − S−1

R−2 + S−2
= x0y−1

(1.31)

Using (1.27), (1.28), (1.29), (1.30) and (1.31), we obtain the closed form of the solutions of
(1.2), that is for n = 0, 1, ..., we have

x2n+1 = cJ2n+1 + (J2n+3 − aJ2n+2)x−1 + J2n+2x−1y0

cJ2n + (J2n+2 − aJ2n+1)x−1 + J2n+1x−1y0
,

x2n+2 = cJ2n+2 + (J2n+4 − aJ2n+3)y−1 + J2n+3x0y−1

cJ2n+1 + (J2n+3 − aJ2n+2)y−1 + J2n+2x0y−1
,


y2n+1 = cJ2n+1 + (J2n+3 − aJ2n+2)y−1 + J2n+2x0y−1

cJ2n + (J2n+2 − aJ2n+1)y−1 + J2n+1x0y−1
,

y2n+2 = cJ2n+2 + (J2n+4 − aJ2n+3)x−1 + J2n+3x−1y0

cJ2n+1 + (J2n+3 − aJ2n+2)x−1 + J2n+2x−1y0
.

Remark 1.2.2. Writing system (1.2) in the form

 xn+1 = f (xn, xn−1, yn, yn−1) = aynxn−1+bxn−1+c
ynxn−1

,

yn+1 = g (xn, xn−1, yn, yn−1) = axnyn−1+byn−1+c
xnyn−1

.

So it follows that points (α, α), (β, β) and (γ, γ) are solutions of the of system
x̄ = aȳx̄+ bx̄+ c

ȳx̄
,

ȳ = ax̄ȳ + bȳ + c

x̄ȳ

where α, β and γ are the roots of (1.4).

Theorem 1.5. Under the same conditions in Lemma 1.2, for every well defined solution of
system (1.2), we have

lim
n→+∞

x2n+1 = lim
n→+∞

x2n+2 = lim
n→+∞

y2n+1 = lim
n→+∞

y2n+2 = α.
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Proof. We have

lim
n→∞

x2n+1 = lim
n→∞

cJ2n+1 + (J2n+3 − aJ2n+2)x−1 + J2n+2y0x−1

cJ2n + (J2n+2 − aJ2n+1)x−1 + J2n+1y0x−1

= lim
n→∞

cJ2n+1 + (J2n+3 − aJ2n+2)x−1 + J2n+2y0x−1

cJ2n + (J2n+2 − aJ2n+1)x−1 + J2n+1y0x−1

= lim
n→∞

c
J2n+1

J2n
+
(
J2n+3

J2n+2
× J2n+2

J2n+1
× J2n+1

J2n
− aJ2n+2

J2n+1
× J2n+1

J2n

)
x−1 + J2n+2

J2n+1
× J2n+1

J2n
y0x−1

c
J2n

J2n
+
(
J2n+2

J2n+1
× J2n+1

J2n
− aJ2n+1

J2n

)
x−1 + J2n+1

J2n
y0x−1

= cα + (α3 − aα2)x−1 + α2y0x−1

c+ (α2 − aα)x−1 + αy0x−1
= α .

In the same way we show that

lim
n→∞

x2n+2 = lim
n→∞

y2n+1 = lim
n→∞

y2n+2 = α.

1.2.3 Particular cases

Here we are interested in some particular cases of system (1.2). Some of these particular
cases have been the subject of some recent papers.

1.2.3.1 The solutions of the equation xn+1 = axnxn−1+bxn−1+c
xnxn−1

If we choose y−1 = x−1 and y0 = x0, then system (1.2) is reduced to the equation

xn+1 = axnxn−1 + bxn−1 + c

xnxn−1
, n ∈ N0. (1.32)

The following results are respectively direct consequences of Theorem 1.4 and Theorem
1.5.

Corollary 1.6. Let {xn}n≥−1 be a well defined solution of the equation (1.32). Then for
n = 0, 1, . . . , we have

x2n+1 = cJ2n+1 + (J2n+3 − aJ2n+2)x−1 + J2n+2x−1x0

cJ2n + (J2n+2 − aJ2n+1)x−1 + J2n+1x−1x0
,

x2n+2 = cJ2n+2 + (J2n+4 − aJ2n+3)x−1 + J2n+3x0x−1

cJ2n+1 + (J2n+3 − aJ2n+2)x−1 + J2n+2x0x−1
.
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Corollary 1.7. Under the same conditions in Lemma 1.2, for every well defined solution of
equation (1.32), we have

lim
n→+∞

x2n+1 = lim
n→+∞

x2n+2 = α.

The equation (1.32) was been studied by Azizi in [7] and Stevic in [92].

1.2.3.2 The solutions of the system xn+1 = ynxn−1+xn−1+1
ynxn−1

, yn+1 = xnyn−1+yn−1+1
xnyn−1

Consider the system

xn+1 = ynxn−1 + xn−1 + 1
ynxn−1

, yn+1 = xnyn−1 + yn−1 + 1
xnyn−1

n ∈ N0. (1.33)

Clearly system (1.33) is a particular case of system (1.2) with a = b = c = 1. In this case
the sequence {Jn} is the famous classical sequence of Tribonacci numbers {Tn}, that is

Tn+3 = Tn+2 + Tn+1 + Tn, n ∈ N, where T0 = 0, T1 = 1 and T2 = 1,

and we have

Tn = αn+1

(β − α)(γ − α) −
βn+1

(β − α)(γ − β) + γn+1

(γ − α)(γ − β) , n = 0, 1, ...,

with

α =
1 + 3

√
19 + 3

√
33 + 3

√
19− 3

√
33

3 , β =
1 + ω

3
√

19 + 3
√

33 + ω2 3
√

19− 3
√

33
3 ,

γ =
1 + ω2 3

√
19 + 3

√
33 + ω

3
√

19− 3
√

33
3 , ω = −1 + i

√
3

2 .

Numerically we have α = 1.839286755 and the two complex conjugate are

−0.4196433777 + 0.6062907300i, −0.4196433777− 0.6062907300i

with i2 = −1.
The following results follows respectively from Theorem 1.4 and Theorem 1.5.

Corollary 1.8. Let {xn, yn}n≥−1 be a well defined solution of (1.33). Then, for n =
0, 1, 2, 3, . . . , we have

x2n+1 = cT2n+1 + (T2n+3 − aT2n+2)x−1 + T2n+2x−1y0

cT2n + (T2n+2 − aT2n+1)x−1 + T2n+1x−1y0
,
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x2n+2 = cT2n+2 + (T2n+4 − aT2n+3)y−1 + T2n+3x0y−1

cT2n+1 + (T2n+3 − aT2n+2)y−1 + T2n+2x0y−1
,

y2n+1 = cT2n+1 + (T2n+3 − aT2n+2)y−1 + T2n+2x0y−1

cT2n + (T2n+2 − aT2n+1)y−1 + T2n+1x0y−1
,

y2n+2 = cT2n+2 + (T2n+4 − aT2n+3)x−1 + T2n+3x−1y0

cT2n+1 + (T2n+3 − aT2n+2)x−1 + T2n+2x−1y0

Corollary 1.9. For every well defined solution of system (1.2), we have

lim
n→+∞

x2n+1 = lim
n→+∞

x2n+2 = lim
n→+∞

y2n+1 = lim
n→+∞

y2n+2 = α.

For the equation

xn+1 = xnxn−1 + xn−1 + 1
xnxn−1

, n ∈ N0. (1.34)

we have the following results.

Corollary 1.10. Let {xn}n≥−1 be a well defined solution of the equation (1.34). Then for
n = 0, 1, . . . , we have

x2n+1 = T2n+1 + (T2n+3 − T2n+2)x−1 + T2n+2x−1x0

T2n + (T2n+2 − T2n+1)x−1 + T2n+1x−1x0
,

x2n+2 = T2n+2 + (T2n+4 − T2n+3)x−1 + T2n+3x0x−1

T2n+1 + (T2n+3 − T2n+2)x−1 + T2n+2x0x−1
.

Corollary 1.11. Under the same conditions in Lemma 1.2, for every well defined solution
of the equation (1.34), we have

lim
n→+∞

x2n+1 = lim
n→+∞

x2n+2 = α.

Let I = (0,+∞), J = (0,+∞) and choosing x−1, x0, y−1 and y0 ∈ (0,+∞). Then clearly
the system

x = f(x, y) = xy + x+ 1
xy

, y = g(x, y) = xy + y + 1
xy

has a unique solution (α, α) ∈ I × J , that is (α, α) is the unique equilibrium point (fixed
point) of our system

xn+1 = f(xn, xn−1, yn, yn−1) = ynxn−1 + xn−1 + 1
ynxn−1

,
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yn+1 = g(xn, xn−1, yn, yn−1) = xnyn−1 + yn−1 + 1
xnyn−1

.

Clearly the functions

f : I2 × J2 −→ I and g : I2 × J2 −→ I

defined by

f(u0;u1; v0; v1) = v0u1 + u1 + 1
v0u1

and g(u0;u1; v0; v1) = u0v1 + v1 + 1
u0v1

are continuously differentiable.
In the following result we prove that the unique equilibrium point (α, α) of (1.33) is

locally asymptotically stable.

Theorem 1.12. The equilibrium point (α, α) is locally asymptotically stable.

Proof. The Jacobian matrix associated to the system (1.33) around the equilibrium point
(α, α), is given by

A =



0 − 1
α3 −α + 1

α3 0

1 0 0 0 0

−α + 1
α3 0 0 − 1

α3

0 0 0 1 0


.

Then, the characteristic polynomial of A is

P (λ) = λ4 + (2α3 − α2 − 2α− 1)
α6 λ2 + 1

α6

and the roots of P (λ) are

λ1 = 1
2 ×

1 + α +
√
−4α3 + α2 + 2α + 1

α3 , λ2 = −1
2 ×

1 + α +
√
−4α3 + α2 + 2α + 1

α3 ,

λ3 = 1
2 ×
−1− α +

√
−4α3 + α2 + 2α + 1
α3 , λ4 = −1

2 ×
−1− α +

√
−4α3 + α2 + 2α + 1
α3 .

We have |λi| < 1, i = 1, 2, 3, 4, so the equilibrium point (α, α) is locally asymptotically
stable.

The following result is a direct consequence of Theorem 1.12 and Corollary 1.9.

Theorem 1.13. The equilibrium point (α, α) is globally asymptotically stable .
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Let I = (0,+∞) and choosing x−1, x0 ∈ (0,+∞). Writing the equation (1.34) as

xn+1 = h(xn, xn−1) = xnxn−1 + xn−1 + 1
xnxn−1

(1.35)

where

h : I2 −→ I

is defined by

h(u0;u1) = u0u1 + u1 + 1
u0u1

.

The function h is continuously differentiable. The equation x = h(x, x) has the unique
solution x = α in (0,+∞). The linear equation associated to the equation (1.35) about the
equilibrium point x = α is given by

yn+1 = ∂h

∂u0
(α, α) yn + ∂h

∂u1
(α, α) yn−1,

the last equation has as characteristic polynomial

Q(λ) = λ2 − ∂h

∂u0
(α, α)λ− ∂h

∂u1
(α, α) .

In the following result we show that the unique equilibrium point x = α is globally stable.

Theorem 1.14. The equilibrium point x = α is globally stable.

Proof. The linear equation associated to (1.34) about the equilibrium point x = α is

yn+1 = −α + 1
α3 yn −

1
α3yn−1

and the characteristic polynomial is

Q(λ) = λ2 +
(
α + 1
α3

)
λ+

( 1
α3

)
.

We have ∣∣∣∣α + 1
α3 λ+ 1

α3

∣∣∣∣ ≤ ∣∣∣∣α + 1
α3

∣∣∣∣+ ∣∣∣∣ 1
α3

∣∣∣∣ < 1 =
∣∣∣λ2
∣∣∣ ,∀λ ∈ C : |λ| = 1.

So, by Rouché’s theorem the roots of the characteristic polynomial Q(λ) lie in the open unit
disk. Then the equilibrium point x = α is locally asymptotically stable. Now, from this and
Corollary 1.11 the result holds.
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1.2.3.3 The system xn+1 = bxn−1+c
ynxn−1

, yn+1 = byn−1+c
xnyn−1

When a = 0, the system (1.2) takes the form

xn+1 = bxn−1 + c

ynxn−1
, yn+1 = byn−1 + c

xnyn−1
n ∈ N0. (1.36)

From Theorem 1.4, we get the following result.

Corollary 1.15. Let {xn, yn}n≥−1 be a well defined solution of (1.36). Then, for n =
0, 1, . . . , we have

x2n+1 = cP2n+1 + P2n+3x−1 + P2n+2x−1y0

cP2n + P2n+2x−1 + P2n+1x−1y0
,

x2n+2 = cP2n+2 + P2n+4y−1 + P2n+3x0y−1

cP2n+1 + P2n+3y−1 + P2n+2x0y−1
,

y2n+1 = cP2n+1 + P2n+3y−1 + P2n+2x0y−1

cP2n + P2n+2y−1 + P2n+1x0y−1
,

y2n+2 = cP2n+2 + P2n+4x−1 + P2n+3x−1y0

cP2n+1 + P2n+3x−1 + P2n+2x−1y0
.

Here we have write {Pn}n instead of {Jn}n, as in this case {Jn}n takes the form of a
generalized (Padovan) sequence, that is

Pn+3 = bPn+1 + cPn, n ∈ N,

with special values P0 = 0, P1 = 1 and P2 = 0. The system (1.36) was been investigated by
Halim et al. in [44] and by Yazlik et al. in [124] with b = 1 and c = ±1. The one dimensional
version of system (1.36), that is the equation

xn+1 = bxn−1 + c

xnxn−1
, n ∈ N0. (1.37)

was been also investigated by Halim et al. in [44]. Form Corollary 1.15, we get that the well
defined solutions of equation (1.37) are given for n = 0, 1, ..., by

x2n+1 = cP2n+1 + P2n+3x−1 + P2n+2x−1x0

cP2n + P2n+2x−1 + P2n+1x−1x0
,

x2n+2 = cP2n+2 + P2n+4x−1 + P2n+3x0x−1

cP2n+1 + P2n+3x−1 + P2n+2x0x−1
.

In [124] and [44] we can find additional results on the stability of some equilibrium points.
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Remark 1.2.3. If c = 0, The system (1.2) become

xn+1 = ayn + b

yn
, yn+1 = axn + b

xn
, n ∈ N0. (1.38)

We note that if also b = 0, then the solutions of the system (1.38) are given by

{(x0, y0) , (a, a) , (a, a) , ..., } .

The system (1.38) is a particular case of the more general system

xn+1 = ayn + b

cyn + d
, yn+1 = αxn + β

γxn + λ
, n ∈ N0 (1.39)

which was been completely solved by Stevic in [91]. So, we refer to this paper for the
readers interested in the form of the solutions of the system (1.39) and its particular case
system (1.38). As it was proved in [91], the solutions are expressed using the terms of a
corresponding generalized Fibonacci sequence. Noting that the papers [63, 104] and [105]
deals also with particular cases of the system (1.39) or its one dimensional version.

1.3 A third order system

Recently in [2] and as generalization of the equations and systems studied in [7, 44, 91, 124],
we have solved in a closed form the system of difference equations

xn+1 = aynxn−1yn + bxn−1 + c

xn−1yn
,

yn+1 = axnyn−1xn + byn−1 + c

yn−1xn
,

(1.40)

Here and motivated by the above mentioned papers we show that we are able to expressed
in closed form the well defined solutions of following system of difference equations

xn+1 = ayn−2xn−1yn + bxn−1yn−2 + cyn−2 + d

yn−2xn−1yn
,

yn+1 = axn−2yn−1xn + byn−1xn−2 + cxn−2 + d

xn−2yn−1xn
,

(1.41)

where n ∈ N0, the initial values x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero real
numbers and the parameters a, b, c and d are arbitrary real numbers with d 6= 0.

Clearly if d = 0, then system (1.41) is nothing other than system (1.40). For the readers
interested in the solutions of this system, we refer to [2], where the system (1.40) was been
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completely solved.
Noting also that the system (1.41) can be seen as a generalization of the equation

xn+1 = axn−2xn−1xn + bxn−1xn−2 + cxn−2 + d

xn−2xn−1xn
, n ∈ N0. (1.42)

In fact the solutions of (1.42) can be obtained from the solutions of (1.41) by choosing
y−i = x−i, i = 0, 1, 2. The equation (1.42) was been the subject of substantial part of the
paper of Azizi [7], which also motivated our present study. The same equation was studied
on field of complex Numbers by Stevic in [95].

We will see that the explicit formulas of the well defined solutions of system (1.41) are
expressed using the terms of the sequence (Jn)+∞

n=0 which are the solutions of the fourth order
linear homogeneous difference equation defined by the relation

Jn+4 = aJn+3 + bJn+2 + cJn+1 + dJn, n ∈ N0, (1.43)

and the special initial values

J0 = 0, J1 = 0, J2 = 1 and J3 = a. (1.44)

Now we solve in closed form the equation (1.43). This equation (with the same or different
initial values and parameters) was the subject of some papers in the literature, see for
example [115, 46, 95].

The characteristic equation associated to the equation (1.43) is

λ4 − aλ3 − bλ2 − cλ− d = 0 (1.45)

and let α, β, γ and δ its four roots, then

α + β + γ + δ = a

αβ + αγ + αδ + βγ + βδ + γδ = −b

αβγ + αβδ + αγδ + βγδ = c

αβγδ = −d

(1.46)

We have:
Case 1: If all roots are real and equal. In this case

Jn =
(
c1 + c2n+ c3n

2 + c4n
3
)
αn.
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Now using (1.46) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, we obtain

Jn =
(
−n+ n3

6α2

)
αn (1.47)

Case 2: If three roots are real and equal, say β = γ = δ. In this case

Jn = c1α
n +

(
c2 + c3n+ c4n

2
)
βn.

Now using (1.46) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, we obtain

Jn = −α
(β − α)3α

n +
(

α

(β − α)3 −
n(α + β)

2β(β − α)2 + n2

2β(β − α)

)
βn, (1.48)

Case 3: If two real roots are equal, say γ = δ. In this case

Jn = c1α
n + c2β

n + (c3 + c4n) γn.

Now using (1.46) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, we obtain

Jn = −α
(γ − α)2(β − α)α

n + β

(γ − β)2(β − α)β
n +

(
αβ − γ2

(γ − α)2(γ − β)2 + n

(γ − α)(γ − β)

)
γn,

(1.49)
Case 4: If double two real roots are equal, say α = β 6= γ = δ. In this case

Jn = (c1 + c2n)αn + (c3 + c4n) γn.

Now using (1.46) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, we obtain

Jn =
(

γ + α

(γ − α)3 + n

(γ − α)2

)
αn +

(
− γ + α

(γ − α)3 + n

(γ − α)2

)
γn, (1.50)

Case 5: If the roots are all real and different. In this case

Jn = c1α
n + c2β

n + c3γ
n + c4δ

n.

Again, using (1.46) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, we obtain

Jn = −α
(δ − α)(γ − α)(β − α)α

n + β

(δ − β)(γ − β)(β − α)β
n + −γ

(δ − γ)(γ − β)(γ − α)γ
n

+ δ

(δ − γ)(δ − β)(δ − α)δ
n (1.51)

Case 6: If two real roots are equal, say α = β and two roots are complex
conjugate ones, say δ = γ. In this case

Jn = (c1 + c2n)αn + c3γ
n + c4γ

n.
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Again, using (1.46) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, we obtain

Jn =
(

γγ − α2

(γ − α)2(γ − α)2 + n

(γ − α)(γ − α)

)
αn + −γ

(γ − γ)(γ − α)2γ
n

+ γ

(γ − γ)(γ − α)2γ
n (1.52)

Case 7: If two real roots α, β are different and two roots are complex conjugate
ones, say δ = γ. In this case

Jn = c1α
n + c2β

n + c3γ
n + c4γ

n.

Again, using (1.46) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, we obtain

Jn = −α
(γ − α)(γ − α)(β − α)α

n + β

(γ − β)(γ − β)(β − α)β
n + −γ

(γ − γ)(γ − β)(γ − α)γ
n

+ γ

(γ − γ)(γ − β)(γ − α)γ
n (1.53)

Case 8: If two complex roots are equal, say α = γ and β = δ = α. In this case

Jn = (c1 + c2n)αn + (c3 + c4n)αn.

Again, using (1.46) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, we obtain

Jn =
(

α + α

(α− α)3 + n

(α− α)2

)
αn +

(
−α− α
(α− α)3 + n

(α− α)2

)
αn (1.54)

Case 9: If the roots are all complex and different, say β = α and δ = γ. In this
case

Jn = c1α
n + c2α

n + c3γ
n + c4γ

n.

Again, using (1.46) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, we obtain

Jn = −α
(γ − α)(γ − α)(α− α)α

n + α

(γ − α)(γ − α)(α− α)α
n + −γ

(γ − γ)(γ − α)(γ − α)γ
n

+ γ

(γ − γ)(γ − α)(γ − α)γ
n (1.55)

1.3.1 Form of the solutions - (Main result)

Here, we give a closed form for the well defined solutions of the system (1.41) with d 6= 0.
To this end we will use the same change of variables as in [2] to transform the system (1.41)
to a linear one and than following the same procedure as in [2] to obtain the closed form of
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the solutions. To get the solutions of the corresponding linear system we need to solve some
fourth order linear difference equations. In particular, we derive from the main result (Main
Theorem), for which we leave the proof to the next section, the solutions of some particular
systems and equations where their solutions are related to the famous Tetranacci numbers.
We recall that by a well defined solutions of system (1.41), we mean a solution that satisfies
xnyn 6= 0, n ≥ −2. The set of well defined solutions is not empty, in fact it suffices to choose
the initial values and the parameters a, b, c and d positive, to see that every solution of
(1.41) will be well defined.

1.3.1.1 Closed form of well defined solutions of the system (1.41)

The following result give an explicit formula for well defined solutions of the system (1.41).

Theorem 1.16. (Main Theorem.) Let {xn, yn}n≥−1 be a well defined solution of (1.41).
Then, for n ∈ N0, we have

x2n+1 = dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3)x−1y−2 + J2n+3y0x−1y−2

dJ2n+1 + (cJ2n+1 + dJ2n) y−2 + (J2n+3 − aJ2n+2)x−1y−2 + J2n+2y0x−1y−2
,

x2n+2 = dJ2n+3 + (cJ2n+3 + dJ2n+2)x−2 + (J2n+5 − aJ2n+4) y−1x−2 + J2n+4x0y−1x−2

dJ2n+2 + (cJ2n+2 + dJ2n+1)x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2
,

y2n+1 = dJ2n+2 + (cJ2n+2 + dJ2n+1)x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2

dJ2n+1 + (cJ2n+1 + dJ2n)x−2 + (J2n+3 − aJ2n+2) y−1x−2 + J2n+2x0y−1x−2
,

y2n+2 = dJ2n+3 + (cJ2n+3 + dJ2n+2) y−2 + (J2n+5 − aJ2n+4)x−1y−2 + J2n+4y0x−1y−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3)x−1y−2 + J2n+3y0x−1y−2
.

where the initial values x−2, x−1, x0, y−2, y−1 and y0 ∈ (R− {0}) − F , with F is the
Forbidden set of system (1.41) given by

F =
∞⋃
n=0
{(x−2, x−1, x0, y−2, y−1, y0) ∈ (R− {0}) : An = 0 orBn = 0} ,

where

An = dJn+1 + (cJn+1 + dJn) y−2 + (Jn+3 − aJn+2)x−1y−2 + Jn+2y0x−1y−2,

Bn = dJn+1 + (cJn+1 + dJn)x−2 + (Jn+3 − aJn+2) y−1x−2 + Jn+2x0y−1x−2.

1.3.1.2 Particular cases

Now, we focus our study on some particular cases of system (1.41).
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1.3.1.2.1 The solutions of the equation xn+1 = axn−2xn−1xn+bxn−1xn−2+cxn−2+d
xn−2xn−1xn

If we
choose y−2 = x−2, y−1 = x−1 and y0 = x0, then system (1.41) is reduced to the equation

xn+1 = axn−2xn−1xn + bxn−1xn−2 + cxn−2 + d

xn−2xn−1xn
, n ∈ N0. (1.56)

So, it follows from the Main Theorem that

Corollary 1.17. Let {xn}n≥−1 be a well defined solution of the equation (1.56). Then for
n ∈ N0, we have

x2n+1 = dJ2n+2 + (cJ2n+2 + dJ2n+1)x−2 + (J2n+4 − aJ2n+3)x−1x−2 + J2n+3x0x−1x−2

dJ2n+1 + (cJ2n+1 + dJ2n)x−2 + (J2n+3 − aJ2n+2)x−1x−2 + J2n+2x0x−1x−2
,

x2n+2 = dJ2n+3 + (cJ2n+3 + dJ2n+2)x−2 + (J2n+5 − aJ2n+4)x−1x−2 + J2n+4x0x−1x−2

dJ2n+2 + (cJ2n+2 + dJ2n+1)x−2 + (J2n+4 − aJ2n+3)x−1x−2 + J2n+3x0x−1x−2
,

Noting that this equation was studied in Azizi in [7] and Stevic in [95].

1.3.1.2.2 The solutions of the system (1.41) with a = b = c = d = 1 Consider the
system 

xn+1 = yn−2xn−1yn + xn−1yn−2 + yn−2 + 1
yn−2xn−1yn

,

yn+1 = xn−2yn−1xn + yn−1xn−2 + xn−2 + 1
xn−2yn−1xn

, n ∈ N0,
(1.57)

which is a is particular case of the system (1.41) with a = b = c = d = 1. In this case the
sequence {Jn} is nothing other than the sequence of Tetranacci numbers {Tn}, that is

Tn+4 = Tn+3 + Tn+2 + Tn+1 + Tn, n ∈ N0, where T0 = T1 = 0, T2 = 1 and T3 = 1,

and we have

Tn = −α
(γ − α)(γ − α)(β − α)α

n + β

(γ − β)(γ − β)(β − α)β
n + −γ

(γ − γ)(γ − β)(γ − α)γ
n

+ γ

(γ − γ)(γ − β)(γ − α)γ
n, n ∈ N0,

with

α = 1
4 + 1

2ω + 1
2

√
11
4 − ω

2 + 13
4 ω

−1, β = 1
4 + 1

2ω −
1
2

√
11
4 − ω

2 + 13
4 ω

−1,
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γ = 1
4 −

1
2ω + 1

2

√
11
4 − ω

2 − 13
4 ω

−1, δ = 1
4 −

1
2ω −

1
2

√
11
4 − ω

2 − 13
4 ω

−1,

ω =

√√√√√√√11
12 +

−65
54 +

√
563
108


1
3

+
−65

54 −
√

563
108


1
3
.

Numerically we have α = 1.927561975, β = −0.774804113 and the two complex conjugate
are γ = −0.076378931 + 0.814703647i, δ = γ̄ with i2 = −1.

The one dimensional version of the system (1.57), is the equation

xn+1 = xn−2xn−1xn + xn−1xn−2 + xn−2 + 1
xn−2xn−1xn

, n ∈ N0. (1.58)

The following results follows respectively from the Main Theorem.

Corollary 1.18. Let {xn, yn}n≥−1 be a well defined solution of (1.57). Then, for n ∈ N0,
we have

x2n+1 = T2n+2 + (T2n+2 + T2n+1) y−2 + (T2n+4 − T2n+3)x−1y−2 + T2n+3y0x−1y−2

T2n+1 + (T2n+1 + T2n) y−2 + (T2n+3 − T2n+2)x−1y−2 + T2n+2y0x−1y−2
,

x2n+2 = T2n+3 + (T2n+3 + T2n+2)x−2 + (T2n+5 − T2n+4) y−1x−2 + T2n+4x0y−1x−2

T2n+2 + (T2n+2 + T2n+1)x−2 + (T2n+4 − T2n+3) y−1x−2 + T2n+3x0y−1x−2
,

y2n+1 = T2n+2 + (T2n+2 + T2n+1)x−2 + (T2n+4 − T2n+3) y−1x−2 + T2n+3x0y−1x−2

T2n+1 + (T2n+1 + T2n)x−2 + (T2n+3 − T2n+2) y−1x−2 + T2n+2x0y−1x−2
,

y2n+2 = T2n+3 + (T2n+3 + T2n+2) y−2 + (T2n+5 − T2n+4)x−1y−2 + T2n+4y0x−1y−2

T2n+2 + (T2n+2 + T2n+1) y−2 + (T2n+4 − T2n+3)x−1y−2 + T2n+3y0x−1y−2
.

Corollary 1.19. Let {xn}n≥−1 be a well defined solution of the equation (1.58). Then for
n ∈ N0, we have

x2n+1 = T2n+2 + (T2n+2 + T2n+1)x−2 + (T2n+4 − T2n+3)x−1x−2 + T2n+3x0x−1x−2

T2n+1 + (T2n+1 + T2n)x−2 + (T2n+3 − T2n+2)x−1x−2 + T2n+2x0x−1x−2
,

x2n+2 = T2n+3 + (T2n+3 + T2n+2)x−2 + (T2n+5 − T2n+4)x−1x−2 + T2n+4x0x−1x−2

T2n+2 + (T2n+2 + T2n+1)x−2 + (T2n+4 − T2n+3)x−1x−2 + T2n+3x0x−1x−2
,

Remark 1.3.1. When a = d = 0, the system (1.41) takes the form

xn+1 = bxn−1 + c

ynxn−1
, yn+1 = byn−1 + c

xnyn−1
n ∈ N0. (1.59)
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As it is noted in [2], the solutions are expressed using Padovan numbers. This system and
same particular cases of it has been the subject of the papers [44, 124].

If d = c = 0, The system (1.41) become

xn+1 = ayn + b

yn
, yn+1 = axn + b

xn
, n ∈ N0. (1.60)

Again it is noted in [2] that:
- The system (1.60) is a particular case of the more general system

xn+1 = ayn + b

cyn + d
, yn+1 = αxn + β

γxn + λ
, n ∈ N0 (1.61)

which was been completely solved by Stevic in [91] and the solutions are expressed using a
generalized Fibonacci sequence.

- Also, particular cases of system (1.61) has been studied in [63, 40, 105, 104].

- If also b = 0, then the solutions of the system (1.60) are given by

{(x0, y0) , (a, a) , (a, a) , ..., } .

1.3.2 Proof of the Main result

In order to solve the system (1.41), we need firstly to solve the following two homogeneous
forth order linear difference equations

Rn+1 = aRn + bRn−1 + cRn−2 + dRn−3, n ∈ N0, (1.62)

Sn+1 = −aSn + bSn−1 − cSn−2 + dSn−3, n ∈ N0, (1.63)

where the initial values R0, R−1, R−2, R−3, S0, S−1, S−2 and S−3 and the constant coefficients
a, b, c and d are real numbers with d 6= 0. In fact we will express the terms of the sequences
(Rn)+∞

n=−3 and (Sn)+∞
n=−3 using the sequence (Jn)+∞

n=0.

The difference equation (1.62) has the same characteristic equation as (Jn)+∞
n=0, that is

the equation (1.45).
To solve the difference equation (1.63) using terms of (1.43), we need the following fourth
order linear difference equation defined by

jn+4 = −ajn+3 + bjn+2 − cjn+1 + djn, n ∈ N0, (1.64)
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and the special initial values

j0 = 0, j1 = 0, j2 = 1 and j3 = −a (1.65)

The characteristic equation of (1.63) and (1.64) is

λ4 + aλ3 − bλ2 + cλ− d = 0. (1.66)

Clearly the roots of (1.66) are −α, −β, −γ and −δ. Now following the same procedure in
solving {Jn}, it is not hard to see that

jn = (−1)nJn.

Now, we are able to prove the following result.

Lemma 1.20. We have for all n ∈ N0,

Rn = dJn+1R−3 + (cJn+1 + dJn)R−2 + (Jn+3 − aJn+2)R−1 + Jn+2R0 (1.67)

Sn = (−1)n+1 [dJn+1S−3 − (cJn+1 + dJn)S−2 + (Jn+3 − aJn+2)S−1 − Jn+2S0] . (1.68)

Proof. Assume that α, β, γ and δ are the distinct roots of the characteristic equation (1.45),
so

Rn = c′1α
n + c′2β

n + c′3γ
n + c′4δ

n, n ≥ −3.

Using the initial values R0, R−1, R−2 and R−3, we get



1
α3 c

′
1 + 1

β3 c
′
2 + 1

γ3 c
′
3 + 1

δ3 c
′
4 = R−3

1
α2 c

′
1 + 1

β2 c
′
2 + 1

γ2 c
′
3 + 1

δ2 c
′
4 = R−2

1
α
c′1 + 1

β
c′2 + 1

γ
c′3 + 1

δ
c′4 = R−1

c′1 + c′2 + c′3 + c′4 = R0

(1.69)
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after some calculations using the Cramer method we get

c′1 = βγδα3

(δ − α)(γ − α)(β − α)R−3 −
(γβ + γδ + βδ)α3

(δ − α)(γ − α)(β − α)R−2

+ (β + γ + δ)α3

(δ − α)(γ − α)(β − α)R−1 −
α3

(δ − α)(γ − α)(β − α)R0

c′2 = − αγδβ3

(δ − β)(γ − β)(β − α)R−3 + (γα + γδ + αδ)β3

(δ − β)(γ − β)(β − α)R−2

− (α + γ + δ)β3

(δ − β)(γ − β)(β − α)R−1 + β3

(δ − β)(γ − β)(β − α)R0

c′3 = αβδγ3

(δ − γ)(γ − β)(γ − α)R−3 −
(αβ + αδ + βδ)γ3

(δ − γ)(γ − β)(γ − α)R−2

+ (α + β + δ)γ3

(δ − γ)(γ − β)(γ − α)R−1 −
γ3

(δ − γ)(γ − β)(γ − α)R0

c′4 = − αβγδ3

(δ − γ)(δ − β)(δ − α)R−3 + (γα + γβ + αβ)δ3

(δ − γ)(δ − β)(δ − α)R−2

− (α + β + γ)δ3

(δ − γ)(δ − β)(δ − α)R−1 + δ3

(δ − γ)(δ − β)(δ − α)R0

that is,

Rn =
(

βγδα3

(δ − α)(γ − α)(β − α)α
n − αγδβ3

(δ − β)(γ − β)(β − α)β
n + αβδγ3

(δ − γ)(γ − β)(γ − α)γ
n

− αβγδ3

(δ − γ)(δ − β)(δ − α)δ
n

)
R−3

+
(
− (γβ + γδ + βδ)α3

(δ − α)(γ − α)(β − α)α
n + (γα + γδ + αδ)β3

(δ − β)(γ − β)(β − α)β
n − (αβ + αδ + βδ)γ3

(δ − γ)(γ − β)(γ − α)γ
n

+ (γα + γβ + αβ)δ3

(δ − γ)(δ − β)(δ − α)δ
n

)
R−2

+
(

(β + γ + δ)α3

(δ − α)(γ − α)(β − α)α
n − (α + γ + δ)β3

(δ − β)(γ − β)(β − α)β
n + (α + β + δ)γ3

(δ − γ)(γ − β)(γ − α)γ
n

− (α + β + γ)δ3

(δ − γ)(δ − β)(δ − α)δ
n

)
R−1

+
(
− α3

(δ − α)(γ − α)(β − α)α
n + β3

(δ − β)(γ − β)(β − α)β
n − γ3

(δ − γ)(γ − β)(γ − α)γ
n

+ δ3

(δ − γ)(δ − β)(δ − α)δ
n

)
R0.

Rn = dJn+1R−3 + (cJn+1 + dJn)R−2 + (Jn+3 − aJn+2)R−1 + Jn+2R0.

The proof of the other cases is similar and will be omitted.
Let A := −a, B := b, C := −c and D := d then equation (1.63) takes the form of (1.62)

and the equation (1.64) takes the form of (1.43). Then analogous to the formula of (1.62)
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we obtain

Sn = Djn+1S−3 + (Cjn+1 +Djn)S−2 + (jn+3 − Ajn+2)S−1 + jn+2S0.

Using the fact that jn = (−1)nJn, A = −a and C := −c we get

Sn = (−1)n+1 [dJn+1S−3 − (cJn+1 + dJn)S−2 + (Jn+3 − aJn+2)S−1 − Jn+2S0] .

Proof of the Main Theorem.
Putting

xn = un
vn−1

, yn = vn
un−1

, n ≥ −2. (1.70)

we get the following linear forth order system of difference equations

un+1 = avn+ bun−1 + cvn−2 +dun−3, vn+1 = aun+ bvn−1 + cun−2 +dvn−3, n ∈ N0, (1.71)

where the initial values u−3, u−2, u−1, u0, v−3, v−2, v−1, v0 are nonzero real numbers.
From(1.71) we have for n ∈ N0,

un+1 + vn+1 = a(vn + un) + b(un−1 + vn−1) + c(vn−2 + un−2) + d(un−3 + vn−3),

un+1 − vn+1 = a(vn − un) + b(un−1 − vn−1) + c(vn−2 − un−2) + d(un−3 − vn−3).

Putting again

Rn = un + vn, Sn = un − vn, n ≥ −2, (1.72)

we obtain two homogeneous linear difference equations of forth order:

Rn+1 = aRn + bRn−1 + cRn−2 + dRn−3, n ∈ N0,

and

Sn+1 = −aSn + bSn−1 − cSn−2 + dSn−3, n ∈ N0. (1.73)

Using (1.72), we get for n ≥ −3,

un = 1
2(Rn + Sn), vn = 1

2(Rn − Sn).

From Lemma 1.20 we obtain,
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

u2n−1 = 1
2 [dJ2n(R−3 + S−3) + (cJ2n + dJ2n−1) (R−2 − S−2) + (J2n+2 − aJ2n+1) (R−1 + S−1)

+J2n+1(R0 − S0)] , n ∈ N,

u2n = 1
2 [dJ2n+1(R−3 − S−3) + (cJ2n+1 + dJ2n) (R−2 + S−2) + (J2n+3 − aJ2n+2) (R−1 − S−1)

+J2n+2(R0 + S0)] , n ∈ N0,

(1.74)



v2n−1 = 1
2 [dJ2n(R−3 − S−3) + (cJ2n + dJ2n−1) (R−2 + S−2) + (J2n+2 − aJ2n+1) (R−1 − S−1)

+J2n+1(R0 + S0)] , n ∈ N,

v2n = 1
2 [dJ2n+1(R−3 + S−3) + (cJ2n+1 + dJ2n) (R−2 − S−2) + (J2n+3 − aJ2n+2) (R−1 + S−1)

+J2n+2(R0 − S0)] , n ∈ N0,

(1.75)

so

u2n−1 = dJ2nu−3 + (cJ2n + dJ2n−1) v−2 + (J2n+2 − aJ2n+1)u−1 + J2n+1v0, n ∈ N, (1.76)

u2n = dJ2n+1v−3 + (cJ2n+1 + dJ2n)u−2 + (J2n+3 − aJ2n+2) v−1 + J2n+2u0, n ∈ N0, (1.77)

v2n−1 = dJ2nv−3 + (cJ2n + dJ2n−1)u−2 + (J2n+2 − aJ2n+1) v−1 + J2n+1u0, n ∈ N, (1.78)

v2n = dJ2n+1u−3 + (cJ2n+1 + dJ2n) v−2 + (J2n+3 − aJ2n+2)u−1 + J2n+2v0, n ∈ N0. (1.79)

Substituting (1.74) and (1.75) in (1.70), we get for n ∈ N0,

x2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1) R−2 − S−2

R−3 + S−3
+ (J2n+4 − aJ2n+3) R−1 + S−1

R−3 + S−3
+ J2n+3

R0 − S0

R−3 + S−3

dJ2n+1 + (cJ2n+1 + dJ2n) R−2 − S−2

R−3 + S−3
+ (J2n+3 − aJ2n+2) R−1 + S−1

R−3 + S−3
+ J2n+2

R0 − S0

R−3 + S−3

,

(1.80)

x2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) R−2 + S−2

R−3 − S−3
+ (J2n+5 − aJ2n+4) R−1 − S−1

R−3 − S−3
+ J2n+4

R0 + S0

R−3 − S−3

dJ2n+2 + (cJ2n+2 + dJ2n+1) R−2 + S−2

R−3 − S−3
+ (J2n+4 − aJ2n+3) R−1 − S−1

R−3 − S−3
+ J2n+3

R0 + S0

R−3 − S−3

,

(1.81)
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y2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1) R−2 + S−2

R−3 − S−3
+ (J2n+4 − aJ2n+3) R−1 − S−1

R−3 − S−3
+ J2n+3

R0 + S0

R−3 − S−3

dJ2n+1 + (cJ2n+1 + dJ2n) R−2 + S−2

R−3 − S−3
+ (J2n+3 − aJ2n+2) R−1 − S−1

R−3 − S−3
+ J2n+2

R0 + S0

R−3 − S−3

,

(1.82)
and

y2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) R−2 − S−2

R−3 + S−3
+ (J2n+5 − aJ2n+4) R−1 + S−1

R−3 + S−3
+ J2n+4

R0 − S0

R−3 + S−3

dJ2n+2 + (cJ2n+2 + dJ2n+1) R−2 − S−2

R−3 + S−3
+ (J2n+4 − aJ2n+3) R−1 + S−1

R−3 + S−3
+ J2n+3

R0 − S0

R−3 + S−3

.

(1.83)
We have

x−2 = u−2

v−3
= R−2 + S−2

R−3 − S−3
, x−1 = u−1

v−2
= R−1 + S−1

R−2 − S−2
, x0 = u0

v−1
= R0 + S0

R−1 − S−1
, (1.84)

y−2 = v−2

u−3
= R−2 − S−2

R−3 + S−3
, y−1 = v−1

u−2
= R−1 − S−1

R−2 + S−2
, y0 = v0

u−1
= R0 − S0

R−1 + S−1
(1.85)

From (1.84), (1.85) we get,


R−1 + S−1

R−3 + S−3
= R−1 + S−1

R−2 − S−2
× R−2 − S−2

R−3 + S−3
= x−1y−2

R0 − S0

R−3 + S−3
= R0 − S0

R−1 + S−1
× R−1 + S−1

R−2 − S−2
× R−2 − S−2

R−3 + S−3
= y0x−1y−2

(1.86)


R−1 − S−1

R−3 − S−3
= R−1 − S−1

R−2 + S−2
× R−2 + S−2

R−3 − S−3
= y−1x−2

R0 + S0

R−3 − S−3
= R0 + S0

R−1 − S−1
× R−1 − S−1

R−2 + S−2
× R−2 + S−2

R−3 − S−3
= x0y−1x−2

(1.87)

Using (1.80), (1.81), (1.82), (1.83), (1.86) and (1.87), we obtain the closed form of the
solutions of the system (1.41), that is for n ∈ N0, we have

x2n+1 = dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3)x−1y−2 + J2n+3y0x−1y−2

dJ2n+1 + (cJ2n+1 + dJ2n) y−2 + (J2n+3 − aJ2n+2)x−1y−2 + J2n+2y0x−1y−2
,

x2n+2 = dJ2n+3 + (cJ2n+3 + dJ2n+2)x−2 + (J2n+5 − aJ2n+4) y−1x−2 + J2n+4x0y−1x−2

dJ2n+2 + (cJ2n+2 + dJ2n+1)x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2
,


y2n+1 = dJ2n+2 + (cJ2n+2 + dJ2n+1)x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2

dJ2n+1 + (cJ2n+1 + dJ2n)x−2 + (J2n+3 − aJ2n+2) y−1x−2 + J2n+2x0y−1x−2
,

y2n+2 = dJ2n+3 + (cJ2n+3 + dJ2n+2) y−2 + (J2n+5 − aJ2n+4)x−1y−2 + J2n+4y0x−1y−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3)x−1y−2 + J2n+3y0x−1y−2
.
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1.4 Representations of solutions to two general classes

of nonlinear systems of difference equations

In the present section, we continue our interest in solvable difference equations, more pre-
cisely, we will solve the following two general systems of difference equations

xn+1 = f−1 (ag(yn) + bf(xn−1) + cg(yn−2) + df(xn−3)) ,

yn+1 = g−1 (af(xn) + bg(yn−1) + cf(xn−2) + dg(yn−3)) ,

and
xn+1 = f−1

(
a+ b

g(yn) + c

g(yn)f(xn−1) + d

g(yn)f(xn−1)g(yn−2)

)
,

yn+1 = g−1
(
a+ b

f(xn) + c

f(xn)g(yn−1) + d

f(xn)g(yn−1)f(xn−2)

)
,

where n ∈ N0, f, g : D −→ R are one to one (“1− 1”) continuous functions on D ⊆ R, the
initial values x−i, y−i, i = 0, 1, 2, 3 are arbitrary real numbers in D and the parameters a, b,
c and d are arbitrary real numbers.

