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Chapter 1

Introduction

After discovering that our universe was expanding faster and faster in 1998, our understanding

of it has changed dramatically. This situation is entirely the opposite direction to what the

researchers expected and who is responsible for it referred to as dark energy. It turns out that

General Relativity (GR) can describe this by introducing a �uid with negative pressure and

violation of energy conditions, e¤ectively creating a repulsive force gravity. Due to the lack

of theoretical motivation for this remaining the same, other methods have been developed to

account for this late acceleration behavior of the universe. Take this approach believe that

genetic resources can be expanded or modi�ed and that these di¤erences can be explained

cosmological observations [1].

General Relativity is based on a special connection called Levi-Civita connection, it is

symmetrical and twist-free. It is certainly not the most common or the most unique way to

describe gravity. In this work we review another way of describing gravity called teleparallel

gravity. The theory is based on Weitzenbock Compounds with no curvature with non-zero twist

Tensor. This theory is equivalent to GR on the �eld equations, so it is known as the teleparallel

equivalent of General Relativity (TEGR) [1].

Teleparallel gravity and its popular generalization f (T )-gravity can be formulated as com-

pletely invariant (under coordinate transformation and local Lorentz transformation) theory of

gravity. There are some misunderstandings in the literature about teleparallel gravity and its

generalizations, especially with regard to their local Lorentz invariance. Especially the center

point of confusion seems to be related to inertial spin connections in parallel gravity in the lit-
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erature. While inertial spin connections are common place, not something in special relativity

inherent in teleparallel gravity, the role of inertial spin junctions in eliminating clutter inertia

e¤ects within a given frame of reference are emphasized here. Careful consideration of inertial

spin connections leads to a completely invariant theory of teleparallel gravity and its general-

izations. In fact, the nature of spin junctions distinguishes the relationship between so-called

good and bad tetrads, clearly showing that in principle any tetrad can be used. The �eld equa-

tions and their generalizations for the completely invariant formulation of teleparallel gravity

are given, and many examples with di¤erent frameworks and spin-connection assumptions are

shown to illustrate the covariant approach. Various modi�ed teleparallel gravity models are

also brie�y discussed [2].

Neutron stars are very dense and compact objects with a mass of about 1.5 M�, but with

radius 105 times smaller than the sun�s radius. They are among the strangest objects in our

universe and are a stellar laboratory for astrophysics and microphysics. In fact, their centers are

so dense that atomic nuclei disappear into their cores. Their magnetic �elds can be as high as

1015 G, and they are very compact and rapidly rotating objects. Their evolutionary dynamics

requires an accurate description of their relativistic and microphysical properties. Therefore,

they are of particular interest to astrophysicists and nuclear physicists [3].

This master thesis contains a description of neutrons stars in TEGR and it is structured as

follows. The next section is devoted to a review of the general relativity theory. In chapter 3,

we discuss the fundaments of the TEGR theory. Chapter 4 is then devoted to the theory of

neutrons stars in GR and some of their properties. In chapter 5, we study the existence and

the properties of neutrons stars in TEGR in the presence of a non minimally coupled �eld in

an harmonic potential. A summary of our study in discussed in the conclusion.
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Chapter 2

Introduction to general relativity

This chapter is essentially based on the book of L. Landau and E. Lifshitz [4].

2.1 Gravitational �eld in non-relativistic mechanics

Concurrently in the electromagnetic �eld, there are still gravitation �elds in nature. Fields

enjoy he following fundamental property : all bodies move in them , independently of their

masses. Thus, the laws of free fall in the �eld of attraction of the earth are identical for bodies :

whatever their masses, all acquire one and the same acceleration. It is the properties of motion

in a non-inertial reference system are the same an inertial system gives in the presence of a

gravitational �eld.

The motion of a particle in a gravitational �eld erected in tractive number mechanics by a

lagrange function written in an inertial reference frame

L =
mv2

2
�m' (2.1)

where ' is some function of coordinates and time characterizing the �eld, called gravitation

potential.

3



2.2 Gravitation �eld in relativistic mechanics

The fundamental property of gravitational �elds which consists in the fact that all bodies move

in them in the same way also remains a central concept in relativistic mechanics. In an inertial

reference system referred to cartesian coordinates, the interval ds is determined by the relation

ds2 = c2dt2 � dx2 � dy2 � dz2: (2.2)

when we pass to another reference inertial frame (i.e. under a the Lorentz transformation) we

know that the expression of the interval ds2 is not a¤ected. But when we switch to a non-

inertial reference system, the ds2 is then no longer the sum of the squares of the di¤erentials of

the four coordinates. Thus, when we pass to an arbitrary coordinates system, for example, in

uniform rotation

x = x0 cos
t� y0 sin
t; y = x0 sin
 + y0 cos
t; z = z0

(where 
 is the angular velocity of rotation, directed along the z axis ) the interval takes the

form

ds2 = [c2 � 
2(x02 � y02)]dt2 � dx02 � dy02 � dz02 + 2
y0dx0dt� 2
x0dy0dt:

Whatever the law of transformation of time, this expression cannot be reduced to a sum of

squares of the di¤erentials of the four coordinates. Therefore, in a non-inertial frame the

square of the interval is some general quadratic form of the di¤erential of the coordinates, i.e.

ds2 = g��dx�dx� (2.3)

where the g�� , functions of the spatial coordinates x1; x2; x3 and the temporal coordinates x0;

de�ne the space-time metric (g�� = g��), where g�� and g�� enter with the same factor dx�dx�

. In an inertial reference frame, in cartesian spatial coordinates x1;2;3 = x; y; z and temporal

x0 = ct; the g�� are given by

g11 = g22 = g33 = 1; g00 = �1; g�� = 0; � 6= �: (2.4)
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2.3 Curvilinear coordinates

Consider a transformation from a coordinate system x0; x1; x2; x3 to another x00; x01; x02; x03:

xi = f i
�
x00; x01; x02; x03

�
where the f i are certain functions. In a transformation of coordinates, the di¤erentials are

transformed according to the law

dxi =
@xi

@x0k
dx0k: (2.5)

Any set of four quantities Ai (i = 0; 1; 2; 3) transforming in an arbitrary change of coordi-

nates as their di¤erential is called a contravariant four-vector. We thus have in coordinates

transformation

Ai =
@xi

@x0k
A0k: (2.6)

Let ' be a scalar. The four quantities @'
@xi

transform into a coordinate transformation according

to the formulas
@'

@xi
=

@'

@x0k
@x0k

@xi
(2.7)

which is di¤erent from the last formula. Then any set of four quantities Ai transforming under

coordinate change as the derivative of a scalar is called a covariant four-vector. We thus have

Ai =
@x0k

@xi
A0k: (2.8)

As there exist two kinds of vector in curvilinear coordinates, we have in such a system three

kinds of second order tensor. We call second-order contravariant tensor a set Aik of 16 quantities

transforming like the products of the components of two contravariant vectors, that is to say

according to the law

Aik =
@xi

@x0l
@xk

@x0m
A0lm: (2.9)

In the same way, a covariant tensor transforms according to the formulas

Aik =
@x0l

@xi
@x0m

@xk
A0lm; (2.10)
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and a mixed tensor transforms as

Aik =
@xi

@x0l
@x0m

@xk
A0lm: (2.11)

We de�ne in a completely analogous way the law of transformation of tensors of higher orders.

For example, the tensor Amikl , covariant with respect to the lower 3 indices and contavariant

with respect to one index transforms according to the formula

Amikl =
@x0p

@xi
@x0r

@xk
@x0s

@xl
@xm

@x0t
A0tprs: (2.12)

2.3.1 Distance and time

We have already said that in general relativity the choice of the system of reference is not

limited by anything, the three coordinates x1; x2; x3 can be arbitrary quantities de�ning the

position of bodies in space, and the time coordinate x0 can be determined by a clock recording

it�s own time. Let�s �rst determine the link between the real time, which we will denote below

by � and the x0 coordinate. For this purpose, consider two in�nitely close events taking place at

one and the same point in space. Then, the interval ds between these two events is nothing but

cd� where d� is the (real) time interval between the two events. Setting dx1 = dx2 = dx3 = 0

in the general expression �ds2 = gikdx
idxk, we �nd

ds2 = �c2d�2 = g00dx
2
0;

from which we get

d� =
1

c

p
�g00dx0: (2.13)

Again, for the time between two arbitrary events at one and the same point in space we obtain

� =
1

c

Z p
�g00dx0: (2.14)

This relation determines the real time (the proper time at a given point in space ) as a function

of the coordinate x0: We also note that the quantity g00 is negative.
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2.3.2 Covariant derivative

In cartesian coordinates the di¤erentials dAi of a vector Ai form a vector, and the partial

derivatives @Ai
@xi

of its components with respect to the coordinates a tensor. It is di¤erent in

curvilinear coordinates : dAi is not longer a vector and @Ai
@xk

a tensor. It is also easy to verify

this directly, for this purpose, let us establish the formulas for transforming the di¤erentials

dAi into curvilinear coordinates. A covariant vector and it�s di¤erential transform according to

the formulas

Ai =
@x0k

@xi
A0k;

and

dAi =
@x0k

@xi
dA0k +A

0
kd
@x0k

@xi
=
@x0k

@xi
dA0k +A

0
k

@2x0k

@xi@xl
dx0l: (2.15)

Therefore dAi does not transform like a vector, because of the second term. This is only in

cases where the second derivatives cancel, @2x0k
@xi@xl

= 0; that is, if the x0k are linear functions of

the xk(a¢ ne transformations). Then the transformation formulas have the form

dAi =
@x0k

@xi
dA0k; (2.16)

and the dAi�s transform as a vector.

When we compare two in�nitely close vectors, we parallel transport one of them to the point

where the other is. Let us consider an arbitrary contravariant vector, let Ai be its components

at the point of coordinates xi and Ai + dAi at the neighboring point xi + dxi , and transport

the vector Ai in parallel to the in�nitely neighboring point xi + dxi. Let �Ai be its increase.

Then the di¤erence DAi between the two vectors, now found at the same point, is

DAi = dAi � �Ai (2.17)

where is written as

�Ai = ��iklAkdxl (2.18)

and the �ikl are some function of the coordinates. In cartesian system all �ikl = 0 are zero.

We can however choose a system of coordinates such that the �ikl are canceled there in a point
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given in advance, the quantities �ikl are called christo¤el symbols. Subsequently, we will also

have to use the quantities �i;kl , de�ned as follows

�i;kl = gim�
m
kl: (2.19)

It is clear that conversely

�ikl = gim�m;kl: (2.20)

Let Ai and Bi be covariant and contravariant vectors. From �
�
AiB

i
�
= 0, we get

Bi�Ai = �Ai�Bi = �iklBkAidxl;

or, by changing the indices,

Bi�Ai = �
k
ilAkB

idxl:

From where, the Bi being arbitrary, we obtain

�Ai = �
k
ilAkdx

l: (2.21)

Substituting (2:18) and dAi = @Ai

@xl
dxl in (2:17), we �nd:

DAi =

�
@Ai

@xl
+ �iklA

k

�
dxl: (2.22)

In an analogous way, we have for a covariant vector:

DAi =

�
@Ai
@xl

� �kilAk
�
dxl: (2.23)

The expressions contained in the parentheses in (2:21) and (2:23) are tensors, since their prod-

ucts by the vector dxk yields a vector. It is obvious that they represent the tensors which in

curvilinear coordinates play the role of the cartesian tensor @Ai
@xk
. These tensors are called the

covariant derivatives of vectors Ai;k and Ai;k; respectively.

