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Introduction

Quantum mechanics, the fundamental theory of the basic phenomena in the microscopic

and macroscopic world, is an axiomatic theory because it is grounded on a few postulates:

I) The state of a particle is given by a vector ψ(t) in a Hilbert space. The state is

normalized: 〈ψ(t)|ψ(t)〉 = 1. This is as opposed to the classical case where the position and

momentum can be specified at any given time. Informally we can say that the wave function

ψ(x, t) contains all possible information about the particle.

II) There is a Hermitian operator corresponding to each observable property of the

particle. Those corresponding to position x and momentum p satisfy [xi, pj] = i~δij.

III) Measurement of the observable associated with the operator O will result in one of its

eigenvalues oi. Immediately after the measurement the particle will be in the corresponding

eigenstate |oi〉.

IV) The probability of obtaining the result oi in the above measurement is |〈oi|ψ〉|2. The

state of the system will change from |ψ〉 to |oi〉 as a result of the measurement.

V) The state vector |ψ(t)〉 obeys the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 ,

where H is the Hamiltonian operator.

VI) The Hilbert space for a system of two or more particles is a product space.

These concepts of quantum theory have given birth to various exciting branches of

physics such as quantum electrodynamics, quantum computation, quantum information the-

ory, quantum optics, theory of quantum open systems etc. Despite of its huge success and

great applicability in modern science, quantum theory has certain constraints. For example,

the domain of a fully consistent quantum theory is usually restricted to self-adjoint opera-

tors (in the sense of Dirac), i.e. Hermitian quantum systems. A fully consistent quantum

theory provides real values of energy and other observable quantities with a complete set of
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orthonormal eigenfunctions and upholds the unitary time evolution. Towards the end of the

twentieth century, the domain of quantum theory (QT) has been extended to incorporate

complex or non-self-adjoint systems [1–6].

In the year 1998, Carl M Bender and his collaborators have found a certain class of

non-Hermitian (NH) Hamiltonians which holds an entire real discrete spectrum [7]. The

reality of the spectrum is shown to be a direct consequence of unbroken symmetry under

combined parity (P) and time reversal (T ) transformations [8]. Since then, such NH PT -

symmetric systems have acquired a great importance in quantum theory and have been

studied rigorously [8–16].

The preliminary ideas of a PT -symmetric NHQT are as follows. If a NH Hamiltonian

H 6= H† changes under parity (P) and time reversal (T ) separately but remains invariant

under the combined action of PT (i.e. H commutes with PT ), then all the energy eigenvalues

E of the system are real when the eigenfunctions of H respect the PT -symmetry. The

operation of P in 1-D is simply a reflection in space whereas T executes time reversal

transformation. These operations are defined in one dimension (1D) as

P : x→ −x , p→ −p , i→ i,

T : :x→ x , p→ −p , i→ −i, (as T is an anti-linear operator) (1)

Since the combined PT is an anti-linear operator, [H,PT ] = 0 does not imply that H and

PT have simultaneous eigenfunctions. There may be two possibilities (i) Hψ = Eψ , PT

ψ 6= aψ and (ii) Hψ = Eψ , PT ψ = ±aψ . In the latter case when the eigenfunctions ψ also

respect the PT -symmetry, then all the eigenvalues should be real [16] and the symmetry is

unbroken. On the other hand, in the former case PT -symmetry is breaking spontaneously

and some parts of the spectrum (or the entire spectrum) may become complex. NH PT -

symmetric systems generally exhibit a phase transition [16] that separates the two parametric

regions: (i) a region of unbroken PT symmetry in which the entire spectrum is real and

eigenfunctions of the system respect PT symmetry and (ii) a region of broken PT symmetry

in which the whole spectrum (or a part of it) is complex and eigenstates of the system are

not the eigenstates of a PT operator.
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However, even though the unbroken PT -symmetry of a Hamiltonian is sufficient to

ensure the reality of the associated spectrum, one encounters both mathematical and physical

constraints in developing a consistent QT with these PT -symmetric Hamiltonians. The

eigenfunctions in such PT -symmetric NH theories may not form a complete orthonormal

set and may have indefinite norms, which restricts the use of the probabilistic interpretation.

Since the Hamiltonian is not Hermitian unlike the case of usual QT, such theories fail to

have unitary time evolution. These problems prohibit one to have a consistent QT with

PT -symmetric NH systems. In usual QT, one uses the Hilbert space endowed with a Dirac

inner product for self-adjoint (in the sense of Dirac) systems. Therefore, it is natural to

introduce a modified Hilbert space, which is now endowed with a PT -inner product, for the

PT -symmetric nonself-adjoint theories. In such a Hilbert space, the time evolution becomes

unitary as the Hamiltonian is self-PT -adjoint and the eigenfunctions form a complete set

of orthonormal functions. But the norms of the eigenfunctions have alternate signs even in

the new Hilbert space endowed with the PT -inner products. This again raises an obstacle

in probabilistic interpretation despite the system being in an unbroken PT phase.

Later a new symmetry, inherent to all PT -symmetric NH Hamiltonians, has been re-

alized which is responsible for equal number of positive and negative norm states. This

hidden symmetry (denoted as ‘C’) is described by a linear operator which represents the

measurement of the signatures of the PT -norms of the eigenstates [16]. The notation ‘C’

has been assigned to this symmetry operator because of its analogous behavior and iden-

tical properties to the charge conjugation operator in quantum field theories. C commutes

with both H and PT and fixes the problem of negative norms of the eigenfunctions when

the inner products have been taken with respect to CPT -adjoint. Thus by the notion of

CPT -invariance a fully consistent QT has been established with NH PT -symmetric system

which assures for a physical probabilistic description of the system with unitary time evolu-

tion and real energy spectra. Physical observables in parity-time reversal (PT ) symmetric

non-Hermitian theories are also defined by considering the conservation of a new non-local

flux [16]. These important realizations help the subject to grow in various directions [15, 16].
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In addition, the complex QT study was written in rigorous mathematical language by

the introduction of another bigger class of NH Hamiltonians, known as pseudo- Hermitian

Hamiltonians [15, 16]. These NH Hamiltonians are not self-adjoint but satisfy the pseudo-

hermiticity condition, i.e. H = η−1H†η, where η is a linear Hermitian operator called the

metric operator. The eigenvalues of pseudo-Hermitian Hamiltonians are either real or appear

in complex conjugate pairs and the eigenfunctions satisfy bi-orthonormality relations in the

conventional Hilbert space [15, 16]. Due to this reason, such Hamiltonians do not have

a complete set of orthogonal eigenfunctions in the conventional Hilbert space and hence

the probabilistic interpretation and unitarity of time evolution have not been satisfied by

these pseudo-Hermitian Hamiltonians. Subsequently, such theories have been mapped to

equivalent Hermitian theories [15, 16]. Due to these realizations, different pseudo-Hermitian

systems have been studied extensively during the two past decades [15, 16].

On the other hand, the situation is less developed for non-Hermitian time-dependent

quantum systems, and nowadays several research works are carried out for the elabora-

tion of appropriate methods to solve such systems [17–25], like unitary and non-unitary

transformations, the pseudo-invariant method, Dyson maps, point transformations and Dar-

boux transformations. Moreover, when the non-Hermitian Hamiltonian is explicitly time-

dependent, only few systems admit an exact analytical solution of the Schrödinger equation.

In complex cases, approximation methods are used like perturbation theory, adiabatic ap-

proximation and numerical solutions.

In this thesis, we seek the exact analytical solutions of the Schrödinger equation for a

class of explicitly time-dependent non-Hermitian quantum systems. In the first chapter, we

introduce the basic concepts for non-Hermitian Hamiltonians, such as PT -symmetry, PT

and CPT -inner products, and pseudo-hermiticity. In the second chapter, we present the

Lewis-Riesenfeld invariant method for solving the Schrödinger equation for the explicitly

time-dependent Hermitian and non-Hermitian Hamiltonians.

In the third chapter we present the main results of this thesis [26]. We use a unitary

transformation F (t) in order to transform the time-dependent non-Hermitian Hamiltonian
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H(t) to a time-independent PT -symmetric one HPT0 , and thus the analytical solution of the

Schrödinger equation of the initial system can be easily deduced. Then, we define a new

C(t)PT -inner product and show that the evolution preserves it, where C(t) = F+(t)CF (t).

Moreover, we prove that the expectation value of a time-dependent non-Hermitian Hamilto-

nian H(t) is real in the C(t)PT -normed states since the transformation F (t) is unitary and

commutes with the parity operator , i.e. [P , F (t)] = 0.

At the end, this thesis is terminated by a conclusion.



Chapter 1
Non-Hermitian formalism of Quantum

mechanics

Non-Hermitian formalism of quantum mechanics share many basic features with the stan-

dard Hermitian one. For example, the states of Hermitian and non-Hermitian quantum

systems are defined in Hilbert spaces and all observables, except energy, are represented

with Hermitian operators.

This chapter is devoted to give a short review of the properties and results concerning

PT symmetry and pseudo-Hermitian operators that will be studied throughout this thesis.

Also, in the chapter we will explain how non-Hermitian calculations are carried out or in

what way the non-Hermitian systems are analogous to the standard Hermitian systems in

quantum mechanics.

1.1 PT -symmetric quantum mechanics

PT -symmetric Hamiltonians have been introduced for the first time in 1998 by Bender and

his collaborators [7–13]. It is a complex generalization of conventional quantum theory. The

study of PT -symmetric quantum systems started from a stimulating paper [7] on a class of
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PT -symmetric Hamiltonians

H = p2 +mx2 − (ix)ε, (ε ∈ R), (1.1)

which are obviously not Dirac Hermitian operators, i.e. not invariant under combined matrix

transposition and complex conjugation. They have a real and positive discrete spectrum and

generate unitary time evolution for (ε ≥ 2), and thus define a consistent physical quantum

theory. While the Hamiltonian (1.1) is not Dirac Hermitian, it is PT -symmetric, thus the

reality of the spectrum is a consequence of the PT symmetry.

1.1.1 Definitions and properties

A non-Hermitian Hamiltonian H is PT -symmetric if it satisfies the following relation

H = HPT = (PT )H(PT ), (1.2)

that is, invariant under both parity P (space reflection) and time reversal T transformations

such that these two operators commute [P , T ] = 0 and their square is equal to unit (PT )2 =

1, P2 = T 2 = 1 but P 6= T . However, the parity operator P is linear, whereas the time

reversal operator T is antilinear. The operators P and T have the effect of transforming the

operator position x, the momentum operator p and the imaginary number i as follows

P {x→ −x , p→ −p , i→ i} , (1.3)

T {x→ x , p→ −p , i→ −i} , (1.4)

In addition, if all eigenfunctions |ϕn〉 of the PT -symmetric Hamiltonian H are eigen-

functions of the operator PT , we say that the PT -symmetry of H is unbroken

[H,PT ] = 0, PT |ϕn〉 = ± |ϕn〉 . (1.5)

But, if there are eigenfunctions of the PT -symmetric Hamiltonian H which are not

eigenfunctions of the operator PT , the PT symmetry of H is said to be broken.
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In fact, to construct a quantum theory from PT -symmetric Hamiltonians, we further

require that the symmetry not be broken. It should be noted however that this condition is

not trivial because there is no way to confirm if the symmetry of a PT -symmetric Hamil-

tonian is broken or not. To this end, it is first necessary to determine the eigenfunctions of

the PT -symmetric Hamiltonian and the PT operator. With this additional condition, we

can demonstrate the reality of eigenvalues of PT -symmetric Hamiltonian, one requires that

the operators H and PT admit ϕn as eigenfunctions with arbitrary eigenvalues such that

H |ϕn〉 = En |ϕn〉 , (1.6)

PT |ϕn〉 = λn |ϕn〉 ,

where the eigenvalues En and λn are complex.

Using

(PT )2 = 1, (1.7)

leads to

|λn|2 = 1. (1.8)

The relation (1.5) allows to write

H |ϕn〉 = PT HPT |ϕn〉 = |λn|2E∗n |ϕn〉 = En |ϕn〉 , (1.9)

thus

En = E∗n, (1.10)

indeed, the eigenvalues En of the PT -symmetric Hamiltonian H are real.

