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Study of a class of variational inequalities

Absract

In this thesis, we give a new proof of the existence of absolutely continuous solutions for

a class of first-order state dependent maximal monotone differential inclusions. The existence

result is obtained by using Schauder’s fixed point theorem. In addition, a stability result is

provided. Finally, using a suitable reduction of order technique, we give a new existence

result for a general second order state dependent maximal monotone differential inclusion.
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Étude d’une classe d’inégalités variationnelles

Résumé

Dans cette thèse, nous donnons une nouvelle preuve de l’existence de solutions absol-

ument continues pour une classe d’inclusions différentielles de premier ordre gouvernée par

des opérateurs maximaux monotones dépendant de l’état. Le résultat d’existence est obtenu

en utilisant le théorème du point fixe de Schauder. En outre, un résultat de stabilité est fourni.

Enfin, en utilisant une technique de réduction d’ordre appropriée, nous donnons un nouveau

résultat d’existence pour des inclusions différentielles du deuxième ordre gouvernées par des

opérateurs maximaux monotones dépendant de l’état.
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Notations

Operations and Symbols

i.e. Identically equivalent.

a.e. Almost every.

resp Respectively.

:= Equal by definition.

≡ Identically equal.

〈·, ·〉 Inner product on a Hilbert space.

‖·‖ Norm.

sup, inf,max,min Supremum, Infimum, Maximum, Minimum Respectively.

dH(A,B) Pompieu-Hausdorff distance between sets.

un −→ u un converges to u strongly.

un ⇀ u un converges to u weakly (in weak topology).

co Convex hull of a set.

co Closed convex hull of a set.

u.s.c Upper semicontinuous.

l.s.c Lower semicontinuous.

9



Notations 10

Spaces

R Real line.

R R ∪ {−∞,+∞}.

Rd d-dimensional Euclidean space.

E Vector space.

E ′ Dual vector space.

H Hilbert space.

σ(E,E ′) weakly topology.

C([T0, T ];H) Space of continuous functions over[T0;T ].

L1([T0, T ];H) H-valued Lebesgue integrable functions over[T0;T ].

Lq([T0, T ];H) space of (classes of) measurable functions over[T0;T ].

L∞([T0, T ];H) space of (classes of) measurable essentially bounded functions over[T0;T ].

W 1,1([T0, T ];H) H-valued absolutely continuous functions.

W k,p([T0, T ];H) :=
{
u ∈ Lq([T0, T ];H) : ‖u(i)‖Lq([T0,T ];H) <∞, ∀i ≤ k

}
.

Sets

BH Open unit ball of space H.

BH Closed unit ball of space H.

B Closed unit ball the space in question.

∂f(x0) Clarke subdifferential of fat x0.

NS(·) Clarke normal cone to S at x

epi(f) Epigraph of an extended real valued function f.

dom(f) Effectif domain of an extended real valued function f.

Rg(F ) The range of a set-valued map F.

Grph(F ) Graph of a set-valued map F.

D(F ) Effectif domain of a set-valued map F.



11 Notations

Functions

dS(·) or d(·, S) Distance function.

δS(·) Indicator function of a set S.

σS(·) or σ(·, S) Support function of a set S.

dis(A,B) Distance between two maximal monotone operators.

Mapping

f : X −→ Y Single-valued mapping from X to Y.

F : X ⇒ Y Set-valued mapping from X to Y.



General introduction

The aim of this thesis is to give some contributions to the theory of differential inclusions

involving maximal monotone operators from the point of the well-posedness (in the sense

existence and uniquness of solution).

Let T > 0 and let H be a real separable Hilbert space. In this thesis, we study the following

nonlinear evolution inclusion: ẋ(t) ∈ f(t, x(t))− At,x(t)x(t) a.e. t ∈ [0, T ]

x(0) = x0.
(1)

In this problem, the maximal monotone operator At,x : D(At,x) ⊂ H −→ 2H is of

absolutely continuous variation in time and Lipschitz continuous in state, in the sense of the

pseudo-distance introduced by A. A. Vladimirov and f : [0, T ] × H −→ H is a Carathéodory

mapping. In contrast to earlier works on the subject, to prove the existence of absolutely

continuous solutions for (1), we do not use the discretization method. More precisely, in this

thesis we show how a fixed point approach can lead to the general existence theorem in the

infinite dimensional space to the problem (1). By using Schauder’s fixed point theorem and

the existence and uniqueness theorem for the problem (1) with time-dependent A (i.e. A :=

At), we give a new proof of the state-dependent maximal monotone evolution inclusion (1) in

the infinite dimensional Hilbert setting. Our approach gives explicitly the upper bound of the

velocity in terms of data. We also establish a stability result. Finally we show the existence of

12



13 General introduction

solutions of a general second-order state-dependent maximal monotone differential inclusion

of the form  f(t, x(t)) ∈ ẍ(t) + At,x(t)ẋ(t) a.e. t ∈ [0, T ]

x(0) = x0, ẋ(0) = ẋ0 ∈ D(A(0, x0)),
(2)

by using the well-posedness of the problem (1) and a suitable reduction of order technique.

It is worth mentioning that in the particular case where A is time-dependent (i.e. A := At)

with Lipschitz variation, problem (2) has been studied in [12]. To the best of our knowledge,

there is no research paper for general second-order state-dependent maximal monotone dif-

ferential inclusions, so our motivation is to fill this gap.

Vladimirov’s paper [43] was one the first devoted to the study of nonlinear evolution inclu-

sions with a time-dependent maximal monotone operator (that is, At,x = At). We note that

in [43] t 7→ At was assumed to be regular. The most reasonable condition to ensure this

regularity is that int (D(At)) 6= ∅ for every t ∈ [0, T ] along with the continuity of the mapping

t 7→ At with respect to the above-mentioned pseudo-distance. Later on, Kunze and Monteiro

Marques [22] considered the case of t 7→ At being of bounded variation or absolutely contin-

uous. In addition, they did not require that int (D(At)) 6= ∅, because this condition restricts

the possible applications of the theorems to PDEs or even to sweeping processes. Recently

Le [25] studied a more general state-dependent maximal monotone differential inclusion.

In [25] the well-posedness of problem (1) was proved by using an implicit discretization

scheme and a kind of hypo-monotonicity assumption. Soon thereafter Slamnia et al. [35]

used a more general forcing term (that is, the sum of a single-valued mapping f(t, x) satisfy-

ing a Lipschitz condition and a scalarly upper semicontinuous set-valued map F (t, x).

We mention that problems of the form (1) have an important number and variety of appli-

cations in PDEs (heat equations and obstacle problems), mechanics (rigid-body systems with

impact, Coulomb friction), electricity (diodes and transistors). We refer to the works of Le

[25, 24] and the references therein for such applications.



General introduction 14

This thesis is divided in four chapters. In chapter 1, we recall some definitions and

useful fundamental results of convex and variational analysis. The well-posdness of first order

state dependent maximal monotone differential inclusions is analyzed throughly in chapter

2. Applications of the above chapter to the study of second order state dependent maximal

monotone differential inclusions and the related stability results are presented in chapter 3.

The lower semicontinuous set-valued perturbation of the first order state dependent maximal

monotone differential inclusions end the thesis in chapter 4.

The results of chapters 2 and 3 are the subject of the pulication [3].



CHAPTER ONE

PRELIMINARIES

In this chapter we define, describe and introduce all basic results and concepts that are

going to be used throughout of this thesis. Then we present some concepts of convex analysis

as well as some theorems of compactness that will be used.

1.1 ) Convex sets and functions

For more details about this part see reference [42]

Definition 1.1.1. Let E be a real vector space. A subset S ⊂ E is called convex if and only if

∀ a, b ∈ E, ∀λ ∈ [0, 1], λa+ (1− λ)b ∈ S.

In other words C is convex if it contains all the line segment of these points.

Figure 1.1: Convex and non convex set.

If the set is non convex, we can defined its convex hull as follows:

Definition 1.1.2. Let E be a real vector space. The convex hull of subset A ⊂ E is intersection

15



1.1 Convex sets 16

of all convex sets containing A. Therfore, is the smallest convex that containing A. and we note

co(A).

Figure 1.2: Convex hulls in Rd.

In other words we have this characterization

co(A) =

{
n∑
i=1

βixi, βi ≥ 0, xi ∈ A,
n∑
i=1

βi = 1

}
. (1.1)

The definition of closed convex hull is given by

Definition 1.1.3. Let E be a real vector space. The closed convex hull of subset A ⊂ E is

intersection of all closed convex sets containing A. Therfore, is the smallest closed convex that

containing A. and we note co(A).

Now we are going to give some definitions and properties about convex functions in a real

vector space E.

Definition 1.1.4. Let f be a real function define from E to R. The effective domain of f is the

set

dom(f) = {x ∈ E, f(x) <∞} .

Definition 1.1.5. The function f is said proper if dom(f) 6= ∅.

Definition 1.1.6. Let f be a real function define from E to R. The epigraph of f is the set

epi(f) = {(x, t) ∈ E × R : f(x) ≤ t} .

Definition 1.1.7. The real function f define from E to R is said convex if for all β ∈ [0; 1], we

have

f(βx+ (1− β)y) ≤ βf(x) + (1− β)f(y), ∀β ∈ [0, 1],∀x, y ∈ dom(f).
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Definition 1.1.8. Let X, Y be a metric spaces. The function f : X −→ Y is a Lipshitz function

if there exists a positive constant m such that

d(f(x), f(y)) ≤ md(x, y), ∀x, y ∈ X.

1.2 ) Normal cone and some special functions

In this part we are intrested in some convex sets that are more important like normal

cone and some special functions indicator and support functions.

Definition 1.2.1. Let E be a real vector space. we said that S ⊂ E is cone if and only if λS ⊂ S

for all λ ≥ 0 i. e.;

λz ∈ S, ∀λ ≥ 0, ∀z ∈ S. (1.2)

If also we add the convexity of S then the set will be convex cone.

Definition 1.2.2. In a Hibert space H. Given a convex subset S of H and let x0 ∈ S. The normal

cone is the set define by

NS(x0) = {ξ ∈ H : 〈ξ, x− x0〉 ≤ 0, ∀x ∈ S} . (1.3)

In other words the normal cone is the collection of all vecteurs that not forment an angle aigu

with the vecteur ~v = (x− x0) at the point x0. If x0 /∈ S, we have

NS(x0) = {∅} .

Let us give the definition of the support function

Definition 1.2.3. the support function of S ⊂ H that we denote by σS(·) is the function define

in H by
σ(·, S) : H −→ R

ξ 7−→ σ(ξ, S) = sup
x∈S
〈ξ, x〉 .

It has the following properties
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Proposition 1.2.1: [20]

1 σ(·, S) is convex even when S is not.

2 σ(·, S) is positively homogeneous of degree 1, i. e.;

σ(αx, S) = ασ(x, S) ∀x ∈ H ∀α > 0.

The next function is the indicator function

Definition 1.2.4. Let S a nonempty convex set of H. We called indicator function of S that note

by δ(·, S) the function define by

δ(·, S) : H −→ R

x 7−→ δ(x, S) =

{
0 if x ∈ S,
+∞ if x /∈ S.

It satisfied this two properties

Proposition 1.2.2: [42]

1 δ(·, S) is a convex set if and only if S is convex.

2 δ(·, S) is a (l.s.c) function if and only if S is closed.

1.3 ) Subdifferential

In this section we are going to give the definitions of the subdifferential of convex

functions and some properties. For more details see [1].

Definition 1.3.1. Let H be a Hilbert space, f : H → R ∪ {+∞} be convex proper. The subdif-

ferential of f at the point x0 ∈ domf is the set-valued operator such that

∂f(x0) = {ξ ∈ H : 〈ξ, x− x0〉 ≤ f(x)− f(x0), ∀x ∈ H} . (1.4)

If x0 /∈ dom(f), the set ∂f(x0) 6= ∅ .

The elements of ∂f(x0) are called the subgradients of f at x0.
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The domain of ∂f is defined by

dom∂f = {x ∈ H : ∂f(x) 6= 0}.

Proposition 1.3.1

Let f : H → R ∪ {+∞} be proper convex function and let x0 ∈ domf . Then the

following hold

1 dom∂f ⊂ domf.

2 If x0 ∈ dom∂f . Then f is lower semicontinuous at x0.

3 ∂(λf) = λ∂(f), for λ ∈ R+.

Proposition 1.3.2

Let f : H → R ∪ {+∞} be a proper and convex function. For every x0 ∈ domf , the set

∂f(x0) is a closed convex set.

Example 1.3.1.

We consider the not differentiable function

f : R −→ R
x 7−→ f(x) = |x| .

If x = 0 then ∂f(0) = [−1, 1]. Indeed,

∂f(0) = {y ∈ R : f(x) ≥ f(0) + 〈y, x〉 ∀x ∈ R}

= {y ∈ R : |x| ≥ x · y ∀x ∈ R}

= {y ∈ R : x y ≤ x, ∀x ∈ R+} ∩ {y ∈ R : x y ≤ −x, ∀x < 0}

= {y ∈ R : y ≤ 1} ∩ {y ∈ R : y ≥ −1}

= [−1, 1].
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Therefore, for x0 ∈ R we obtain

∂f(x0) =


{−1} if x < 0,

[−1, 1] if x = 0,

{1} if x > 0.

(1.5)

The following figures give the subdifferential of some functions.

Figure 1.3: Some functions and their subdifferential.

1.4 ) Continuity of single-valued maps

In this part we will give the definitions of the semicontinuity (see [1, 15, 33, 38, 39]).

1.4.1 Lower and upper semicontinuous functions

Definition 1.4.1. Let f : H −→ R ∪ {+∞} be a proper function, f is lower semicontinuous at

x0, if for each sequence (xk)k∈N in H with xk −→ x0 we get

lim inf
k→+∞

f(xk) ≥ f(x0), as k −→ +∞.