In our study, we are inspired and motivated by the ideas, the equations and the systems of
some recent published papers. The papers, [2, 3] and especially [96] are our main motivation
in the present work. The obtained results considerably generalize some existing results in
the literature, see [2, 3, 7, 8, 44, 65, 66, 67, 92, 96, 95, 104, 105, 124].

1.4.1 First class of systems

In this part, we will focus our interest on our first general system of difference equations,
that is the system


xn+1 = f−1 (ag(yn) + bf(xn−1) + cg(yn−2) + df(xn−3)) ,

yn+1 = g−1 (af(xn) + bg(yn−1) + cf(xn−2) + dg(yn−3)) ,
(1.88)

where n ∈ N0, f, g : D −→ R are continuous functions, with D = Df = Dg, that is f and
g have the same domain, and it is also assumed that f , g are “1− 1” on D ⊆ R, the initial
values x−i, y−i, i = 0, 1, 2, 3 are arbitrary real numbers in D and the parameters a, b, c and
d are arbitrary real numbers.
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1.4.1.1 Explicit formulas of solutions of system (1.88) with d 6= 0

In the following result, we solve in closed form (1.88).

Definition 1.2. A solution {xn, yn}n≥−3 of system (1.88), is said to be well-defined if for
all n ∈ N0, we have

ag(yn) + bf(xn−1) + cg(yn−2) + df(xn−3) ∈ Df−1 ,

and
af(xn) + bg(yn−1) + cf(xn−2) + dg(yn−3) ∈ Dg−1 .

Theorem 1.21. Let {xn, yn}n≥−3 be a well-defined solution of the system (1.88), then we
have the following representation

x2n−1 = f−1 (dJ2nf(x−3) + (cJ2n + dJ2n−1) g(y−2) + (J2n+2 − aJ2n+1) f(x−1)

+J2n+1g(y0)) , n ∈ N,

x2n = f−1 (dJ2n+1g(y−3) + (cJ2n+1 + dJ2n) f(x−2) + (J2n+3 − aJ2n+2) g(y−1)

+J2n+2f(x0)) , n ∈ N0,

(1.89)



y2n−1 = g−1 (dJ2ng(y−3) + (cJ2n + dJ2n−1) f(x−2) + (J2n+2 − aJ2n+1) g(y−1)

+J2n+1f(x0)) , n ∈ N,

y2n = g−1 (dJ2n+1f(x−3) + (cJ2n+1 + dJ2n) g(y−2) + (J2n+3 − aJ2n+2) f(x−1)

+J2n+2g(y0)) , n ∈ N0.

(1.90)

Proof. Since the functions f , g are “1− 1”, then from (1.88) we get
f(xn+1) = ag(yn) + bf(xn−1) + cg(yn−2) + df(xn−3),

g(yn+1) = af(xn) + bg(yn−1) + cf(xn−2) + dg(yn−3), n ∈ N0.
(1.91)

By the change of variables

Xn = f(xn), Yn = g(yn), n ≥ −3, (1.92)

system (1.91) is transformed to the following one
Xn+1 = aYn + bXn−1 + cYn−2 + dXn−3,

Yn+1 = aXn + bYn−1 + cXn−2 + dYn−3, n ∈ N0.
(1.93)
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Clearly (1.93) is in the form of system (1.71), by (1.76), (1.77), (1.78) and (1.79), we obtain
the following representation of solutions
X2n−1 = dJ2nX−3 + (cJ2n + dJ2n−1)Y−2 + (J2n+2 − aJ2n+1)X−1 + J2n+1Y0, n ∈ N,

X2n = dJ2n+1Y−3 + (cJ2n+1 + dJ2n)X−2 + (J2n+3 − aJ2n+2)Y−1 + J2n+2X0, n ∈ N0,
(1.94)


Y2n−1 = dJ2nY−3 + (cJ2n + dJ2n−1)X−2 + (J2n+2 − aJ2n+1)Y−1 + J2n+1X0, n ∈ N,

Y2n = dJ2n+1X−3 + (cJ2n+1 + dJ2n)Y−2 + (J2n+3 − aJ2n+2)X−1 + J2n+2Y0, n ∈ N0.
(1.95)

Now, by (1.92) we get that

x2n−1 = f−1 [dJ2nf(x−3) + (cJ2n + dJ2n−1) g(y−2) + (J2n+2 − aJ2n+1) f(x−1)

+J2n+1g(y0)] , n ∈ N,

x2n = f−1 [dJ2n+1g(y−3) + (cJ2n+1 + dJ2n) f(x−2) + (J2n+3 − aJ2n+2) g(y−1)

+J2n+2f(x0)] , n ∈ N0,

(1.96)



y2n−1 = g−1 [dJ2ng(y−3) + (cJ2n + dJ2n−1) f(x−2) + (J2n+2 − aJ2n+1) g(y−1)

+J2n+1f(x0)] , n ∈ N,

y2n = g−1 [dJ2n+1f(x−3) + (cJ2n+1 + dJ2n) g(y−2) + (J2n+3 − aJ2n+2) f(x−1)

+J2n+2g(y0)] , n ∈ N0.

(1.97)

Remark 1.4.1. Moreover, if g ≡ f and y−i = x−i, i = 0, 3 then, the system (1.88) will be
the equation

xn+1 = f−1 (af(xn) + bf(xn−1) + cf(xn−2) + df(xn−3)) (1.98)

and then the representation of the well-defined solutions are given by



x2n−1 = f−1 [dJ2nf(x−3) + (cJ2n + dJ2n−1) f(x−2) + (J2n+2 − aJ2n+1) f(x−1)

+J2n+1f(x0)] , n ∈ N,

x2n = f−1 [dJ2n+1f(x−3) + (cJ2n+1 + dJ2n) f(x−2) + (J2n+3 − aJ2n+2) f(x−1)

+J2n+2f(x0)] , n ∈ N0.

(1.99)

In [96], Stevic studied the equation (1.98).
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Now as applications of Theorem 1.21, we give the following examples.

Example 1.4.1. Let
f(t) = t2j+1, g(t) = t2k+1, j, k ∈ N0. (1.100)

Then, Df = Dg = R, clearly the functions f and g are “1 − 1” continuous functions on R

and the system (1.88) becomes
xn+1 =

[
ay2k+1

n + bx2j+1
n−1 + cy2k+1

n−2 + dx2j+1
n−3

] 1
2j+1 ,

yn+1 =
[
ax2j+1

n + by2k+1
n−1 + cx2j+1

n−2 + dy2k+1
n−3

] 1
2k+1 , n ∈ N0.

(1.101)

Then from (1.89) and (1.90), we obtain that general solution of the equation (1.101) is

x2n−1 =
[
dJ2nx

2j+1
−3 + (cJ2n + dJ2n−1) y2k+1

−2 + (J2n+2 − aJ2n+1)x2j+1
−1

+J2n+1y
2k+1
0

] 1
2j+1 , n ∈ N,

x2n =
[
dJ2n+1y

2k+1
−3 + (cJ2n+1 + dJ2n)x2j+1

−2 + (J2n+3 − aJ2n+2) y2k+1
−1

+J2n+2x
2j+1
0

] 1
2j+1 , n ∈ N0,

(1.102)



y2n−1 =
[
dJ2ny

2k+1
−3 + (cJ2n + dJ2n−1)x2j+1

−2 + (J2n+2 − aJ2n+1) y2k+1
−1

+J2n+1x
2j+1
0

] 1
2k+1 , n ∈ N,

y2n =
[
dJ2n+1x

2j+1
−3 + (cJ2n+1 + dJ2n) y2k+1

−2 + (J2n+3 − aJ2n+2)x2j+1
−1

+J2n+2y
2k+1
0

] 1
2k+1 , n ∈ N0.

(1.103)

Example 1.4.2. Let
f(t) = 1

t2j+1 , g(t) = 1
t2k+1 , j, k ∈ N0. (1.104)

Then, Df = Dg = R − {0}, clearly the functions f and g are “1 − 1” continuous functions
on R− {0} and the system (1.88) becomes

xn+1 =
[

a

y2k+1
n

+ b

x2j+1
n−1

+ c

y2k+1
n−2

+ d

x2j+1
n−3

] −1
2j+1

,

yn+1 =
[

a

x2j+1
n

+ b

y2k+1
n−1

+ c

x2j+1
n−2

+ d

y2k+1
n−3

] −1
2k+1

, n ∈ N0,

(1.105)

or equivalently


xn+1 =

[
y2k+1

n x2j+1
n−1 y

2k+1
n−2 x2j+1

n−3
ax2j+1

n−1 y
2k+1
n−2 x2j+1

n−3 +by2k+1
n y2k+1

n−2 x2j+1
n−3 +cy2k+1

n x2j+1
n−1 x

2j+1
n−3 +dy2k+1

n x2j+1
n−1 y

2k+1
n−2

] 1
2j+1

,

yn+1 =
[

x2j+1
n y2k+1

n−1 x2j+1
n−2 y

2k+1
n−3

ay2k+1
n−1 x2j+1

n−2 y
2k+1
n−3 +bx2j+1

n x2j+1
n−2 y

2k+1
n−3 +cx2j+1

n y2k+1
n−1 y2k+1

n−3 +dx2j+1
n y2k+1

n−1 x2j+1
n−2

] 1
2k+1

, n ∈ N0.

(1.106)
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Then from (1.89) and (1.90), we obtain that general solution of system (1.106) is

x2n−1 =
[
dJ2nx

−(2j+1)
−3 + (cJ2n + dJ2n−1) y−(2k+1)

−2 + (J2n+2 − aJ2n+1)x−(2j+1)
−1

+J2n+1y
−(2k+1)
0

]− 1
2j+1 , n ∈ N,

x2n =
[
dJ2n+1y

−(2k+1)
−3 + (cJ2n+1 + dJ2n)x−(2j+1)

−2 + (J2n+3 − aJ2n+2) y−(2k+1)
−1

+J2n+2x
−(2j+1)
0

]− 1
2j+1 , n ∈ N0,

(1.107)



y2n−1 =
[
dJ2ny

−(2k+1)
−3 + (cJ2n + dJ2n−1)x−(2j+1)

−2 + (J2n+2 − aJ2n+1) y−(2k+1)
−1

+J2n+1x
−(2j+1)
0

]− 1
2k+1 , n ∈ N,

y2n =
[
dJ2n+1x

−(2j+1)
−3 + (cJ2n+1 + dJ2n) y−(2k+1)

−2 + (J2n+3 − aJ2n+2)x−(2j+1)
−1

+J2n+2y
−(2k+1)
0

]− 1
2k+1 , n ∈ N0.

(1.108)

If j = k = 0, then system (1.105) becomes
xn+1 = ynxn−1yn−2xn−3

axn−1yn−2xn−3+bynyn−2xn−3+cynxn−1xn−3+dynxn−1yn−2
,

yn+1 = xnyn−1xn−2yn−3
ayn−1xn−2yn−3+bxnxn−2yn−3+cxnyn−1yn−3+dxnyn−1xn−2

, n ∈ N0.
(1.109)

The form of the well-defined solutions of (1.109), can be obtained by putting j = k = 0, in
the formulas of the solutions of (1.105). The solutions of the equation, see [96]

xn+1 = xnxn−1xn−2xn−3

axn−1xn−2xn−3 + bxnxn−2xn−3 + cxnxn−1xn−3 + dxnxn−1xn−2
, n ∈ N0, (1.110)

can be obtained from the solutions of (1.109) by taking y−i = x−i, i = 0, 1, 2, 3.

1.4.1.2 Particular cases of system (1.88)

1.4.1.2.1 The case d = 0 and c 6= 0 In this case the system (1.88) takes the form:
xn+1 = f−1 (ag(yn) + bf(xn−1) + cg(yn−2)) ,

yn+1 = g−1 (af(xn) + bg(yn−1) + cf(xn−2)) , n ∈ N0.
(1.111)

Using the change of variables (1.92), with n ≥ −2, we get the third order linear system

Xn+1 = aYn + bXn−1 + cYn−2, Yn+1 = aXn + bYn−1 + cXn−2, n ≥ −2. (1.112)

Consider the sequence
(
J̃n
)
n≥0

defined by

J̃n+3 = aJ̃n+2 + bJ̃n+1 + cJ̃n, n ∈ N0, (1.113)



1.4 Representations of solutions to two general classes of nonlinear systems of
difference equations 39

and the special initial values

J̃0 = 0, J̃1 = 1, J̃2 = a.

The sequence
(
J̃n
)
n≥0

is obtained from the sequence (Jn)n≥0 defined by (1.43):

Jn+4 = aJn+3 + bJn+2 + cJn+1 + dJn, J0 = 0, J1 = 0, J2 = 1 and J3 = a, n ∈ N0.

For d = 0, we obtain

Jn+4 = aJn+3 + bJn+2 + cJn+1.

Putting

J̃n = Jn+1, n ∈ N0,

we get the sequence (1.113). Noting that in this case, the corresponding sequences (Rn)n≥0,
(Sn)n≥0 will be

Rn+1 = aRn + bRn−1 + cRn−2, Sn+1 = −aSn + bSn−1 − cSn−2, n ∈ N0,

with the initial values R0, R−1, R−2, S0, S−1, S−2. The formulas of the solutions of these
equations are expressed using the sequence

(
J̃n
)
n≥0

, see [3].
The formulas of the solutions of (1.112) and (1.111), can be obtaining from those of solutions
of (1.71) and solutions of (1.88) by changing Jn by J̃n−1.

In summary we have the following result.

Corollary 1.22. Let {xn, yn}n≥−2 be a well-defined solution of system (1.111), then

x2n−1 = f−1
[
cJ̃2n−1g(y−2) +

(
J̃2n+1 − aJ̃2n

)
f(x−1) + J̃2ng(y0)

]
, n ∈ N,

x2n = f−1
[
cJ̃2nf(x−2) +

(
J̃2n+2 − aJ̃2n+1

)
g(y−1) + J̃2n+1f(x0)

]
, n ∈ N0,

y2n−1 = g−1
[
cJ̃2n−1f(x−2) +

(
J̃2n+1 − aJ̃2n

)
g(y−1) + J̃2nf(x0)

]
, n ∈ N,

y2n = g−1
[
cJ̃2ng(y−2) +

(
J̃2n+2 − aJ̃2n+1

)
f(x−1) + J̃2n+1g(y0)

]
, n ∈ N0.

Remark 1.4.2. If g ≡ f and y−i = x−i, i = 0, 1, 2 then, system (1.111) becomes

xn+1 = f−1 [af(xn) + bf(xn−1) + cf(xn−2)] (1.114)
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and by Corollary 1.22, the every well defined solution is given by
x2n−1 = f−1

[
cJ̃2n−1f(x−2) +

(
J̃2n+1 − aJ̃2n

)
f(x−1) + J̃2nf(x0)

]
, n ∈ N,

x2n = f−1
[
cJ̃2nf(x−2) +

(
J̃2n+2 − aJ̃2n+1

)
f(x−1) + J̃2n+1f(x0)

]
, n ∈ N0,

(1.115)

which can written in a unified form as

xn = f−1
[
cJ̃nf(x−2) +

(
J̃n+2 − aJ̃n+1

)
f(x−1) + J̃n+1f(x0)

]
, n ∈ N0. (1.116)

Noting again that this equation, was studied by Stevic in [96].

1.4.1.2.2 Case d = 0, c 6= 0 and a = 0 In this case we get the system
xn+1 = f−1 [bf(xn−1) + cg(yn−2)] ,

yn+1 = g−1 [bg(yn−1) + cf(xn−2)] , n ∈ N0.
(1.117)

Here,
(
J̃n
)
n≥0

will be the sequence defined by

Pn+3 = bPn+1 + cPn, n ∈ N0, (1.118)

and the special initial values

P0 = 0, P1 = 1 and P2 = 0, (1.119)

so, the solutions are expressed in terms of (P)n≥0 and are given by

x2n−1 = f−1 [cP2n−1g(y−2) + P2n+1f(x−1) + P2ng(y0)] , n ∈ N,

x2n = f−1 [cP2nf(x−2) + P2n+2g(y−1) + P2n+1f(x0)] , n ∈ N0,

y2n−1 = g−1 [cP2n−1f(x−2) + P2n+1g(y−1) + P2nf(x0)] , n ∈ N,

y2n = g−1 [cP2ng(y−2) + P2n+2f(x−1) + P2n+1g(y0)] , n ∈ N0,

for the system (1.117) and by

xn = f−1 [cPnf(x−2) + Pn+2f(x−1) + Pn+1f(x0)] , n ∈ N0,
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for its one dimensional version, that is the equation

xn+1 = f−1 (bf(xn−1) + cf(xn−2)) .

If b 6= 0, (P)n≥0 will be a generalized Padovn sequence and if b = c = 1, then (Pn)n≥0 will
be the famous Padovan sequence.
Noting that system (1.117) generalize for example the works of [44] and [124].

1.4.1.2.3 Case c = d = 0 and b 6= 0 In this case, we get the system
xn+1 = f−1 [ag(yn) + bf(xn−1)] ,

yn+1 = g−1 [af(xn) + bg(yn−1)] , n ∈ N0.
(1.120)

By the same philosophy, we obtain the sequence
(
F̃n
)
n≥0

=
(
J̃n+1

)
n≥0

, defined by

F̃n+2 = aF̃n+1 + bF̃n, F̃0 = 1, F̃1 = a, n ∈ N0,

and the solutions of (1.120) and its one dimensional version, are obtained from the solutions
of (1.111) and (1.114), by writing F̃n−1 instead of J̃n. If a 6= 0,

(
F̃n
)
n≥0

is a generalized
Fibonacci sequence and if a = b = 1,

(
F̃n
)
n≥0

will be the famous Fibonacci sequence.
System (1.120) and its one dimensional versions, generalized for example the works of [104,
105].

1.4.1.2.4 Case b = c = d = 0 and a 6= 0 In this case, we get the system

xn+1 = f−1 (ag(yn))) , yn+1 = g−1 (af(xn)) , n ∈ N0. (1.121)

Using the fact that f , g are one to one functions, and the change of variables

Xn = f(xn), yn = g(yn), n ≥ 0

the system (1.121), will be

Xn+1 = aYn, Yn+1 = aXn, n ∈ N0.

So,
X2n = a2nX0, Y2n = a2nY0, X2n+1 = a2n+1Y0, Y2n+1 = a2n+1X0, n ∈ N0.

Hence
x2n = f−1(a2nf(x0)), y2n = g−1(a2ng(y0)), n ∈ N0

and

x2n+1 = f−1(a2n+1g(y0)), y2n+1 = g−1(a2n+1f(x0)), n ∈ N0.
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1.4.2 Second class of systems

In this part, we are interested in the following system of difference equations given by
xn+1 = f−1

(
a+ b

g(yn) + c
g(yn)f(xn−1) + d

g(yn)f(xn−1)g(yn−2)

)
,

yn+1 = g−1
(
a+ b

f(xn) + c
f(xn)g(yn−1) + d

f(xn)g(yn−1)f(xn−2)

)
,

(1.122)

where n ∈ N0, f, g : D −→ R are continuous functions, with D = Df = Dg, that is f and
g have the same domain, in addition we assume that f , g are “1− 1” on D ⊆ R, the initial
values x−i, y−i, i = 0, 1, 2, are arbitrary real numbers in D and the parameters a, b, c and d
are arbitrary real numbers.

Definition 1.3. A solution {xn, yn}n≥−2 of system (1.122), is said to be well-defined if for
all n ∈ N0, we have

a+ b

g(yn) + c

g(yn)f(xn−1) + d

g(yn)f(xn−1)g(yn−2) ∈ Df−1 ,

and

a+ b

f(xn) + c

f(xn)g(yn−1) + d

f(xn)g(yn−1)f(xn−2) ∈ Dg−1 .

We solve in closed form (1.122) and we investigated particular cases of it. The philosophy,
is the same as in the previous section (1.4.1), so we will brief in presenting our formulas of
the solutions.

1.4.2.1 Explicit formulas of solutions of system (1.122) with d 6= 0

The following result is devoted to the formulas of well-defined solutions of (1.122).

Theorem 1.23. Let {xn, yn}n≥−2 be a well-defined solution of system (1.122). Then, for all
n ∈ N0 we have

x2n+1 = f−1
[
dJ2n+2 + (cJ2n+2 + dJ2n+1) g(y−2) + (J2n+4 − aJ2n+3) f(x−1)g(y−2) + J2n+3g(y0)f(x−1)g(y−2)
dJ2n+1 + (cJ2n+1 + dJ2n) g(y−2) + (J2n+3 − aJ2n+2) f(x−1)g(y−2) + J2n+2g(y0)f(x−1)g(y−2)

]
,

x2n+2 = f−1
[
dJ2n+3 + (cJ2n+3 + dJ2n+2) f(x−2) + (J2n+5 − aJ2n+4) g(y−1)f(x−2) + J2n+4f(x0)g(y−1)f(x−2)
dJ2n+2 + (cJ2n+2 + dJ2n+1) f(x−2) + (J2n+4 − aJ2n+3) g(y−1)f(x−2) + J2n+3f(x0)g(y−1)f(x−2)

]
,

y2n+1 = g−1
[
dJ2n+2 + (cJ2n+2 + dJ2n+1) f(x−2) + (J2n+4 − aJ2n+3) g(y−1)f(x−2) + J2n+3f(x0)g(y−1)f(x−2)
dJ2n+1 + (cJ2n+1 + dJ2n) f(x−2) + (J2n+3 − aJ2n+2) g(y−1)f(x−2) + J2n+2f(x0)g(y−1)f(x−2)

]
,

y2n+2 = g−1
[
dJ2n+3 + (cJ2n+3 + dJ2n+2) g(y−2) + (J2n+5 − aJ2n+4) f(x−1)g(y−2) + J2n+4g(y0)f(x−1)g(y−2)
dJ2n+2 + (cJ2n+2 + dJ2n+1) g(y−2) + (J2n+4 − aJ2n+3) f(x−1)g(y−2) + J2n+3g(y0)f(x−1)g(y−2)

]
.
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Proof. Using the fact that the functions f , g are one to one and using the change of variables
(1.92), with n ≥ −2, the system (1.122) becomes

Xn+1 = a+ b

Yn
+ c

YnXn−1
+ d

YnXn−1Yn−2
,

Yn+1 = a+ b

Xn

+ c

XnYn−1
+ d

XnYn−1Xn−2
, n ∈ N0,

(1.123)

or equivalently,
Xn+1 = aYnXn−1Yn−2 + bXn−1Yn−2 + cYn−2 + d

YnXn−1Yn−2
,

Yn+1 = aXnYn−1Xn−2 + bYn−1Xn−2 + cXn−2 + d

XnYn−1Xn−2
, n ∈ N0.

(1.124)

This system was solved in [3], and for n ∈ N0, the solutions of (1.124) takes the form

X2n+1 = dJ2n+2 + (cJ2n+2 + dJ2n+1)Y−2 + (J2n+4 − aJ2n+3)X−1Y−2 + J2n+3Y0X−1Y−2

dJ2n+1 + (cJ2n+1 + dJ2n)Y−2 + (J2n+3 − aJ2n+2)X−1Y−2 + J2n+2Y0X−1Y−2
,

(1.125)

X2n+2 = dJ2n+3 + (cJ2n+3 + dJ2n+2)X−2 + (J2n+5 − aJ2n+4)Y−1X−2 + J2n+4X0Y−1X−2

dJ2n+2 + (cJ2n+2 + dJ2n+1)X−2 + (J2n+4 − aJ2n+3)Y−1X−2 + J2n+3X0Y−1X−2
,

(1.126)

Y2n+1 = dJ2n+2 + (cJ2n+2 + dJ2n+1)X−2 + (J2n+4 − aJ2n+3)Y−1X−2 + J2n+3X0Y−1X−2

dJ2n+1 + (cJ2n+1 + dJ2n)X−2 + (J2n+3 − aJ2n+2)Y−1X−2 + J2n+2X0Y−1X−2
,

(1.127)

Y2n+2 = dJ2n+3 + (cJ2n+3 + dJ2n+2)Y−2 + (J2n+5 − aJ2n+4)X−1Y−2 + J2n+4Y0X−1Y−2

dJ2n+2 + (cJ2n+2 + dJ2n+1)Y−2 + (J2n+4 − aJ2n+3)X−1Y−2 + J2n+3Y0X−1Y−2
,

(1.128)
where (Jn)n∈N0

is the sequence defined by (1.43).

Using (1.92), (1.125), (1.126), (1.127) and (1.128), we get that for n ∈ N0, every well-
defined solution of system (1.122) has the following representation

x2n+1 = f−1
[
dJ2n+2 + (cJ2n+2 + dJ2n+1) g(y−2) + (J2n+4 − aJ2n+3) f(x−1)g(y−2) + J2n+3g(y0)f(x−1)g(y−2)
dJ2n+1 + (cJ2n+1 + dJ2n) g(y−2) + (J2n+3 − aJ2n+2) f(x−1)g(y−2) + J2n+2g(y0)f(x−1)g(y−2)

]
, (1.129)

x2n+2 = f−1
[
dJ2n+3 + (cJ2n+3 + dJ2n+2) f(x−2) + (J2n+5 − aJ2n+4) g(y−1)f(x−2) + J2n+4f(x0)g(y−1)f(x−2)
dJ2n+2 + (cJ2n+2 + dJ2n+1) f(x−2) + (J2n+4 − aJ2n+3) g(y−1)f(x−2) + J2n+3f(x0)g(y−1)f(x−2)

]
,

(1.130)
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y2n+1 = g−1
[
dJ2n+2 + (cJ2n+2 + dJ2n+1) f(x−2) + (J2n+4 − aJ2n+3) g(y−1)f(x−2) + J2n+3f(x0)g(y−1)f(x−2)
dJ2n+1 + (cJ2n+1 + dJ2n) f(x−2) + (J2n+3 − aJ2n+2) g(y−1)f(x−2) + J2n+2f(x0)g(y−1)f(x−2)

]
,

(1.131)

y2n+2 = g−1
[
dJ2n+3 + (cJ2n+3 + dJ2n+2) g(y−2) + (J2n+5 − aJ2n+4) f(x−1)g(y−2) + J2n+4g(y0)f(x−1)g(y−2)
dJ2n+2 + (cJ2n+2 + dJ2n+1) g(y−2) + (J2n+4 − aJ2n+3) f(x−1)g(y−2) + J2n+3g(y0)f(x−1)g(y−2)

]
. (1.132)

Remark 1.4.3. 1. In [3], to solve the system (1.124), the authors used the change of
variables

Xn = un
vn−1

, Yn = vn
un−1

, n ≥ −2,

to obtain the forth linear system (1.71).

2. When g ≡ f and y−i = x−i, i = 0, 2 then system (1.122) becomes the equation

xn+1 = f−1
[
a+ b

f(xn) + c

f(xn)f(xn−1) + d

f(xn)f(xn−1)f(xn−2)

]
, n ∈ N0, (1.133)

and the form of every well-defined solution of (1.133) is given by

x2n+1 = f−1
[
dJ2n+2 + (cJ2n+2 + dJ2n+1) f(x−2) + (J2n+4 − aJ2n+3) f(x−1)f(x−2) + J2n+3f(x0)f(x−1)f(x−2)
dJ2n+1 + (cJ2n+1 + dJ2n) f(x−2) + (J2n+3 − aJ2n+2) f(x−1)f(x−2) + J2n+2f(x0)f(x−1)f(x−2)

]
,

(1.134)

x2n+2 = f−1
[
dJ2n+3 + (cJ2n+3 + dJ2n+2) f(x−2) + (J2n+5 − aJ2n+4) f(x−1)f(x−2) + J2n+4f(x0)f(x−1)f(x−2)
dJ2n+2 + (cJ2n+2 + dJ2n+1) f(x−2) + (J2n+4 − aJ2n+3) f(x−1)f(x−2) + J2n+3f(x0)f(x−1)f(x−2)

]
,

(1.135)
which can be represented in the unified form

xn+1 = f−1
[
dJn+2 + (cJn+2 + dJn+1) f(x−2) + (Jn+4 − aJn+3) f(x−1)f(x−2) + Jn+3f(x0)f(x−1)f(x−2)
dJn+1 + (cJn+1 + dJn) f(x−2) + (Jn+3 − aJn+2) f(x−1)f(x−2) + Jn+2f(x0)f(x−1)f(x−2)

]
.(1.136)

Now we give some applications of Theorem (1.23).

Example 1.4.3. Let
f(t) = t2j+1, g(t) = t2k+1, j, k ∈ N0.

We have the functions f and g are one to one continuous functions on R = Df = Dg. In
this case, system (1.122) becomes

xn+1 =
[
a+ b

y2k+1
n

+ c

y2k+1
n x2j+1

n−1
+ d

y2k+1
n x2j+1

n−1 y
2k+1
n−2

] 1
2j+1

,

yn+1 =
[
a+ b

x2j+1
n

+ c

x2j+1
n y2k+1

n−1
+ d

x2j+1
n y2k+1

n−1 x2j+1
n−2

] 1
2k+1

, n ∈ N0.

(1.137)
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Then by Theorem 1.23, we obtain that the solutions of system (1.137) have the following
form

x2n+1 =
[

dJ2n+2 + (cJ2n+2 + dJ2n+1) y2k+1
−2 + (J2n+4 − aJ2n+3) x2j+1

−1 y2k+1
−2 + J2n+3y2k+1

0 x2j+1
−1 y2k+1

−2

dJ2n+1 + (cJ2n+1 + dJ2n) y2k+1
−2 + (J2n+3 − aJ2n+2) x2j+1

−1 y2k+1
−2 + J2n+2y2k+1

0 x2j+1
−1 y2k+1

−2

] 1
2j+1

,

(1.138)

x2n+2 =
[

dJ2n+3 + (cJ2n+3 + dJ2n+2) x2j+1
−2 + (J2n+5 − aJ2n+4) y2k+1

−1 x2j+1
−2 + J2n+4x2j+1

0 y2k+1
−1 x2j+1

−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) x2j+1
−2 + (J2n+4 − aJ2n+3) y2k+1

−1 x2j+1
−2 + J2n+3x2j+1

0 y2k+1
−1 x2j+1

−2

] 1
2j+1

,

(1.139)

y2n+1 =
[

dJ2n+2 + (cJ2n+2 + dJ2n+1) x2j+1
−2 + (J2n+4 − aJ2n+3) y2k+1

−1 x2j+1
−2 + J2n+3x2j+1

0 y2k+1
−1 x2j+1

−2

dJ2n+1 + (cJ2n+1 + dJ2n) x2j+1
−2 + (J2n+3 − aJ2n+2) y2k+1

−1 x2j+1
−2 + J2n+2x2j+1

0 )y2k+1
−1 x2j+1

−2

] 1
2k+1

,

(1.140)

y2n+2 =
[

dJ2n+3 + (cJ2n+3 + dJ2n+2) y2k+1
−2 + (J2n+5 − aJ2n+4) x2j+1

−1 y2k+1
−2 + J2n+4y2k+1

0 x2j+1
−1 y2k+1

−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) y2k+1
−2 + (J2n+4 − aJ2n+3) x2j+1

−1 y2k+1
−2 + J2n+3y2k+1

0 x2j+1
−1 y2k+1

−2

] 1
2k+1

.

(1.141)

Example 1.4.4. Let

f(t) = 1
t2j+1 , g(t) = 1

t2k+1 , j, k ∈ N0.

We have the functions f and g are one to one continuous functions on R− {0} = Df = Dg.
Then, system (1.122) becomes


xn+1 =

[
1

a+by2k+1
n +cy2k+1

n x2j+1
n−1 +dy2k+1

n x2j+1
n−1 y

2k+1
n−2

] 1
2j+1

,

yn+1 =
[

1
a+bx2j+1

n +cx2j+1
n y2k+1

n−1 +dx2j+1
n y2k+1

n−1 x2j+1
n−2

] 1
2k+1

, n ∈ N0.

(1.142)

Then by Theorem 1.23, the solutions of system (1.142) have the following representation

x2n+1 =
[

dJ2n+1y2k+1
0 x2j+1

−1 y2k+1
−2 + (cJ2n+1 + dJ2n) y2k+1

0 x2j+1
−1 + (J2n+3 − aJ2n+2) y2k+1

0 + J2n+2

dJ2n+2y2k+1
0 x2j+1

−1 y2k+1
−2 + (cJ2n+2 + dJ2n+1) y2k+1

0 x2j+1
−1 + (J2n+4 − aJ2n+3) y2k+1

0 + J2n+3

] 1
2j+1

,

(1.143)

x2n+2 =
[

dJ2n+2x2j+1
0 y2k+1

−1 x2j+1
−2 + (cJ2n+2 + dJ2n+1) x2j+1

0 y2k+1
−1 + (J2n+4 − aJ2n+3) x2j+1

0 + J2n+3

dJ2n+3x2j+1
0 y2k+1

−1 x2j+1
−2 + (cJ2n+3 + dJ2n+2) x2j+1

0 y2k+1
−1 + (J2n+5 − aJ2n+4) x2j+1

0 + J2n+4

] 1
2j+1

,

(1.144)
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y2n+1 =
[

dJ2n+1x2j+1
0 y2k+1

−1 x2j+1
−2 + (cJ2n+1 + dJ2n) x2j+1

0 y2k+1
−1 + (J2n+3 − aJ2n+2) x2j+1

0 + J2n+2

dJ2n+2x2j+1
0 y2k+1

−1 x2j+1
−2 + (cJ2n+2 + dJ2n+1) x2j+1

0 y2k+1
−1 + (J2n+4 − aJ2n+3) x2j+1

0 + J2n+3

] 1
2k+1

,

(1.145)

y2n+2 =
[

dJ2n+2y2k+1
0 x2j+1

−1 y2k+1
−2 + (cJ2n+2 + dJ2n+1) y2k+1

0 x2j+1
−1 + (J2n+4 − aJ2n+3) y2k+1

0 + J2n+3

dJ2n+3y2k+1
0 x2j+1

−1 y2k+1
−2 + (cJ2n+3 + dJ2n+2) y2k+1

0 x2j+1
−1 + (J2n+5 − aJ2n+4) y2k+1

0 + J2n+4

] 1
2k+1

.

(1.146)

1.4.2.1.1 The system xn+1 = 1
a+byn+cynxn−1+dynxn−1yn−2

, yn+1 = 1
a+bxn+cxnyn−1+dxnyn−1xn−2

Here we will focus our study on the system of difference equations
xn+1 = 1

a+ byn + cynxn−1 + dynxn−1yn−2
,

yn+1 = 1
a+ bxn + cxnyn−1 + dxnyn−1xn−2

,
n ∈ N0, (1.147)

which is a particular case of system (1.142) with j = k = 0. Noting that system (1.147),
generalize the studies in [65, 66, 67]. Then, putting j = k = 0 in the formulas of well-defined
solutions of system (1.142), we obtain the following result.

Corollary 1.24. Let {xn, y,}n≥−2 be a well-defined solution of (1.147), then for n ∈ N0, we
have

x2n+1 = dJ2n+1y0x−1y−2 + (cJ2n+1 + dJ2n) y0x−1 + (J2n+3 − aJ2n+2) y0 + J2n+2

dJ2n+2y0x−1y−2 + (cJ2n+2 + dJ2n+1) y0x−1 + (J2n+4 − aJ2n+3) y0 + J2n+3
, (1.148)

x2n+2 = dJ2n+2x0y−1x−2 + (cJ2n+2 + dJ2n+1)x0y−1 + (J2n+4 − aJ2n+3)x0 + J2n+3

dJ2n+3x0y−1x−2 + (cJ2n+3 + dJ2n+2)x0y−1 + (J2n+5 − aJ2n+4)x0 + J2n+4
, (1.149)

y2n+1 = dJ2n+1x0y−1x−2 + (cJ2n+1 + dJ2n)x0y−1 + (J2n+3 − aJ2n+2)x0 + J2n+2

dJ2n+2x0y−1x−2 + (cJ2n+2 + dJ2n+1)x0y−1 + (J2n+4 − aJ2n+3)x0 + J2n+3
, (1.150)

y2n+2 = dJ2n+2y0x−1y−2 + (cJ2n+2 + dJ2n+1) y0x−1 + (J2n+4 − aJ2n+3) y0 + J2n+3

dJ2n+3y0x−1y−2 + (cJ2n+3 + dJ2n+2) y0x−1 + (J2n+5 − aJ2n+4) y0 + J2n+4
. (1.151)

Moreover, if we choose a = b = c = d = 1, the sequence (Jn)+∞
n=0 will be nothing other than

the famous Tetranacci sequence defined for n ∈ N0 by

Tn+4 = Tn+3 + Tn+2 + Tn+1 + Tn, T0 = T1 = 0, T2 = T3 = 1, (1.152)
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and for this choice of the parameters, the solutions takes the form

x2n+1 = T2n+1y0x−1y−2 + (T2n+1 + T2n) y0x−1 + (T2n+3 − T2n+2) y0 + T2n+2

T2n+2y0x−1y−2 + (T2n+2 + T2n+1) y0x−1 + (T2n+4 − T2n+3) y0 + T2n+3
, (1.153)

x2n+2 = T2n+2x0y−1x−2 + (T2n+2 + T2n+1)x0y−1 + (T2n+4 − T2n+3)x0 + T2n+3

T2n+3x0y−1x−2 + (T2n+3 + T2n+2)x0y−1 + (T2n+5 − T2n+4)x0 + T2n+4
, (1.154)

y2n+1 = T2n+1x0y−1x−2 + (T2n+1 + T2n)x0y−1 + (T2n+3 − T2n+2)x0 + T2n+2

T2n+2x0y−1x−2 + (T2n+2 + T2n+1)x0y−1 + (T2n+4 − T2n+3)x0 + T2n+3
, (1.155)

y2n+2 = T2n+2y0x−1y−2 + (T2n+2 + T2n+1) y0x−1 + (T2n+4 − T2n+3) y0 + T2n+3

T2n+3y0x−1y−2 + (T2n+3 + T2n+2) y0x−1 + (T2n+5 − T2n+4) y0 + T2n+4
. (1.156)

Now, we will study the stability of the equilibrium points of system (1.147) with a = b =
c = d = 1, that is the system

 xn+1 = f1(xn, xn−1, xn−2, yn, yn−1, yn−2) = 1
1+yn+xn−1yn+yn−2xn−1yn

,

yn+1 = f2(xn, xn−1, xn−2, yn, yn−1, yn−2) = 1
1+xn+yn−1xn+xn−2yn−1xn

.
(1.157)

For the stability of the equilibrium points, we assume that the initial values are positive real
numbers.
The points ( 1

α
,

1
α

), ( 1
β
,

1
β

), ( 1
γ, γ

) and (1
δ
,
1
δ

) are solutions of the of system


x = 1

1 + y + xy + xy2 ,

y = 1
1 + x+ yx+ x2y

,

where α, β, γ and δ are roots of polynomial characteristic associated to the equation (1.152),
see [3]. It follows that (x, y) = ( 1

α
,

1
α

) is the only equilibrium point for system (1.157) in
(0,+∞)2.

For the equilibrium point (x, y) = ( 1
α
,

1
α

), we have the following result.

Theorem 1.25. The equilibrium point (x, y) = ( 1
α
,

1
α

) is globally asymptotically stable.
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Proof. The Jacobian matrix associated to the system (1.157) around the equilibrium point
(x, y) = ( 1

α
,

1
α

), is given by

A =



0 −α+1
α4 0 −α−1

α
0 − 1

α4

1 0 0 0 0 0
0 1 0 0 0 0
−α−1

α
0 − 1

α4 0 −α+1
α4 0

0 0 0 1 0 0
0 0 0 0 1 0


.

The characteristic polynomial of A is

P (λ) = −h(λ)h(−λ), where h(λ) = λ3 − α− 1
α

λ2 + α + 1
α4 λ− 1

α4 . (1.158)

Consider the two functions

h1(λ) = λ3, h2(λ) = α− 1
α

λ2 − α + 1
α4 λ+ 1

α4 .

We have

|h2(λ)| ≤
∣∣∣∣α− 1
α

∣∣∣∣+ ∣∣∣∣α + 1
α4

∣∣∣∣+ ∣∣∣∣ 1
α4

∣∣∣∣ < 1 = |h1(λ)|,∀λ ∈ C : |λ| = 1.

It follows by Rouché’s theorem, that all the roots of h(λ) lie in the open unit disk, and
so it is for the roots of P (λ). Thus the equilibrium point ( 1

α
,

1
α

) is locally asymptotically
stable.
It remains to prove that

lim
n→+∞

xn = lim
n→+∞

yn = 1
α
.

To this end we will, use the fact

lim
n→∞

Tn+k

Tn
= αk , ∀k ∈ N. (1.159)

Using the formula of the solutions, we have

lim
n→∞

x2n+1 = lim
n→∞

T2n+1y0x−1y−2 + (T2n+1 + T2n) y0x−1 + (T2n+3 − T2n+2) y0 + T2n+2

T2n+2y0x−1y−2 + (T2n+2 + T2n+1) y0x−1 + (T2n+4 − T2n+3) y0 + T2n+3

= lim
n→∞

T2n+1
T2n

y0x−1y−2 +
(
T2n+1
T2n

+ T2n

T2n

)
y0x−1 +

(
T2n+3
T2n
− T2n+2

T2n

)
y0 + T2n+2

T2n

T2n+2
T2n

y0x−1y−2 +
(
T2n+2
T2n

+ T2n+1
T2n

)
y0x−1 +

(
T2n+4
T2n
− T2n+3

T2n

)
y0 + T2n+3

T2n

= αy0x−1y−2 + (α + 1) y0x−1 + (α3 − α2) y0 + α2

α2y0x−1y−2 + (α2 + α1) y0x−1 + (α4 − α3) y0 + α3

= 1
α
.



1.4 Representations of solutions to two general classes of nonlinear systems of
difference equations 49

Similarly, we show that

lim
n→∞

x2n+2 = lim
n→∞

y2n+1 = lim
n→∞

y2n+2 = 1
α
,

that is
lim
n→∞

xn = lim
n→∞

yn = 1
α
. (1.160)

This complete the proof.

As a consequence of Corollary 1.24, when choosing the initial values to satisfies y−i =
x−i, i = 0, 1, 2, we get the formulas of the well-defined solutions of the equation

xn+1 = 1
a+ bxn + cxn−1xn + dxn−2xn−1xn

, n ∈ N0. (1.161)

These formulas are given in the next result.

Corollary 1.26. For all n ∈ N0, the form of every well-defined solution of equation (1.161)
is given by

x2n+1 = dJ2n+1x0x−1x−2 + (cJ2n+1 + dJ2n)x0x−1 + (J2n+3 − aJ2n+2)x0 + J2n+2

dJ2n+2x0x−1x−2 + (cJ2n+2 + dJ2n+1)x0x−1 + (J2n+4 − aJ2n+3)x0 + J2n+3
, (1.162)

x2n+2 = dJ2n+2x0x−1x−2 + (cJ2n+2 + dJ2n+1)x0x−1 + (J2n+4 − aJ2n+3)x0 + J2n+3

dJ2n+3x0x−1x−2 + (cJ2n+3 + dJ2n+2)x0x−1 + (J2n+5 − aJ2n+4)x0 + J2n+4
, (1.163)

which can represented in a unified form as

xn+1 = dJn+1x0x−1x−2 + (cJn+1 + dJn)x0x−1 + (Jn+3 − aJn+2)x0 + Jn+2

dJn+2x0x−1x−2 + (cJn+2 + dJn+1)x0x−1 + (Jn+4 − aJn+3)x0 + Jn+3
. (1.164)

Moreover, if a = b = c = d = 1, then (1.161) becomes

xn+1 = 1
1 + xn + xn−1xn + xn−2xn−1xn

(1.165)

and the solutions are expressed in terms of Tetranacci numbers as follows

x2n+1 = T2n+1x0x−1x−2 + (T2n+1 + T2n)x0x−1 + (T2n+3 − T2n+2)x0 + T2n+2

T2n+2x0x−1x−2 + (T2n+2 + T2n+1)x0x−1 + (T2n+4 − T2n+3)x0 + T2n+3
, (1.166)

x2n+2 = T2n+2x0x−1x−2 + (T2n+2 + T2n+1)x0x−1 + (T2n+4 − T2n+3)x0 + T2n+3

T2n+3x0x−1x−2 + (T2n+3 + T2n+2)x0x−1 + (T2n+5 − T2n+4)x0 + T2n+4
, (1.167)

or equivalently in the unified form,

xn+1 = Tn+1x0x−1x−2 + (Tn+1 + Tn)x0x−1 + (Tn+3 − Tn+2)x0 + Tn+2

Tn+2x0x−1x−2 + (Tn+2 + Tn+1)x0x−1 + (Tn+4 − Tn+3)x0 + Tn+3
. (1.168)
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Remark 1.4.4. It is not hard to see that x = 1
α

is the unique equilibrium point for (1.165)
in (0,+∞) when taking the initial values positive real numbers.
The linearized equation of (1.165) about the equilibrium point x = 1

α
is

wn+1 = −α− 1
α

wn −
α + 1
α4 wn−1 −

1
α4wn−2. (1.169)

We have α−1
α

, α+1
α4 , 1

α4 are real numbers and∣∣∣∣α− 1
α

∣∣∣∣+ ∣∣∣∣α + 1
α4

∣∣∣∣+ ∣∣∣∣ 1
α4

∣∣∣∣ < 1,

thus, x = 1
α
is locally asymptotically stable.