1.1.2 PT and CPT inner-products

In conventional quantum theory, the norm of an eigenvector of a Hermitian Hamiltonian in

the Hilbert space must be positive. This arises from the fact that the norm represents the

probability of presence, which must be defined positive. Furthermore, the inner product of

any two eigenvectors in the Hilbert space must be conserved in time (unitarity and time
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independence) which is a fundamental property for quantum theory to be valid. However,

in non-Hermitian quantum theory, to verify the orthogonality of the eigenvectors of a PT -

symmetric Hamiltonian we must specify a new inner product. By analogy with the inner

product for Hermitian Hamiltonians, Bender [11] first introduced an inner product called

"PT -inner product" associated with PT -symmetric Hamiltonians to have a coherent and

unitary theory, defined by

(f, g) =

∫
c

dx [PT f(x)] g(x), (1.11)

where PT f(x) = f ∗(−x) and c is a contour that is defined in the stokes sectors in which

we impose the boundary conditions on the eigenvalue equation associated with the PT -

symmetric Hamiltonian. The advantage of this inner product is that the associated norm

is conserved in time. The application of this definition to the eigenfunctions of H and PT

implies

〈ϕm |ϕn〉PT =

∫
c

dx [PT ϕm(x)]ϕn(x) =

∫
c

dx [ϕ∗m(−x)]ϕn(x) = (−1)nδmn. (1.12)

The fermeture relation is written as a function of these eigenfunctions as

∞∑
n=0

(−1)nϕn(x)ϕn(y) = δ(x− y). (1.13)

In fact, from (1.12) we can establish the orthogonality, but unfortunately, the norm

of a state is not necessarily positive. Thus, the inner product (1.12) is not acceptable for

formulating a physical quantum theory.

It is therefore necessary to construct a new inner product for a non-Hermitian Hamilto-

nian having an unbroken PT -symmetry where the norm is positive. To this end, Bender et

al. [11] noticed that a PT -symmetric Hamiltonian with unbroken PT -symmetry possesses

a hidden symmetry that is generated by a new linear operator C. We use the C notation

because the properties of this operator are mathematically similar to those of the charge

conjugation operator in quantum field theory. Moreover, the operator C can be represented

in the coordinate-space representation as a sum of the normalized eigenfunctions of the PT
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symmetric Hamiltonian,

C(x, y) =
∑
n

ϕn(x)ϕn(y), (1.14)

it is easy to verify that the square of C is equal to unity∫
dxC(x, y)C(y, z) = δ(x− z), (1.15)

consequently

C2 = 1. (1.16)

One observes that the eigenvalues of the operator C are ±1 and its action on the PT

symmetric eigenfunctions is given by

Cϕn(x) = (−1)nϕn(x). (1.17)

In addition, C commutes with both the combination PT and the PT -symmetric Hamil-

tonian H

[C,PT ] = 0, [C, H] = 0, [CPT , H] = 0, (1.18)

but not either P or T separately

[C,P ] 6= 0 , [C, T ] 6= 0. (1.19)

Bender et al. have defined the CPT inner product of two PT - symmetric eigenfunctions,

〈ϕn, ϕm〉 =

∫
c

dx [CPT ϕn(x)]ϕm(x), (1.20)

where

CPT ϕn(x) =

∫
dxC(x, y)ϕ∗n(−y). (1.21)

The CPT inner product is positive because the operator C contributes with (−1) when

it acts on a state with negative PT norm, and the completeness condition reads

〈ϕn, ϕm〉 =

∫
c

dx [CPT ϕn(x)]ϕm(x) = δmn. (1.22)

So this CPT inner product satisfies all the conditions for the quantum theory defined

by H to be unitary [12].
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1.1.3 Application: Time-independent complex forced harmonic os-

cillator governed by PT -symmetric Hamiltonian

The time-independent oscillator in the presence of a complex linear potential can be repre-

sented by the following Hamiltonian [27]

H0 =
p2

2m0

+
m0Ω2

2
q2 + iλ0q, (1.23)

where λ0 is a real constant.

It is easy to verify that the Hamiltonian H0 is not Hermitian

H+
0 =

p2

2m0

+
m0Ω2

2
q2 − iλ0q 6= H0, (1.24)

and satisfies the Schrödinger equation

i
∂

∂t
|χ(t)〉 = H0 |χ(t)〉 . (1.25)

The Hamiltonian H0 is CPT symmetric if it satisfies the relation

H0 = CPT H0CPT , (1.26)

where C is defined as [28]

C = exp

[
2λ0

∧
p

m0Ω2

]
P . (1.27)

and satisfies the following properties:

i) C2 = 1, indeed

exp

(
2λ0

m0Ω2

∧
p

)
P exp

(
2λ0

m0Ω2

∧
p

)
P = exp

(
2λ0

m0Ω2

∧
p

)
exp

(
− 2λ0

m0Ω2

∧
p

)
= 1 (1.28)

ii) [C,PT ] = 0, indeed

[C,PT ] = exp

(
2λ0

m0Ω2

∧
p

)
T − PT exp

(
2λ0

m0Ω2

∧
p

)
P

= exp

(
2λ0

m0Ω2

∧
p

)
T − T exp

(
2λ0

m0Ω2

∧
p

)
T 2

= exp

(
2λ0

m0Ω2

∧
p

)
T − exp

(
2λ0

m0Ω2

∧
p

)
T =0 (1.29)
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iii) [C,H0] = 0, indeed

CH0C= exp

(
2λ0

m0Ω2

∧
p

)
PH0 exp

(
2λ0

m0Ω2

∧
p

)
P

= exp

(
2λ0

m0Ω2

∧
p

)[
p2

2m0

+
m0Ω2q2

2
− iq

]
exp

(
− 2λ0

m0Ω2

∧
p

)
=

[
p2

2m0

+
m0Ω2q2

2
+ iλ0q

]
= H0

on the other hand, we do the following non unitary transformation on (1.25)

|χn(q)〉 = U |ϕ〉

we get

i
∂

∂t
U |ϕ〉 = H0U |ϕ〉 (1.30)

En |ϕ〉 = U−1H0U |ϕ〉 (1.31)

we put

h = U−1H0U (1.32)

where

U = exp

[
− λ0P

m0Ω2

]
(1.33)

thus

h =
p2

2m0

+
m0Ω2

2
q2 +

λ0

2m0ω2
(1.34)

where its eigenvalues

En = ~Ω

(
n+

1

2

)
+

λ0

2m0Ω2
, (1.35)

are real, and its eigenfunctions are given by

ϕn(q) =

[ √
m0Ω

n!2n
√
π~

]1/2

exp

(
−m0Ω

2~
q2

)
Hn

[(
m0Ω

~

)1/2

q

]
. (1.36)

we deduce the eigenfunctions associated with H0

|χn(q)〉 = U |ϕn〉 (1.37)

χn(q) = U

[ √
m0Ω

n!2n
√
π~

]1/2

exp

(
−m0Ω

2~
q2

)
Hn

[(
m0Ω

~

)1/2

q

]
, (1.38)
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thus, the time-dependent eigenfunctions are

χn(t) = U exp(−iEnt)
[ √

m0Ω

n!2n
√
π~

]1/2

exp

(
−m0Ω

2~
q2

)
Hn

[(
m0Ω

~

)1/2

q

]
(1.39)

= exp(− λ0

m0ω2
P ) exp(−iEnt)

[ √
m0Ω

n!2n
√
π~

]1/2

exp

(
−m0Ω

2~
q2

)
Hn

[(
m0Ω

~

)1/2

q

]
(1.40)

Finally, the CPT -inner product is

〈χn(q) | χn(q)〉CPT = 〈χn(q)| CP |χn(q)〉 = 〈ϕn|UCPU |ϕn〉 = 〈ϕn | ϕn〉 = 1 (1.41)

1.2 Pseudo-Hermitian Quantum Mechanics

The concept of pseudo-Hermiticity was introduced in the 1940s by Dirac and Pauli [1–4] and

later discussed by Lee and Sudarshan [5, 6] who were trying to solve the problems that arise

in quantization in electrodynamics and other quantum field theories, in which the negative

norm states appear as a consequence of renormalization.

In 2000s, Mostafazadeh published several papers [29–32], in which he showed that PT -

symmetry is closely related to the concept of pseudo-Hermiticity and therefore pseudo-

Hermitian quantum mechanics is a more general theory than PT -symmetric quantum me-

chanics. Indeed, the pseudo-Hermitian quantum theory has many applications such as quan-

tum computation [33], scattering theory [34], squeezed states [35], and so on.

1.2.1 Definitions and properties

From the viewpoint of pseudo-Hermitian quantum theory, the conventional quantum me-

chanics is a representation of pseudo-Hermitian quantummechanics. Therefore, every pseudo-

Hermitian Hamiltonian has an equivalent Hermitian Hamiltonian, and both Hermitian and

pseudo-Hermitian Hamiltonians have the same energy spectrum, i.e. they are iso-spectral.

The necessary and sufficient conditions for the reality of the spectrum of a pseudo-Hermitian
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Hamiltonian H are the existence of a linear positive-definite, Hermitian and invertible oper-

ator η such that [29]

H+ = ηHη−, (1.42)

the operator η (so) is called pseudo-metric operator and H+ is the adjoint Hamiltonian of H.

In fact, the operator η is not unique such that for each Hamiltonian H there is an infinite set

of such operators and the particular choice of η makes that H η-pseudo-Hermitian. In other

words, the condition (1.42) reduces to ordinary Hermiticity when the operator η is equal to

the identity 1. So pseudo-Hermiticity is already a generalization of Hermiticity. Also, the

pseudo-Hermitian systems are shown to reduce to PT -symmetric systems when η = P .

The η-pseudo-Hermitian Hamiltonian H with discrete and non degenerate spectrum and

its adjoint H+ verify the following eigenvalue equations

H |ψn〉 = En |ψn〉 , (1.43)

H+ |φn〉 = En |φn〉 , (1.44)

where En are the eigenvalues of H. The eigenvectors of H and those of H+ defined in (1.43)

and (1.44), respectively, form a bi-orthonormal basis {|ψn〉 , |φn〉}. By definition [30, 36, 37]:

〈φm |ψn〉 = δmn . (1.45)∑
n

|ψn〉 〈φn| =
∑
n

|φn〉 〈ψn| = 1, (1.46)

using the above fermeture relation, so that H and H+ admit a spectral representation of the

form

H =
∑
n

En |ψn〉 〈φn| , H+ =
∑
n

En |φn〉 〈ψn| . (1.47)

In the same representation, the pseudo-metric operator η and its inverse η−1 take the

form

η =
∑
n

|φn〉 〈φn| , η−1 =
∑
n

|ψn〉 〈ψn| . (1.48)

In order to determine the physical concept of the quantum system governed by the η-

pseudo-Hermitian Hamiltonian H (1.42), we should research the Hermitian representation
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of the quantum system; i.e. examine the equivalent Hermitian Hamiltonian h of H. By

definition, the equivalent Hermitian Hamiltonian h is given by

h = ρHρ−1, (1.49)

with ρ defined as a linear bounded, Hermitian and invertible operator. Also, it is easy to

verify that

η = ρ+ρ , η−1 = ρ−1
(
ρ+
)−1

, (1.50)

the operator ρ makes it possible to pass from the eigenvectors |ϕn〉 of h to the eigenvectors

|ψn〉 of H as follows

|ϕn〉 = ρ |ψn〉 . (1.51)

The eigenvectors |ϕn〉 form an orthonormal basis, i.e. preserve the ordinary inner product

〈ϕm |ϕn〉 = δmn, (1.52)

using the transformation (1.51) in (1.52), we get

〈ψm| ρ+ρ |ψn〉 = 〈ψm| η |ψn〉 = 〈ψm| ψn〉η = δmn, (1.53)

the last relation defines the so called pseudo-inner product or η-inner product [20, 38, 39].

It is important to note that |ϕn〉 and |ψn〉 represent the same physical state in different

Hilbert spaces because the Hermitian Hamiltonian h and the η-pseudo-Hermitian Hamilto-

nian H represent the same observable in different Hilbert spaces.