Therefore we write

DAi = Ai;ldx
l; DAi = Ai;ldx

l (2.24)
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where the covariant derivatives themselves being

Ai;l =
@Ai

@xl
+ �iklA

k; (2.25)

Ai;l =
@Ai
@xl

� �kilAk: (2.26)

In cartesian coordinates the covariant derivatives coincide with the ordinary derivatives .

2.3.3 Relation between the christo¤el symbols and the metric tensor

Let us �rst show that the covariant derivative of the mertic tensor g�� is zero. In GR theory,

this is called metric compatibility. Note for this purpose that we must have for the vector DAi,

as for any vector (Ai = gikAk), the relation

DAi = gikDA
k (2.27)

so that

DAi = D
�
gikA

k
�
= gikDA

k +AkDgik: (2.28)

Comparing with DAi = gikA
k , we get , given that the vector Ai is arbitrary :

Dgik = 0: (2.29)

It therefore follows that

gik;l = 0: (2.30)

Therefore we must consider the gik as a constant referred to in the covariant derivation . We

can use the equality gik;l = 0 to express the christo¤el symbols �ikl by means of the tensor gik.

Consequently, the derivatives of the gik are expressed by means of the christo¤el symbols. Let
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us write these derivatives, by circularly permuting the indices i; k; l :

@gik
@xl

= �k;il + �i;kl; (2.31)

@gli
@xk

= �i;kl + �l;ik; (2.32)

�@gkl
@xi

= ��l;ki � �k;li: (2.33)

Taking the half-sum of these equalities, we �nd (remembering that �ikl = �ilk):

�ikl =
1

2

�
@gik
@xl

+
@gil
@xk

� @gkl
@xi

�
: (2.34)

From which we get for the �ikl = gim�m;kl:

�ikl =
1

2
gim

�
@gmk
@xl

+
@gml
@xk

� @gkl
@xi

�
: (2.35)

Such are the formulas giving the desired expressions of the christo¤el symbols as a function of

the metric tensor .

Let us determine the di¤erential dg of the determinant g formed with the components of

the tensor gik. We can obtain dg by taking the di¤erential of each component of the tensor

gik and multiplying it by the corresponding minor. Moreover, the components of the tensor

gik, the inverse of the tensor gik, are equal, as we know, to the quotients of the minors of the

determinant formed with the quantities gik by this determinant. The minors of the determinant

g are therefore ggik: Therefore,

dg = ggikdgik = �ggikdgik (2.36)

where we have use the fact that gikgik = �ii = 4 =) gikdgik = �gikdgik. On the other hand we

deduce that

�iki =
1

2g

@g

@xk
=
@ ln

p�g
@xk

: (2.37)
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2.3.4 Rotations

A special case of stationary gravitational �elds is the �eld which is generated by the transition

to a reference system in uniform rotation. In order to determine the interval ds, let us pass

from the stationary system to the uniformly rotating system r0; '0; z0; t (we are in cylindrical

coordinates r0; '0; z0 ) where the interval is written as

ds2 = c2dt2 � dr02 � r02d'02 � dz02: (2.38)

Let r; '; z be the cylindrical coordinates in the rotating system. If the axis of rotation

coincides with the axes Z and Z 0 , we have r0 = r; z0 = z; '0 = '+
t; where 
 is the angular

velocity of the rotation. A simple calculation gives the expression for the interval in the rotation

coordinate system:

ds2 =
�
c2 � 
2r2

�
dt2 � 2
r2d'dt� dz2 � r2d'2 � dr2: (2.39)

2.4 The curvature tensor

If xi = xi (s) are the parametric equation of a curve where s is the in�nitesimal arc measured

from a given point, then the vector ui = dxi

ds is the vector tangent to the curve. If the curve is

a geodesic, we have Dui = 0 along this curve, and this means that if we transport the vector

ui in parallel from a point xi on the geodesic to another point xi + dxi on the same geodesic

, it coincides with the vector ui + dui tangent to this line at point xi + dxi. Therefore, the

parallel transport along a geodesic preserve the tangent vector to it. Moreover, the angle of

two vectors is clearly invariant in their parallel transport. We can therefore a¢ rm that during

the transport of any vector along a geodesic, the projection of a vector on the tangent to a

geodesic is invariant in the parallel transport along the geodesic. A fundamental fact is that, in

a non-euclidean space, a vector parallel transported along a closed curve, it no longer coincides

with the initial vector.

We express the general formula that determines the anisotropy of the vector during it�s

parallel transport along an in�nitesimal closed contour �Ak in the form
I
dAk, where the

integral is taken over the given contour. By substituting for dAk its expression (2.18), we have
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:

�Ak =

I
�iklAidx

l; (2.40)

We can consider that the components of the vector Ai at the points inside the in�nitesimal

contour are determined univocally by their values on the contour itself by virtue of the formulas

�Ai = �
n
ilAndx

l; that is , derivatives

@Ai
@xl

= �nilAn: (2.41)

Now applying Stokes theorem

I
Aidxi =

Z
dfki

@Ai
@xk

=
1

2

Z
dfik

�
@Ak
@xi

� @Ai
@xk

�
; (2.42)

to the integral (2:40) and observing that the area bounded by the contour is an in�nitesimal

quantity �f im; we obtain:

�Ak =
1

2

"
@
�
�ikmAi

�
@xl

�
@
�
�iklAi

�
@xm

#
�f lm

=
1

2

�
@�ikm
@xl

Ai �
@�ikl
@xm

Ai + �
i
km

@Ai
@xl

� �ikl
@Ai
@xm

�
�f im:

Substituting the derivatives deduced from (2:41) we obtain

�Ak =
1

2
RiklmAi�f

lm; (2.43)

where, Riklm the fourth-order Riemann tensor given by

Riklm =
@�ikm
@xl

� @�ikl
@xm

+ �inl�
n
km � �inm�nkl: (2.44)

2.4.1 Properties of the curvature tensor

It follows immediately from expression (2:44) that the curvature tensor is antisymmetric with

respect to the indices l and m:

Riklm = �Rikml: (2.45)
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Moreover, we can easily verify that:

Riklm +R
i
mkl +R

i
lmk = 0: (2.46)

We also use the covariant form given by

Riklm = ginR
n
klm: (2.47)

After straightforward manipulations, we easily obtain the expression

Riklm =
1

2

�
@2gim
@xk@xl

+
@2gkl
@xi@xm

� @2gil
@xk@xm

� @2gkm
@xi@xl

�
+ gnp

�
�nkl�

p
im � �

n
km�

p
il

�
: (2.48)

We immediately deduce from this expression the following symmetry properties:

Riklm = �Rkilm; (2.49)

Riklm = �Rikml; (2.50)

Riklm = Rlmik: (2.51)

It follows in particular that the components of Riklm such that i = k or l = m are zero. In the

end, we have for Riklm; as we dit it for Riklm; the identity (2:46) :

Riklm +Rimkl +Rilmk = 0: (2.52)

2.5 The action for the gravitational �eld

In order to �nd the equations that governs the evolution of the gravitational �eld, it is necessary

to �rst determine the interaction of matter �elds on the gravitational �eld. We then obtain the

desired equation by varying the sum of the e¤ects of the �eld and material particles. As usual

this setup is build via the use of the action principle.

The action Sg , must be expressed as a scalar integral, just like the e¤ect of an electromag-
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netic �eld Z
G
p
�gd
 (2.53)

We will then assume that the gravitational �eld equation cannot contain (potential) deriva-

tives of �elds of order greater than two (as is the case with the electromagnetic �eld equation).

To this end, since the �eld equations are obtained by varying the action, the expressions under

the integral must not contain derivatives of gil of order greater than one; so G only needs to

contain the tensor gik and the symbols �ikl: However, we cannot with the only quantities gik

and �ikl form a scalar. We already see it from the fact that the �iklcan be canceled at a point

by a suitable choice of coordinates. There is however a scalar R � the scalar curvature of 4-

space time � which, it is true, contains only the tensor gik and its �rst derivatives and second

derivatives of gik;but linearly. By application of Gauss�s theorem to an integral of an expression

containing no more second derivatives, we can put it in the form

Sg �
Z
R
p
�gd
 =

Z
G
p
�gd
+

Z
@
p�g!i
@xi

d
; (2.54)

where, G only contains gik and its �rst derivatives, and where the second term is of the diver-

gences of a certain quantity !i: By virtu of Gauss�s theorem, one can transform this second

integral into an integral over the hypersurface bounding the 4-volume. When the action is

varied, the variation of the second right-hand integral disappears, because, according to the

principle of least action, the variation of the �eld is zero on the integration boundary. So we

are let with the term

�Sg � �

Z
R
p
�gd
 = �

Z
G
p
�gd
:

The quantity G satis�es the condition stated above, because it contains only the gik and

their derivatives. We can therefore write :

�Sg � �

Z
G
p
�gd
 = �

Z
R
p
�gd
; (2.55)

The rule for calculating the energy-momentum tensor for any physical system is

S =

Z
�

�
q;
@q

@xi

�
dV dt �

Z
�d
; (2.56)
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in 4-spaces, where q is a set of generalized coordinates. In curvilinear coordinates this integral

must be written in the form

S �
Z
�
p
�gd
 (2.57)

where � is some function of q determining the state of the system and their derivatives with

respect to coordinates and time ( in Galilean coordinates g = 1 and S becomes
R
�dV dt ). The

integration is made in the whole ( tree-dimensional ) space and between two given instant, that

is to say in the in�nite domain between two hypersurfaces .

We de�ne energy-momentum tensor by formula

Tik = �ik��
X

q
(l)
;l

@�

@q
(l)
;k

; (2.58)

and is not symmetric in general.

To make it symmertic, we add to above expression a suitably chosen term of the form @
@xl
 ikl

where  ikl is antisymmetric. We are now going to indicate another method of calculating the

energy-momentum tensor, having the advantage of immediately providing an exact expression.

Let�s move in (2:57) from the xi coordinates to the x0i = xi + �i coordinates , where the ��s

are small displacements. In this transformation, the components gik transform as:

g0
ik
�
x0l
�
= glm

�
xl
� @x0i
@xl

@x0k

@xm
= glm

�
�il +

@�i

@xl

� 
�km +

@�k

@xm

!

� gik
�
xl
�
+ gim

@�k

@xm
+ gkl

@�i

@xl
: (2.59)

The tensor g0ik is here a function old x0l; and the tensor gik function of the old coordinates

xl: Expand the g0ik
�
xl + �l

�
in powers of �l and neglecting terms of second order in �l, we

obtain:

g0
ik
�
xl
�
= gik

�
xl
�
� �l @g

ik

@xl
+ gil

@�k

@xl
+ gkl

@�i

@xl
: (2.60)

g0ik = gik + �gik; �gik = �i;k + �k;i: (2.61)

where we have used the fact �i;k + �k;i is a tensor. Then:

g0ik = gik + �gik; �gik = ��i;k � �k;i: (2.62)
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The action S is a scalar, and it is invariant under coordinate transformation. Moreover, the

variation �S of the action in a coordinate transformation can be written in the following form:

�S �
Z (

@
p�g�
@gik

�gik +
@
p�g�
@ @g

ik

@xl

�
gik

@xl

)
d


�
Z (

@
p�g�
@gik

� @

@xl
@
p�g�
@ @g

ik

@xl

)
�gikd
:

Let us set
1

2

p
�gTik =

@

@xl
@
p�g�
@ @g

ik

@xl

� @
p�g�
@gik

; (2.63)

so �S becomes

�S = � c
2

Z
Tik�g

ikp�gd
 = c

2

Z
T ik�gik

p
�gd
 (2.64)

where c is some constant. We have used the relation gik�gik = �gik�gik so T ik�gik = �Tik�gik:

2.5.1 Gravitational �eld equations

The equations of the gravitational �eld are deduced from the principle of least action � (Sm + Sg) =

0; where Sg and Sm represent the action of the gravitational and mattersectors, respectively.