Moreover, f is called lower semicontinuous if it’s lower semicontinuous at every point of H.

We have the following characterization.

Definition 1.4.2. Let E be a topological space, let f : E −→ R be a function. We said that f is

lower semicontinuous at x0 in E if

f(x0) ≤ lim inf
x→x0

f(x).
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Definition 1.4.3. Let E be a topological space, let f : E −→ R be a function. We said that f is

upper semicontinuous at x0 in E if

f(x0) ≥ lim sup
x→x0

f(x).

Definition 1.4.4. We called that f is upper semicontinuous at x0 if −f is lower semicontinuous

function at x0. Moreover, recall that f is continuous at the point x0 if it’s lower semicontinuous

and upper semicontinuous on x0.

Proposition 1.4.1: [1]

Let E be a topological space, let f : E −→ R be a function. The following properties

are equivalent

1 epi(f) is closed in E × R.

2 f is lower semicontinuous at x0.

Definition 1.4.5. Let (E1, d1), (E2, d2) be two metric space. We said that f : E1 −→ E2 is

continuous on x ∈ E1 if and only if

∀ε > 0, ∃ δ > 0,∀x ∈ E1 : d1(x, x0) < δ ⇒ d2(f(x), f(x0)) < ε. (1.6)

Moreover, f is continuous if it is continuous at every point in E1.

1.4.2 Absolutely continuous functions

Definition 1.4.6. Let H be a Hilbert space. The function f : [a; b] → H is said to be abso-

lutely continuous if for each ε > 0 there exists δ > 0 such that for ]an; bn[ are pairwise disjoint

subintervals of [a; b] ∑
n≥0

(bn − an) < δ ⇒
∑
n≥0

‖f(an)− f(bn)‖ < ε.

Moreover, The function f : [a, b] −→ H is absolutely continuous if and only if

f(b)− f(a) =

b∫
a

f ′(s)ds.
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Any absolutely continuous function f is continuous.

1.5 ) The projection operator onto closed convex set

Recall the definition of the projection operator. For more details see [40]

Definition 1.5.1. Let S be a nonempty closed convex subset of Hilbert space H , we recall that

the distance between a point x ∈ H and this subset is define by

d(x, S) = inf
y∈S
||y − x||.

If x ∈ S then d(x, S) = 0.

The distance function d(x, S) has this particular property.

Proposition 1.5.1: [4]

Let X be a normed space, S 6= ∅ be a closed subset of X. Then d(x, S) is convex if and

only if S is a convex set.

Definition 1.5.2. Let S 6= ∅ be a subset of a Hilbert space H, x ∈ H and z be a point of S. We

said that z is the projection of x onto S if it satisfied the followig expression, i.e.;

d(x, S) = ||x− z|| = inf
y∈S
||x− y||. (1.7)

We note the projection operator z by projS(x).

Remark 1.5.1. we have this two properties

1 If x ∈ S then ProjS(x) = x.

2 the projection operator Proj(·) : E ⇒ E is a set-valued map.

Theorem 1.5.2

Let H be a Hilbert space, S ⊂ H be a nonempty closed convex set. Then all point x ∈ H

has a unique projection on S, noted proj .

The projection has this characterization.
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Theorem 1.5.3

Let H be a Hilbert space, S ⊂ H be a nonempty closed convex set. Then proj ∈ H is a

projection of y onto S if and only if

〈x− proj, y − proj〉 ≤ 0, ∀ x ∈ S.

Geometrically, This theorem states that the angle between the vectors x− proj and y − proj

is nonacute, that is, right or obtuse, angle.

1.6 ) Monotone and maximal monotone operators

1.6.1 Definitions and properties

In this subsection we will define a monotone and maximal monotone operators which

will be used in this thesis. We start by giving some definitions of the graph, the domain and

the range of set-valued operator. For more details see[1, 10, 29].

Let H be a Hilbert space, with be a real Hilbert space withan inner space 〈·〉 and a norm ‖ · ‖.

A set-valued operator A : H −→ H is an operator that associates to any x ∈ H a subset

A(x) ⊂ H. when A(x) is a singleton (x, y ∈ H), we write Ax = y instead of A(x) = y .

Definition 1.6.1. Let H be a Hilbert space and A : H ⇒ H be a set-valued operator

1 The domain of A that noted D(A) is define by D(A) = {x ∈ H,A(x) 6= 0}.

2 The range of A that noted rg, is define by rg(A) = {
⋃
x∈H A(x)}.

3 The graph of A that note Grph(A) = {(x, y) ∈ H ×H : y ∈ A(x)} .

4 The inverse of A, A−1 is define by y ∈ A(x)⇔ x ∈ A−1(y).

Definition 1.6.2. We said that A : H ⇒ H is monotone if and only if, for every (x, x∗) ∈
Grph(A), (y, y∗) ∈ Grph(A)

〈x∗ − y∗, x− y〉 ≥ 0.
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In other words

∀x∗ ∈ Ax, ∀y∗ ∈ Ay : 〈x∗ − y∗, x− y〉 ≥ 0.

Definition 1.6.3. we said that A is hypomonotone if and only if, there exists a positive constant

k > 0 such the following expression hold

〈x∗ − y∗, x− y〉 ≥ −k‖ x− y‖2.

Definition 1.6.4. Let H be a Hilbert space, we said that A : H ⇒ H is maximal monotone

operator if it is monotone and its graph is maximal in the sense of inclusion,i.e., Grph(A) is not

contained in the graph of any other monotone operator.

Example 1.6.1. Let A,B two set-valued maps such that

A(x) =


x− 1 if x < 0,

{−1, 0, 1} if x = 0,

x+ 1 if x > 0.

(1.8)

B(x) =


x− 1 if x < 0,

[−1, 1] if x = 0,

x+ 1 if x > 0.

(1.9)

A is monotone but not maximal monotone and B is maximal monotone.

Figure 1.4: The left map is monotone but non maximal whereas the right is maximal mono-

tone map.

The following theorem represent an important property of the subdifferential in convex anal-

ysis concerns maximal monotonicity.
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Theorem 1.6.1: [29]

Let H be a Hilbert space. The subdifferential ∂φ(.) of a proper convex and lower

semicontinuous function φ : H −→ R ∪ {+∞} is maximal monotone.

Remark 1.6.1. Let S ⊂ H be a nonempty closed and convex subset ofH. Then the subdifferential

of the indicator function coincides with the normal cone, i.e. ∂δ(x, S) = NS(x).

Remark 1.6.2. we have this properties of monotone and maximal monotone operators.

1 If A is maximal monotone operator. Then the inverse operator A−1 is also maximal mono-

tone.

2 If A is monotone operator. Then the inverse operator A−1 is monotone.

3 If A and B are monotone, then A+B is monotone.

This proposition gives an important characterization of maximal monotone operator.

Proposition 1.6.2: [10]

Let A : D(A) ⊂ H ⇒ H be a monotone operator, so the followig assertions are equiva-

lent

1 A is maximal monotone operator.

2 For λ > 0 I + λA is surjective, i.e. R(I + λA) = H.

Definition 1.6.5. A0 is the element of minimal norm of Ax wich defined by

A0x ∈ A(x) and ‖A0x‖ = inf
z∈A(x)

‖z‖.

Definition 1.6.6. Let A : D(A) ⊂ H ⇒ H. The principal section of A is all uni-valued operator

B ⊂ A with D(A) = D(A′) and for every (x, y) ∈ D(A)×H, the inequality

〈Bf − y, f − x〉 ≥ 0 for each f ∈ D(A)

imply that y ∈ A(x).
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The element of minimal norm satisfied the following property

Proposition 1.6.3: [10]

A0 is a principal section of A.

Definition 1.6.7. Let A : D(A) ⊂ H ⇒ H be a maximal monotone operator. Then the resolvent

operator denoted by JAλ is a single-valued mapping define by

JAλ : H −→ H

x 7−→ JAλ (x) = (I + λA)−1(x).

The following definition is about Yosida approximation.

Definition 1.6.8. Let A : D(A) ⊂ H ⇒ H be a maximal monotone operator and let λ > 0.

Then the Yosida approximation is defined by

Aλ : H ⇒ H

x → Aλ(x) =
1

λ
(I − JAλ )(x).

Lemma 1.6.4: [1]

Let A be a maximal monotone operator, Then D(A) is convex and

lim
λ−→0

JAλ x = prjD(A)x ∀x ∈ H.

1.6.2 Vladimirov distance

Now we are defined the psuedo distance between two maximal monotone operators that’s

defined by Vladimirov in [43].

Definition 1.6.9. Let H be a Hilbert space, A,B : H ⇒ H are maximal monotone operators,

the distance between A and B is defined by the forme

dis(A,B) = sup

{
〈y − y′, x′ − x〉
1 + ‖y‖+ ‖y′‖

: x ∈ D(A), y ∈ Ax, x′ ∈ D(B), y′ ∈ Bx′
}
.
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Remark 1.6.3. The distance dis is not metric because in the general case the triangle inequality

is not hold.

The properties of the pseudo-distance are summarized in the next lemma.

Lemma 1.6.5: [43]

Given A,B : H ⇒ H two maximal monotone operators then we have

1 dis(A,B) = 0 if and only if A = B.

2 d(D(A), D(B)) ≤ dis(A,B).

We end this subsection by the following important lemmas.

Lemma 1.6.6: [22]

Let An(n ∈ N) and A be maximal monotone operators such that dis(An, A) → 0. Sup-

pose that xn ∈ D(An) with xn → x and yn ∈ An(xn) with yn → y weakly for some

x, y ∈ H. Then x ∈ D(A) and y ∈ A(x).

Lemma 1.6.7: [22]

Let A be a maximal monotone operator. If x, y ∈ H such that

〈A0(z)− y, z − x〉 ≥ 0 ∀ z ∈ D(A),

then x ∈ D(A) and y ∈ A(x).

Lemma 1.6.8: [22]

Let An(n ∈ N) and A be maximal monotone operators such that dis(An, A) → 0. Sup-

pose that ‖A0
n(x)‖ ≤ c(1 + ‖x‖) for some constant c > 0, all n ∈ N, x ∈ D(An). Then for

every z ∈ D(A) there exists a sequence (ζn)n∈N such that

ζn ∈ D(An), ζn → z and A0
n(ζn)→ A0(z). (1.10)
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1.7 ) Set-valued maps and selections

In this section we are going to give some definitions of set-valued maps, continuity and

selections that’s important in the study of the existence result in the last chapter, this result is

taked from [5, 14, 18, 21, 32].

1.7.1 Continuity of set-valued maps

Definition 1.7.1. Let X, Y be two sets. A set valued map F from X to Y is a map that associates

with any x ∈ X a subset F (x) of Y , we can write F : X → P(Y ) or F : X ⇒ Y

1 The domain of F is the subset D(F ) = {x ∈ X,A(x) 6= 0}.

2 The range of F that note Rg, is define by Rg(F ) = {
⋃
x∈X F (x)}.

3 The graph of F is the subset Grph(F ) = {(x, y) ∈ X × Y : y ∈ F (x)} .

Example 1.7.1. Let F : X −→ Y be a function, let us define the set-valued map

F+(x) =

{
F (x) + R+, if F (x) < +∞,
∅ if F (x) = +∞.

(1.11)

The domain of F+ coincides with the set of the points x such that F (x) < +∞, the graph of F+

is the epigraph of F .

Definition 1.7.2. We said that F : X ⇒ Y is upper semicontinuous (u.s.c.) at x0 ∈ X if for

any open N containing F (x0) there exists a neighborhood M of x0 such that F (M) ∈ N .

If F is upper semicontinuous at every x0 ∈ X, Then it’s upper semicontinuous.

Proposition 1.7.1: [5]

The graph of an u.s.c. set-valued map with closed values from X to Y is closed.

Example 1.7.2. Let G be the set-valued map defined by

G(x) =

{
{0}, if x 6= 0,

[−1,+1], if x = 0.
(1.12)

G is u.s.c at 0 but not l.s.c at 0.
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Definition 1.7.3. We said that F : X ⇒ Y is lower semicontinuous (l.s.c.) at x0 ∈ X if

for any open N of Y with F (x0) ∩ N 6= ∅, there exists a neighborhood M of x0 such that

F (x) ∩M 6= ∅, ∀x ∈M .

F is lower semicontinuous map, if it’s lower semicontinuous at every x0 ∈ X.

Definition 1.7.4. The set-valued maps F is continuous if it’s in both lower semicontinuous and

upper semicontinuous.

Theorem 1.7.2

Let X, Y be two metric spaces, the set-valued F is lower semicontinuous at x0 if and

only if for every sequence xn ⊂ X with xn −→ x0, for all y0 ∈ F (x0) there exists

yn ∈ F (xn) such that yn −→ y0.

Example 1.7.3. Let F be the set-valued map defined by

F (x) =

{
[−1,+1], if x 6= 0,

{0} if x = 0.
(1.13)

F is l.s.c at 0 but not u.s.c at 0.

1.7.2 Hausdorff distance

In this subsection we will give the definition of the Hausdorff distance and some of their

properties. We refer to [4] and [20].

Definition 1.7.5. Let (X, d) be a metric space and let A,B be two nonempty closed sets of X.

The excess of A over B is given by the form

e(A,B) = sup
x∈A
{d(x,B)} = sup

x∈A

(
inf
z∈B

d(x, z)
)
.
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Proposition 1.7.3

Let (X, d) be a metric space and let A,B,C be a nonempty closed sets of X. Then we

have

1 e(∅, A) = 0 if A 6= ∅ and e(B, ∅) = +∞.

2 e(A,B) = 0⇔ A ⊂ B.

3 e(A,C) ≤ e(A,B) + e(B,C).

Definition 1.7.6. Let (X, d) be a metric space and let A,B be a nonempty closed subsets of X.

The Hausdorff distance dH(A,B) or we called Pompeiu-Hausdorff is defined to be

dH(A,B) = max {e(A,B), e(B,A)} .