Now, using (1.159) and (1.168), we get

lim
n→∞

xn+1 = lim
n→∞

Tn+1x0x−1x−2 + (Tn+1 + Tn)x0x−1 + (Tn+3 − Tn+2)x0 + Tn+2

Tn+2x0x−1x−2 + (Tn+2 + Tn+1)x0x−1 + (Tn+4 − Tn+3)x0 + Tn+3

= lim
n→∞

Tn+1
Tn

x0x−1x−2 +
(
Tn+1
Tn

+ Tn

Tn

)
x0x−1 +

(
Tn+3
Tn
− Tn+2

Tn

)
x0 + Tn+2

Tn

Tn+2
Tn

x0x−1x−2 +
(
Tn+2
Tn

+ Tn+1
Tn

)
x0x−1 +

(
Tn+4
Tn
− Tn+3

Tn

)
x0 + Tn+3

Tn

= αx0x−1x−2 + (α + 1)x0x−1 + (α3 − α2)x0 + α2

α2x0x−1x−2 + (α2 + α)x0x−1 + (α4 − α3)x0 + α3

= 1
α
.

In summary, the equilibrium point x = 1
α
is globally asymptotically stable.

1.4.2.2 Particular cases of system (1.122)

1.4.2.2.1 The case d = 0 and c 6= 0 In this case the system (1.122) take the form:
xn+1 = f−1

[
a+ b

g(yn) + c
g(yn)f(xn−1)

]
,

yn+1 = g−1
[
a+ b

f(xn) + c
f(xn)g(yn−1)

]
, n ∈ N0.

(1.170)

Corollary 1.27. The formulas of well-defined solutions of system (1.170), are given, for all
n ∈ N0, by

x2n+1 = f−1

cJ̃2n+1 +
(
J̃2n+3 − aJ̃2n+2

)
f(x−1) + J̃2n+2g(y0)f(x−1)

cJ̃2n +
(
J̃2n+2 − aJ̃2n+1

)
f(x−1) + J̃2n+1g(y0)f(x−1)

 , (1.171)

x2n+2 = f−1

cJ̃2n+2 +
(
J̃2n+4 − aJ̃2n+3

)
g(y−1) + J̃2n+3f(x0)g(y−1)

cJ̃2n+1 +
(
J̃2n+3 − aJ̃2n+2

)
g(y−1) + J̃2n+2f(x0)g(y−1)

 , (1.172)
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y2n+1 = g−1

cJ̃2n+1 +
(
J̃2n+3 − aJ̃2n+2

)
g(y−1) + J̃2n+2f(x0)g(y−1)

cJ̃2n +
(
J̃2n+2 − aJ̃2n+1

)
g(y−1) + J̃2n+1f(x0)g(y−1)

 , (1.173)

y2n+2 = g−1

cJ̃2n+2 +
(
J̃2n+4 − aJ̃2n+3

)
f(x−1) + J̃2n+3g(y0)f(x−1)

cJ̃2n+1 +
(
J̃2n+3 − aJ̃2n+2

)
f(x−1) + J̃2n+2g(y0)f(x−1)

 . (1.174)

If g = f and y−i = x−i, i = 0, 1, 2 then, system (1.170) becomes

xn+1 = f−1
[
a+ b

f(xn) + c

f(xn)f(xn−1)

]
, n ∈ N0, (1.175)

hence, every well-defined solution of equation (1.175) is given by

x2n+1 = f−1

cJ̃2n+1 +
(
J̃2n+3 − aJ̃2n+2

)
f(x−1) + J̃2n+2f(x0)f(x−1)

cJ̃2n +
(
J̃2n+2 − aJ̃2n+1

)
f(x−1) + J̃2n+1f(x0)f(x−1)

 , (1.176)

x2n+2 = f−1

cJ̃2n+2 +
(
J̃2n+4 − aJ̃2n+3

)
f(x−1) + J̃2n+3f(x0)f(x−1)

cJ̃2n+1 +
(
J̃2n+3 − aJ̃2n+2

)
f(x−1) + J̃2n+2f(x0)f(x−1)

 , (1.177)

or in the unified form

xn+1 = f−1

cJ̃n+1 +
(
J̃n+3 − aJ̃n+2

)
f(x−1) + J̃n+2f(x0)f(x−1)

cJ̃n +
(
J̃n+2 − aJ̃n+1

)
f(x−1) + J̃n+1f(x0)f(x−1)

 , n ∈ N0, (1.178)

where
(
J̃n
)
n≥0

is the sequence defined by

J̃n+3 = aJ̃n+2 + bJ̃n+1 + cJ̃n, J̃0 = 0, J̃1 = 1, J̃2 = a, n ∈ N0.

1.4.2.2.2 The system xn+1 = 1
a+byn+cxn−1yn

, yn+1 = 1
a+bxn+cyn−1xn

In the following, we
are interested in a particular system of (1.170) and some particular equations of its one
dimensional version.
Let f(t) = 1

t
and g(t) = 1

t
, then, system (1.170) becomes

xn+1 = 1
a+ byn + cxn−1yn

, yn+1 = 1
a+ bxn + cyn−1xn

. (1.179)

So, by Corollary 1.27, we get the following result.
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Corollary 1.28. For all n ∈ N0, the representation of well-defined solutions of system
(1.179) is

x2n+1 =
cJ̃2ny0x−1 +

(
J̃2n+2 − aJ̃2n+1

)
y0 + J̃2n+1

cJ̃2n+1y0x−1 +
(
J̃2n+3 − aJ̃2n+2

)
y0 + J̃2n+2

, (1.180)

x2n+2 =
cJ̃2n+1x0y−1 +

(
J̃2n+3 − aJ̃2n+2

)
x0 + J̃2n+2

cJ̃2n+2x0y−1 +
(
J̃2n+4 − aJ̃2n+3

)
x0 + J̃2n+3

, (1.181)

y2n+1 =
cJ̃2nx0y−1 +

(
J̃2n+2 − aJ̃2n+1

)
x0 + J̃2n+1

cJ̃2n+1x0y−1 +
(
J̃2n+3 − aJ̃2n+2

)
x0 + J̃2n+2

, (1.182)

y2n+2 =
cJ̃2n+1y0x−1 +

(
J̃2n+3 − aJ̃2n+2

)
y0 + J̃2n+2

cJ̃2n+2y0x−1 +
(
J̃2n+4 − aJ̃2n+3

)
y0 + J̃2n+3

. (1.183)

Moreover, the solutions of the following equation

xn+1 = 1
a+ bxn + cxn−1xn

(1.184)

follows directly from those of the system (1.179) by taking y−i = x−i, i = 0, 1. Then, repre-
sentation of well-defined solutions is

x2n+1 =
cJ̃2nx0x−1 +

(
J̃2n+2 − aJ̃2n+1

)
x0 + J̃2n+1

cJ̃2n+1x0x−1 +
(
J̃2n+3 − aJ̃2n+2

)
x0 + J̃2n+2

, (1.185)

x2n+2 =
cJ̃2n+1x0x−1 +

(
J̃2n+3 − aJ̃2n+2

)
x0 + J̃2n+2

cJ̃2n+2x0x−1 +
(
J̃2n+4 − aJ̃2n+3

)
x0 + J̃2n+3

. (1.186)

Recently in [65], the authors studied the particular difference equations

xn+1 = 1
−1 + xn + xn−1xn

, (1.187)

xn+1 = 1
1 + xn − xn−1xn

, (1.188)

xn+1 = 1
1− xn + xn−1xn

, (1.189)

xn+1 = 1
−1− xn − xn−1xn

, (1.190)

and as a generalization of (1.187), (1.188), (1.189), (1.190) the authors studied again in [66],
the equation

xn+1 = 1
β
γ

+ α
γ
xn + 1

γ
xn−1xn

, γ 6= 0. (1.191)
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Clearly these equations are particular cases of equation (1.184).
In fact to obtain equation (1.187) it suffices to take a = −1, b = 1 and c = 1 in (1.184),
when choosing a = 1, b = 1 and c = −1 in (1.184) we get equation (1.188). Equation (1.189)
follows from (1.184) for the choice a = 1, b = −1 and c = 1. Again if we take a = −1,
b = −1 and c = −1 in (1.184) we get the equation (1.190), finally for the choice a = β

γ
, b = α

γ

and c = 1
γ
in (1.184) we find the equation (1.191).

Noting, that the authors studied in [67] the following systems
xn+1 = 1

1 + yn + xn−1yn
,

yn+1 = 1
1 + xn + yn−1xn

,
(1.192)


xn+1 = 1

−1 + yn − xn−1yn
,

yn+1 = 1
−1 + xn − yn−1xn

.
(1.193)

Systems (1.192) and (1.193) are particular cases of system (1.179) for the choices a = b =
c = 1 and a = −1, b = 1, c = −1 respectively.

Now, we will investigate each of these cases separately.

1. Consider a = −1, b = 1, c = 1, equation (1.184) becomes (1.187). For this choice of
the parameters, we get the sequence

(
J̃n
)∞
n=0

defined by:

J̃n+3 = −J̃n+2 + J̃n+1 + J̃n, J̃0 = 0, J̃1 = 1, J̃2 = −1.

It is easy to see that

J̃n = −
(1

4 + 1
2n
)

(−1)n + 1
4 , n ∈ N0.

From this it follows that
J̃2n = −n, J̃2n+1 = n+ 1.

Replacing in (1.185) and and (1.186), we obtain

x2n+1 = −nx−1x0 + n+ 1
(n+ 1)x−1x0 + x0 − (n+ 1) ,

x2n+2 = (n+ 1)x0x−1 + x0 − (n+ 1)
−(n+ 1)x0x−1 + n+ 2 ,

and these are the formulas given in [65] for the solutions of (1.187).
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2. Consider a = 1, b = 1, c = −1, equation (1.184) becomes (1.188). For this choice of
the parameters, we get the sequence

(
J̃n
)∞
n=0

defined by:

J̃n+3 = J̃n+2 + J̃n+1 − J̃n, J̃0 = 0, J̃1 = 1, J̃2 = 1.

It is easy to see that

J̃n = 1
4 + 1

2n−
1
4(−1)n, n ∈ N0.

From this it follows that

J̃2n = n, J̃2n+1 = n+ 1.

Replacing in (1.185) and (1.186), we get

x2n+1 = nx−1x0 − (n+ 1)
(n+ 1)x−1x0 − x0 − (n+ 1) ,

x2n+2 = (n+ 1)x0x−1 − x0 − (n+ 1)
(n+ 1)x0x−1 − (n+ 2) ,

and these are the formulas given in [65] for the solutions of (1.188).

3. Consider a = 1, b = −1, c = 1, equation (1.184) becomes (1.189). For this choice of
the parameters, we get the sequence

(
J̃n
)∞
n=0

defined by:

J̃n+3 = J̃n+2 − J̃n+1 + J̃n, J̃0 = 0, J̃1 = 1, J̃2 = 1.

We have

J̃n = 1
2 + 1

2(i− 1)(i)n + −1
2(i+ 1)(−i)n

= 1
2 +

(−1
4 −

1
4i
)

(i)n +
(−1

4 + 1
4i
)

(−i)n, n ∈ N0.

From this it follows that

J̃2n = 1
2 −

1
2(−1)n, J̃2n+1 = 1

2 + 1
2(−1)n.

depending on n is even or odd, we get

J̃4n = 0, J̃4n+1 = 1, J̃4n+2 = 1, J̃4n+3 = 0.
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Replacing in (1.185) and (1.186), we obtain

x4n+1 = 1
x−1x0 − x0 + 1 ,

x4n+2 = x−1x0 − x0 + 1
x−1x0

,

x4n+3 = x−1,

x4n+4 = x0,

and these are the formulas given in [65] for the solutions of (1.188).

4. Consider a = b = c = −1, equation (1.184) becomes (1.190). For this choice of the
parameters, we get the sequence

(
J̃n
)∞
n=0

defined by:

J̃n+3 = −J̃n+2 − J̃n+1 − J̃n, J̃0 = 0, J̃1 = 1, J̃2 = −1.

We have

J̃n = −1
2 (−1)n + 1

2(1 + i)(i)n + 1
2(1− i)(−i)n

= −1
2 (−1)n +

(1
4 −

1
4i
)

(i)n +
(1

4 + 1
4i
)

(−i)n, n ∈ N0.

From this it follows that

J̃2n = −1
2 + 1

2(−1)n, J̃2n+1 = 1
2 + 1

2(−1)n,

depending on n is even or odd, we get

J̃4n = 0, J̃4n+1 = 1, J̃4n+2 = −1, J̃4n+3 = 0.

Replacing in (1.185) and (1.186), we get

x4n+1 = 1
−x−1x0 − x0 − 1 ,

x4n+2 = −x−1x0 − x0 − 1
x−1x0

,
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x4n+3 = x−1,

x4n+4 = x0,

and these are the formulas given in [65] for the solutions of (1.190).

5. Consider a = b = c = 1, system (1.179) becomes (1.192). For this choice of the
parameters, the sequence

(
J̃n
)+∞

n=0
will be nothing other than the famous Tribonacci

sequence defined for n ∈ N0 by

Tn+3 = Tn+2 + Tn+1 + Tn, T0 = 0, T1 = T2 = 1. (1.194)

The solutions are given by

x2n+1 = T2ny0x−1 + (T2n+2 − T2n+1) y0 + T2n+1

T2n+1y0x−1 + (T2n+3 − T2n+2) y0 + T2n+2
,

x2n+2 = T2n+1x0y−1 + (T2n+3 − T2n+2)x0 + T2n+2

T2n+2x0y−1 + (T2n+4 − T2n+3)x0 + T2n+3
,

y2n+1 = T2nx0y−1 + (T2n+2 − T2n+1)x0 + T2n+1

T2n+1x0y−1 + (T2n+3 − T2n+2)x0 + T2n+2
,

y2n+2 = T2n+1y0x−1 + (T2n+3 − T2n+2) y0 + T2n+2

T2n+2y0x−1 + (T2n+4 − T2n+3) y0 + T2n+3
.

(1.195)

6. Consider a = −1, b = 1, c = −1, system (1.179) becomes (1.193). For this choice of
the parameters, we get the sequence

(
J̃n
)∞
n=0

defined by:

J̃n+3 = −J̃n+2 + J̃n+1 − J̃n, J̃0 = 0, J̃1 = 1, J̃2 = −1.

Using the fact that J̃n = (−1)n+1Tn ([2]), we get from (1.28) that the representation
of well-defined solutions of system (1.193) is



x2n+1 = − (T2ny0x−1 + (T2n+1 − T2n+2) y0 + T2n+1)
T2n+1y0x−1 − (T2n+1 + T2n) y0 + T2n+2

,

x2n+2 = − (T2n+1x0y−1 + (T2n+2 − T2n+3)x0 + T2n+2)
T2n+2x0y−1 − (T2n+2 + T2n+1)x0 + T2n+3

,

y2n+1 = − (T2nx0y−1 + (T2n+1 − T2n+2)x0 + T2n+1)
T2n+1x0y−1 − (T2n+1 + T2n)x0 + T2n+2

,

y2n+2 = − (T2n+1y0x−1 + (T2n+2 − T2n+3) y0 + T2n+2)
T2n+2y0x−1 − (T2n+2 + T2n+1) y0 + T2n+3

,

(1.196)

and these are the formulas given in [67] for the solutions of (1.193).
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1.4.2.2.3 Case d = 0, c 6= 0 and a = 0 In this case, we obtain the system
xn+1 = f−1

[
b

g(yn) + c
g(yn)f(xn−1)

]
,

yn+1 = g−1
[

b
f(xn) + c

f(xn)g(yn−1)

]
, n ∈ N0.

(1.197)

Here,
(
J̃n
)
n≥0

will be the sequence (Pn)n≥0 defined by

Pn+3 = bPn+1 + cPn, P0 = 0, P1 = 1, P2 = 0, n ∈ N0. (1.198)

So, well-defined solutions are expressed in terms of (Pn)n≥0 and takes the form

x2n+1 = f−1
[
cP2n+1 + P2n+3f(x−1) + P2n+2g(y0)f(x−1)
cP2n + P2n+2f(x−1) + P2n+1g(y0)f(x−1)

]
, n ∈ N0, (1.199)

x2n+2 = f−1
[
cP2n+2 + P2n+4g(y−1) + P2n+3f(x0)g(y−1)
cP2n+1 + P2n+3g(y−1) + P2n+2f(x0)g(y−1)

]
, n ∈ N0, (1.200)

y2n+1 = g−1
[
cP2n+1 + P2n+3g(y−1) + P2n+2f(x0)g(y−1)
cP2n + P2n+2g(y−1) + P2n+1f(x0)g(y−1)

]
, n ∈ N0, (1.201)

y2n+2 = g−1
[
cP2n+2 + P2n+4f(x−1) + P2n+3g(y0)f(x−1)
cP2n+1 + P2n+3f(x−1) + P2n+2g(y0)f(x−1)

]
, n ∈ N0. (1.202)

for system (1.197) and by

xn+1 = f−1
[
cPn+1 + Pn+3f(x−1) + Pn+2f(x0)f(x−1)
cPn + Pn+2f(x−1) + Pn+1f(x0)f(x−1)

]
, n ∈ N0,

for its one dimensional version, that is the equation

xn+1 = f−1
[

b

f(xn) + c

f(xn)f(xn−1)

]
, n ∈ N0.

Also, (1.197) generalize some works in the literature, see, for example [44] and [124].

1.4.2.2.4 Case c = d = 0, b 6= 0 In this case, we get the system

xn+1 = f−1
[
a+ b

g(yn)

]
, yn+1 = g−1

[
a+ b

f(xn)

]
, n ∈ N0. (1.203)

In this case, the well-defined solutions will be expressed using terms of the sequence(
F̃n
)
n≥0

=
(
J̃n+1

)
n≥0

, defined by

F̃n+2 = aF̃n+1 + bF̃n, F̃0 = 1, F̃1 = a, n ∈ N0.
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and the solutions for (1.203) and its one dimensional version, are obtained from Corollary
1.27, by writing F̃n−1 instead of J̃n.
System (1.197) and its one dimensional version, generalized some existing works, for example
[104, 105].

Remark 1.4.5. If, b = c = d = 0, a 6= 0, we get

xn = f−1(a), yn = g−1(a), n = 1, 2, · · · .



Chapter 2

On a homogeneous system of
difference equations of second order

2.1 Introduction

A lot of studies are devoted to the subject of difference equations, mainly, in two directions.
The goal of the first one, is to find explicit formulas for well defined solutions, and then using
these formulas to deduce the behavior of the solutions. The second direction is concerned
by studying the stability of the corresponding equilibrium points and this is done by using
the Lyapunov stability theory, we can consult [2, 12, 13, 14, 30, 31, 32, 35, 41, 45, 48, 68,
91, 92, 111, 108, 118, 116, 127, 126]. Noting also that a huge number of models of difference
equations investigated by researchers are defined by homogeneous functions of different order
see for example [6, 15, 27, 39].

In the present chapter, we will study the following general system of difference equations
defined by

xn+1 = f(yn, yn−1), yn+1 = g(zn, zn−1), zn+1 = h(xn, xn−1) (2.1)

where n ∈ N0, the initial values x−1, x0, y−1, y0, z−1 and z0 are positive real numbers, the
functions f, g, h : (0,+∞)2 → (0,+∞) are continuous and homogeneous of degree zero.
Clearly if we take z−i = x−i, i = 1, 2, and h ≡ g, then the system (2.1), will be

xn+1 = f(yn, yn−1), yn+1 = g(xn, xn−1) (2.2)

Noting also that if we choose z−i = y−i = x−i, i = 1, 2, and h ≡ g ≡ f , then system (2.1),
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will be

xn+1 = f(xn, xn−1). (2.3)

In [114], the behavior of the solutions of system (2.2) has been investigated. System (2.2)
is a generalization of equation (2.3), studied in [62]. The present system (2.1) is the three
dimensional generalization of system (2.2).

Now we recall some known definitions and results, which will be very useful for the sequel,
for more details we can consult for example the following references [11, 16, 29, 58].

Definition 2.1. A function Φ : (0,+∞)2 → (0,+∞) is said to be homogeneous of degree
m ∈ R if for all (u, v) ∈ (0,+∞)2 and for all λ > 0 we have,

Φ(λu, λv) = λmΦ(u, v).

Theorem 2.1. Let Φ : (0,+∞)2 → (0,+∞) be a C1 function on (0,+∞)2.

1. Then, Φ is homogeneous of degree m if and only if

u
∂Φ
∂u

(u, v) + v
∂Φ
∂v

(u, v) = mΦ(u, v), (u, v) ∈ (0,+∞)2 .

(This statement, is usually called Euler’s Theorem).

2. If Φ is homogeneous of degree m on (0,+∞)2, then ∂Φ
∂u

and ∂Φ
∂v

are homogeneous of
degree m− 1 on (0,+∞)2.

2.2 Local and global stability of the unique equilibrium

points

A point (x, y, z) ∈ (0,+∞)3 is an equilibrium point of system (2.1) if it is a solution of the
following system

x = f(y, y), y = g(z, z), z = h(x, x).

Using the fact that f , g and h are homogeneous of degree zero, we get that

(x, y, z) = (f(1, 1), g(1, 1), h(1, 1))

is the unique equilibrium point of our system (2.1).
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Let F : (0,+∞)6 → (0,+∞)6 be the function defined by

F (W ) = (f1(W ), f2(W ), g1(W ), g2(W ), h1(W ), h2(W )) , W = (u, v, w, t, r, s)

with

f1(W ) = f(w, t), f2(W ) = u, g1(W ) = g(r, s), g2(W ) = w, h1(W ) = h(u, v), g2(W ) = r.

Then, system (2.1) can be written as follows

Wn+1 = F (Wn), Wn = (xn, xn−1, yn, yn−1, zn, zn−1)t , n ∈ N0.

So, (x, y, z) = (f(1, 1), g(1, 1), h(1, 1)) is an equilibrium point of system (2.1) if and only if

W = (x, x, y, y, z, z) = (f(1, 1), f(1, 1), g(1, 1), g(1, 1), h(1, 1), h(1, 1))

is an equilibrium point of Wn+1 = F (Wn).
Assume that the functions f , g and h are C1 on (0,+∞)2. To system (2.1), we associate

about the equilibrium point W the following linear system

Xn+1 = JFXn, n ∈ N0

where JF is the Jacobian matrix associated to the function F evaluated at

W = (f(1, 1), f(1, 1), g(1, 1), g(1, 1), h(1, 1), h(1, 1)).

We have

JF =



0 0 ∂f
∂w

(y, y) ∂f
∂t

(y, y) 0 0
1 0 0 0 0 0
0 0 0 0 ∂g

∂r
(z, z) ∂g

∂s
(z, z)

0 0 1 0 0 0
∂h
∂u

(x, x) ∂h
∂v

(x, x) 0 0 0 0
0 0 0 0 1 0


As f , g and h are homogeneous of degree 0, then using Part 1. of Theorem 2.1, we get

y
∂f

∂w
(y, y) + y

∂f

∂t
(y, y) = 0
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which implies
∂f

∂t
(y, y) = − ∂f

∂w
(y, y).

Similarly we get
∂g

∂s
(z, z) = −∂g

∂r
(z, z), ∂h

∂v
(x, x) = −∂h

∂u
(x, x).

It follows that JF takes the form:

JF =



0 0 ∂f
∂w

(y, y) − ∂f
∂w

(y, y) 0 0
1 0 0 0 0 0
0 0 0 0 ∂g

∂r
(z, z) −∂g

∂r
(z, z)

0 0 1 0 0 0
∂h
∂u

(x, x) −∂h
∂u

(x, x) 0 0 0 0
0 0 0 0 1 0


The characteristic polynomial of the matrix JF is given by

P (λ) = λ6 − ∂h

∂u
(x, x)∂g

∂r
(z, z) ∂f

∂w
(y, y)λ3 + 3∂h

∂u
(x, x)∂g

∂r
(z, z) ∂f

∂w
(y, y)λ2

−3∂h
∂u

(x, x)∂g
∂r

(z, z) ∂f
∂w

(y, y)λ+ ∂h

∂u
(x, x)∂g

∂r
(z, z) ∂f

∂w
(y, y).

Now assume that ∣∣∣∣∣∂h∂u(x, x)∂g
∂r

(z, z) ∂f
∂w

(y, y)
∣∣∣∣∣ < 1

8
and consider the two functions

Φ(λ) = λ6,

Ψ(λ) = −∂h
∂u

(x, x)∂g
∂r

(z, z) ∂f
∂w

(y, y)λ3 + 3∂h
∂u

(x, x)∂g
∂r

(z, z) ∂f
∂w

(y, y)λ2

−3∂h
∂u

(x, x)∂g
∂r

(z, z) ∂f
∂w

(y, y)λ+ ∂h

∂u
(x, x)∂g

∂r
(z, z) ∂f

∂w
(y, y).

We have

|Ψ(λ)| ≤ 8
∣∣∣∣∣∂h∂u(x, x)∂g

∂r
(z, z) ∂f

∂w
(y, y)

∣∣∣∣∣ < 1 = |Φ(λ)| , ∀λ ∈ C : |λ| = 1.

So, by Rouché’s theorem it follows that all roots of P (λ) lie inside the unit disk.
Hence by Theorem 1.1, we deduce that the equilibrium point (x, y, z) = (f(1, 1), g(1, 1), h(1, 1))
is locally asymptotically stable.
Using Part 2. of Theorem 2.1 and using the fact that f , g and h are homogeneous of degree
zero, we get that ∂f

∂w
, ∂g
∂r

and ∂h
∂u

are homogeneous of degree −1. So, it follows that

∂f

∂w
(y, y) =

∂f
∂w

(1, 1)
y

,
∂g

∂r
(z, z) =

∂g
∂r

(1, 1)
z

,
∂h

∂u
(x, x) =

∂h
∂u

(1, 1)
x

.

In summary, we have proved the following result.
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Theorem 2.2. Assume that f(u, v), g(u, v) and h(u, v) are C1 on (0,+∞)2. The equilibrium
point

(x, y, z) = (f(1, 1), g(1, 1), h(1, 1))

of system (2.1) is locally asymptotically stable if∣∣∣∣∣∂f∂u (1, 1)∂g
∂u

(1, 1)∂h
∂u

(1, 1)
∣∣∣∣∣ < f(1, 1)g(1, 1)h(1, 1)

8 .

In order to achieve our results on the stability of the equilibrium point (x, y, z) =
(f(1, 1), g(1, 1), h(1, 1)) we need to prove that this equilibrium point is a global attractor.
To this goal, we will prove the following general convergence theorems.

Theorem 2.3. Consider system (2.1). Assume that the following statements are trues:

1. H1: There exist a, b, α, β, λ, γ ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, λ ≤ h(u, v) ≤ γ, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v), g(u, v), h(u, v) are increasing in u for all v and decreasing in v for all u.

3. H3: If (m1,M1,m2,M2,m3,M3) ∈ [a, b]2 × [α, β]2 × [λ, γ]2 is a solution of the system

m1 = f(m2,M2), M1 = f(M2,m2), m2 = g(m3,M3), M2 = g(M3,m3), m3 = h(m1,M1),

M3 = h(M1,m1),

then
m1 = M1, m2 = M2, m3 = M3.

Then every solution of system (2.1) converges to the unique equilibrium point

(x, y, z) = (f(1, 1), g(1, 1), h(1, 1)).

Proof. Let
m0

1 := a, M0
1 := b, m0

2 := α, M0
2 := β, m0

3 := λ, M0
3 := γ

and for each i = 0, 1, ...,

mi+1
1 := f(mi

2,M
i
2), M i+1

1 := f(M i
2,m

i
2),

mi+1
2 := g(mi

3,M
i
3), M i+1

2 := g(M i
3,m

i
3),
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mi+1
3 := h(mi

1,M
i
1), M i+1

3 := h(M i
1,m

i
1).

We have
a ≤ f(α, β) ≤ f(β, α) ≤ b,

α ≤ g(λ, γ) ≤ g(γ, λ) ≤ β,

λ ≤ h(a, b) ≤ h(b, a) ≤ γ,

and so,
m0

1 = a ≤ f(m0
2,M

0
2 ) ≤ f(M0

2 ,m
0
2) ≤ b = M0

1 ,

m0
2 = α ≤ g(m0

3,M
0
3 ) ≤ g(M0

3 ,m
0
3) ≤ β = M0

2 ,

and
m0

3 = λ ≤ h(m0
1,M

0
1 ) ≤ g(M0

1 ,m
0
1) ≤ γ = M0

3

Hence,
m0

1 ≤ m1
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤M1

3 ≤M0
3 .

Now, we have

m1
1 = f(m0

2,M
0
2 ) ≤ f(m1

2,M
1
2 ) = m2

1 ≤ f(M1
2 ,m

1
2) = M2

1 ≤ f(M0
2 ,m

0
2) = M1

1 ,

m1
2 = g(m0

3,M
0
3 ) ≤ g(m1

3,M
1
3 ) = m2

2 ≤ g(M1
3 ,m

1
3) = M2

2 ≤ g(M0
3 ,m

0
3) = M1

2 ,

m1
3 = h(m0

1,M
0
1 ) ≤ h(m1

1,M
1
1 ) = m2

3 ≤ h(M1
1 ,m

1
1) = M2

3 ≤ h(M0
1 ,m

0
1) = M1

2 ,

and it follows that
m0

1 ≤ m1
1 ≤ m2

1 ≤M2
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤ m2
2 ≤M2

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤ m2

3 ≤M2
3 ≤M1

3 ≤M0
3 .

By induction, we get for i = 0, 1, ..., that
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a = m0
1 ≤ m1

1 ≤ ... ≤ mi−1
1 ≤ mi

1 ≤M i
1 ≤M i−1

1 ≤ ... ≤M1
1 ≤M0

1 = b,

α = m0
2 ≤ m1

2 ≤ ... ≤ mi−1
2 ≤ mi

2 ≤M i
2 ≤M i−1

2 ≤ ... ≤M1
2 ≤M0

2 = β,

and
λ = m0

3 ≤ m1
3 ≤ ... ≤ mi−1

3 ≤ mi
3 ≤M i

3 ≤M i−1
3 ≤ ... ≤M1

3 ≤M0
3 = γ.

It follows that the sequences (mi
1)i∈N0 , (mi

2)i∈N0 , (mi
3)i∈N0 (resp. (M i

1)i∈N0 , (M i
2)i∈N0 , (M i

3)i∈N0)
are increasing (resp. decreasing) and also bounded, so convergent. Let

m1 = lim
i→+∞

mi
1, m2 = lim

i→+∞
mi

2,m3 = lim
i→+∞

mi
3,

M1 = lim
i→+∞

M i
1, M2 = lim

i→+∞
M i

2, M3 = lim
i→+∞

M i
3.

Then
a ≤ m1 ≤M1 ≤ b, α ≤ m2 ≤M2 ≤ β, λ ≤ m3 ≤M3 ≤ γ.

By taking limits in the following equalities

mi+1
1 = f(mi

2,M
i
2), M i+1

1 = f(M i
2,m

i
2),

mi+1
2 = g(mi

3,M
i
3), M i+1

2 = g(M i
3,m

i
3),

mi+1
3 = h(mi

1,M
i
1), M i+1

3 = h(M i
1,m

i
1),

and using the continuity of f , g and h we obtain

m1 = f(m2,M2), m2 = f(M2,m2), m2 = g(m3,M3), M2 = g(M3,m3), m3 = h(m1,M1),

M3 = h(M1,m1)

so it follows from H3 that

m1 = M1, m2 = M2, m3 = M3.

From H1, we get

m0
1 = a ≤ xn ≤ b = M0

1 , m
0
2 = α ≤ yn ≤ β = M0

2 , m
0
3 = λ ≤ zn ≤ γ = M0

3 , n = 1, 2, · · · .

For n = 2, 3, ..., we have

m1
1 = f(m0

2,M
0
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M0

2 ,m
0
2) = M1

1 ,
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m1
2 = g(m0

3,M
0
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M0

3 ,m
0
3) = M1

3 ,

and
m1

3 = h(m0
1,M

0
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M0

1 ,m
0
1) = M1

3

that is
m1

1 ≤ xn ≤M1
1 , m

1
2 ≤ yn ≤M1

2 , m
1
3 ≤ zn ≤M1

3 , n = 3, 4, · · · .

Now, for n = 4, 5, ..., we have

m2
1 = f(m1

2,M
1
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M1

2 ,m
1
2) = M2

1 ,

and
m2

2 = g(m1
3,M

1
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M1

3 ,m
1
3) = M2

2 ,

m2
3 = h(m1

1,M
1
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M1

1 ,m
1
1) = M2

3

that is
m2

1 ≤ xn ≤M2
1 , m

2
2 ≤ yn ≤M2

2 , m
2
3 ≤ zn ≤M2

3 , n = 5, 6, · · · .

Similarly, for n = 6, 7, ..., we have

m3
1 = f(m2

2,M
2
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M2

2 ,m
2
2) = M3

1 ,

m3
2 = g(m2

3,M
2
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M2

3 ,m
2
3) = M3

2 ,

and
m3

3 = h(m2
1,M

2
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M2

1 ,m
2
1) = M3

3

that is
m3

1 ≤ xn ≤M3
1 , m

3
2 ≤ yn ≤M3

2 , m
3
3 ≤ zn ≤M3

3 , n = 7, 8, · · · .

It follows by induction that for i = 0, 1, ... we get

mi
1 ≤ xn ≤M i

1, m
i
2 ≤ yn ≤M i

2, m
i
3 ≤ zn ≤M i

3, n ≥ 2i+ 1.

Using the fact that i→ +∞ implies n→ +∞ and m1 = M1, m2 = M2, m3 = M3, we obtain
that

lim
n→+∞

xn = M1, lim
n→+∞

yn = M2, , lim
n→+∞

zn = M3.

From (2.1) and using the fact that f , g and h are continuous and homogeneous of degree
zero, we get

M1 = f(M2,M2) = f(1, 1), M2 = g(M3,M3) = g(1, 1), M3 = h(M1,M1) = h(1, 1).
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Theorem 2.4. Consider system (2.1). Assume that the following statements are trues:

1. H1: There exist a, b, α, β, λ, γ ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, λ ≤ h(u, v) ≤ γ, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v), g(u, v) are increasing in u for all v and decreasing in v for all u and
h(u, v) is decreasing in u for all v and increasing in v for all u.

3. H3: If (m1,M1,m2,M2,m3,M3) ∈ [a, b]2 × [α, β]2 × [λ, γ]2 is a solution of the system

m1 = f(m2,M2), M1 = f(M2,m2), m2 = g(m3,M3), M2 = g(M3,m3), m3 = h(M1,m1),

M3 = h(m1,M1)

then
m1 = M1, m2 = M2, m3 = M3.

Then every solution of system (2.1) converges to the unique equilibrium point

(x, y, z) = (f(1, 1), g(1, 1), h(1, 1)).

Proof. Let
m0

1 := a, M0
1 := b, m0

2 := α, M0
2 := β, m0

3 := λ, M0
3 := γ

and for each i = 0, 1, ...,

mi+1
1 := f(mi

2,M
i
2), M i+1

1 := f(M i
2,m

i
2),

mi+1
2 := g(mi

3,M
i
3), M i+1

2 := g(M i
3,m

i
3),

mi+1
3 := h(M i

1,m
i
1), M i+1

3 := h(mi
1,M

i
1).

We have
a ≤ f(α, β) ≤ f(β, α) ≤ b,

α ≤ g(λ, γ) ≤ g(γ, λ) ≤ β,

λ ≤ h(b, a) ≤ h(a, b) ≤ γ,

and so,
m0

1 = a ≤ f(m0
2,M

0
2 ) ≤ f(M0

2 ,m
0
2) ≤ b = M0

1 ,

m0
2 = α ≤ g(m0

3,M
0
3 ) ≤ g(M0

3 ,m
0
3) ≤ β = M0

2 ,
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and
m0

3 = λ ≤ h(M0
1 ,m

0
1) ≤ h(m0

1,M
0
1 ) ≤ γ = M0

3

Hence,
m0

1 ≤ m1
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤M1

3 ≤M0
3 .

Now, we have

m1
1 = f(m0

2,M
0
2 ) ≤ f(m1

2,M
1
2 ) = m2

1 ≤ f(M1
2 ,m

1
2) = M2

1 ≤ f(M0
2 ,m

0
2) = M1

1 ,

m1
2 = g(m0

3,M
0
3 ) ≤ g(m1

3,M
1
3 ) = m2

2 ≤ g(M1
3 ,m

1
3) = M2

2 ≤ g(M0
3 ,m

0
3) = M1

2 ,

m1
3 = h(M0

1 ,m
0
1) ≤ h(M1

1 ,m
1
1) = m2

3 ≤ h(m1
1,M

1
1 ) = M2

3 ≤ h(m0
1,M

0
1 ) = M1

2 ,

and it follows that
m0

1 ≤ m1
1 ≤ m2

1 ≤M2
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤ m2
2 ≤M2

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤ m2

3 ≤M2
3 ≤M1

3 ≤M0
3 .

By induction, we get for i = 0, 1, ..., that

a = m0
1 ≤ m1

1 ≤ ... ≤ mi−1
1 ≤ mi

1 ≤M i
1 ≤M i−1

1 ≤ ... ≤M1
1 ≤M0

1 = b,

α = m0
2 ≤ m1

2 ≤ ... ≤ mi−1
2 ≤ mi

2 ≤M i
2 ≤M i−1

2 ≤ ... ≤M1
2 ≤M0

2 = β,

and
λ = m0

3 ≤ m1
3 ≤ ... ≤ mi−1

3 ≤ mi
3 ≤M i

3 ≤M i−1
3 ≤ ... ≤M1

3 ≤M0
3 = γ.

It follows that the sequences (mi
1)i∈N0 , (mi

2)i∈N0 , (mi
3)i∈N0 (resp. (M i

1)i∈N0 , (M i
2)i∈N0 , (M i

3)i∈N0)
are increasing (resp. decreasing) and also bounded, so convergent. Let

m1 = lim
i→+∞

mi
1, m2 = lim

i→+∞
mi

2,m3 = lim
i→+∞

mi
3,



2.2 Local and global stability of the unique equilibrium points 69

M1 = lim
i→+∞

M i
1, M2 = lim

i→+∞
M i

2, M3 = lim
i→+∞

M i
3.

Then
a ≤ m1 ≤M1 ≤ b, α ≤ m2 ≤M2 ≤ β, λ ≤ m3 ≤M3 ≤ γ.

By taking limits in the following equalities

mi+1
1 = f(mi

2,M
i
2), M i+1

1 = f(M i
2,m

i
2),

mi+1
2 = g(mi

3,M
i
3), M i+1

2 = g(M i
3,m

i
3),

mi+1
3 = h(M i

1,m
i
1), M i+1

3 = h(mi
1,M

i
1),

and using the continuity of f , g and h we obtain

m1 = f(m2,M2), m2 = f(M2,m2), m2 = g(m3,M3), M2 = g(M3,m3), m3 = h(M1,m1),

M3 = h(m1,M1)

so it follows from H3 that

m1 = M1, m2 = M2, m3 = M3.

From H1, we get

m0
1 = a ≤ xn ≤ b = M0

1 , m
0
2 = α ≤ yn ≤ β = M0

2 , m
0
3 = λ ≤ zn ≤ γ = M0

3 , n = 1, 2, · · · .

For n = 2, 3, ..., we have

m1
1 = f(m0

2,M
0
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M0

2 ,m
0
2) = M1

1 ,

m1
2 = g(m0

3,M
0
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M0

3 ,m
0
3) = M1

3 ,

and
m1

3 = h(M0
1 ,m

0
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m0

1,M
0
1 ) = M1

3

that is
m1

1 ≤ xn ≤M1
1 , m

1
2 ≤ yn ≤M1

2 , m
1
3 ≤ zn ≤M1

3 , n = 3, 4, · · · .

Now, for n = 4, 5, ..., we have

m2
1 = f(m1

2,M
1
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M1

2 ,m
1
2) = M2

1 ,

and
m2

2 = g(m1
3,M

1
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M1

3 ,m
1
3) = M2

2 ,
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m2
3 = h(M1

1 ,m
1
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m1

1,M
1
1 ) = M2

3

that is

m2
1 ≤ xn ≤M2

1 , m
2
2 ≤ yn ≤M2

2 , m
2
3 ≤ zn ≤M2

3 , n = 5, 6, · · · .

Similarly, for n = 6, 7, ..., we have

m3
1 = f(m2

2,M
2
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M2

2 ,m
2
2) = M3

1 ,

m3
2 = g(m2

3,M
2
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M2

3 ,m
2
3) = M3

2 ,

and

m3
3 = h(M2

1 ,m
2
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m2

1,M
2
1 ) = M3

3

that is

m3
1 ≤ xn ≤M3

1 , m
3
2 ≤ yn ≤M3

2 , m
3
3 ≤ zn ≤M3

3 , n = 7, 8, · · · .

It follows by induction that for i = 0, 1, ... we get

mi
1 ≤ xn ≤M i

1, m
i
2 ≤ yn ≤M i

2, m
i
3 ≤ zn ≤M i

3, n ≥ 2i+ 1.

Using the fact that i→ +∞ implies n→ +∞ and m1 = M1, m2 = M2, m3 = M3, we obtain
that

lim
n→+∞

xn = M1, lim
n→+∞

yn = M2, , lim
n→+∞

zn = M3.

From (2.1) and using the fact that f , g and h are continuous and homogeneous of degree
zero, we get

M1 = f(M2,M2) = f(1, 1), M2 = g(M3,M3) = g(1, 1), M3 = h(M1,M1) = h(1, 1).

Theorem 2.5. Consider system (2.1). Assume that the following statements are trues:

1. H1: There exist a, b, α, β, λ, γ ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, λ ≤ h(u, v) ≤ γ, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v) is increasing in u for all v and decreasing in v for all u and g(u, v), h(u, v)
are decreasing in u for all v and increasing in v for all u.
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3. H3: If (m1,M1,m2,M2,m3,M3) ∈ [a, b]2 × [α, β]2 × [λ, γ]2 is a solution of the system

m1 = f(m2,M2), M1 = f(M2,m2), m2 = g(M3,m3), M2 = g(m3,M3), m3 = h(M1,m1),

M3 = h(m1,M1)

then

m1 = M1, m2 = M2, m3 = M3.

Then every solution of system (2.1) converges to the unique equilibrium point

(x, y, z) = (f(1, 1), g(1, 1), h(1, 1)).

Proof. Let
m0

1 := a, M0
1 := b, m0

2 := α, M0
2 := β, m0

3 := λ, M0
3 := γ

and for each i = 0, 1, ...,

mi+1
1 := f(mi

2,M
i
2), M i+1

1 := f(M i
2,m

i
2),

mi+1
2 := g(M i

3,m
i
3), M i+1

2 := g(mi
3,M

i
3),

mi+1
3 := h(M i

1,m
i
1), M i+1

3 := h(mi
1,M

i
1).

We have
a ≤ f(α, β) ≤ f(β, α) ≤ b,

α ≤ g(γ, λ) ≤ g(λ, γ) ≤ β,

λ ≤ h(b, a) ≤ h(a, b) ≤ γ,

and so,
m0

1 = a ≤ f(m0
2,M

0
2 ) ≤ f(M0

2 ,m
0
2) ≤ b = M0

1 ,

m0
2 = α ≤ g(M0

3 ,m
0
3) ≤ g(m0

3,M
0
3 ) ≤ β = M0

2 ,

and
m0

3 = λ ≤ h(M0
1 ,m

0
1) ≤ h(m0

1,M
0
1 ) ≤ γ = M0

3

Hence,
m0

1 ≤ m1
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤M1
2 ≤M0

2 ,
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and
m0

3 ≤ m1
3 ≤M1

3 ≤M0
3 .

Now, we have

m1
1 = f(m0

2,M
0
2 ) ≤ f(m1

2,M
1
2 ) = m2

1 ≤ f(M1
2 ,m

1
2) = M2

1 ≤ f(M0
2 ,m

0
2) = M1

1 ,

m1
2 = g(M0

3 ,m
0
3) ≤ g(M1

3 ,m
1
3) = m2

2 ≤ g(m1
3,M

1
3 ) = M2

2 ≤ g(m0
3,M

0
3 ) = M1

2 ,

m1
3 = h(M0

1 ,m
0
1) ≤ h(M1

1 ,m
1
1) = m2

3 ≤ h(m1
1,M

1
1 ) = M2

3 ≤ h(m0
1,M

0
1 ) = M1

2 ,

and it follows that
m0

1 ≤ m1
1 ≤ m2

1 ≤M2
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤ m2
2 ≤M2

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤ m2

3 ≤M2
3 ≤M1

3 ≤M0
3 .