Let varying the action, �Sg: We have :

�

Z
R
p
�gd
 = �

Z
gikRik

p
�gd
 =

=

Z �
Rik
p
�g�gik +Rikgik�

p
�g + gik

p
�g�Rik

�
d
:

Using the relation

�
p
�g = � 1

2
p�g �g = �

1

2

p
�ggik�gik;

we obtain

�

Z
R
p
�gd
 =

Z �
Rik �

1

2
gikR

�
�gik

p
�gd
+

Z
gik�Rik

p
�gd
 (2.65)

We show that the second term is zero. Collecting eq.(2.64) and (2.65) we obtain the famous
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Einstein equations of the gravitational �eld.

Gik = Rik �
1

2
gikR = �Tik: (2.66)
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Chapter 3

Introduction to Teleparallel

Equivalent of General Relativity

(TEGR)

This chapter is essentially based on the book of Ruben Aldrovandi and José Geraldo untilled

"Teleparallel Gravity: an introduction" [5].

3.1 Linear frames and tetrads

Space-time is the common place where the four fundamental interaction known so far tack

place. The theories describing the four interaction have all a strong geometrical �avor. We use

the greek alphabet (�; �; �; ::: = 0; 1; 2; 3) to denote indices related to space-time, and the �rst

letters of the latin alphabet (a; b; c; ::: = 0; 1; 2; 3) to denote indices related to tangent space. In

Minkowski space-time the Lorentz metric has the following form:

�ab = diag (+1;�1;�1;�1) (3.1)

Space-time coordinates are represented by the set fx�g , while tangential space coordinates

Denoted by fxag. Such coordinate systems determine their domain of de�nition, the local basis
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of the vector �eld formed by the gradient set

f@�g =
�

@

@x�

�
; f@ag =

�
@

@xa

�
; (3.2)

as well as fdx�g and fdxag for covector �elds. The bases are dual in the sense that

dx� (@�) = ��� ; dx
a (@b) = �ab : (3.3)

3.2 Trivial frames

General frames or tetrads, called also vierbeine (four-legs) will be denoted by

feag , feag :

Very particular cases are the mentioned �coordinate�bases

feag = f@ag ; feag = fdxag ; (3.4)

its names cames from their relationship to the coordinate system

ea (eb) = �ab : (3.5)

The rather special manifold where a vector �eld can be de�ned anywhere are called parallelizable

like the euclidian space En

ea = e �a @� ea = ea�dx
�; (3.6)

Conversely we have

@� = eauea dx� = e �a e
a: (3.7)

On account of the orthogonality conditions (3.5), the frame components satisfy

ea�e
�
a = ��� ea�e

�
b = �ab : (3.8)

These frames and their bundles are components of space-time.
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A general linear basis feag satis�es the commutation relation

[ea; eb] = f c abec; (3.9)

with f c ab are the structure coe¢ cients , or the anholonomy coe¢ cients. We express the

relationship with the Cartan structure equation as

dec = �1
2
f c abe

a ^ ebc: (3.10)

We have

f c ab = ec [ea (eb)� eb (ea)]

= ec�
�
ea
�
e �b
�
� eb (e �a )

�
= e �a e

�
b

�
@�e

c
� � @�ec�

�
; (3.11)

then, we substitute in the expression (3:10) to get

dec = �1
2
e �a e

�
b

�
@�e

c
� � @�ec�

�
ea ^ eb

= �1
2
e �a e

�
b

�
@�e

c
� � @�ec�

� �
ea�dx

�
�
^
�
eb�dx

�
�

=
1

2
e �a e

a
�e

�
b e

b
�

�
@�e

c
� � @�ec�

�
dx� ^ dx�

=
1

2

�
@�e

c
� � @�ec�

�
dx� ^ dx� : (3.12)

When

f 0a cd = 0 =) de0 = 0;

the basis fe0ag is then said to be integrable or holonomic.

Consider now the metric of Minkowski space-time

� = ���dx
� 
 dx� = ���dx

�dx� (3.13)
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where fdx�g is an holonomic basis, and fx�g represents a set of cartesian coordinates, and

��� = diag (+1;�1;�1;�1) : (3.14)

The ��� remain the same in any other coordinates.

The linear frame

ea = eua@�

provides a relation between the tangent space-time �ab and the space-time metric as follows

�ab = ���e
�
ae
�
b : (3.15)

The inverse is expressed by

��� = �abe
a
�e
b
� (3.16)

The feag always relate the tangent Minkowski space to a Minkowski space-time whether they

are holonomic or not, inertial or not. These are the frames appearing in Spacial Relativity, and

are called trivial frames or trivial tetrads.

3.3 Nontrivial frames

Nontrivial frames or tetrads will be denotes by

fhag ; fhag ; (3.17)

and they are de�ned like linear frames whose coe¢ cient of anholonomy is related to both inertia

and gravitation. To see the di¤erence from trivial linear frames ea; considering general pseudo-

Riemannian space-time metric g with components g�� in the dual holonomic basis fdx�g

g = g��dx
� 
 dx� = g��dx

�dx� : (3.18)

The tetrad �eld

ha = h �a @�; ha = ha�dx
� (3.19)
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is a linear basis that relates g to the tangent-space metric

� = �abdx
adxb; (3.20)

through the relation

�ab = g��h
�
a h

�
b : (3.21)

From

�ab = diag (+1;�1;�1;�1) (3.22)

the tetrad �eld is a linear frame and the members ha are orthogonal. Using the metric g�� the

components of the dual basis tetrad �elds ha = ha�dx
� satisfy

ha�h
�
a = ���; ha�h

�
b = �ab ; (3.23)

so that, we �nd g�� :

g�� = �abh
a
�h
b
� : (3.24)

Since the determinate is :

g = det (g��) ; (3.25)

we obtain

h = det
�
ha�
�
=
p
�g (3.26)

A tetrad basis fhag satis�es the commutation relation

[ha; hb] = f c abhc (3.27)

where, f c ab are the structure coe¢ cients (coe¢ cients of anholonomy) of frame fhag

dhc = �
1

2
f c abh

a ^ hb: (3.28)
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We have

f c ab = hc�
�
ha
�
h �b
�
� hb (h �a )

�
= h �a h

�
b

�
@�h

c
� � @�hc�

�
: (3.29)

We substitute in the previous sentence

dhc = �
1

2
h �a h

�
b

�
@�h

c
� � @�hc�

�
ha ^ hb

= �1
2
h �a h

�
b

�
@�h

c
� � @�hc�

�
ha�h

b
�dx

�dx�

=
1

2

�
@�h

c
� � @�hc�

�
dx�dx� : (3.30)

We have

ha = dxa:

when

f c ab = 0 (3.31)

we �nd

dha = 0; (3.32)

which means the absence of inertial e¤ects in the presence of gravitation, then f c ab represents

both inertial e¤ects and gravitation.

3.4 Lorentz connection

A lorentz connection (spin connection ) is 1-form assuming values in the lie algebra of the

lorentz group

A� =
1

2
Aab�Sab; (3.33)

where Sab represents Lorentz generators. These generators are antisymmetric in the algebra of

indices, and Aab� must be antisymmetric to be Lorentzian. This connection de�nes the Fock-

Ivanenko covariant derivative

D� = @� �
1

2
Aab�Sab: (3.34)
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The term in the right acts only on algebra or tangent-space indices for scalar as �eld is the

generator

Sab = 0 (3.35)

where Sab is spinorial matrices for the Dirac spinor  

Sab =
1

4
[a; b] ; (3.36)

where a is the Dirac matrices .

The Fock-Ivanenko derivative of a scalar �eld is then

D�� =

�
@� �

i

2
Aab�Sab

�
�c

= @��
c � i

2
Aab�Sab�

c

= @��
c � i

2
A���h

a
�h
b
�S�h


a h

�
b h

c
d�
d

= @��
c � i

2
A���S��


��
�
�h
c
d�
c

= @��
c �Acd��d: (3.37)

The tetrad relates tangent space internal tensors with space-time (external) tensors . If �� is

an internal or lorentz vectors

�� = h �a �
a; (3.38)

Aab� = ha�h
b
�A

��
�; (3.39)

Sab = h a h
�
b S�; (3.40)

conversely, we write

�a = ha��
�; (3.41)

A��� = h �a h
�
b A

ab
�; (3.42)

S� = hah
b
�Sab: (3.43)

On the other hand, due to its non-tensorial character, a connection will acquire a vacuum,
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or non-homogeneous term, under the same operation. For example, to each spin connection

Aab�, there is a corresponding general linear connection �
�
�� ,given by

���� = h �a @�h
a
� + h

�
a A

a
b�h

b
�

= h �a @�h
a
� + h

�
a A

a
b�h

b
ah
a
�

= h �a

�
@� +A

a
b�h

b
a

�
ha�

= h �a

�
@� �Aab�hba

�
ha�

= h �a D�h
a
� ; (3.44)

where D� is the covariant derivative .

Consequently, the inverse relation is

Aab� = ha�@�h
�
b + h

a
��

�
��h

�
b

= ha�@�h
�
b + h

a
��

�
��h

�
� h

�
b

= ha�
�
@� + �

�
��h

�
�

�
h �b

= ha� 5� h
�
b ; (3.45)

where

5� = @� + �
�
��h

�
� ; (3.46)

is the standard covariant derivative endowed with the connection ����, which acts on external

indices only for a space-time vector �� ;so we have

5��
� =

�
@� + �

�
��h

�
�

�
��

= @��
� + ����h

�
��
�

= @��
� + �����

�: (3.47)

Now using

�� = h �a �
a; (3.48)

�a = ha��
�: (3.49)
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we obtain the relation between Fock-Ivanenko derivative and the covariat derivative

D��
d = hd� 5� �

�: (3.50)

3.5 Curvature and torsion

Curvature and torsion are tensorial properties of Lorentz connection, is evident if we note that

are many di¤erent connections that can be de�ned in the case of general relativity where the

zero-torsion spin connection is present. Universality of gravitation allows its curvature to be

interprets together with the metric as part of space-time . So that we can talk about" space-

time curvature". We take space-time simply to represent connection with di¤erent curvatures

and torsions.

With the Lorentz connection Aab�, the curvature is a 2-form assuming values in the lie

algebra of Lorentz group

R =
1

4
Rab��S

b
a dx

� ^ dx�: (3.51)

The torsion is also a 2-form given by

T =
1

2
T a��Padx

� ^ dx�; (3.52)

with Pa = @a is the translation generators.