We have the following properties

1 dH(A,B) = 0⇔ A = B.

2 dH(A,B) = dH(B,A).

3 dH(A,C) ≤ dH(A,B) + dH(B,C).

1.7.3 Selections of set-valued maps

In this part we are going to give some definitions concerning the notion of decompos-

able function, measurable selection and continuous selection. For more details see ([14, 18]).

Definition 1.7.7. Let K ⊂ L1
Rd([0, T ]), we said that K is decomposable if for any u, v ∈ K and

B ∈ G we have

1B.u+ 1I�B.v ∈ K, (1.14)

where 1B is the characteristic function of B, and G is a measurable set.
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Definition 1.7.8. We said that k ∈ D if there exists a measurable map F : [0, T ] ⇒ Rd with

k =
{
u ∈ L1

Rd([0, T ]) : u(t) ∈ F (t), a.e. in [0, T ]
}
, (1.15)

where the family of nonempty, closed and decomposable subset of L1
Rd([0, T ]) is noted by D.

Definition 1.7.9. Let G : X ⇒ Y be a set-valued map. We defined the selection of G as the

function g : X → Y , such that for every x ∈ X we have

g(x) ∈ G(x). (1.16)

Definition 1.7.10. Let (X,Ψ) be a measurable space, Y be a metrisable separable space. We

said that G : X ⇒ Y is measurable if for all open Γ ∈ Y , we have

G−1(Γ) = {t ∈ X, G(t) ∩ Γ 6= ∅} ∈ Ψ. (1.17)

Or for every closed set υ ∈ Y

G−1(υ) = {t ∈ X, G(t) ∩ υ 6= ∅} ∈ Ψ. (1.18)

Definition 1.7.11. (measurable selection). Let (X,Ψ) be a measurable space, Y be a Banach

separable space, and ∆ : X ⇒ Y be a set-valued map. The set of measurable selections of ∆ is

defined by

S∆ = {f measurable : f(t) ∈ ∆(t)} . (1.19)

Definition 1.7.12. (integrable selection). Let (X,Ψ) be a measurable space, Y be a Banach

separable space, and ∆ : X ⇒ Y be a set-valued map. The set of integrable selections of ∆ is

defined by

S1
∆ =

{
f ∈ L1 : f(t) ∈ ∆(t)

}
. (1.20)

1.8 ) Fixed point theorems

We refer to [31, 36, 44]

Definition 1.8.1. Let A : X −→ X be a univalued map, we said that x ∈ X is a fixed point of

A if Ax = x.

Moreover, x ∈ X is a fixed point of set-valued map A : X ⇒ X if x ∈ A(x).
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Let us give some important fixed point theorems Schauder’s and Kakutani’s theorems .

Theorem 1.8.1: [44]

Let K be a nonempty closed convex bounded subset of a Banach space X and Λ : X →

X be a continuous relatively compact such that Λ(K) ⊂ K. Then Λ has a fixed point.

Theorem 1.8.2: [36]

Let S be a nonvoid, compact and convex subset of Rn. Let φ : S ⇒ S be a set-valued

map on S with the following properties

1 φ has a closed graph.

2 φ(x) is non empty compact and convex set-valued map for all x ∈ S.

Then φ has a fixed point.

Remark 1.8.1. If φ has a contiuous selection, then Kakutani’s result would follow from the

Brouwer fixed point Theorem.

1.9 ) Some compactness results

Let H be a Hilbert space.

Definition 1.9.1. Let a function u : [T0, T ] −→ H, a subinterval I ⊂ [T0, T ], we define the

variation of u on I by the following expression

var(u, I) := sup

{
n∑
i=1

||u(ti)− u(ti−1)||, n ∈ N, ti ∈ I, t0 < t1 < ... < tn

}
.

We said that u has a bounded variation on the interval [T0, T ] if

var(u, I) < +∞.

Remark 1.9.1. we have the following properties
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1 The variation of a function u is null if and only if u is a constant.

2 Every function u : [T0, T ] −→ H lipshitzien has a bounded variation.

3 All function u : [T0, T ] −→ R croissant has a bounded variation.

Theorem 1.9.1: [28]

Let H be a Hilbert space, (un)n∈N a sequence of functions un : [0, T ] −→ H. Suppose

that un is uniformly bounded in norm and in variation, i.e.,

||un|| ≤M1, t ∈ [0, T ], n ∈ N, ||var(un, I)|| ≤M2, n ∈ N,

for each M1,M2 ≥ 0. Then, there exists a subsequence (un)k of (un) and a function

u : [0, T ] −→ H such that

var(u) ≤M2,

and

unk(t) ⇀ u(t) in H,∀ t ∈ [0, T ].

Now, we are intressed in the definition of Lp spaces and the weak topology (see [11, 15, 26]).

Definition 1.9.2. Let p ∈ R such that 1 < p <∞, we define the Lp space by the form

Lp =
{
f : Ω −→ R, f is measurable and |f |p ∈ L1(Ω)

}
. (1.21)

With

‖f‖Lp = ‖f‖p =
(∫

Ω

|f(x)|pdµ
)1

p .

Definition 1.9.3. For p =∞ we define L∞ as the follow

L∞ =
{
f : Ω −→ R, f is measurable and |f |p ∈ L1(Ω)

}
. (1.22)

With

‖f‖L∞ = ‖f‖∞ = inf {c, |f(x)| ≤ c a.e.on Ω} .
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Definition 1.9.4. Given a Banach space E. The weak topology on E is the lowest topology on

E making continuous all applications ϕ ∈ E ′, we denote by σ(E,E ′).

Proposition 1.9.2: [11]

Let E be a Banach space. The weak topology σ(E,E ′) is separate.

Definition 1.9.5. Let (xn)n be a sequence of E, we said that xn coverges weakly to some x in E

and we denote by xn ⇀ x or we may write xn ⇀ x on σ(E,E ′) if and only if

〈f, xn〉 −→ 〈f, x〉, for all f ∈ E ′. (1.23)

we give an useful following proposition

Proposition 1.9.3: [15]

Let xn be a sequence of E. Then we have

1 xn ⇀ x weakly for σ(E,E ′) if and only if f(xn) −→ f(x), for all f ∈ E ′.

2 If xn −→ x then xn converge weakly to x for σ(E,E ′) .

3 If (xn)n∈N is a sequence in E converging weakly to x, then (xn)n∈N is bounded and

||x|| ≤ lim inf
n→∞

||xn||.

4 If (xn)n∈N is a sequence of E converging weakly to x and (fn)n∈N is a sequence in

E ′ converging strongly to f , then

lim
n−→∞

〈fn, xn〉 exist and lim
n−→∞

〈fn, xn〉 = 〈f, x〉.
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Theorem 1.9.4: [11]

Let (fn) be a sequence of functions in L1(Ω) that satisfy the two properties

1 For almost every on Ω fn(x) −→ f(x) .

2 There exists a function g ∈ L1(Ω) such that for all n,

||fn(x)|| ≤ g(x) a.e. on Ω.

Then f ∈ L1(Ω) and

||fn(x)− f(x)|| −→ 0.

Lemma 1.9.5: [11, p. 61]

Let X be a Banach space, assume that (xn)n ⊂ X converges weakly to x. Then there

exists a sequence (yn)n made up of the convex combination of the xn that ’s converges

strongly to x.

Theorem 1.9.6: [11]

Let K be a compact metric space and let H be a bounded subset of C(K). Assume that

H is uniformly equicontinuous, that is,

∀ε > 0 ∃δ > 0 such that d(x1, x2) < δ ⇒ |f(x1)− f(x2)| < ε ∀f ∈ H. (1.24)

Then the closure of H in C(K) is compact.
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Theorem 1.9.7: [19]

Let a set K ⊂ C([T0, T ];H) is relatively compact if and only if

1 for every t ∈ [T0, T ], the set K(t) := {u(t) : u ∈ K} is relatively compact in H.

2 K is uniformly equicontinuous, i.e.,for every ε > 0 there exists δ(ε) > 0, such

that, if t, s ∈ [T0, T ] and |t− s| ≤ δ, then

||u(t)− u(s)|| < ε,∀u ∈ K.

We need the next result of Gronwall’s inequality for bound the solution.

Theorem 1.9.8: [27]

Let I = [T0, T ], α and u be continuous functions and β be a non-negative integrable

function, all defined on I. Assume that α is non-increasing and that

u(t) ≤ α(t) +

∫ t

T0

β(s)u(s)ds t ∈ [T0, T ]. (1.25)

Then

u(t) ≤ α(t) exp

(∫ t

T0

β(s)ds

)
t ∈ [T0, T ]. (1.26)

Now we give the discret form of Gronwall’s lemma as the following

Theorem 1.9.9: [27]

Let (αi), (βi), (γi) and (ai) a sequence of real nembres nondecreasing such that

ai+1 ≤ αi + βi(a0 + a1 + ..+ ai−1) + (1 + γi)ai, (1.27)

therfore for i ∈ N0

aj ≤

(
a0 +

j−1∑
k=0

αk

)
exp

(
j−1∑
k=0

(kβk + γk)

)
. (1.28)
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The following lemma is the continuous form of Gronwall’s lemma.

Lemma 1.9.10: [25]

Let T > 0 be given and a(.), b(.) ∈ L1([0, T ],R) with b(t) ≥ 0 for almost all t ∈ [0;T ]. Let

an absolutely continuous function w : [0, T ] −→ R+ satisfy

(1− α)w′(t) ≤ a(t)w(t) + b(t)wα(t), a.e t ∈ [0, T ]

where 0 ≤ α < 1. Then for all t ∈ [0, T ], we have

w1−α(t) ≤ w1−α(0) exp
(∫ t

0

a(τ)dτ
)

+

∫ t

0

exp
(∫ t

s

a(τ)dτ
)
b(s)ds.

Lemma 1.9.11: [23]

Let u : [0, T ] −→ H be an absolutely continuous function. Then

•
∫ T

0
〈u̇(t), u(t)〉 =

1

2
||u(T )||2 − 1

2
||u(0)||2.

• 1

2

(
d

dt
||u(t)||2

)
= 〈u̇(t), u(t)〉 = ||u(t)||2 .

We finished this part by the Gronwall-like inequality.

Lemma 1.9.12: [13]

Let α, β, r : [0, T ] −→ [0,∞[ such that

r(t) ≤ α(t) + β(t)

∫ t

0

r(s)ds,

then for all t ∈ [0, T ]

r(t) ≤ α(t) + β(t)

∫ t

0

(α(s) exp(

∫ t

s

β(τ)dτ))ds.



CHAPTER TWO

FIRST-ORDER STATE DEPENDENT MAXIMAL

MONOTONE DIFFERENTIAL INCLUSIONS

2.1 ) Introduction

Let T > 0 and let H be a real separable Hilbert space. In this chapter, we study the

following first order maximal monotone differential inclusion: ẋ(t) ∈ f(t, x(t))− At,x(t)x(t) a.e. t ∈ [0, T ],

x(0) = x0.
(2.1)

In (2.1), the maximal monotone operator At,x : D(At,x) ⊂ H −→ 2H is of absolutely contin-

uous variation in time and Lipschitz continuous in state, in the sense of the pseudo-distance

introduced by A. A. Vladimirov and f : [0, T ]×H −→ H is a Carathéodory mapping. In con-

trast to earlier works on the subject, to prove the existence of absolutely continuous solutions

for (2.1), we do not use the discretization method. More precisely, in this thesis we show how

a fixed point approach can lead to the general existence theorem in the infinite dimensional

space to the problem (2.1). By using Schauder’s fixed point theorem and the existence and

uniqueness theorem for the problem (2.1) with time-dependent A (i.e. A := At), we give a

new proof of the state-dependent maximal monotone evolution inclusion (2.1) in the infinite

dimensional Hilbert setting.

38
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2.2 ) Standing Assumptions

In this subsection we are going to cite the hypotheses that will be used in the main

theorem. The first assumption is according to the maximal monotone operator A, and the

second one is about the single-valued perturation f(·, ·).

Assumption 2.2.1. Let T > 0 be given. For every t ∈ [0, T ] and x ∈ H, let At,x : D(At,x) ⊂
H ⇒ H be a maximal monotone operator satisfying the following:

(1.1) There exist a constant L with L < 1 and ζ(·) ∈ H1([0, T ],R+; dt) nondecreasing such that,

for every t, s ∈ [0, T ] we have

dis(At,x, As,y) ≤ |ζ(t)− ζ(s)|+ L‖x− y‖, ∀ t, s ∈ [0, T ]. (2.2)

(1.2) There exists a positive constant c0 > 0 such that

‖A0
t,x(y)‖ ≤ c0(1 + ‖x‖+ ‖y‖), ∀ t ∈ [0, T ], x, y ∈ H. (2.3)

(1.3) For any bounded subset B ⊂ H, the set D(AI×B) is relatively ball compact.

Assumption 2.2.2. Let f : [0, T ] × H −→ H be a function satisfying the following growth

condition i.e. there exists M > 0 such that for each element x of H we have

‖f(t, x)‖ ≤M(1 + ‖x‖), ∀ t ∈ [0, T ], (2.4)

and that for every r > 0 there exists a nonnegative real function αr(·) of L1([0, T ],R, dt) such

that

‖f(t, x)− f(t, y)‖ ≤ αr(t)‖x− y‖, ∀ x, y ∈ B′(0, r), (2.5)

where B′(0, r) is the closed ball of radius r centered at 0.

We define A1 as follows:

A1 = {(t0, x0) : x0 ∈ D(At0,x0)},

and for a fixed x0 ∈ H we define the following constants

c = c0(2 + ‖x0‖),
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κ̃1 =
(
‖x0‖+ (2 +M + 2c)(ζ(T ) + 1 + T )

)
· exp

(
(M + 2c)(ζ(T ) + 1 + T )

)
and

κ̃ := 2 + (M + 2c)(1 + κ̃1),

where c0 comes from (2.3).