By induction, we get for i = 0, 1, ..., that

a = m0
1 ≤ m1

1 ≤ ... ≤ mi−1
1 ≤ mi

1 ≤M i
1 ≤M i−1

1 ≤ ... ≤M1
1 ≤M0

1 = b,

α = m0
2 ≤ m1

2 ≤ ... ≤ mi−1
2 ≤ mi

2 ≤M i
2 ≤M i−1

2 ≤ ... ≤M1
2 ≤M0

2 = β,

and
λ = m0

3 ≤ m1
3 ≤ ... ≤ mi−1

3 ≤ mi
3 ≤M i

3 ≤M i−1
3 ≤ ... ≤M1

3 ≤M0
3 = γ.

It follows that the sequences (mi
1)i∈N0 , (mi

2)i∈N0 , (mi
3)i∈N0 (resp. (M i

1)i∈N0 , (M i
2)i∈N0 , (M i

3)i∈N0)
are increasing (resp. decreasing) and also bounded, so convergent. Let

m1 = lim
i→+∞

mi
1, m2 = lim

i→+∞
mi

2,m3 = lim
i→+∞

mi
3,

M1 = lim
i→+∞

M i
1, M2 = lim

i→+∞
M i

2, M3 = lim
i→+∞

M i
3.

Then
a ≤ m1 ≤M1 ≤ b, α ≤ m2 ≤M2 ≤ β, λ ≤ m3 ≤M3 ≤ γ.

By taking limits in the following equalities

mi+1
1 = f(mi

2,M
i
2), M i+1

1 = f(M i
2,m

i
2),
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mi+1
2 = g(M i

3,m
i
3), M i+1

2 = g(mi
3,M

i
3),

mi+1
3 = h(M i

1,m
i
1), M i+1

3 = h(mi
1,M

i
1),

and using the continuity of f , g and h we obtain

m1 = f(m2,M2), m2 = f(M2,m2), m2 = g(M3,m3), M2 = g(m3,M3), m3 = h(M1,m1),

M3 = h(m1,M1)

so it follows from H3 that

m1 = M1, m2 = M2, m3 = M3.

From H1, we get

m0
1 = a ≤ xn ≤ b = M0

1 , m
0
2 = α ≤ yn ≤ β = M0

2 , m
0
3 = λ ≤ zn ≤ γ = M0

3 , n = 1, 2, · · · .

For n = 2, 3, ..., we have

m1
1 = f(m0

2,M
0
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M0

2 ,m
0
2) = M1

1 ,

m1
2 = g(M0

3 ,m
0
3) ≤ yn+1 = g(zn, zn−1) ≤ g(m0

3,M
0
3 ) = M1

3 ,

and
m1

3 = h(M0
1 ,m

0
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m0

1,M
0
1 ) = M1

3

that is
m1

1 ≤ xn ≤M1
1 , m

1
2 ≤ yn ≤M1

2 , m
1
3 ≤ zn ≤M1

3 , n = 3, 4, · · · .

Now, for n = 4, 5, ..., we have

m2
1 = f(m1

2,M
1
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M1

2 ,m
1
2) = M2

1 ,

and
m2

2 = g(M1
3 ,m

1
3) ≤ yn+1 = g(zn, zn−1) ≤ g(m1

3,M
1
3 ) = M2

2 ,

m2
3 = h(M1

1 ,m
1
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m1

1,M
1
1 ) = M2

3

that is
m2

1 ≤ xn ≤M2
1 , m

2
2 ≤ yn ≤M2

2 , m
2
3 ≤ zn ≤M2

3 , n = 5, 6, · · · .

Similarly, for n = 6, 7, ..., we have

m3
1 = f(m2

2,M
2
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M2

2 ,m
2
2) = M3

1 ,
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m3
2 = g(M2

3 ,m
2
3) ≤ yn+1 = g(zn, zn−1) ≤ g(m2

3,M
2
3 ) = M3

2 ,

and
m3

3 = h(M2
1 ,m

2
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m2

1,M
2
1 ) = M3

3

that is
m3

1 ≤ xn ≤M3
1 , m

3
2 ≤ yn ≤M3

2 , m
3
3 ≤ zn ≤M3

3 , n = 7, 8, · · · .

It follows by induction that for i = 0, 1, ... we get

mi
1 ≤ xn ≤M i

1, m
i
2 ≤ yn ≤M i

2, m
i
3 ≤ zn ≤M i

3, n ≥ 2i+ 1.

Using the fact that i→ +∞ implies n→ +∞ and m1 = M1, m2 = M2, m3 = M3, we obtain
that

lim
n→+∞

xn = M1, lim
n→+∞

yn = M2, , lim
n→+∞

zn = M3.

From (2.1) and using the fact that f , g and h are continuous and homogeneous of degree
zero, we get

M1 = f(M2,M2) = f(1, 1), M2 = g(M3,M3) = g(1, 1), M3 = h(M1,M1) = h(1, 1).

Theorem 2.6. Consider system (2.1). Assume that the following statements are trues:

1. H1: There exist a, b, α, β, λ, γ ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, λ ≤ h(u, v) ≤ γ, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v), h(u, v) are increasing in u for all v and decreasing in v for all u and
g(u, v) is decreasing in u for all v and increasing in v for all u.

3. H3: If (m1,M1,m2,M2,m3,M3) ∈ [a, b]2 × [α, β]2 × [λ, γ]2 is a solution of the system

m1 = f(m2,M2), M1 = f(M2,m2), m2 = g(M3,m3), M2 = g(m3,M3), m3 = h(m1,M1),

M3 = h(M1,m1)

then
m1 = M1, m2 = M2, m3 = M3.

Then every solution of system (2.1) converges to the unique equilibrium point

(x, y, z) = (f(1, 1), g(1, 1), h(1, 1)).
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Proof. Let
m0

1 := a, M0
1 := b, m0

2 := α, M0
2 := β, m0

3 := λ, M0
3 := γ

and for each i = 0, 1, ...,

mi+1
1 := f(mi

2,M
i
2), M i+1

1 := f(M i
2,m

i
2),

mi+1
2 := g(M i

3,m
i
3), M i+1

2 := g(mi
3,M

i
3),

mi+1
3 := h(mi

1,M
i
1), M i+1

3 := h(M i
1,m

i
1).

We have
a ≤ f(α, β) ≤ f(β, α) ≤ b,

α ≤ g(γ, λ) ≤ g(λ, γ) ≤ β,

λ ≤ h(a, b) ≤ h(b, a) ≤ γ,

and so,
m0

1 = a ≤ f(m0
2,M

0
2 ) ≤ f(M0

2 ,m
0
2) ≤ b = M0

1 ,

m0
2 = α ≤ g(M0

3 ,m
0
3) ≤ g(m0

3,M
0
3 ) ≤ β = M0

2 ,

and
m0

3 = λ ≤ h(m0
1,M

0
1 ) ≤ h(M0

1 ,m
0
1) ≤ γ = M0

3

Hence,
m0

1 ≤ m1
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤M1

3 ≤M0
3 .

Now, we have

m1
1 = f(m0

2,M
0
2 ) ≤ f(m1

2,M
1
2 ) = m2

1 ≤ f(M1
2 ,m

1
2) = M2

1 ≤ f(M0
2 ,m

0
2) = M1

1 ,

m1
2 = g(M0

3 ,m
0
3) ≤ g(M1

3 ,m
1
3) = m2

2 ≤ g(m1
3,M

1
3 ) = M2

2 ≤ g(m0
3,M

0
3 ) = M1

2 ,

m1
3 = h(m0

1,M
0
1 ) ≤ h(m1

1,M
1
1 ) = m2

3 ≤ h(M1
1 ,m

1
1) = M2

3 ≤ h(M0
1 ,m

0
1) = M1

2 ,
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and it follows that
m0

1 ≤ m1
1 ≤ m2

1 ≤M2
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤ m2
2 ≤M2

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤ m2

3 ≤M2
3 ≤M1

3 ≤M0
3 .

By induction, we get for i = 0, 1, ..., that

a = m0
1 ≤ m1

1 ≤ ... ≤ mi−1
1 ≤ mi

1 ≤M i
1 ≤M i−1

1 ≤ ... ≤M1
1 ≤M0

1 = b,

α = m0
2 ≤ m1

2 ≤ ... ≤ mi−1
2 ≤ mi

2 ≤M i
2 ≤M i−1

2 ≤ ... ≤M1
2 ≤M0

2 = β,

and
λ = m0

3 ≤ m1
3 ≤ ... ≤ mi−1

3 ≤ mi
3 ≤M i

3 ≤M i−1
3 ≤ ... ≤M1

3 ≤M0
3 = γ.

It follows that the sequences (mi
1)i∈N0 , (mi

2)i∈N0 , (mi
3)i∈N0 (resp. (M i

1)i∈N0 , (M i
2)i∈N0 , (M i

3)i∈N0)
are increasing (resp. decreasing) and also bounded, so convergent. Let

m1 = lim
i→+∞

mi
1, m2 = lim

i→+∞
mi

2,m3 = lim
i→+∞

mi
3,

M1 = lim
i→+∞

M i
1, M2 = lim

i→+∞
M i

2, M3 = lim
i→+∞

M i
3.

Then
a ≤ m1 ≤M1 ≤ b, α ≤ m2 ≤M2 ≤ β, λ ≤ m3 ≤M3 ≤ γ.

By taking limits in the following equalities

mi+1
1 = f(mi

2,M
i
2), M i+1

1 = f(M i
2,m

i
2),

mi+1
2 = g(M i

3,m
i
3), M i+1

2 = g(mi
3,M

i
3),

mi+1
3 = h(mi

1,M
i
1), M i+1

3 = h(M i
1,m

i
1),

and using the continuity of f , g and h we obtain

m1 = f(m2,M2), m2 = f(M2,m2), m2 = g(M3,m3), M2 = g(m3,M3), m3 = h(m1,M1),

M3 = h(M1,m1)

so it follows from H3 that

m1 = M1, m2 = M2, m3 = M3.
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From H1, we get

m0
1 = a ≤ xn ≤ b = M0

1 , m
0
2 = α ≤ yn ≤ β = M0

2 , m
0
3 = λ ≤ zn ≤ γ = M0

3 , n = 1, 2, · · · .

For n = 2, 3, ..., we have

m1
1 = f(m0

2,M
0
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M0

2 ,m
0
2) = M1

1 ,

m1
2 = g(M0

3 ,m
0
3) ≤ yn+1 = g(zn, zn−1) ≤ g(m0

3,M
0
3 ) = M1

3 ,

and
m1

3 = h(m0
1,M

0
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M0

1 ,m
0
1) = M1

3

that is
m1

1 ≤ xn ≤M1
1 , m

1
2 ≤ yn ≤M1

2 , m
1
3 ≤ zn ≤M1

3 , n = 3, 4, · · · .

Now, for n = 4, 5, ..., we have

m2
1 = f(m1

2,M
1
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M1

2 ,m
1
2) = M2

1 ,

and
m2

2 = g(M1
3 ,m

1
3) ≤ yn+1 = g(zn, zn−1) ≤ g(m1

3,M
1
3 ) = M2

2 ,

m2
3 = h(m1

1,M
1
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M1

1 ,m
1
1) = M2

3

that is
m2

1 ≤ xn ≤M2
1 , m

2
2 ≤ yn ≤M2

2 , m
2
3 ≤ zn ≤M2

3 , n = 5, 6, · · · .

Similarly, for n = 6, 7, ..., we have

m3
1 = f(m2

2,M
2
2 ) ≤ xn+1 = f(yn, yn−1) ≤ f(M2

2 ,m
2
2) = M3

1 ,

m3
2 = g(M2

3 ,m
2
3) ≤ yn+1 = g(zn, zn−1) ≤ g(m2

3,M
2
3 ) = M3

2 ,

and
m3

3 = h(m2
1,M

2
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M2

1 ,m
2
1) = M3

3

that is
m3

1 ≤ xn ≤M3
1 , m

3
2 ≤ yn ≤M3

2 , m
3
3 ≤ zn ≤M3

3 , n = 7, 8, · · · .

It follows by induction that for i = 0, 1, ... we get

mi
1 ≤ xn ≤M i

1, m
i
2 ≤ yn ≤M i

2, m
i
3 ≤ zn ≤M i

3, n ≥ 2i+ 1.



78 On a homogeneous system of difference equations of second order

Using the fact that i→ +∞ implies n→ +∞ and m1 = M1, m2 = M2, m3 = M3, we obtain
that

lim
n→+∞

xn = M1, lim
n→+∞

yn = M2, , lim
n→+∞

zn = M3.

From (2.1) and using the fact that f , g and h are continuous and homogeneous of degree
zero, we get

M1 = f(M2,M2) = f(1, 1), M2 = g(M3,M3) = g(1, 1), M3 = h(M1,M1) = h(1, 1).

Theorem 2.7. Consider system (2.1). Assume that the following statements are true:

1. H1: There exist a, b, α, β, λ, γ ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, λ ≤ h(u, v) ≤ γ, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v), g(u, v), h(u, v) are decreasing in u for all v and increasing in v for all u.

3. H3: If (m1,M1,m2,M2,m3,M3) ∈ [a, b]2 × [α, β]2 × [λ, γ]2 is a solution of the system

m1 = f(M2,m2), M1 = f(m2,M2), m2 = g(M3,m3), M2 = g(m3,M3), m3 = h(M1,m1),

M3 = h(m1,M1)

then
m1 = M1, m2 = M2, m3 = M3.

Then every solution of system (2.1) converges to the unique equilibrium point

(x, y, z) = (f(1, 1), g(1, 1), h(1, 1)).

Proof. Let
m0

1 := a, M0
1 := b, m0

2 := α, M0
2 := β, m0

3 := λ, M0
3 := γ

and for each i = 0, 1, ...,

mi+1
1 := f(M i

2,m
i
2), M i+1

1 := f(mi
2,M

i
2),

mi+1
2 := g(M i

3,m
i
3), M i+1

2 := g(mi
3,M

i
3),

mi+1
3 := h(M i

1,m
i
1), M i+1

3 := h(mi
1,M

i
1).
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We have
a ≤ f(β, α) ≤ f(α, β) ≤ b,

α ≤ g(γ, λ) ≤ g(λ, γ) ≤ β,

λ ≤ h(b, a) ≤ h(a, b) ≤ γ

and so,
m0

1 = a ≤ f(M0
2 ,m

0
2) ≤ f(m0

2,M
0
2 ) ≤ b = M0

1 ,

m0
2 = α ≤ g(M0

3 ,m
0
3) ≤ g(m0

3,M
0
3 ) ≤ β = M0

2 ,

m0
3 = λ ≤ h(M0

1 ,m
0
1) ≤ h(m0

1,M
0
1 ) ≤ γ = M0

3 .

Hence,
m0

1 ≤ m1
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤M1

3 ≤M0
3 .

Now, we have

m1
1 = f(M0

2 ,m
0
2) ≤ f(M1

2 ,m
1
2) = m2

1 ≤ f(m1
2,M

1
2 ) = M2

1 ≤ f(m0
2,M

0
2 ) = M1

1 ,

m1
2 = g(M0

3 ,m
0
3) ≤ g(M1

3 ,m
1
3) = m2

2 ≤ g(m1
3,M

1
3 ) = M2

2 ≤ g(m0
3,M

0
3 ) = M1

2 ,

m1
3 = h(M0

1 ,m
0
1) ≤ h(M1

1 ,m
1
1) = m2

3 ≤ h(m1
1,M

1
1 ) = M2

3 ≤ h(m0
1,M

0
1 ) = M1

3

and it follows that
m0

1 ≤ m1
1 ≤ m2

1 ≤M2
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤ m2
2 ≤M2

2 ≤M1
2 ≤M0

2 ,

m0
3 ≤ m1

3 ≤ m2
3 ≤M2

3 ≤M1
3 ≤M0

3 .

By induction, we get for i = 0, 1, ..., that

a = m0
1 ≤ m1

1 ≤ ... ≤ mi−1
1 ≤ mi

1 ≤M i
1 ≤M i−1

1 ≤ ... ≤M1
1 ≤M0

1 = b,
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α = m0
2 ≤ m1

2 ≤ ... ≤ mi−1
2 ≤ mi

2 ≤M i
2 ≤M i−1

2 ≤ ... ≤M1
2 ≤M0

2 = β,

and
λ = m0

3 ≤ m1
3 ≤ ... ≤ mi−1

3 ≤ mi
3 ≤M i

3 ≤M i−1
3 ≤ ... ≤M1

3 ≤M0
3 = γ.

It follows that the sequences (mi
1)i∈N0 , (mi

2)i∈N0 (mi
3)i∈N0(resp. (M i

1)i∈N0 , (M i
2)i∈N0 , (M i

3)i∈N0)
are increasing (resp. decreasing) and also bounded, so convergent. Let

m1 = lim
i→+∞

mi
1, m2 = lim

i→+∞
mi

2, m3 = lim
i→+∞

mi
3,

M1 = lim
i→+∞

M i
1, M2 = lim

i→+∞
M i

2, M3 = lim
i→+∞

M i
3.

Then
a ≤ m1 ≤M1 ≤ b, α ≤ m2 ≤M2 ≤ β, λ ≤ m3 ≤M3 ≤ γ.

By taking limits in the following equalities

mi+1
1 = f(M i

2,m
i
2), M i+1

1 = f(mi
2,M

i
2),

mi+1
2 = g(M i

3,m
i
3), M i+1

2 = g(mi
3,M

i
3),

mi+1
3 = h(M i

1,m
i
1), M i+1

3 = h(mi
1,M

i
1)

and using the continuity of f , g, and h we obtain

m1 = f(M2,m2), M1 = f(m2,M2), m2 = g(M3,m3), M2 = g(m3,M3), m3 = h(M1,m1),

M3 = h(m1,M1)

so it follows from H3 that

m1 = M1, m2 = M2, m3 = M3.

From H1, we get

m0
1 = a ≤ xn ≤ b = M0

1 , m
0
2 = α ≤ yn ≤ β = M0

2 , m
0
3 = λ ≤ zn ≤ γ = M0

3 , n = 1, 2, · · · .

For n = 2, 3, ..., we have

m1
1 = f(M0

2 ,m
0
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m0

2,M
0
2 ) = M1

1 ,

m1
2 = g(M0

3 ,m
0
3) ≤ yn+1 = g(zn, zn−1) ≤ g(m0

3,M
0
3 ) = M1

2 ,

m1
3 = h(M0

1 ,m
0
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m0

1,M
0
1 ) = M1

3
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that is
m1

1 ≤ xn ≤M1
1 , m

1
2 ≤ yn ≤M1

2 , m
1
3 ≤ zn ≤M1

3 , n = 3, 4, · · · .

Now, for n = 4, 5, ..., we have

m2
1 = f(M1

2 ,m
1
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m1

2,M
1
2 ) = M2

1 ,

m2
2 = g(M1

3 ,m
3
1) ≤ yn+1 = g(zn, zn−1) ≤ g(m1

3,M
3
1 ) = M2

2 ,

m2
3 = h(M1

1 ,m
1
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m1

1,M
1
1 ) = M2

3

that is
m2

1 ≤ xn ≤M2
1 , m

2
2 ≤ yn ≤M2

2 , m
2
3 ≤ zn ≤M2

3 , n = 5, 6, · · · .

Similarly, for n = 6, 7, ..., we have

m3
1 = f(M2

2 ,m
2
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m2

2,M
2
2 ) = M3

1 ,

m3
2 = g(M2

3 ,m
2
3) ≤ yn+1 = g(zn, zn−1) ≤ g(m2

3,M
2
3 ) = M3

2 ,

m3
3 = h(M2

1 ,m
2
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m2

1,M
2
1 ) = M3

2

that is
m3

1 ≤ xn ≤M3
1 , m

3
2 ≤ yn ≤M3

2 , m
3
3 ≤ zn ≤M3

3 , n = 7, 8, · · · .

It follows by induction that for i = 0, 1, ... we get

mi
1 ≤ xn ≤M i

1, m
i
2 ≤ yn ≤M i

2, m
i
3 ≤ zn ≤M i

3, n ≥ 2i+ 1.

Using the fact that i→ +∞ implies n→ +∞ and m1 = M1, m2 = M2, m3 = M3, we obtain
that

lim
n→+∞

xn = M1, lim
n→+∞

yn = M2, lim
n→+∞

zn = M3.

From (2.1) and using the fact that f , g and h are continuous and homogeneous of degree
zero, we get

M1 = f(M2,M2) = f(1, 1), M2 = g(M3,M3) = g(1, 1), M3 = h(M1,M1) = h(1, 1).

The following theorems can be proved similarly.

Theorem 2.8. Consider system (2.1). Assume that the following statements are true:
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1. H1: There exist a, b, α, β, λ, γ ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, λ ≤ h(u, v) ≤ γ, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v), g(u, v) are decreasing in u for all v and increasing in v for all u, however
h(u, v) is increasing in u for all v and decreasing in v for all u .

3. H3: If (m1,M1,m2,M2,m3,M3) ∈ [a, b]2 × [α, β]2 × [λ, γ]2 is a solution of the system

m1 = f(M2,m2), M1 = f(m2,M2), m2 = g(M3,m3), M2 = g(m3,M3), m3 = h(m1,M1),

M3 = h(M1,m1)

then

m1 = M1, m2 = M2, m3 = M3.

Then every solution of system (2.1) converges to the unique equilibrium point

(x, y, z) = (f(1, 1), g(1, 1), h(1, 1)).

Proof. Let
m0

1 := a, M0
1 := b, m0

2 := α, M0
2 := β, m0

3 := λ, M0
3 := γ

and for each i = 0, 1, ...,

mi+1
1 := f(M i

2,m
i
2), M i+1

1 := f(mi
2,M

i
2),

mi+1
2 := g(M i

3,m
i
3), M i+1

2 := g(mi
3,M

i
3),

mi+1
3 := h(mi

1,M
i
1), M i+1

3 := h(M i
1,m

i
1).

We have
a ≤ f(β, α) ≤ f(α, β) ≤ b,

α ≤ g(γ, λ) ≤ g(λ, γ) ≤ β,

λ ≤ h(a, b) ≤ h(b, a) ≤ γ,

and so,
m0

1 = a ≤ f(M0
2 ,m

0
2) ≤ f(m0

2,M
0
2 ) ≤ b = M0

1 ,

m0
2 = α ≤ g(M0

3 ,m
0
3) ≤ g(m0

3,M
0
3 ) ≤ β = M0

2 ,
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and
m0

3 = λ ≤ h(m0
1,M

0
1 ) ≤ h(M0

1 ,m
0
1) ≤ γ = M0

3

Hence,
m0

1 ≤ m1
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤M1

3 ≤M0
3 .

Now, we have

m1
1 = f(M0

2 ,m
0
2) ≤ f(M1

2 ,m
1
2) = m2

1 ≤ f(m1
2,M

1
2 ) = M2

1 ≤ f(m0
2,M

0
2 ) = M1

1 ,

m1
2 = g(M0

3 ,m
0
3) ≤ g(M1

3 ,m
1
3) = m2

2 ≤ g(m1
3,M

1
3 ) = M2

2 ≤ g(m0
3,M

0
3 ) = M1

2 ,

m1
3 = h(m0

1,M
0
1 ) ≤ h(m1

1,M
1
1 ) = m2

3 ≤ h(M1
1 ,m

1
1) = M2

3 ≤ h(M0
1 ,m

0
1) = M1

2 ,

and it follows that
m0

1 ≤ m1
1 ≤ m2

1 ≤M2
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤ m2
2 ≤M2

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤ m2

3 ≤M2
3 ≤M1

3 ≤M0
3 .

By induction, we get for i = 0, 1, ..., that

a = m0
1 ≤ m1

1 ≤ ... ≤ mi−1
1 ≤ mi

1 ≤M i
1 ≤M i−1

1 ≤ ... ≤M1
1 ≤M0

1 = b,

α = m0
2 ≤ m1

2 ≤ ... ≤ mi−1
2 ≤ mi

2 ≤M i
2 ≤M i−1

2 ≤ ... ≤M1
2 ≤M0

2 = β,

and
λ = m0

3 ≤ m1
3 ≤ ... ≤ mi−1

3 ≤ mi
3 ≤M i

3 ≤M i−1
3 ≤ ... ≤M1

3 ≤M0
3 = γ.

It follows that the sequences (mi
1)i∈N0 , (mi

2)i∈N0 (mi
3)i∈N0(resp. (M i

1)i∈N0 , (M i
2)i∈N0 , (M i

3)i∈N0)
are increasing (resp. decreasing) and also bounded, so convergent. Let
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m1 = lim
i→+∞

mi
1, m2 = lim

i→+∞
mi

2, m3 = lim
i→+∞

mi
3,

M1 = lim
i→+∞

M i
1, M2 = lim

i→+∞
M i

2, M3 = lim
i→+∞

M i
3.

Then
a ≤ m1 ≤M1 ≤ b, α ≤ m2 ≤M2 ≤ β, λ ≤ m3 ≤M3 ≤ γ.

By taking limits in the following equalities

mi+1
1 = f(M i

2,m
i
2), M i+1

1 = f(mi
2,M

i
2),

mi+1
2 = g(M i

3,m
i
3), M i+1

2 = g(mi
3,M

i
3),

mi+1
3 = h(mi

1,M
i
1), M i+1

3 = h(M i
1,m

i
1),

and using the continuity of f , g, and h we obtain

m1 = f(M2,m2), M1 = f(m2,M2), m2 = g(M3,m3), M2 = g(m3,M3), m3 = h(m1,M1),

M3 = h(M1,m1)

so it follows from H3 that

m1 = M1, m2 = M2, m3 = M3.

From H1, we get

m0
1 = a ≤ xn ≤ b = M0

1 , m
0
2 = α ≤ yn ≤ β = M0

2 , m
0
3 = λ ≤ zn ≤ γ = M0

3 , n = 1, 2, · · · .

For n = 2, 3, ..., we have

m1
1 = f(M0

2 ,m
0
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m0

2,M
0
2 ) = M1

1 ,

m1
2 = g(M0

3 ,m
0
3) ≤ yn+1 = g(zn, zn−1) ≤ g(m0

3,M
0
3 ) = M1

2 ,

and
m1

3 = h(m0
1,M

0
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M0

1 ,m
0
1) = M1

3

that is
m1

1 ≤ xn ≤M1
1 , m

1
2 ≤ yn ≤M1

2 , m
1
3 ≤ zn ≤M1

3 , n = 3, 4, · · · .

Now, for n = 4, 5, ..., we have

m2
1 = f(M1

2 ,m
1
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m1

2,M
1
2 ) = M2

1 ,
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m2
2 = g(M1

3 ,m
3
1) ≤ yn+1 = g(zn, zn−1) ≤ g(m1

3,M
3
1 ) = M2

2 ,

and
m2

3 = h(m1
1,M

1
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M1

1 ,m
1
1) = M2

3

that is
m2

1 ≤ xn ≤M2
1 , m

2
2 ≤ yn ≤M2

2 , m
2
3 ≤ zn ≤M2

3 , n = 5, 6, · · · .

Similarly, for n = 6, 7, ..., we have

m3
1 = f(M2

2 ,m
2
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m2

2,M
2
2 ) = M3

1 ,

m3
2 = g(M2

3 ,m
2
3) ≤ yn+1 = g(zn, zn−1) ≤ g(m2

3,M
2
3 ) = M3

2 ,

and
m3

3 = h(m2
1,M

2
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M2

1 ,m
2
1) = M3

3

that is
m3

1 ≤ xn ≤M3
1 , m

3
2 ≤ yn ≤M3

2 , m
3
3 ≤ zn ≤M3

3 , n = 7, 8, · · · .

It follows by induction that for i = 0, 1, ... we get

mi
1 ≤ xn ≤M i

1, m
i
2 ≤ yn ≤M i

2, m
i
3 ≤ zn ≤M i

3, n ≥ 2i+ 1.

Using the fact that i→ +∞ implies n→ +∞ and m1 = M1, m2 = M2, m3 = M3, we obtain
that

lim
n→+∞

xn = M1, lim
n→+∞

yn = M2, lim
n→+∞

zn = M3.

From (2.1) and using the fact that f , g and h are continuous and homogeneous of degree
zero, we get

M1 = f(M2,M2) = f(1, 1), M2 = g(M3,M3) = g(1, 1), M3 = h(M1,M1) = h(1, 1).

Theorem 2.9. Consider system (2.1). Assume that the following statements are true:

1. H1: There exist a, b, α, β, λ, γ ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, λ ≤ h(u, v) ≤ γ, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v) is decreasing in u for all v and increasing in v for all u, however g(u, v), h(u, v)
are increasing in u for all v and decreasing in v for all u .
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3. H3: If (m1,M1,m2,M2,m3,M3) ∈ [a, b]2 × [α, β]2 × [λ, γ]2 is a solution of the system

m1 = f(M2,m2), M1 = f(m2,M2), m2 = g(m3,M3), M2 = g(M3,m3), m3 = h(m1,M1),

M3 = h(M1,m1)

then

m1 = M1, m2 = M2, m3 = M3.

Then every solution of system (2.1) converges to the unique equilibrium point

(x, y, z) = (f(1, 1), g(1, 1), h(1, 1)).

Proof. Let
m0

1 := a, M0
1 := b, m0

2 := α, M0
2 := β, m0

3 := λ, M0
3 := γ

and for each i = 0, 1, ...,

mi+1
1 := f(M i

2,m
i
2), M i+1

1 := f(mi
2,M

i
2),

mi+1
2 := g(mi

3,M
i
3), M i+1

2 := g(M i
3,m

i
3),

mi+1
3 := h(mi

1,M
i
1), M i+1

3 := h(M i
1,m

i
1).

We have
a ≤ f(β, α) ≤ f(α, β) ≤ b,

α ≤ g(λ, γ) ≤ g(γ, λ) ≤ β,

λ ≤ h(a, b) ≤ h(b, a) ≤ γ,

and so,
m0

1 = a ≤ f(M0
2 ,m

0
2) ≤ f(m0

2,M
0
2 ) ≤ b = M0

1 ,

m0
2 = α ≤ g(m0

3,M
0
3 ) ≤ g(M0

3 ,m
0
3) ≤ β = M0

2 ,

and
m0

3 = λ ≤ h(m0
1,M

0
1 ) ≤ g(M0

1 ,m
0
1) ≤ γ = M0

3

Hence,
m0

1 ≤ m1
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤M1
2 ≤M0

2 ,
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and
m0

3 ≤ m1
3 ≤M1

3 ≤M0
3 .

Now, we have

m1
1 = f(M0

2 ,m
0
2) ≤ f(M1

2 ,m
1
2) = m2

1 ≤ f(m1
2,M

1
2 ) = M2

1 ≤ f(m0
2,M

0
2 ) = M1

1 ,

m1
2 = g(m0

3,M
0
3 ) ≤ g(m1

3,M
1
3 ) = m2

2 ≤ g(M1
3 ,m

1
3) = M2

2 ≤ g(M0
3 ,m

0
3) = M1

2 ,

m1
3 = h(m0

1,M
0
1 ) ≤ h(m1

1,M
1
1 ) = m2

3 ≤ h(M1
1 ,m

1
1) = M2

3 ≤ h(M0
1 ,m

0
1) = M1

2 ,

and it follows that
m0

1 ≤ m1
1 ≤ m2

1 ≤M2
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤ m2
2 ≤M2

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤ m2

3 ≤M2
3 ≤M1

3 ≤M0
3 .

By induction, we get for i = 0, 1, ..., that

a = m0
1 ≤ m1

1 ≤ ... ≤ mi−1
1 ≤ mi

1 ≤M i
1 ≤M i−1

1 ≤ ... ≤M1
1 ≤M0

1 = b,

α = m0
2 ≤ m1

2 ≤ ... ≤ mi−1
2 ≤ mi

2 ≤M i
2 ≤M i−1

2 ≤ ... ≤M1
2 ≤M0

2 = β,

and
λ = m0

3 ≤ m1
3 ≤ ... ≤ mi−1

3 ≤ mi
3 ≤M i

3 ≤M i−1
3 ≤ ... ≤M1

3 ≤M0
3 = γ.

It follows that the sequences (mi
1)i∈N0 , (mi

2)i∈N0 , (mi
3)i∈N0 (resp. (M i

1)i∈N0 , (M i
2)i∈N0 , (M i

3)i∈N0)
are increasing (resp. decreasing) and also bounded, so convergent. Let

m1 = lim
i→+∞

mi
1, m2 = lim

i→+∞
mi

2,m3 = lim
i→+∞

mi
3,

M1 = lim
i→+∞

M i
1, M2 = lim

i→+∞
M i

2, M3 = lim
i→+∞

M i
3.

Then
a ≤ m1 ≤M1 ≤ b, α ≤ m2 ≤M2 ≤ β, λ ≤ m3 ≤M3 ≤ γ.

By taking limits in the following equalities

mi+1
1 = f(M i

2,m
i
2), M i+1

1 = f(mi
2,M

i
2),

mi+1
2 = g(mi

3,M
i
3), M i+1

2 = g(M i
3,m

i
3),
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mi+1
3 = h(mi

1,M
i
1), M i+1

3 = h(M i
1,m

i
1),

and using the continuity of f , g and h we obtain

m1 = f(M2,m2), M1 = f(m2,M2), m2 = g(m3,M3), M2 = g(M3,m3), m3 = h(m1,M1),

M3 = h(M1,m1)

so it follows from H3 that

m1 = M1, m2 = M2, m3 = M3.

From H1, we get

m0
1 = a ≤ xn ≤ b = M0

1 , m
0
2 = α ≤ yn ≤ β = M0

2 , m
0
3 = λ ≤ zn ≤ γ = M0

3 , n = 1, 2, · · · .

For n = 2, 3, ..., we have

m1
1 = f(M0

2 ,m
0
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m0

2,M
0
2 ) = M1

1 ,

m1
2 = g(m0

3,M
0
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M0

3 ,m
0
3) = M1

3 ,

and
m1

3 = h(m0
1,M

0
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M0

1 ,m
0
1) = M1

3

that is
m1

1 ≤ xn ≤M1
1 , m

1
2 ≤ yn ≤M1

2 , m
1
3 ≤ zn ≤M1

3 , n = 3, 4, · · · .

Now, for n = 4, 5, ..., we have

m2
1 = f(M1

2 ,m
1
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m1

2,M
1
2 ) = M2

1 ,

m2
2 = g(m1

3,M
1
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M1

3 ,m
1
3) = M2

2 ,

and
m2

3 = h(m1
1,M

1
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M1

1 ,m
1
1) = M2

3

that is
m2

1 ≤ xn ≤M2
1 , m

2
2 ≤ yn ≤M2

2 , m
2
3 ≤ zn ≤M2

3 , n = 5, 6, · · · .

Similarly, for n = 6, 7, ..., we have

m3
1 = f(M2

2 ,m
2
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m2

2,M
2
2 ) = M3

1 ,
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m3
2 = g(m2

3,M
2
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M2

3 ,m
2
3) = M3

2 ,

and
m3

3 = h(m2
1,M

2
1 ) ≤ zn+1 = h(xn, xn−1) ≤ h(M2

1 ,m
2
1) = M3

3

that is
m3

1 ≤ xn ≤M3
1 , m

3
2 ≤ yn ≤M3

2 , m
3
3 ≤ zn ≤M3

3 , n = 7, 8, · · · .

It follows by induction that for i = 0, 1, ... we get

mi
1 ≤ xn ≤M i

1, m
i
2 ≤ yn ≤M i

2, m
i
3 ≤ zn ≤M i

3, n ≥ 2i+ 1.

Using the fact that i→ +∞ implies n→ +∞ and m1 = M1, m2 = M2, m3 = M3, we obtain
that

lim
n→+∞

xn = M1, lim
n→+∞

yn = M2, , lim
n→+∞

zn = M3.

From (2.1) and using the fact that f , g and h are continuous and homogeneous of degree
zero, we get

M1 = f(M2,M2) = f(1, 1), M2 = g(M3,M3) = g(1, 1), M3 = h(M1,M1) = h(1, 1).

Theorem 2.10. Consider system (2.1). Assume that the following statements are true:

1. H1: There exist a, b, α, β, λ, γ ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, λ ≤ h(u, v) ≤ γ, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v), h(u, v) are decreasing in u for all v and increasing in v for all u, however
g(u, v) is increasing in u for all v and decreasing in v for all u .

3. H3: If (m1,M1,m2,M2,m3,M3) ∈ [a, b]2 × [α, β]2 × [λ, γ]2 is a solution of the system

m1 = f(M2,m2), M1 = f(m2,M2), m2 = g(m3,M3), M2 = g(M3,m3), m3 = h(M1,m1),

M3 = h(m1,M1)

then
m1 = M1, m2 = M2, m3 = M3.

Then every solution of system (2.1) converges to the unique equilibrium point

(x, y, z) = (f(1, 1), g(1, 1), h(1, 1)).
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Proof. Let
m0

1 := a, M0
1 := b, m0

2 := α, M0
2 := β, m0

3 := λ, M0
3 := γ

and for each i = 0, 1, ...,

mi+1
1 := f(M i

2,m
i
2), M i+1

1 := f(mi
2,M

i
2),

mi+1
2 := g(mi

3,M
i
3), M i+1

2 := g(M i
3,m

i
3),

mi+1
3 := h(M i

1,m
i
1), M i+1

3 := h(mi
1,M

i
1).

We have
a ≤ f(β, α) ≤ f(α, β) ≤ b,

α ≤ g(λ, γ) ≤ g(γ, λ) ≤ β,

λ ≤ h(b, a) ≤ h(a, b) ≤ γ,

and so,
m0

1 = a ≤ f(M0
2 ,m

0
2) ≤ f(m0

2,M
0
2 ) ≤ b = M0

1 ,

m0
2 = α ≤ g(m0

3,M
0
3 ) ≤ g(M0

3 ,m
0
3) ≤ β = M0

2 ,

and
m0

3 = λ ≤ h(M0
1 ,m

0
1) ≤ h(m0

1,M
0
1 ) ≤ γ = M0

3

Hence,
m0

1 ≤ m1
1 ≤M1

1 ≤M0
1 ,

m0
2 ≤ m1

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤M1

3 ≤M0
3 .

Now, we have

m1
1 = f(M0

2 ,m
0
2) ≤ f(M1

2 ,m
1
2) = m2

1 ≤ f(m1
2,M

1
2 ) = M2

1 ≤ f(m0
2,M

0
2 ) = M1

1 ,

m1
2 = g(m0

3,M
0
3 ) ≤ g(m1

3,M
1
3 ) = m2

2 ≤ g(M1
3 ,m

1
3) = M2

2 ≤ g(M0
3 ,m

0
3) = M1

2 ,

m1
3 = h(M0

1 ,m
0
1) ≤ h(M1

1 ,m
1
1) = m2

3 ≤ h(m1
1,M

1
1 ) = M2

3 ≤ h(m0
1,M

0
1 ) = M1

2 ,

and it follows that
m0

1 ≤ m1
1 ≤ m2

1 ≤M2
1 ≤M1

1 ≤M0
1 ,
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m0
2 ≤ m1

2 ≤ m2
2 ≤M2

2 ≤M1
2 ≤M0

2 ,

and
m0

3 ≤ m1
3 ≤ m2

3 ≤M2
3 ≤M1

3 ≤M0
3 .

By induction, we get for i = 0, 1, ..., that

a = m0
1 ≤ m1

1 ≤ ... ≤ mi−1
1 ≤ mi

1 ≤M i
1 ≤M i−1

1 ≤ ... ≤M1
1 ≤M0

1 = b,

α = m0
2 ≤ m1

2 ≤ ... ≤ mi−1
2 ≤ mi

2 ≤M i
2 ≤M i−1

2 ≤ ... ≤M1
2 ≤M0

2 = β,

and
λ = m0

3 ≤ m1
3 ≤ ... ≤ mi−1

3 ≤ mi
3 ≤M i

3 ≤M i−1
3 ≤ ... ≤M1

3 ≤M0
3 = γ.

It follows that the sequences (mi
1)i∈N0 , (mi

2)i∈N0 , (mi
3)i∈N0 (resp. (M i

1)i∈N0 , (M i
2)i∈N0 , (M i

3)i∈N0)
are increasing (resp. decreasing) and also bounded, so convergent. Let

m1 = lim
i→+∞

mi
1, m2 = lim

i→+∞
mi

2,m3 = lim
i→+∞

mi
3,

M1 = lim
i→+∞

M i
1, M2 = lim

i→+∞
M i

2, M3 = lim
i→+∞

M i
3.

Then
a ≤ m1 ≤M1 ≤ b, α ≤ m2 ≤M2 ≤ β, λ ≤ m3 ≤M3 ≤ γ.

By taking limits in the following equalities

mi+1
1 = f(M i

2,m
i
2), M i+1

1 = f(mi
2,M

i
2),

mi+1
2 = g(mi

3,M
i
3), M i+1

2 = g(M i
3,m

i
3),

mi+1
3 = h(M i

1,m
i
1), M i+1

3 = h(mi
1,M

i
1),

and using the continuity of f , g and h we obtain

m1 = f(M2,m2), M1 = f(m2,M2), m2 = g(m3,M3), M2 = g(M3,m3), m3 = h(M1,m1),

M3 = h(m1,M1)

so it follows from H3 that

m1 = M1, m2 = M2, m3 = M3.

From H1, we get

m0
1 = a ≤ xn ≤ b = M0

1 , m
0
2 = α ≤ yn ≤ β = M0

2 , m
0
3 = λ ≤ zn ≤ γ = M0

3 , n = 1, 2, · · · .
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For n = 2, 3, ..., we have

m1
1 = f(M0

2 ,m
0
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m0

2,M
0
2 ) = M1

1 ,

m1
2 = g(m0

3,M
0
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M0

3 ,m
0
3) = M1

3 ,

and
m1

3 = h(M0
1 ,m

0
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m0

1,M
0
1 ) = M1

3

that is
m1

1 ≤ xn ≤M1
1 , m

1
2 ≤ yn ≤M1

2 , m
1
3 ≤ zn ≤M1

3 , n = 3, 4, · · · .

Now, for n = 4, 5, ..., we have

m2
1 = f(M1

2 ,m
1
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m1

2,M
1
2 ) = M2

1 ,

m2
2 = g(m1

3,M
1
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M1

3 ,m
1
3) = M2

2 ,

and
m2

3 = h(M1
1 ,m

1
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m1

1,M
1
1 ) = M2

3

that is
m2

1 ≤ xn ≤M2
1 , m

2
2 ≤ yn ≤M2

2 , m
2
3 ≤ zn ≤M2

3 , n = 5, 6, · · · .

Similarly, for n = 6, 7, ..., we have

m3
1 = f(M2

2 ,m
2
2) ≤ xn+1 = f(yn, yn−1) ≤ f(m2

2,M
2
2 ) = M3

1 ,

m3
2 = g(m2

3,M
2
3 ) ≤ yn+1 = g(zn, zn−1) ≤ g(M2

3 ,m
2
3) = M3

2 ,

and
m3

3 = h(M2
1 ,m

2
1) ≤ zn+1 = h(xn, xn−1) ≤ h(m2

1,M
2
1 ) = M3

3

that is
m3

1 ≤ xn ≤M3
1 , m

3
2 ≤ yn ≤M3

2 , m
3
3 ≤ zn ≤M3

3 , n = 7, 8, · · · .

It follows by induction that for i = 0, 1, ... we get

mi
1 ≤ xn ≤M i

1, m
i
2 ≤ yn ≤M i

2, m
i
3 ≤ zn ≤M i

3, n ≥ 2i+ 1.

Using the fact that i→ +∞ implies n→ +∞ and m1 = M1, m2 = M2, m3 = M3, we obtain
that

lim
n→+∞

xn = M1, lim
n→+∞

yn = M2, , lim
n→+∞

zn = M3.
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From (2.1) and using the fact that f , g and h are continuous and homogeneous of degree
zero, we get

M1 = f(M2,M2) = f(1, 1), M2 = g(M3,M3) = g(1, 1), M3 = h(M1,M1) = h(1, 1).

The following theorem is devoted to global stability of the equilibrium point.

Theorem 2.11. Under the hypotheses of Theorem 2.2 and one of Theorems 2.3–2.10, the
equilibrium point (x, y, z) = (f(1, 1), g(1, 1), h(1, 1)) is globally stable.