The curvature and torsion components are

Rab�� = @�A
a
b� � @�Aab� +Aae�Aeb� �Aae�Aeb� ; (3.53)

T a�� = @�h
a
� � @�ha� +Aae�he� �Aae�he� : (3.54)

Though contraction with tetrads we can write tensors in space-time indexed forms

R���� = @�A
�
�� � @�A

�
�� +A

�
e�A

e
�� �A�e�Ae�� : (3.55)
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We calculate the �rst term :

@�A
�
�� = @�

�
h �a h

b
�A

a
b�

�
= (@�h

�
a )h

b
�A

a
b� + h

�
a

�
@�h

b
�

�
Aab� + h

�
a h

b
�(@�A

a
b�)

= (@�h
�
a )h

b
�A

a
b� � (@�h �a )hb�Aab� + h �a hb�

�
@�A

a
b�

�
= h �a h

b
�@�A

a
b�: (3.56)

The second term is :

@�A
�
�� = @�

�
h �a h

b
�A

a
b�

�
= (@�h

�
a )h

b
�A

a
b� + h

�
a

�
@�h

b
�

�
Aab� + h

�
a h

b
� (@�A

a
b�)

= (@�h
�
a )h

b
�A

a
b� � (@�h �a )hb�Aab� + h �a hb� (@�Aab�)

= h �a h
b
�@�A

a
b� : (3.57)

We substitute (3:56) and (3:57) in (4:10) :

R���� = h �a h
b
�@�A

a
b� � h �a hb�@�Aab� + h �a Aae�hb�Aeb� � h �a Aae�hb�Aeb�

= h �a h
b
�

�
@�A

a
b� � @�Aab� +Aae�Aeb� �Aae�Aeb�

�
= h �a h

b
�R

a
b��; (3.58)

T ��� = @�h
�
� � @�h�� +A�e�he� �A�e�he�

= @�h
�
a h

a
� � @�h �a ha� + h �a he�Aae� � h �a he�Aae�

= h �a
�
@�h

a
� � @�ha� + he�Aae� � he�Aae�

�
= h �a T

a
�� : (3.59)

We use the relation

Aab� = ha�@�h
�
b + h

a
��

�
��h

�
b (3.60)
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to �nd

R���� = @��
�
�� � @��

�
�� + �

�
���

�
�� � �

�
���

�
�� : (3.61)

We have

R���� = h �a h
b
�R

a
b��

= h �a h
b
�

�
@�A

a
b� � @�Aab� +Aae�Aeb� �Aae�Aeb�

�
: (3.62)

We substitute (3:60) in (3:62) , and begin by a calculation of the �rst term:

term1 = h �a h
b
�@�A

a
b�

= h �a h
b
�@�

�
ha@�h


b + h

a
�


��h

�
b

�
= h �a h

�
(@�h

a
)@�h


b + h

a
(@�@�h


b ) + (@�h

a
)�


��h

�
b + h

a
(@��


��)h

�
b + h

a
�


��(@�h

�
b )
�

= hb�@�@�h
�
b + @�h

a
�@�h

�
a + h

�
a @�h

a
�


�� + @��

�
��h

�
b + h

b
��

�
��@�h

�
b : (3.63)

For the second term we get

term2 = �h �a hb�@�Aab�

= �hb�@�@�h
�
b � @�h

a
�@�h

�
a � h �a @�ha�� � @�����h �b � hb�����@�h �b : (3.64)

For the third term we have

term3 = h �a h
b
�A

a
e�A

e
b�

= h �a h
b
�

h�
ha�@�h

�
e + h

a
��
�
��h

�
e

� �
he@�h


b + h

e
�


��h

�
b

�i
= h �a h

b
�

�
ha�@�h

�
e h

e
@�h


b + h

a
�@�h

�
e h

e
�


��h

�
b + h

a
��
�
��h

�
e h

e
@�h


b + h

a
��
�
��h

�
e h

e
�


��h

�
b

�
= �@�h �e @�he� + @�h �e �


��h

e
 + h

b
��

�
��@�h

�
b + �

�
��


��; (3.65)
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and �nally the fourth term reads as

term4 = �h �a hb�Aae�Aeb�

= �h �a hb�
h�
ha�@�h

�
e + h

a
��
�
��h

�
e

� �
he@�h


b + h

e
�


��h

�
b

�i
= �h �a hb�

�
ha�@�h

�
e h

e
@�h


b + h

a
�@�h

�
e h

e
�


��h

�
b + h

a
��
�
��h

�
eh
e
@�h


b + h

a
��
�
��h

�
eh
e
�


��h

�
b

�
= @�h

�
e @�h

e
� � @�h �e �


��h

e
 � hb�����@�h �b � ����


�� : (3.66)

Considering the spin connection Aab� is a (co)vector, we write

Aabc = Aab�h
�
c ; (3.67)

conversely, we write

Aab� = Aabch
c
� : (3.68)

In the anholonomic basis fhag, we write the curvature like

Rabcd = hc (A
a
bd)� hd (Aabc) +AaecAebd �AaedAebc � fecdAabe; (3.69)

and the torsion components is

T abc = Aacb �Aabc � fabc; (3.70)

where ,

hc = h �c @�; (3.71)

and

Aabc =
1

2
(f a
b c + T

a
b c + f

a
c b + T

a
c b � fabc � T abc) : (3.72)

We can write

Aabc =
�Aabc + k

a
bc; (3.73)

where

�Aabc =
1

2
(f a
b c + f

a
c b � fabc) ; (3.74)

where �Aabc is the usual expression of the general relativity spin connection in terms of the
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coe¢ cient of anholonomy , and

Ka
bc =

1

2
(T a
b c + T

a
c b � T abc) (3.75)

is the contortion tensor.

We have

K� =
1

2
Ka

b�S
b

a ; (3.76)

and

���� =
����� +K

�
��; (3.77)

where ,

����� =
1

2
g�� (@�g�� + @�g�� � @�g��) (3.78)

is the zero-torsion Christo¤el connection, or levi-civita connection , and

K�
�� =

1

2

�
T �
� � + T

�
� � � T ���

�
: (3.79)

is space-time indexed contortion tensor .

3.6 Local lorentz transformation

We consider a local lorentz transformation

x0
a
= �ab (x)x

b; (3.80)

under which the tetrad frames transforms as

h0a = �ab (x)h
b; (3.81)

h0a = �
b
a (x)hb: (3.82)
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Accordingly, the space-time metric becomes

g�� = �cdh
0c
�h
0d
� ; (3.83)

and

�ab = �cd
�
h0c�h

�
a

� �
h0
a

�h
�
b

�
: (3.84)

The matrix with entries

�ab (x) = h0a�h
�
b (3.85)

with the transformation

h0a� = �
a
bh
b
�; (3.86)

satis�es

�ab = �cd
�
h0c�h

�
a

� �
h0d�h

�
b

�
: (3.87)

From (3:87) we �nd

h0c� = �
c
ah
a
�; (3.88)

h0d� = �
d
bh
b
� ; (3.89)

so, we substitute in (3:88)

�ab = �cd�
c
ah
a
�h

�
a �

d
bh
b
�h

�
b

= �cd�
c
a�

d
b: (3.90)

Under a local lorentz transformation, �ab the spin connection, undergoes the transformation

�0ab� = �
a
c�
c
d��

d
b + �

a
c @��

c
b : (3.91)

Let us calculate T 0a�� and R
0a
b�� . In the same way T

a
�� and R

a
b��transform covariantly as

T a�� = @�h
a
� � @�ha� +Aae�he� �Aae�he� ; (3.92)
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T 0a�� = @�h
0a
� � @�h0a� +A0ae�h0e� �A0ae�h0e�

= @�

�
�abh

b
�

�
� @�

�
�abh

b
�

�
+
�
�acA

c
d��

d
e + �

a
c@��

c
e

�
�ebh

b
� +

�
�acA

c
d��

d
e + �

a
c@��

c
e

�
�ebh

b
�

= hb�@��
a
b + �

a
b@�h

b
� � hb�@��ab � �ab@�hb� +

�
�abA

b
c�h

c
� � @��abhb�

�
�
�
�abA

b
c�h

c
� � @��abhb�

�
= �ab@�h

b
� � �ab@�hb� + �abAbc�hc� � �abAbc�hc�

= �abT
b
��; (3.93)

and

R0ab�� = @�A
0a
b� � @�A0ab� +A0ae�A0eb� �A0ae�A0eb� : (3.94)

We calculate each term separately :

@�A
0a
b� = @��

a
cA

c
d��

d
b + �

a
c@�A

c
d��

d
b + �

a
cA

c
d�@��

c
b + @��

a
c@��

c
b + �

a
c@�@��

c
b ; (3.95)

@�A
0a
b� = @��

a
cA

a
d��

d
b + �

a
c@�A

c
d��

d
b + �

a
cA

c
d�@��

d
b + �

a
c@�@��

c
b ; (3.96)

A0ae�A
0e
b� = �

a
c�

g
b A

c
f�A

f
g� + �

a
cA

c
f�@��

f
b � �

g
b A

f
g�@��

a
f + �

a
c�

e
f @��

f
b ; (3.97)

A0ae�A
0e
b� = �

a
c�

g
b A

c
f�A

f
g� + �

a
cA

c
f�@��

f
b � �

g
b A

f
g�@��

a
f + �

a
c�
e
f@��

c
e @��

f
b ; (3.98)

and we substitute eqs.(3.95-3.98) in (3.94) , we obtain

R0ab�� = �
a
c�

d
b

�
@�A

c
d� � @�Acd� +Acf�A

f
d� �A

c
f�A

f
d�

�
= �ac�

d
b R

c
d��: (3.99)

3.7 Levi-civita symbol

The totally antisymmetric levi-civita symbol is :

"���� =

8>>><>>>:
+1 if ���� is an even permutation of 0123

�1 if ���� is an odd permutation of 0123

0 otherwise. for "0123=1.

(3.100)
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,

It satis�es

"����"��� = �

���������
��� ��� ��

��� ��� ��

��� ��� ��

��������� (3.101)

,

"����"���� = �2
�
����

�
� � ����

�
�

�
; (3.102)

"����"���� = �6���; (3.103)

"����"���� = �24; (3.104)

we have

h = det
�
ha�
�
=
p
�g (3.105)

is a tensor density of weight -1 , h�1"���� turn out to be an ordinary contravariant tensor.

On the other hand

"��� = "����g��g��g�g�� (3.106)

it is a tensor density of weight +1, the quantity h"���� turns out to be an ordinary covariant

tensor .