2.3 ) Preparatory Lemmas

In this section we will give some important lemmas, that will be used in the proof of

the main theorem.

Lemma 2.3.1: [11]

Let (I,Σ, µ) be a σ-finite, complete measure space, X be a Banach space and f, fn : I →

X be vector valued functions. Let 1 ≤ p ≤ +∞ and let fn → f in Lp(I,X). Then there

is a subsequence {fkn}n which converges to f pointwise a.e.

Lemma 2.3.2: ([16, Th. 1, p.101],[16, Corollary 13, p.76]

Let (I,Σ, µ) be a finite measure space and X be a reflexive Banach space and Ω ⊂

L1(I,X). If the following three conditions hold:

i) Ω is bounded,

ii) Ω is uniformly integrable, i.e.

∫
J

‖u‖ dµ→ 0 whenever µ(J)→ 0,

where the convergence is uniform in u(·) ∈ Ω,

iii) for each J ∈ Σ the set
{∫

J
u dµ : u(·) ∈ Ω

}
is relatively weakly compact,

then Ω is relatively weakly compact.
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The next result known as Mazur’s lemma that will be very useful throughout the thesis.

Lemma 2.3.3: [11, p. 61]

Let X be a Banach space, assume that (xn)n ⊂ X converges weakly to x. Then there

exists a sequence (yn)n made up of the convex combination of the xn that ’s converges

strongly to x.

2.4 ) Main results

We define A1 as follows:

A1 = {(t0, x0) : x0 ∈ D(At0,x0)},

and for a fixed x0 ∈ H we define the following constants:

c = c0(2 + ‖x0‖),

κ̃1 =
(
‖x0‖+ (2 +M + 2c)(ζ(T ) + 1 + T )

)
· exp

(
(M + 2c)(ζ(T ) + 1 + T )

)
,

and

κ̃ := 2 + (M + 2c)(1 + κ̃1), (2.6)

where c0 comes from (2.3).

The following theorem establishes the existence result of the non linear evolution problem

(2.1).
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Theorem 2.4.1

Suppose that assumption 2.2.1 and assumption 2.2.2 hold and that Lκ̃ < 1. Then for

all (t0, x0) ∈ A1 the following differential inclusion ẋ(t) ∈ f(t, x(t))− At,x(t)x(t) a.e. t ∈ [t0, T ],

x(t0) = x0.

has at least one absolutely continuous solution x(·). Moreover x(·) satisfies the follow-

ing estimate for almost every t ∈ [t0, T ]

‖ẋ(t)‖ ≤ λ̇(t), (2.7)

where λ(·) is the absolutely continuous solution of the following ordinary differential

equation

λ̇(t) :=
κ

1− Lκ
(1 + ζ̇(t)), λ(t0) = 0,

with the constant

κ := 2 + (M + 2c)(1 + κ1), (2.8)

where

κ1 =
(
‖x0‖+ (2 +M + 2c)(ζ(T ) + L+ T )

)
· exp

(
(M + 2c)(ζ(T ) + L+ T )

)
,

and ζ(·) is given in Assumption 2.2.1.

Proof. Accordig to the definitions of κ and κ̃ in the relations (2.8), (2.6), we have κ < κ̃, we use

also the hypothes Lκ̃ < 1 we obtain L <
1

κ
.

While λ(·) is absolutely continuous there exists some θ > 0 such that the following holds

∫ t+θ

t

λ̇(s)ds < 1 for every t ∈ [0, T ]. (2.9)
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We prove the existence theorem by using the Schauder’s fixed point theorem, that ’s based on

two steps

Step 1.

Let (t0, x0) ∈ A1, Tθ := t0 + θ, and for I := [t0, Tθ], define the following set

K =

{
u ∈ C(I,H) : u(t) = x0 +

∫ t

t0

u̇(s)ds ∀ t ∈ I, ‖u̇(t)‖ ≤ λ̇(t) a.e.

}
.

It is easy to see that K is a bounded, nonempty subset in C(I,H).

We prove that K is convex. Let u1, u2 ∈ C(I,H), for α ∈ [0, 1] we have αu1 + (1− α)u2 ∈ K

it’s clearly that αu1 + (1− α)u2 ∈ C(I,H), as u1, u2 ∈ K we have

u1(t) = x0 +

∫ t

t0

u̇1(s)ds,

u2(t) = x0 +

∫ t

t0

u̇2(s)ds,

αu1(t) + (1− α)u2(t) = αx0 + α

∫ t

t0

u̇1(s)ds+ (1− α)x0 + (1− α)

∫ t

t0

u̇2(s)ds,

= x0 +

∫ t

t0

(αu̇1(s) + (1− α)u̇2(s)ds.

|| ˙αu1(t) + (1− α)u2(t)|| = ||αu̇1(t) + (1− α)u̇2(t)|| ≤ α||u̇1(t)||+ (1− α)||u̇2(t)||

≤ αλ̇(t) + (1− α)λ̇(t) = λ̇(t).

Let us show that K is closed in C(I,H).

By Lemma 2.3.2 the set

Ω := {y(·) ∈ L1(I,H) : ‖y(t)‖ ≤ λ̇(t)}

is relatively weakly compact. Indeed, Ω is bounded by ‖λ̇‖L1(I,R).
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The set Ω is uniformly integrable, since for any u ∈ Ω and any measurable set J ⊂ I the set

∫
J

‖u(t)‖dt ≤
∫
J

λ̇(t) dt,

and

for all ε > 0, there exists δ > 0 such that for every measurable set J ⊂ I :
∫
J
dt < δ, we

have ∫
J

λ̇(t)dt < ε, (2.10)

which has to hold, otherwise there will be some ε0 > 0, a sequence of δi → 0 and measurable

Ji ⊂ I such that
∫
Ji
dt→ 0 but

∫
Ji

λ̇(t) dt ≥ ε0. (2.11)

In such a case, notice that functions gi := λ̇1Ji converge to zero pointwise a.e., and gi(·) ≤ λ̇ ∈

L1(I,R). By Dominated Convergence Theorem
∫
J
gi(t) =

∫
Ji
λ̇(t)dt → 0, which contradicts

(2.11). Thus (2.10) holds and Ω is uniformly integrable.

Finally for each measurable J ⊂ I and each u(·) ∈ Ω

∥∥∥∥∫
J

u(t)dt

∥∥∥∥ ≤ ∫
J

‖u(t)‖dt ≤
∫
I

λ̇(t)dt = ‖λ̇‖L1(I,R),

hence the set
{∫

J
u dµ : u(·) ∈ Ω

}
is bounded in Hilbert space H. This and the fact it is convex

(due to convexity of Ω) imply that it is relatively weakly compact. We have shown that all

the conditions of Lemma 2.3.2 hold for Ω, hence Ω is relatively weakly compact.

Moreover Ω is convex and strongly closed in L1(I,H), hence it is weakly closed in L1(I,H).

Therefore Ω is weakly compact in L1(I,H). Let (un)n be a sequence of elements of K con-

verging to u(·) in C(I,H). Since ‖u̇n(t)‖ ≤ λ̇(t) a.e. t ∈ I, by the Eberlein-Ŝmulian theorem,

we can take a subsequence of (u̇n(·))n (that we do not relabel) converging weakly in L1(I,H)

to some mapping w(·) ∈ L1(I,H).
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Putting v(t) := x0 +
∫ t
t0
w(s) ds we see that v is absolutely continuous with v̇(t) = w(t) a.e.

and since Ω is weakly closed we have ‖v̇(t)‖ ≤ λ̇(t) a.e. in I. Then for any ξ ∈ H, we have

for each t ∈ I

lim
n→∞

∫ Tθ

t0

〈
1[t0,t](s)ξ, u̇n(s)

〉
ds =

∫ Tθ

t0

〈
1[t0,t](s)ξ, w(s)

〉
ds,

which entails for each t ∈ I that un(t) −→ v(t) weakly in H as n→∞.

Therefore u = v and hence u ∈ K, that is, K is closed in C(I,H).

Step 2

Let h ∈ K be fixed and for each t ∈ I define the mapping Bh(t) : D(Bh(t)) ⊂ H ⇒ H as

follows

Bh(t) = At,h(t) that is Bh(t)x = At,h(t)(x) for all x ∈ H.

Further we define the element of minimal norm of Bh(t)x by

B0
h(t, x) ∈ Bh(t)x and ‖B0

h(t, x)‖ = inf
z∈Bh(t)x

‖z‖.

It is clear that for each t ∈ I, Bh(t) is maximal monotone and for s, t ∈ I we have

dis(Bh(t), Bh(s)) = dis(At,h(t), As,h(s))

≤ |ζ(t)− ζ(s)|+ L‖h(t)− h(s)‖

≤ |ζ(t)− ζ(s)|+ L

∫ t

s

λ̇(τ)dτ.

This ensures that

dis(Bh(t), Bh(s)) ≤ |β(t)− β(s)|, (2.12)

with

β(t) =

∫ t

t0

ζ̇(s) + Lλ̇(s) ds.
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On the other hand, from (2.3) we have, for all t ∈ I,

‖B0
h(t, x)‖ = ‖A0

t,h(t)(x)‖ ≤ c0(1 + ‖x‖+ ‖h(t)‖)

≤ c0

(
1 + ‖x‖+ ‖x0‖+

∫ t

t0

λ̇(s)ds
)
.

It follows from this and (2.9) that

‖B0
h(t, x)‖ ≤ c(1 + ‖x‖), (2.13)

with

c = c0(2 + ‖x0‖).

Therefore, by Assumption 2.2.2, inequalities (2.12) and (2.13) and Theorem 3.2 in [6] the

following problem  ẋh(t) ∈ f(t, xh(t))−Bh(t)xh(t) a.e. t ∈ I,

xh(t0) = x0.
(Ph)

has a unique absolutely continuous solution xh(·) satisfying

‖ẋh(t)‖ ≤ K(1 + ζ̇(t) + Lλ̇(t)), (2.14)

for some constant

K := 2 + (M + 2c)(1 +K1),

with

K1 :=
(
‖x0‖+ (2 +M + 2c)(β(Tθ) + Tθ)

)
· exp

(
(M + 2c)(β(Tθ) + Tθ)

)
.

Step 3: For every h ∈ K, t ∈ I, let define the function Ψ by the form

Ψ(h) : I −→ H

t 7−→ Ψ(h)(t) = x0 +
∫ t
t0
ẋh(s)ds,
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such that xh(·) is the unique solution of (Ph).

We shall prove that Ψ(K) ⊂ K and that Ψ has a unique fixed point in K via Schauder’s fixed

point theorem 1.8.1.

Ψ is invariant by K, that means Ψ(K) ⊂ K. Indeed

From (2.9), (2.14) and the fact that ζ(·) is increasing we have K < κ. This assures us that

‖ẋh(t)‖ ≤ κ
(

1 + ζ̇(t) + Lλ̇(t)
)

= λ̇(t). (2.15)

We claim that Ψ(K) is relatively compact in C(I,H). Indeed, let h ∈ K and t, s ∈ I

‖Ψ(h)(t)−Ψ(h)(s)‖ =
∥∥∥ t∫
s

ẋh(τ)dτ
∥∥∥

≤
∣∣∣ t∫
s

‖ẋh(τ)‖dτ
∣∣∣

≤ |λ(t)− λ(s)|.

Hence, Ψ(K) is equicontinuous.

Moreover we have:

‖Ψ(h)(t)‖ ≤ ‖x0‖+ λ(T ), ∀h ∈ K, t ∈ I, (2.16)

otherwise stated

‖Ψ(h)‖C(I,H) ≤ ‖x0‖+ λ(T ),∀ h ∈ K.

On the other hand, due to [7, Th. 2.1] and the fact that H is reflexive, we have for each

h ∈ K, Ψ(h) = xh. Moreover, since ẋh(t) ∈ f(t, xh(t))−Bh(t)xh(t) a.e. t ∈ I, one has

Ψ(h)(t) ∈ D(At,h(t)) ∩B′(x0, λ(T )).

Noting that h(t) ∈ B′(x0, λ(T )) for all h ∈ K and t ∈ I, one has

Ψ(h)(t) ∈ D(AI×B′(x0,λ(T ))) ∩B′(x0, λ(T )), ∀ t ∈ I. (2.17)
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From this and (1.3) of Assumption 2.2.1, we deduce that for each t ∈ I, {Ψ(h)(t)}h∈K is

relatively compact. Therefore by Ascoli-Arzela theorem Ψ(K) is relatively compact in C(I,H).

Next, we prove the continuity of Ψ.

Let (hn)n∈N ⊂ K be a sequence such that hn converges to some h in C(I,H). For each n ∈ N,

let xhn(·) be the unique absolutely continuous solution of the problem (Phn). That is

ẋhn(t) ∈ f(t, xhn(t))−Bhn(t)xhn(t) a.e. in I and xhn(t0) = x0. (2.18)

By (2.15) we have

‖ẋhn(t)‖ ≤ λ̇(t) ∀ t ∈ I. (2.19)

Moreover, due to [7, Th. 2.1] and the fact that H is reflexive, Ψ(hn) = xhn.