1.2.2 Application: Time-independent complex forced harmonic os-

cillator governed by pseudo-Hermitian Hamiltonian

Let us consider the time-independent complex forced harmonic oscillator governed by the

following pseudo-Hermitian Hamiltonian

HPH =
p2

2m0

+
m0Ω2

2
q2 + iλ0q (1.54)

that satisfies the eigenvalue equation
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HPH |χ(q)〉 = En |χ(q)〉 (1.55)

with λ0 being a real constant. The Hamiltonian HPH is pseudo-Hermitian with respect to

the following metric operator

η = exp

(
2λ0

m0Ω2
P

)
(1.56)

such that η is a Hermitian and invertible linear operator, and effectively(
HPH

)+
= ηHPHη−1 (1.57)

and therefore, the Hermitian equivalent is given by

h = ρHPHρ−1 (1.58)

= η1/2HPHη−1/2 (1.59)

=
p2

2m0

+
m0Ω2

2
q2 +

λ0q

2m0Ω2
, (1.60)

then, it is easy to show that its eigenvalues

En = Ω~(n+
1

2
) +

λ0

2m0Ω2
, (1.61)

are real, and its eigenfunctions are given by

ϕ(q) =

[ √
m0Ω

n!2n
√
π~

]1/2

exp

(
−m0Ω

2~
q2

)
Hn

[(
m0Ω

~

)1/2

q

]
. (1.62)

Thus, the eigenfunctions associated with HPH

|χn(q)〉 = ρ−1 |ϕ〉 = η−1/2 |ϕ〉 (1.63)

χn(q) = exp(− λ0

m0ω2
P )

[ √
m0Ω

n!2n
√
π~

]1/2

exp

(
−m0Ω

2~
q2

)
Hn

[(
m0Ω

~

)1/2

q

]
, (1.64)

as well as

χn(t) =

[ √
m0Ω

n!2n
√
π~

]1/2

exp(−iEnt) exp(− λ0

m0ω2
P ) exp

(
−m0Ω

2~
q2

)
Hn

[(
m0Ω

~

)1/2

q

]
.

(1.65)
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Finally, we calculate the pseudo-inner product

〈χm| η |χn〉 =

∫
dxχ∗n(x)ηχm(x) (1.66)

= 〈ϕm| (ρ−1)+ηρ−1 |ϕn〉 (1.67)

= 〈ϕm| (ρ−1)+ρ+ρρ−1 |ϕn〉 (1.68)

= 〈ϕm| (ρρ−1)+ρρ−1 |ϕn〉 (1.69)

= 〈ϕm |ϕn〉 = δmn. (1.70)



Chapter 2
Time-dependent non-Hermitian quantum

systems

2.1 Introduction

The time-dependent Schrödinger equation (TDSE) is central and fundamental for the de-

scription of quantum systems. The basic principles for Hermitian quantum mechanics, i.e.

when the quantum systems are described with a time-independent or even time-dependent

Hermitian Hamiltonians, are very well understood and can be found in any standard quan-

tum mechanics textbook or document where the frameworks are well-developed.

Nevertheless, less developed is the situation regarding non-Hermitian quantum systems

which can be investigated in various ways. So far, huge effort has gone into the development

of a proper quantum framework for such systems. When it involves explicitly time-dependent

Hamiltonians it is usually very difficult to solve. In fact, only few exact analytical solutions

have been found using different methods. In some difficult cases, we resort to adopt approx-

imative approaches to continue the physical study, and if it is impossible, we resort to the

numerical solution.

Moreover, there are several methods for solving the Schrödinger equation for explicitly

time-dependent Hermitian and non-Hermitan Hamiltonians. As an illustration, we have
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chosen to present the Lewis-Riesenfeld method in this chapter, and in the third chapter we

will use the unitary transformation method.

Now, let us recall briefly various notions regarding the time-dependent non-Hermitian

Hamiltonians.

2.2 Time-dependent pseudo-Hermitian Hamiltonians

The study of a class of time-dependent quantum systems with non-Hermitian Hamiltonians:

pseudo-Hermitian Hamiltonians have been crucial so far but no consensus has been reached

on a number of central questions. While the treatment for quantum systems governed

by time-dependent non-Hermitian Hamiltonians with time-independent metric operators

[19, 40] is vastly accepted, the generalization to time-dependent metric operators is still con-

troversially discussed [20–22, 38, 39, 42–45]. The results in Refs. [12, 19–21, 39, 40, 46] reveal

that the unity of time evolution can be guaranteed but the Hamiltonian remains unobservable

in general. Moreover, the latest results which have been recently illustrated in Refs. [23, 48]

argue that it is incompatible to preserve a unitary time evolution for time-dependent non-

Hermitian Hamiltonians when the metric operator is explicitly time-dependent. It should be

noted that the time-dependent Dyson equation and the time-dependent quasi-Hermiticity

relation possess meaningful solutions [23].

We briefly recall the various viewpoints regarding this controversy. In Ref. [20], Mostafazadeh

confirmed that with the help of a time-dependent metric operator, one cannot ensure the

unitarity of the time evolution at the same time as the observability of the Hamiltonian.

This viewpoint is adopted by Fring et al. [23, 48]. Instead, most of the authors resort to the

use of non-unitary time evolution for time-dependent non-Hermitian Hamiltonians by insist-

ing on a quasi-Hermiticity relation between a non-Hermitian and a Hermitian Hamiltonian

[21, 22, 41–45].

On the other hand, there are two different viewpoints on the relation between the time-

independence of the metric operator and the pseudo-Hermiticity of the time-dependent non-

Hermitian Hamiltonian H(t). One is that of Ali Mostafazadeh who says that: the indepen-
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dence of time of the metric operator is a necessary condition to ensure the pseudo-Hermiticity

of the Hamiltonian H(t), and the other is that of Miloslav Znojil who says that the inde-

pendence of time is not a necessary condition to guarantee the pseudo-Hermiticity of H(t).

2.3 Time-dependent Hamiltonian having PT symmetry

Given the importance of PT -symmetric quantum mechanics (QM), it is necessary to seek

a general theory to study the quantum problems described by time-dependent non-Hermitian

Hamiltonians having PT symmetry. In several early studies of time-dependent PT -symmetric

QM, the usual Schrödinger equation was used without being modified [19, 20]. In these cases,

a noticeable constraint is that although the PT -symmetric Hamiltonian is time-dependent,

the inner-product remains to be stationary, that for obtaining an unitary evolution. However,

the time-dependent inner-product and the unitary condition may be made compatible with a

time-dependent Schrödinger-like equation, thus this constraint can be lifted [43, 44, 47]. That

is, to study the time-dependent PT -symmetric QM with a time-dependent inner-product,

one must go beyond the usual time-dependent Schrödinger equation. In Refs. [43, 47], the

first attempt to create a Schrödinger-like equation for PT -symmetric QM was performed by

transforming a Hermitian quantum system to a non-Hermitian PT -symmetric one using a

known processing. In this sense, the evolution of a time-dependent PT -symmetric quantum

system is generated by a fully-known Hermitian one. On the other hand, there is an attempt

in [44] to establish PT -symmetric QM as a basic theory and treat the ordinary QM as a

special case of PT -symmetric QM. However, while creating a time-dependent Schrödinger-

like equation giving unitary evolution for PT -symmetric QM, there is ambiguity [44]. That

is, for a time-dependent PT - symmetric Hamiltonian with a time-dependent inner-product,

there can be an endless number of time evolution operators providing a unitary evolution.

This was expected because even in conventional QM, the unitarity condition is not adequate

to determine the form of a time-dependent Schrödinger equation. In Ref. [45], the work was

to get an equation of motion for PT - symmetric QM that is as general as possible, an axiom

has also been proposed to remove the aforementioned ambiguity.
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In some recent studies of time-dependent PT - symmetric QM, a new approach, which

has been adopted, is an extension of the Lewis and Riesenfeld invariant approach [49, 50],

developed in Refs. [24, 25, 51–53], to solve the time-dependent Schrödinger equation. The

extension of the Lewis and Riesenfeld invariant or the so-called pseudo-invariant approach,

has become an approved method for studying time-dependent quantum systems.

2.4 Invariant theories for time dependent non-Hermitian

quantum systems

In conventional quantum mechanics, the invariant theory of Lewis and Riesenfeld is a very

useful technique for determining the solutions of quantum systems described by explicitly

time-dependent Hermitian Hamiltonians. The solution of the Schrödinger equation is ex-

pressed as a function of the eigenstates of the invariant multiplied by a phase [50], hence

the problem comes down to finding the explicit form of the invariant operator and the phase

associated with the evolution.

2.4.1 Conventional invariant theory

Let us consider a system whose Hamiltonian h(t) is Hermitian and explicitly time dependent,

the time-dependent Schrödinger equation is given by

i~∂t
∣∣Ψh(t)

〉
= h(t)

∣∣Ψh(t)
〉
. (2.1)

A Hermitian operator Ih (t) is called an invariant for the system if it satisfies the Von-

Neumann equation

dIh(t)

dt
=
∂Ih(t)

∂t
+

1

i~
[Ih(t), h(t)] = 0. (2.2)

We note that the action of the invariant Ih(t) on a state vector
∣∣Ψh(t)

〉
solution of the

Schrödinger equation (2.1) associated with the Hermitian Hamiltonian h(t), is also a solution

of the following Schrödinger equation
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i~∂t
(
Ih(t)

∣∣Ψh(t)
〉)

= h(t)
(
Ih(t)

∣∣Ψh(t)
〉)
. (2.3)

The invariant operator Ih(t) is assumed to admit a set of eigenstates |ψλ,κ(t)〉

Ih(t) |ψλ,κ(t)〉 = λ |ψλ,κ(t)〉 , (2.4)

where λ corresponds to its eigenvalues and κ represents all the other necessary quantum num-

bers specifying the eigenstates of Ih(t). These eigenfunctions are assumed to be orthonormal

〈ψλ′,κ′(t) |ψλ,κ(t)〉 = δλ,λ′δκ,κ′ . (2.5)

Let us use the fact that Ih(t) is a Hermitian invariant, then the eigenvalues λ are real

and time independent. By differentiating Eq. (2.4) with respect to time, we obtain

(∂tIh(t)) |ψλ,κ(t)〉+ Ih(t)∂t |ψλ,κ(t)〉 = (∂tλ) |ψλ,κ(t)〉+ λ∂t |ψλ,κ(t)〉 , (2.6)

then, multiply the left-hand side of Eq. (2.6) by 〈ψλ′,κ′(t)|, we will have

(∂tλ) = 〈ψλ′,κ′(t)| ∂tIh(t) |ψλ,κ(t)〉 , (2.7)

The expectation value of Eq. (2.2) in the states is written as

i~ 〈ψλ′,κ′(t)| ∂tIh(t) |ψλ,κ(t)〉+ (λ′ − λ) 〈ψλ′,κ′(t)|h(t) |ψλ,κ(t)〉 = 0. (2.8)

which implies that for λ′ = λ

〈ψλ′,κ′(t)| ∂tIh(t) |ψλ,κ(t)〉 = 0, (2.9)

from which we deduce that the eigenvalues of Ih(t) are time-independent.

In order to study the connection between the eigenstates of Ih(t) and the solutions of the

Schrödinger equation
∣∣Ψh(t)

〉
we first multiply the left-hand side of Eq. (2.6) by 〈ψλ′,κ′(t)| ,

(λ− λ′) 〈ψλ′,κ′(t)| ∂t |ψλ,κ(t)〉 = 〈ψλ′,κ′(t)| ∂tIh(t) |ψλ,κ(t)〉 (2.10)



2.4 Invariant theories for time dependent non-Hermitian quantum systems 28

For λ′ 6= λ, the above equation allows us to write Eq. (2.8) in the following form

i~ 〈ψλ′,κ′(t)| ∂t |ψλ,κ(t)〉 = 〈ψλ′,κ′(t)|h(t) |ψλ,κ(t)〉 . (2.11)

If Eq. (2.8) held for λ′ = λ as well as for λ′ 6= λ, then we would immediately deduce that

|ψλ,κ(t)〉 satisfies the Schrödinger equation, i.e., is a solution of the Schrödinger equation.

