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Abstract
The usage of a completely bio-inspired neuronal model in the navigation of drones is a
challenging process. In this thesis, we propose several neuron models for different drone
flight scenarios that allow a drone to navigate its way and execute certain tasks using
only biologically plausible approaches. We proposed three scenarios, the first one focused
on motion camouflage which is most frequently used when an attacker mimics the optic
flow of the background. The second scenario handled the tracking of both ground and
flying targets, and in the last one, we proposed a cooperative system for drones to provide
cellular wireless covering to ground users.

Resumé
L’utilisation d’un modèle neuronal entièrement bio-inspiré dans la navigation des drones
est un processus difficile. Dans cette thèse, nous proposons plusieurs modèles de neurones
pour différents scénarios de vol de drone qui permettent à un drone de naviguer sur son
chemin et d’exécuter certaines tâches en utilisant uniquement des approches biologique-
ment plausibles. Nous avons proposé trois scénarios, le premier axé sur le camouflage de
mouvement qui est le plus fréquemment utilisé lorsqu’un attaquant imite le flux optique
de l’arrière-plan. Le deuxième scénario gérait le suivi des cibles au sol et volantes, et dans
le dernier, nous avons proposé un système coopératif pour que les drones fournissent une
couverture sans fil cellulaire aux utilisateurs au sol.
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INTRODUCTION

Context and Motivation
Drones, commonly referred to as Unmanned aerial vehicles (UAVs), were initially em-

ployed by the military forces as weapons for battlefield surveillance and target designation.
However, after their level of safety was enhanced they fell into the public domain. These
robotic UAVs fly independently and with varying degrees of autonomy. The level of au-
tonomy for a drone can vary from remotely piloted, where a person controls its motions,
to advanced autonomy, where it uses a network of sensors and detectors to determine its
movement.

They can be an ideal contender for the most difficult tasks that require mobility such
as area covering, target tracking, and helping to enhance scientific research in some of
the most hostile climates. These tasks can be split into two parts, solo tasks that only
require a single drone, and cooperative tasks that require multiple drones to resolve a
task. These multi-agent resolving approaches can be difficult as they sometimes require
communication and cooperation between the drones.

Highly accurate drone navigation is very important in the air. The latest drones have
dual global navigation satellite systems such as GPS, and they can also fly in a non-
satellite mode where they use different sensors such as a camera In this case, they rely
largely on computer vision to process these images and recognize objects. However, to
process all the data in real-time, drones can be equipped with a processing unit. These
units come in different flavors (architectures) and can do different types of computations,
and one of them is bio-inspired neuromorphic computing which mimics the behavior found
in living brains.

This thesis handles the following research question: Is it possible for a drone to use
a bio-inspired model using neuromorphic computations to navigate autonomously? and,
how well does it perform?

Contributions
The main contributions of this thesis are summarized in the following:

• The construction of a graphical representation framework that allows the modeling

1



List of Tables

of neurovectors and their operations, which are used in the neural modeling of
different scenarios to provide simplicity and better understanding.

• Describing a camouflage hunting model, including its mathematical description
based on three-dimensional vector equations and how these equations can be con-
verted into a neural model.

• Proposing a neural model for target tracking, where the target is either flying of
moving on the ground.

• Proposing a neural model that allows a fleet of UAVs to distribute and provide
cellular wireless coverage to a set of ground users.

Organization of the Thesis
This thesis is organized into two parts, the first part covers the state of the arts and in

the second different scenarios are proposed where the UAVs use neurovectors to achieve
different tasks.

The first part consists of two chapters. In the first one, we introduce spiking neural
networks (SNNs), how the concept of time is incorporated into the workings of SNNs, and
how the data can be encoded and transferred between neurons. The first chapter was an
entry point for the second one in which we introduce the concept of neurovectors, and
how these structures allow a population of neurons to represent a vector. We illustrate
different operations with graphical schemas in order to model and depict various scenarios
for a better understanding.