Further, since Ψ(K) is relatively compact in C(I,H), for each t ∈ I the set {xhn(t) : n ∈ N} is

relatively compact inH. This and (2.19) ensures by [5, Th. 4] that there exists a subsequence,

we denote it again by (xhn)n∈N converging to some function x(·) in the following sense

xhn(·) converges uniformly to x(·) in I, (2.20)

and

ẋhn(·) converges weakly to ẋ(·) in L1(I,H). (2.21)

So (2.20), (2.21) and (2.5) together give the following

− ẋhn(·) + f(·, xhn(·)) converges weakly to − ẋ(·) + f(·, x(·)) in L1(I,H). (2.22)

Then by Mazur’s lemma, one has for almost each t ∈ I,

− ẋ(t) + f(t, x(t)) ∈
⋂
n

co{−ẋhk(t) + f(t, xhk(t)) : k ≥ n}. (2.23)
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Therefore (2.23) implies that for z ∈ H, one has

〈−ẋ(t) + f(t, x(t)), z〉 ≤ lim sup〈−ẋhn(t) + f(t, xhn(t)), z〉. (2.24)

Next, on one hand, since

dis(Bhn(t), Bh(t)) = dis(At,hn(t), At,h(t))

≤ L‖hn(t)− h(t)‖,

we have

lim
n→∞

dis(Bhn(t), Bh(t)) = 0. (2.25)

On the other hand, from (2.18) we have

−ẋhn(t) + f(t, xhn(t)) ∈ Bhn(t)xhn(t) a.e. t ∈ I,

which means that there exists a negligible set Nn ⊂ I such that

− ẋhn(t) + f(t, xhn(t)) ∈ Bhn(t)xhn(t) ∀ t ∈ I \Nn. (2.26)

Moreover we have

B0
hn(t, η) ∈ Bhn(t)(η) for all η ∈ D(Bhn(t)). (2.27)

Since Bhn(t) is monotone, (2.26) and (2.27) entail that for all t ∈ I \ Nn and η ∈ D(Bhn(t))

one has

〈−ẋhn(t) + f(t, xhn(t)), η − xhn(t)〉 ≤ 〈B0
hn(t, η), η − xhn(t)〉. (2.28)

Now, let z ∈ D(Bh(t)), by (2.13), (2.25) and Lemma 1.6.8 there exists a sequence (ηn) such

that

ηn ∈ D(Bhn(t)), ηn → z and B0
hn(t, ηn)→ B0

h(t, z). (2.29)
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Therefore by (2.28), (2.15) and (2.4) we have, for t ∈ I \Nn and z ∈ D(Bh(t))

〈−ẋhn(t) + f(t, xhn(t)), z − x(t)〉 = 〈−ẋhn(t) + f(t, xhn(t)), ηn − xhn(t)〉

+ 〈−ẋhn(t) + f(t, xhn(t)), z − ηn + xhn(t)− x(t)〉

≤ 〈B0
hn(t, η), ηn − xhn(t)〉

+ ‖ − ẋhn(t) + f(t, xhn(t))‖ (‖x(t)− xhn(t)‖+ ‖z − ηn‖)

≤ 〈B0
hn(t, η), ηn − xhn(t)〉+

(
M(1 + ‖xhn(t)‖)

+ λ̇(t)
)
×
(
‖x(t)− xhn(t)‖+ ‖z − ηn‖

)
.

Taking the limsup and using (2.20) and (2.29) we obtain

lim sup
n→∞

〈−ẋhn(t) + f(t, xhn(t)), z − x(t)〉 ≤ 〈B0
h(t, η), z − x(t)〉 ∀ t ∈ I \

∞⋃
n=1

Nn. (2.30)

Hence, it follows from (2.24) and (2.30) that for all z ∈ D(Bh(t)) and for all t ∈ I \
⋃∞
n=1 Nn

〈−ẋ(t) + f(t, x(t)), z − x(t)〉 ≤ 〈B0
h(t, η), z − x(t)〉. (2.31)

Inequality (2.31) together with Lemma 1.6.7 give for all t ∈ I \
⋃∞
n=1 Nn

x(t) ∈ D(Bh(t)) and − ẋ(t) + f(t, x(t)) ∈ Bh(t)x(t),

that is

ẋ(t) ∈ f(t, x(t))−Bh(t)x(t) a.e. t ∈ I.

Therefore x(·) is the unique solution xh of (Ph) and so one has the equality

Ψ(h)(t) = x0 +

∫ t

t0

ẋh(s)ds.
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By this we can write

‖Ψ(hn)(t)−Ψ(h)(t)‖ = ‖xhn(t)− xh(t)‖

≤ ‖xhn − xh‖C(I,H),

hence

‖Ψ(hn)−Ψ(h)‖C(I,H) ≤ ‖xhn − xh‖C(I,H).

This and (2.20) justify that Ψ(hn) converges to Ψ(h), which says that Ψ is continuous in K.

Therefore by Schauder’s fixed point theorem there exists h ∈ K such that h = Ψ(h), that is

h(t) = x0 +

∫ t

t0

ẋh(t),

where xh(·) is the unique solution of (Ph), and this gives
h(t) = xh(t),

ẋh(t) ∈ f(t, xh(t))− At,h(t)xh(t) a.e. t ∈ I,

xh(0) = x0.

Therefore replacing h by x we have ẋ(t) ∈ f(t, x(t))− At,x(t)x(t) a.e. t ∈ I,

x(0) = x0.

That is x(·) is a solution of the problem (2.1).

Step 4 solution of (P)

Let n ∈ N be such that θ0 := T−t0
n

< θ. Consider the following subdivision of [t0, T ], ti =

t0 + iθ0, for i = 0, 1, · · · , n. For each i = 1, · · · , n the above theorem provides a solution xi(·)
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of the following problem ẋi(t) ∈ f(t, xi(t))− At,xi(t)xi(t) a.e. t ∈ [ti, ti+1],

xi(ti) = xi−1(ti).

where we set x−1(t0) = x0. Define x(·) : [t0, T ]→ H by

x(t) = xi(t) if t ∈ [ti, ti+1].

Then x(·) is a solution of (P) in [t0, T ] with ‖ẋ(t)‖ ≤ λ̇(t). This completes the proof of the

existence of solution.

To prove the uniqueness of solution for (2.1), we should add the following hypo-monotone

like assumption on the operator A.

Theorem 2.4.2

Suppose that assumption 2.2.1 and assumption 2.2.2 hold and that A : [0, T ]×H −→ H

is hypo-monotone on bounded sets in the following sense; for given r > 0 there exists

ηr ≥ 0 such that for all t ∈ [0, T ], xi ∈ rB, x∗i ∈ At,xi(xi), i = 1, 2 we have

〈x∗1 − x∗2, x1 − x2〉 ≥ −ηr‖x1 − x2‖2.

Then for each (t0, x0) ∈ A1, the problem (2.1) has a unique solution.

Proof. The existence is proved in the theorem 2.4.1.

Let x1(·) and x2(·) be two solutions of problem (2.1) with the same initial condition x1(0) =

x2(0) = x0. By the inequality (2.7) we have xi(t) ∈ B′(x0, λ(T )). Using the hypo-monotonicity

of A and the Lipschitz continuity of f(t, ·) on bounded sets there exist α(·) ∈ L1([0, T ],R+, dt)

and η > 0 such that for all t ∈ [T0, T ], xi ∈ kB and x∗i ∈ At,xi(xi), i = 1, 2

〈x∗1 − x∗2, x1 − x2〉 ≥ −ηr‖x1 − x2‖2
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and

‖f(t, x1)− f(t, x2)‖ ≤ αr‖x1 − x2‖.

It follows that

〈ẋ1(t)− ẋ2(t), x1(t)− x2(t)〉 ≤ 〈f(t, x1(t))− f(t, x2(t)), x1(t)− x2(t)〉+ ηr‖x1(t)− x2(t)‖2

≤ (αr + ηr)‖x1(t)− x2(t)‖2.

This gives
d

dt
‖x1(t)− x2(t)‖2 ≤ 2(αr + ηr)‖x1(t)− x2(t)‖2,

Use the continuous Gronwall’s inequality in Lemma 1.9.10

||x1(t)− x2(t)||2 ≤ ||x1(0)− x2(0)||2 exp
(

2(αr + ηr)(t)
)
,∀t ∈ [0, T ],

we conclude that x1 = x2, therfore we obtain the uniqueness of solutions .



CHAPTER THREE

STABILITY AND SECOND ORDER STATE

DEPENDENT MAXIMAL MONOTONE

DIFFERENTIAL INCLUSIONS

3.1 ) Stability results of first order state dependent maxi-

mal monotone differential inclusions

This section is devoted to the stability of the solution of the differential inclusion (2.1).

For this purpose we introduce the following parametric differential inclusion
ẋ(t) ∈ f(t, x(t), ξ)− At,x(t),ξ(x(t)) a.e. t ∈ [0, T ],

x(0) = xξ,0.

(Pξ)

Note that the parameter appears in all the data of the evolution, including the set-valued

maximal monotone operator, the single-valued mapping and the initial condition. The sta-

bility analysis of variational problems constitutes an important topic in applied mathematics,

since it gives information on the robustness of the problem under data perturbation.

Consider the following assumptions:

Assumption H(A):

For each t ∈ [0, T ], ξ > 0 and x ∈ H, let At,x,ξ : D(At,x,ξ) ⊂ H ⇒ H be a maximal monotone

54
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3.1 Stability results of first order state dependent maximal monotone

differential inclusions

operator satisfying the followings:

(1) There exist some constants L0 ≥ 0, L1 < 1 and ζ(·) ∈ H1([0, T ],R+; dt) such that

dis(At,x,ξ, As,y,ξ′) ≤ |ζ(t)− ζ(s)|+ L0|ξ − ξ′|+ L1‖x− y‖, ∀ t, s ∈ [0, T ] and ξ, ξ′ > 0. (3.1)

(2) There exists c0 > 0 such that ∀ t ∈ [0, T ], x, y ∈ H and ξ > 0 we have

‖A0
t,x,ξ(y)‖ ≤ c0(1 + ‖x‖+ ‖y‖). (3.2)

(3) There exist Γ(·) and δ(·) in L2([0, T ],R+, dt) such that for every t ∈ [0, T ], ξ > 0 and x ∈ H

At,x,ξ(x) ⊂ (Γ(t)‖x‖+ δ(t))B.

Assumption H(f):

(1) Let f : [0, T ]× R+ ×H −→ H be a function satisfying the following growth condition:

‖f(t, x, ξ)‖ ≤M(1 + ‖x‖), ∀ t ∈ [0, T ], x ∈ H, (3.3)

for some constant M > 0.

(2) For every t ∈ [0, T ] and r > 0, there exist a nonnegative real function αr(·) and βr(·) ∈

L2([0, T ],R, dt) such that:

‖f(t, x, ξ)− f(t, y, ξ′)‖ ≤ αr(t)‖x− y‖+ βr(t)|ξ − ξ′|, ∀ x, y ∈ B′(0, r) and ξ, ξ′ > 0. (3.4)

Assumption H(0):

ξ 7→ xξ,0 is continuous.

Definition 3.1.1. Let {Sξ}ξ>0 be a family of set-valued mappings Sξ : H ⇒ H. We denote

w lim sup
ξ→0+

x→x̄

Sξ(x) = {z ∈ H : ∃ ξk → 0+ and (xk, zk) ∈ gphSξk such that xk → x and zk ⇀ z}.
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We prove the following Lemma:

Lemma 3.1.1

Assume that the first hypothese in assumption H(A) is satisfied. Then we have

ωlim sup
ξ→0+

x→x̄

At,x,ξ(x) ⊂ At,x̄,0(x̄).

Proof. Let z ∈ ωlim sup
ξ→0+

x→x̄

At,x,ξ(x), there exist ξk → 0+, xk → x and zk ∈ At,xk,ξk(xk) such that

zk ⇀ z.

According to the first hypothese of Assumption H(A) we obtain

dis(At,xk,ξk , At,x̄,0) ≤ |ζ(t)− ζ(t)|+ L0|ξk − 0|+ L1‖xk − x‖,

take the limit when k →∞ one has

dis(At,xk,ξk , At,x̄,0)→ 0.

Applying Lemma 1.6.6 we have z ∈ At,x̄,0(x̄).

Lemma 3.1.2: [30]

Let X be a Banach space and 1 ≤ p < +∞. If {fn(·), f(·)}n ⊂ Lp(I,X), fn(·) ⇀ f(·) in

Lp(I,X) and fn(t) ∈ G(t) a.e. in I where for almost each t ∈ I, G(t) ⊂ X is nonempty,

weakly-compact and then

f(t) ∈ c̄o w lim sup
n→∞

{fn(t)}n a.e. in I.

Theorem 3.1.3

Under the assumptions H(A) and H(f), the problem (Pξ) has a unique absolutely con-

tinuous solution.

Proof. By introducing the operators Aξt,x(·) := At,x,ξ(·) and f ξ(·, ·) := f(·, ·, ξ), the problem (Pξ)
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becomes  ẋ(t) ∈ f ξ(t, x(t))− Aξt,x(t)(x(t)) a.e. t ∈ [0, T ],

x(0) = xξ,0.

The existence and uniqueness of solution follow from Theorem 2.4.1.

Let us prove the stability of the solution in W 1,1([0, T ], H).

Theorem 3.1.4

Suppose that the assumptions H(A)(1), H(A)(2), H(f) and H(0) hold. Let ξn → 0 and

xn(·) be a solution of (Pξn) such that xn(·) → x(·) in W 1,1([0, T ], H). Then x(·) is a

solution of (P0).

Proof. Since xn(·) is a solution of (Pξn) there exists pn(t) := f(t, xn(t), ξn) such that

− ẋn(t) + pn(t) ∈ At,xn(t),ξn(xn(t)). (3.5)

Since xn(·) → x(·) in W 1,1([0, T ], H), therefore up to a subsequence, ẋn(t) → ẋ(t) for each

t ∈ [0, T ] \N where N is a set of measure zero.

Fix t ∈ [0, T ] \N , by H(f)(1) we have

‖pn(t)‖ ≤ M(1 + ‖xn(t)‖)

≤ M(2 + ‖x(t)‖), ∀ n ≥ n0 for some n0 ∈ N. (3.6)

In addition, as x(·) ∈ C([0, T ], H) one has C := sup{‖x(t)‖ : t ∈ [0, T ]} <∞.

This fact and (3.6) ensure that

‖pn(t)‖ ≤ C0, ∀ n ∈ N, for some constant C0 > 0. (3.7)

The last relation imply that the sequence {pn(t)}n∈N is bounded in H. Therfore there exists a
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subsequence pkn(t) ⇀ p(t) in H and thus

−ẋkn(t) + pkn(t) ⇀ −ẋ(t) + p(t) a.e. t ∈ [0, T ].