2.2.1 Applications

As application of the results of this section we consider the following systems of difference
equations

xn+1 = a1 + yn
b1yn + c1yn−1

, yn+1 = a2 + zn
b2zn + c2zn−1

, zn+1 = a3 + xn
b3xn + c3xn−1

, n ∈ N0,

(2.4)

xn+1 = a1 + yn
b1yn + c1yn−1

, yn+1 = a2 + zn
b2zn + c2zn−1

, zn+1 = a3 + xn−1

b3xn + c3xn−1
, n ∈ N0,

(2.5)

xn+1 = a1 + yn
b1yn + c1yn−1

, yn+1 = a2 + zn−1

b2zn + c2zn−1
, zn+1 = a3 + xn−1

b3xn + c3xn−1
, n ∈ N0,

(2.6)

xn+1 = a1 + yn
b1yn + c1yn−1

, yn+1 = a2 + zn−1

b2zn + c2zn−1
, zn+1 = a3 + xn

b3xn + c3xn−1
, n ∈ N0,

(2.7)

xn+1 = a1 + yn−1

b1yn + c1yn−1
, yn+1 = a2 + zn−1

b2zn + c2zn−1
, zn+1 = a3 + xn−1

b3xn + c3xn−1
, n ∈ N0,

(2.8)

xn+1 = a1 + yn−1

b1yn + c1yn−1
, yn+1 = a2 + zn−1

b2zn + c2zn−1
, zn+1 = a3 + xn

b3xn + c3xn−1
, n ∈ N0,

(2.9)

xn+1 = a1 + yn−1

b1yn + c1yn−1
, yn+1 = a2 + zn

b2zn + c2zn−1
, zn+1 = a3 + xn

b3xn + c3xn−1
, n ∈ N0,

(2.10)

xn+1 = a1 + yn−1

b1yn + c1yn−1
, yn+1 = a2 + zn

b2zn + c2zn−1
, zn+1 = a3 + xn−1

b3xn + c3xn−1
, n ∈ N0,

(2.11)
where x−i, y−i, i = 0, 1, aj, bj, cj, j = 0, 1, 2 are positive real numbers.



94 On a homogeneous system of difference equations of second order

Let f1, f2, g1, g2, h1, h2 : (0,+∞)2 → (0,+∞) be the functions defined by

f1(u, v) = a1 + u

b1u+ c1v
, f2(u, v) = a1 + v

b1u+ c1v
,

g1(u, v) = a2 + u

b2u+ c2v
, g2(u, v) = a2 + v

b2u+ c2v

and
h1(u, v) = a3 + u

b3u+ c3v
, h2(u, v) = a3 + v

b3u+ c3v
.

Then,
system (2.4) will be

xn+1 = f1(yn, yn−1), yn+1 = g1(zn, zn−1), zn+1 = h1(xn, xn−1),

system (2.5) will be

xn+1 = f1(yn, yn−1), yn+1 = g1(zn, zn−1), zn+1 = h2(xn, xn−1),

system (2.6) will be

xn+1 = f1(yn, yn−1), yn+1 = g2(zn, zn−1), zn+1 = h2(xn, xn−1),

system (2.7) will be

xn+1 = f1(yn, yn−1), yn+1 = g2(zn, zn−1), zn+1 = h1(xn, xn−1),

system (2.8) will be

xn+1 = f2(yn, yn−1), yn+1 = g2(zn, zn−1), zn+1 = h2(xn, xn−1),

system (2.9) will be

xn+1 = f2(yn, yn−1), yn+1 = g2(zn, zn−1), zn+1 = h1(xn, xn−1),

system (2.10) will be

xn+1 = f2(yn, yn−1), yn+1 = g1(zn, zn−1), zn+1 = h1(xn, xn−1),

system (2.11) will be

xn+1 = f2(yn, yn−1), yn+1 = g1(zn, zn−1), zn+1 = h2(xn, xn−1).
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Clearly f1, f2, g1, g2, h1, h2 are continuous and homogeneous of degree zero. Also it is
not hard to see that:

∂f1

∂u
(u, v) = c1v

(b1u+ c1v)2 > 0, ∂f1

∂v
(u, v) = − c1u

(b1u+ c1v)2 < 0,

∂g1

∂u
(u, v) = c2v

(b2u+ c2v)2 > 0, ∂g1

∂v
(u, v) = − c2u

(b2u+ c2v)2 < 0,

∂h1

∂u
(u, v) = c3v

(b3u+ c3v)2 > 0, ∂h1

∂v
(u, v) = − c3u

(b3u+ c3v)2 < 0,

∂f2

∂u
(u, v) = − b1v

(b1u+ c1v)2 < 0, ∂f2

∂v
(u, v) = b1u

(b1u+ c1v)2 > 0,

∂g2

∂u
(u, v) = − b2v

(b2u+ c2v)2 < 0, ∂g2

∂v
(u, v) = b2u

(b2u+ c2v)2 > 0

∂h2

∂u
(u, v) = − b3v

(b3u+ c3v)2 < 0, ∂h2

∂v
(u, v) = b3u

(b3u+ c3v)2 > 0.

We have

a1 ≤ f1(u, v) ≤ a1 + 1
b1
, a2 ≤ g1(u, v) ≤ a2 + 1

b2
, a3 ≤ h1(u, v) ≤ a3 + 1

b3
, ∀u, v ∈ (0,+∞),

a1 ≤ f2(u, v) ≤ a1 + 1
c1
, a2 ≤ g2(u, v) ≤ a2 + 1

c2
, a3 ≤ h2(u, v) ≤ a3 + 1

c3
, ∀u, v ∈ (0,+∞).

System (2.4) has the unique equilibrium point

(x1, y1, z1) = (f1(1, 1), g1(1, 1), h1(1, 1)) =
(
a1 + 1

b1 + c1
, a2 + 1

b2 + c2
, a3 + 1

b3 + c3

)
.

System (2.5) has the unique equilibrium point

(x2, y2, z2) = (f1(1, 1), g1(1, 1), h2(1, 1)) =
(
a1 + 1

b1 + c1
, a2 + 1

b2 + c2
, a3 + 1

b3 + c3

)
.

System (2.6) has the unique equilibrium point

(x3, y3, z3) = (f1(1, 1), g2(1, 1), h2(1, 1)) =
(
a1 + 1

b1 + c1
, a2 + 1

b2 + c2
, a3 + 1

b3 + c3

)
.

System (2.7) has the unique equilibrium point

(x4, y4, z4) = (f1(1, 1), g2(1, 1), h1(1, 1)) =
(
a1 + 1

b1 + c1
, a2 + 1

b2 + c2
, a3 + 1

b3 + c3

)
.

System (2.8) has the unique equilibrium point

(x5, y5, z5) = (f2(1, 1), g2(1, 1), h2(1, 1)) =
(
a1 + 1

b1 + c1
, a2 + 1

b2 + c2
, a3 + 1

b3 + c3

)
.
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System (2.9) has the unique equilibrium point

(x6, y6, z6) = (f2(1, 1), g2(1, 1), h1(1, 1)) =
(
a1 + 1

b1 + c1
, a2 + 1

b2 + c2
, a3 + 1

b3 + c3

)
.

System (2.10) has the unique equilibrium point

(x7, y7, z7) = (f2(1, 1), g1(1, 1), h1(1, 1)) =
(
a1 + 1

b1 + c1
, a2 + 1

b2 + c2
, a3 + 1

b3 + c3

)
.

System (2.11) has the unique equilibrium point

(x8, y8, z8) = (f2(1, 1), g1(1, 1), h2(1, 1)) =
(
a1 + 1

b1 + c1
, a2 + 1

b2 + c2
, a3 + 1

b3 + c3

)
.

2.2.1.1 Stability of the equilibrium point (x1, y1, z1)

Consider system (2.4) and its equilibrium point (x1, y1, z1) =
(
a1 + 1

b1+c1
, a2 + 1

b2+c2
, a3 + 1

b3+c3

)
.

We have the following results

Corollary 2.12. The equilibrium point (x1, y1, z1) =
(
a1 + 1

b1+c1
, a2 + 1

b2+c2
, a3 + 1

b3+c3

)
of

system (2.4) is locally asymptotically stable if

(a1(b1 + c1) + 1) (a2(b2 + c2) + 1) (a3(b3 + c3) + 1) (b1 + c1)(b2 + c2)(b3 + c3)− 8c1c2c3 > 0.

Proof. We have
f1(1, 1) = a1 + 1

b1 + c1
,
∂f1

∂u
(1, 1) = c1

(b1 + c1)2 ,

g1(1, 1) = a2 + 1
b2 + c2

,
∂g1

∂u
(1, 1) = c2

(b2 + c2)2 ,

h1(1, 1) = a3 + 1
b3 + c3

,
∂h1

∂u
(1, 1) = c3

(b3 + c3)2 .

From Theorem 2.2 (x1, y1, z1) is asymptotically stable if∣∣∣∣∣∂f1

∂u
(1, 1)∂g1

∂u
(1, 1)∂h1

∂u
(1, 1)

∣∣∣∣∣ < f1(1, 1)g1(1, 1)h1(1, 1)
8 ,

that is∣∣∣∣∣ c1

(b1 + c1)2 ·
c2

(b2 + c2)2 ·
c3

(b3 + c3)2

∣∣∣∣∣ < 1
8

(
a1 + 1

b1 + c1

)(
a2 + 1

b2 + c2

)(
a3 + 1

b3 + c3

)
,

or

(a1(b1 + c1) + 1) (a2(b2 + c2) + 1) (a3(b3 + c3) + 1) (b1 + c1)(b2 + c2)(b3 + c3)− 8c1c2c3 > 0.
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Theorem 2.13. Assume that

8c1c2c3

(
a1 + 1

b1

)(
a2 + 1

b2

)(
a3 + 1

b3

)
< a2

1a
2
2a

2
3(b1 + c1)2(b2 + c2)2(b3 + c3)2.

Then, the equilibrium point (x1, y1, z1) of system (2.4) is globally attractive.

Proof. To prove the global attracivity of the equilibrium point we will use Theorem 2.3.
From above we have

a := a1 ≤ f1(u, v) ≤ b := a1 + 1
b1
, α := a2 ≤ g1(u, v) ≤ β := a2 + 1

b2
,

λ := a3 ≤ h1(u, v) ≤ γ := a3 + 1
b3
, ∀u, v ∈ (0,+∞),

and

∂f1

∂u
(u, v) > 0, ∂f1

∂v
(u, v) < 0, ∂g1

∂u
(u, v) > 0, ∂g1

∂v
(u, v) < 0, ∂h1

∂u
(u, v) > 0, ∂h1

∂v
(u, v) < 0.

So, it follows that conditions H1 and H2 are satisfied. It remains to check condition H3. To
this end, let

(m1,M1,m2,M2,m3,M3) ∈ [a, b]2 × [α, β]2 × [λ, γ]2

be a solution of the system

m1 = a1 + m2

b1m2 + c1M2
, M1 = a1 + M2

b1M2 + c1m2
, m2 = a2 + m3

b2m3 + c2M3
, M2 = a2 + M3

b2M3 + c2m3
,

m3 = a3 + m1

b3m1 + c3M1
, M3 = a3 + M1

b3M1 + c3m1
. (2.12)

From (2.12), we get
m1 −M1 = c1(m2 −M2)(m2 +M2)

(b1m2 + c1M2)(b1M2 + c1m2) , (2.13)

m2 −M2 = c2(m3 −M3)(m3 +M3)
(b2m3 + c2M3)(b2M3 + c2m3) , (2.14)

and
m3 −M3 = c3(m1 −M1)(m1 +M1)

(b3m1 + c3M1)(b3M1 + c3m1) . (2.15)

From (2.13), (2.14) and (2.15), we obtain

(m1 −M1)(m2 −M2)(m3 −M3) =
c1c2c3(m1 −M1)(m2 −M2)(m3 −M3)(m1 +M1)(m2 +M2)(m3 +M3)

(b1m2 + c1M2)(b1M2 + c1m2)(b2m3 + c2M3)(b2M3 + c2m3)(b3m1 + c3M1)(b3M1 + c3m1)
.

So it follows that
(m1 −M1)(m2 −M2)(m3 −M3) = 0
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or
c1c2c3(m1 +M1)(m2 +M2)(m3 +M3)

(b1m2 + c1M2)(b1M2 + c1m2)(b2m3 + c2M3)(b2M3 + c2m3)(b3m1 + c3M1)(b3M1 + c3m1) = 1.

We will show that
h(m1,M1,m2,M2,m3,M3) =

c1c2c3(m1 +M1)(m2 +M2)(m3 +M3)
(b1m2 + c1M2)(b1M2 + c1m2)(b2m3 + c2M3)(b2M3 + c2m3)(b3m1 + c3M1)(b3M1 + c3m1)

6= 1.

In fact, we have
8c1c2c3aαλ

b2β2γ2(b1 + c1)2(b2 + c2)2(b3 + c3)2 ≤ h(m1,M1,m2,M2,m3,M3) ≤
8c1c2c3bβγ

a2α2λ2(b1 + c1)2(b2 + c2)2(b3 + c3)2 .

Noting that
8c1c2c3aαλ = 8c1c2c3a1a2a3,

and

b2β2γ2(b1 + c1)2(b2 + c2)2(b3 + c3)2 >
(2a1

b1

)(2a2

b2

)(2a3

b3

)
(2b1c1)(2b2c2)(2b3c3).

So it follows that
8c1c2c3aαλ

b2β2γ2(b1 + c1)2(b2 + c2)2(b3 + c3)2 <
8c1c2c3a1a2a3(

2a1
b1

) (
2a2
b2

) (
2a3
b3

)
(2b1c1)(2b2c2)(2b3c3)

= 1
8 .

Using the fact that

8c1c2c3bβγ < a2α2λ2(b1 + c1)2(b2 + c2)2(b3 + c3)2,

we get
8c1c2c3bβγ

a2α2λ2(b1 + c1)2(b2 + c2)2(b3 + c3)2 < 1.

Hence,
h(m1,M1,m2,M2,m3,M3) 6= 1, (m1 −M1)(m2 −M2)(m3 −M3) = 0

which implies with (2.13), (2.14) and (2.15) that

m1 = M1, m2 = M2, m3 = M3

and so condition H3 is satisfied and then the equilibrium point (x1, y1, z1) is globally attrac-
tive.

Theorem 2.14. Assume that

(a1(b1 + c1) + 1) (a2(b2 + c2) + 1) (a3(b3 + c3) + 1) (b1 + c1)(b2 + c2)(b3 + c3)− 8c1c2c3 > 0.

and

8c1c2c3

(
a1 + 1

b1

)(
a2 + 1

b2

)(
a3 + 1

b3

)
< a2

1a
2
2a

2
3(b1 + c1)2(b2 + c2)2(b3 + c3)2.

Then the equilibrium point (x1, y1, z1) is globally asymptotically stable
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Proof. It follows from Corollary 2.12 and Theorem 2.13.

In the same way, we can prove similar results for the remaining systems. So, for each
system we give a theorem that includes conditions for global stability of the the corresponding
equilibrium point.

2.2.1.2 Stability of the equilibrium point (x2, y2, z2)

Consider system (2.5) and its equilibrium point (x2, y2, z2) =
(
a1 + 1

b1+c1
, a2 + 1

b2+c2
, a3 + 1

b3+c3

)
.

We have the following result.

Theorem 2.15. Assume that

1. Local stability condition:

(a1(b1 + c1) + 1) (a2(b2 + c2) + 1) (a3(b3 + c3) + 1) (b1+c1)(b2+c2)(b3+c3)−8c1c2b3 > 0.

2. Global attractivity condition:

8c1c2b3

(
a1 + 1

b1

)(
a2 + 1

b2

)(
a3 + 1

c3

)
< a2

1a
2
2a

2
3(b1 + c1)2(b2 + c2)2(b3 + c3)2.

Then the equilibrium point (x2, y2, z2) is globally asymptotically stable.

2.2.1.3 Stability of the equilibrium point (x3, y3, z3)

Consider system (2.6) and its equilibrium point (x3, y3, z3) =
(
a1 + 1

b1+c1
, a2 + 1

b2+c2
, a3 + 1

b3+c3

)
.

We have the following result.

Theorem 2.16. Assume that

1. Local stability condition:

(a1(b1 + c1) + 1) (a2(b2 + c2) + 1) (a3(b3 + c3) + 1) (b1+c1)(b2+c2)(b3+c3)−8c1b2b3 > 0.

2. Global attractivity condition:

8c1b2b3

(
a1 + 1

b1

)(
a2 + 1

c2

)(
a3 + 1

c3

)
< a2

1a
2
2a

2
3(b1 + c1)2(b2 + c2)2(b3 + c3)2.

Then the equilibrium point (x3, y3, z3) is globally asymptotically stable.
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2.2.1.4 Stability of the equilibrium point (x4, y4, z4)

Consider system (2.7) and its equilibrium point (x4, y4, z4) =
(
a1 + 1

b1+c1
, a2 + 1

b2+c2
, a3 + 1

b3+c3

)
.

We have the following result.

Theorem 2.17. Assume that

1. Local stability condition:

(a1(b1 + c1) + 1) (a2(b2 + c2) + 1) (a3(b3 + c3) + 1) (b1+c1)(b2+c2)(b3+c3)−8c1b2c3 > 0.

2. Global attractivity condition:

8c1b2c3

(
a1 + 1

b1

)(
a2 + 1

c2

)(
a3 + 1

b3

)
< a2

1a
2
2a

2
3(b1 + c1)2(b2 + c2)2(b3 + c3)2.

Then the equilibrium point (x4, y4, z4) is globally asymptotically stable.

2.2.1.5 Stability of the equilibrium point (x5, y5, z5)

Consider system (2.8) and its equilibrium point (x5, y5, z5) =
(
a1 + 1

b1+c1
, a2 + 1

b2+c2
, a3 + 1

b3+c3

)
.

We have the following result.

Theorem 2.18. Assume that

1. Local stability condition:

(a1(b1 + c1) + 1) (a2(b2 + c2) + 1) (a3(b3 + c3) + 1) (b1+c1)(b2+c2)(b3+c3)−8b1b2b3 > 0.

2. Global attractivity condition:

8b1b2b3

(
a1 + 1

c1

)(
a2 + 1

c2

)(
a3 + 1

c3

)
< a2

1a
2
2a

2
3(b1 + c1)2(b2 + c2)2(b3 + c3)2.

Then the equilibrium point (x5, y5, z5) is globally asymptotically stable.

2.2.1.6 Stability of the equilibrium point (x6, y6, z6)

Consider system (2.9) and its equilibrium point (x6, y6, z6) =
(
a1 + 1

b1+c1
, a2 + 1

b2+c2
, a3 + 1

b3+c3

)
.

We have the following result.

Theorem 2.19. Assume that
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1. Local stability condition:

(a1(b1 + c1) + 1) (a2(b2 + c2) + 1) (a3(b3 + c3) + 1) (b1+c1)(b2+c2)(b3+c3)−8b1b2c3 > 0.

2. Global attractivity condition:

8b1b2c3

(
a1 + 1

c1

)(
a2 + 1

c2

)(
a3 + 1

b3

)
< a2

1a
2
2a

2
3(b1 + c1)2(b2 + c2)2(b3 + c3)2.

Then the equilibrium point (x6, y6, z6) is globally asymptotically stable.

2.2.1.7 Stability of the equilibrium point (x7, y7, z7)

Consider system (2.10) and its equilibrium point (x7, y7, z7) =
(
a1 + 1

b1+c1
, a2 + 1

b2+c2
, a3 + 1

b3+c3

)
.

We have the following result.

Theorem 2.20. Assume that

1. Local stability condition:

(a1(b1 + c1) + 1) (a2(b2 + c2) + 1) (a3(b3 + c3) + 1) (b1+c1)(b2+c2)(b3+c3)−8b1c2c3 > 0.

2. Global attractivity condition:

8b1c2c3

(
a1 + 1

c1

)(
a2 + 1

b2

)(
a3 + 1

b3

)
< a2

1a
2
2a

2
3(b1 + c1)2(b2 + c2)2(b3 + c3)2.

Then the equilibrium point (x7, y7, z7) is globally asymptotically stable.

2.2.1.8 Stability of the equilibrium point (x8, y8, z8)

Consider system (2.11) and its equilibrium point (x8, y8, z8) =
(
a1 + 1

b1+c1
, a2 + 1

b2+c2
, a3 + 1

b3+c3

)
.

We have the following result.

Theorem 2.21. Assume that

1. Local stability condition:

(a1(b1 + c1) + 1) (a2(b2 + c2) + 1) (a3(b3 + c3) + 1) (b1+c1)(b2+c2)(b3+c3)−8b1c2b3 > 0.

2. Global attractivity condition:

8b1c2b3

(
a1 + 1

c1

)(
a2 + 1

b2

)(
a3 + 1

c3

)
< a2

1a
2
2a

2
3(b1 + c1)2(b2 + c2)2(b3 + c3)2.

Then the equilibrium point (x8, y8, z8) is globally asymptotically stable.
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2.3 Existence of periodic solutions

Here, we are interested in existence of periodic solutions for system (2.1).

Definition 2.2. A solution (xn, yn, zn)n=−1,0,... of system (2.1) is said to be periodic of period
p ∈ N if

xn+p = xn, yn+p = yn, zn+p = zn, n = −1, 0, · · · .

In the following result we will established a necessary and sufficient condition for which
there exist prime period two solutions for system (2.1).

Theorem 2.22. Assume that α, β and γ are positive real numbers such that (α − 1)(β −
1)(γ − 1) 6= 0. Then, system (2.1) have a prime period two solution

..., (αp, βq, γr), (p, q, r), (αp, βq, γr), (p, q, r), ...

if and only if

f(1, β) = αf(β, 1), g(1, γ) = βg(γ, 1), h(1, α) = γh(α, 1),

where
p = f(β, 1), q = g(γ, 1), r = h(α, 1).

Proof. 1. Let α, β, γ be positive real numbers and assume that

..., (αp, βq, γr), (p, q, r), (αp, βq, γr), (p, q, r), ...

is a solution for system (2.1). Then, we have

αp = f(q, βq) = f(1, β) (2.16)

p = f(βq, q) = f(β, 1) (2.17)

βq = g(r, γr) = g(1, γ) (2.18)

q = g(γr, r) = g(γ, 1) (2.19)

γr = h(p, αp) = h(1, α) (2.20)

r = h(αp, p) = h(α, 1). (2.21)

From (2.16)-(2.21), it follows that

f(1, β) = αf(β, 1), g(1, γ) = βg(γ, 1), h(1, α) = γh(α, 1).
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2. Now, assume that

f(1, β) = αf(β, 1), g(1, γ) = βg(γ, 1), h(1, α) = γh(α, 1).

and let

x0 = f(β, 1), x−1 = f(1, β), y0 = g(γ, 1), y−1 = g(1, γ), z0 = h(α, 1), z−1 = h(1, α).

We have

x1 = f(y0, y−1) = f(g(γ, 1), g(1, γ)) = f(g(γ, 1), βg(γ, 1)) = f(1, β) = x−1,

y1 = g(z0, z−1) = g(h(α, 1), h(1, α)) = g(h(α, 1), γh(α, 1)) = g(1, γ) = y−1,

z1 = h(x0, x−1) = h(f(β, 1), f(1, β)) = h(f(β, 1), αf(β, 1)) = h(1, α) = z−1,

x2 = f(y1, y0) = f(g(1, γ), g(γ, 1)) = f(βg(γ, 1), g(γ, 1)) = f(β, 1) = x0,

y2 = g(z1, z0) = g(h(1, α), h(α, 1)) = g(γh(α, 1), h(α, 1)) = g(1, γ) = y0,

z2 = h(x1, x0) = h(f(1, β), f(β, 1)) = h(αf(β, 1), f(β, 1)) = h(1, α) = z0.

By induction we get

x2n−1 = x−1, x2n = x0, y2n−1 = y−1, y2n = y0, z2n−1 = z−1, z2n = z0, n ∈ N0.

Now, we will applied our result in finding prime period two solutions of some special
cases of system (2.1).

2.3.1 The first special system

In [27], the author investigated the existence of periodic solutions of the equation

xn+1 = a1 + b1
xn
xn−1

+ c1
xn−1

xn
. (2.22)

The author of [60], make some additional remarks and results on the same equation. Here,
as a generalization of equation (2.22) and the system

xn+1 = a1 + b1
yn
yn−1

+ c1
yn−1

yn
, yn+1 = a2 + b2

xn
xn−1

+ c2
xn−1

xn
,
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studied by [114], we consider the three dimensional system

xn+1 = a1+b1
yn
yn−1

+c1
yn−1

yn
, yn+1 = a2+b2

zn
zn−1

+c2
zn−1

zn
, zn+1 = a3+b3

xn
xn−1

+c3
xn−1

xn
, n ∈ N0,

(2.23)
where the initial values x−i, y−i, z−i, i = 0, 1 and aj, bj, cj, j = 1, 2, 3 are positive real
numbers. For this system we have the following result.

Corollary 2.23. Assume that (α − 1)(β − 1)(γ − 1) 6= 0, then system (2.23) had prime
period two solution of the form

...,(αf(β, 1), βg(γ, 1), γh(α, 1)), (f(β, 1), g(γ, 1), h(α, 1)), (αf(β, 1), βg(γ, 1), γh(α, 1)),

(f(β, 1), g(γ, 1), h(α, 1)), ...

if and only if

(b1α− c1)β2 + a1β(α− 1) + c1α− b1 = 0, (b2β − c2)γ2 + a2γ(β − 1) + c2β − b2 = 0,

(b3γ − c3)α2 + a3α(γ − 1) + c3γ − b3 = 0. (2.24)

Proof. System (2.23) can be written as

xn+1 = f(yn, yn−1), yn+1 = g(zn, zn−1), zn+1 = h(xn, xn−1),

where

f(u, v) = a1 + b1
u

v
+ c1

v

u
, g(u, v) = a2 + b2

u

v
+ c2

v

u
, h(u, v) = a3 + b3

u

v
+ c3

v

u
.

So, from Theorem 2.22,

...,(αf(β, 1), βg(γ, 1), γh(α, 1)), (f(β, 1), g(γ, 1), h(α, 1)), (αf(β, 1), βg(γ, 1), γh(α, 1)),

(f(β, 1), g(γ, 1), h(α, 1)), ...

will be a period prime two solution of system (2.23) if and only if

f(1, β) = αf(β, 1), g(1, γ) = βg(γ, 1), h(1, α) = γh(α, 1).

Clearly this condition is equivalent to

(b1α− c1)β2 + a1β(α− 1) + c1α− b1 = 0, (b2β − c2)γ2 + a2γ(β − 1) + c2β − b2 = 0,

(b3γ − c3)α2 + a3α(γ − 1) + c3γ − b3 = 0.
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Example 2.3.1. If we choose α = 2, β = 3, γ = 1
2 , the condition (2.24) will be

3a1 + 17b1 − 7c1 = 0, 4a2 − b2 + 11c2 = 0, −2a3 + 2b3 − 7c3 = 0.

The last condition is satisfied for the choice

a1 = 4
3 , b1 = 1, c1 = 3, a2 = 1

4 , b2 = 2, c2 = 1
11 , a3 = 1

2 , b3 = 4, c3 = 1

of the parameters.
The corresponding prime period two solutions, will be

x2n−1 = x−1 = αf(β, 1) = 32
3 , y2n−1 = y−1 = βg(γ, 1) = 189

44 , z2n−1 = z−1 = γh(α, 1) = 9
2 ,

and

x2n = x0 = f(β, 1) = 16
3 , y2n = y0 = g(γ, 1) = 63

44 , z2n = z0 = h(α, 1) = 9

that is {(32
3 ,

189
44 ,

9
2

)
,
(16

3 ,
63
44 , 9

)
,
(32

3 ,
189
44 ,

9
2

)
, · · ·

}
.

2.3.2 The second special system

Consider the system

xn+1 = a1+b1
yn

yn−1
+c1

(
yn−1
yn

)2
, yn+1 = a2+b2

zn−1
zn

+c2

(
zn−1
zn

)2
, zn+1 = a3+b3

xn−1
xn

+32

(
xn−1
xn

)2
, n ∈ N0,

(2.25)

where the initial values x−i, y−i, z−i, i = 0, 1 and aj, bj, cj, j = 1, 2, 3 are positive real
numbers. System (2.25) is a modification of system (2.23) and we have the following result.

Corollary 2.24. Assume that (α − 1)(β − 1)(γ − 1) 6= 0, then system (2.25) had prime
period two solution of the form

...,(αf(β, 1), βg(γ, 1), γh(α, 1)), (f(β, 1), g(γ, 1), h(α, 1)), (αf(β, 1), βg(γ, 1), γh(α, 1)),

(f(β, 1), g(γ, 1), h(α, 1)), ...

if and only if

a1β
2(α− 1) + b1β(αβ2 − 1) + c1(α− β4) = 0, a2γ

2(β − 1) + b2γ(βγ2 − 1) + c2(β − γ4) = 0,

a3α
2(γ − 1) + b3α(γα2 − 1) + c3(γ − α4) = 0. (2.26)
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Proof. System (2.25) can be written as

xn+1 = f(yn, yn−1), yn+1 = g(zn, zn−1), zn+1 = h(xn, xn−1),

where

f(u, v) = a1 + b1
u

v
+ c1

(
v

u

)2
, g(u, v) = a2 + b2

v

u
+ c2

(
v

u

)2
, h(u, v) = a3 + b3

v

u
+ c3

(
v

u

)2
.

So, from Theorem 2.22,

...,(αf(β, 1), βg(γ, 1), γh(α, 1)), (f(β, 1), g(γ, 1), h(α, 1)), (αf(β, 1), βg(γ, 1), γh(α, 1)),

(f(β, 1), g(γ, 1), h(α, 1)), ...

will be a period prime two solution of system (2.23) if and only if

f(1, β) = αf(β, 1), g(1, γ) = βg(γ, 1), h(1, α) = γh(α, 1).

Clearly this condition is equivalent to

a1β
2(α− 1) + b1β(αβ2 − 1) + c1(α− β4) = 0, a2γ

2(β − 1) + b2γ(βγ2 − 1) + c2(β − γ4) = 0,

a3α
2(γ − 1) + b3α(γα2 − 1) + c3(γ − α4) = 0.

Example 2.3.2. For α = 3, β = 2, γ = 1
3 , the condition (2.26) will be

8a1 + 22b1 − 13c1 = 0, 9a2 − 21b2 + 161c2 = 0, 18a3 − 18b3 + 242c3 = 0.

The last condition is satisfied for the choice

a1 = 1, b1 = 1, c1 = 30
13 , a2 = 19

9 , b2 = 2, c2 = 1
7 , a3 = 1

6 , b3 = 7
9 , c3 = 1

22
of the parameters.

The corresponding prime period two solutions, will be

x2n−1 = x−1 = 3f(2, 1) = 297
26 , y2n−1 = y−1 = 2g(1

3 , 1) = 512
63 , z2n−1 = z−1 = 1

3h(3, 1) = 248
297 ,

and

x2n = x0 = f(2, 1) = 93
26 , y2n = y0 = g(1

3 , 1) = 256
63 , z2n = z0 = h(3, 1) = 744

297
that is {(297

26 ,
512
63 ,

248
297

)
,
(93

26 ,
256
63 ,

744
297

)
,
(297

26 ,
512
63 ,

248
297

)
, · · ·

}
.
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2.4 Existence of oscillatory Solutions

Here, we are interested in the oscillation of the solutions of system (2.1) about the equilibrium
point (x, y, z) = (f(1, 1), g(1, 1), h(1, 1)).

Definition 2.3. Let (xn, yn, zn)n≥−1 be a solution of system (2.1). We say that the sequence
(xn)n≥−1 (resp. (yn)n≥−1, (zn)n≥−1) oscillate about x (resp. y, z) with a semi-cycle of length
one if:
(xn− x)(xn+1− x) < 0, n ≥ −1 (resp. (yn− y)(yn+1− y) < 0, n ≥ −1, (zn− z)(yn+1− y) <
0, n ≥ −1).

Remark 2.4.1. For every term xn0 of the sequence (xn)n≥−1, the notation "+" means xn0 −
x > 0 and the notation "-" means xn0−x < 0. The same notations will be used for the terms
of the sequences (yn)n≥−1 and (zn)n≥−1.

Theorem 2.25. Let (xn, yn, zn)n≥−1 be a solution of system (2.1) and assume that f(x, y),
g(x, y) h(x, y) are decreasing in x for all y and are increasing in y for all x.

1. If
x0 < x, x−1 > x, y0 < y, y−1 > y, z0 < z, z−1 > z,

then we get

x2n < x, x2n−1 > x, y2n < y, y2n−1 > y, z2n < z, z2n−1 > z, n ∈ N.

That is for both (xn)n≥−1, (yn)n≥−1 and (zn)n≥−1 we have semi-cycles of length one of
the form

+−+−+− · · · .

2. If
x0 > x, x−1 < x, y0 > y, y−1 < y, z0 > z, z−1 < z,

then we get

x2n > x, x2n−1 < x, y2n > y, y2n−1 < y, z2n > z, z2n−1 < z, n ∈ N.

That is for both (xn)n≥−1, (yn)n≥−1 and (zn)n≥−1 we have semi-cycles of length one of
the form

−+−+−+ · · · .
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Proof. 1. Assume that

x0 < x, x−1 > x, y0 < y, y−1 > y, z0 < z, z−1 > z.

We have
x1 = f(y0, y−1) > f(y, y−1) > f(y, y) = f(1, 1) = x,

y1 = g(z0, z−1) > g(z, z−1) > g(z, z) = g(1, 1) = y,

z1 = h(x0, x−1) > h(x, x−1) > h(x, x) = h(1, 1) = z,

x2 = f(y1, y0) < f(y, y0) < f(y, y) = f(1, 1) = x,

y2 = g(z1, z0) < g(z, z0) < g(z, z) = g(1, 1) = y.

z2 = h(x1, x0) < h(x, x0) < h(x, x) = h(1, 1) = z.

By induction, we get

x2n < x, x2n−1 > x, y2n < y, y2n−1 > y, z2n < z, z2n−1 > z, n ∈ N.

2. Assume that
x0 > x, x−1 < x, y0 > y, y−1 < y, z0 > z, z−1 < z.

We have
x1 = f(y0, y−1) < f(y, y−1) < f(y, y) = f(1, 1) = x,

y1 = g(z0, z−1) < g(z, z−1) < g(z, z) = g(1, 1) = y,

z1 = h(x0, x−1) < h(x, x−1) < h(x, x) = h(1, 1) = z,

x2 = f(y1, y0) > f(y, y0) > f(y, y) = f(1, 1) = x,

y2 = g(z1, z0) > g(z, z0) > g(z, z) = g(1, 1) = y.

z2 = h(x1, x0) > h(x, x0) > h(x, x) = h(1, 1) = y.

By induction, we get

x2n > x, x2n−1 < x, y2n > y, y2n−1 < y, z2n > z, z2n−1 < z, n ∈ N.

Now in order to confirm the results of this section, we consider the following particular
system.
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Example 2.4.1. Consider the system

xn+1 = a1 + b1

(
yn−1

yn

)p
, yn+1 = a2 + b2

(
zn−1

zn

)q
, zn+1 = a3 + b3

(
xn−1

xn

)k
, n ∈ N0, (2.27)

where p, q, k ∈ N, x−i, y−i, z−i, i = 0, 1, aj, bj, i = 1, 2, 3 are positive real numbers.
Let f , g and h be the functions defined by

f(u, v) = a1 + b1

(
v

u

)p
, g(u, v) = a2 + b2

(
v

u

)q
, h(u, v) = a3 + b3

(
v

u

)k
, u, v ∈ (0,+∞).

It is not hard to see that

∂f

∂u
(u, v) < 0, ∂f

∂v
(u, v) > 0, ∂g

∂u
(u, v) < 0, ∂g

∂v
(u, v) > 0 ∂h

∂u
(u, v) < 0, ∂h

∂v
(u, v) > 0.

System (2.27) has the unique equilibrium point (x, y, z) = (a1 + b1, a2 + b2, a3 + b3).

Corollary 2.26. Let (xn, yn, zn)n=−1,0,... be a solution of system (2.27). The following state-
ments holds true:

1. Let
x0 < x, x−1 > x, y0 < y, y−1 > y, z0 < z, z−1 > z.

Then the sequence (xn)n (resp. (yn)n, (zn)n) oscillate about x (resp. about y, z) with
semi-cycle of length one and every semi-cycle is in the form

+−+−+− · · · .

2. Let
x0 > x, x−1 < x, y0 > y, y−1 < y, z0 > z, z−1 < z.

Then the sequence (xn)n (resp. (yn)n, (zn)n) oscillate about x (resp. about y, z) with
semi-cycle of length one and every semi-cycle is in the form

+−+−+− · · · .

Proof. 1. Let
x0 < x, x−1 > x, y0 < y, y−1 > y, z0 < z, z−1 > z.

We have
y−1

y0
>
y

y
= 1,
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which implies that

x1 = a1 + b1

(
y−1

y0

)p
> a1 + b1 = x.

Using the fact that
z−1

z0
>
z

z
= 1,

we get

y1 = a2 + b2

(
z−1

z0

)q
> a2 + b2 = y.

Also,
x−1

x0
>
x

x
= 1,

we get

z1 = a3 + b3

(
x−1

x0

)k
> a3 + b3 = z.

Now, as
y0

y1
<
y

y
= 1,

we obtain

x2 = a1 + b1

(
y0

y1

)p
< a1 + b1 = x.

Similarly,
z0

z1
<
z

z
= 1⇒ y2 = a2 + b2

(
z0

z1

)q
< a2 + b2 = y,

and
x0

x1
<
x

x
= 1⇒ z2 = a3 + b3

(
x0

x1

)k
< a3 + b3 = z,

and by induction we get that

x2n−x < 0, y2n−y < 0, z2n−z < 0, x2n−1−x > 0, y2n−1−y > 0, z2n−1−z > 0, n ∈ N0,

that is the sequences (xn)n (resp. (yn)n, (zn)n) oscillate about x (resp. about y, z)
with semi-cycle of length one and every semi-cycle is in the form

−+−+−+ · · · .

and this confirm Part 1. of Theorem 2.25.

2. Let

x0 > x, x−1 < x, y0 > y, y−1 < y, z0 > z, z−1 < z.
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We have
y−1

y0
<
y

y
= 1,

which implies that

x1 = a1 + b1

(
y−1

y0

)p
< a1 + b1 = x.

Using the fact that
z−1

z0
<
z

z
= 1,

we get
y1 = a2 + b2

(
z−1

z0

)q
< a2 + b2 = y.

Also,
x−1

x0
<
x

x
= 1,

we get
z1 = a3 + b3

(
x−1

x0

)k
< a3 + b3 = z.

Now, as
y0

y1
>
y

y
= 1,

we obtain
x2 = a1 + b1

(
y0

y1

)p
> a1 + b1 = x.

Similarly,
z0

z1
>
z

z
= 1⇒ y2 = a2 + b2

(
z0

z1

)q
> a2 + b2 = y,

and
x0

x1
>
x

x
= 1⇒ z2 = a3 + b3

(
x0

x1

)k
> a3 + b3 = z.

Thus, by induction we get that

x2n−x > 0, y2n−y > 0, z2n−z > 0, x2n−1−x < 0, y2n−1−y < 0, z2n−1−z < 0, n ∈ N0,

that is the sequences (xn)n (resp. (yn)n, (zn)n) oscillate about x (resp. about y, z)
with semi-cycle of length one and every semi-cycle is in the form

+−+−+− · · · .

and this confirm Part 2. of Theorem 2.25.



Chapter 3

Formulas and behavior of solutions of
a three dimensional system of
difference equations

3.1 Introduction

One of the basic nonlinear difference equation is

xn+1 = xn−1xn
xn + xn−2

, n ∈ N0. (3.1)

First time, equation (3.1) is solved by Elabbasy et al. in [17]. Then, Stevic differently
expressed general solution to equation (3.1) in [94]. In addition, Elabbasy et al. showed that
the following difference equation

xn+1 = xn−1xn
xn − xn−2

, n ∈ N0. (3.2)

is solvable in [18].
In [35], the authors presented the solutions of the two-dimensional system of difference
equations which extended of equation (3.1) and equation (3.2)

xn+1 = xpn−k+1yn
aypn−k + byn

, yn+1 = ypn−k+1xn
αxpn−k + βxn

, n ∈ N0, p, k ∈ N. (3.3)

The authors of [112] studied the case k = 2, p = 1, in system (3.3) with a special choices
of a, b, α, β. In addition, for the case k = 3, p = 1, with a special choices of a, b, α, β in
system (3.3) is investigated in [19]. Further, in [5, 20] authors obtained the solutions of
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other two-dimensional system of difference equations which is related to equation (3.1) and
equation (3.2).
In [126], Yazlik et all. presented the solutions of following three-dimensional system of
difference equations which generalized both equations (3.1)-(3.2) and systems are given [5,
19, 20, 112],

xn+1 = xnyn−1

a0xn + b0yn−2
, yn+1 = ynzn−1

a1yn + b1zn−2
, zn+1 = znxn−1

a2zn + b2xn−2
, n ∈ N0, (3.4)

where the parameters ai, bi and the initial values x−i, y−i, z−i (i = 0, 1, 2) are real numbers.
A natural question is to study both three-dimensional form of equations (3.1)-(3.2),

system (3.3) and more general system of (3.4) solvable in explicit-form. Here we study such
a system. That is, we deal with the following system of difference equations

xn+1 = xpn−k+1yn
αypn−k + βyn

, yn+1 = ypn−k+1zn
azpn−k + bzn

, zn+1 = zpn−k+1xn
Axpn−k +Bxn

, n ∈ N0, p, k ∈ N. (3.5)

3.2 Form of the solutions

To solve system (3.5) we need to use the following lemma.

Lemma 3.1. For a, b ∈ R, consider the linear difference equation

yn+3 = ayn + b, n ∈ N0.

Then,

∀n ∈ N0, y3n+i =


yi + bn, a = 1,

anyi +
(
an − 1
a− 1

)
b, otherwise,

for i = 0, 1, 2.

Through the rest of the chapter by a solution of (3.5), we mean a well defined solution,
that is a solution such that(

αypn−k + βyn
) (
azpn−k + bzn

) (
Axpn−k +Bxn

)
6= 0, n ∈ N0.

Rearrange system (3.5) as follows

xpn−k+1
xn+1

= α
ypn−k
yn

+ β,
ypn−k+1
yn+1

= a
zpn−k
zn

+ b,
zpn−k+1
zn+1

= A
xpn−k
xn

+B.

Putting
un = xpn−k

xn
, vn = ypn−k

yn
, wn = zpn−k

zn
, ∀n ∈ N0, (3.6)
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we get
un+1 = αvn + β, vn+1 = awn + b, wn+1 = Aun +B, ∀n ∈ N0. (3.7)

So, for all n ∈ N0,

un+3 = αvn+2 + β = α [awn+1 + b] + β = α [a (Aun +B) + b] + β,

= αaAun + αaB + αb+ β.

vn+3 = awn+2 + b = a [Aun+1 +B] + b = a [A (αvn + β) +B] + b,

= αaAvn + aAβ + aB + b.

wn+3 = Aun+2 +B = A [αvn+1 + β] +B = A [α (awn + b) + β] +B,

= αaAwn + αAb+ Aβ +B.