This could be the case if we used the fact that the phases of the stationary states are not

fixed. Indeed, we can therefore multiply |ψλ,κ(t)〉 by an arbitrarily time-dependent phase

factor. That is, we can define a new set of eigenstates of Ih(t) related to our initial set by a

time-dependent gauge transformation

|ψλ,κ(t)〉α = exp [iαλ,κ(t)] |ψλ,κ(t)〉 , (2.12)

where the αλ,κ(t) are arbitrary real time-dependent functions. These |ψλ,κ(t)〉α are also

orthonormal eigenstates of Ih(t) associated with the eigenvalues λ. If we choose the phases

αλ,κ(t) in order that Eq. (2.11) holds for λ = λ′ the objective will be achieved. It is just

necessary to have the choice of the phases αλ,κ(t) such as

~δκκ′
dαλ,κ(t)

dt
= 〈ψλ,κ′(t)| (i~∂t − h(t)) |ψλ,κ(t)〉 . (2.13)

This choice shows that Eq. (2.11) for |ψλ,κ(t)〉α holds for λ = λ′ and the non-diagonal

elements 〈ψλ′,κ′(t) (i~∂t − h(t)) |ψλ,κ(t)〉 are null. Moreover, for κ = κ′, the phases αλ,κ(t)

are chosen to satisfy the equation

~
dαλ,κ(t)

dt
= 〈ψλ,κ(t)| (i~∂t − h(t)) |ψλ,κ(t)〉 . (2.14)

The solution of the Schrödinger equation (2.1) is written as a linear combination of the

eigenstates ∣∣Ψh(t)
〉

=
∑
λ,κ

Cλ,κ(0) exp [iαλ,κ(t)] |ψλ,κ(t)〉 , (2.15)

where the Cλ,κ(0) are time-independent coefficients.
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2.4.2 Pseudo-invariant approach

In this section we recall the results of the pseudo-invariant operator technique [24, 25, 53].

Given a time-dependent non-Hermitian Hamiltonian H(t), the Schrödinger equation is given

by

i~∂t |Ψ(t)〉 = H(t) |Ψ(t)〉 . (2.16)

It is possible to build a an explicitly time-dependent pseudo-invariant operator IPH(t)

verifying the Von-Neumann equation

∂IPH(t)

∂t
=
i

~
[
IPH (t) , H(t)

]
, (2.17)

By introducing a time-dependent metric η(t) = ρ+(t)ρ(t) and in a completely analogous

way to the time-independent case, the temporal relation of quasi-hermiticity for the invariant

operator is

IPH+ (t) = η(t)IPH (t) η−1(t) ⇔ Ih(t) = ρ(t)IPH(t)ρ−1(t) = Ih+(t), (2.18)

thus the metric operator connects IPH(t) to its Hermitian conjugate IPH+ (t), and IPH (t)

can also be related to the Hermitian invariant operator Ih(t) via ρ(t) transformation.

The virtue of such a conjugate pair Ih(t) and IPH is that they possess a similar spectrum

because the invariants lie in the same similarity class. The reality of the spectrum is guaran-

teed, since the invariant Ih(t) is Hermitian. It means that any self-adjoint invariant operator

Ih(t), i.e., an observable, in the Hermitian system possesses an observable counterpart IPH

in the non-Hermitian system and they are related to each other as

IPH = ρ−1(t)Ih(t)ρ(t), (2.19)

in complete analogy to the time-independent scenario for any self-adjoint operator.

The corresponding eigenvalue equations are then

Ih(t) |ψn(t)〉 = λn |ψn(t)〉 , (2.20)



2.4 Invariant theories for time dependent non-Hermitian quantum systems 30

and

IPH (t)
∣∣φHn (t)

〉
= λn

∣∣φHn (t)
〉
, (2.21)

where the eigenfunctions |ψn(t)〉 and
∣∣φHn (t)

〉
are related as

|ψn(t)〉 = ρ(t)
∣∣φHn (t)

〉
. (2.22)

By introducing the time-dependent metric η(t), the eigenfunctions
∣∣φHn (t)

〉
associated

with the pseudo-hermitian invariant IPH (t) satisfy the following pseudo inner product

〈
φHn (t)

∣∣φHn (t)
〉
η(t)

=
〈
φHn (t)

∣∣ η(t)
∣∣φHn (t)

〉
= δmn. (2.23)

The eigenvalues λn are also independent of time and can be deduced in the following

way, by differentiating the equation (2.21), it follows that

∂IPH

∂t

∣∣φHn (t)
〉

+ IPH
∂
∣∣φHn (t)

〉
∂t

=
∂λn
∂t

∣∣φHn (t)
〉

+ λn
∂
∣∣φHn (t)

〉
∂t

, (2.24)

by multiplying the left-hand side of Eq. (2.24) by
〈
φHn (t)

∣∣ η(t) and using Eq.(2.17), we obtain

∂λn
∂t

=
〈
φHn (t)

∣∣ η(t)
∂IPH

∂t

∣∣φHn (t)
〉

= 0, (2.25)

which means that the eigenvalues λn are constants.

In order to study the relation between the eigenstates of IPH(t) and |Ψ(t)〉 the solu-

tions of the Schrödinger equation (2.16), we project the Eq.(2.24) on
〈
φHm(t)

∣∣ η(t) and using

Eq.(2.25), we get

i~
〈
φHm(t)

∣∣ η(t)
∂

∂t

∣∣φHn (t)
〉

=
〈
φHm(t)

∣∣ η(t)H(t)
∣∣φHn (t)

〉
, (m 6= n). (2.26)

For m = n we can verify that
∣∣φHn (t)

〉
is a solution of the Schrödinger equation. This can be

the case if we use the fact that the phases of the stationary states are not fixed. Indeed, we

can therefore multiply
∣∣φHn (t)

〉
by a time-dependent phase factor, the new eigenstates |Ψ(t)〉

of IPH(t) are ∣∣ΦH
n (t)

〉
= eiγn(t)

∣∣φHn (t)
〉
, (2.27)
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which must satisfy the Schrödinger equation (2.16). That is,
∣∣ΦH

n (t)
〉
is a particular solution

of the Schrödinger equation (2.16) where the phase γn(t) is real and satisfies the following

differential equation

dγn(t)

dt
=
〈
φHn (t)

∣∣ η(t)

[
i~
∂

∂t
−H(t)

] ∣∣φHn (t)
〉
. (2.28)

The general solution of the Schrödinger equation associated with a time-dependent non-

hermitian Hamiltonian H(t) is as follows

|Ψ(t)〉 =
∑
n

Cne
iγn(t)

∣∣φHn (t)
〉
, (2.29)

where the Cn =
〈
φHn (0)

∣∣ η(0) |Ψ(0)〉 are time-independent coefficients.



Chapter 3
Application: Harmonic Oscillator in imaginary

linear potential

3.1 Introduction

In this chapter we present our results obtained in Ref. [26]. We use a unitary transformation

to solve a time-dependent Schrödinger equation governed by a non-Hermitian Hamiltonian,

we do so by mapping a time-dependent non-Hermitian Hamiltonian (TDNH) to an already-

known PT -symmetric time-independent one using a specific unitary transformation. Con-

sequently, the solution of the time-dependent Schrödinger equation becomes easily deduced

and the evolution preserves a new inner product. Moreover, the expectation value of the

non-Hermitian Hamiltonian in the normed states is guaranteed to be real.

3.2 Unitary transformations for TDNH Hamiltonians

Let us consider a non-Hermitian time-dependent Hamiltonian H(t) where the quantum time

evolution of the system is governed by the time-dependent Schrödinger equation

i
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 . (3.1)

In order to study the evolution of the quantum system associated to the time-dependent
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Hamiltonian H(t), we seek that this Hamiltonian can be converted into a time-independent

Hamiltonian by some time-dependent transformations. To this end, we initially perform a

unitary transformation F (t) on |ψ(t)〉

|χ(t)〉 = F (t) |ψ(t)〉 , (3.2)

by inserting (3.2) in Eq. (3.1),

i
∂

∂t
|χ(t)〉 = i

∂F (t)

∂t
|ψ(t)〉+ F (t)H(t) |ψ(t)〉 ,

=

(
F (t)H(t)F+(t)− iF (t)

∂F+(t)

∂t

)
|χ(t)〉 , (3.3)

we obtain the time-dependent Schrödinger equation for the state |χ(t)〉

i
∂

∂t
|χ(t)〉 = H |χ(t)〉 , (3.4)

such that the new Hamiltonian

H = F (t)H(t)F+(t)− iF (t)
∂F+(t)

∂t
, (3.5)

is time-independent and PT -symmetric, i.e.;

H ≡ HPT0 , (3.6)

its eigenstates |χ(t)〉 preserve the CPT -inner product

〈χ(t)| χ(t)〉CPT = 〈χ(t)| CP |χ(t)〉 , (3.7)

and in this case the solution of the Schrödinger equation (3.4) can be written as

|χ(t)〉 = exp(−iEt) |χ〉 . (3.8)

where |χ〉 is an eigenstate of HPT0 .
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3.3 The C(t)PT -inner product and expectation value

Knowing that our interest is the mean value of the non-Hermitian Hamiltonian H(t), for

this aim we calculate firstly the expectation value of the Hamiltonian HPT0〈
HPT0

〉
CPT = 〈χ(t)| CPHPT0 |χ(t)〉 = 〈χ(t)| CP

[
FH(t)F+ − iF ∂F

+

∂t

]
|χ(t)〉 , (3.9)

from which we deduce

〈χ(t)| CP
[
FH(t)F+

]
|χ(t)〉 =

〈
HPT0

〉
CPT + 〈χ(t)| CP

[
iF
∂F+

∂t

]
|χ(t)〉 , (3.10)

we note that the first term is nothing other than the expectation value of the Hamiltonian

H(t) with a new C(t)PT -inner product

〈χ(t)| CP
[
FH(t)F+

]
|χ(t)〉 = 〈ψ(t)| C(t)PH(t) |ψ(t)〉 = 〈H(t)〉C(t)PT , (3.11)

where [P , F (t)] = 0 and the new operator C(t) is defined as C(t) = F+(t)CF (t), which is

similar to the operator C in the sense that it verifies the property C2(t) = 1 since C2 = 1.

Finally

〈H(t)〉C(t)PT =
〈
HPT0

〉
CPT + 〈χ(t)| CP

[
iF
∂F+

∂t

]
|χ(t)〉 . (3.12)

Indeed, sinceHPT0 is PT -symmetric and F is unitary, the expectation value 〈H(t)〉C(t)PT
is guaranteed to be real. This result is new for explicitly time-dependent non-Hermitian

quantum systems.

3.4 Harmonic Oscillator in imaginary linear potential

Let us consider a class of one dimensional time-dependent harmonic oscillators with variable

mass m(t) = m0α(t) subjected to a driving linear complex time-dependent potential, in the

form iλ(t)x, described by the following time-dependent non-Hermitian Hamiltonian

H(t) =
p2

2m0α(t)
+ α(t)

m0ω
2

2
x2 + iλ(t)x, (3.13)

where α(t) and λ(t) are real time-dependent functions which can be chosen to describe a

specific quantum system, x and p are the canonical conjugates position and momentum
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operators ([x, p] = i). The function λ(t) in the complex potential will be chosen later in

order to obtain in Eq. (3.5) a time-independent PT -symmetric Hamiltonian HPT0 . The

mass m0 and the time-independent frequency ω are the characteristic parameters of the

quantum oscillating system which can be precisely chosen according to the initial conditions

for a controlled quantum system.

This exact solvable model of time dependent non-Hermitian quantum systems is well

studied in the literature [18, 24, 52–56].

The corresponding Schrödinger equation is written as

i
∂

∂t
|ψ(t)〉 = H(t) |ψ(t)〉 . (3.14)

The problem now is to solve the time-dependent Schrödinger equation (3.14). First, let

us use a unitary transformation in order to eliminate the time-dependent parameter α(t)

[26].

3.5 Time-dependent unitary transformations

A time-dependent transformation F is a general SU(1, 1) one-mode squeezing operator and

constituted by the three quadratic canonical operators x2, p2 and {x, p} which are three

generators of SU(1, 1) Lie algebra. In the canonical representation (x, p), F is defined as

follows [57, 58]

F = exp

[
i
C(t)

2A(t)
x2

]
exp

[
− i

2
{x, p} lnA(t)

]
exp

[
−i B(t)

2A(t)
p2

]
, A 6= 0, (3.15)

where the time-dependent functions A(t), B(t) and C(t) are arbitrary real functions in

order to keep the transformation unitary. However, in some cases, these functions can be

determined by solving a set of coupled partial differential equations as we will see later.