Therefore by Lemma 3.1.1 and (3.5) one has

−ẋ(t) + p(t) ∈ c̄o w lim sup
n→∞

{−ẋkn(t) + pkn(t)} ⊂ At,x(t),0(x(t)) a.e. t ∈ [0, T ].

On the other hand, for each t ∈ [0, T ] \ N , due to Mazur’s lemma, for each n ∈ N, there

exists an integer p(n) > n and some positive real numbers λk,n for k = n, · · · , p(n) with∑p(n)
k=n λk,n = 1 such that the subsequence

∑p(n)
k=n λk,npkn(t) is converges stongly to p(t) in H,

i.e.;
p(n)∑
k=n

λk,npkn(t)→ p(t) in H.

So, we have

p(t) ∈
⋂
n

c̄o{f(t, xkn(t), ξkn) : k ≥ n} a.e. t ∈ [0, T ]. (3.8)

Moreover xkn(·)→ x(·) in L1([0, T ], H) and then from Lemma 2.3.1 we deduce a subsequence

xkn(t)→ x(t) a.e. t ∈ [0, T ]. (3.9)

Therefore (3.8), (3.9) with (3.4) entail that for any z ∈ H, and for almost every t ∈ [0, T ].

〈p(t), z〉 ≤ lim sup
n→∞

〈f(t, xkn(t), ξkn), z〉

= 〈f(t, x(t), 0), z〉.

From this, we obtain

〈p(t)− f(t, x(t), 0), z〉 = 0, ∀ z ∈ H,

which gives p(t) = f(t, x(t), 0) a.e. t ∈ [0, T ].

By H(0) we have xξn,0 → x(0). This completes the proof.
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In the next theorem we study the stability of the solution in C([0, T ], H).

Theorem 3.1.5

Suppose that the assumptions H(A), H(f) and H(0) hold. Let ξn → 0 and xn(·) be a

solution of (Pξn) such that xn(·)→ x(·) in C([0, T ], H). Then x(·) is a solution of (P0).

Proof. Let xn(·) be a solution of (Pξn) there exists pn(t) := f(t, xn(t), ξn) such that

− ẋn(t) + pn(t) ∈ At,xn(t),ξn(xn(t)) a.e. t ∈ [0, T ]. (3.10)

By H(f)(1) and H(A)(3) we have for a.e. t ∈ [0, T ]

‖ẋn(t)‖ ≤ Γ(t)‖xn(t)‖+ δ(t) + ‖pn(t)‖

≤ (Γ(t) +M)‖xn(t)‖+ δ(t) +M. (3.11)

Therefore by Gronwall Lemma there exists M0 > 0 such that for every n ∈ N one has

sup
t∈[0,T ]

‖xn(t)‖ ≤M0.

From this and the relation (3.11), we have

‖ẋn(t)‖ ≤ (Γ(t) +M)M0 + δ(t) +M a.e. t ∈ [0, T ]. (3.12)

Further, for each t ∈ [0, T ]

‖pn(t)‖ ≤M(1 +M0). (3.13)

From (3.12) and (3.13), we obtain the following inequality

‖ẋn(·)‖L2([0,T ],H) + ‖pn(·)‖L2([0,T ],H) ≤M1 for some constant M1 > 0. (3.14)
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Therefore, there exists a sequence (kn)n such that

ẋkn(·) ⇀ y(·), pkn(·) ⇀ p(·) in L2([0, T ], H). (3.15)

Using Mazur’s Lemma, for each n ∈ N, there exists an integer α(n) > n and some positive

real numbers sk,n for k = n, · · · , α(n) satisfying
∑α(n)

k=n sk,n = 1 and such that the subsequence,

α(n)∑
k=n

sk,nẋkn(·) −→ y(·) in L2([0, T ], H).

By Lemma 2.3.1 we have that up to a subsequence

α(n)∑
k=n

sk,nẋkn(t) −→ y(t) a.e. t ∈ [0, T ]. (3.16)

Since xkn(·)→ x(·) in C([0, T ], H), then by taking the integral in (3.16) we have ẋ(·) = y(·).

Combining this with (3.15), we have ẋkn(·) ⇀ ẋ(·) ∈ L2([0, T ], H).

Consequently,

− ẋkn(·) + pkn(·) ⇀ −ẋ(·) + p(·) in L2([0, T ], H). (3.17)

It follows from (3.12) and (3.13) that for almost every t ∈ [0, T ],

‖ − ẋkn(t) + pkn(t)‖ ≤ γ(t) for some γ(·) ∈ L2([0, T ],R). (3.18)

From Lemma 3.1.2 and the relations (3.17) and (3.18), we have

− ẋ(t) + p(t) ∈ co w lim sup
n→∞

{−ẋkn(t) + pkn(t)}, (3.19)

and Lemma 3.1.1 with the relation (3.10) give

co w lim sup
n→∞

{−ẋkn(t) + pkn(t)} ⊂ At,x(t),0(x(t)).
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It ensues from this and (3.19) that

−ẋ(t) + p(t) ∈ At,x(t),0(x(t)) a.e. t ∈ [0, T ].

The same arguments as in the above Theorem 3.1.4 show that p(t) = f(t, x(t), 0) a.e. t ∈

[0, T ].

By H(0) we have xξn,0 → x(0). Therefore x(·) is a solution of (P0).

3.2 ) Second order state dependent maximal monotone

inclusions

3.2.1 Introduction

In this section we consider the second order state dependent maximal monotone inclu-

sion  f(t, u(t)) ∈ ü(t) + At,u(t)u̇(t) a.e. t ∈ [0, T ]

u(0) = u0, u̇(0) = u̇0 ∈ D(A(0, u0)),
(S1)

where A and f satisfy the conditions in Theorem 2.4.1 and Theorem 2.4.2.

The idea to study the second-order state-dependent maximal monotone inclusion (S1) is mo-

tivated by the study of existence and stability results for the convex second-order sweeping

process. Note that the following evolution problem associated with the second-order sweep-

ing process by a closed convex Lipschitzian set-valued mapping C : [0, T ]×H −→ H: f(t, u(t)) ∈ ü(t) +NC(t,u(t))(u̇(t)) a.e. t ∈ [0, T ]

u(0) = u0, u̇(0) = u̇0 ∈ C(0, u0),
(SWP)

is a particular case of the problem (S1), where At,u(t) := NC(t,u(t)), the outward normal

cone operator. Furthermore, we know (see [43]) that for all t, s ∈ [0, T ] and u, v ∈ H,
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dis(NC(t,u), NC(t,v)) = H(C(t, u), C(s, v)); here H stands for the Hausdorff distance between

closed subsets of H.

3.2.2 Existence theorem

To obtain the reduction of the second-order problem (S1) to the first-order state-dependent

maximal monotone differential inclusion, we shall use the next lemma.

Lemma 3.2.1

Suppose that assumption 2.2.1 and assumption 2.2.2 hold. Let V := H×H be equipped

with the following norm

‖u‖V = (‖x‖2 + ‖y‖2)1/2, ∀u = (x, y) ∈ V.

For t ∈ [0, T ] and u = (x, y) ∈ V , define the mapping Bt,u : D(Bt,u) ⊂ V ⇒ V in the

following way:

D(Bt,u) = H ×D(At,x) and Bt,u(v) = {0} × At,x(z), ∀ v = (h, z) ∈ D(Bt,u),

and the mapping F : [0, T ]× V −→ V as follows

F (t, u) = (y, f(t, x)), ∀ t ∈ [0, T ] and u = (x, y) ∈ V.

Then the following properties are satisfied:

H(B)(1): For all t > 0 and u ∈ V , Bt,u is maximal monotone.

H(B)(2): For all t, s ∈ [0, T ] and u, v ∈ V , we have:

dis(Bt,u, Bs,v) ≤ |ζ(t)− ζ(s)|+ L‖u− v‖V . (3.20)

H(B)(3): There exits c0 > 0 such that for all t ∈ [0, T ], u ∈ V and v ∈ D(Bt,u) one has
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Lemma: following of Lemma 3.2.1

‖B0
t,u(v)‖V ≤ c0(1 + ‖u‖V + ‖v‖V ). (3.21)

H(F )(1): There exists M0 > 0 such that

‖F (t, u)‖V ≤M0(1 + ‖u‖V ), ∀ t ∈ [0, T ], u ∈ V (3.22)

H(F )(2): For every t ∈ [0, T ] and R > 0 there exists a nonnegative real function

βR(·) ∈ L1([0, T ],R, dt) such that:

‖F (t, u)− F (t, v))‖V ≤ βR(t)‖u− v‖V , ∀ u, v ∈ B′V (0, R) (3.23)

where B′V (0, R) is the closed ball in V of radius R centered at the origin.

Proof. Let t ∈ [0, T ], u = (x, y) ∈ V . Let (0, wi) ∈ Bt,u(xi, yi), for i = 1, 2 with (xi, yi) ∈ D(Bt,u),

for i = 1, 2.

So by the definition of the operator Bt,u we have wi ∈ At,x(yi), i = 1, 2 where xi ∈ H, yi ∈

D(At,x), i = 1, 2.

The fact that At,x is monotone, implies

〈(0, w1)− (0, w2), (x1, y1)− (x2, y2)〉 = 〈(0, w1 − w2), (x1 − x2, y1 − y2)〉 = 〈w1 − w2, y1 − y2〉 ≥ 0,

so Bt,u is monotone.

This argument and while At,x is also maximal monotone we can say that Bt,u is maximal

monotone.

Consequently B satisfies H(B)(1). Now let t, s ∈ [0, T ], u = (x1, y1) and v = (x2, y2) ∈ V , we

have for y1 ∈ D(At,x1), w1 ∈ At,x1(y1), y2 ∈ D(As,x2), w2 ∈ As,x2(y2)
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dis(Bt,u, Bs,v) = sup

{
〈(0, w1)− (0, w2), (x2, y2)− (x1, y1)〉

1 + ‖(0, w1)‖V + ‖(0, w2)‖V

}
,

= sup

{
〈w1 − w2, y2 − y1〉
1 + ‖w1‖+ ‖w2‖

}
,

= dis(At,x1 , As,x2) ≤ |ζ(t)− ζ(s)|+ L‖x1 − x2‖.

Or we have

‖x1 − x2‖ ≤ (‖x1 − x2‖2 + ‖y1 − y2‖2)1/2.

Therefore

dis(Bt,u, Bs,v) ≤ |ζ(t)− ζ(s)|+ L(‖x1 − x2‖2 + ‖y1 − y2‖2)1/2

= |ζ(t)− ζ(s)|+ L‖u− v‖V .

Comming back to verfy the growth condition. For t ∈ [0, T ], u = (x, y) ∈ V and v = (h, z) ∈

D(Bt,u), from (2.3), one has

‖B0
t,u(v)‖V = ‖A0

t,x(z)‖

≤ c0(1 + ‖x‖+ ‖z‖)

≤ c0(1 + ‖u‖V + ‖v‖V ).

Hence B satisfies both (3.20) and (3.21). Therfore B satisfiesH(B)(2) and satisfiesH(B)(3).

Now let u = (x, y) ∈ V and t ∈ [0, T ], from (2.4) we have
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‖F (t, u)‖2
V = ‖(y, f(t, x))‖2

V

≤ ‖y‖2 +M2(1 + ‖x‖)2

≤ (M + 1)2
(
(1 + ‖x‖)2 + ‖y‖2

)
≤ (M + 1)2 (1 + ‖x‖+ ‖y‖)2

≤ (M + 1)2
(

1 +
√

2‖u‖V
)2

≤ 2(M + 1)2 (1 + ‖u‖V )2 ,

that is,

‖F (t, u)‖V ≤
√

2(M + 1) (1 + ‖u‖V ) .

This implies (3.22) with M0 =
√

2(M + 1).

Let t ∈ [0, T ], R > 0 and u = (u1, u2), v = (v1, v2) ∈ B′V (0, R), from (2.5) we have

‖F (t, u)− F (t, v)‖2
V = ‖(u2 − v2, f(t, u1)− f(t, v1))‖2

V

≤ ‖u2 − v2‖2 + α2
R(t)‖u1 − v1‖2

≤ (1 + αR(t))2
(
‖u1 − v1‖2 + ‖u2 − v2‖2

)
= (1 + αR(t))2‖u− v‖2

V ,

which is equivalent to

‖F (t, u)− F (t, v)‖V ≤ (1 + αR(t))‖u− v‖V .

This gives (3.23) with βR(·) = 1 + αR(t). The proof of the lemma is complete.

Let us now prove the following existence result for the second-order state-dependent maximal

monotone differential inclusion (S1).
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Theorem 3.2.2

Suppose that assumption 2.2.1 and assumption 2.2.2 hold. Then for all (t0, u0) ∈ A1

the following differential inclusion f(t, u(t)) ∈ ü(t) + At,u(t)u̇(t) a.e. t ∈ [0, T ],

u(0) = u0, u̇(0) = u̇0 ∈ D(A(0, u0)).
(S1)

has at least one solution x(·) ∈ W 2,1([0, T ], H).

Proof. It is easy to see that u is a solution of (S1) if and only if X = (u, u̇) is a solution of the

following differential inclusion Ẋ(t) ∈ −B(t,X(t))(X(t)) + F (t,X(t)).

X(0) = X0 = (u0, u̇0).
(P)

Consequently, from (3.20), (3.21), (3.22) and (3.23) of Lemma 3.2.1 and using the result of

Theorem 2.4.1, the problem (P) has a solution in W 1,1([0, T ], H ×H).