The second part consists of three chapters that describe three different flying scenarios.
We propose, test, and evaluate a neuron model in each scenario. In the first chapter, we
handle a nature-inspired behavior that allows the UAV to perform a camouflaged pursuit,
the scenario in the second chapter consists of tracking a target who can be flying or
moving on the ground, and in the last chapter we proposed an electrostatic based solution
to deploy a fleet of UAVs to provide wireless coverage for a set of users.
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CHAPTER 1

SPIKING NEURAL NETWORKS

1.1 Introduction
Artificial intelligence (AI) is a part of computer science where biological inspiration has

a critical impact. Artificial intelligence research started after WWII when many special-
ists have begun working independently on intelligent machines [1]. Since then artificial
intelligence got branched into a wide-open list of computer science subjects such as logical
AI, search, pattern recognition, ontology, heuristics, and genetic programming. It’s been
applied in a lot of domains and some of the applications are e-commerce, education, game
playing, speech recognition, computer vision, and expert systems. Two very different ap-
proaches of rule-based systems and neural networks have generated several applications
capable of making complex decisions.

Despite the high complexity of the brain cells and their connected networks, neurosci-
entists were able to extract a simple description of how the brain operates consisting of
units that work in parallel, each performing a calculation on its inputs and sending the
result to the next layer of neurons. Simulating this formalism yields a powerful compu-
tational tool called an artificial neural network (ANN) often just called “neural network”
(NN). Now the artificial neural network is seen as a simplified model of natural neu-
ral processing [2]. Over time and with a better understanding of brain structure and
function, artificial neural networks have developed and come closer and closer to real bi-
ological models [3]. Since the first perceptron, artificial neural networks went through
several generations based on their computational units. First-generation, also referred to
as perceptrons or threshold gates are based on McCulloch-Pitts neurons as computational
units [4]. Second-generation incorporates the concept of “activation function”, such as
the Sigmoid function a(y) = 1

1+e−y , and then the third-generation, networks of spiking
neurons are the subject of this chapter.

1.2 Spiking Neural Networks
A computational model inspired by the form and the function of biological neural

networks is known as an artificial neural network (ANN). Inside each of our brains lies
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1.3. Neuron Models

a biological neural network that is used for information and signal processing, decision
making, and a variety of other functions.

Artificial neurons, despite their similarities, do not behave like organic neurons. As a
result, biological and artificial NNs vary fundamentally as Figure 1.1 shows.

Figure 1.1: A biological neuron in comparison to an artificial neural network: (a) human
neuron; (b) artificial neuron; (c) biological synapse; and (d) ANN synapses [5].

The first scientific model of a Spiking Neural Network was created in 1952 by Alan
Hodgkin and Andrew Huxley [6]. The model describes how action potentials are initi-
ated and propagated in biological neurons that do not transmit impulses directly. The
exchange of chemicals known as neurotransmitters in the synaptic gap is required for such
communication [7].

1.3 Neuron Models
Spiking neuron models are mathematical descriptions of the properties of certain cells

in the nervous system. Spiking neurons generate sharp electrical potentials, or spikes,
called action potentials or spikes. The following section provides an overview of different
spiking neuron models.

1.3.1 Integrate and Fire
The integrate-and-fire model has a long and illustrious history. Dating back to Lapicque

(1907, 1926) who was able to describe the model before any specific knowledge of excitable
membrane biophysics was available. Several people have studied more recent versions of
this model (Stein, 1967; 1968; Knight, 1972; Softky and Koch, 1993) [8]. The integrate-
and-fire neuron is one of the most basic models of a neuron’s electrical properties, and it’s
also one of the most popular in neuroscience. The model works by dividing the neuron’s
voltage changes into two parts:

1. Below the threshold, the membrane is considered to behave passively (i.e., without
voltage-dependent ion channels) and acts as a leaky capacitor whose voltage decays
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1.3. Neuron Models

(or "leaks") to a resting level EL (short for "ELeak") in the absence of injected current
[9].

2. The model assumes that when the voltage hits the action potential threshold (due
to injected currents charging up the membrane), the voltage spikes to a level Vspike
and then resets to a hyperpolarized level Vreset. The ion channel kinetics respon-
sible for this spiking are not explicitly modeled. Instead, it is assumed (reasonably
assumed...) that once the cell hits its threshold, it will immediately produce an
action potential and reset itself [9].

The membrane potential is considered to integrate the input current in its most basic
form: C dV

dt
= I(t). A nerve impulse is fired when V reaches a criterion level Vth, V

is reset to 0, and the process restarts. The leaky or forgetful integrate-and-fire model
assumes that the neuron is a single passive compartment, which is a much more appealing
variant. In reaction to the injected current, the membrane potential charges and discharges
exponentially C dV

dt
+ glV − I(t) = 0. Where V is the membrane potential and gl is the

leak conductance. Once again a nerve impulse is fired when V reaches a criterion level
Vth, V resets to 0, and the process restarts. “The leaky integrate-and-fire model has been
applied to model the firing behavior of many cells, such as neurons in the Limulus eye
(Knight, 1972) and cortical cells (Wehmeier et al., 1989; Softky and Koch, 1993; Somers
et al., 1995)” [8].