Moreover, the operator F verifies the properties of a unit operator, thus

FF+ = F+F = 1, and F−1 = F+. (3.16)
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Using the above properties and the relation [x, p] = i, the canonical operators x and p

are transformed under the action of F as follows

FxF+ = D(t) x−B(t)p, (3.17)

FpF+ = − C(t)x+ A(t)p, (3.18)

and which can be written in the matrix form as

F

(
x

p

)
F+ =

 D(t) −B(t)

−C(t) A(t)

(x
p

)
, (3.19)

where D(t) = 1+B(t)C(t)
A(t)

and A(t)D(t)−B(t)C(t) = 1.

3.6 Solution of the time-dependent Schrödinger equation

The exact solution of the time-dependent Schrödinger equation (3.14) can be found by using

the unitary transformations F defined in (3.15). By performing the unitary transformation

F on |ψ(t)〉

|ψ(t)〉 = F+ |χ(t)〉 , (3.20)

and inserting (3.2) in Eq. (3.1), we easily obtain that

i
∂

∂t
|χ(t)〉 = i

∂F

∂t
|ψ(t)〉+ iF

∂

∂t
|ψ(t)〉

=

(
i
∂F

∂t
F+ + FH(t)F+

)
|χ(t)〉 (3.21)

=

(
FH(t)F+ − iF ∂F

+

∂t

)
|χ(t)〉 ≡ H |χ(t)〉 , (3.22)

where

H = FH(t)F+ − iF ∂F
+

∂t
. (3.23)

We note that the equation (3.4) implies that the unitary transformation F gives rise to

a new system described by the time-dependent Hamiltonian H.

Let us now calculate the expressions of the time-dependent functions A(t), B(t) and

C(t) in terms of α(t) and λ(t). To this end, following the same steps of [58], we must
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calculate H (3.23) in terms of A(t), B(t), C(t) and D(t) and compare it with the time-

independent harmonic oscillator with variable mass m0 subjected to a driving linear complex

time-independent potential,

H =
p2

2m0

+
1

2
m0Ω2x2 + iλ0x, (3.24)

and the global time-dependent frequency Ω will be determined later.

Using the Baker–Hausdorff formula and the first term in (3.4), we obtain

∂F+

∂t
=
i

2
F+
[
(A(t)Ḃ(t)−B(t)Ȧ(t))p2 + (C(t)Ḋ(t)−D(t)Ċ(t))x2 + (D(t)Ȧ(t)− C(t)Ḃ(t)) {x, p}

]
,

(3.25)

where the over-dots indicate the partial time derivative, and the second term in (3.4) becomes

FH(t)F+ =
1

2m0α(t)
Fp2F+ + α(t)

m0ω
2

2
Fx2F+ + iλ(t)FxF+, (3.26)

such that

Fp2F+ = A2(t)p2 − A(t)C(t) {x, p}+ C2(t)x2, (3.27)

Fx2F+ = D2(t)x2 −D(t)B(t) {x, p}+B2(t)p2. (3.28)

By substituting (3.25), (3.26), (3.27) and (3.28) into (3.23), we find that

H = FH(t)F+ − iF ∂F
+

∂t

=

[
A2(t)

2m0α(t)
+ α(t)

B2(t)m0ω
2

2
+

1

2

[
A(t)Ḃ(t)−B(t)Ȧ(t)

]]
p2

+

[
C2(t)

2m0α(t)
+ α(t)

D2(t)m0ω
2

2
+

1

2

[
C(t)Ḋ(t)−D(t)Ċ(t)

]]
x2

−
[
A(t)C(t)

2m0α(t)
+ α(t)

B(t)D(t)m0ω
2

2
− 1

2

[
D(t)Ȧ(t)− C(t)Ḃ(t)

]]
{x, p}

+ iD(t)λ(t)x− iB(t)λ(t)p, (3.29)

comparing with (3.24), we get the following coupled differential equations[
A2(t)

2m0α(t)
+ α(t)

B2(t)m0ω
2

2
+

1

2

[
A(t)Ḃ(t)−B(t)Ȧ(t)

]]
=

1

2m0

, (3.30)

[
C2(t)

2m0α(t)
+ α(t)

D2(t)m0ω
2

2
+

1

2

[
C(t)Ḋ(t)−D(t)Ċ(t)

]]
=
m0Ω2

2
, (3.31)
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[
A(t)C(t)

2m0α(t)
+ α(t)

B(t)D(t)m0ω
2

2
− 1

2

[
D(t)Ȧ(t)− C(t)Ḃ(t)

]]
= 0, (3.32)

D(t)λ(t) = 1, (3.33)

− iB(t)λ(t) = 0. (3.34)

From (3.34) we have B(t) = 0, and from (3.33) we get D(t) = 1
λ(t)

. So, substituting

B(t) = 0 in (3.30) we obtain A(t) =
√
α(t), then from (3.32) we find C(t) = m0Ȧ(t) =

1
2
m0α̇(t)α−

1
2 (t). Moreover, since A(t)D(t) − B(t)C(t) = 1 we can note that A(t) = 1

D(t)
=√

α(t), thus D(t) = 1√
α(t)

and therefore

A(t) =
√
α(t), B(t) = 0, C(t) =

1

2
m0α̇(t)α−

1
2 (t), D(t) =

1√
α(t)

and λ(t) =
√
α(t).

(3.35)

Using (3.35) and Eq.(3.31), we get

Ω2=

(
ω2 +

1

4

α̇2(t)

α2(t)
− α̈(t)

2α(t)

)
. (3.36)

Substituting (3.35) again in (3.13) and (3.15), the Hamiltonian and its associated unitary

transformation F become

H(t) =
p2

2m0α(t)
+ α(t)

m0ω
2(t)

2
x2 + ix

√
α(t), (3.37)

F (t) = exp

[
i
m0α̇(t)

4α(t)
x2

]
exp

[
− i

2
{x, p} ln

(√
α(t)

)]
. (3.38)

The task now is to make the time-dependent Hamiltonian (3.24) governing the evolution

of |χ(t)〉 time-independent. We set the global time-dependent frequency appearing in (3.36)

equal to a real constant denoted by Ω2
0 in order to have a time-independent Hamiltonian.

As a result, we get an auxiliary equation of the form

α̈− α̇2

2α
+ 2α

(
Ω2

0 − ω2
)

= 0, (3.39)

the resulting time-independent Hamiltonian

HPT0 =
p2

2m0

+
1

2
m0Ω2

0x
2 + iλ0x, (3.40)
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is PT -symmetric.

Note that, to write the above auxiliary equation (3.39) in a more familiar form, we make

the change of variable α(t) = 1
ρ2(t)

. Then,

..
ρ+

(
Ω2

0−ω2
)
ρ = 0. (3.41)

which admits the following solutions:

• for Ω2
0>ω

2 : ρ(t) = A exp
(
it
√

Ω2
0−ω2

)
+ B exp

(
−it
√

Ω2
0−ω2

)
. For an appropriate

choice of the constants: A = B, we obtain the expression of α(t) as α(t) = 1

A2 cos2
(
t
√

Ω2
0−ω2

) .

• for Ω2
0<ω

2 : ρ(t) = A exp
(
t
√
ω2 − Ω2

0

)
+ B exp

(
−t
√
ω2 − Ω2

0

)
. For an appropriate

choice of the constants: A = B, we obtain the expression of α(t) as α(t) = 1

A2 cosh2
(
t
√
ω2−Ω2

0

) ,
and when B = 0 and A 6= 0 the expression of α(t) is α(t) = 1

A2 exp
(
−2t

√
ω2 − Ω2

0

)
and the

Hamiltonian H(t) corresponds to the Caldirola-Kanai oscillator [59, 60].

Moreover, the eigenequation of the PT -symmetric Hamiltonian HPT0 has the form

HPT0 |χn(x)〉 = En |χn(x)〉 , (3.42)

the corresponding Schrödinger equation (3.4) has been solved in the second chapter, where

χn(t) =

[ √
m0Ω0

n!2n
√
π~

]1/2

exp(−iEnt) exp

[
− p

m0Ω2
0

]
exp

(
−m0Ω0

2~
x2

)
Hn

[(
m0Ω0

~

)1/2

x

]
,

(3.43)

and the eigenvalues

En = ~Ω0

(
n+

1

2

)
+

λ0

2m0Ω2
0

, (3.44)

are real and Hn is the Hermite polynomial of order n.

We can easily verify that the CPT -inner product is conserved

〈χn(x, t) |χn(x, t)〉CPT = 〈χn(x)| CP |χn(x)〉 = 〈ϕn|UCPU |ϕn〉 = 〈ϕn(x) |ϕn(x)〉 = 1.

(3.45)
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3.7 Analysis of the expectation value of the Hamiltonian

Now it is not difficult to calculate the expectation value 〈H(t)〉C(t)PT of the Hamiltonian

(3.37)

〈H(t)〉C(t)PT = 〈χn(x)|F F+CPFH(t) F+ |χn(x)〉 = 〈χn(x)| CPFH(t)F+ |χn(x)〉 (3.46)

= 〈χn(x)| CP (H0) |χn(x)〉+ 〈χn(x)| CP
(
iF
∂F+

∂t

)
|χn(x)〉 (3.47)

= En + 〈χn(x)| CP
(
− α̇(t)

4α(t)
{x, p}+

m0α̈(t)

4α(t)
x2

)
|χn(x)〉 (3.48)

= En −
α̇(t)

4α(t)
〈ϕn(x)|U−1 {x, p}U |ϕn(x)〉+

(
m0α̈(t)

4α(t)

)
〈χn(x)| CPx2 |χn(x)〉 ,

(3.49)

thus

〈H(t)〉C(t)PT = En −
α̇(t)

4α(t)
〈ϕn(x)| {x, p} |ϕn(x)〉

+
α̇(t)

2α(t)

i

m0Ω2
0

〈ϕn(x)| p |ϕn(x)〉+

(
m0α̈(t)

4

)〈
x2
〉
CPT , (3.50)

where 〈x2〉CPT = 〈χn(x)| CPx2 |χn(x)〉.

By using the following relations

〈ϕn(x)|x |ϕn(x)〉 = 〈ϕn(x)| p |ϕn(x)〉 = 0, (3.51)

〈ϕn(x)|x2 |ϕn(x)〉 =
~

m0Ω0

(
n+

1

2

)
, (3.52)

〈ϕn(x)| p2 |ϕn(x)〉 = m0Ω0~
(
n+

1

2

)
, (3.53)

〈ϕn(x)| {x, p} |ϕn(x)〉 = 0, (3.54)

and 〈
x2
〉
CPT =

~
m0Ω0

(
n+

1

2

)
−
(

λ0

m0Ω2
0

)2

, (3.55)

we get the expectation value of H(t) as

〈H(t)〉C(t)PT = En +

(
m0α̈(t)

4α(t)

)
< x2 >CPT= En +

α̈(t)

4α(t)

[
~

Ω0

(
n+

1

2

)
− (λ0)2

m0Ω4
0

]
, (3.56)
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which is real for any positive real time-dependent function α(t). It is more simple than the

result given in Eq. (28) in Ref. [18] with less constraints on the parameters of the quantum

problem.

3.8 Uncertainty relation and probability density

Now, we calculate the expectation values 〈x〉C(t)PT , 〈x2〉C(t)PT , 〈p〉C(t)PT and 〈p2〉C(t)PT in the

states ψn(x, t) of H(t) defined in Eq.(3.13). In the same way, using the CPT -inner product

(3.45) and after a straightforward calculation we obtain

〈x〉C(t)PT = 〈ψn(x, t)|F+CPFx |ψn(x, t)〉 (3.57)

= 〈χn(x)|FF+CPFxF+ |χn(x)〉 (3.58)

= − iλ0

m0Ω2
0

1√
α(t)

, (3.59)

〈
x2
〉
C(t)PT = 〈ψn(x, t)|F+CPFx2 |ψn(x, t)〉 (3.60)

= 〈ϕn(x)|
(
x2 − λ0

(m2
0Ω0)

2 − 2λ0x
i

m2
0Ω0

)
|ϕn(x)〉 (3.61)

=

(
n+

1

2

)
~

m0Ω0α(t)
− 1

α(t)

(
λ0

m0Ω2
0

)2

, (3.62)

〈p〉C(t)PT = 〈ψn(x, t)|F+CPFp |ψn(x, t)〉 (3.63)

= 〈χn(x)|FF+CPFpF+ |χn(x)〉 (3.64)

=
i

2Ω2
0

α̇(t)√
α(t)

, (3.65)

〈
p2
〉
C(t)PT = 〈ψn(x, t)|F+CPFp2 |ψn(x, t)〉 = 〈χn(x)|FF+CPFp2F+ |χn(x)〉 , (3.66)〈

p2
〉
C(t)PT = ~Ω0

(
n+

1

2

)
m0α(t) +

(
m0α̇(t)

2

)2
[(

n+
1

2

)
λ0~

m0Ω0α(t)
− 1

α(t)

(
λ0

m0Ω2
0

)2
]
.