3.2.3 Stability results

This subsection is devoted to the study of the stability of the solution of the above second-

order differential inclusion (S1). In what follows we consider the second-order differential

inclusion with parameter ξ, f(t, u(t), ξ) ∈ ü(t) + At,u(t),ξ(u̇(t)) a.e. t ∈ [0, T ],

u(0) = uξ,0, u̇(0) = u̇ξ,0 ∈ D(A(0, uξ,0).
(Sξ)

The existence of solutions of (Sξ) is obtained in the following theorem.
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Theorem 3.2.3

Under the assumptions H(A) and H(f), the problem (Sξ) has at least one solution in

W 2,1([0, T ], H).

Proof. By introducing the operators Aξt,x(·) := At,x,ξ(·) and f ξ(·, ·) := f(·, ·, ξ) the problem (Sξ)

becomes  f ξ(t, u(t)) ∈ ü(t) + Aξt,u(t)(u̇(t)) a.e. t ∈ [0, T ]

u(0) = uξ,0, u̇(0) = u̇ξ,0 ∈ D(A(0, uξ,0)

Moreover Aξt,x(·) and f ξ(·, ·) satisfy the assumptions 1 and 2. Therefore the existence of

solution follow from Theorem 3.2.2.

Our next goal is to prove the stability of the solution in W 2,1([0, T ], H).

Theorem 3.2.4

Suppose that assumptions H(A)(1) and H(A)(2), H(f) and H(0) hold. Let ξn → 0 and

un(·) be a solution of (Sξn) such that un(·) → u(·) in W 2,1([0, T ], H). Then u(·) is a

solution of (S0).

Proof. By putting the following change of variables Xn = (un, u̇n) and X = (u, u̇), we have:

Since un(·)→ u(·) in W 2,1([0, T ], H), then Xn(·)→ X(·) in W 1,1([0, T ], H ×H).

Moreover, for every t > 0, ξ > 0 and X = (x, y) ∈ H ×H, define

Bt,X,ξ(h, z) = {0} × At,x,ξ(z) and F (t,X, ξ) = (y, f(t, x, ξ)).

Then Xn is a solution of the following problem Ẋn(t) ∈ −Bt,Xn(t),ξn(Xn(t)) + F (t,Xn(t), ξn).

Xn(0) = (uξn,0, u̇ξn,0),
(Pξn)

where B(·,·,ξ) and F (·, ·, ξ) satisfy the assumptions H(A)(1), H(A)(2), H(f) and H(0). There-

fore by the Theorem 3.1.4, Xn converges to the solution X = (u, u̇) of (P0). But (P0) is
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equivalent to (S0), hence un converges to u, a solution of (S0).

Following the same arguments with the result of Theorem 3.1.5, we have the following sta-

bility result in C1([0, T ], H).

Theorem 3.2.5

Suppose that assumptions H(A), H(f) and H(0) hold. Let ξn → 0 and un(·) be a

solution of (Sξn) such that un(·)→ u(·) in C1([0, T ], H). Then u(·) is a solution of (S0).



CHAPTER FOUR

LOWER SEMICONTINUOUS SET-VALUED

PERTURBATIONS

4.1 ) Introduction

The present chapter is essentially for a continuation of the work in [17] dealing with

lower semicontinuous perturbations of sweeping process. Namely, we are intressted in the

existence of solutions of the perturbed problem u̇ ∈ G(t, u(t))− A(t)u(t) a.e. t ∈ [0, T ],

u(0) = u0 ∈ D(A(0)),
(4.1)

where G(., .) is lower semi-continuous set-valued mapping. The case where the perturbation

G(., .) is convex-valued and upper semicontinuous has been studied in [6]. Here, we investi-

gate in the following sections, under the same assumptions about the operator A(t), the case

where G(t, .) is lower semicontinuous and takes non convex values.

4.2 ) Standing Assumptions

Assumption 4.2.1. Let T > 0 . For all t ∈ [0, T ], Let A(t) : D(A(t)) ⊂ Rd ⇒ Rd be a maximal

monotone operator satisfying:

(1.1) There exists a positive croissant function ξ(.) ∈ W 1,1([0, T ],R; dt) with ξ(0) = 0, ξ(T ) <∞

69
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such that for all t, s ∈ [0, T ]

dis(A(t), A(s)) ≤ |ξ(t)− ξ(s)|. (4.2)

(1.2) For all t ∈ I, x ∈ D(A(t)) there exists a nonnegative constant c such that

||A0(t, x)|| ≤ c(1 + ||x||). (4.3)

(1.3) For any t ∈ [0, T ], for any x ∈ D(A(t)), A(t)x is cone-valued.

4.3 ) Auxiliary lemmas

In this section we give some usefull results in this chapter.

Theorem 4.3.1: [18]

A l.s.c set-valued map G : S ⇒ L1
Rd([0, T ]) with non empty closed decomposable values

has a continuous selection, i.e., there exists a continuous map g : S −→ L1
Rd([0, T ]) such

that

g(s) ∈ G(s),∀s ∈ S. (4.4)

Proposition 4.3.2: [14]

Let (X,Ψ) be a measurable space, Y be a separable metrisable complete space, and

G : X ⇒ Y be a closed measurable set-valued map. Then G has a measurable selection.

Theorem 4.3.3: [14]

Let (X,Ψ) be a measurable space, Y be a Banach separable space, and ∆ : X ⇒ Y be

a integrable, bounded, convex and weakly compact set-valued map. Then the set of

integrable selections S1
∆ is σ(L1

Rd([0, T ]), L∞Rd([0, T ])-compact.
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4.4 ) Main result

Recall that the fact that D(A(t)) is closed convex ensures that for each non negative number

δ < ρ, each point of D(A(t)) + δBE has the nearest point in D(A(t)) (see [34]).

We need the two following results, we refer to [6].

Proposition 4.4.1

Assume Assumption 4.2.1. Then for all mapping h ∈ L1
Rd([0, T ]), the differential inclu-

sion  −u̇(t) ∈ A(t)u(t) + h(t) a.e t ∈ [0, T ],

u(0) = u0 ∈ D(A(0)),
(4.5)

has a unique absolutely continuous solution u(.) ∈ W 1,1([0, T ],Rd) such that

||u̇(t) + h(t)|| ≤ K ′(1 + |ξ̇(t)|) + (K ′ + 1)||h(t)||, for almost t ∈ [0, T ],

where, for all almost t ∈ [0, T ] we have

||u̇(t)|| ≤ K ′(1 + ξ̇(t)) + (K ′ + 1)||h(t)||, (4.6)

such that

K ′ := 2
(

1 + (1 + ‖h(t)‖L1)(1 +K ′1)
)
,

and K ′1 := (‖u0‖+ (2(1 + c(1 + ‖h(t)‖L1)))(ξ(T ) + T + ‖h(t)‖L1))

· exp(2c(1 + ‖h(t)‖L1))(ξ(T ) + T + ‖h(t)‖L1).
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Lemma 4.4.2

Assume Assumption 4.2.1 is satisfying, suppose also that D(A(t)) is ball-compact, let m

be a non-negative Lebesgue-integrable function defined on [0, T ] and let

H =
{
h ∈ L1

Rd([0, T ]) : ||h(t)|| ≤ m(t) a.e
}
.

Then, the set {uh, h ∈ S1
∆} of absolutely continuous solutions to the evolution inclusions −u̇h(t) ∈ A(t)uh(t) + h(t) a.e t ∈ [0, T ],

u(0) = u0 ∈ D(A(0)).
(P-h)

is compact in CRd([0, T ]).

Lemma 4.4.3

Assume Assumption 4.2.1, let m be a non-negative Lebesgue-integrable function de-

fined on [0, T ] and let

H =
{
h ∈ L1

Rd([0, T ]) : ||h(t)|| ≤ m(t) a.e
}
.

Then, the mapping h 7→ uh is continuous on H. Such that the set {uh, h ∈ S1
∆} is of

absolutely continuous solutions to the evolution inclusions (P-h).

Proof. The following proof is inspired from [9]. Let defined the mapping Λ by the forme

Λ(·) : L1
Rd([0, T ]) −→ L∞Rd([0, T ])

h 7−→ Λ(h) = uh

we are going to prove that Λ is continuous on H.

Let (hn)n be a sequence on H, where hn ⇀ h in L1
Rd([0, T ]) and we will prove that Λ(hn) −→

Λ(h) in L∞Rd([0, T ]) that means we will prove that uhn −→ uh.
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Given uhn ∈ H, such that for every n ∈ N, uhn is the unique solution of this problem − ˙uhn(t) ∈ A(t)uhn(t) + hn(t) a.e t ∈ [0, T ],

uhn(0) = u0 ∈ D(A(0)).
(4.7)

While uhn ∈ H, the following estimate is satisfying

||u̇hn(t)|| ≤ K ′(1 + ξ̇) + (K ′ + 1)||hn(t)||. (4.8)

Use the fact that hn ∈ H, we obtain

||u̇hn(t)|| ≤ K ′(1 + ξ̇) + (K ′ + 1)m(t). (4.9)

therfore u̇hn ∈ K, moreovere by extracting a subsequence, we may suppose that u̇hn weakly

converges in L1
Rd([0, T ]) to z ∈ K and also we have uhn converges uniformely to a continuous

function u ∈ CRd([0, T ]) with u(t) = u0 +
∫ t

0
z(τ)dτ , so we have u̇ = z.

As uhn is absolutely continuous, we deduce that

uhn(t) = u0 +

∫ t

0

u̇hn(τ)dτ. (4.10)

so,

lim
n−→∞

uhn(t) = u0 + lim
n−→∞

(∫ t

0

u̇hn(τ)dτ

)
= u0 +

∫ t

0

(
lim
n−→∞

u̇hn(τ)
)
dτ

= u0 +

∫ t

0

z(τ)dτ = u(t).

while−u̇hn ⇀ −u̇ in L1
Rd([0, T ]), so−u̇hn converge komlos to−u̇,i.e. there exists a negligeable

N such that lim
n

1

n

∑
(ḣj) = u̇.
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Let µ ∈ D(A(t)). We have

〈u̇hn(t) + hn(t), u(t)− µ〉 ≤ 〈u̇hn(t) + hn(t), uhn(t)− µ〉+ 〈u̇hn(t) + hn(t), u(t)− uhn(t)〉

≤ 〈A0(t, µ), µ− uhn(t)〉+ (ξ(t) +M(t)||u(t)− uhn(t)||,

that imply

1

n

n∑
j=1

〈u̇hj(t) + hj(t), u(t)− µ〉 ≤ 1

n

n∑
j=1

〈A0(t, µ), µ− uhj(t)〉+ (ξ(t) +M(t)||u(t)− uhn(t)||.

Taking limits as n −→∞,

〈u̇(t) + h(t), u(t)− µ〉 ≤ 〈A0(t, µ), µ− u(t)〉 a.e.

The fact that A0(t, µ) is a principal selection. Thus, u̇(t) + h(t) ∈ A(t)u(t) a.e. and u(t) ∈

D(A(t)). Therefore u is the unique solution uh of (P-h) and so one has the following equality

Λ(h)(t) = u0 +

∫ t

0

u̇h(t),

so

‖Λ(hn)(t)− Λ(h)(t)‖ = ‖uhn(t)− uh(t)‖ ≤ ‖uhn − uh‖CRd ([0,T ]),

therfore

‖Λ(hn)− Λ(h)‖ ≤ ‖uhn − uh‖CRd ([0,T ]).

Consequentely Λ is continuous.
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We need this lemma in the proof of the principal theorem.

Lemma 4.4.4

Assume that Assumption 4.2.1 satisfied, D(A(t)) is closed and ball-compact and let

G : [0, T ]× Rd ⇒ Rd be a compact-valued multifunction such that

(i) For every absolutely continuous function u : [0, T ] −→ Rd the multifunction t 7→

G(t, u(t)) is Lebesgue measurable on [0, T ].

(ii) There exist two functions p and q in L1
R+

(0, T ) such that for every (t, x) ∈ [0, T ]×Rd,

we have

G(t, x) ⊂ (p(t) + q(t)||x||)BRd .

If u(.) is an absolutely continuous solution to the differential inclusion u̇ ∈ G(t, u(t))− A(t)u(t) a.e. t ∈ [0, T ],

u(0) = u0 ∈ D(A(0)).
(4.11)

Then, for almost all t ∈ [0, T ] we have this estimation

||u̇(t)|| ≤ α(t) + β(t),

where

α(t) = K ′(1 + ξ̇(t)) + (K ′ + 1)p(t) + (K ′ + 1)q(t)||u0||,

and

β(t) = (K ′ + 1)q(t)

∫ t

0

(
α(s) exp

(
(K ′ + 1)

∫ t

s

q(τ)dτ)

))
ds.

Proof. assume that u(.) is one of the absolutely continuous solution of (4.11). According to

the hypothese (i), and usual techniques for measurable set-valued mappings, there exists a
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Lebesgue-measurable mapping ϕ : [0, T ] −→ Rd such that

ϕ(t) ∈ G(t, u(t)), (4.12)

and, we have

− u̇(t)− ϕ(t) ∈ A(t)u(t), (4.13)

applying the hypothesis (ii) we find

||ϕ(t)|| ≤ p(t) + q(t)||u(t)||, ∀ t ∈ [0, T ], (4.14)

while q is integrable and u is bounded on [0, T ], the mapping ϕ is Lebesgue-integrable on

[0, T ].

We define ψ(·) by the form

ψ(t) =

∫ t

0

ϕ(s)ds, ∀t ∈ [0, T ],

therfore ψ is absolutely continuous and we get

ψ̇ = ϕ(t), a.e. t ∈ [0, T ]. (4.15)

From the inclusion (4.13), the hypomonotonicity of the operator A we have for all x ∈

D(A(t))

〈−u̇(t)− ϕ(t), x− u(t)〉 ≤ 〈A0(t, x(t)), x− u(t)〉. (4.16)

Let t ∈ [0, T ], s < t, from (1.1), (4.2), the second property of maximal monotone in
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Lemma 1.6.5 and since u(s) ∈ D(A(s)), we have

d (u(s) + ψ(s)− ψ(t), D(A(t)) ≤ ||ψ(s)− ψ(t)||+ d(u(s), D(A(t))

≤ ||ψ(s)− ψ(t)||+ d(D(A(s), D(A(t))

≤ ||ψ(s)− ψ(t)||+ dH(D(A(s), D(A(t))

≤ ||ψ(s)− ψ(t)||+ dis(A(s), A(t))

≤ ||ψ(s)− ψ(t)||+ ||ξ(s)− ξ(t)||.