1.3.2 Hodgkin-Huxley Model
The most prominent spiking neuron model is the Hodgkin-Huxley model. It consists

of a system of four ordinary differential equations that may be easily combined using a
variety of methods. The fundamental concept is based on an electrical description of the
neuron that solely considers voltage-gated potassium (K) and sodium (Na) ion channels.
Figure 1.2 shows a schematic representation

Figure 1.2: Electrical equivalent circuit proposed by Hodgkin and Huxley for a short
segment of squid giant axon. The variable resistances represent voltage-dependent con-
ductances (Hodgkin and Huxley 1952d).

The elements are:
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1.3. Neuron Models

• Cm: a capacitance per unit area representing the membrane lipid-bilayer (adopted
value: 1 µF/cm2)

• gNa: voltage-controlled conductance per unit area associated with the Sodium (Na)
ion-channel (adopted value: 120 µS/cm2)

• gK: voltage-controlled conductance per unit area associated with the Potassium (K)
ion-channel (adopted value: 36 µS/cm2)

• gl: conductance per unit area associated with the leak channels (adopted value: 0.3
36 µS/cm2)

• VNa: voltage source representing the electrochemical gradient for Sodium ions
(adopted value: 115 mV)

• VK: voltage source representing the electrochemical gradient for Potassium ions
(adopted value: -12 mV)

• Vl: voltage source that determines the leakage current density together with gl
(adopted value: 10.613 mV)

The external stimulus current is not indicated in the scheme, but we assume it exists as a
current density (I) that encodes the input information. The experimental values are the
same as those proposed by the authors in [6], and they all correspond to a zero-voltage
equilibrium potential. The following ODE system is used to define the system:



dVm

dt
= I

Cm
− ḡKn4

Cm
(Vm − Vk)− ḡNam3h

Cm
(Vm − VNa)− ḡl

Cm
(Vm − Vl)

dn
dt

= αn(Vm)(1− n)− βn(Vm)n
dm
dt

= αm(Vm)(1−m)− βm(Vm)m
dh
dt

= αh(Vm)(1− h)− βh(Vm)h

(1.1)

The first equation determines the derivative of Vm when the external stimulus (I) is
taken into account, as well as the contributions of K, Na, and leakage current densities.
The variables n, m, and h are related to the likelihood of each channel opening and are
solely reliant on the channel’s nature. The K channel, for example, is voltage-gated and
comprises four sub-units that must all be open for current to flow, hence its probability
is n to the power of 4. Sodium has a slightly more complicated behavior and requires
two independent parameters (m and h). The ion-channel kinetic model is described by
computing the derivatives of n, and m, and has functions of the same variables and two
voltage-dependent functions in the last three equations. The number of closed channels
that are opening is the first phase, whereas the number of open channels that are closing
is the second term. Hodgkin and Huxley suggest the following functions:

αn(Vm) = 0.01(10−Vm)
e(1.0−0.1Vm)−1

βn(Vm) = 0.125e− Vm
80

(1.2)
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1.4. Rate Model

αm(Vm) = 0.1(25−Vm)
e(2.5−0.1Vm)−1

βm(Vm) = 4e− Vm
18

(1.3)

αh(Vm) = 0.07e(− Vm
20 )

βh(Vm) = 1
e(3−0.1Vm)+1

(1.4)

1.3.3 Izhikevich Model
This mathematical model is the most recent in a long line of models that have been

used to examine individual neurons with spiking/bursting behavior. These models include
Hodgkin-Huxley and FitzHugh-Nagumo, among others. The Izhikevich model is particu-
larly intriguing since it is a small model that can imitate the behavior of a large number of
neurons by changing a few parameters. A system of two differential equations makes up
the Izhikevich model. The following are the two variables in the system: v, The membrane
potential of a neuron is measured in millivolts (mV), and the generic recovery variable is
denoted by u. In addition, there are five undefined parameters in the equation [10]

• I is the external input to the neuron, such as those from synaptic inputs.

• a is the recovery rate of u.

• b is the ‘sensitivity of recovery to sub threshold fluctuations of membrane potential’.

• c and d are the after spike resets of v and u respectively, i.e. the values to which
they get set back after a spike occurs.