From this, we get, for all n ∈ N0, the following linear first order nonhomogeneous difference
equations,

u3(n+1) = αaAu3n + αaB + αb+ β,

u3(n+1)+1 = αaAu3n+1 + αaB + αb+ β,

u3(n+1)+2 = αaAu3n+2 + αaB + αb+ β,

v3(n+1) = αaAv3n + aAβ + aB + b,

v3(n+1)+1 = αaAv3n+1 + aAβ + aB + b,

v3(n+1)+2 = αaAv3n+2 + aAβ + aB + b,

w3(n+1) = αaAw3n + αAb+ Aβ +B,

w3(n+1)+1 = αaAw3n+1 + αAb+ Aβ +B,

w3(n+1)+2 = αaAw3n+2 + αAb+ Aβ +B,

Then, we get for all n ∈ N0,

u3n+i =


ui + (αaB + αb+ β)n, αaA = 1,

(αaA)nui +
(

(αaA)n − 1
αaA− 1

)
(αaB + αb+ β), otherwise,

for i = 0, 1, 2; (3.8)
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v3n+i =


vi + (aAβ + aB + b)n, αaA = 1,

(αaA)nvi +
(

(αaA)n − 1
αaA− 1

)
(aAβ + aB + b), otherwise,

for i = 0, 1, 2; (3.9)

w3n+i =


wi + (αAb+ Aβ +B)n, αaA = 1,

(αaA)nwi +
(

(αaA)n − 1
αaA− 1

)
(αAb+ Aβ +B), otherwise,

for i = 0, 1, 2. (3.10)

From (3.6) and equations (3.8), (3.9) and (3.10), it follows that for all n ∈ N0,

u3n =



xp−k + (αaB + αb+ β)nx0

x0
, αaA = 1,

(αaA)nxp−k +
(

(αaA)n − 1
αaA− 1

)
(αaB + αb+ β)x0

x0
, otherwise,

(3.11)

u3n+1 =



αyp−k + βy0 + (αaB + αb+ β)ny0

y0
, αaA = 1,

(αaA)n
(
αyp−k + βy0

)
+
(

(αaA)n − 1
αaA− 1

)
(αaB + αb+ β)y0

y0
, otherwise,

(3.12)

u3n+2 =



αazp−k + (αb+ β)z0 + (αaB + αb+ β)nz0

z0
, αaA = 1,

(αaA)n
(
αazp−k + (αb+ β)z0

)
+
(

(αaA)n − 1
αaA− 1

)
(αaB + αb+ β)z0

z0
, otherwise,

(3.13)

v3n =



yp−k + (aAβ + aB + b)ny0

y0
, αaA = 1,

(αaA)nyp−k +
(

(αaA)n − 1
αaA− 1

)
(aAβ + aB + b)y0

y0
, otherwise,

(3.14)

v3n+1 =



azp−k + b+ (aAβ + aB + b)nz0

z0
, αaA = 1,

(αaA)n
(
azp−k + bz0

)
+
(

(αaA)n − 1
αaA− 1

)
(aAβ + aB + b)z0

z0
, otherwise,

(3.15)

v3n+2 =



aAxp−k + (aB + b)x0 + (aAβ + aB + b)nx0

x0
, αaA = 1,

(αaA)n
(
aAxp−k + (aB + b)x0

)
+
(

(αaA)n − 1
αaA− 1

)
(aAβ + aB + b)x0

x0
, otherwise,

(3.16)
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w3n =



zp−k + (αAb+ Aβ +B)nz0

z0
, αaA = 1,

(αaA)nzp−k +
(

(αaA)n − 1
αaA− 1

)
(αAb+ Aβ +B)z0

z0
, otherwise,

(3.17)

w3n+1 =



Axp−k +Bx0 + (αAb+ Aβ +B)nx0

x0
, αaA = 1,

(αaA)n
(
Axp−k +Bx0

)
+
(

(αaA)n − 1
αaA− 1

)
(αAb+ Aβ +B)x0

x0
, otherwise,

(3.18)

w3n+2 =



Aαyp−k + (Aβ +B)y0 + (αAb+ Aβ +B)ny0

y0
, αaA = 1,

(αaA)n
(
Aαyp−k + (Aβ +B)y0

)
+
(

(αaA)n − 1
αaA− 1

)
(αAb+ Aβ +B)y0

y0
, otherwise,

(3.19)

Now, by rearranging equation (3.6), we have

xn = xpn−k
un

, yn = ypn−k
vn

, zn = zpn−k
wn

, ∀n ∈ N0. (3.20)

Replacing n by kn+ r, for r = 0, 1, ..., k − 1, we get

xkn+r =
xpk(n−1)+r

ukn+r
, ykn+r =

ypk(n−1)+r

vkn+r
, zkn+r =

zpk(n−1)+r

wkn+r
, r = 0, k − 1, n ∈ N0. (3.21)

Iterating the right-hand side of the aforementioned equations, we get

xkn+r = xp
n+1

r−k
n∏
i=0

up
(n−i)

ki+r

, ykn+r = yp
n+1

r−k
n∏
i=0

vp
(n−i)

ki+r

, zkn+r = zp
n+1

r−k
n∏
i=0

wp
(n−i)

ki+r

, ∀r = 0, k − 1, n ∈ N0. (3.22)

We consider three cases: k ≡ 0(mod3), k ≡ 1(mod3) and k ≡ 2(mod3).
Case1 (k ≡ 0(mod3)): Suppose k = 3l, (l = 1, 2, ...). Then, from (3.22) and depending on
the value of r modulo 3, we have

∀r = 0, l − 1, n ∈ N0 :



x3(ln+r)+j =
xp

n+1

3(r−l)+j
n∏
i=0

up
(n−i)

3(li+r)+j

,

y3(ln+r)+j =
yp

n+1

3(r−l)+j
n∏
i=0

vp
(n−i)

3(li+r)+j

,

z3(ln+r)+j =
zp

n+1

3(r−l)+j
n∏
i=0

wp
(n−i)

3(li+r)+j

,

j = 0, 1, 2. (3.23)
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Case2 (k ≡ 1(mod3)): Suppose k = 3l+1, (l = 0, 1, 2, ...). Then, from (3.22) and depending
on the value of n modulo 3, we have ∀r = 0, 3l, n ∈ N0:



x(3l+1)(3n)+r = xp
3n+1

r−3l−1
3n∏
i=0

up
(3n−i)

(3l+1)i+r

,

x(3l+1)(3n+1)+r = xp
3n+2

r−3l−1
3n+1∏
i=0

up
(3n+1−i)

(3l+1)i+r

,

x(3l+1)(3n+2)+r = xp
3n+3

r−3l−1
3n+2∏
i=0

up
(3n+2−i)

(3l+1)i+r

,

(3.24)



x(3l+1)(3n)+r = xp
3n+1

r−3l−1(
n∏
i=0

up
(3n−3i)

(3l+1)(3i)+r

)(
n−1∏
i=0

up
(3n−(3i+1))

(3l+1)(3i+1)+r

)(
n−1∏
i=0

up
(3n−(3i+2))

(3l+1)(3i+2)+r

) ,
x(3l+1)(3n+1)+r = xp

3n+2

r−3l−1(
n∏
i=0

up
(3n+1−(3i))

(3l+1)(3i)+r

)(
n∏
i=0

up
(3n+1−(3i+1))

(3l+1)(3i+1)+r

)(
n−1∏
i=0

up
(3n+1−(3i+2))

(3l+1)(3i+2)+r

) ,
x(3l+1)(3n+2)+r = xp

3n+3

r−3l−1(
n∏
i=0

up
(3n+2−(3i))

(3l+1)(3i)+r

)(
n∏
i=0

up
(3n+2−(3i+1))

(3l+1)(3i+1)+r

)(
n∏
i=0

up
(3n+2−(3i+2))

(3l+1)(3i+2)+r

) ,
(3.25)



x(3l+1)(3n)+r = xp
3n+1

r−3l−1(
n∏
i=0

up
3(n−i)

(3l+1)(3i)+r

)
n−1∏
i=0

(
up

(3(n−i)−1)

(3l+1)(3i+1)+ru
p(3(n−i)−2)

(3l+1)(3i+2)+r

) ,
x(3l+1)(3n+1)+r = xp

3n+2

r−3l−1
n∏
i=0

(
up

(3(n−i)+1)

(3l+1)(3i)+ru
p3(n−i)

(3l+1)(3i+1)+r

)(n−1∏
i=0

up
(3(n−i)−1)

(3l+1)(3i+2)+r

) ,
x(3l+1)(3n+2)+r = xp

3n+3

r−3l−1
n∏
i=0

(
up

(3(n−i)+2)

(3l+1)(3i)+ru
p(3(n−i)+1)

(3l+1)(3i+1)+ru
p3(n−i)

(3l+1)(3i+2)+r

) ,
(3.26)



y(3l+1)(3n)+r = yp
3n+1

r−3l−1
3n∏
i=0

vp
(3n−i)

(3l+1)i+r

,

y(3l+1)(3n+1)+r = yp
3n+2

r−3l−1
3n+1∏
i=0

vp
(3n+1−i)

(3l+1)i+r

,

y(3l+1)(3n+2)+r = yp
3n+3

r−3l−1
3n+2∏
i=0

vp
(3n+2−i)

(3l+1)i+r

,

(3.27)
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equations

y(3l+1)(3n)+r = yp
3n+1

r−3l−1(
n∏
i=0

vp
3(n−i)

(3l+1)(3i)+r

)
n−1∏
i=0

(
vp

(3(n−i)−1)

(3l+1)(3i+1)+rv
p(3(n−i)−2)

(3l+1)(3i+2)+r

) ,
y(3l+1)(3n+1)+r = yp

3n+2

r−3l−1
n∏
i=0

(
vp

(3(n−i)+1)

(3l+1)(3i)+rv
p3(n−i)

(3l+1)(3i+1)+r

)(n−1∏
i=0

vp
(3(n−i)−1)

(3l+1)(3i+2)+r

) ,
y(3l+1)(3n+2)+r = yp

3n+3

r−3l−1
n∏
i=0

(
vp

(3(n−i)+2)

(3l+1)(3i)+rv
p(3(n−i)+1)

(3l+1)(3i+1)+rv
p3(n−i)

(3l+1)(3i+2)+r

) ,
(3.28)



z(3l+1)(3n)+r = zp
3n+1

r−3l−1
3n∏
i=0

wp
(3n−i)

(3l+1)i+r

,

z(3l+1)(3n+1)+r = zp
3n+2

r−3l−1
3n+1∏
i=0

wp
(3n+1−i)

(3l+1)i+r

,

z(3l+1)(3n+2)+r = zp
3n+3

r−3l−1
3n+2∏
i=0

wp
(3n+2−i)

(3l+1)i+r

,

(3.29)



z(3l+1)(3n)+r = zp
3n+1

r−3l−1(
n∏
i=0

wp
3(n−i)

(3l+1)(3i)+r

)
n−1∏
i=0

(
wp

(3(n−i)−1)

(3l+1)(3i+1)+rw
p(3(n−i)−2)

(3l+1)(3i+2)+r

) ,
z(3l+1)(3n+1)+r = zp

3n+2

r−3l−1
n∏
i=0

(
wp

(3(n−i)+1)

(3l+1)(3i)+rw
p3(n−i)

(3l+1)(3i+1)+r

) (n−1∏
i=0

wp
(3(n−i)−1)

(3l+1)(3i+2)+r

) ,
z(3l+1)(3n+2)+r = zp

3n+3

r−3l−1
n∏
i=0

(
wp

(3(n−i)+2)

(3l+1)(3i)+rw
p(3(n−i)+1)

(3l+1)(3i+1)+rw
p3(n−i)

(3l+1)(3i+2)+r

) ,
(3.30)

Here we consider two sub-cases:
Sub-case2.1 (l 6= 0): From (3.26), (3.28), (3.30) and depending on the value of r modulo 3
, we get, for all n ∈ N0, the following expressions:
If r ≡ 0(mod3). Put 3r instead r, we obtain, ∀r = 0, l, n ∈ N0:



x(3l+1)(3n)+3r = xp
3n+1

3r−3l−1(
n∏
i=0

up
3(n−i)

(3l+1)(3i)+3r

)
n−1∏
i=0

(
up

(3(n−i)−1)

(3l+1)(3i+1)+3ru
p(3(n−i)−2)

(3l+1)(3i+2)+3r

) ,
x(3l+1)(3n+1)+3r = xp

3n+2

3r−3l−1
n∏
i=0

(
up

(3(n−i)+1)

(3l+1)(3i)+3ru
p3(n−i)

(3l+1)(3i+1)+3r

)(n−1∏
i=0

up
(3(n−i)−1)

(3l+1)(3i+2)+3r

) ,
x(3l+1)(3n+2)+3r = xp

3n+3

3r−3l−1
n∏
i=0

(
up

(3(n−i)+2)

(3l+1)(3i)+3ru
p(3(n−i)+1)

(3l+1)(3i+1)+3ru
p3(n−i)

(3l+1)(3i+2)+3r

) ,
(3.31)
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Thus, ∀r = 0, l, n ∈ N0:

x3((3l+1)n+r) =
xp

3n+1

3(r−l)−1(
n∏
i=0

up
3(n−i)

3((3l+1)i+r)

)
n−1∏
i=0

(
up

(3(n−i)−1)

3((3l+1)i+l+r)+1u
p(3(n−i)−2)

3((3l+1)i+2l+r)+2

) ,

x3((3l+1)n+l+r)+1 =
xp

3n+2

3(r−l)−1
n∏
i=0

(
up

(3(n−i)+1)

3((3l+1)i+r)u
p3(n−i)

3((3l+1)i+l+r)+1

)(n−1∏
i=0

up
(3(n−i)−1)

3((3l+1)i+2l+r)+2

) ,

x3((3l+1)n+2l+r)+2 =
xp

3n+3

3(r−l)−1
n∏
i=0

(
up

(3(n−i)+2)

3((3l+1)i+r)u
p(3(n−i)+1)

3((3l+1)i+l+r)+1u
p3(n−i)

3((3l+1)i+2l+r))+2

) .
(3.32)



y3((3l+1)n+r) =
yp

3n+1

3(r−l)−1(
n∏
i=0

vp
3(n−i)

3((3l+1)i+r)

)
n−1∏
i=0

(
vp

(3(n−i)−1)

3((3l+1)i+l+r)+1v
p(3(n−i)−2)

3((3l+1)i+2l+r)+2

) ,

y3((3l+1)n+l+r)+1 =
yp

3n+2

3(r−l)−1
n∏
i=0

(
vp

(3(n−i)+1)

3((3l+1)i+r)v
p3(n−i)

3((3l+1)i+l+r)+1

)(n−1∏
i=0

vp
(3(n−i)−1)

3((3l+1)i+2l+r)+2

) ,

y3((3l+1)n+2l+r)+2 =
yp

3n+3

3(r−l)−1
n∏
i=0

(
vp

(3(n−i)+2)

3((3l+1)i+r)v
p(3(n−i)+1)

3((3l+1)i+l+r)+1v
p3(n−i)

3((3l+1)i+2l+r)+2

) ,
(3.33)



z3((3l+1)n+r) =
zp

3n+1

3(r−l)−1(
n∏
i=0

wp
3(n−i)

3((3l+1)i+r)

)
n−1∏
i=0

(
wp

(3(n−i)−1)

3((3l+1)i+l+r)+1w
p(3(n−i)−2)

3((3l+1)i+2l+r)+2

) ,

z3((3l+1)n+l+r)+1 =
zp

3n+2

3(r−l)−1
n∏
i=0

(
wp

(3(n−i)+1)

3((3l+1)i+r)w
p3(n−i)

3((3l+1)i+l+r)+1

) (n−1∏
i=0

wp
(3(n−i)−1)

3((3l+1)i+2l+r)+2

) ,

z3((3l+1)n+2l+r)+2 =
zp

3n+3

3(r−l)−1
n∏
i=0

(
wp

(3(n−i)+2)

3((3l+1)i+r)w
p(3(n−i)+1)

3((3l+1)i+l+r)+1w
p3(n−i)

3((3l+1)i+2l+r)+2

) ,
(3.34)

If r ≡ 1(mod3). Put 3r + 1 instead r, we obtain, ∀r = 0, l − 1, n ∈ N0:



x3((3l+1)n+r)+1 =
xp

3n+1

3(r−l)(
n∏
i=0

up
3(n−i)

3((3l+1)i+r)+1

)
n−1∏
i=0

(
up

(3(n−i)−1)

3((3l+1)i+l+r)+2u
p(3(n−i)−2)

3((3l+1)i+2l+r+1)

) ,

x3((3l+1)n+l+r)+2 =
xp

3n+2

3(r−l)
n∏
i=0

(
up

(3(n−i)+1)

3((3l+1)i+r)+1u
p3(n−i)

3((3l+1)i+l+r)+2

)(n−1∏
i=0

up
(3(n−i)−1)

3((3l+1)i+2l+r+1)

) ,

x3((3l+1)n+2l+r+1) =
xp

3n+3

3(r−l)
n∏
i=0

(
up

(3(n−i)+2)

3((3l+1)i+r)+1u
p(3(n−i)+1)

3((3l+1)i+l+r)+2u
p3(n−i)

3((3l+1)i+2l+r+1)

) ,
(3.35)
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equations

y3((3l+1)n+r)+1 =
yp

3n+1

3(r−l)(
n∏
i=0

vp
3(n−i)

3((3l+1)i+r)+1

)
n−1∏
i=0

(
vp

(3(n−i)−1)

3((3l+1)i+l+r)+2v
p(3(n−i)−2)

3((3l+1)i+2l+r+1)

) ,

y3((3l+1)n+l+r)+2 =
yp

3n+2

3(r−l)
n∏
i=0

(
vp

(3(n−i)+1)

3((3l+1)i+r)+1v
p3(n−i)

3((3l+1)i+l+r)+2

) (n−1∏
i=0

vp
(3(n−i)−1)

3((3l+1)i+2l+r+1)

) ,

y3((3l+1)n+2l+r+1) =
yp

3n+3

3(r−l)
n∏
i=0

(
vp

(3(n−i)+2)

3((3l+1)i+r)+1v
p(3(n−i)+1)

3((3l+1)i+l+r)+2v
p3(n−i)

3((3l+1)i+2l+r+1)

) ,
(3.36)



z3((3l+1)n+r)+1 =
zp

3n+1

3(r−l)(
n∏
i=0

wp
3(n−i)

3((3l+1)i+r)+1

)
n−1∏
i=0

(
wp

(3(n−i)−1)

3((3l+1)i+l+r)+2w
p(3(n−i)−2)

3((3l+1)i+2l+r+1)

) ,

z3((3l+1)n+l+r)+2 =
zp

3n+2

3(r−l)
n∏
i=0

(
wp

(3(n−i)+1)

3((3l+1)i+r)+1w
p3(n−i)

3((3l+1)i+l+r)+2

)(n−1∏
i=0

wp
(3(n−i)−1)

3((3l+1)i+2l+r+1)

) ,

z3((3l+1)n+2l+r+1) =
zp

3n+3

3(r−l)
n∏
i=0

(
wp

(3(n−i)+2)

3((3l+1)i+r)+1w
p(3(n−i)+1)

3((3l+1)i+l+r)+2w
p3(n−i)

3((3l+1)i+2l+r+1)

) ,
(3.37)

If r ≡ 2(mod3). Put 3r + 2 instead r, we obtain, ∀r = 0, l − 1, n ∈ N0:



x3((3l+1)n+r)+2 =
xp

3n+1

3(r−l)+1(
n∏
i=0

up
3(n−i)

3((3l+1)i+r)+2

)
n−1∏
i=0

(
up

(3(n−i)−1)

3((3l+1)i+l+r+1)u
p(3(n−i)−2)

3((3l+1)i+2l+r+1)+1

) ,

x3((3l+1)n+l+r+1) =
xp

3n+2

3(r−l)+1
n∏
i=0

(
up

(3(n−i)+1)

3((3l+1)i+r)+2u
p3(n−i)

3((3l+1)i+l+r+1)

)(n−1∏
i=0

up
(3(n−i)−1)

3((3l+1)i+2l+r+1)+1

) ,

x3((3l+1)n+2l+r+1)+1 =
xp

3n+3

3(r−l)+1
n∏
i=0

(
up

(3(n−i)+2)

3((3l+1)i+r)+2u
p(3(n−i)+1)

3((3l+1)i+l+r+1)u
p3(n−i)

3((3l+1)i+2l+r+1)+1

) ,
(3.38)



y3((3l+1)n+r)+2 =
yp

3n+1

3(r−l)+1(
n∏
i=0

vp
3(n−i)

3((3l+1)i+r)+2

)
n−1∏
i=0

(
vp

(3(n−i)−1)

3((3l+1)i+l+r+1)v
p(3(n−i)−2)

3((3l+1)i+2l+r+1)+1

) ,

y3((3l+1)n+l+r+1) =
yp

3n+2

3(r−l)+1
n∏
i=0

(
vp

(3(n−i)+1)

3((3l+1)i+r)+2v
p3(n−i)

3((3l+1)i+l+r+1)

)(n−1∏
i=0

vp
(3(n−i)−1)

3((3l+1)i+2l+r+1)+1

) ,

y3((3l+1)n+2l+r+1)+1 =
yp

3n+3

3(r−l)+1
n∏
i=0

(
vp

(3(n−i)+2)

3((3l+1)i+r)+2v
p(3(n−i)+1)

3((3l+1)i+l+r+1)v
p3(n−i)

3((3l+1)i+2l+r+1)+1

) ,
(3.39)
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

z3((3l+1)n+r)+2 =
zp

3n+1

3(r−l)+1(
n∏
i=0

up
3(n−i)

3((3l+1)i+r)+2

)
n−1∏
i=0

(
up

(3(n−i)−1)

3((3l+1)i+l+r+1)u
p(3(n−i)−2)

3((3l+1)i+2l+r+1)+1

) ,

z3((3l+1)n+l+r+1) =
zp

3n+2

3(r−l)+1
n∏
i=0

(
wp

(3(n−i)+1)

3((3l+1)i+r)+2w
p3(n−i)

3((3l+1)i+l+r+1)

) (n−1∏
i=0

wp
(3(n−i)−1)

3((3l+1)i+2l+r+1)+1

) ,

z3((3l+1)n+2l+r+1)+1 =
zp

3n+3

3(r−l)+1
n∏
i=0

(
wp

(3(n−i)+2)

3((3l+1)i+r)+2w
p(3(n−i)+1)

3((3l+1)i+l+r+1)w
p3(n−i)

3((3l+1)i+2l+r+1)+1

) .
(3.40)

Sub-case2.2 (l = 0): Using the fact that in this case r = 0, k = 1 , we get from (3.26),
(3.28) and (3.30) system (3.5) become, for all n ∈ N0

xn+1 = xpnyn
αypn−1 + βyn

, yn+1 = ypnzn
azpn−1 + bzn

, zn+1 = zpnxn
Axpn−1 +Bxn

. (3.41)

Thus,

n ∈ N0 :



x3n = xp
3n+1

−1(
n∏
i=0

up
3(n−i)

3i

)
n−1∏
i=0

(
up

(3(n−i)−1)

3i+1 up
(3(n−i)−2)

3i+2

) ,
x3n+1 = xp

3n+2

−1
n∏
i=0

(
up

(3(n−i)+1)

3i up
3(n−i)

3i+1

)(n−1∏
i=0

up
(3(n−i)−1)

3i+2

) ,
x3n+2 = xp

3n+3

−1
n∏
i=0

(
up

(3(n−i)+2)

3i up
(3(n−i)+1)

3i+1 up
3(n−i)

3i+2

) ,
(3.42)

n ∈ N0 :



y3n = yp
3n+1

−1(
n∏
i=0

vp
3(n−i)

3i

)
n−1∏
i=0

(
vp

(3(n−i)−1)

3i+1 vp
(3(n−i)−2)

3i+2

) ,
y3n+1 = yp

3n+2

−1
n∏
i=0

(
vp

(3(n−i)+1)

3i vp
3(n−i)

3i+1

) (n−1∏
i=0

vp
(3(n−i)−1)

3i+2

) ,
y3n+2 = yp

3n+3

−1
n∏
i=0

(
vp

(3(n−i)+2)

3i vp
(3(n−i)+1)

3i+1 vp
3(n−i)

3i+2

) ,
(3.43)

n ∈ N0 :



z3n = zp
3n+1

−1(
n∏
i=0

wp
3(n−i)

3i

)
n−1∏
i=0

(
wp

(3(n−i)−1)

3i+1 wp
(3(n−i)−2)

3i+2

) ,
z3n+1 = zp

3n+2

−1
n∏
i=0

(
wp

(3(n−i)+1)

3i wp
3(n−i)

3i+1

) (n−1∏
i=0

wp
(3(n−i)−1)

3i+2

) ,
z3n+2 = zp

3n+3

−1
n∏
i=0

(
wp

(3(n−i)+2)

3i wp
(3(n−i)+1)

3i+1 wp
3(n−i)

3i+2

) .
(3.44)
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Case3 (k ≡ 2(mod3)): Suppose k = 3l+2, (l = 0, 1, 2, ...). Then, from (3.22) and depending
on the value of n modulo 3, we have, ∀r = 0, 3l + 1, n ∈ N0:



x(3l+2)(3n)+r =
xp

3n+1

r−(3l+2)
3n∏
i=0

up
(3n−i)

(3l+2)i+r

,

x(3l+2)(3n+1)+r =
xp

3n+2

r−(3l+2)
3n+1∏
i=0

up
(3n+1−i)

(3l+2)i+r

,

x(3l+2)(3n+2)+r =
xp

3n+3

r−(3l+2)
3n+2∏
i=0

up
(3n+2−i)

(3l+2)i+r

,

(3.45)



x(3l+2)(3n)+r =
xp

3n+1

r−(3l+2)(
n∏
i=0

up
(3n−3i)

(3l+2)(3i)+r

)(
n−1∏
i=0

up
(3n−(3i+1))

(3l+2)(3i+1)+r

)(
n−1∏
i=0

up
(3n−(3i+2))

(3l+2)(3i+2)+r

) ,

x(3l+2)(3n+1)+r =
xp

3n+2

r−(3l+2)(
n∏
i=0

up
(3n+1−(3i))

(3l+2)(3i)+r

)(
n∏
i=0

up
(3n+1−(3i+1))

(3l+2)(3i+1)+r

)(
n−1∏
i=0

up
(3n+1−(3i+2))

(3l+2)(3i+2)+r

) ,

x(3l+2)(3n+2)+r =
xp

3n+3

r−(3l+2)(
n∏
i=0

up
(3n+2−(3i))

(3l+2)(3i)+r

)(
n∏
i=0

up
(3n+2−(3i+1))

(3l+2)(3i+1)+r

)(
n∏
i=0

up
(3n+2−(3i+2))

(3l+2)(3i+2)+r

) ,
(3.46)



x(3l+2)(3n)+r = xp
3n+1

r−3l−2(
n∏
i=0

up
3(n−i)

(3l+2)(3i)+r

)(
n−1∏
i=0

up
(3(n−i)−1)

(3l+2)(3i+1)+ru
p(3(n−i)−2)

(3l+2)(3i+2)+r

) ,
x(3l+2)(3n+1)+r = xp

3n+2

r−3l−2(
n∏
i=0

up
(3(n−i)+1)

(3l+2)(3i)+ru
p3(n−i)

(3l+2)(3i+1)+r

)(
n−1∏
i=0

up
(3(n−i)−1)

(3l+2)(3i+2)+r

) ,
x(3l+2)(3n+2)+r = xp

3n+3

r−3l−2(
n∏
i=0

up
(3(n−i)+2)

(3l+2)(3i)+ru
p(3(n−i)+1)

(3l+2)(3i+1)+ru
p3(n−i)

(3l+2)(3i+2)+r

) ,
(3.47)



y(3l+2)(3n)+r =
yp

3n+1

r−(3l+2)
3n∏
i=0

vp
(3n−i)

(3l+2)i+r

,

y(3l+2)(3n+1)+r =
yp

3n+2

r−(3l+2)
3n+1∏
i=0

vp
(3n+1−i)

(3l+2)i+r

,

y(3l+2)(3n+2)+r =
yp

3n+3

r−(3l+2)
3n+2∏
i=0

vp
(3n+2−i)

(3l+2)i+r

,

(3.48)
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

y(3l+2)(3n)+r = yp
3n+1

r−3l−2(
n∏
i=0

vp
3(n−i)

(3l+2)(3i)+r

)(
n−1∏
i=0

vp
(3(n−i)−1)

(3l+2)(3i+1)+rv
p(3(n−i)−2)

(3l+2)(3i+2)+r

) ,
y(3l+2)(3n+1)+r = yp

3n+2

r−3l−2(
n∏
i=0

vp
(3(n−i)+1)

(3l+2)(3i)+rv
p3(n−i)

(3l+2)(3i+1)+r

)(
n−1∏
i=0

vp
(3(n−i)−1)

(3l+2)(3i+2)+r

) ,
y(3l+2)(3n+2)+r = yp

3n+3

r−3l−2(
n∏
i=0

vp
(3(n−i)+2)

(3l+2)(3i)+rv
p(3(n−i)+1)

(3l+2)(3i+1)+rv
p3(n−i)

(3l+2)(3i+2)+r

) ,
(3.49)



z(3l+2)(3n)+r =
zp

3n+1

r−(3l+2)
3n∏
i=0

wp
(3n−i)

(3l+2)i+r

,

z(3l+2)(3n+1)+r =
zp

3n+2

r−(3l+2)
3n+1∏
i=0

wp
(3n+1−i)

(3l+2)i+r

,

z(3l+2)(3n+2)+r =
zp

3n+3

r−(3l+2)
3n+2∏
i=0

wp
(3n+2−i)

(3l+2)i+r

,

(3.50)



z(3l+2)(3n)+r = zp
3n+1

r−3l−2(
n∏
i=0

wp
3(n−i)

(3l+2)(3i)+r

)(
n−1∏
i=0

wp
(3(n−i)−1)

(3l+2)(3i+1)+rw
p(3(n−i)−2)

(3l+2)(3i+2)+r

) ,
z(3l+2)(3n+1)+r = zp

3n+2

r−3l−2(
n∏
i=0

wp
(3(n−i)+1)

(3l+2)(3i)+rw
p3(n−i)

(3l+2)(3i+1)+r

)(
n−1∏
i=0

wp
(3(n−i)−1)

(3l+2)(3i+2)+r

) ,
z(3l+2)(3n+2)+r = zp

3n+3

r−3l−2(
n∏
i=0

wp
(3(n−i)+2)

(3l+2)(3i)+rw
p(3(n−i)+1)

(3l+2)(3i+1)+rw
p3(n−i)

(3l+2)(3i+2)+r

) ,
(3.51)

Here we consider two sub-cases:
Sub-case3.1 (l 6= 0): From (3.47), (3.49), (3.51) and depending on the value of r modulo 3
, we get, for all n ∈ N0, the following expressions:
If r ≡ 0(mod3). Put 3r instead r, we obtain, ∀r = 0, l, n ∈ N0:



x3((3l+2)n+r) =
xp

3n+1

3(r−l)−2(
n∏
i=0

up
3(n−i)

3((3l+2)i+r)

)(
n−1∏
i=0

up
(3(n−i)−1)

3((3l+2)i+l+r)+2u
p(3(n−i)−2)

3((3l+2)i+2l+r+1)+1

) ,

x3((3l+2)n+l+r)+2 =
xp

3n+2

3(r−l)−2(
n∏
i=0

up
(3(n−i)+1)

3((3l+2)i+r)u
p3(n−i)

3((3l+2)i+l+r)+2

)(
n−1∏
i=0

up
(3(n−i)−1)

3((3l+2)i+2l+r+1)+1

) ,

x3((3l+2)n+2l+r+1)+1 =
xp

3n+3

3(r−l)−2(
n∏
i=0

up
(3(n−i)+2)

3((3l+2)i+r)u
p(3(n−i)+1)

3((3l+2)i+l+r)+2u
p3(n−i)

3((3l+2)i+2l+r+1)+1

) ,
(3.52)
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equations

y3((3l+2)n+r) =
yp

3n+1

3(r−l)−2(
n∏
i=0

vp
3(n−i)

3((3l+2)i+r)

)(
n−1∏
i=0

vp
(3(n−i)−1)

3((3l+2)i+l+r)+2v
p(3(n−i)−2)

3((3l+2)i+2l+r+1)+1

) ,

y3((3l+2)n+l+r)+2 =
yp

3n+2

3(r−l)−2(
n∏
i=0

vp
(3(n−i)+1)

3((3l+2)i+r)v
p3(n−i)

3((3l+2)i+l+r)+2

)(
n−1∏
i=0

vp
(3(n−i)−1)

3((3l+2)i+2l+r+1)+1

) ,

y3((3l+2)n+2l+r+1)+1 =
yp

3n+3

3(r−l)−2(
n∏
i=0

vp
(3(n−i)+2)

3((3l+2)i+r)v
p(3(n−i)+1)

3((3l+2)i+l+r)+2v
p3(n−i)

3((3l+2)i+2l+r+1)+1

) ,
(3.53)



z3((3l+2)n+r) =
zp

3n+1

3(r−l)−2(
n∏
i=0

wp
3(n−i)

3((3l+2)i+r)

)(
n−1∏
i=0

wp
(3(n−i)−1)

3((3l+2)i+l+r)+2w
p(3(n−i)−2)

3((3l+2)i+2l+r+1)+1

) ,

z3((3l+2)n+l+r)+2 =
zp

3n+2

3(r−l)−2(
n∏
i=0

wp
(3(n−i)+1)

3((3l+2)i+r)w
p3(n−i)

3((3l+2)i+l+r)+2

)(
n−1∏
i=0

wp
(3(n−i)−1)

3((3l+2)i+2l+r+1)+1

) ,

z3((3l+2)n+2l+r+1)+1 =
zp

3n+3

3(r−l)−2(
n∏
i=0

wp
(3(n−i)+2)

3((3l+2)i+r)w
p(3(n−i)+1)

3((3l+2)i+l+r)+2w
p3(n−i)

3((3l+2)i+2l+r+1)+1

) ,
(3.54)

If r ≡ 1(mod3). Put 3r + 1 instead r, we obtain, ∀r = 0, l, n ∈ N0:



x3((3l+2)n+r)+1 =
xp

3n+1

3(r−l)−1(
n∏
i=0

up
3(n−i)

3((3l+2)i+r)+1

)(
n−1∏
i=0

up
(3(n−i)−1)

3((3l+2)i+l+r+1)u
p(3(n−i)−2)

3((3l+2)i+2l+r+1)+2

) ,

x3((3l+2)n+l+r+1) =
xp

3n+2

3(r−l)−1(
n∏
i=0

up
(3(n−i)+1)

3((3l+2)i+r)+1u
p3(n−i)

3((3l+2)i+l+r+1)

)(
n−1∏
i=0

up
(3(n−i)−1)

3((3l+2)i+2l+r+1)+2

) ,

x3((3l+2)n+2l+r+1)+2 =
xp

3n+3

3(r−l)−1(
n∏
i=0

up
(3(n−i)+2)

3((3l+2)i+r)+1u
p(3(n−i)+1)

3((3l+2)i+l+r+1)u
p3(n−i)

3((3l+2)i+2l+r+1)+2

) ,
(3.55)



y3((3l+2)n+r)+1 =
yp

3n+1

3(r−l)−1(
n∏
i=0

vp
3(n−i)

3((3l+2)i+r)+1

)(
n−1∏
i=0

vp
(3(n−i)−1)

3((3l+2)i+l+r+1)v
p(3(n−i)−2)

3((3l+2)i+2l+r+1)+2

) ,

y3((3l+2)n+l+r+1) =
yp

3n+2

3(r−l)−1(
n∏
i=0

vp
(3(n−i)+1)

3((3l+2)i+r)+1v
p3(n−i)

3((3l+2)i+l+r+1)

)(
n−1∏
i=0

vp
(3(n−i)−1)

3((3l+2)i+2l+r+1)+2

) ,

y3((3l+2)n+2l+r+1)+2 =
yp

3n+3

3(r−l)−1(
n∏
i=0

vp
(3(n−i)+2)

3((3l+2)i+r)+1v
p(3(n−i)+1)

3((3l+2)i+l+r+1)v
p3(n−i)

3((3l+2)i+2l+r+1)+2

) ,
(3.56)
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

z3((3l+2)n+r)+1 =
zp

3n+1

3(r−l)−1(
n∏
i=0

wp
3(n−i)

3((3l+2)i+r)+1

)(
n−1∏
i=0

wp
(3(n−i)−1)

3((3l+2)i+l+r+1)w
p(3(n−i)−2)

3((3l+2)i+2l+r+1)+2

) ,

z3((3l+2)n+l+r+1) =
zp

3n+2

3(r−l)−1(
n∏
i=0

wp
(3(n−i)+1)

3((3l+2)i+r)+1w
p3(n−i)

3((3l+2)i+l+r+1)

)(
n−1∏
i=0

wp
(3(n−i)−1)

3((3l+2)i+2l+r+1)+2

) ,

z3((3l+2)n+2l+r+1)+2 =
zp

3n+3

3(r−l)−1(
n∏
i=0

wp
(3(n−i)+2)

3((3l+2)i+r)+1w
p(3(n−i)+1)

3((3l+2)i+l+r+1)w
p3(n−i)

3((3l+2)i+2l+r+1)+2

) ,
(3.57)

If r ≡ 2(mod3). Put 3r + 2 instead r, we obtain, ∀r = 0, l − 1, n ∈ N0:



x3((3l+2)n+r)+2 =
xp

3n+1

3(r−l)(
n∏
i=0

up
3(n−i)

3((3l+2)i+r)+2

)(
n−1∏
i=0

up
(3(n−i)−1)

3((3l+2)i+l+r+1)+1u
p(3(n−i)−2)

3((3l+2)i+2l+r+2)

) ,

x3((3l+2)n+l+r+1)+1 =
xp

3n+2

3(r−l)(
n∏
i=0

up
(3(n−i)+1)

3((3l+2)i+r)+2u
p3(n−i)

3((3l+2)i+l+r+1)+1

)(
n−1∏
i=0

up
(3(n−i)−1)

3((3l+2)i+2l+r+2)

) ,

x3((3l+2)n+2l+r+2) =
xp

3n+3

3(r−l)(
n∏
i=0

up
(3(n−i)+2)

3((3l+2)i+r)+2u
p(3(n−i)+1)

3((3l+2)i+l+r+1)+1u
p3(n−i)

3((3l+2)i+2l+r+2)

) ,
(3.58)

y3((3l+2)n+r)+2 =
yp

3n+1

3(r−l)(
n∏
i=0

vp
3(n−i)

3((3l+2)i+r)+2

)(
n−1∏
i=0

vp
(3(n−i)−1)

3((3l+2)i+l+r+1)+1v
p(3(n−i)−2)

3((3l+2)i+2l+r+2)

) ,

y3((3l+2)n+l+r+1)+1 =
yp

3n+2

3(r−l)(
n∏
i=0

vp
(3(n−i)+1)

3((3l+2)i+r)+2v
p3(n−i)

3((3l+2)i+l+r+1)+1

)(
n−1∏
i=0

vp
(3(n−i)−1)

3((3l+2)i+2l+r+2)

) ,

y3((3l+2)n+2l+r+2) =
yp

3n+3

3(r−l)(
n∏
i=0

vp
(3(n−i)+2)

3((3l+2)i+r)+2v
p(3(n−i)+1)

3((3l+2)i+l+r+1)+1v
p3(n−i)

3((3l+2)i+2l+r+2)

) ,
(3.59)

z3((3l+2)n+r)+2 =
zp

3n+1

3(r−l)(
n∏
i=0

wp
3(n−i)

3((3l+2)i+r)+2

)(
n−1∏
i=0

wp
(3(n−i)−1)

3((3l+2)i+l+r+1)+1w
p(3(n−i)−2)

3((3l+2)i+2l+r+2)

) ,

z3((3l+2)n+l+r+1)+1 =
zp

3n+2

3(r−l)(
n∏
i=0

wp
(3(n−i)+1)

3((3l+2)i+r)+2w
p3(n−i)

3((3l+2)i+l+r+1)+1

)(
n−1∏
i=0

wp
(3(n−i)−1)

3((3l+2)i+2l+r+2)

) ,

z3((3l+2)n+2l+r+2) =
zp

3n+3

3(r−l)(
n∏
i=0

wp
(3(n−i)+2)

3((3l+2)i+r)+2w
p(3(n−i)+1)

3((3l+2)i+l+r+1)+1w
p3(n−i)

3((3l+2)i+2l+r+2)

) ,
(3.60)

Sub-case3.2 (l = 0): Using the fact that in this case r = 0, 1, k = 2 , we get from (3.47),
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(3.49) and (3.51), for all n ∈ N0:



x3(2n) = xp
3n+1

−2(
n∏
i=0

up
3(n−i)

3(2i)

)(
n−1∏
i=0

up
(3(n−i)−1)

3(2i)+2 up
(3(n−i)−2)

3(2i+1)+1

) ,
x3(2n)+2 = xp

3n+2

−2(
n∏
i=0

up
(3(n−i)+1)

3(2i) up
3(n−i)

3(2i)+2

)(
n−1∏
i=0

up
(3(n−i)−1)

3(2i+1)+1

) ,
x3(2n)+4 = xp

3n+3

−2(
n∏
i=0

up
(3(n−i)+2)

3(2i) up
(3(n−i)+1)

3(2i)+2 up
3(n−i)

3(2i+1)+1

) ,
(3.61)



x3(2n)+1 = xp
3n+1

−1(
n∏
i=0

up
3(n−i)

3(2i)+1

)(
n−1∏
i=0

up
(3(n−i)−1)

3(2i)+3 up
(3(n−i)−2)

3(2i+1)+2

) ,
x3(2n)+3 = xp

3n+2

−1(
n∏
i=0

up
(3(n−i)+1)

3(2i)+1 up
3(n−i)

3(2i)+3

)(
n−1∏
i=0

up
(3(n−i)−1)

3(2i+1)+2

) ,
x3(2n)+5 = xp

3n+3

−1(
n∏
i=0

up
(3(n−i)+2)

3(2i)+1 up
(3(n−i)+1)

3(2i)+3 up
3(n−i)

3(2i+1)+2

) ,
(3.62)

Finally,



x3(2n)+r = xp
3n+1

r−2(
n∏
i=0

up
3(n−i)

3(2i)+r

)(
n−1∏
i=0

up
(3(n−i)−1)

3(2i)+2+r u
p(3(n−i)−2)

3(2i+1)+1+r

) ,
x3(2n)+2+r = xp

3n+2

r−2(
n∏
i=0

up
(3(n−i)+1)

3(2i)+r up
3(n−i)

3(2i)+2+r

)(
n−1∏
i=0

up
(3(n−i)−1)

3(2i+1)+1+r

) ,
x3(2n+1)+1+r = xp

3n+3

r−2(
n∏
i=0

up
(3(n−i)+2)

3(2i)+r up
(3(n−i)+1)

3(2i)+2+r u
p3(n−i)

3(2i+1)+1+r

) ,
, r = 0, 1 (3.63)



y3(2n)+r = yp
3n+1

r−2(
n∏
i=0

vp
3(n−i)

3(2i)+r

)(
n−1∏
i=0

vp
(3(n−i)−1)

3(2i)+2+r v
p(3(n−i)−2)

3(2i+1)+1+r

) ,
y3(2n)+2+r = yp

3n+2

r−2(
n∏
i=0

vp
(3(n−i)+1)

3(2i)+r vp
3(n−i)

3(2i)+2+r

)(
n−1∏
i=0

vp
(3(n−i)−1)

3(2i+1)+1+r

) ,
y3(2n+1)+1+r = yp

3n+3

r−2(
n∏
i=0

vp
(3(n−i)+2)

3(2i)+r vp
(3(n−i)+1)

3(2i)+2+r v
p3(n−i)

3(2i+1)+1+r

) ,
, r = 0, 1 (3.64)
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

z3(2n)+r = zp
3n+1

r−2(
n∏
i=0

wp
3(n−i)

3(2i)+r

)(
n−1∏
i=0

wp
(3(n−i)−1)

3(2i)+2+r w
p(3(n−i)−2)

3(2i+1)+1+r

) ,
z3(2n)+2+r = zp

3n+2

r−2(
n∏
i=0

wp
(3(n−i)+1)

3(2i)+r wp
3(n−i)

3(2i)+2+r

)(
n−1∏
i=0

wp
(3(n−i)−1)

3(2i+1)+1+r

) ,
z3(2n+1)+1+r = zp

3n+3

r−2(
n∏
i=0

wp
(3(n−i)+2)

3(2i)+r wp
(3(n−i)+1)

3(2i)+2+r w
p3(n−i)

3(2i+1)+1+r

) ,
, r = 0, 1. (3.65)

The following theorem summarizes our previous discussion.

Theorem 3.2. Consider system (3.5), where the parameters α, β, a, b, A, B and the
initial values x−i, y−i, z−i, i ∈ {0, 1, . . . , k} are non-zero real numbers. Then, the following
statements hold:

(a) If k = 3l, (l = 1, 2, ...), then for all n ∈ N0, the solution of system (3.5) is given by
(3.23).

(b) If k = 3l+ 1, (l = 1, 2, ...), then for all n ∈ N0, the solution of system (3.5) is given by
(3.32), (3.33), (3.34), (3.35), (3.36), (3.37), (3.38), (3.39) and (3.40).

(c) If k = 3l+ 2, (l = 1, 2, ...), then for all n ∈ N0, the solution of system (3.5) is given by
(3.52), (3.53), (3.54), (3.55), (3.56), (3.57), (3.58), (3.59) and (3.60).

(d) If k = 1, then for all n ∈ N0, the solution of system (3.5) is given by (3.42), (3.43)
and (3.44).

(e) If k = 2, then for all n ∈ N0, the solution of system (3.5) is given by (3.63), (3.64)
and (3.65).

Where the terms of the sequences un, vn and wn modulo 3 in formulas of the solutions are
given by (3.8), (3.9) and (3.10).

Remark 3.2.1.
If we take α = a = A and β = b = B and choose initial values such that x−i = y−i = z−i,
i = 0, 1, ..., k, then system (3.5) will reduced to the nonlinear difference equation

xn+1 = xpn−k+1xn
αxpn−k + βxn

, n ∈ N0, p, k ∈ N.
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3.3 Behavior of the solutions a particular case

In this section, we focus our attention on a special case of system (3.5). In particular, we
examine the boundedness, the asymptotic behavior, and periodicity of solutions of system
(3.5) with p = 1, that is, the system

xn+1 = xn−k+1yn
αyn−k + βyn

, yn+1 = yn−k+1zn
azn−k + bzn

, zn+1 = zn−k+1xn
Axn−k +Bxn

, n ∈ N0, k ∈ N. (3.66)

Throughout this section, we also assume that the parameters α, β, a, b , A, B and the initial
values x−i, y−i, z−i, i ∈ {0, 1, . . . , k} are positive. We start with the following theorem
concerning the boundedness of solutions of system (3.66).