While D(A(t)) is closed convex so by definition 1.1 in [34], for each y(s) ∈ D(A(s)) we get

||u(s) + ψ(s)− ψ(t)− y(s)|| ≤ ||ψ(s)− ψ(t)||+ ||ξ(s)− ξ(t)||. (4.17)

According to (4.16), (4.17) we obtain

〈−u̇(t)−ϕ(t), u(s) + ψ(s)− ψ(t)− y(s) + y(s)− u(t)〉 ≤ ||u̇(t) +ϕ(t)||(||ψ(s)− ψ(t)||+ |ξ(s| −

ξ(t)|+ ||A0(t, u(t))||||y(s)− u(t)||).

Or as K ′ ∈]0,∞[ then

|ξ(s| − ξ(t)| ≤ K ′(1 + |ξ(s)− ξ(t)|),

and

||ψ(s)− ψ(t)|| ≤ K ′||ψ(s)− ψ(t)||,

so

〈−u̇(t)− ϕ(t), u(s) + ψ(s)− ψ(t)− y(s) + y(s)− u(t)〉 ≤ ||u̇(t) + ϕ(t)||(K ′||ψ(s)− ψ(t)||

+K ′(1 + |ξ(s)− ξ(t)|)

+ ||A0(t, u(t))||||y(s)− u(t)||),

if we use the growth condition of A in Assumpption 4.2.1, one get
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〈−u̇(t)− ϕ(t), u(s) + ψ(s)− ψ(t)− y(s) + y(s)− u(t)〉 ≤ ||u̇(t) + ϕ(t)||(K ′||ψ(s)− ψ(t)||

+K ′(1 + |ξ(s)− ξ(t)|) + (1 + ||y(s)||)||y(s)− u(t)||.

As t− s > 0

〈u̇(t) + ϕ(t),
u(t)− u(s)

t− s
+
ψ(t)− ψ(s)

t− s
〉 ≤ ||u̇(t) + ϕ(t)||

(
K ′‖ψ(s)− ψ(t)

t− s
‖+K ′(1 + |ξ(s)− ξ(t)

t− s
|)
)

+ ζ(s),

such that

lim
n
ζ(s) = 0 for y(s) −→ u(t),

where

ζ(s) = (1 + ||y(s)||) ||y(s)− u(t)||,

the last inequalities imply that

〈u̇(t) + ϕ(t), u̇(t) + ϕ(t)〉 ≤ ||u̇(t) + ϕ(t)||
(
K ′||ψ̇(t)||+K ′

(
1 + ξ̇(t)

))
,

so

||u̇(t) + ϕ(t)||2 ≤ ||u̇(t) + ϕ(t)||
(
K ′||ϕ(t)||+K ′

(
1 + ξ̇(t)

))
,

that’s

||u̇(t) + ϕ(t)|| ≤ K ′||ϕ(t)||+K ′(1 + ξ̇(t)),

hence

||u̇(t)|| ≤ (K ′ + 1)||ϕ(t)||+K ′(1 + ξ̇(t)),
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get ii) we have

||u̇(t)|| ≤ K ′(1 + ξ̇(t)) + (K ′ + 1)p(t) + (K ′ + 1)q(t)||u(t)||

≤ K ′(1 + ξ̇(t)) + (K ′ + 1)p(t) + (K ′ + 1)q(t)||u0 +

∫ t

0

u̇(s)ds||

≤ K ′(1 + ξ̇(t)) + (K ′ + 1)p(t) + (K ′ + 1)q(t)||u0||+ (K ′ + 1)q(t)

∫ t

0

||u̇(s)||ds,

the Gronwall-like inequality in lemma 1.9.12 imply that

||u̇(t)|| ≤ α(t) + (K ′ + 1)q(t)

∫ t

0

(
α(s) exp

(
(K ′ + 1)

∫ t

s

q(τ)dτ

))
ds,

for

α(t) = K ′(1 + ξ̇(t)) + (K ′ + 1)p(t) + (K ′ + 1)q(t)||u0||,

and

β(t) = (K ′ + 1)q(t)

∫ t

0

(
α(s) exp

(
(K ′ + 1)

∫ t

s

q(τ)dτ

))
ds.

Now coming back to prove the existence of absolutely continuous solution for the diffirential

inclusion  u̇ ∈ G(t, u(t))− A(t)u(t) a.e. t ∈ [0, T ],

u(0) = u0 ∈ D(A(0)).
(4.18)

such that the perturbation G(t, .) is lower semicontinuous on [0, T ].

Now, we proceed to prove our main result in this chapter.
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Theorem 4.4.5

Assume that Assumption 4.2.1 is satisfied and let G : [0, T ] × Rd ⇒ Rd be a compact-

valued multifunction such that

(i) The multifunction G(t, .) is lower semicontinuous on Rd, for all t ∈ [0, T ],

(ii) for every u : [0, T ] → Rd the multifunction t 7−→ G(t, u(t)) is Lebesgue-measurable

on [0, T ],

(iii) there exist two functions p and q in L1
R+

([0, T ]) such that for every (t, x) ∈ [0, T ]×Rd

G(t, x) ⊂ (p(t) + q(t)||x||)BRd .

Then, for every u0 ∈ D(A(0)), there is an absolutely continuous solution u : [0, T ] −→

Rd for the problem 4.18 and for any solution u(.) we have this estimate

||u̇(t)|| ≤ α(t) + β(t), a.e t ∈ [0, T ],

where α(t), β(t) are given in Lemma 4.4.4

Proof. the proof of this theorem is divided on two steps, in the first step we are going to proof

the existence of an absolutely continuous solution and in the second step we are interested

in the generalized case.

Step 1:

For each (t, x) ∈ [0, T ]× BRd, we suppose that

G(t, x) ⊂ m(t)BRd , (4.19)

such that m is a nonnegative Lebesgue-integrable function defined on [0, T ]. Putting

∆(t) = m(t)BRd ,∀ t ∈ [0, T ].

Then ∆ is a convex compact valued integrable bounded multifunction and the set S1
∆ of all
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integrable selections of ∆ is nonempty and σ(L1
Rd([0, T ]), L∞Rd([0, T ])-compact.

We consider for every f ∈ S1
∆, uf be the unique absolutely continuous solution to u̇ ∈ f(t)− A(t)u(t) a.e t ∈ [0, T ],

u(0) = u0 ∈ D(A(0)).

the existence of this solution is proved in the Proposition 4.4.1.

For each f ∈ S1
∆, we have

G(t, uf (t)) ⊂ ∆(t), ∀t ∈ [0, T ]. (4.20)

By Proposition 4.4.1, the set X = {uf , f ∈ S1
∆} is compact in CRd([0, T ]). For each f ∈ S1

∆, let

define

Φ(u) =
{
f ∈ L1

Rd([0, T ]) : f(t) ∈ G(t, u(t)) a.e t ∈ [0, T ]
}
. (4.21)

According to the hypothese ii) we deduce that the multifunction Φ(.) is nonempty, closed and

decomposable in the integrable space L1
Rd([0, T ]).

While the multifunction is decomposable, we obtain for u ∈ X , for every measurable set A,

and for two Lebesgue integrable functions f, g ∈ Φ(u)

1A.f + 1Ac .g ∈ Φ(u). (4.22)

It remains to prove that Φ(.) : X ⇒ L1
Rd([0, T ]) is lower semicontinuous for aplying the

continuous selection theorem 4.3.1. Consider a closed subset of L1
Rd([0, T ]) wich denote F .

We take (ufn) is a sequence in X such that

Φ(ufn) ⊂ F, ∀n

where ufn −→ uf in the compact subset X of CRd([0, T ]), we are going to prove that

Φ(ufn) −→ Φ(uf ) ∈ F.
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Let a function g ∈ Φ(uf ), we define Rn(t) : [0, T ] ⇒ Rd for all n ∈ N by the form

Rn(t) := {y ∈ G(t, (ufn(t)) : ||y − g(t)|| ≤ d (g(t), G(t, (ufn(t))))} , ∀t ∈ [0, T ]. (4.23)

Due to the hypothese ii) that Rn(t) is a nonempty, closed valued measurable multifunction,

by Proposition 4.3.2 the multifunction Rn(t) has a measurable selection.

Let gn : [0, T ] −→ Rd, with gn(t) ∈ G(t, (ufn(t)), while also g ∈ Φ(uf ) so g ∈ G(t, uf (t)) we

have

||gn(t)− g(t)|| ≤ d(G(t, (uf (t)), G(t, (ufn(t))) ≤ e(G(t, (uf (t)), G(t, (ufn(t)))

e(A,B) denotes the Hausdorff ecart of the compact sets A and B.

Since ufn −→ uf , and use the fact that G(t, .) is lower semicontinuous for all t ∈ ([0, T ] by (i),

we obtain

lim
n−→∞

G(t, ufn(t)) = G(t, uf (t)), ∀t ∈ [0, T ].

we deduce that for all t ∈ [0, T ]

lim
n−→∞

||gn(t)− g(t)|| = 0, .

applying the Lebesgue dominated convergence theorem 1.9.4, we conclude that

lim
n
gn(t) = g(t) in L1

Rd([0, T ]). (4.24)

Since g ∈ Φ(uf ) ⊂ G(t, uf (t) and gn(t) ∈ Φ(ufn) ⊂ F and we know that F is closed, then

g ∈ F , hence Φ is lower semicontinuous in X .

All the hypotheses of continuous selection theroem 4.3.1 are satisfying, Therefore Φ admits

a continuous selection S : X −→ L1
Rd([0, T ]), it means that for every u ∈ X

S(u)(t) ∈ G(t, u(t)) a.e t ∈ [0, T ]. (4.25)

While f 7−→ ufn is continuous on S1
∆ which is σ(L1, L∞) compact metrisable set, according to
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Proposition 4.4.1 the following mapping ψ(·) : S1
∆ ⇒ S1

∆ such that ψ(f) = S(uf ) is σ(L1, L∞)

continuous.

Therfore the fact that S1
∆ is weakly compact, ψ is continuous, and acoording to Kakutani-Ky

Fan fixed point theorem we obtain ψ has a fixed point f ∈ S1
∆. Then uf is an absolutely

continuous solution of this inclusion −u̇(t) ∈ A(t)u(t) + f(t) a.e t ∈ [0, T ],

u(0) = u0 ∈ D(A(0)),

with

f(t) = S(uf )(t) ∈ G(t, uf (t)) a.e t ∈ [0, T ].

Step2.

In this step we are going to generalize the above case.

Suppose G satisfies (i) ,(iii). For α(t) and β(t) given by Lemma 4.4.4, put

γ := ||u0||+
∫ t

0

(α(s) + β(s))ds.

Let us consider the mapping Π : [0, T ]× Rd −→ Rd with

Π(t, x) =

 x, Si||x|| ≤ γ(t)

γ(t)x/||x||, Si||x|| > γ(t)

and put

G0(t, x) = G(t,Π(t, x)).

Then G0(t, x) = G(t,Π(t, x)) inherits the the lower semicontinuous property (i) from G(t, .)

and measurable property (ii) from G(., x) and for m(t) = p(t)+q(t)γ(t), one has for all x ∈ Rd

G0(t, x) ⊂ m(t)BRd .
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Apply the result of the step 1 to get that u(.) is an absolutely continuous solution to u̇(t) ∈ G0(t, u(t))− A(t)u(t) a.e. t ∈ [0, T ],

u(0) = u0 ∈ D(A(0)).
(4.26)

It easy to see that u(.) is a solution to u̇(t) ∈ G(t, u(t))− A(t)u(t) a.e. t ∈ [0, T ],

u(0) = u0 ∈ D(A(0)),

if and only if u(.) is a solution to u̇(t) ∈ G0(t, u(t))− A(t)u(t) a.e. t ∈ [0, T ],

u(0) = u0 ∈ D(A(0)).
(4.27)



Conclusion

Although the main focus of this thesis has been the maximal monotone differential inclusions,

the developed methods have allowed us to address several differential inclusions involving

normal cones.

In the future, we would like to continue our research on the following issues:

• The situation where the maximal monotone operators A(t) move in a BV way, i.e., with

a bounded variation, would also have a great interest.

• A challenging issue remains on deriving necessary optimality conditions for local solu-

tions to absolutely continuous-time maximal monotone control problems of this class by

passing to the limit from those obtained for their finite-difference counterparts. Besides

their own theoretical interest, explicit necessary optimality conditions for absolutely

continuous-time maximal monotone systems may be convenient for calculating optimal

solutions. We pursue these goals in both theory and applications, particularly to non

regular circuit model in a more general setting in our on going research.
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Abstract

In this thesis, we give a new proof of the existence of absolutely continuous solutions for
a class of first order state dependent maximal monotone differential inclusions. The existence
result is obtained by using Schauder’s fixed point theorem. In addition, a stability result is
provided. Finally, using a suitable reduction of order technique, we give a new existence result
for a general second-order state-dependent maximal monotone differential inclusion.

Résumé

Dans cette thèse, nous donnons une nouvelle preuve de l’existence de solutions
absolument continues pour une classe d’inclusions différentielles de premier ordre gouvernée
par des opérateurs maximaux monotones dépendant de l’état. Le résultat d’existence est
obtenu en utilisant le théorème du point fixe de Schauder. En outre, un résultat de stabilité
est fourni. Enfin, en utilisant une technique de réduction d’ordre appropriée, nous donnons un
nouveau résultat d’existence pour des inclusions différentielles du deuxième ordre gouvernées
par des opérateurs maximaux monotones dépendant de l’état.
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