The Izhikevich equation is as follows:

dv

dt
= 0.04 ∗ v2 + 5 ∗ v + 140− u + I (1.5)

du

dt
= a ∗ (b ∗ v − u) (1.6)

Together with the following reset conditions: if v ≥ 30mV, then

v ←− c

u←− u + d

1.4 Rate Model
A rate model is a mathematical tractable model for neural networks which is formulated

on the level of firing rates, given the gain function F (h) of rate models, it can always be
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chosen so that the population activity A0 = F (h0) in the stationary state of asynchronous
firing is accurately characterized for constant input h0 = RI0, where R and I0 are two
inputs that represents resistance and current respectively. However, the dynamic equa-
tions that explain the rate model’s approach to the stationary state are ad hoc to some
extent [11]. This means that in rate models, the analysis of transients, as well as the ex-
amination of stability in recurrent networks will yield different conclusions than in spiking
neuron models.

Let’s take a look at a network made up of K populations. A homogeneous population of
neurons exists in each population [11]. The population k’s input from other populations
n and recurrent coupling within the population is described as

Ik(t) =
∑

n

Cknwkn

∫ ∞

0
α(s)An(t− s)ds. (1.7)

Here, An(t) denotes population n activity, and Ckn is the number of presynaptic neurons
in population n that are connected to a typical neuron in population k, α and wkn denote
the time course and strength of synaptic connections, respectively. With the differential
equation 1.8, we explain the dynamics of the input potential hk of population k, and for
each population, we utilize the quasi-stationary rate model An(t) = Fn(hn), where Fn is
the gain function of the neurons in population n. The outcome is:

τm
dhk(t)

dt
= −hk + R

∑
n

Cknwkn

∫ ∞

0
α(s)Fn(hn(t− s))ds. (1.8)

The effective mean firing rate becomes a smooth sigmoid-like (Figure 1.3) function
of injected current where is κ the firing threshold and η is the gain This simplifies to a
Heaviside firing rate function in the high-gain limit η −→∞.

F (I) = F0

1 + e−η(I−κ) (1.9)
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1.5. Learning Models (LTP-LTD, STDP)

Figure 1.3: A graphical representation of F (I) where F0 = 1, κ = 10 and η = 1.

Where is κ the firing threshold and η is the gain This simplifies to a Heaviside firing
rate function in the high-gain limit η −→∞.

F (I) = F0H(I − κ) = {F0 if I > κ, 0 if I < κ} (1.10)

1.5 Learning Models (LTP-LTD, STDP)
Here we introduce the concept of the learning model. SNNs use gradient backpropaga-

tion (not our topic) and Hebb’s rule. In the following, we will introduce the concept of
Hebbian learning and its most well-known variations: LTP, LTD, and STDP.

1.5.1 Hebbian Learning Rule
Hebbian theory is a neuroscientific theory that claims that a presynaptic cell’s frequent

and sustained stimulation of a postsynaptic cell leads to an increase in synaptic effective-
ness. It’s an attempt to explain synaptic plasticity or brain neuron adaptation throughout
the learning process. Donald Hebb presented it in his 1949 book The Organization of Be-
havior [12]. Hebb’s rule, Hebb’s postulate, and cell assembly theory are all names for the
rule. Hebb’s principle can be thought of as a way to decide how to change the weights
between model neurons in artificial neurons and artificial neural networks. When two
neurons fire together, their weight increases; when they fire independently, it decreases.
Strong positive weights are assigned to nodes that tend to be either simultaneously pos-
itive or simultaneously negative, whereas strong negative weights are assigned to nodes
that tend to be the reverse. We can describe the Hebbian rule as in equation 1.11

wij = xixj (1.11)
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1.5. Learning Models (LTP-LTD, STDP)

where wij is the weight of the connection from neuron j to neuron i and xi the input for
neuron i.

1.5.2 LTP
Long-term potentiation (LTP) is the most well-known and largely accepted theory of

how memory is built in the nervous system. The lack of more plausible explanations,
as well as the fact that such use-dependent alterations in the synaptic response suit
theoretical expectations so well, are presumably the reasons for their appeal. The first
evidence of LTP was found in the hippocampus [13], a region known to be involved in
learning processes [14]. It was created in an in vivo experiment by inserting electrodes
into a rabbit’s perforant route and dentate (Figure 1.4). Anesthetized (Doyle et al., 1996)
or freely moving animals can be used for recording [15].