Theorem 3.3. Consider the system (3.66) such that

(1) min(β, b, B) ≥ 1 ; or

(2) min(α, a, A) ≥ 1, az−k ≥ z0, αy−k ≥ y0 and Ax−k ≥ x0.

Then, every positive solution is bounded.

Proof. Let {xn, yn, zn}n≥−k be a solution of (3.66).
Hypothesis (1) is satisfied. Suppose that min(β, b, B) ≥ 1, then it follows from system (3.66)
that for all n ∈ N0,

xn+1 ≤
xn−k+1

β
≤ xn−k+1, yn+1 ≤

yn−k+1

b
≤ yn−k+1 and zn+1 ≤

zn−k+1

B
≤ zn−k+1,

and so the subsequences {xkn−i}n≥0, {ykn−i}n≥0 and {zkn−i}n≥0, i = 0, ..., k−1 are decreasing.
Moreover, we have for all n ∈ N0,

xn ≤ max
i=0,...,k−1

{
x−i
β

}
, yn ≤ max

i=0,...,k−1

{
y−i
b

}
and zn ≤ max

i=0,...,k−1

{
z−i
B

}
.

Thus, the solution is bounded. Hypothesis (2) is satisfied. If, on the other hand, min(α, a, A) ≥
1, az−k ≥ z0, αy−k ≥ y0 and Ax−k ≥ x0, then it follows from (3.66) that for n = 0,

x1 ≤
x−k+1y0

αy−k
≤ x−k+1, y1 ≤

y−k+1z0

az−k
≤ y−k+1, and z1 ≤

z−k+1x0

Ax−k
≤ z−k+1,

and from this, together with the assumption that min(α, a, A) ≥ 1, we get for n = 0,

x2 ≤
x−k+2y1

αy−k+1
≤ x−k+2, y2 ≤

y−k+2z1

az−k+1
≤ y−k+2, and z2 ≤

z−k+2x1

Ax−k+1
≤ z−k+2.
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Continuing the process, we obtain, for n = k − 1,

xk ≤
x0yk−1

αy−1
≤ x0, yk ≤

y0zk−1

az−1
≤ y0, and zk ≤

z0xk−1

Ax−1
≤ z0.

It follows by induction that the subsequences {xkn−i}n≥0, {ykn−i}n≥0 and {zkn−i}n≥0, i =
0, ..., k − 1, are decreasing. Furthermore, we have for all n ∈ N0,

xn ≤ max
i=0,...,k−1

{x−i} , yn ≤ max
i=0,...,k−1

{y−i} and zn ≤ max
i=0,...,k−1

{z−i} .

Hence, in this case, the solution is also bounded. This completes the proof of the theorem.

In the next theorem, we give the necessary and sufficient conditions for the solutions of
system (3.66) to be periodic of period k (not necessary prime).

Theorem 3.4. Let {xn, yn, zn}n≥−k be a solution of (3.66). Then, (xn, yn, zn) = (xn−k, yn−k, zn−k)
for all n ∈ N0, if and only if (x0, y0, z0) = (x−k, y−k, z−k) and α + β = a+ b = A+B = 1.

Proof. First, assume that (xn, yn, zn) = (xn−k, yn−k, zn−k) for all n ∈ N0, Particularly, we
have (x0, y0, z0) = (x−k, y−k, z−k) and

x−k+1 = x1 = x−k+1y0

αy−k + βy0
, y−k+1 = y1 = y−k+1z0

az−k + bz0
, and z−k+1 = z1 = z−k+1x0

Ax−k +Bx0
.

These equations imply that

1
α + β

= 1
a+ b

= 1
A+B

= 1 or equivalently, α + β = a+ b = A+B = 1.

Conversely, suppose that (x0, y0, z0) = (x−k, y−k, z−k) and α+β = a+ b = A+B = 1. Then,
from (3.66), we get

x1 = x−k+1y0

αy−k + βy0
= x−k+1

α + β
= x−k+1,

y1 = y−k+1z0

az−k + bz0
= y−k+1

a+ b
= y−k+1,

z1 = z−k+1x0

Ax−k +Bx0
= z−k+1

A+B
= z−k+1.

Again, from (3.66) and using the aforementioned relation, we get

x2 = x−k+2y1

αy−k+1 + βy1
= x−k+2

α + β
= x−k+2,

y2 = y−k+2z1

az−k+1 + bz1
= y−k+2

a+ b
= y−k+2,

z2 = z−k+2x1

Ax−k+1 +Bx1
= z−k+2

A+B
= z−k+2.

Continuing the process and by principle of induction, we arrive at the desired result.
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The next result provides the limiting properties of solutions of system (3.66).

Theorem 3.5. Let {xn, yn, zn}n≥−k be a solution of (3.66). Then, the following statements
hold.

(a) If αaA > 1, then lim
n→∞

(xn, yn, zn) = (0, 0, 0).

(b) If αaA = 1, then lim
n→∞

(xn, yn, zn) = (0, 0, 0).

(c) If αaA < 1, then

lim
n→∞

xn =


0, R > 1.

∞, R < 1
, lim
n→∞

yn =


0, S > 1.

∞, S < 1
, lim
n→∞

zn =


0, T > 1

∞, T < 1

where: R := αaB + αb+ β

1− αaA , S := aAβ + aB + b

1− αaA and T := αAb+ Aβ +B

1− αaA .

Proof. We will only prove detailed properties (a), (b), and (c) for the limits of xn. The
limits of yn and zn follows a similar inductive lines. First, note that from (3.22) the limit
of xkn+r as n → ∞ depends on the limit of ukn+r as n → ∞, which, on the other hand,
depends on the value of αaA.

(a) When αaA > 1, (αaA)n − 1
αaA− 1 → ∞ as n → ∞. So, from (3.11), (3.12) and (3.13), we

have un → ∞ as n → ∞. Then, in view of (3.22), xn → 0 as n → ∞. Similarly, we
obtain yn → 0 and zn → 0 as n→∞.

(b) When αaA = 1, then from (3.11), (3.12) and (3.13) we get

lim
n→∞

un = lim
n→∞

u3n = lim
n→∞

u3n+1 = lim
n→∞

u3n+2 = lim
n→∞

(αaB + αb+ β)n =∞.

Hence, from (3.22), we have xn → 0 as n→∞. Similarly, we have yn → 0 and zn → 0
as n→∞.

(c) When αaA < 1, then (αaA)n → 0 asn→∞. So, in reference to (3.11), (3.12), (3.13),
(3.14), (3.15), (3.16), (3.17), (3.18) and (3.19), we have

lim
n→∞

un = lim
n→∞

u3n = lim
n→∞

u3n+1 = lim
n→∞

u3n+2 = αaB + αb+ β

1− αaA = R,

lim
n→∞

vn = lim
n→∞

v3n = lim
n→∞

v3n+1 = lim
n→∞

v3n+2 = aAβ + aB + b

1− αaA = S,

lim
n→∞

wn = lim
n→∞

w3n = lim
n→∞

w3n+1 = lim
n→∞

w3n+2 = αAb+ Aβ +B

1− αaA = T.



3.3 Behavior of the solutions a particular case 131

Let r ∈ {0, ..., k − 1} be fixed. If R > 1, then lim
n→∞

n∏
m=0

ukm+r = ∞ Therefore,
lim
n→∞

xkn+r = 0 or equivalently, lim
n→∞

xn = 0. If, on the other hand, R < 1 then

lim
n→∞

1
ukn+r

= lim
n→∞

1
un

= 1
R
> 1. Hence, we have the product limit lim

n→∞

n∏
m=0

1
ukm+r

=
∞. Thus, lim

n→∞
xkn+r = lim

n→∞
xn =∞.

With the same steps we prove the limits of yn and zn of this case as it was mentioned
in the theorem.

The next theorems provides the behavior of solutions of system (3.66) for the cases R = 1,
S = 1 and T = 1.

Theorem 3.6. Let {xn, yn, zn}n≥−k be a solution of (3.66), with k = 3l (l = 1, 2, ...). Assume
that αaA < 1 Then, the following statements hold.

(a) If R = 1 (resp. S = 1 and T = 1) and x−k 6= x0 (resp. y−k 6= y0 and z−k 6= z0)
then the subsequences {xkn+3r} (resp. {ykn+3r} and {zkn+3r} ), for all r = 0, k3 , are
convergent.

(b) If R = 1 (resp. S = 1 and T = 1) and x−k = x0 (resp. y−k = y0 and z−k = z0) then
xkn+3r = x3r−k (resp. ykn+3r = y3r−k and zkn+3r = z3r−k), for all r = 0, k3 .

(c) If R = 1 (resp. S = 1 and T = 1) and αy−k 6= (1− β)y0 (resp. az−k 6= (1− b)z0 and
Ax−k 6= (1−B)x0) then the subsequences {xkn+3r+1} (resp. {ykn+3r+1} and {zkn+3r+1}
), for all r = 0, k3 , are convergent.

(d) If R = 1 (resp. S = 1 and T = 1) and αaz−k 6= (1 − β − αb)z0 (resp. aAx−k 6=
(1− b− aB)x0 and αAy−k 6= (1− B − Aβ)y0) then then the subsequences {xkn+3r+2}
(resp. {ykn+3r+2} and {zkn+3r+2} ), for all r = 0, k3 , are convergent.

(e) If R = 1 (resp. S = 1 and T = 1) and αy−k = (1 − β)y0 (resp. az−k = (1 − b)z0

and Ax−k = (1 − B)x0) then then xkn+3r+1 = x3r−k+1 (resp. ykn+3r+1 = y3r−k+1 and
zkn+3r+1 = z3r−k+1 ), for all r = 0, k3 .

(f) If R = 1 (resp. S = 1 and T = 1) and αaz−k = (1−β−αb)z0 (resp. aAx−k = (1− b−
aB)x0 and αAy−k = (1−B−Aβ)y0) then xkn+3r+2 = x3r−k+2 (resp. ykn+3r+2 = y3r−k+2

and zkn+3r+2 = z3r−k+2 ), for all r = 0, k3 .
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Proof. We prove the results for the subsequences {xkn+3r+i}, (i = 0, 1, 2). The same lines of
proof can be followed respectively to prove the results for the subsequences {ykn+3r+i}, (i =
0, 1, 2) and {zkn+3r+i}, (i = 0, 1, 2). First, we note that in all cases

u3n =
(αaA)n(x−k − x0)

x0
+ 1, u3n+1 =

(αaA)n (αy−k + (β − 1)y0)
y0

+ 1, u3n+2 =
(αaA)n (αaz−k + (αb+ β − 1)z0)

z0
+ 1,

(a) By Theorem 3.2, we have

x3(ln+r) = x3(r−l)
n∏
i=0

u3(li+r)

= x3(r−l)
n∏
i=0

(
(αaA)(li+r)(x−k − x0)

x0
+ 1

) .

Here we distinguish two cases:

(i) if x−k > x0: Then,

x3(ln+r) = x3(r−l)

exp
[
n∑
i=0

ln
(

(αaA)(li+r)(x−k − x0)
x0

+ 1
)] .

Using a property of logarithms, we have

ln
(

(αaA)n(x−k − x0)
x0

+ 1
)
∼∞

(αaA)n(x−k − x0)
x0

Now, because
n∑
i=0

(αaA)n is a geometric sum, with αaA < 1, then the sum

n∑
i=0

(x−k − x0)
x0

(αaA)(li+r)

is convergent.

(ii) if x−k < x0: Then,

x3(ln+r) = x3(r−l)
n∏
i=0

(
(αaA)(li+r)(x−k − x0)

x0
+ 1

) = x3(r−l)

n∏
i=0

(
x0

(αaA)(li+r)(x−k − x0) + x0

)

= x3(r−l)

n∏
i=0

(
1 + −(αaA)(li+r)(x−k − x0)

(αaA)(li+r)(x−k − x0) + x0

)
= x3(r−l)

n∏
i=0

(
1 + (αaA)(li+r)(x0 − x−k)

(αaA)(li+r)(x−k − x0) + x0

)

= x3(r−l) exp
[
n∑
i=0

ln
(

1 + (αaA)(li+r)(x0 − x−k)
(αaA)(li+r)(x−k − x0) + x0

)]
.

Using again property of logarithm, we have

ln
(

1 + (αaA)n(x0 − x−k)
(αaA)n(x−k − x0) + x0

)
∼+∞

(αaA)n(x0 − x−k)
(αaA)n(x−k − x0) + x0

,
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and
(αaA)n(x0 − x−k)

(αaA)n(x−k − x0) + x0
∼+∞

(αaA)n(x0 − x−k)
x0

,

as above, because
n∑
i=0

(αaA)n is a geometric sum, with αaA < 1, then the sum

n∑
i=0

(x0 − x−k)
x0

(αaA)(li+r),

is convergent, so it is for the sum

n∑
i=0

(αaA)(li+r)(x0 − x−k)
(αaA)(li+r)(x−k − x0) + x0

.

Thus the desired result follows.

(b) The result is immediate because u3n = 1 in this case.

(c) The proof is similar to item (a). That is, by Theorem 3.2, we have

x3(ln+r)+1 = x3(r−l)+1
n∏
i=0

u3(li+r)+1

= x3(r−l)+1
n∏
i=0

(
(αaA)li+r (αy−k + (β − 1)y0)

y0
+ 1

) .

Also, we distinguish two cases:
(i) if αy−k > (1− β)y0, then

x3(ln+r)+1 = x3(r−l)+1

exp
[
n∑
i=0

ln
(

(αaA)li+r (αy−k + (β − 1)y0)
y0

+ 1
)] .

Using a property of logarithm, we have

ln
(

(αaA)li+r (αy−k + (β − 1)y0)
y0

+ 1
)
∼∞

(αaA)li+r (αy−k + (β − 1)y0)
y0

Because
n∑
i=0

(αaA)n is a geometric sum, with αaA < 1, then the sum

n∑
i=0

(αaA)li+r (αy−k + (β − 1)y0)
y0

is convergent.
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(ii) if αy−k < (1− β)y0, then

x3(ln+r)+1 = x3(r−l)+1
n∏
i=0

(
(αaA)li+r (αy−k + (β − 1)y0)

y0
+ 1

)

= x3(r−l)+1

n∏
i=0

(
y0

(αaA)li+r (αy−k + (β − 1)y0) + y0

)

= x3(r−l)+1

n∏
i=0

(
1 + −(αaA)li+r (αy−k + (β − 1)y0)

(αaA)li+r (αy−k + (β − 1)y0) + y0

)

= x3(r−l)+1 exp
[
n∑
i=0

ln
(

1 + (αaA)li+r ((1− β)y0 − αy−k)
(αaA)li+r (αy−k + (β − 1)y0) + y0

)]
.

We have,

ln
(

1 + (αaA)n ((1− β)y0 − αy−k)
(αaA)n (αy−k + (β − 1)y0) + y0

)
∼+∞

(αaA)n ((1− β)y0 − αy−k)
(αaA)n (αy−k + (β − 1)y0) + y0

,

and
(αaA)n ((1− β)y0 − αy−k)

(αaA)n (αy−k + (β − 1)y0) + y0
∼+∞

(αaA)n ((1− β)y0 − αy−k)
y0

.

The sum
n∑
i=0

(αaA)li+r ((1− β)y0 − αy−k)
y0

,

is convergent, so it is for the sum
n∑
i=0

(αaA)li+r ((1− β)y0 − αy−k)
(αaA)li+r (αy−k + (β − 1)y0) + y0

.

Hence, conclusion follows.

(d) The proof is similar to item (c) so, we omit it.

(e) (f) As in items (c) and (d), the results are immediate because, in these cases, u3n+1 = 1,
u3n+2 = 1 respectively .

The following theorem extend the results obtained in theorem 3.6.

Theorem 3.7. Let {xn, yn, zn}n≥−k be a solution of (3.66). Assume that αaA < 1, R = 1
(resp. S = 1 and T = 1) then, for all k = 3l + j, (l = 0, 1, · · · ), (j = 1, 2) we have:
If x−k = x0 (resp. y−k = y0 and z−k = z0), αy−k = (1 − β)y0 (resp. az−k = (1 − b)z0

and Ax−k = (1 − B)x0) and αaz−k = (1 − β − αb)z0 (resp. aAx−k = (1 − b − aB)x0 and
αAy−k = (1− B − Aβ)y0), then the subsequences of {xn} (resp. {yn} and {zn}) mentioned
by their relations in Theorem 3.2 are periodic with period k, otherwise they are convergent.
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Proof. Not that in the proof we use the same method and techniques as in proof of Theo-
rem 3.6 to prove the following theorem, so we will do it for some cases and others are similar.

Consider k = 1, (l = 0, j = 1), (we mean by a sequence periodic with period k = 1
a constant sequence). By Theorem 3.2 the subsequences of {xn} are {x3n}, {x3n+1} and
{x3n+2} so the same thing for the sequences {yn} and {zn}. We prove the results for the
subsequence {x3n}. The same lines of proof can be followed inductively to prove the results
for the subsequences {x3n+1}, {x3n+2} and those of {yn} and {zn}. We note that in all cases

u3n =
(αaA)n(x−k − x0)

x0
+ 1, u3n+1 =

(αaA)n (αy−k + (β − 1)y0)
y0

+ 1, u3n+2 =
(αaA)n (αaz−k + (αb+ β − 1)z0)

z0
+ 1,

It is clear because in this case u3n = u3n+1 = u3n+2 = 1.
Suppose that the condition of Theorem 3.7 is not satisfied, then we distinguish seven possible
cases:

(a) x−k 6= x0 (resp. y−k 6= y0 and z−k 6= z0) and αy−k 6= (1− β)y0 (resp. az−k 6= (1− b)z0

and Ax−k 6= (1 − B)x0) and αaz−k 6= (1 − β − αb)z0 (resp. aAx−k 6= (1 − b − aB)x0

and αAy−k 6= (1−B − Aβ)y0).
By Theorem 3.2, we have, for all n ∈ N0:

x3n =
x−1(

n∏
i=0

u3i

)
n−1∏
i=0

(u3i+1u3i+2)

=
x−1(

n∏
i=0

(
(αaA)i(x−1 − x0)

x0
+ 1
))

n−1∏
i=0

((
(αaA)i (αy−1 + (β − 1)y0)

y0
+ 1
)(

(αaA)i (αaz−1 + (αb+ β − 1)z0)
z0

+ 1
))

=
x−1

n∏
i=0

(
(αaA)i(x−1 − x0)

x0
+ 1
)

n−1∏
i=0

(
(αaA)i (αy−1 + (β − 1)y0)

y0
+ 1
)

n−1∏
i=0

(
(αaA)i (αaz−1 + (αb+ β − 1)z0)

z0
+ 1
) .

Here we distinguish eight possible sub-cases:
(i) if x−1 > x0, αy−1 > (1− β)y0 and αaz−1 > (1− β − αb)z0, then

x3n =
x−1

exp
[

n∑
i=0

ln
(

(αaA)i(x−1 − x0)
x0

+ 1
)

+
n−1∑
i=0

ln
(

(αaA)i (αy−1 + (β − 1)y0)
y0

+ 1
)

+
n−1∑
i=0

ln
(

(αaA)i (αaz−1 + (αb+ β − 1)z0)
z0

+ 1
)] .

Using a property of logarithms, we have

ln
(

(αaA)n(x−1 − x0)
x0

+ 1
)
∼∞

(αaA)n(x−1 − x0)
x0

, (3.67)

ln
(

(αaA)n (αy−1 + (β − 1)y0)
y0

+ 1
)
∼∞

(αaA)n (αy−1 + (β − 1)y0)
y0

, (3.68)

ln
(

(αaA)n (αaz−1 + (αb+ β − 1)z0)
z0

+ 1
)
∼∞

(αaA)n (αaz−1 + (αb+ β − 1)z0)
z0

. (3.69)
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Now, because
n∑
i=0

(αaA)n is a geometric sum, with αaA < 1, then the sums

n∑
i=0

(x−1 − x0)
x0

(αaA)n,
n∑
i=0

(αy−1 + (β − 1)y0)
y0

(αaA)n and
n∑
i=0

(αaz−1 + (αb+ β − 1)z0)
z0

(αaA)n

(3.70)
are convergent. The desired result then follows.
(ii) if x−1 > x0, αy−1 < (1− β)y0 and αaz−1 > (1− β − αb)z0, then

x3n = x−1

exp
[
n∑
i=0

ln
(

(αaA)i(x−1 − x0)
x0

+ 1
)

+
n−1∑
i=0

ln
(

(αaA)i (αaz−1 + (αb+ β − 1)z0)
z0

+ 1
)]

× 1
n−1∏
i=0

(
(αaA)i (αy−1 + (β − 1)y0)

y0
+ 1

)

= x−1

exp
[
n∑
i=0

ln
(

(αaA)i(x−1 − x0)
x0

+ 1
)

+
n−1∑
i=0

ln
(

(αaA)i (αaz−1 + (αb+ β − 1)z0)
z0

+ 1
)]

×
n−1∏
i=0

(
y0

(αaA)i (αy−1 + (β − 1)y0) + y0

)

= x−1

exp
[
n∑
i=0

ln
(

(αaA)i(x−1 − x0)
x0

+ 1
)

+
n−1∑
i=0

ln
(

(αaA)i (αaz−1 + (αb+ β − 1)z0)
z0

+ 1
)]

×
n−1∏
i=0

(
1 + −(αaA)i (αy−1 + (β − 1)y0)

(αaA)i (αy−1 + (β − 1)y0) + y0

)

= x−1

exp
[
n∑
i=0

ln
(

(αaA)i(x−1 − x0)
x0

+ 1
)

+
n−1∑
i=0

ln
(

(αaA)i (αaz−1 + (αb+ β − 1)z0)
z0

+ 1
)]

× exp
[
n−1∑
i=0

ln
(

1 + (αaA)i ((1− β)y0 − αy−1)
(αaA)i (αy−1 + (β − 1)y0) + y0

)]
.

By (3.67), (3.69), (3.70) and

ln
(

1 + (αaA)n ((1− β)y0 − αy−1)
(αaA)n (αy−1 + (β − 1)y0) + y0

)
∼∞

(αaA)n ((1− β)y0 − αy−1)
(αaA)n (αy−1 + (β − 1)y0) + y0

,

and the fact that

(αaA)n ((1− β)y0 − αy−1)
(αaA)n (αy−1 + (β − 1)y0) + y0

∼∞
(αaA)n ((1− β)y0 − αy−1)

y0

Thus we get the desired results.
(iii) if x−1 < x0, αy−1 > (1− β)y0 and αaz−1 > (1− β − αb)z0, then
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x3n = x−1
n−1∏
i=0

(
(αaA)i (αy−1 + (β − 1)y0)

y0
+ 1

)
n−1∏
i=0

(
(αaA)i (αaz−1 + (αb+ β − 1)z0)

z0
+ 1

)

×
n∏
i=0

(
x0

(αaA)i(x−1 − x0) + x0

)

= x−1
n−1∏
i=0

(
(αaA)i (αy−1 + (β − 1)y0)

y0
+ 1

)
n−1∏
i=0

(
(αaA)i (αaz−1 + (αb+ β − 1)z0)

z0
+ 1

)

×
n∏
i=0

(
1 + −(αaA)i(x−1 − x0)

(αaA)i(x−1 − x0) + x0

)

= x−1

exp
[
n−1∑
i=0

ln
(

(αaA)i (αy−1 + (β − 1)y0)
y0

+ 1
)

+
n−1∑
i=0

ln
(

(αaA)i (αaz−1 + (αb+ β − 1)z0)
z0

+ 1
)]

× exp
[
n∑
i=0

ln
(

1 + (αaA)i(x0 − x−1)
(αaA)i(x−1 − x0) + x0

)]
.

By (3.68), (3.69), (3.70) and

ln
(

1 + (αaA)n(x0 − x−1)
(αaA)n(x−1 − x0) + x0

)
∼+∞

(αaA)n(x0 − x−1)
(αaA)n(x−1 − x0) + x0

,

the fact that
(αaA)n(x0 − x−1)

(αaA)n(x−1 − x0) + x0
∼+∞

(αaA)n(x0 − x−1)
x0

,

we get the result. For the remaining sub-cases:
(iv) x−1 < x0, αy−1 < (1− β)y0 and αaz−1 > (1− β − αb)z0,
(v) x−1 > x0, αy−1 > (1− β)y0 and αaz−1 < (1− β − αb)z0,
(vi) x−1 > x0, αy−1 < (1− β)y0 and αaz−1 < (1− β − αb)z0,
(vii) x−1 < x0, αy−1 > (1− β)y0 and αaz−1 < (1− β − αb)z0,
(viii) x−1 < x0, αy−1 < (1− β)y0 and αaz−1 < (1− β − αb)z0,
we follow the same techniques as in (i), (ii) and (iii).
For the others items:

(b) x−k = x0 (resp. y−k = y0 and z−k = z0) and αy−k 6= (1− β)y0 (resp. az−k 6= (1− b)z0

and Ax−k 6= (1 − B)x0) and αaz−k 6= (1 − β − αb)z0 (resp. aAx−k 6= (1 − b − aB)x0

and αAy−k 6= (1−B − Aβ)y0),

(c) x−k 6= x0 (resp. y−k 6= y0 and z−k 6= z0) and αy−k = (1− β)y0 (resp. az−k = (1− b)z0

and Ax−k = (1 − B)x0) and αaz−k 6= (1 − β − αb)z0 (resp. aAx−k 6= (1 − b − aB)x0

and αAy−k 6= (1−B − Aβ)y0),
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(d) and x−k = x0 (resp. y−k = y0 and z−k = z0) and αy−1 = (1− β)y0 (resp. az−k = (1−
b)z0 and Ax−k = (1−B)x0) and αaz−k 6= (1−β−αb)z0 (resp. aAx−k 6= (1−b−aB)x0

and αAy−k 6= (1−B − Aβ)y0),

(e) x−k 6= x0 (resp. y−k 6= y0 and z−k 6= z0) and αy−k 6= (1− β)y0 (resp. az−k 6= (1− b)z0

and Ax−k 6= (1 − B)x0) and αaz−k = (1 − β − αb)z0 (resp. aAx−k = (1 − b − aB)x0

and αAy−k = (1−B − Aβ)y0),

(f) x−k = x0 (resp. y−k = y0 and z−k = z0) and αy−k 6= (1− β)y0 (resp. az−k 6= (1− b)z0

and Ax−k 6= (1 − B)x0) and αaz−k = (1 − β − αb)z0 (resp. aAx−k = (1 − b − aB)x0

and αAy−k = (1−B − Aβ)y0),

(g) x−k 6= x0 (resp. y−1 6= y0 and z−k 6= z0) and αy−k = (1− β)y0 (resp. az−k = (1− b)z0

and Ax−k = (1 − B)x0) and αaz−k = (1 − β − αb)z0 (resp. aAx−k = (1 − b − aB)x0

and αAy−k = (1−B − Aβ)y0),

the proof of is similar to (a), and the results are immediate because in this cases, each time
u3n or u3n+1 or u3n+2 equal to 1.



Chapter 4

A max-type system of difference
equations of third order

4.1 Introduction

In this chapter we study a max type system of difference equations. This type of differ-
ence equations and systems have been investigated by a lot of authors, see for instance,
[10, 21, 22, 23, 49, 51, 52, 69, 70, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,
90, 97, 98, 99, 100, 101, 102, 103, 107, 113, 120, 121, 122, 125].

In the same line of the works in the above references, we solve in a closed form the
following third order max-type system of difference equations

xn+1 = max
(
xn−1,

xnyn−1

yn−2

)
, yn+1 = max

(
yn−1,

ynxn−1

xn−2

)
, (4.1)

where n ∈ N0 = N ∪ {0} and the initial values x−i, y−i ∈ (0,+∞), i = 0, 1, 2.
To do this, we distinguish for cases depending on the relation between the quantities x−1

and x0y−1
y−2

, and, y−1 and y0x−1
x−2

.

4.2 Main results and closed form of the solutions

4.2.1 The case x−1 ≤ x0y−1
y−2

and y−1 ≤ y0x−1
x−2

In the following result, we give the closed form of the solutions of system (4.1) under the
assumptions x−1 ≤ x0y−1

y−2
and y−1 ≤ y0x−1

x−2
.
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Theorem 4.1. Let (xn)n≥−2 and (yn)n≥−2 be a solution of system (4.1) such that x−1 ≤ x0y−1
y−2

and y−1 ≤ y0x−1
x−2

. Then the following statements hold:

(H1) : If x0
x−2
≥ 1, y0

y−2
≥ 1, then

x4n−1 = x−1
(

x0y0
x−2y−2

)n
, n ∈ N0,

x4n = x0
(

x0y0
x−2y−2

)n
, n ∈ N0,

x4n+1 = x0y−1
y−2

(
x0y0

x−2y−2

)n
, n ∈ N0,

x4n+2 = x0y0
y−2

(
x0y0

x−2y−2

)n
, n ∈ N0,



y4n−1 = y−1
(

x0y0
x−2y−2

)n
, n ∈ N0,

y4n = yo
(

x0y0
x−2y−2

)n
, n ∈ N0,

y4n+1 = y0x−1
x−2

(
x0y0

x−2y−2

)n
, n ∈ N0,

y4n+2 = x0y0
x−2

(
x0y0

x−2y−2

)n
, n ∈ N0.

(4.2)

(H2) : Let x0
x−2
≤ 1, y0

y−2
≥ 1 (with x0y0

x−2y−2
≥ 1). Then

x4n = x0
(
y0
y−2

)n
, n ∈ N0,

x4n+1 = x0y−1
y0

(
y0
y−2

)n+1
, n ∈ N0

x4n+2 = x0
(
y0
y−2

)n+1
, n ∈ N0,

x4n+3 = x0x−1
x−2

(
y0
y−2

)n+1
, n ∈ N0.



y4n = y0
(
y0
y−2

)n
, n ∈ N0,

y4n+1 = x−1y−2
x−2

(
y0
y−2

)n+1
, n ∈ N0,

y4n+2 = y0
(
y0
y−2

)n
, n ∈ N0,

y4n+3 = y−1
(
y0
y−2

)n+1
, n ∈ N0,

(4.3)

(H3) : Let x0
x−2
≥ 1, y0

y−2
≤ 1 (with x0y0

x−2y−2
≥ 1). Then

x4n = x−2
(
x0
x−2

)n+1
, n ∈ N0,

x4n+1 = x−2y−1
y−2

(
x0
x−2

)n+1
, n ∈ N0,

x4n+2 = x−2
(
x0
x−2

)n+1
, n ∈ N0,

x4n+3 = x−1
(
x0
x−2

)n+1
, n ∈ N0,



y4n = y0
(
x0
x−2

)n
, n ∈ N0,

y4n+1 = x−1y0
x0

(
x0
x−2

)n+1
, n ∈ N0,

y4n+2 = y0
(
x0
x−2

)n+1
, n ∈ N0,

y4n+3 = y−1y0
y−2

(
x0
x−2

)n+1
, n ∈ N0.

(4.4)

Proof. From the hypothesis x−1 ≤ x0y−1
y−2

and y−1 ≤ y0x−1
x−2

, we get

x1 = max
(
x−1,

x0y−1

y−2

)
= x0y−1

y−2
, (4.5)

y1 = max
(
y−1,

y0x−1

x−2

)
= y0x−1

x−2
. (4.6)

Using (4.5) and (4.6), we get

x2 = x0 max
(

1, y0

y−2

)
, y2 = y0 max

(
1, x0

x−2

)
. (4.7)

Again, it follows from x−1 ≤ x0y−1
y−2

and y−1 ≤ y0x−1
x−2

that x0y0
x−2y−2

≥ 1. In fact, we have

x−1 ≤
x0y−1

y−2
≤ x0

y−2

y0x−1

x−2
= y0x0

x−2y−2
x−1,

that is, x0y0
x−2y−2

≥ 1. Taking this in mind, we got the following three possibilities.
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(H1) : x0
x−2
≥ 1, y0

y−2
≥ 1.

(H2) : x0
x−2
≤ 1, y0

y−2
≥ 1.

(H3) : x0
x−2
≥ 1, y0

y−2
≤ 1.

From hypothesis (H1) , we obtain:

x2 = x0y0

y−2
, (4.8)

y2 = x0y0

x−2
. (4.9)

Using (4.5)-(4.9), we get

x3 = max
(
x0y−1

y−2
,
x0

y−2

y0x−1

x−2

)
, y3 = max

(
y0x−1

x−2
,
y0

x−2

x0y−1

y−2

)
,

we have
y0x−1

x−2
≥ y−1 ⇒

x0

y−2

y0x−1

x−2
≥ x0

y−2
y−1,

x0y−1

y−2
≥ x−1 ⇒

y0

x−2

x0y−1

y−2
≥ y0

x−2
x−1,

so,
x3 = x0y0

x−2y−2
x−1, (4.10)

y3 = x0y0

x−2y−2
y−1. (4.11)

Using (4.8)-(4.11), we get

x4 = x0y0

y−2
max

(
1, x0

x−2

)
, y4 = x0y0

x−2
max

(
1, y0

y−2

)
,

by (H1) we obtain:
x4 = x0y0

x−2y−2
x0, (4.12)

y4 = x0y0

x−2y−2
y0. (4.13)

Using (4.10)-(4.13), we have

x5 = x0y0

x−2y−2
max

(
x−1,

x0y−1

y−2

)
= x0y−1

y−2

x0y0

x−2y−2
, (4.14)

y5 = x0y0

x−2y−2
max

(
y−1,

y0x−1

x−2

)
= y0x−1

x−2

x0y0

x−2y−2
. (4.15)
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From (4.12)-(4.15), we obtain

x6 = x2
0y0

x−2y−2
max

(
1, y0

y−2

)
= x0y0

y−2

x0y0

x−2y−2
, (4.16)

y6 = y2
0x0

x−2y−2
max

(
1, x0

x−2

)
= x0y0

x−2

x0y0

x−2y−2
. (4.17)

Now, from (4.14)-(4.17), we get

x7 = x2
0y0

y2
−2x−2

max
(
y0x−1

x−2
, y−1

)
= x−1

(
x0y0

x−2y−2

)2

, (4.18)

y7 = y2
0x0

x2
−2y−2

max
(
x−1,

x0y−1

y−2

)
= y−1

(
x0y0

x−2y−2

)2

. (4.19)

Using (4.16)-(4.19), we have

x8 = x2
0y

2
0

y2
−2x−2

max
(

1, x0

x−2

)
= x0

(
x0y0

x−2y−2

)2

, (4.20)

y8 = y2
0x

2
0

x2
−2y−2

max
(

1, y0

y−2

)
= y0

(
x0y0

x−2y−2

)2

. (4.21)

From (4.5)-(4.21) and by induction we obtain the results in (4.2).
Now, let consider the second cases (H2). We have

x2 = max
(
x0,

x0y0

y−2

)
= x0 max

(
1, y0

y−2

)
= x0y0

y−2
, (4.22)

y2 = max
(
y0,

x0y0

x−2

)
= y0 max

(
1, x0

x−2

)
= y0. (4.23)

Using (4.5), (4.6), (4.22) and (4.23) we get

x3 = max
(
x1,

x2y1

y0

)
= x0

y−2
max

(
y−1,

x−1y0

x−2

)
= x−1

x0y0

x−2y−2
, (4.24)

y3 = max
(
y1,

y2x1

x0

)
= y0

x−2
max

(
x−1,

x−2y−1

y−2

)
= y0y−1

y−2
. (4.25)

By (4.5), (4.6) (4.22),(4.23), (4.24) and (4.25), we have

x4 = max
(
x2,

x3y2

y1

)
= max

(
x0y0

y−2
,
x0y0

y−2

)
= x0y0

y−2
, (4.26)

y4 = max
(
y2,

y3x2

x1

)
= y0 max

(
1, y0

y−2

)
= y2

0
y−2

. (4.27)
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From (4.22),(4.23), (4.24)-(4.27), we get

x5 = max
(
x3,

x4y3

y2

)
= x−1

x0y0

x−2y−2
max

(
1, x−2y−1

x−1y−2

)
= x0y−1y0

y2
−2

, (4.28)

y5 = max
(
y3,

y4x3

x2

)
= y0y−1

y−2
max

(
1, x−1y0

x−2y−1

)
= x−1y

2
0

x−2y−2
. (4.29)

Using (4.24)-(4.29), we get

x6 = max
(
x4,

x5y4

y3

)
= x0y0

y−2
max

(
1, y0

y−2

)
= x0y

2
0

y2
−2
. (4.30)

y6 = max
(
y4,

y5x4

x3

)
= max

(
y2

0
y−2

,
y2

0
y−2

)
= y2

0
y−2

. (4.31)

Then, by (4.26)-(4.31), we have

x7 = max
(
x5,

x6y5

y4

)
= x0y−1y0

y2
−2

max
(

1, x−1y0

x−2y−1

)
= x0x−1y

2
0

x−2y2
−2
, (4.32)

y7 = max
(
y5,

y6x5

x4

)
= x−1y

2
0

x−2y−2
max

(
1, x−2y−1

x−1y−2

)
= y−1y

2
0

y2
−2

. (4.33)

So, from (4.28)-(4.33), we have

x8 = max
(
x6,

x7y6

y5

)
= max

(
x0y

2
0

y2
−2
,
x0y

2
0

y2
−2

)
= x0y

2
0

y2
−2
, (4.34)

y8 = max
(
y6,

y7x6

x5

)
= y2

0
y−2

max
(

1, y0

y−2

)
= y3

0
y2
−2
. (4.35)

By induction we get the formulas in (4.3).
Now, consider the case (H3), that is: x0

x−2
≥ 1 and y0

y−2
≤ 1. Using (4.5) and (4.6), we get

x2 = x0 max
(

1, y0

y−2

)
= x0, (4.36)

y2 = y0 max
(

1, x0

x−2

)
= x0y0

x−2
. (4.37)

Using (4.5), (4.6), (4.36) and and (4.37), we get

x3 = max
(
x1,

x2y1

y0

)
= x0

y−2
max

(
y−1,

y−2x−1

x−2

)
= x0

x−1

x−2
, (4.38)

y3 = max
(
y1,

y2x1

x0

)
= y0

x−2
max

(
x−1,

x0y−1

y−2

)
= x0y0y−1

x−2y−2
. (4.39)
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From (4.5), (4.6), (4.36)-(4.39), we have

x4 = max
(
x2,

x3y2

y1

)
= x0 max

(
1, x0

x−2

)
= x2

0
x−2

, (4.40)

y4 = max
(
y2,

y3x2

x1

)
= max

(
x0y0

x−2
,
x0y0

x−2

)
= x0y0

x−2
. (4.41)

Using (4.36)-(4.41), we get

x5 = max
(
x3,

x4y3

y2

)
= x0

x−2
max

(
x−1,

x0y−1

y−2

)
= x2

0y−1

x−2y−2
, (4.42)

y5 = max
(
y3,

y4x3

x2

)
= x0y0

x−2
max

(
y−1

y−2
,
x−1

x−2

)
= x0y0x−1

x2
−2

. (4.43)

By (4.38)-(4.43), we have

x6 = max
(
x4,

x5y4

y3

)
= max

(
x2

0
x−2

,
x2

0
x−2

)
= x2

0
x−2

, (4.44)

y6 = max
(
y4,

y5x4

x3

)
= x0y0

x−2
max

(
1, x0

x−2

)
= x2

0y0

x2
−2
. (4.45)

Then, by (4.40)-(4.45), we have

x7 = max
(
x5,

x6y5

y4

)
= x2

0
x−2

max
(
y−1

y−2
,
x−1

x−2

)
= x−1x

2
0

x2
−2

, (4.46)

y7 = max
(
y5,

y6x5

x4

)
= x0y0

x2
−2

max
(
x−1,

x0y−1

y−2

)
= x2

0y0y−1

x2
−2y−2

. (4.47)

So, from (4.42)-(4.47), we get

x8 = max
(
x6,

x7y6

y5

)
= x2

0
x−2

max
(

1, x0

x−2

)
= x3

0
x2
−2
, (4.48)

y8 = max
(
y6,

y7x6

x5

)
= max

(
x2

0y0

x2
−2
,
x2

0y0

x2
−2

)
= x2

0y0

x2
−2
. (4.49)

By induction we obtain the results in (4.4).

Remark 4.2.1. Assume that x0 = x−2 and y0 = y−2. Using the fact that x−1 ≤ x0y−1
y−2

,
y−1 ≤ y0x−1

x−2
it follows that:

x−1 = x0y−1

y−2
, y−1 = y0x−1

x−2
.

The following result, which is a direct consequence of Theorem 4.1 and Remark 4.2.1, is
devoted to the existence of periodic solutions of system (4.1).
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Corollary 4.2. Let (xn)n≥−2 and (yn)n≥−2 be a solution of system (4.1) such that x−1 ≤ x0y−1
y−2

and y−1 ≤ y0x−1
x−2

. Then, If x0 = x−2 and y0 = y−2, we have for all n ∈ N0

x2n = x−2, y2n = y−2,

x2n+1 = x−1, y2n+1 = y−1.

That is the solutions are periodic with period 2. When x0 6= x−2 and y0 6= y−2, the solutions
are unbounded, that is

(xn, yn) −→ (+∞,+∞).

4.2.2 The case x−1 ≥ x0y−1
y−2

and y−1 ≥ y0x−1
x−2

In the following section, we give the closed form of the solutions of system (4.1) under the
assumptions x−1 ≥ x0y−1

y−2
and y−1 ≥ y0x−1

x−2
.

Theorem 4.3. Let (xn)n≥−2 and (yn)n≥−2 be a solution of system (4.1) such that x−1 ≥ x0y−1
y−2

and y−1 ≥ y0x−1
x−2

. Then the following statements hold:

(H1) : If x−1y0
x0y−1

≤ 1. Then

x2n =


x0
(
x0y−1
x−1y0

)n
2 , n = 0, 2, ...

x0
(
x0y−1
x−1y0

)n−1
2 , n = 1, 3, ...

x2n+1 =


x−1

(
x0y−1
x−1y0

)n
2 , n = 0, 2, ...

x−1
(
x0y−1
x−1y0

)n+1
2 , n = 1, 3, ...

(4.50)

y2n =


y0
(
x0y−1
x−1y0

)n
2 , n = 0, 2, ...

y0
(
x0y−1
x−1y0

)n+1
2 , n = 1, 3, ...

y2n+1 =


y−1

(
x0y−1
x−1y0

)n
2 , n = 0, 2, ...

y−1
(
x0y−1
x−1y0

)n+1
2 , n = 1, 3, ...

(4.51)

(H2) : If x−1y0
x0y−1

≥ 1. Then
x4n−3 = x4n−1 = x−1

(
x−1y0
x0y−1

)n−1
, n ∈ N,

x4n−2 = x4n = x0
(
x−1y0
x0y−1

)n
, n ∈ N.


y4n−1 = y4n+1 = y−1

(
x−1y0
x0y−1

)n
, n ∈ N0,

y4n = y4n+2 = y0
(
x−1y0
x0y−1

)n
, n ∈ N0,

(4.52)

Proof. From hypothesis x−1 ≥ x0y−1
y−2

and y−1 ≥ y0x−1
x−2

of Theorem 4.3. We have

x1 = max
(
x−1,

x0y−1

y−2

)
= x−1, (4.53)

y1 = max
(
y−1,

y0x−1

x−2

)
= y−1. (4.54)
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Using (4.53) and (4.55), we get

x2 = max
(
x0,

x1y0

y−1

)
= x0 max

(
1, x−1y0

x0y−1

)
, (4.55)

y2 = max
(
y0,

y1x0

x−1

)
= y0 max

(
1, y−1x0

y0x−1

)
, (4.56)

so, we have two cases:

(H1) : x−1y0
x0y−1

≤ 1.

(H2) : x−1y0
x0y−1

≥ 1.