3.8 Purely inertial connection

To see how an inertial lorentz connection shows up, we denote by ae� , a generic Minkowski

space-time in general coordinate system

e0a� = @�x
0a; (3.107)
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x0a is a space-time dependent lorentz vector , where

x0a = x0a (x) : (3.108)

The space-time metric is

�0�� = e0a�e
0b
��ab: (3.109)

In the speci�c case of cartesian coordinates the inertial frames assumes the form

e0a� = �a� (3.110)

and the space-time metric is given by

�0�� = diag (+1;�1;�1;�1) (3.111)

Under a local lorentz transformation we have

xa = �abx
0b; (3.112)

conversely , we �nd

x0b = �bax
a; (3.113)

and

e0a� = @�
�
x0a
�
: (3.114)

The holonomic frame (3:107) is transformed accordingly

ea� = �
a
be
0b
�; (3.115)

as a simple computation shows, the explicit form is

ea� = @�x
a + _Aab�x

b = D�x
a; (3.116)
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where

_Aab� = �
a
e@��

e
b : (3.117)

When _Aed� 6= 0, the expression (3:117) becomes

_Aab� = �
a
e
_A0ed��

d
b + �

a
e@��

e
b : (3.118)

The coe¢ cient of anholonomy is given by

fabc = �
�
_Acab � _Acba

�
; (3.119)

where _Aabc is

_Aabc =
_Aab�e

�
c : (3.120)

The inverse relation is

_Aabc =
1

2
(f c
b a + f

a
c b � fabc) : (3.121)

As a purely inertial connection _Aab� has vanishing curvature and torsion :

_Rab�� = 0;
_T a�� = 0: (3.122)

3.9 Particle Motion

In inertial frames
�
e0a�
	
, the equation of motion which describes free particles is

du0a

d�
= 0; (3.123)

with u0a the particle 4-velocity, and

d�2 = ���dx
�dx� (3.124)

is the quadratic Minkowski invariant interval, with � the proper time .
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In an anholonomic frame
�
ea�
	
related to e0a� , by the local lorentz transformation

ea� = �
a
b (x) e

0b
�; (3.125)

the equation of motion assumes the following covariant form

dua

d�
+ _Aab�u

bu� = 0; (3.126)

where

ua = �ab (x)u
0b (3.127)

is the lorentz transformation of the 4-velocity, and his holonomic form is

u� = uae �a (3.128)

where is the space-time 4-velocity is

u� =
dx�

d�
(3.129)

where ea� is related to inertial e¤ects, and only the space-time metric still represent the

Minkowski mertic

��� = ea�e
b
��ab: (3.130)

Actually , the tetrad represents gravitational �eld can�t be obtained through a Lorentz trans-

formation from tetrad whose anholonomy represent inertial e¤ects only .

In holonomic four-velocity , the equation of motion is given by

du�

d�
+ _���u

�u� = 0; (3.131)

where

_��� = e �c @�e
c
� + e

�
c
_Acb�e

b
� = e �c @�e

c
� + e

�
c
_Acb�e

b
ce
c
�

= e �c (@� +
_Acb�e

b
c)e

c
� = e �c

_D�e
c
� ; (3.132)
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where _��� , symmetric in the lower 2 indexes, is the space-time indexed version of the inertial

connection _Aab� obtained through contraction with the trivial tetrad e
a
�.

The inverse relation is

_Aab� = ea�@�e
�
b + e

a
� _
�
��e

�
b = ea�

_re �b : (3.133)

In inertial frame e0a� , where _Aab� = 0 , we get

_��� = e0 �c @�e
0c
� : (3.134)

In cartesian coordinates, we have

e0a� = �a� (3.135)

and the connection _0��� vanishes , so the equation of motion reduces to

du0�

d�
= 0: (3.136)

with u0� = e0a�u
0a.

From the above analysis, we have seen how inertial and coordinates e¤ects can be brought

into the equation of motion, and this formalism can be done for any classical relativistic theory.

3.10 Four-Acceleration and Parallel Transport

We consider the space-time metric

g�� = �abh
a
�h
b
� ; (3.137)

ds2 = g��dx
�dx� : (3.138)

We have the components of the 4-velocity

u� =
dx�

ds
; (3.139)
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and the 4-acceleration is

a� = u�r�u� =
du�

ds
+ ����u

�u� : (3.140)

Since a� is orthogonal to u�, its disappearance means that u� remains parallel to itself along

the curve. This leads to the concept of parallel transport: we say u� is parallel trasported along

a curve if a� = 0. Furthermore, since each vector �eld is locally tangent to the curve with the

following conditions:

zr�u� = rzu� = 0: (3.141)

This means that u� is parallel transported along the integral curve of z� . The metric compat-

ibility

r�g�� = @�g�� � ����g�� � �
�
��g�� (3.142)

implies that

z�r�g�� = 0 (3.143)

for any vector �eld z� . So, it is equivalent to say that the metric g�� is parallel transported

every where on space-time. For Levi-civita connection

����� =
1

2
g�� (@�g�� + @�g�� � @�g��) ; (3.144)

we get also

z��r�g�� = 0: (3.145)

3.11 Inertial e¤ects

Consider an observer attached to a particle moving along a curve . An observer is conceived

as a timelike worldline[3; 4]. Notice that the 4 members of a tetrad are (pseudo-) orthogonal to

each other . This means that one of them is timelike and the others are spacelike. As

�ab = ha�h
�
b ; (3.146)

and � = diag (+1;�1;�1;�1) , we deduce thath0 is timelike and hk (k = 1; 2; 3) is spacelike .
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Then we choose h0, as the observer velocity by identifying

u = h0 =
d

ds
(3.147)

with

u� = h �0 : (3.148)

We take a general connection � and examine the acceleration

aa(f) = ha�a
�
(f) = ha��

�
��h

�
0 h

�
0 + h

a
�h0 (h

�
0 ) : (3.149)

Comparing with spin connection components

Aabc = ha�rhch
�
b = ha��

�
��h

�
b h

�
c + h

a
�hc
�
h �b
�
; (3.150)

we deduce that

aa(f) = A000: (3.151)

The Aabcis antisymmetric in the �rst two indices, so a
k
(f) is di¤erent from zero. The de�nition

Aabc = ha�rhch
�
b (3.152)

gives a new perception of the acceleration such that

ak(f) =
duk

ds
+Akbcu

buc: (3.153)

Now the torsion scalar is given by

T = S ��
� T ��� ; (3.154)

where

S ��
� =

1

2

�
K��

� + �
�
�T

��
� � ���T

��
�

�
; (3.155)

and

K��
� =

1

2

�
T ��� � T��� + T ��

�

�
: (3.156)
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We substitute (3:155) and (3:156) in (3:154),

T =
1

2

�
1

2

�
T ��� � T��� + T ��

�

�
+ ���T

��
� � ���T

��
�

�
T ���

=
1

4
T���T��� +

1

2
T���T��� � T�T�: (3.157)

where T� is the vector of torsion.

3.12 Equations of the gravitational �eld in TEGR

Let us turn now to the derivation of the equations of motion of the gravitational �eld. We

consider the action

S = c

Z
d4xeL = c

Z
d4x eT +

Z
d4x eLm; (3.158)

where the second term is the matter action and c is a constant.

The Variation of the gravitational action is given by

�SG = c

Z
d4x� (eT )

= c

Z
d4x [(�e)T + e (�T )] : (3.159)

Using this relations

� jej = ee �a �e
a
�; (3.160)

�e �a = �e
�
b e

�
a �e

b
� ; (3.161)

�g�� = �ab

�
ea��e

b
� + e

a
��e

b
�

�
; (3.162)

�g�� = �fi (g��e �a + g��e �a ) �ea�; (3.163)

the �rst term in the eq.(3:159) becomes

T (�e) = eTe �a �e
a
�: (3.164)
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Then we substitute (3:157) in the second term in (3:159) to get

e�T = e�

�
1

4
T���T��� +

1

2
T���T��� � T�T�

�
= e

�
1

4
� (T���T���) +

1

2
� (T���T���)� � (T�T�)

�
: (3.165)

First, we calculate the third term in (3:165) because it�s the easiest,

� (T�T�) = (�T
�)T� + T

� (�T�) : (3.166)

Knowing that

T� = T ���; (3.167)

T� = g��T�; (3.168)

and substituting in (3:166), we obtain

� (T�T
�) =

�
�T ���

�
T� + T��

�
g��T�

�
=
�
�T ���

�
T� + T�

h�
�g��

�
T� + g

���T�

i
=
�
�T ���

�
T� + T�T��g

�� + T�g
���T�

= 2
�
�T���

�
T� + T�T��g

��

= 2T�
�
�e �b T ����eb � + e �

a

�
@��e

a
� � @��ea�

��
�
�
g��e �

a + g��e �
a

�
�ea�T�T�

= �2
�
T�T ��� + T�T

�
�
e �
b �eb � + 2 (T

�e �
a � T�e �

a ) @��e
a
�: (3.169)

Secondly the �rst term in (3:165) gives

� (T���T���) = (�T
���)T��� + T

��� (�T���) : (3.170)
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The �rst term in (3:170) becomes

(�T���)T��� = �
�
g��g��T���

�
T���

=
h
(�g��) g��T��� + g

��
�
�g��

�
T��� + g

��g��
�
�T���

�i
T���

=

h
�
�
g��e �

a + g��e �
a

�
�ea�g

��T��� � g��
�
g��e �

a + g��e �
a

�
�ea�T

�
��

+g��g��
�
�e �

b T ����e
b
� + e

�
a

�
@��e

a
� � @��ea�

��i
T���

=
�
�g��e �

a g��T���T��� � g
��e �

a g��T���T���

�
�ea�

+
�
�g��g��e �

a e �
a T���T��� � g

��g��e �
a T���T���

�
�ea�

� g��g��e �
b T ���T����e

b
� + g

��g��e �
a T���

�
@��e

a
� � @��ea�

�
=
�
�T���T��� � T���T���

�
e �
a �ea� +

�
�T���T��� � T���T���

�
e �
a �ea�

� T ���T���e �
b �eb � + 2T

��
a @��e

a
�

=
�
�T���T��� � T���T���

�
e �
a �ea� +

�
�T���T��� � T���T���

�
e �
a �ea�

� T���T���e �
b �eb � + 2T

��
a @��e

a
�

= �4T���T���e �
a �ea� � T���T���e �

b �eb � + 2T
��

a @��e
a
�; (3.171)

while the second term in (3:170) gives

(�T���)T
��� = �

�
g��T

�
��

�
T���

=
�
(�g��)T

�
�� + g��

�
�T���

��
T���

=
h
�ab

�
ea��e

b
� + e

a
��e

b
�

�
T��� + g��

�
�e �

b T ����e
b
�

�
+ e �

a

�
@��e

a
� � @��ea�

�i
T���

= �ab

�
ea��e

b
�T

�
��T

��� + ea��e
b
�T

�
��T

���
�
� g��e �

b T ���T
����eb �

+ g��e
�
a T���@��e

a
� � g��e �

a T���@��e
a
�

= 2T���T���e
�
b �eb � � T���T���e �

b �eb � + 2T
��

a @��e
a
�

= T���T���e
�
b �eb � + 2T

��
a @��e

a
�: (3.172)

We substitute (3:171) and (3:172) in (3:170),

� (T���T���) = �4T���T���e �
a �ea� + 4T

��
� e �

a @��e
a
�: (3.173)
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After that, we turn to the second term in (3:165)

� (T���T���) = (�T
���)T��� + T

��� (�T���) : (3.174)