(3.67)
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We also calculate the position and momentum uncertainties

∆x =
√
〈x2〉C(t)PT − 〈x〉

2
C(t)PT =

[
λ0~

m0Ω0α(t)

(
n+

1

2

)]1/2

, (3.68)

∆p =
√
〈p2〉C(t)PT − 〈p〉

2
C(t)PT =

1

∆x

[(
n+

1

2

)2

~ +

(
m0α̇(t)

2

)2

∆x4

]1/2

. (3.69)

Thus, the uncertainty product is given by

∆x∆p =

(
n+

1

2

)
~

√
1 +

(
λ0α̇(t)

2Ω0α(t)

)2

, (3.70)

it is easy to check that the uncertainty product (3.70) is always real and greater than or

equal to ~
2
and, consequently, it is physically acceptable for any value of n. The uncertainty

product takes the minimal value ∆x∆p = ~
2
only for n = 0 and α(t) =constant, i.e., for time

independent mass oscillators.

Finally, the probability density of the wavefunction ψn(x, t) of H(t) is in the form

∣∣U−1Fψn(x, t)
∣∣2 =

∣∣U−1χn(x, t)
∣∣2 = |ϕ(x)|2 = ϕ∗n(x)ϕn(x), (3.71)

thus

∣∣U−1Fψn(x, t)
∣∣2 =

[ √
m0Ω0

n!2n
√
π~

]
exp

(
−m0Ω0

~
x2

)(
Hn

[(
m0Ω0

~

)1/2

x

])2

, (3.72)

it is the same as the probability density of the eigenstate χn(x, t) of the time-independent

Hamiltonian HPT0 which is also equal to the probability density of the eigenstate ϕn(x)

(1.36) of the standard harmonic oscillator (1.34). Clearly, ϕn(x) are elements from L2(R),

and therefore the condition (3.72) yields that

∫
|ϕn(x)|2 dx =

[ √
m0Ω0

n!2n
√
π~

]1/2

exp

(
−m0Ω0

~
x2

)(
Hn

[
x

(
m0Ω0

~

)1/2
])2

dx = 1 (3.73)

under this observation, we deduce that the probability is finite.
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3.9 Some examples

As an application of the above results, we study two examples of time-dependent mass

M(t) = m0α(t) where α(t) are the two solutions of the auxiliary equation (3.39).

3.9.1 Exemple 1: Trigonometrically growing mass

The first solution of the auxiliary equation (3.39) is a trigonometrically growing time-

dependent mass:

• M(t) = α(t)m0 = m0

A2 cos2
(
t
√

Ω2
0−ω2

) where Ω2
0>ω

2

For this case, the Hamiltonian (3.37) is

H(t) =
A2 cos2

(
t
√

Ω2
0−ω2

)
2m0

p2 +
m0ω

2

2A2 cos2
(
t
√

Ω2
0−ω2

)x2 +
i

A cos
(
t
√

Ω2
0−ω2

)x, (3.74)

and the expression of the unitary operator (3.38) becomes

F (t) = exp

[
i
2m0

√
Ω2

0−ω2 tan(t
√

Ω2
0−ω2)α(t)

4α(t)
x2

]
exp

− i
2
{x, p} ln

√√√√ 1

A2 cos2
(
t
√

Ω2
0−ω2

)



(3.75)

F (t) = exp

[
i
m0

√
Ω2

0−ω2 tan(t
√

Ω2
0−ω2)

2
x2

]
exp

[
i

2
{x, p} ln

(
A cos

(
t
√

Ω2
0−ω2

))]
.

(3.76)

Then, the uncertainty product is

∆x∆p =

(
n+

1

2

)
~

√√√√1 +

(
~
√

Ω2
0−ω2 tan(t

√
Ω2

0−ω2)

Ω0

)2

, (3.77)

which is always real and greater than or equal to 1
2
. Figure (3.1) represents the uncertainty

product as a function of time for different values of n.

Finally, we deduce the probability density
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Figure 3.1: Uncertainty product as a function of time for different values of n with the

following parameters: (Ω0 = ~ = 1). It is always real and greater than or equal to 1
2

∣∣U−1Fψn(x, t)
∣∣2 =

[ √
m0Ω0

n!2n
√
π~

]
exp

(
−m0Ω0

~
x2

)(
Hn

[(
m0Ω0

~

)1/2

x

])2

, (3.78)

and figure (3.2) represents the probability density as a function of position for different values

of n.
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Figure 3.2: Probability density |U−1Fψn(x, t)|2 as a function of x for different values of n

with the following parameters: (m0 = Ω0 = ~ = 1). Its maximal value is at x = 0 and n = 0.
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3.9.2 Example 2: Hyperbolically growing mass

The second solution of the auxiliary equation (3.39) is a hyperbolically growing time-dependent

mass:

• M(t) = α(t)m0 = m0

A2 cosh2
(
t
√
ω2−Ω2

0

) where Ω2
0<ω

2

For this case, the Hamiltonian (3.37) is

H(t) =
A2 cosh2

(
t
√
ω2 − Ω2

0

)
2m0

p2 +
m0ω

2

2A2 cosh2
(
t
√
ω2 − Ω2

0

)x2 +
i

A cosh
(
t
√
ω2 − Ω2

0

)x,
(3.79)

and the unitary operator (3.38) becomes

F (t) = exp

−im0

√
ω2 − Ω2

0 tanh2
(
t
√
ω2 − Ω2

0

)
α(t)

2α(t)
x2

 exp

− i
2
{x, p} ln

√√√√ 1

A2 cosh2
(
t
√
ω2 − Ω2

0

)



(3.80)

F (t) = exp

−im0

√
ω2 − Ω2

0 tanh2
(
t
√
ω2 − Ω2

0

)
2

x2

 exp

[
i

2
{x, p} ln

(
A cosh

(
t
√
ω2 − Ω2

0

))]
.

(3.81)

Then, the uncertainty product is

∆x∆p =

(
n+

1

2

)
~

√√√√√1 +

−~
√
ω2 − Ω2

0 tanh
(
t
√
ω2 − Ω2

0

)
Ω0

2

, (3.82)

and figure (3.3) represents the uncertainty product as a function of time for different values

of n.

Finally, we deduce the probability density

∣∣U−1Fψn(x, t)
∣∣2 =

[ √
m0Ω0

n!2n
√
π~

]
exp

(
−m0Ω0

~
x2

)(
Hn

[(
m0Ω0

~

)1/2

x

])2

, (3.83)

and figure (3.4) represents the probability density as a function of position for different values

of n.
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Figure 3.3: Uncertainty product as a function of time for different values of n with the

following parameters: (Ω0 = ~ = 1). It is always real and greater than or equal to 1
2
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Figure 3.4: Probability density |U−1Fψn(x, t)|2 as a function of x for different values of n

with the following parameters: (m0 = Ω0 = ~ = 1). Its maximal value is at x = 0 and n = 0.



Conclusion

In this thesis, we have studied the analytical solutions of the Schrödinger equation for

a class of explicit time dependent non-Hermitian quantum systems. The first chapter is

concerned with the basic concepts used in quantum theory for non-hermitian Hamiltonians,

such as PT -symmetry, PT and CPT -inner products, and pseudo-hermiticity. In the second

chapter, we presented the Lewis-Riesenfeld invariant method for solving the Schrödinger

equation for the explicitly time-dependent Hermitian and non-hermitian Hamiltonians.

In the last chapter, we have chosen a unitary transformation F (t) that reduces the

non-hermitian Hamiltonian H(t) to a time-independent PT -symmetric one HPT0 , and thus

the analytical solution of the Schrödinger equation of the initial system is easily obtained.

Then, we defined a new C(t)PT -inner product and showed that the evolution preserves

it, where C(t) = F+(t)CF (t). Moreover, we proved that the expectation value of a time-

dependent non-Hermitian Hamiltonian H(t) is real in the C(t)PT -normed states since the

transformation F (t) is unitary and [P , F (t)] = 0, i.e.

〈χ(t)| CP
[
FH(t)F+

]
|χ(t)〉 =

〈
HPT0

〉
CPT + 〈χ(t)| CP

[
iF
∂F+

∂t

]
|χ(t)〉 , (3.84)

where |χ(t)〉 is an eigenstate of HPT0 .

As an illustration, we have studied a specific class of quantum time-dependent mass

oscillators with a complex linear driving force. The expectation value of the Hamiltonian,

the uncertainty relation and the probability density have also been calculated. The results

of this chapter constitute the main results of this thesis.
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Abstract
With the aim to solve the time-dependent Schrödinger equation associated to a time-dependent non-
HermitianHamiltonian, we introduce a unitary transformation thatmaps theHamiltonian to a time-
independent  -symmetric one. Consequently, the solution of time-dependent Schrödinger
equation becomes easily deduced and the evolution preserves the ( )t PT−inner product, where ( )t
is a obtained from the charge conjugation operator  through a time dependent unitary
transformation.Moreover, the expectation value of the non-HermitianHamiltonian in the ( )t PT
normed states is guaranteed to be real. As an illustration, we present a specific quantum system given
by a quantumoscillator with time-dependentmass subjected to a driving linear complex time-
dependent potential.

1. Introduction

It is commonly believed that theHamiltonianmust beHermitian = +H H in order to ensure that the energy
spectrum (the eigenvalues of theHamiltonian) is real and that the time evolution of the theory is unitary
(probability is conserved in time), where the symbol ‘+’ denotes the usual Dirac hermitian conjugation; that is,
transpose and complex conjugate. In 1998 this false impression has been challenged byBender andBoettcher [1]
who showed numerically that a few one-dimensional quantumpotentials ( )V x may generate bound states

( )y x with real energiesE evenwhen the potentials themselves are not real. They show that because  -
symmetry is an alternative condition toHermiticity. The central idea of  -symmetric quantum theory is to
replace the condition that theHamiltonian of a quantum theory beHermitianwith theweaker condition: the
invariance by space-time reflection. This allows one to construct and studymany newHamiltonians that would
previously have been ignored.

These two important discrete symmetry operators are parity  and time reversal  . The operators  and 
are defined by their effects on the dynamical variables x and p. The operator  is linear and has the effect of
changing the sign of themomentumoperator p and the position operator x : p→−p and x→−x. The operator
 is antilinear and has the effect p→−p, xx, and i→−i. It is crucial, of course, that when replacing the
condition ofHermiticity by  -symmetry, we preserve the key physical properties that a quantum theorymust
have.We see that if the  - symmetry of theHamiltonian is not broken, then theHamiltonian exhibits all of
the features of a quantum theory described by aHermitianHamiltonian.

In order to have a coherent and unitary theory, Bender et al [2] have defined the  inner-product
associated to  -symmetricHamiltonians as follows
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 [ ( )] ( ) ( )òá ñ =f g dx f x g x, , 1
C

where * ( ) ( )= -f x f x . The advantage of this inner product is that the associated norm ( )f f, ,which
independent of the global phase of ( )f x , is conserved in time. The application of this definition to the
eigenfunctions ofH and  implies

 ( ) ( )y y dá ñ = -, 1 , 2m n
n

mn

The situation here (that half of the the eigenfunctions ofH and  have positive norm and the other half
have negative norm) is analogous to the problem thatDirac encountered in formulating the spinor wave
equation in relativistic quantum theory. FollowingDirac, Bender et al [2] constructed a linear operator denoted
by  and represented in position space as a sumover the energy eigenstates of theHamiltonian. The operator 
is the observable that represents themeasurement of the signature of the  normof a state. The properties of
the newoperator  resemble those of the charge conjugation operator in quantum field theory. Specifically, if
the energy eigenstates satisfy (2), thenwe have  ( )y y= -1n

n
n.  , called the charge conjugation symmetry with

eigenvalues1,  = 12 , such that  commutes with the operator  but notwith the operators  and 
separately, is the operator observable that represents themeasurement of the signature of the  normof a state
which determines its parity type.We can regard  as representing the operator that determines the  charge of
the state.Quantum states having opposite  charge possess opposite parity type.