Figure 1.4: Drawing showing a slice preparation of the rat hippocampus and the entorhinal
cortex. The section is a coronal cut, showing the trisynaptic pathway from the entorhinal
cortex to the dentate gyrus (perforant pathway), from the granule cells of the dentate
gyrus to the CA3 area (mossy-fiber pathway), and from the CA3 pyramidal neurons to
the pyramidal neurons of the CA1 area (Schaffer collateral/commisural pathway). The
CA1 neurons send axons to basal brain nuclei via the fimbria-fornix pathway. LTP can
be elicited in all 3 synaptic connections. A common protocol is to stimulate the Schaffer
collateral-commissural pathway and to record in the CA1 area. (Adapted from O’Keefe
and Nadel, 1978).

LTP is a persistent strengthening of synapses based on recent activity patterns in
neuroscience. These are synaptic activity patterns that result in an increase in signal
transmission between two neurons that lasts for a long time [16]. Long-term depression is
the polar opposite of LTP, resulting in a long-term decline in synaptic strength. Synaptic
plasticity, or the ability of chemical synapses to vary their strength, is caused by numerous
processes. Because synaptic strength is assumed to be used to encode memories [17], LTP
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1.5. Learning Models (LTP-LTD, STDP)

is usually regarded as one of the most important cellular mechanisms underlying learning
and memory [16] [17].

1.5.3 LTD
Long-term depression (LTD) is an activity-dependent decline in the effectiveness of

neural synapses that lasts hours or longer after a long patterned stimulation in neuro-
physiology. LTD affects numerous parts of the CNS, with different processes depending
on the brain region and stage of development. [18]

The hippocampus and cerebellum have been the most studied for LTD, although there
are other brain locations where LTD processes are known. [18] LTD has also been dis-
covered in many types of neurons that release multiple neurotransmitters; nonetheless,
L-glutamate is the most prevalent neurotransmitter involved in LTD. [18] During LTD,
L-glutamate binds to N-methyl-D-aspartate (NMDARs), α − amino − 3 − hydroxy −
5 − methylisoxazole − 4 − propionicacid (AMPARs), kainate receptors (KARs), and
metabotropic glutamate receptors (mGluRs). Strong synaptic stimulation (as in the cere-
bellar Purkinje cells) or continuous mild synaptic activation (as in the hippocampus) can
cause it. Long-term potentiation (LTP) is the polar opposite of LTD. it is the long-term
strengthening of synaptic connections. LTD and LTP are both processes that influence
neuronal synaptic plasticity. LTD is assumed to be caused mostly by a reduction in postsy-
naptic receptor density, while presynaptic neurotransmitter release may also be involved.
Cerebellar LTD has been suggested to play a role in motor learning. Other plasticity pro-
cesses, however, are likely to play a role as well. The cleaning of old memory traces may
be aided by Hippocampal LTD. [19] [20] NMDA receptors, metabotropic glutamate recep-
tors (mGluR), and endocannabinoids can all play a role in hippocampal/cortical LTD. [21]
The phosphorylation of AMPA glutamate receptors and their removal from the surface
of the parallel fiber-Purkinje cell (PF-PC) synapse is the outcome of the underlying-LTD
molecular mechanism in the cerebellum. [22]

1.5.4 STDP
In vitro and in vivo, STDP has been found at hundreds of synapses in a range of

brain locations and experimental circumstances. As a result, STDP is a prevalent type of
plasticity that drives a variety of developmental and adult learning processes. However,
because many synapses are not affected by somatic spikes, STDP is not a universal plas-
ticity rule, and spike timing is only one aspect of a multifactor learning rule that includes
firing rate, spike timing, dendritic depolarization, and synaptic cooperativity. Except for
being impacted by depolarization from backpropagation of somatic spikes, STDP is not
biochemically separate from classical CDP or local, associative plasticity. As a result, no
chemical or genetic alterations that selectively block STDP have been discovered. [24]

STDP is a mechanism for introducing LTP and LTD into the brain [23]. STDP alters
synaptic strength as a function of the presynaptic and postsynaptic action potentials’
timing (Figure 1.5). Synaptic strength is increased when a presynaptic spike occurs a
few milliseconds before a postsynaptic spike. The higher the shift in synaptic weight,
the shorter the delay between the two spikes. Synaptic strength is weakened when a
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postsynaptic spike occurs a few milliseconds before a presynaptic spike. The higher the
shift in synaptic intensity, the shorter the time delay between the two spikes.
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Figure 1.5: Spike-timing-dependent plasticity (STDP). If the presynaptic spike occurs
before the postsynaptic spike (“pre before post”), the synapse is strengthened (red, LTP,
long-term potentiation). If the postsynaptic spike occurs before the presynaptic spike, the
synapses are weakened (blue, LTD, long-term depression). Typically, two action poten-
tials need to occur within at most a few tens of milliseconds for STDP to be recruited..
(Adapted from Flavio Fröhlich, in Network Neuroscience, 2016)

1.6 Spike Coding
To explain the information transfer between neurons, different theories of information

representation in the brain referred to as neural codes, have been presented. The ability
of brain-inspired spiking neural networks (SNNs) to execute various tasks is dependent
on neural coding.