The �rst term in (3:174) becomes

(�T���)T��� = �
�
g��g��T���

�
T���

=
h
(�g��) g��T��� + g

��
�
�g��

�
T��� + g

��g��
�
�T���

�i
T���

=
h
�
�
g��e �

a + g��e �
a

�
�ea�g

��T��� � g
��
�
g��e �

a + g��e �
a

�
�ea�T

�
��

+g��g��
�
�e �

a T ����e
a
� + e

�
a

�
@��e

a
� � @��ea�

��i
T���

= �T�"T ��e "
a �e

a
� � 2T���T��"e "

a �e
a
� +

�
T� �

� � T � �
�

�
e �
a @��e

a
�

= T�"T
��e "

a �e
a
� � 2T���T��"e "

a �e
a
� +

�
T� �

� � T � �
�

�
e �
a @��e

a
� ; (3.175)

and the second term in (3:174) gives

(�T���)T
��� = �

�
g��T

�
��

�
T���

=
�
(�g��)T

�
�� + g��

�
�T���

��
T���

=
h
�ab

�
ea��e

b
� + e

a
��e

b
�

�
T��� + g��

�
�e �

a T ����e
a
� + e

�
a

�
@��e

a
� � @��ea�

��i
T���

= �abe
a
�T

�
��T

����eb � + �abe
a
�T

�
��T

����eb � � g��e �
a T ���T

����ea�

+ g��e
�
a

�
@��e

a
� � @��ea�

�
T���

= �abT
�
��T

�a��eb � + �abT
a
��T

����eb � � e �
a T ���T

� �
� �ea� + g��e

�
a T���@��e

a
�

� g��e �
a T���@��e

a
�

= T���T
� �
b �eb � + Tb��T

����eb � � T ���T� �
a �ea� + e

�
a T� �

� @��e
a
� � e �

a T� �
� @��e

b
�

= T���T
� �
 e 

b �eb � + T��T
���e 

b �eb � � T ���T� �
 e 

a �ea� + (T
� �
� � T � �

� ) @��e
b
�

= T��T
���e 

b �eb � + (T� �
� � T � �

� ) @��e
b
�: (3.176)

Then , we substitute (3:176) and (3:175) in (3:174) to obtain

� (T���T���) = 2
�
T ��� � T ���

�
T���e

�
a �ea� + 2

�
T� �

� � T � �
�

�
e �
a @��e

a
� (3.177)
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Now we substitute the previous results (3:177) and (3:173) and (3:169)in (3:165), we obtain

e�T = e

�
1

4
� (T���T���) +

1

2
� (T���T���)� � (T�T�)

�
= e

h
�T���T���e �

a �ea� + T
��

� e �
a @��e

a
� +

�
T ��� � T ���

�
T���e

�
a �ea�

+
�
T� �

� � T � �
�

�
e �
a @��e

a
� � 2

�
T�T ��� + T

�T�
�
e �
b �eb � + 2 (T

�e �
a � T�e �

a ) @��e
a
�

i
:

Collecting together the terms without derivations, we get

� T���T���e �
a �ea� +

�
T ��� � T ���

�
T���e

�
a �ea� � 2

�
T�T ��� + T

�T�
�
e �
b �eb �

= T���T���e
�
a �ea� + T

���T���e
�
a �ea� � T ���T���e �

a �ea� � 2T�T��e �
b �eb � � 2T �T�e �

b �eb �

=
�
T���T��a + T

���T��a � T ���T��a � 2T�T ��a + 2T �Ta
�
�ea�

=
�
�T ��

� T ��a + T
��
�T

�
�a + T

��
� T ��a � 2T���T��� + 2T���T��a

�
�ea�

= 4
�
T ��aS

��
�

�
�ea�: (3.178)

Then , applying integration by parts to the terms with derivations we obtain,

T ��
� e �

a @��e
a
� =

Z
@�
�
T ��
� e �

a �ea�
�
d4x�

Z
(@�T

��
� e �

a ) �e
a
�d
4x

= �
Z
(@�T

��
� e �

a ) �e
a
�d
4x

= �@�T ��
a �ea�; (3.179)

�
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� � T � �
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�
e �
a @��e

a
� =

Z
@�

h�
T� �

� � T � �
�

�
e �
a �ea�

i
d4x

�
Z
@�

h�
T� �

� � T � �
�

�
e �
a

i
�ea�d

4x

= �
�
@�T

� �
a � @�T � �

a

�
�ea�; (3.180)
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2 (T�e �
a � T�e �

a ) @��e
a
� =

Z
@�
�
2 (T�e �

a � T�e �
a ) �e

a
�

�
d4x

� 2
Z
@� (T

�e �
a � T�e �

a ) �e
a
�d
4x

= �2
Z
@�
�
T���e

�
a � T���e �

a

�
�ea�d

4x

= �2@� (T��a � T��a) �ea�: (3.181)

Then , we add (3:179) ; (3:180) and (3:181) , to get

�
T� �

� � T � �
�

�
e �
a @��e

a
��2

�
T�T ��� + T

�T�
�
e �
b �eb �+2 (T

�e �
a � T�e �

a ) @��e
a
� = �4@�S ��

a :

(3.182)

Replacing (3:182) and (3:178) in (3:165), one �nds

e�T = 4
h
�@�

�
eS ��
a

�
+ eT ��aS

��
�

i
�ea� : (3.183)

Finally , we �nd the variation of the action with respect to tetrad �elds is

�S = c

Z
d4x

n
ee �
a �ea�T + 4

h
�@�

�
eS ��
a

�
+ eT ��aS

��
�

i
�ea� + � (eLm)

o
= 0: (3.184)

from which, the equation of motion of the gravitational �eld in TEGR theory is obtained as

4

e
@�

�
eS ��
a

�
� e �a T � T ��aS

��
� =

1

c
T �
a ; (3.185)

where the energy-momentum tensor is de�ned as

T �
a =

1

e

� (eLm)
�ea�

: (3.186)

Let us now consider the action of a more general TEGR theory with non minimally coupled

scalar �eld

S =

Z
d4xe

h�
2

�
T + �T'2

�
�X + V (') + Lm

i
; (3.187)
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where V (') is the scalar potential and X is the kinetic term

X = �1
2
g��r�'r�': (3.188)

The variation with respect to the tetrad �elds gives

�eX = �

�
�1
2
g��r�'r�'

�
= �1

2
[(�eg

��)r�'r�'+ g���e (r�')r�'+ g��r�'�e (r�')]

= �1
2
� (g��e �

a + g��e �
a ) �e

a
�r�'r�'

= �1
2
� (g��e �

a r�'r�'+ g��e �
a r�'r�') �ea�

=
2

2

�
ra'r�'�ea�

�
= ra'r�'�ea�; (3.189)

�e
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T'2
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(�eT )'

2 + T
�
�e'

2
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=
�

2
'2
�
�@�S ��

a + T ��aS
��

�

�
�ea�; (3.190)

where we have used the fact that �ef (') = 0:

The variation with respect the scalar �eld ' gives

�'T = 0; (3.191)

and

�'X = �1
2
�' (g

��r�'r�')

= �1
2
[g�� (�'r�')r�'+ g��r�' (�'r�')]

= �1
2
[r� (g��r�'�') +r� (g��r�'�')]

= �1
2
(r�r�'�'+r�r�'�')

= ��'�'; (3.192)
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and

�'
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�T'2

�
= �

�
(�'T )'

2 + T
�
�''

2
��

= 2�T'�'; (3.193)

�'V (') =
�V (')

�'
�' = V 0 (') : (3.194)

Substituting the above equations in the variation of eq.(3:187) , one �nds the total variation of

the action
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; (3.195)

where the equation of motion of gravitational �eld the term proportional to �ea�

ee �
a

�
T + �T'2

�
+ 2

h
�@�

�
eS ��
a

�
+ eT ��aS

��
�

i �
1 + �'2

�
+ra'r�' = ��1T :�a ; (3.196)

and, the equation of motion of scalar �eld ' is the one proportional to �':

�'� V 0 (') = ��T': (3.197)
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Chapter 4

Neutron star

4.1 Introduction to Neutron Stars

The last decade has been the theater of an intense activity in astrophysical observation. The

study of strong gravitational �eld regime in alternative theories was becoming more interesting

[6, 7, 8, 9]. Neutron Stars (NSs) are one of the most compact objects for testing di¤erent

theoretical models of gravity. In fact, the theory of General Relativity (GR) explains very well

the observations at the weak gravitational background [10], but one can imagine that the theory

of GR is a subject of modi�cation around a NSs.

Neutron stars (NS) are compact stars that contain very high-density matter. NS has typical

mass of order 1:4M�, with a radius of about 10 km [11]. The NS has similar mass compared

to our sun but their radius is 105 times smaller than the radius of the sun. Therefore, NS are

extremely dense objects. The average mass density can be estimated by

�� =
3M

4�R3
� 7:1014 g

cm3
� (2� 3) �0; (4.1)

where �0 = 2; 8� 1014g=cm3 is the normal nuclear mass density.

The new astrophysical imprints beyond GR theory can be explored via Gravitational Waves

(GWs) signal, from the collision between binary neutron stars (NSs), binary black holes (BHs)

or binary BH-NS, which carry information about the properties of NSs [12, 13]. The golden

era of gravitational-wave astronomy was recently launched by the �rst observation of GWs

48



signal coming from a binary black hole merger at LIGO and Virgo observatories [14, 15]. After

two years, the detection of gravitational waves from a binary neutron star merge GW170817

[16] together with gamma-ray burst GRB 170817A [17, 18, 19] has considerably advanced our

understanding in alternative theory of gravity [20, 21, 22, 23, 24]. On August 14, 2019, the

LIGO/Virgo Collaboration (LVC) announced the detection of GWs sourced by the collision of

a black hole with mass M � 23:2+1:1�1:0M� and a compact object with mass M � 2:59+0:08�0:09M�

[25], where M� is the solar mass. It is di¢ cult to identify the nature of this object, whether it

is the most massive NS or the least massive BH, because neither electromagnetic counterpart

nor measurable tidal deformation signature was imprinted in GW19081-event.

4.2 Birth of a neutron star

There are two types of supernovae, which can be classi�ed as two di¤erent phenomena. Names:

Thermonuclear Supernovae and Core Collapse (or Gravitational) Supernovae. The term super-

nova �rst appeared in a 1934 article by Baade and Zwicky. The �rst distinction novæ is due to

a sudden thermonuclear reaction The accumulation of matter from red giants to white dwarfs

in binary star systems, from such- called a supernova. White dwarfs are composed of degen-

erate electronic matter and are the last stage of the evolution of stars with masses less than

8 solar masses (about 97% stars in our galaxy) after the stellar envelope expands into space,

forming a Planetary Nebula. A given white dwarf may or may not be nova multiple times.

All material accumulated since the last eruption must be expelled or burned. Supernovae are

classi�ed according to the absorption lines in their spectrum shortly after the explosion. When

hydrogen lines are present, supernovae are type I, Otherwise type II. Type I supernovae are

further subdivided into:

� Type Ia, when silicone II lines are visible,

� Type Ib, when helium I line is visible and no silicon II line,

� Type Ic, when neither silicon II nor helium I lines are visible.

No Type Ib, Ic or II supernovae have been observed in elliptical galaxies where no new stars

are formed and all massive stars have exploded. Therefore, it can be concluded that in contrast

to Types Ib, Ic and II, a Type Ia supernova is not the result of the collapse of a massive star into a
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compact body, but the result of the collapse of a white dwarf, as its internal degenerate pressure

can no longer sustain the pressure from the companion auxiliary accumulation of substances.

When the white dwarf collapses, the temperature rises, Carbon fusion begins throughout the

white dwarf, immediately leading to the observation of a thermonuclear supernova. Di¤erences

between other species come from ancestors. In Type Ib and Type Ic supernovae, the precursors

have lost their hydrogen shells (eg Wolf-Rayet stars).