If x−1y0
x0y−1

≤ 1, then by (4.55) and (4.56) we have

x2 = x0 max
(

1, x−1y0

x0y−1

)
= x0, (4.57)

y2 = y0 max
(

1, y−1x0

y0x−1

)
= y0

(
x0y−1

x−1y0

)
. (4.58)

Using (4.53), (4.54), (4.57) and (4.58), we get

x3 = max
(
x1,

x2y1

y0

)
= x−1 max

(
1, x0y−1

x−1y0

)
= x−1

(
x0y−1

x−1y0

)
, (4.59)

y3 = max
(
y1,

y2x1

x0

)
= max (y−1, y−1) = y−1. (4.60)

From (4.53), (4.54) and (4.57)-(4.60), we have

x4 = max
(
x2,

x3y2

y1

)
= x0 max

(
1, x0y−1

x−1y0

)
= x0

(
x0y−1

x−1y0

)
, (4.61)

y4 = max
(
y2,

y3x2

x1

)
= max

(
y0

(
y−1x0

x−1y0

)
,
y−1x0

x−1

)
= y0

(
x0y−1

x−1y0

)
. (4.62)

By (4.57)-(4.62), we get

x5 = max
(
x3,

x4y3

y2

)
= max

(
x−1

(
x0y−1

x−1y0

)
, x−1

(
x0y−1

x−1y0

))
= x−1

(
x0y−1

x−1y0

)
, (4.63)

y5 = max
(
y3,

y4x3

x2

)
= y−1 max

(
1, x0y−1

x−1y0

)
= y−1

(
x0y−1

x−1y0

)
. (4.64)

Using (4.59)-(4.64), we have

x6 = max
(
x4,

x5y4

y3

)
= max

(
x0

(
x0y−1

x−1y0

)
, x0

(
x0y−1

x−1y0

))
= x0

(
x0y−1

x−1y0

)
, (4.65)
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y6 = max
(
y4,

y5x4

x3

)
= y0

(
x0y−1

x−1y0

)
max

(
1,
(
x0y−1

x−1y0

))
= y0

(
x0y−1

x−1y0

)2

. (4.66)

From (4.61)-(4.66), we get

x7 = max
(
x5,

x6y5

y4

)
= x−1

(
x0y−1

x−1y0

)
max

(
1,
(
x0y−1

x−1y0

))
= x−1

(
x0y−1

x−1y0

)2

, (4.67)

y7 = max
(
y5,

y6x5

x4

)
= max

(
y−1

(
x0y−1

x−1y0

)
, y−1

(
x0y−1

x−1y0

))
= y−1

(
x0y−1

x−1y0

)
. (4.68)

By (4.63)-(4.68), we get

x8 = max
(
x6,

x7y6

y5

)
= x0

(
x0y−1

x−1y0

)
max

(
1, x0y−1

x−1y0

)
= x0

(
x0y−1

x−1y0

)2

, (4.69)

y8 = max
(
y6,

y7x6

x5

)
= max

y0

(
x0y−1

x−1y0

)2

, y0

(
x0y−1

x−1y0

)2
 = y0

(
x0y−1

x−1y0

)2

. (4.70)

Using (4.65)-(4.70), we get

x9 = max
(
x7,

x8y7

y6

)
= max

x−1

(
x0y−1

x−1y0

)2

, x−1

(
x0y−1

x−1y0

)2
 = x−1

(
x0y−1

x−1y0

)2

, (4.71)

y9 = max
(
y7,

y8x7

x6

)
= y−1

(
x0y−1

x−1y0

)
max

(
1, x0y−1

x−1y0

)
= y−1

(
x0y−1

x−1y0

)2

. (4.72)

From (4.67)-(4.72), we get

x10 = max
(
x8,

x9y8

y7

)
= max

x0

(
x0y−1

x−1y0

)2

, x0

(
x0y−1

x−1y0

)2
 = x0

(
x0y−1

x−1y0

)2

, (4.73)

y10 = max
(
y8,

y9x8

x7

)
= y0

(
x0y−1

x−1y0

)2

max
(

1, x0y−1

x−1y0

)
= y0

(
x0y−1

x−1y0

)3

. (4.74)

By (4.69)-(4.74), we have

x11 = max
(
x9,

x10y9

y8

)
= x−1

(
x0y−1

x−1y0

)2

max
(

1, x0y−1

x−1y0

)
= x−1

(
x0y−1

x−1y0

)3

, (4.75)

y11 = max
(
y9,

y10x9

x8

)
= max

y−1

(
x0y−1

x−1y0

)2

, y−1

(
x0y−1

x−1y0

)2
 = y−1

(
x0y−1

x−1y0

)2

. (4.76)

From (4.71)-(4.76), we get

x12 = max
(
x10,

x11y10

y9

)
= x0

(
x0y−1

x−1y0

)2

max
(

1, x0y−1

x−1y0

)
= x0

(
x0y−1

x−1y0

)3

, (4.77)
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y12 = max
(
y10,

y11x10

x9

)
= max

y0

(
x0y−1

x−1y0

)3

, y0

(
x0y−1

x−1y0

)3
 = y0

(
x0y−1

x−1y0

)3

. (4.78)

Then, by (4.73)-(4.78), we get

x13 = max
(
x11,

x12y11

y10

)
= max

x−1

(
x0y−1

x−1y0

)3

, x−1

(
x0y−1

x−1y0

)3
 = x−1

(
x0y−1

x−1y0

)3

, (4.79)

y13 = max
(
y11,

y12x11

x10

)
= y−1

(
x0y−1

x−1y0

)2

max
(

1, x0y−1

x−1y0

)
= y−1

(
x0y−1

x−1y0

)3

. (4.80)

So, from (4.75)-(4.80), we have

x14 = max
(
x12,

x13y12

y11

)
= max

x0

(
x0y−1

x−1y0

)3

, x0

(
x0y−1

x−1y0

)3
 = x0

(
x0y−1

x−1y0

)3

, (4.81)

y14 = max
(
y12,

y13x12

x11

)
= y0

(
x0y−1

x−1y0

)3

max
(

1, x0y−1

x−1y0

)
= y0

(
x0y−1

x−1y0

)4

. (4.82)

By induction we obtain the results in (4.50) and (4.51).
If x−1y0

x0y−1
≥ 1. By (4.55) and (4.56) we get

x2 = x0 max
(

1, x−1y0

x0y−1

)
= x0

(
x−1y0

x0y−1

)
, (4.83)

y2 = y0 max
(

1, y−1x0

y0x−1

)
= y0. (4.84)

Using (4.53), (4.54), (4.83) and (4.84), we get

x3 = max
(
x1,

x2y1

y0

)
= max (x−1, x−1) = x−1, (4.85)

y3 = max
(
y1,

y2x1

x0

)
= y−1 max

(
1, x−1y0

x0y−1

)
= y−1

(
x−1y0

x0y−1

)
. (4.86)

From (4.53), (4.54) and (4.83)-(4.86), we have

x4 = max
(
x2,

x3y2

y1

)
= max

(
x0

(
x−1y0

x0y−1

)
,
x−1y0

y−1

)
= x0

(
x−1y0

x0y−1

)
, (4.87)

y4 = max
(
y2,

y3x2

x1

)
= y0 max

(
1, x−1y0

x0y−1

)
= y0

(
x−1y0

x0y−1

)
. (4.88)

By (4.83)-(4.88), we get

x5 = max
(
x3,

x4y3

y2

)
= x−1 max

(
1, x−1y0

x0y−1

)
= x−1

(
x−1y0

x0y−1

)
, (4.89)
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y5 = max
(
y3,

y4x3

x2

)
= max

(
y−1

(
x−1y0

x0y−1

)
, y−1

(
x−1y0

x0y−1

))
= y−1

(
x−1y0

x0y−1

)
. (4.90)

From (4.85)-(4.90), we have

x6 = max
(
x4,

x5y4

y3

)
= x0

(
x−1y0

x0y−1

)
max

(
1, x−1y0

x0y−1

)
= x0

(
x−1y0

x0y−1

)2

, (4.91)

y6 = max
(
y4,

y5x4

x3

)
= max

(
y0

(
x−1y0

x0y−1

)
, y0

(
x−1y0

x0y−1

))
= y0

(
x−1y0

x0y−1

)
. (4.92)

Using (4.87)-(4.92), we get

x7 = max
(
x5,

x6y5

y4

)
= max

(
x−1

(
x−1y0

x0y−1

)
, x−1

(
x−1y0

x0y−1

))
= x−1

(
x−1y0

x0y−1

)
, (4.93)

y7 = max
(
y5,

y6x5

x4

)
= y−1

(
x−1y0

x0y−1

)
max

(
1, x−1y0

x0y−1

)
= y−1

(
x−1y0

x0y−1

)2

. (4.94)

From (4.89)-(4.94), we get

x8 = max
(
x6,

x7y6

y5

)
= max

x0

(
x−1y0

x0y−1

)2

, x0

(
x−1y0

x0y−1

)2
 = x0

(
x−1y0

x0y−1

)2

, (4.95)

y8 = max
(
y6,

y7x6

x5

)
= y0

(
x−1y0

x0y−1

)
max

(
1, x−1y0

x0y−1

)
= y0

(
x−1y0

x0y−1

)2

. (4.96)

By (4.91)-(4.96), we get

x9 = max
(
x7,

x8y7

y6

)
= x−1

(
x−1y0

x0y−1

)
max

(
1, x−1y0

x0y−1

)
= x−1

(
x−1y0

x0y−1

)2

, (4.97)

y9 = max
(
y7,

y8x7

x6

)
= max

y−1

(
x−1y0

x0y−1

)2

, y−1

(
x−1y0

x0y−1

)2
 = y−1

(
x−1y0

x0y−1

)2

. (4.98)

Using (4.93)-(4.98), we have

x10 = max
(
x8,

x9y8

y7

)
= x0

(
x−1y0

x0y−1

)2

max
(

1, x−1y0

x0y−1

)
= x0

(
x−1y0

x0y−1

)3

, (4.99)

y10 = max
(
y8,

y9x8

x7

)
= max

y0

(
x−1y0

x0y−1

)2

, y0

(
x−1y0

x0y−1

)2
 = y0

(
x−1y0

x0y−1

)2

. (4.100)

Then, from (4.95)-(4.100), we get

x11 = max
(
x9,

x10y9

y8

)
= max

x−1

(
x−1y0

x0y−1

)2

, x−1

(
x−1y0

x0y−1

)2
 = x−1

(
x−1y0

x0y−1

)2

, (4.101)

y11 = max
(
y9,

y10x9

x8

)
= y−1

(
x−1y0

x0y−1

)2

max
(

1, x−1y0

x0y−1

)
= y−1

(
x−1y0

x0y−1

)3

. (4.102)
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So, by (4.95)-(4.100), we have

x12 = max
(
x10,

x11y10

y9

)
= max

x0

(
x−1y0

x0y−1

)3

, x0

(
x−1y0

x0y−1

)3
 = x0

(
x−1y0

x0y−1

)3

, (4.103)

y12 = max
(
y10,

y11x10

x9

)
= y0

(
x−1y0

x0y−1

)2

max
(

1, x−1y0

x0y−1

)
= y0

(
x−1y0

x0y−1

)3

. (4.104)

By induction we obtain the formulas in (4.52).

As a direct consequence of Theorem 4.3, in the following result, we show existence of
periodic solutions for system (4.1).

Corollary 4.4. Let (xn)n≥−2 and (yn)n≥−2 be a solution of system (4.1) such that x−1 ≥ x0y−1
y−2

and y−1 ≥ y0x−1
x−2

. Then, if x−1y0 = x0y−1, we have for all n ∈ N0

x2n = x0, y2n = y0,

x2n+1 = x−1, y2n+1 = y−1.

That is the solutions are periodic with period 2. If in addition x0 = x−2 and y0 = y−2 the
solutions will be periodic with of period 2. When x−1y0 6= x0y−1, the solutions are unbounded,
that is

(xn, yn) −→ (+∞,+∞).

4.2.3 The case x−1 ≥ x0y−1
y−2

and y−1 ≤ y0x−1
x−2

The following result deals to give the closed form of the solutions of system (4.1) under the
assumptions x−1 ≥ x0y−1

y−2
and y−1 ≤ y0x−1

x−2
.

Theorem 4.5. Let (xn)n≥−2 and (yn)n≥−2 be a solution of system (4.1) such that x−1 ≥ x0y−1
y−2

and y−1 ≤ y0x−1
x−2

. Then the following statements hold:

(H1) : If x0
x−1
≥ y0

y−1
, then


x4n−1 = x4n+1 = x−1

(
x0
x−2

)n
, n ∈ N0,

x4n = x4n+2 = x0
(
x0
x−2

)n
, n ∈ N0,


y4n−3 = y4n−1 = x−1y0

x0

(
x0
x−2

)n
, n ∈ N,

y4n = y4n−2 = y0
(
x0
x−2

)n
, n ∈ N.

(4.105)
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(H2) : Let x0
x−1
≤ y0

y−1
.

(H2.1) : If x0 ≤ x−2, then

x4n−2 = x0
(
x−1y0
x0y−1

)n
, n ∈ N,

x4n−1 = x−1x0
x−2

(
x−1y0
x0y−1

)n
, n ∈ N,

x4n = x0
(
x−1y0
x0y−1

)n
, n ∈ N0,

x4n+1 = x−1
(
x−1y0
x0y−1

)n
, n ∈ N0,



y4n−1 = y−1
(
x−1y0
x0y−1

)n
, n ∈ N0,

y4n = y0
(
x−1y0
x0y−1

)n
, n ∈ N0,

y4n+1 = x−1y0
x−2

(
x−1y0
x0y−1

)n
, n ∈ N0,

y4n+2 = y0
(
x−1y0
x0y−1

)n
, n ∈ N0,

(4.106)

(H2.2) : If x0 ≥ x−2, then


x4n−2 = x−2

(
x−1y0
x−2y−1

)n
, n ∈ N0,

x4n−1 = x4n+1 = x−1
(
x−1y0
x−2y−1

)n
, n ∈ N0,

x4n = x0
(
x−1y0
x−2y−1

)n
, n ∈ N0,



y4n−3 = y−1
(
x−1y0
x−2y−1

)n
, n ∈ N,

y4n−2 = x0y−1
x−1

(
x−1y0
x−2y−1

)n
, n ∈ N,

y4n−1 = y−1
(
x−1y0
x−2y−1

)n
, n ∈ N0,

y4n = y0
(
x−1y0
x−2y−1

)n
, n ∈ N0.

(4.107)

Proof. From hypothesis x−1 ≥ x0y−1
y−2

and y−1 ≤ y0x−1
x−2

. We have

x1 = max
(
x−1,

x0y−1

y−2

)
= x−1, (4.108)

y1 = max
(
y−1,

y0x−1

x−2

)
= y0x−1

x−2
. (4.109)

Using (4.108) and (4.109), we get

x2 = max
(
x0,

x1y0

y−1

)
= x−1 max

(
x0

x−1
,
y0

y−1

)
, (4.110)

y2 = max
(
y0,

y1x0

x−1

)
= y0 max

(
1, x0

x−2

)
. (4.111)

If we consider
x0

x−1
≥ y0

y−1
,

then, using (4.108) (4.109) and from

y−1 ≤
y0x−1

x−2
⇔ x−2

x−1
≤ y0

y−1
, (4.112)

we get
x0 ≥ x−2.

So, for this, we have three cases:
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(H1) : x0
x−1
≥ y0

y−1
.

(H2.1) : x0
x−1
≤ y0

y−1
and x0 ≤ x−2.

(H2.2) : x0
x−1
≤ y0

y−1
and x0 ≥ x−2.

If x0
x−1
≥ y0

y−1
. We get from (4.108) and (4.111)

x2 = max
(
x0,

x1y0

y−1

)
= x−1 max

(
x0

x−1
,
y0

y−1

)
= x0, (4.113)

y2 = max
(
y0,

y1x0

x−1

)
= y0 max

(
1, x0

x−2

)
= x0y0

x−2
. (4.114)

Using (4.108), (4.109), (4.113) and (4.114) we get

x3 = max
(
x1,

x2y1

y0

)
= x−1 max

(
1, x0

x−2

)
= x−1x0

x−2
, (4.115)

y3 = max
(
y1,

y2x1

x0

)
= max

(
y0x−1

x−2
,
y0x−1

x−2

)
= y0x−1

x−2
. (4.116)

By (4.108), (4.109) and (4.113)-(4.116) we have

x4 = max
(
x2,

x3y2

y1

)
= x0 max

(
1, x0

x−2

)
= x2

0
x−2

, (4.117)

y4 = max
(
y2,

y3x2

x1

)
= max

(
x0y0

x−2
,
x0y0

x−2

)
= x0y0

x−2
. (4.118)

From (4.113)-(4.118) we get

x5 = max
(
x3,

x4y3

y2

)
= max

(
x−1x0

x−2
,
x−1x0

x−2

)
= x−1x0

x−2
, (4.119)

y5 = max
(
y3,

y4x3

x2

)
= y0x−1

x−2
max

(
1, x0

x−2

)
= y0x0x−1

x2
−2

. (4.120)

By (4.115)-(4.120) we have

x6 = max
(
x4,

x5y4

y3

)
= max

(
x2

0
x−2

,
x2

0
x−2

)
= x2

0
x−2

, (4.121)

y6 = max
(
y4,

y5x4

x3

)
= x0y0

x−2
max

(
1, x0

x−2

)
= x2

0y0

x2
−2
. (4.122)

Using (4.117)-(4.122) we get

x7 = max
(
x5,

x6y5

y4

)
= x−1x0

x−2
max

(
1, x0

x−2

)
= x−1x

2
0

x2
−2

, (4.123)
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y7 = max
(
y5,

y6x5

x4

)
= max

(
y0x0x−1

x2
−2

,
y0x0x−1

x2
−2

)
= y0x0x−1

x2
−2

. (4.124)

From (4.119)-(4.124) we have

x8 = max
(
x6,

x7y6

y5

)
= x2

0
x−2

max
(

1, x0

x−2

)
= x3

0
x2
−2
, (4.125)

y8 = max
(
y6,

y7x6

x5

)
= max

(
x2

0y0

x2
−2
,
x2

0y0

x2
−2

)
= x2

0y0

x2
−2
. (4.126)

By (4.121)-(4.126) we have

x9 = max
(
x7,

x8y7

y6

)
= max

(
x−1x

2
0

x2
−2

,
x−1x

2
0

x2
−2

)
= x−1x

2
0

x2
−2

, (4.127)

y9 = max
(
y7,

y8x7

x6

)
= y0x0x−1

x2
−2

max
(

1, x0

x−2

)
= y0x

2
0x−1

x3
−2

. (4.128)

Then, using (4.123)-(4.128) we get

x10 = max
(
x8,

x9y8

y7

)
= max

(
x3

0
x2
−2
, ( x

3
0

x2
−2

)
= x3

0
x2
−2
, (4.129)

y10 = max
(
y8,

y9x8

x7

)
= x2

0y0

x2
−2

max
(

1, x0

x−2

)
= x3

0y0

x3
−2
. (4.130)

So, from (4.125)-(4.130) we have

x11 = max
(
x9,

x10y9

y8

)
= x−1x

2
0

x2
−2

max
(

1, x0

x−2

)
= x−1x

3
0

x3
−2

, (4.131)

y11 = max
(
y9,

y10x9

x8

)
= max

(
y0x

2
0x−1

x3
−2

,
y0x

2
0x−1

x3
−2

)
= y0x

2
0x−1

x3
−2

. (4.132)

By induction we obtain the formulas in (4.105).
If we consider x0

x−1
≤ y0

y−1
and x0 ≤ x−2. By (4.108) and (4.109), we get

x2 = max
(
x0,

x1y0

y−1

)
= x−1 max

(
x0

x−1
,
y0

y−1

)
= x−1y0

y−1
, (4.133)

y2 = max
(
y0,

y1x0

x−1

)
= y0 max

(
1, x0

x−2

)
= y0. (4.134)

Using (4.108), (4.109), (4.133) and (4.134) we have

x3 = max
(
x1,

x2y1

y0

)
= x−1 max

(
1, x−1y0

y−1x−2

)
= x2

−1y0

x−2y−1
, (4.135)

y3 = max
(
y1,

y2x1

x0

)
= max

(
y0x−1

x−2
,
y0x−1

x0

)
= x−1y0

x0
. (4.136)
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From (4.108), (4.109) and (4.133)-(4.136) we get

x4 = max
(
x2,

x3y2

y1

)
= max

(
x−1y0

y−1
,
x−1y0

y−1

)
= x−1y0

y−1
, (4.137)

y4 = max
(
y2,

y3x2

x1

)
== y0 max

(
1, x−1y0

x0y−1

)
= x−1y

2
0

x0y−1
. (4.138)

Using (4.133)-(4.138) we have

x5 = max
(
x3,

x4y3

y2

)
= x2

−1y0

y−1
max

(
1
x−2

,
1
x0

)
= x2

−1y0

x0y−1
, (4.139)

y5 = max
(
y3,

y4x3

x2

)
= x−1y0

x0
max

(
1, x−1y0

x−2y−1

)
= x2

−1y
2
0

x−2x0y−1
. (4.140)

From (4.135)-(4.140) we have

x6 = max
(
x4,

x5y4

y3

)
= x−1y0

y−1
max

(
1, x−1y0

x0y−1

)
= x2

−1y
2
0

x0y2
−1
, (4.141)

y6 = max
(
y4,

y5x4

x3

)
= max

(
x−1y

2
0

x0y−1
,
x−1y

2
0

x0y−1

)
= x−1y

2
0

x0y−1
. (4.142)

By (4.137)-(4.142) we get

x7 = max
(
x5,

x6y5

y4

)
= x2

−1y0

x0y−1
max

(
1, x−1y0

x−2y−1

)
= x3

−1y
2
0

x−2x0y2
−1
, (4.143)

y7 = max
(
y5,

y6x5

x4

)
= x2

−1y
2
0

x0y−1
max

(
1
x−2

,
1
x0

)
= x2

−1y
2
0

x2
0y−1

. (4.144)

Then, using (4.139)-(4.144) we have

x8 = max
(
x6,

x7y6

y5

)
= max

(
x2
−1y

2
0

x0y2
−1
,
x2
−1y

2
0

x0y2
−1

)
= x2

−1y
2
0

x0y2
−1
, (4.145)

y8 = max
(
y6,

y7x6

x5

)
= x−1y

2
0

x0y−1
max

(
1, x−1y0

x0y−1

)
= x2

−1y
3
0

x2
0y

2
−1
. (4.146)

So, by (4.141)-(4.146) we get

x9 = max
(
x7,

x8y7

y6

)
= x3

−1y
2
0

x0y2
−1

max
(

1
x−2

,
1
x0

)
= x3

−1y
2
0

x2
0y

2
−1
, (4.147)

y9 = max
(
y7,

y8x7

x6

)
= x2

−1y
2
0

x2
0y−1

max
(

1, x−1y0

x−2y−1

)
= x3

−1y
3
0

x−2x2
0y

2
−1
. (4.148)

By induction we obtain the results in (4.106).
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If we have x0
x−1
≤ y0

y−1
and x0 ≥ x−2. Then, from (4.108) and (4.109) we get

x2 = max
(
x0,

x1y0

y−1

)
= x−1 max

(
x0

x−1
,
y0

y−1

)
= x−1y0

y−1
, (4.149)

y2 = max
(
y0,

y1x0

x−1

)
= y0 max

(
1, x0

x−2

)
= x0y0

x−2
. (4.150)

Using (4.108), (4.109), (4.149) and (4.150) we get

x3 = max
(
x1,

x2y1

y0

)
= x−1 max

(
1, x−1y0

x−2y−1

)
= x2

−1y0

x−2y−1
, (4.151)

y3 = max
(
y1,

y2x1

x0

)
= max

(
x−1y0

x−2
,
x−1y0

x−2

)
= x−1y0

x−2
. (4.152)

From (4.108), (4.109) and (4.149)-(4.152) we get

x4 = max
(
x2,

x3y2

y1

)
= x−1y0

y−1
max

(
1, x0

x−2

)
= x−1x0y0

x−2y−1
, (4.153)

y4 = max
(
y2,

y3x2

x1

)
= y0

x−2
max

(
x0,

x−1y0

y−1

)
= x−1y

2
0

x−2y−1
. (4.154)

By (4.149)-(4.154) we have

x5 = max
(
x3,

x4y3

y2

)
= max

(
x2
−1y0

x−2y−1
,
x2
−1y0

x−2y−1

)
= x2

−1y0

x−2y−1
, (4.155)

y5 = max
(
y3,

y4x3

x2

)
= x−1y0

x−2
max

(
1, x−1y0

x−2y−1

)
= x2

−1y
2
0

x2
−2y−1

. (4.156)

Using (4.151)-(4.156) we get

x6 = max
(
x4,

x5y4

y3

)
= x−1y0

x−2y−1
max

(
x0,

x−1y0

y−1

)
= x2

−1y
2
0

x−2y2
−1
, (4.157)

y6 = max
(
y4,

y5x4

x3

)
= x−1y

2
0

x−2y−1
max

(
1, x0

x−2

)
= x−1x0y

2
0

x2
−2y−1

. (4.158)

From (4.153)-(4.158) we have

x7 = max
(
x5,

x6y5

y4

)
= x2

−1y0

x−2y−1
max

(
1, x−1y0

x−2y−1

)
= x3

−1y
2
0

x2
−2y

2
−1
, (4.159)

y7 = max
(
y5,

y6x5

x4

)
= max

(
x2
−1y

2
0

x2
−2y−1

,
x2
−1y

2
0

x2
−2y−1

)
= x2

−1y
2
0

x2
−2y−1

. (4.160)

Then, by (4.155)-(4.160) we get

x8 = max
(
x6,

x7y6

y5

)
= x2

−1y
2
0

x−2y2
−1

max
(

1, x0

x−2

)
= x2

−1x0y
2
0

x2
−2y

2
−1
, (4.161)
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y8 = max
(
y6,

y7x6

x5

)
= x−1y

2
0

x2
−2y−1

max
(
x0,

x−1y0

y−1

)
= x2

−1y
3
0

x2
−2y

2
−1
. (4.162)

So, using (4.157)-(4.162) we have

x9 = max
(
x7,

x8y7

y6

)
= max

(
x3
−1y

2
0

x2
−2y

2
−1
,
x3
−1y

2
0

x2
−2y

2
−1

)
= x3

−1y
2
0

x2
−2y

2
−1
, (4.163)

y9 = max
(
y7,

y8x7

x6

)
= x2

−1y
2
0

x2
−2y−1

max
(

1, x−1y0

x−2y−1

)
= x3

−1y
3
0

x3
−2y

2
−1
. (4.164)

By induction we obtain the results in (4.107).

We show in the following result, existence of periodic solutions for system (4.1), which is
a direct consequence of Theorem 4.5.

Corollary 4.6. Let (xn)n≥−2 and (yn)n≥−2 be a solution of system (4.1) such that x−1 ≥ x0y−1
y−2

and y−1 ≤ y0x−1
x−2

. If x0
x−1

= y0
y−1

and x0 = x−2. Then for all n ∈ N0:

x2n = x−2, y2n = y0,

x2n+1 = x−1, y2n+1 = y−1.

That is the solutions are eventually periodic of period 2. If in addition y0 = y−2, then the
solutions will be periodic of period 2. When

(
x0
x−1

> y0
y−1

and x0 > x−2
)
or
(
x0
x−1

< y0
y−1

)
, the

solutions are unbounded, that is

(xn, yn) −→ (+∞,+∞).

4.2.4 The case x−1 ≤ x0y−1
y−2

and y−1 ≥ y0x−1
x−2

Similarly to the above sections, in the following one, we give also the closed form of the
solutions of system (4.1) under the assumptions x−1 ≤ x0y−1

y−2
and y−1 ≥ y0x−1

x−2
.

Theorem 4.7. Let (xn)n≥−2 and (yn)n≥−2 be a solution of system (4.1) such that x−1 ≤ x0y−1
y−2

and y−1 ≥ y0x−1
x−2

. Then the following statements hold:

(H1) : If x0
x−1
≤ y0

y−1
. Then

x2n =


x0
(
y0
y−2

)n
2 , n = 0, 2, ...

x0
(
y0
y−2

)n+1
2 , n = 1, 3, ...

x2n+1 =


x0y−1
y0

(
y0
y−2

)n
2 , n = 0, 2, ...

x0y−1
y0

(
y0
y−2

)n+1
2 , n = 1, 3, ...

(4.165)

y2n =


y0
(
y0
y−2

)n
2 , n = 0, 2, ...

y0
(
y0
y−2

)n−1
2 , n = 1, 3, ...

y2n+1 =


y−1

(
y0
y−2

)n
2 , n = 0, 2, ...

y−1
(
y0
y−2

)n+1
2 , n = 1, 3, ...

(4.166)
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(H2) : Let y0
y−1
≤ x0

x−1

(H2.1) : If y0 ≤ y−2. Then

x4n−1 = x−1
(
x0y−1
x−1y0

)n
, n ∈ N0,

x4n = x0
(
x0y−1
x−1y0

)n
, n ∈ N0,

x4n+1 = x0y−1
y−2

(
x0y−1
x−1y0

)n
, n ∈ N0,

x4n+2 = x0
(
x0y−1
x−1y0

)n
, n ∈ N0,



y4n−2 = y0
(
x0y−1
x−1y0

)n
, n ∈ N,

y4n−1 = y−1y0
y−2

(
x0y−1
x−1y0

)n
, n ∈ N,

y4n = y0
(
x0y−1
x−1y0

)n
, n ∈ N0,

y4n+1 = y−1
(
x0y−1
x−1y0

)n
, n ∈ N0,

(4.167)

(H2.2) : If y0 ≥ y−2. Then

x4n−3 = x−1
(
x0y−1
x−1y−2

)n
, n ∈ N,

x4n−2 = x−1y0
y−1

(
x0y−1
x−1y−2

)n
, n ∈ N,

x4n−1 = x−1
(
x0y−1
x−1y−2

)n
, n ∈ N0,

x4n = x0
(
x0y−1
x−1y−2

)n
, n ∈ N0,



y4n−2 = y−2
(
x0y−1
x−1y−2

)n
, n ∈ N0,

y4n−1 = y−1
(
x0y−1
x−1y−2

)n
, n ∈ N0,

y4n = y0
(
x0y−1
x−1y−2

)n
, n ∈ N0,

y4n+1 = y−1
(
x0y−1
x−1y−2

)n
, n ∈ N0.

(4.168)

Proof. From hypothesis x−1 ≤ x0y−1
y−2

and y−1 ≥ y0x−1
x−2

of Theorem 4.7. We have

x1 = max
(
x−1,

x0y−1

y−2

)
= x0y−1

y−2
, (4.169)

y1 = max
(
y−1,

y0x−1

x−2

)
= y−1. (4.170)

x2 = max
(
x0,

x1y0

y−1

)
= x0 max

(
1, y0

y−2

)
, (4.171)

y2 = max
(
y0,

y1x0

x−1

)
= y−1 max

(
y0

y−1
,
x0

x−1

)
. (4.172)

If we consider
x0

x−1
≤ y0

y−1
.

By (4.169), (4.170) and from

x−1 ≤
x0y−1

y−2
⇔ y−2

y−1
≤ x0

x−1
, (4.173)

we get
y−2 ≤ y0.

So, we have three cases

(H1) : x0
x−1
≤ y0

y−1
.
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(H2.1) : y0
y−1
≤ x0

x−1
and y0 ≤ y−2.

(H2.2) : y0
y−1
≤ x0

x−1
and y0 ≥ y−2.

If we consider the case x0
x−1
≤ y0

y−1
, then by (4.169), (4.170), (4.171) and (4.172) we have

x2 = x0 max
(

1, y0

y−2

)
= x0y0

y−2
, (4.174)

y2 = y−1 max
(
y0

y−1
,
x0

x−1

)
= y0. (4.175)

From (4.169), (4.170), (4.174) and (4.175) we have

x3 = max
(
x1,

x2y1

y0

)
= max

(
x0y−1

y−2
,
x0y−1

y−2

)
= x0y−1

y−2
, (4.176)

y3 = max
(
y1,

y2x1

x0

)
= y−1 max

(
1, y0

y−2

)
= y−1y0

y−2
. (4.177)

Using (4.169), (4.170), (4.174)-(4.177) we get

x4 = max
(
x2,

x3y2

y1

)
= max

(
x0y0

y−2
,
x0y0

y−2

)
= x0y0

y−2
, (4.178)

y4 = max
(
y2,

y3x2

x1

)
= y0 max

(
1, y0

y−2

)
= y2

0
y−2

. (4.179)

By (4.174)-(4.179) we get

x5 = max
(
x3,

x4y3

y2

)
= x0y−1

y−2
max

(
1, y0

y−2

)
= x0y−1y0

y2
−2

, (4.180)

y5 = max
(
y3,

y4x3

x2

)
= max

(
y−1y0

y−2
,
y−1y0

y−2

)
= y−1y0

y−2
. (4.181)

From (4.176)-(4.181) we have

x6 = max
(
x4,

x5y4

y3

)
= x0y0

y−2
max

(
1, y0

y−2

)
= x0y

2
0

y2
−2
, (4.182)

y6 = max
(
y4,

y5x4

x3

)
= max

(
y2

0
y−2

,
y2

0
y−2

)
= y2

0
y−2

. (4.183)

Then, using (4.178)-(4.183) we get

x7 = max
(
x5,

x6y5

y4

)
= max

(
x0y−1y0

y2
−2

,
x0y−1y0

y2
−2

)
= x0y−1y0

y2
−2

, (4.184)
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y7 = max
(
y5,

y6x5

x4

)
= y−1y0

y−2
max

(
1, y0

y−2

)
= y−1y

2
0

y2
−2

. (4.185)

So, by (4.180)-(4.185) we have

x8 = max
(
x6,

x7y6

y5

)
= max

(
x0y

2
0

y2
−2
,
x0y

2
0

y2
−2

)
= x0y

2
0

y2
−2
, (4.186)

y8 = max
(
y6,

y7x6

x5

)
= y2

0
y−2

max
(

1, y0

y−2

)
= y3

0
y2
−2
. (4.187)

By induction we obtain the formulas in (4.165) and (4.166).
If y0

y−1
≤ x0

x−1
and y0 ≤ y−2. Then by (4.169), (4.170), (4.171) and (4.172) we have

x2 = x0 max
(

1, y0

y−2

)
= x0, (4.188)

y2 = y−1 max
(
y0

y−1
,
x0

x−1

)
= x0y−1

x−1
. (4.189)

From (4.169), (4.170), (4.188) and (4.189) we have

x3 = max
(
x1,

x2y1

y0

)
= max

(
x0y−1

y−2
,
x0y−1

y0

)
= x0y−1

y0
, (4.190)

y3 = max
(
y1,

y2x1

x0

)
= y−1 max

(
1, x0y−1

x−1y−2

)
= x0y

2
−1

x−1y−2
. (4.191)

By (4.169), (4.170) and (4.188)-(4.191) we get

x4 = max
(
x2,

x3y2

y1

)
= x0 max

(
1, x0y−1

x−1y0

)
= x2

0y−1

x−1y0
, (4.192)

y4 = max
(
y2,

y3x2

x1

)
= max

(
x0y−1

x−1
,
x0y−1

x−1

)
= x0y−1

x−1
. (4.193)

Using (4.188)-(4.193) we have

x5 = max
(
x3,

x4y3

y2

)
= x0y−1

y0
max

(
1, x0y−1

x−1y−2

)
= x2

0y
2
−1

x−1y−2y0
, (4.194)

y5 = max
(
y3,

y4x3

x2

)
= x0y

2
−1

x−1
max

(
1
y−2

,
1
y0

)
= x0y

2
−1

x−1y0
. (4.195)

From (4.190)-(4.195) we get

x6 = max
(
x4,

x5y4

y3

)
= max

(
x2

0y−1

x−1y0
,
x2

0y−1

x−1y0

)
= x2

0y−1

x−1y0
, (4.196)

y6 = max
(
y4,

y5x4

x3

)
= x0y−1

x−1
max

(
1, x0y−1

x−1y0

)
= x2

0y
2
−1

x2
−1y0

. (4.197)
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By (4.192)-(4.197) we have

x7 = max
(
x5,

x6y5

y4

)
= x2

0y
2
−1

x−1y0
max

(
1
y−2

,
1
y0

)
= x2

0y
2
−1

x−1y2
0
, (4.198)

y7 = max
(
y5,

y6x5

x4

)
= x0y

2
−1

x−1y0
max

(
1, x0y−1

x−1y−2

)
= x2

0y
3
−1

x2
−1y−2y0

. (4.199)

Then, using (4.194)-(4.199) we get

x8 = max
(
x6,

x7y6

y5

)
= x2

0y−1

x−1y0
max

(
1, x0y−1

x−1y0

)
= x3

0y
2
−1

x2
−1y

2
0
, (4.200)

y8 = max
(
y6,

y7x6

x5

)
= max

(
x2

0y
2
−1

x2
−1y0

,
x2

0y
2
−1

x2
−1y0

)
= x2

0y
2
−1

x2
−1y0

. (4.201)

So, by (4.196)-(4.201) we have

x9 = max
(
x7,

x8y7

y6

)
= x2

0y
2
−1

x−1y2
0

max
(

1, x0y−1

x−1y−2

)
= x3

0y
3
−1

x2
−1y−2y2

0
, (4.202)

y9 = max
(
y7,

y8x7

x6

)
= x2

0y
3
−1

x2
−1y0

max
(

1
y−2

,
1
y0

)
= x2

0y
3
−1

x2
−1y

2
0
. (4.203)

By induction we obtain the results in (4.167).
If we consider the case y0

y−1
≤ x0

x−1
and y0 ≥ y−2. Then by (4.169), (4.170), (4.171) and

(4.172) we have

x2 = max
(
x0,

x1y0

y−1

)
= x0 max

(
1, y0

y−2

)
= x0y0

y−2
, (4.204)

y2 = max
(
y0,

y1x0

x−1

)
= y−1 max

(
y0

y−1
,
x0

x−1

)
= x0y−1

x−1
. (4.205)

From (4.169), (4.170), (4.204) and (4.205) we have

x3 = max
(
x1,

x2y1

y0

)
= max

(
x0y−1

y−2
,
x0y−1

y−2

)
= x0y−1

y−2
, (4.206)

y3 = max
(
y1,

y2x1

x0

)
= y−1 max

(
1, x0y−1

x−1y−2

)
= x0y

2
−1

x−1y−2
. (4.207)

By (4.169), (4.170) and (4.204)-(4.207) we get

x4 = max
(
x2,

x3y2

y1

)
= x0y0

y−2
max

(
1, x0y−1

x−1y0

)
= x2

0y−1

x−1y−2
, (4.208)

y4 = max
(
y2,

y3x2

x1

)
= x0y−1

x−1
max

(
1, y0

y−2

)
= x0y−1y0

x−1y−2
. (4.209)
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Using (4.204)-(4.209) we have

x5 = max
(
x3,

x4y3

y2

)
= x0y−1

y−2
max

(
1, x0y−1

x−1y−2

)
= x2

0y
2
−1

x−1y2
−2
, (4.210)

y5 = max
(
y3,

y4x3

x2

)
= max

(
x0y

2
−1

x−1y−2
,
x0y

2
−1

x−1y−2

)
= x0y

2
−1

x−1y−2
. (4.211)

From (4.206)-(4.211) we get

x6 = max
(
x4,

x5y4

y3

)
= x2

0y−1

x−1y−2
max

(
1, y0

y−2

)
= x2

0y−1y0

x−1y2
−2
, (4.212)

y6 = max
(
y4,

y5x4

x3

)
= x0y−1

x−1y−2
max

(
y0,

x0y−1

x−1

)
= x2

0y
2
−1

x2
−1y−2

. (4.213)

Then, by (4.208)-(4.213) we have

x7 = max
(
x5,

x6y5

y4

)
= max

(
x2

0y
2
−1

x−1y2
−2
,
x2

0y
2
−1

x−1y2
−2

)
= x2

0y
2
−1

x−1y2
−2
, (4.214)

y7 = max
(
y5,

y6x5

x4

)
= x0y

2
−1

x−1y−2
max

(
1, x0y−1

x−1y−2

)
= x2

0y
3
−1

x2
−1y

2
−2
. (4.215)

So, using (4.210)-(4.215) we get

x8 = max
(
x6,

x7y6

y5

)
= x2

0y−1

x−1y2
−2

max
(
y0,

x0y−1

x−1

)
= x3

0y
2
−1

x2
−1y

2
−2
, (4.216)

y8 = max
(
y6,

y7x6

x5

)
= x2

0y
2
−1

x2
−1y−2

max
(

1, y0

y−2

)
= x2

0y
2
−1y0

x2
−1y

2
−2
. (4.217)

By induction we obtain the results in (4.168).

As a direct consequence of Theorem 4.7, the following result show the existence of periodic
solutions for system (4.1).

Corollary 4.8. Let (xn)n≥−2 and (yn)n≥−2 be a solution of system (4.1) such that x−1 ≤ x0y−1
y−2

and y−1 ≥ y0x−1
x−2

. If x0
x−1

= y0
y−1

and y0 = y−2 then for all n ∈ N0:

x2n = x0, y2n = y−2,

x2n+1 = x−1, y2n+1 = y−1.

That is the solutions are eventually periodic of period 2.In addition if x0 = x−2, then the
solution will be periodic of period 2 . When

(
x0
x−1

< y0
y−1

and y0 > y−2
)
or
(
x0
x−1

> y0
y−1

)
, the

solutions are unbounded, that is

(xn, yn) −→ (+∞,+∞).



Conclusion and perspectives

Our works generalizes a lot of existing works in the literature on solvable difference equa-
tions and systems.

In the first chapter we have presented formulas of well-defined solutions of some general
systems of difference equations and others defined by one to one functions on a set D of real
numbers. Noting that the obtained formulas of the solutions of our systems are expressed
using some remarkable sequences, like Fibonacci, Tribonaci, Padovan, Teternacci and their
generalizations. Our results, can be used to obtain the formulas of well-defined solutions of
other systems, that their solvability, seems for the first sight impossible. So, under appro-
priate choice of the the set D, we can solve complicated difference equations and systems
involving for example functions like tan, ln and others.

In the same context of the works previously studied, it should be noted that it is possible
to extend those works to the study of the systems

xn+1 = axn−3yn−2xn−1yn + bxn−1yn−2xn−3 + cyn−2xn−3 + dxn−3 + e

xn−3yn−2xn−1yn
,

yn+1 = ayn−3xn−2yn−1xn + byn−1xn−2yn−3 + cxn−2yn−3 + dyn−3 + e

yn−3xn−2yn−1xn
,


xn+1 = f−1 (ag(yn) + bf(xn−1) + cg(yn−2) + df(xn−3) + eg(xn−4)) ,

yn+1 = g−1 (af(xn) + bg(yn−1) + cf(xn−2) + dg(yn−3) + ef(xn−4)) ,

and
xn+1 = f−1

(
a+ b

g(yn) + c
g(yn)f(xn−1) + d

g(yn)f(xn−1)g(yn−2)
+ e

g(yn)f(xn−1)g(yn−2)f(xn−3)

)
,

yn+1 = g−1
(
a+ b

f(xn) + c
f(xn)g(yn−1) + d

f(xn)g(yn−1)f(xn−2) + e
f(xn)g(yn−1)f(xn−2)g(yn−3)

)
,

where n ∈ N0 and the parameters a, b, c, d and e are arbitrary real numbers with e 6= 0, and
their one dimensional version can be solved in a closed form and that the solutions can be
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expressed using the Pentanacci numbers and their generalizations. It should be noted that
in this case the corresponding characteristic equation

λ5 − aλ4 − bλ3 − cλ2 − dλ− e = 0,

generally can’t be solved by radicals as it is known in the Galois theory of algebraic equations.

In the second chapter, we have studied a general system of difference equations of sec-
ond order defined by homogeneous functions. Conditions and some convergence theorems
for which the unique equilibrium point of the system is globally asymptotically stable are
established. Conditions for the existence of prime period two solutions are also provided.
Finally a result on oscillatory solutions is proved. All obtained results are confirmed on
particular systems. Noting that our system generalize the equation in [62] and our results
can be applied to study new systems and to extend a lot of existing work in literature. For
interested readers and as generalization of our system and the equations in [1] and [61], we
propose to study the following two systems of difference equations

xn+1 = f(yn−k, yn−m), yn+1 = g(zn−k, zn−m), zn+1 = h(xn, xn−1), n ∈ N0, k,m ∈ N

xn+1 = f(yn, yn−1, ..., yn−k), yn+1 = g(zn, zn−1, ..., zn−k), zn+1 = h(xn, xn−1, ..., xn−k), n ∈ N0, k ∈ N

where the initial values are positive real numbers and the functions f, g, h : (0,+∞)2 −→
(0,+∞) are continuous and homogeneous of degree zero.

The system (3.5) can be generalized to r-dimensional form of equations and examine the
boundedness, the asymptotic behavior, and periodicity of solutions when p = 1.
Also, as a natural question, is to study the three-dimensional form of Max-type system (4.1).

As we have said in the introduction that is difficult to determines methods to solve non
linear equations and their systems and the famous method is by the help of some change
of variables, non linear difference equations or systems are transformed to very simple one,
with known form of the solutions.
However, it is fair to point out that there are other ways to solve these equations, using
methods of differential equations such as using the Lie symmetries, see for example the
works of P. E. Hydon [47].
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