The spiking model differs significantly from past artificial neuron generations, the key
information transmitted by spikes is the time relation between them, as a consequence,
delivering usable data over a spiking net necessitates conversion from other types to tem-
poral data [25]. Neural coding schemes are used to convert pieces of information into
spikes that are delivered to the excitatory neurons. Rate coding, Time To First Spike
(TTFS) coding, phase coding, and burst coding are four distinct forms of neural coding
methods that were examined and compared [26], in this section, we are going to only
cover rate coding and binary coding. Rate coding, sometimes called frequency coding is
the most widely used coding scheme in neural network models, the information about the
signal is contained in the spike firing rate, its first appearance was after the experiments
by ED Adrian and Y Zotterman in 1926 different weights were hanged from a muscle.
The number of spikes recorded from sensory neurons innervating the muscle rose as the
stimulus weight increased [27], Measurement of firing rates became a typical method of
defining the properties of all types of neurons in the following decades, partially due to the
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relative ease with which rates could be measured experimentally. This method, however,
ignores all of the information that could be contained in the precise timing of the spikes
and interspike intervals, as well as the intrinsic properties of each action potential. The
term “firing rate” has several definitions, referring to various averaging processes such as
an average over time or an average over multiple repeats of an experiment.

A temporal average is the first and most commonly used definition of a firing rate.
This is essentially the spike count in an interval of duration T divided by T [28]; (see
Figure 1.6). The experimenter determines the length T of the time window, which is
dependent on the type of neuron recorded from and the stimulus. In practice, several
spikes should occur within the time window to obtain reasonable averages. T = 100 ms
or T = 500 ms are common values.

Figure 1.6: A. Definition of the mean firing rate via a temporal average. B. Gain function,
schematic. The output rate ν is given as a function of the total input I0.

This rate definition has been successfully used in numerous preparations, particularly
in sensory or motor system investigations. The stretch receptor in a muscle spindle is
a classic example (Adrian, 1926). With the force applied to the muscle, the number of
spikes generated by the receptor neuron rises. The touch receptor in the leech is another
classic example (Kandel and Schwartz, 1991). During a 500-ms stimulation interval, the
greater the contact stimulus, the more spikes occur. [29]

The second definition of rate exists, which applies to both stationary and time-
dependent stimuli. While stimulating a neuron with some input sequence, the experi-
menter records from it. The same stimulation sequence is repeated several times, and the
neuronal response is recorded in a Peri-Stimulus-Time Histogram (PSTH), as shown in
Figure 1.7. The time t is measured relative to the start of the stimulation sequence, and
∆t is usually one or a few milliseconds long. The number of spike occurrences nK(t; t+∆t)
summed over all repetitions of the experiment divided by the number K of repetitions is
a measure of the neuron’s typical activity between time t and time t + ∆t. A further
division by the ∆t interval length yields.

p(t) = 1
∆t

nK(t; t + ∆t)
K

(1.12)

Binary coding is a type of encoding in which a neuron is either active or inactive
during a period of time, firing one or more spikes throughout that time. This encoding
was aided by the discovery that physiological neurons tend to activate when they receive
input (a sensory stimulus like light or external electrical inputs).

Because neurons are represented as binary units that can only accept two on/off val-
ues, they can benefit from this binary abstraction. It can also be used to analyze spike
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Figure 1.7: Definition of the spike density in the Peri-Stimulus-Time Histogram (PSTH)
as an average over several runs of the experiment..

trains from current spiking neural networks, where spike train classification uses a binary
interpretation of the output spike trains.