4.3 Structure of Neutron Stars

An NS is usually divided into �ve layers. Atmosphere, shell, inner core, outer core and inner

core. The core of a star makes up most of the stellar mass [11]. The thickness of the atmosphere

can vary from about 10 centimeters to a few millimeters. It consists of hot plasma. Radiation

from stars is produced in the atmosphere. outside of Looking at the radiation provides insight

into the radius and mass of a star. If the NS is very cold, a solid or liquid surface may appear.

The crust is about 100 meters thick and has a density of about 4:1011g=cm3. It is mainly

composed of iron ions and electrons. The Fermi energy of an electron increases with increasing

pressure. Beta trapping enriches the nucleus with neutrons. mostly shell celebration. A few

kilometers thick inner crust reaches a density of 0; 5�0. inner shell by Free neutrons, electrons,

and neutron-rich nuclei.

At this layer, the pressure is high enough to be free Neutrons are stable. The higher the

pressure, the higher the Fermi energy of the electron. That Neutron-rich nuclei start releasing

neutrons at a density of about 4; 3:1011g=cm3[26] In the outer core, which reaches a density

of around 2�0 and extends for several kilometers, the matter consists mainly of free neutrons.

Some protons, electrons and muons will also be encountered. The composition of the one plasma

is strongly degraded [11]. Protons and neutrons form a Strongly interacting super�uid Fermi

liquids. Regions with a density greater than 2�0 are the kernels. stellar density near the center

Several �0 are possible. The inner core is several kilometers thick. This layer in particular is

not well understood because it is so dense that they have not yet been replicated on Earth.

Several di¤erent exotic states of matter have been predicted for this layer. Matter is highly
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interactive on basis of

Figure 4.3: Structure of a neutron star

4.4 Equations for the stellar structure

4.4.1 The Schwarzschild Solution

Schwarzschild�s solution is the �rst solution of Einstein�s equations of motion

G�� =
8�G

c4
T�� : (4.2)

It is a solution in the vacuum (T�� = 0) static
�
g��;x0 = 0

�
and with spherical symmetry

ds2 = �B(r)dt2 +A (r) dr2 + r2
�
d�2 + sin2 d'2

�
: (4.3)
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The functions A (r) and B (r) must be in�nitely far from any gravitational source (r �!1),

converges to unity to satisfy the asymptotic �atness. A substantial ansatz is

A (r) = exp [2� (r)] ; B (r) = exp [2� (r)] : (4.4)

Then in vacuum

G�� = 0 =) G = 0 =) R� 2R = �R = 0

=) R�� = 0 (4.5)

Then, Einstein�s equations in vacuum become

R�� = 0: (4.6)

A lengthily calculation leads to the components of Ricci tensor

R00 =

�
� 00 + � 02 � � 0�0 + 2�

0

r

�
e2��2� = 0; (4.7)

R11 = �� 00 + � 0�0 +
2�0

r
� � 02 = 0; (4.8)

R22 = 1 +
�
�1� r� 0 + r�0

�
e�2� = 0; (4.9)

R33 = R22 sin
2 �: (4.10)

We multiply (4:7) by e�2�+2� and add to . This leads to

d

dr
(� + �) = 0 =) � (r) + � (r) = c (4.11)

where c is a constant. We impose asymptotic �atness such that g�� ! ��� (when r !1)

lim
r!1

� = 0; lim
r!1

� = 0
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Then we obtain c = 0 and

� (r) + � (r) = 0

� (r) = �� (r) : (4.12)

We substitute in (4:9) to get

1� d

dt

�
re2�

�
= 0;

re2� = r + c;

where c is an other constant. It follows that

e2� = 1 +
c

r
= 1� 2m

r
; (4.13)

e2� =
1

1� 2m
r

; (4.14)

where we have set c = 2m: In the weak �eld limit (the Newtonian approximation) we have

gtt = �
�
1� 2MG

rc2

�
, from which we �x the constant m by m = MG

c2
, where M is the mass of the

central object which creates the gravitational �eld.

Finally, the schwarzschild�s solution( in the schwarzschild�s coordinate) is given by

dS2 = �
�
1� 2m

r

�
c2dt2 +

�
1� 2m

r

��1
dr2 + r2d
2; (4.15)

where

d
2 = d�2 + sin2 d'2:

4.4.2 Tolman-Oppenheimer-Volko¤ Equations

In this section we derive the equations governing the structure of a static, spherically symmetric,

relativistic star considered as a perfect �uid. Then its matter content is described by the energy-

momentum tensor of a perfect �uid. Inside the star, where there is no vacuum, the curvature

scalar is no longer zero as it was established for empty space. Let us postulate that the interior
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of the star is described by a static and spherically symmetric solution as Eq. (4:3)

dS2 = �e2�(r)c2dt2 + e2�(r)dr2 + r2d
2; (4.16)

from which we obtain

g�� =

0BBBBBB@
�e2� 0 0 0

0 e2� 0 0

0 0 r2 0

0 0 0 r2 sin �

1CCCCCCA (4.17)

and

�100 = � 0e2(���); �010 = � 0; �111 = ��0;

�122 = �re��; �133 = �re�2�;

�212 = �
3
13

1

r
; �233 = sin

2 � cos �;

�323 = cot �:

we have already calculated the Ricci tensor, and the Ricci scalar reads

R = g��R��

= �e�2�R00 + e�2�R11 +
2

r2
R22: (4.18)

Energy-momentum tensor of a perfect �uid

The energy-momentum tensor of a perfect �uid (in units c=1) is given by

T�� = (�+ p)u
�u� + g��p: (4.19)

The geometrical part is expressed by Einstein�s equations of motion

G� � = R� � �
1

2
���R; (4.20)
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where

Gtt = e�2�
�
1

r2
� 2�

0

r

�
� 1

r2
= � d

dr

"
r
�
�1� e�2�(r)

�
r2

#
= �8��; (4.21)

Grr = e�2�
�
2� 0

r
� 1

r2

�
� 1

r2
= 8�p; (4.22)

G�� = e�2�
�
� 00 � � 0�0 +

�
� 0
�2
+
� 0 � �0

r

�
= 8�p; (4.23)

G'' = G�� = 8�p: (4.24)

In the rest frame of the star the 4-velocity is given by

u� =
�
ut; 0; 0; 0

�
:

Using the normalization

g��u
�u� = �1;

we obtain

�
ut
�2
gtt = �1 =) ut =

1p�gtt
; (4.25)

and the energy density and pressure are

T tt = �� T ii = 0:

From the Einstein equations we form the quantity

r2Gtt =
d

dt

h
r
�
1� e�2�

�i
= kr2T 00 = 8�r

2�; (4.26)

which is integrated to give

e�2� = 1� 8�
r

Z r

0
� (r) r2dr: (4.27)
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Now de�ning a quantity

m (r) = 4�

Z r

0
� (r) r2dr; (4.28)

we get

e�2� = 1� 2m(r)
r

: (4.29)

Adding eq(4:21) and eq(4:22) ; we have

8� (�+ p) =
2

r
e�2�

�
�0 + � 0

�
: (4.30)

The function � can be eliminated with help the eq(4:29),

�2�e�2� = 2

r

�m
r
�m

�
: (4.31)

Substituting in equation (4:30) we obtain

8�p =
�2m
r3

+ 2

�
1� 2m

r

�
r0

r
;

� 0 =
4�r3p+m

r2
�
1� 2m

r

� : (4.32)

From Eq.(4:21) we have

2r�0 =
�
1� 2�r2�

�
e2� � 1; (4.33)

and Eq. (4:22) gives

2r� 0 =
�
1 + 2�r2p

�
e2� � 1: (4.34)

The derivation of Eq.(4:34)with respect to r

2� 0 + 2r� 00 =
�
2�0 + 16�pr + 16�pr�0 + 8�r2p0

�
e2�;

and multiplying the above equation by r and after some manipulations we obtain

2r2� 00 = 1 +
�
16�r2p+ 8�r3p0

�
e2� �

�
1 + 8�r2p

� �
1� 8�r2�

�
e4�; (4.35)
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2r2� 02 =
1

2

�
1 + 8�r2p

�2
e4� �

�
1 + 8�r2p

�
e2� +

1

2
: (4.36)

From Eqs.(4:29) ; (4:35) ; (4:36) we have �0; � 0; � 00, therefore substituting in Eq.(4:23) ;and solving

for p0 we obtain
dp

dr
= �

p+ �
�
m (r) + 4�r3p (r)

�
r [r � 2m (r)] ; (4.37)

and
d�

dr
=
4�r3p (r) +m (r)

r2
�
1� 2m

r

� ; (4.38)

and

e�2� = 1� 2m
r
: (4.39)

This set of equations along with the mass equation, (4:28) ; is known as Tolman-Oppenheimer-

Volko¤ Equations. The mass of the star is then obtained from

m0 (r) = 4�r2� (r) : (4.40)

To complete the set of equations we need the equation of state (EoS), p = f (�) ; relating the

pressure of the star to its energy density. The solution of this set of equations describe the
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complete structure of the star for a given central pressure pc = p(r = 0):

Figure 4.4.2: Pressure and mass of a neutron star vs the radius.

4.4.3 Interior Schwarzschild Solution

In addition to the solution in vacuum, K. Schwarzschild also published an analytical solution

for the interior of an incompressible liquid sphere, known as the Interior Schwarschild Solution

(ISS). We assume that the star energy density is constant � = �c = const. Then, the mass of

the liquid sphere is

M� =
4�

3
R3��c =) �c =

3M�
4�R3�

; (4.41)

where R� is the star radius.

Now we can obtain analytically the mass (4:40) at a coordinate r and one �nds,

M (r) =
4�

3
r3�c =

M�r3

R3�
: (4.42)
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The eqs.(4:41) and (4:42) can be inserted into the TOV Equation(4:37),

p0 = �

h
p (r) + 3M�

4�R3�

i h
M�r3

R3�
+ 4�r3p (r)

i
r
h
r � 2M�r3

R3�

i
= �

r
�
4�R3�p (r) + 3M�

� �
M� + 4�R3�p (r)

�
4�R3� [R

3
� � 2M�r2]

: (4.43)

When reaching the center of star, the pressure should of course be zero, which leads to the

initial condition p (R� = 0). The solution of (4:43) is given by

p (r) = �
3M�

�p
r2 (R� � 2M�)�

p
R3� � 2M�r2

�
4�R3�

�
3
p
R3� (R� � 2M�)�

p
R� � 2M�r2

� : (4.44)

In Fig. 4.4.3, the pressure and mass are plotted over the radius for a star with mass M� �

2:193M� and radius R� � 16:787 km. The resulting central pressure is p(r = 0) = pc = 19:7588

Mev/fm3:

The mass-radius-curves for di¤erent polytropic EoS are shown in Fig.4.4.3. The star with

maximum mass for each EoS is marked by a cross. The stars right of the maximum mass star

are stable, the ones on the left are unstable. The maximum mass for an EoS decreases with the
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polytropic index, i.e. sti¤er EoS have higher maximum masses, than softer EoS.

Figure 4.4.3: The M-R diagram vs the star

radius for di¤erent valeus of the polytropic index

in GR.
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Chapter 5

Neutron stars in TEGR

5.1 Choice of the tetrad

In this chapter we exploit the framework of the TEGR theory developed in the last chapter to

study the existence of NSs in TEGR theory with non minimal coupling to a scalar �eld and in

the presence of a potential energy. This is just an approximate model of realistic rotating NSs.