The introduction of operator  permits to formulate a positive  inner-product

 [ ( )] ( ) ( )òá ñ =f g dx f x g x, , 3
C

thus equation (2) becomes

 ( )y y dá ñ =, . 4m n mn

The non-Hermitian  -symmetricmodels have been successfully used for describing several physical
systems such the plasmons in nanoparticle systems [3], the problems related to the quantum information theory
[4], nonclassical light [5] and the stability of hydrogenmolecules [6].

The generalization to time-dependent non-Hermitian case have been studied in [7–29]. Note that the
authors of [30] emphasize that in nonrelativistic quantummechanics and in relativistic quantumfield theory,
the time coordinate t is a parameter and thus the time-reversal operator  does not actually reverse the sign of t .
Some authors adopt the fact that the operator  changes also the sign of time t→−t [7, 31–40], this case could
lead sometimes to incorrect results.

In this work, we adopt the following strategy: we introduce a unitary transformation F(t)which commutes
with the parity  andmaps the solution ∣ ( )y ñt of the time-dependent Schrödinger equation involving a non-
HermitianHamiltonianH(t) to the solution ∣ ( )c ñt involving a nonHermitianHamiltonian required to be
time-independent and  -symmetric. After performing this transformation, the problembecomes exactly
solvable and the evolution preserve the  -scalar product ( )∣ ( ) ( )∣ ∣ ( )c c c cá ñ = á ñt t t t . The other
essential ingredient of this theory is the construction of a positive-definite inner product with respect toH(t)
being non self-adjoint, so that its time-evolution operator is unitary andwe obtain a consistent probabilistic
interpretation so that theHamiltonian under study exhibits realmean values. Themost important step towards
finding this positive-definite inner product is thus tofind a newoperator, whichwe call  ( ) ( ) ( )= +t F t F t such
that, we obtain a conserved norm for our original systemdescribed by the solution ∣ ( )y ñt that is

  ( )∣ ( ) ( )∣ ( )( )y y c cá ñ = á ñt t t tt , and themean value of the time-dependent non-HermitianHamiltonian
H(t) is real in the new ( )t PT−inner product. This is themain result of this paper.

For this we introduce, in section2, a formalismbased on the time-dependent unitary transformations is
given in order to prove that the expectation value of the time-dependent non-HermitianHamiltonianH(t) is
real in the new ( )t PT−inner product. In section3, we illustrate our formalism introduced in the previous
section by treating a non-Hermitian time-dependent quantumoscillator with time-dependentmass in linear
complex time-dependent potential. On the hand, in theHermitian case the time-dependent quantumharmonic
have been extensively studied in the literature in different ways [41–48]. Finally, section 4 concludes ourwork.

2.Mean value of non-Hermitian time-dependentHamiltonian

Let us consider a non-hermitian time-dependentHamiltonianH(t)where the quantum time evolution of the
system is governed by the time-dependent Schrödinger equation (for simplicity we take  = 1)

∣ ( ) ( )∣ ( ) ( )y y
¶
¶

ñ = ñi
t

t H t t . 5

2
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In order to study the evolution of the quantum systems associated to the time-dependentHamiltonianH(t),
we seek that thisHamiltonian can be converted into a time-independentHamiltonian by some time-dependent
transformations. To this end, we initially perform a unitary transformation F(t) on ∣ ( )y ñt

∣ ( ) ( )∣ ( ) ( )c yñ = ñt F t t , 6

by inserting (6) in equation (5), we obtain the time dependent Schrödinger equation for the state ∣ ( )c ñt

∣ ( ) ∣ ( ) ( )c c
¶
¶

ñ = ñi
t

t t , 7

such that the newHamiltonian

 ( ) ( ) ( ) ( ) ( ) ( )= -
¶
¶

+
+

F t H t F t iF t
F t

t
, 8

is time-independent and  -symmetric, i.e.;

  ( )º , 90

its eigenstates ∣ ( )c ñt preserve the  -inner product

( )∣ ( ) ( )∣ ∣ ( ) ( )c c c cá ñ = á ñt t t t , 10

and in this case the solution of the Schrödinger equation (7) can bewritten as

∣ ( ) ( )∣ ( )c cñ = - ñt iEtexp . 11

where ∣cñ is an eigenstate of 0 .
Knowing that our interest is themean value of the non-HermitianHamiltonianH(t), for this aimwe

calculatefirstly the expectation value of theHamiltonian0

  


( )∣ ∣ ( ) ( )∣ ( ) ∣ ( ) ( )c c c cá ñ = á ñ = á -
¶
¶

ñ+
+

t t t FH t F iF
F

t
t , 120 0

⎡
⎣

⎤
⎦

fromwhichwe deduce that is

  
( )∣ [ ( ) ]∣ ( ) ( )∣ ∣ ( ) ( )c c c cá ñ = á ñ + á

¶
¶

ñ+
+

t FH t F t t iF
F

t
t , 130

⎡
⎣

⎤
⎦

wenote that thefirst term is nothing other than the expectation value of theHamiltonianH(t)with a new
 ( )t -inner product

    ( )∣ [ ( ) ]∣ ( ) ( )∣ ( ) ( )∣ ( ) ( ) ( )( )c c y yá ñ = á ñ = á ñ+t FH t F t t t H t t H t , 14t

where [ ( )] =F t, 0 and the new operatorC(t) is defined as ( ) ( ) ( )= +C t F t CF t , which is similar to the
operatorC in the sense that verifies the property  ( ) =t 12 since  = 12 .

Finally,

  


( ) ( )∣ ∣ ( ) ( )( ) c cá ñ = á ñ + á
¶
¶

ñ
+

H t t iF
F

t
t . 15t 0

⎡
⎣

⎤
⎦

Indeed, since0 is  symmetric and F is unitary, the expectation value  ( ) ( )á ñH t t is guaranteed to be
real. To our knowledge, this general result is new for explicitly time-dependent non-Hermitian systems.

3. Application: non-Hermitian time-dependentmass forced oscillators

Let us considera class of one dimensional time-dependent harmonic oscillators with variablemass
( ) ( )a=m t m t0 subjected to a driving linear complex time-dependent potential, in the form ( )li t x, described

by the following non-HermitianHamiltonian

( )
( )

( ) ( ) ( ) ( )
a

a
w

a= + +H t
p

m t
t

m t
x ix t

2 2
, 16

2

0

0
2

2

where ( )a t is a positive real time-dependent function, x and p are the canonical conjugates position and
momentumoperators satisfying [ ] =x p i, . The function ( )l t in the complex potential has been choosen

( ) ( )l a=t t in order to obtain in equation (8) a time-independent  -symmetricHamiltonian0 .
Without loss of generalities, we choose ( )w w=t as a constant. Themassm0 and the frequencyω are the
characteristic parameters of the quantum system.

We show that the exact solution of the time-dependent Schrödinger equation (5) can be found by
introducing two consecutive unitary transformations. In order to solve the Schrödinger with theHamiltonian
specified by (16), wefirst try to eliminate the time-dependent parameter ( )a t .This can be achieved by the

3
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transformation

( ) { } ( ( ) ) ( )a= -F t
i

x p texp
2

, ln 171 ⎡
⎣

⎤
⎦

The unitary operator ( )F t1 has the properties

( )
( ) ( )

a
a= =+ +F xF

x

t
F pF p t, , 181 1 1 1

In a representation x, thewave function is given by

∣ ∣ ( ) ( )f a f aá ñ = - -x F x . 191
1
2

1
2

Suppose that

∣ ( ) ( )∣ ( ) ( )f yñ = ñt F t t , 201

Substituting (20) into (5) ruled by theHamiltonian (16), wefind the equation ofmotion for ∣ ( )f ñt

∣ ( ) ( )∣ ( ) ( )f f
¶
¶

ñ = ñi
t

t H t t , 211

where theHamiltonian

( ) ( ) ( ) ( ) ( ) ( ) ( )= -
¶
¶

+
+

H t F t H t F t iF t
F t

t
221 1 1 1

1

( )
( )

( ) ( )w a
a

= + + + +
p

m

m
x ix

t

t
xp px

2 2

1

4
23

2

0

0
2

2

look like the time-independent harmonic oscillators with variablemassm0 subjected to a driving linear complex
time-independent potential plus a time dependent ( )+xp px terms. In order to obtain the usual time-
dependent harmonic oscillatorwith a perturbative linear potential, we remove the cross term in (23) via the
transformation

( ) ( )
( )

( )a
a

=F t i
m t

t
xexp

4
, 242

0 2⎡
⎣⎢

⎤
⎦⎥

where its properties are

( )
( )

( )a
a

= = -+ +F xF x F pF
m t

t
x,

2
, 252 2 2 2

0

Thus, the following unitary transformation ( ) ( ) ( )=F t F t F t2 1

( ) ( )
( )

{ } ( ( ) ) ( )a
a

a= -F t i
m t

t
x

i
x p texp

4
exp

2
, ln , 260 2⎡

⎣⎢
⎤
⎦⎥

⎡
⎣

⎤
⎦

transforms the canonical operators x and p and their squares x2 and p2 as follows

( )
( ) ( )

( )


a
a

a
a

= = -+ +FxF
x

t
FpF p t

m t

t
x,

2
,0

( ) ( ){ } ( )
( ) ( )

( ) 
a a

a
a a

= - + =+ +Fp F t x m t x p
m t

t
x Fx F

x

t

1

2
,

4
, , 272 2

0
0
2 2

2 2
2

therefore, the transformedHamiltonian (8) reads

 ( )= + W +
p

m
m x ix

2

1

2
. 28

2

0
0

2 2

where

( )
( )

̈ ( )
( )

( )w
a
a

a
a

W = + -
t

t

t

t

1

4 2
292 2

2

2
⎜ ⎟
⎛
⎝

⎞
⎠

The central idea in this procedure is to require that theHamiltonian (28) governing the evolution of ∣ ( )c ñt is
time-independent. This is achieved by setting the global time-dependent frequency appearing in (28) equal to a
real constant denoted by W0

2 so that its time-derivatve leads to an auxiliary equation of the form

̈ ( ) ( )a
a
a

a w- + W - =
2

2 0, 30
2

0
2 2

4
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the resulting time independent non-HermitianHamiltonian

 ( )= + W +
p

m
m x ix

2

1

2
, 310

2

0
0 0

2 2

is  -symmetric.
Note that when taking ( )

( )
a =

r
t ,

t

1
2 the above auxiliary equation (30) is transformed to the following new

auxiliary equation

̈ ( ) ( )r - w r+ W = 0. 320
2 2

which admits the following solutions:

• for > wW :0
2 2 ( )r =t ( ) ( )- w - wW + - WA it B itexp exp0

2 2
0
2 2 . For an appropriate choice of the

constants: =A B,we obtain the expression of ( )a t as ( )
( )

a =
- wW

t
A t

1

cos2 2
0
2 2

.

• for < wW :0
2 2 ( )r =t ( ) ( )w w- W + - - WA t B texp exp2

0
2 2

0
2 . For an appropriate choice of the

constants: =A B,we obtain the expression of ( )a t as ( )
( )

a =
w -W

t ,
A t

1

cosh2 2 2
0
2

andwhenB=0 and ¹A 0

the expression of ( )a t is ( ) ( )a w= - - Wt texp 2
A

1 2
0
2

2 and theHamiltonianH(t) corresponds to the
Caldirola-Kanai oscillator [41, 42].

3.1. Analysis of the expectation value of theHamiltonian
The eigenequation of the  -symmetricHamiltonian0 has the form

 ∣ ( ) ∣ ( ) ( )c cñ = ñx E x , 33n n n0

and the solution of the corresponding Schrödinger equation (7) can bewritten as

∣ ( ) ( )∣ ( ) ( )c cñ = - ñx t iE t x, exp . 34n n n

Let us introduce a non unitary transformation of the form

( )= -
W

U
p

m
exp , 35

0 0
2

⎡
⎣⎢

⎤
⎦⎥

such that

∣ ( ) ∣ ( ) ( )c jñ = ñx U x . 36n n

The action ofUmaps the  -symmetricHamiltonian H0 to aHermitian one as

 ( )= = +
W

-
W

-h U U
p

m

m
x

m2 2

1

2
, 371

0

2

0

0 0
2

2

0 0
2

where the eigenfunctions ∣ ( )j ñxn of theHermitianHamiltonian h are

  
∣ ( )

!
( )j

p
ñ =

W
-

W W
x

m

n

m
x H x

m

2
exp

2
. 38n n n

0 0
1 2

0 0 2 0 0
1 2

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

Then, the solutions ∣ ( )c ñx t,n are obtained as

  

∣ ( ) ( ) ∣ ( )

∣ ( )
!