Binary coding also referred to as temporal coding, assumes that the precise timing
of spikes carries information [28] [4], to model this idea, binary numbers can be used to
mark the spikes: 1 for a spike, 0 for no spike. Binary coding allows the sequences that
have the same firing rate to represent different pieces of information

1.7 Conclusion
In this chapter, we introduced spiking neural networks and different neuron models, as

well as rate models and how information can be transferred between neurons.
In the next chapter we are going to represent vectors with a population of spiking neurons
called neurovectors and use them to implement drone flight planning.
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CHAPTER 2

NEUROVECTORS

2.1 Introduction
In this chapter, we are going to introduce the notion of neurovectors, their representa-

tions as a "sinusoidal vector" for the 2D vectors and their generalization in the 3D space to
become "sinusoidal matrices" representing 3D vectors. These structures make it possible
to represent a vector using a population of neurons, and to implement several mathemat-
ical operations that allow us to perform multiple calculations. We will also construct a
graphical representation of the neurovectors and their different operations to model and
visualize different scenarios for a better understanding.

2.2 Neural Representation of Vectors in the Plane
Touretzky et al. (1993) proposed a neural formalisation based on the representation

of vectors as "phasors". A phasor is a cos(θ) function in the domain θ ∈ [0, 2π] which
encodes for the magnitude and angle of the vector in such a way that this function is
out of phase by the value of the angle and its amplitude is the vector’s norm. Hence, A
sinusoidal function fv0(θ) = L0 cos(θ−θ0) is used to represent a planar vector v0 = (L0, θ0).
The function f(θ) is represented by a population of neurons where each neuron identifies
a discrete value of the initial set (θ in this case), and its output (discharge frequency)
provides the image of that value. The authors also proposed a new method for vector
summation, where the operation of addition of two vectors is equivalent to the addition
of their sinusoidal vector.

If two vectors v1 = (L1, θ1) and v2 = (L2, θ2) are encoded with the functions

fv1 = L1 cos(θ − θ1) (2.1)

fv2 = L2 cos(θ − θ2) (2.2)

The sum of the vectors v1 and v2 is equivalent to the sum of the respective functions.
The resulting function will be the sinusoidal fv of the same frequency as the first two and
coding for the resulting vector :
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fv = fv1 + fv2 = Lv cos(θ − θv) (2.3)

A vector v represented by its sinusoidal fv can have its polar coordinates θ and L

extracted by applying the formulas

θv = maxθfv(θ) (2.4)

Lv = fv(θv) (2.5)

The amplitude of fv(θ) is equal to the modulus (length) of v, the equivalence between
the sum of two vectors and the sum of their representation in sinusoidal functions [30]

2.3 Generalization of Sine Wave Vectors to Three Di-
mensions

To understand the concept of sine wave vectors in higher dimensions we have to study
the trigonometric function representative of a 2D vector in a polar axis in order to extract
the geometric specifications. (Figure 2.1).
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Figure 2.1: A polar representation of a summation of two sinusoidal vectors. Red circles
represent operand vectors, and the blue circle is the result vector.

A sine wave function of a vector represents a circle C when drawn on a polar axis.
Circle C passes through the origin and carries the vector v⃗ that it represents. This means
the vector traces the diameter of the circle passing by its center where v⃗ = 2O⃗Cc, with
Cc representing the center of the circle. The point p = (ρ, θ) (top of the vector) is the
origin antipodal of the circle, because the segment [O, p] that passes by these points passes
through the center of the circle. If the function that defines a circle p(θ) = p0 cos(θ − θ0)
is the sine wave vector of a 2D vector, v(p0, θ0), that means the function that defines a
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sphere p(θ, σ) is the sine wave matrix (SM) of a 3D vector.
x = pcos(σ)cos(θ)
y = pcos(σ)sin(θ)
z = psin(σ)

(2.6)

The sine wave function characterizing the 3D vector is the equation of a hypersphere in a
spherical space and its obtained in a classic form of a sphere in a cartesian space

(x− cx)2 + (y − cy)2 + (z − cz)2 = r2 (2.7)

Where r is the radius of the hypersphere and (cx, cy, cz) is the coordinates of its center.
As the hypersphere carries the vector v, which means (p0, θ0, σ0) is the antipode of the
origin, the length of v will be the double the radius r, which means that r = p0

2 , also the
center of the sphere is the middle of the vector v (Figure 2.2).