We begin by introducing the non diagonal tetrad given by

ea� =

0BBBBBB@

p
f(r) 0 0 0

0
p
h(r) sin � cos� r cos � cos� �r sin � sin�

0
p
h(r) sin � cos� r cos � sin� r sin � cos�

0
p
h(r) cos � �r sin � 0

1CCCCCCA : (5.1)

This o¤ diagonal tetrad can be obtained from a diagonal tetrad by the following local Lorentz

transformation, end = �ed;where

� =

0BBBBBB@
1 0 0 0

0 sin � cos� cos � cos� sin � sin�

0 sin � cos� cos � sin� sin � cos�

0 cos � sin � 0

1CCCCCCA : (5.2)

Now inserting the tetrad components in the relation of the scalar of torsion we obtain
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T =
2
�p

h� 1
�

r2h

f 0

f
�
2
�p

h� 1
�2

r2h
: (5.3)

In the following we consider the action

S =

Z
d4xe

�
�

2
T �X +

1

2
DT'2 + V (')

�
; (5.4)

where X = �';�';�=2 is the kinetic term, D is the non minimal coupling constant and V is a

scalar potential. Using EEs given by (3:196) we obtain the following set of equations

�m =
�

r2
� �

r2h
� V + �h0

rh2
+
D
r

�
1

r
� 1

rh
+
h0

h2

�
'2 +

4D
r

�
1

r
p
h
� 1

h

�
''0 � '02

2h
;

Pm
c2
= � �

r2
+

�

r2h
+ V +

�f 0

rfh
� D
r

�
1

r
� 1

rh
� f 0

fh

�
'2 � '02

2h
: (5.5)

The equation of energy conservation r�T�� = 0 gives

P 0m +

�
Pm + c�

2
m

�
2

f 0

f
= 0: (5.6)

The equation of motion of the scalar �eld is now obtained from (3:197)

'00 +
1

2

�
4

r
� f 0

f
� h0

h

�
'0 �

2D
�p

h� 1
��

f
�
1�

p
h
�
+ rf 0

�
r2f

'� hV;' = 0: (5.7)

At this stage we solve eqs.(5.5) for f 0; h0 in terms of h; f; we get

f 0 (r) =
2f(r)h(r)(c2�� c2r2V ('(r)) + c2D'(r2) + r2pm + c2(�2�� 2D' (r)2 + r2' (r)2))

2c2r
�
�+D' (r)2

� ;

(5.8)

h0 (r) =
1

2r
�
�+D' (r)2

�h (r) (2�+ 2D' (r)2 � 2h (r) (�� r2V (' (r)) +D' (r)2 � r2�m (r))
+ 8rD' (r)'0 (r)� 8rD

p
h (r)' (r)'0 (r) + r2'0r (r)2); (5.9)
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P 0m (r) = �
1

4c2r
�
�+D' (r)2

�
Pm(r) + c

2�m (r)
�
2h (r) (c2�� c2r2V ('(r)) + c2D'

�
r2
�
+ r2Pm (r))+ (5.10)

c2
�
�2�� 2D' (r)2 + r2'2 (r)2

��
; (5.11)

'00 (r) =
1

2c2r2
�
�+D' (r)2

�
�
4Dh (r)

3
2 ' (r) (c2�� c2r2V (' (r)) + c2D' (r)2 + r2Pm (r))

+ 2c2D
p
h (r)' (r)

�
2�+ 2D' (r)2 � r2'0 (r)

�
+ (5.12)

h (r) (�8c2D2' (r)3 � 4D' (r) (2c2�� c2r2V (' (r)) + r2Pm (r)) + 2c2rD' (r)2�
rV 0 (' (r))� '0 (r)

�
+
�
r(2c2rV 0 (' (r)) +

�
2c2r2V (' (r))� r2Pm (r)+

c2
�
�2�+ r2Pm (r)

�
'0 (r)

���
:

Instead of the metric h, it is convenient to introduce the massM(r) de�ned by

h(r) = 1� 2GM
rc2

: (5.13)

Deriving this equation with respect to r and substituting for h0 we obtain

M 0 =
2�r�

�
2rh (r) (V (' (r)) + �m (r))� 8D

p
h (r)' (r)'0 (r) + '0 (r) (8D' (r) + r'0 (r))

�
h (r)

�
�+D' (r)2

� :

(5.14)

The solution of the set of equations given by (5.8-5.12) must be subjected to regularity condi-

tions and initial conditions. The regularity conditions impose that

f 0 (r = 0) = 0; h0 (r = 0) = 0; '0 (r = 0) = 0; P 0m (r = 0) = 0: (5.15)

while the initial conditions are �xed at the center of the NS and are obtained by expanding any
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quantity as

X (r) = Xc +
1X
j=2

Xjr
j ; (5.16)

where X0 = X(r = 0): For X = f and X = h we set fc = 1 and hc = 1; respectively. In the

presence of the potential we use the expansion

V (') = V ('c) +
1X
n=1

1

n!

dnV

d'n

�����
'='

('� 'c)n : (5.17)

Before closing this section, we de�ne the ADM mass M of the star, as

M = lim
r�!1

M(r) =
rc2

2G
(1� h)

����
r�!1

: (5.18)

The star radius rs is determined by the condition

Pm (rs) = 0: (5.19)

5.2 NS in an harmonic potential

In the following, we choose the potential as:

V (') =
1

2
m2'2 (5.20)

where m is the mass of the scalar �eld.

Let us make the following substitution f �! f2; h �! h2 and introduce the typical para-

meters of a NS:

r0 =

s
8��

�0
= 89:664 : Km, �0 = mnn0 = 1:6749� 1014 : g:cm�3 (5.21)

where mn = 1:6749 � 1024g is the neutron mass and n0 = 0:1(fm)�3is the typical number
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density of NSs. Let us now de�ne the following convenient variables

Pm �! �0Pm; � �! �0�; m �! m

r
�0
8��

; r �! r0e
s: (5.22)

In terms of the new time s the Einstein equations of motion (t; t) and (r; r) give

f 0 (s) =
1

4
�
1 +D' (s)2

�
�
f (s)

�
�2� 2D' (s)2 + h (s)2�

2 + 16e2s�Pm (s) +
�
�e2sm2 + 2D

�
' (s)2

�
+ '0 (s)2

�
; (5.23)

h0 (r) =
1

4
�
1 +D' (s)2

�
h (s)

�
2 + 2D' (s)2 + h (s)2

�
�2 + 16e2s�� (s) +

�
e2sm2 � 2D

�
' (s)2

�
+

8D' (s)'0 (s)� 8Dh (s)' (s)'0 (s) + '0 (s)2
�
; (5.24)

and the equation of motion of the scalar �eld becomes

'00 (s) =
1

2
�
1 +D' (s)2

�
�
2Dh (s)3 ' (s)

�
2 + 16e2s�Pm (s) +

�
�e2sm2 + 2D

�
' (s)2

�
2D' (s)'0 (s)2 + h (s)2

�
2
�
e2sm2 � 4D � 16e2s�DPm (s)

�
' (s)+

4
�
e2sm2 � 2D

�
D' (s)3 � 2

�
1 + 4e2s�Pm (s)� 4e2s�� (s)

�
'0 (s)+�

e2sm2 � 2D
�
'0 (s)

�
+ 2Dh (s)' (s) 2 + 2D' (s)2 � '0 (s)2

�
; (5.25)
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while the energy-momentum conservation and the mass variation equations lead to

�0(s) = � 1

4
�
1 +D' (s)2

�
P 0m (�(s))

((Pm (s) + � (s))�
�2� 2D' (s)2 + h (s)2

�
2 + 16e2s�Pm (s) +

�
e2sm2 � 2D

�
' (s)2

�
+ '0 (s)2

��
: (5.26)

m0 (s) =
1

16h (s)2 �
�
1 +D' (s)2

�
�
3�3

�
e2sh (s)2 16e2s�Pm (s) +m

2' (s)2
�
�

8Dh (s)' (s)'0 (s) + '0 (s)
�
8D' (s) + '0 (s)

��
; (5.27)

where P 0m (�(s)) =
dPm(s)
d�(s) .

These equations are completed with the following initial conditions

f (s0) = 1 +
e2s0

�
24Pm;c� + 8��c �m2'2c

�
6(1 +D'2c)

; (5.28)

h (s0) = 1 +
e2s
�
16��c +m

2'2c
�

6(1 +D'2c)
; (5.29)

P (s0) = Pm;c +
e2s0 (Pm;c + �c)

�
8� (3Pm;c + �c)�m2'2c

�
12 (1 +D'2c)

; (5.30)

' (s0) = 'c +
1

6
e2s0m2'c; (5.31)

m (s0) = mc +
3e3s0

�
16��c +m

2'2c
�

32� (1 +D'2c)
: (5.32)

In our numerical solution we have used the following set of EOS known as FPS, SSLy, BSK19,
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BSK20 and BSK21 given by

� = log10
�
�=gcm 3

�
; � = log10

�
Pm=dyncm 2

�
where for the �ve EOS we can write

& (�) =
a1 + a2� + a3�

3

1 + a4�
f0 (a5 (� � a6)) + (a7 + a8�) f0 (a9 (a10 � �)) + (5.33)

(a11 + a12�) f0 (a13 (a14 � �)) + (a15 + a16�) f0 (a17 (a18 � �)) ;

where

f0 (x) =
1

1 + ex
; (5.34)

and the numerical coe¢ cients ai can be found in [27].

Figure 5.2: The M-R diagram in TEGR for

m=10�10; D = 0:1 and 'c = 0:01:

In Fig. 5.2 we show the M �R diagram for the �ve EoS listed above for the TEGR and RG

theory. We observe that we have NSs with mass of order 1:7 mass solar, which is compatible

with all the measurements.
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Chapter 6

Conclusion

This thesis deals with a study of the fundamental theory of gravity on torsional manifolds, but

with vanishing curvature tensors. The theory is called Teleparallel Gravity (TEGR). Their �eld

equations are equivalent to the General Relativity (GR). The lack of research in this �eld is

mainly due to historical reasons since Einstein developed GR before TEGR. Both theories have

the same equations, and can be regarded as the basic theory of gravitation, but their physical

interpretations are very di¤erent. GR understands gravity as deformation of the space-time

while the TEGR return to the view that gravity is one force mediated by the torsion tensor.

Then even if they are similar on the �eld equations, their physical interpretations are very

di¤erent. However, generalized TEGR theories are completely di¤erent from GR and even

from generalizations of GR.

All Teleparallel theories of gravity are based on the scalar torsion T which contains only

�rst derivatives of tetrads. On the other hand, GR is based on the Ricci scalar R which

depends on second derivatives of the metric tensor. Therefore, some Teleparallel theories are

mathematically simpler than other modi�ed theories coming from GR. In fact modi�ed GR

theories need some mechanisms to cancels terms of order higher than 2.

The main topi of this thesis is to study the existence of Neutron stars in TEGR theory non

minimally coupled to a scalar �eld with a scalar potential. The results obtained are new and

accurate. Indeed, for particular values of the theory parameters, we have obtained NSs with

masses less than the ones in GR theory, but which remain consistent with the astrophysical

observations.
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