( ) ( )

c j

c
p

ñ = - ñ

ñ=
W

- -
W

-
W W

x t iE t U x

x t
m

n
iE t

p

m

m
x H

m
x

, exp ,

,
2

exp exp exp
2

, 39

n n n

n n n n
0 0

1 2

0 0
2

0 0 2 0 0
1 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

where the eigenvalues

 ( )= W + -
W

E n
m

1

2

1

2
, 40n 0

0 0
2

⎛
⎝

⎞
⎠

are real andHn is theHermite polynomial of order n.
Amore general way to represent the  operator is to express it generically in terms of the fundamental

dynamical operators x and p :  ( )= eQ x p, . The exact formula of  associated to the theory described by the
Hamiltonian (31) is given as a function of the parity operator  as

5
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  ( )=
Wm

pexp
2

, 41
0 0

2
⎡
⎣⎢

⎤
⎦⎥

such that the operator  commutewith  and0 , i.e.,    [ ] [ ]= =, , 00 .
We can easily verify that the  -inner product is conserved

 ( ) ∣ ( ) ( )∣ ∣ ( ) ∣ ∣ ( )∣ ( ) ( )c c c c j j j já ñ = á ñ = á ñ = á ñ =x t x t x x U U x x, , 1. 42n n n nn n n n

Now it is not difficult to calculate the expectation value of theHamiltonian  ( ) ( )á ñH t t defined previously

 ( ) ( )
( )

( )∣ { } ∣ ( ) ̈ ( )
( )

( )∣ ∣ ( ) ( )( )
a
a

j j
a
a

c cá ñ = - á ñ + á ñ-H t E
t

t
x U x p U x

m t

t
x x x

4
,

4
, 43t n n n

1 0 2
n n

⎜ ⎟
⎛
⎝

⎞
⎠

thus

 



( ) ( )
( )

( )∣{ }∣ ( )

( )
( )

( )∣ ∣ ( ) ̈ ( ) ( )

( )




a
a

j j

a
a

j j
a

á ñ = - á ñ

+
W

á ñ + á ñ

H t E
t

t
x x p x

t

t

i

m
x p x

m t
x

4
,

2 4
, 44

t n n n

n n
0 0

2
0 2⎛

⎝
⎞
⎠

where  ( )∣ ∣ ( )c cá ñ = á ñx x x x2 2
n n

. By using the following relations

( )∣ ∣ ( ) ( )∣ ∣ ( ) ( )j j j já ñ = á ñ =x x x x p x 0, 45n n n n

( )∣ ∣ ( ) ( )j já ñ =
W

+x x x
m

n
1

2
, 46n n

2

0 0

⎛
⎝

⎞
⎠

( )∣ ∣ ( ) ( )j já ñ = W +x p x m n
1

2
, 47n n

2
0 0 ⎛

⎝
⎞
⎠

( )∣{ }∣ ( ) ( )j já ñ =x x p x, 0, 48n n

and


 ( )

( )á ñ =
W

+ -
W

x
m

n
m

1

2

1
, 492

0 0 0
2 2

⎛
⎝

⎞
⎠

we get the expectation value ofH(t) as


  ( ) ̈ ( )

( )
̈ ( )
( )

( )( )
a
a

a
a

á ñ = + á ñ = +
W

+ -
W

H t E
m t

t
x E

t

t
n

m4 4

1

2

1
, 50t n n

0 2

0 0 0
4

⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

which is real for any positive real time-dependent function ( )a t andmore simple than the result given in
equation (28) in [7]with less constraints on the parameters of the problem.

3.2. Uncertainty relation and probability density
Now,we calculatethe expectation values  ( )á ñx t ,  ( )á ñx ,t

2
 ( )á ñp t and  ( )á ñp t

2 in the states ( )y x t,n of
H(t) defined in equation (16). In the sameway, using the  -inner product (42) and after straightforward
calculationwe obtain that
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-
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n
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1
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⎠

⎡
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⎞
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⎤
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Wecalculate also the position andmomentumuncertainties


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2
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   
( ) ( )( ) ( )
a

D = á ñ - á ñ =
D

+ + Dp p p
x

n
m t

x
1 1

2 2
. 56t t

2 2
2

0
2

4
1 2

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
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Thus, the uncertainty product is given by

 ( )
( )

( )a
a

D D = + +
W

x p n
t

t

1

2
1

2
, 57

0

2

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

it is easy to check that the uncertainty product (57) is always real and greater than or equal to 1

2
and, consequently,

it is physically acceptable for any value of n. The uncertainty product takes theminimal valueD D =x p 1

2
only

for n=0 and ( )a =t constant, i.e., for time independentmass oscillators.
Finally, the probability density of thewavefunction ( )y x t,n ofH(t) is in the form

*∣ ( )∣ ∣ ( )∣ ∣ ( )∣ ( ) ( ) ( )y c j j j= = =- -U F x t U x t x x x, , , 58n n n
1 2 1 2 2

n

thus

  
∣ ( )∣

!
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p
=

W
-

W W-U F x t
m

n

m
x H

m
x,

2
exp , 59n n n

1 2 0 0 0 0 2 0 0
1 2 2

⎜ ⎟
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⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛

⎝
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎞

⎠
is the same as the probability density of the eigenstate ( )c x t,

n
of time independent0 which is also equal to

the probability density of the eigenstate ( )j xn (38) of the standard harmonic oscillator (37). Clearly, ( )j xn are
elements from ( )L R2 , and therefore the condition (59) yields that

  
∣ ( )∣

!
( )ò òj

p
=

W
-

W W
=x dx

m

n

m
x H x

m
dx

2
exp 1 60n n n

2 0 0
1 2

0 0 2 0 0
1 2 2

⎜ ⎟
⎡
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⎤
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⎛
⎝

⎞
⎠

⎛

⎝
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎞

⎠
under this observation, we deduce that the probability isfinite.

4. Conclusion

The essential ingredient of quantummechanical nonHermitian theory is the construction of a positive-definite
inner product, so that its probability is conserved in time. The operator  ( ) ( ) ( )= +t F t F t confer to the norm
its conservation. Themain result of this paper is that themean value of a time-dependent non-Hermitian
HamiltonianH(t) is real in the new ( )t PT−inner product. For this, we introduced a unitary transformation F
(t) that reduces the study of time-dependent non-HermitianHamiltonianH(t) to the study of time-independent
 -symmetricHamiltonian0 , and derived the analytical solution of the Schrödinger equation of the initial
system. Then, we defined a new ( )t PT -inner product and showed that the evolution preserves it. Furthermore,
we proved that the expectation value of the time-dependent non-HermitianHamiltonianH(t) is real in the
( )t PT normed states since the transformation F(t) is unitary and [ ( )] =F t, 0. As an illustration, we have
investigated a class of quantum time-dependentmass oscillators with a complex linear driving force.
Theexpectation value of theHamiltonian, the uncertainty relation and probability density have been also
calculated.
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Abstract : 
In this thesis, we have studied the analytical solutions of the Schrödinger equation for a class of 
explicit time dependent non-Hermitian systems. In the first chapter we introduced the basic 
concepts used in quantum theory for non-Hermitian systems, such PT-symmetry, PT and CPT-inner-
products and pseudo-Hermiticity. The second chapter is dedicated to the Lewis-Riesenfeld invariant 
method  for solving the Schrödinger equation for explicitly time dependent Hermitian and non-
Hermitian Hamiltonians. In the last chapter, we have used a unitary transformation F(t) that 
reduces the non-Hermitian Hamiltonian H(t) to a time-independent PT-symmetric one, and thus the 
analytical solution of the Schrödinger equation of the initial system is easily obtained. Then, we 
defined a new C(t)PT-inner product and showed that the evolution preserves it, where 
C(t)=F⁺(t)CF(t). Moreover, we proved that the expectation value of the time-dependent non-
Hermitian Hamiltonian H(t) is real in the C(t)PT-normed states since the transformation F(t) is 
unitary and [P,F(t)]=0. As an illustration, we have study a class of quantum time-dependent mass 
oscillators with a complex linear driving force. The expectation value of the Hamiltonian, the 
uncertainty relation and the probability density have also been calculated. The results of this 
chapter constitute the main results of this thesis. 
 

Résumé : 
Dans cette thèse, nous avons étudié les solutions analytiques de l’équation de Schrödinger d'une 
classe de systèmes non-hermiticiens dépendant explicitement du temps. Dans le premier chapitre, 
on a  introduit les concepts de base utilisés en théorie quantique des systèmes non hermitiens, tels 
que la PT-symétrie, les produits scalaires PT et CPT et la pseudo-herméticité. Le deuxième chapitre 
est dédié à la méthode des invariants de Lewis-Riesenfeld pour la résolution de l'équation de 
Schrödinger pour les Hamiltoniens Hermitiens et non-Hermitiens dépendant explicitement du 
temps. Dans le dernier chapitre, nous avons utilisé une transformation unitaire F(t) qui transforme 
l'hamiltonien non hermitien H(t) en un hamiltonien PT-symétrique indépendant du temps, et donc 
la solution analytique de l'équation de Schrödinger du système initial s'obtient facilement. Ensuite, 
nous avons défini un nouveau produit scalaire C(t)PT et montré que son évolution est conservée au 
cours du temps, où C(t)=F⁺(t)CF(t). De plus, nous avons prouvé que la valeur moyenne de 
l'hamiltonien non-hermiticien dépendant du temps H(t) est réelle dans les états normés C(t)PT 
puisque la transformation F(t) est unitaire et [P,F(t) ]=0. A titre d'illustration, nous avons étudié une 
classe d'oscillateurs de masse dépendante du temps en présence d'un potentiel complexe et 
linéaire. La valeur moyenne de l'hamiltonien, la relation d'incertitude et la densité de probabilité 
ont également été calculées. Les résultats de ce chapitre constituent les principaux résultats de 
cette thèse. 

 :ملخص
 لمفاهيماقدمنا  في الفصل الأول بالزمن. صراحة لمتعلقة ا الهرميتية غير للجمل شرودنجر معادلة  حلول  درسنا الأطروحة، هذه في

 الفصل في الزائفة.الهرميتية كذلك و  CPTو PT السلمية الجداءات ،PTتناظرلا مثل غيرالهرميتية، للجمل الكمية لنظريةل الأساسية

 فيو .غير الهرميتيةالهرميتية و للجمل بالزمن  صراحة تعلقةالم شرودنجر معادلة لحلطريقة لويس و ريزنفيلد  بإيجاز قدمنا الثاني،

مستقل عن  هاملتونيان إلى H(t) الزمنعلى  متعلق هرميتي غير هاملتونيان من نتقالل لF(t)  وحدوي استخدمنا تحويل  ،الأخير الفصل

 سلمي جداء عرفنا ذلك، بسهولة. بعد شرودنجر يمكن الحصول على حل معادلة  وبالتالي ،PTللتناظر بالنسبة وصامدالزمن 

𝐶 (𝑡) حيث ،محفوظ الزمنمع  هتطور  أن وبينا -C(t)PTجديد =  𝐹⁺ (𝑡) 𝐶𝐹(𝑡).   المتوسطة القيمة أن أثبتنا ذلك، على علاوة 

 F(t)التحويل لأن C (t) PT -سلميال جداءالمقننة بال الحالات في حقيقيةهي قيمة  H(t)الزمنالمتعلق ب هرميتي الغير لـلهاملتونيان

0 و وحدوي  = [F (t)،P] . معكتلة متعلقة بالزمن ذات التوافقية هزازات المن  فئةنا سدر  ،وكمثال تطبيقي للنتائج المحصل عليها 

 الفصل هذا نتائج الاحتمال. تمثل وكثافة الارتياب   علاقة، للهاملتونيان المتوسطة القيمة حساب تم حيث. وجود كمون خطي مركب

 الأطروحة. لهذه الرئيسية النتائج
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