Figure 2.2: Spherical representation of a neurovector

After application of few trigonometric identities, we get [30]

M(θ, σ) = p0(cos σ cos σ0 cos(θ − θ0) + sin σ sin σ0) (2.8)

Which is the sine wave matrix characterizing a 3D vector and allows the same vectorial
operations as is in 2D. A 2D phasor of a vector dimensional represents the dot product of
the vector with every vector of the angle θi.
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V1.V2 = |V1|.|V2|.cos(V1V2) (2.9)

Let say we have V1(p1, θ1, σ1).V2(p2, θ2, σ2)

V1.V2 = |V1|.|V2|.cos(V1V2) = p1p2(cos σ1 cos σ2 cos(θ1 − θ2) + sin σ1 sin σ2) (2.10)

So the equation M(θ, σ) defines the dot product of a known vector V (p0, θ0, σ0) and an
unknown vector V (1, θ, σ).

In (1995) Wittmann & Schwegler proposed to discretize the sine wave vector to a table
of values with a predefined size, the resolution and quality of the representation rely on
the size of that table. It becomes more faithful as the size of the table is large. The
authors have proposed to represent every cell of the table with a unique neuron. The
value of that cell matches the output frequency of the neuron and every cell has a unique
direction. Therefore, a table representing a sine wave is it self represented by a population
of neurons where each neuron outputs a value and has a direction θi of the original vector
(see Figure 2.3).

𝜃=0.00 𝜃=0.70 𝜃=1.40 𝜃=2.09 𝜃=2.79 𝜃=3.49 𝜃=4.19 𝜃=4.89 𝜃=5.59 𝜃=6.28

Figure 2.3: A graphical illustration of the frequency output of every neuron in a 2D
neurovector

As for 3D neurovectors, we will be using a discretization of the function M(θ, σ) (see
Figure 2.4).
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2.3. Generalization of Sine Wave Vectors to Three Dimensions

σ
𝜃

-1.57

-3.14

-1.18

-2.44

-0.79

-1.75

-0.39

-1.05

0.00

-0.35

0.39

0.35

0.79

1.05

1.18

1.75

1.57

2.44

Figure 2.4: A graphical illustration of the sinusoidal matrix where each cell represents the
frequency output of every neuron in a 3D neurovector
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2.4. Neurovectors Graphical Representation

2.4 Neurovectors Graphical Representation
Since there are numerous possible operations in the context of neuronal vector arith-

metic, it is better that we represent them visually for a better readability and under-
standability. In this section we will be going through our contribution to representing
different operations, but before diving any deeper, we start by the representation of a
simple neurovector as illustrated in Figure 2.5

v

Figure 2.5: Graphical representation of a simple population of neurons (neurovector)

The arrow must always be directed to the top right passing through the center of the
circle.

2.4.1 Unit Vector
A unit vector is a vector that has a magnitude 1, and it can be obtained by multiplying

the sinusoidal matrix (SM) by 1
vmax

(see Figure 2.6), and vmax represents the maximum
spiking value of the population which also represents the norm of the vector.

Figure 2.6: Graphical representation of a unit vector

The same constraints as that of the neuron population are required for the schemati-
zation of the normalized vector.
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2.4. Neurovectors Graphical Representation

2.4.2 Multiplication
Scalar multiplication is one of the fundamental operations which can be achieved by

multiplying the spiking value of each cell in the sinusoidal matrix with a factor α (see
Figure 2.7).

𝛼

v = 𝛼.v1

v1

Figure 2.7: Graphical representation of a multiplication

The scalar alpha must always be noted at the right side of the arrow. The arrow
symbolizing the transfer of neuronal activity must have a non-zero width. When not
noted, the alpha value is 1.

2.4.3 Summation
Summation is also one of the fundamental and trivial operations which can be done by

making an element-wise addition of the two sinusoidal matrices that represent the two
neurovectors (see Figure 2.8).

v = 𝛼.v1 + 𝛽.v2

𝛼𝛽

v1v2

v

Figure 2.8: Graphical representation of an addition
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2.4. Neurovectors Graphical Representation

If not noted, the values of alpha and beta are 1 by default.

2.4.4 Rotation
Rotation is a very important operation. Any rotation is a motion that preserves at

least one point, it can be done by shifting the (SM) by θ. and it is illustrated as in the
Figure 2.9

(𝜃, ..., 𝜃)
0 i

Figure 2.9: Graphical representation of a rotation

Unlike the scalar weight, the angle (or angles) of rotation of the vector is (are) noted
on the left of the link. When not noted, the value of the angle is π.

2.4.5 Projection
It is possible to project a population of neurons (neurovector) into a single neuron

and it will have a spiking value of the maximum spiking value in that population which
represents the norm of the vector and is illustrated as in Figure 2.10
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2.5. Biological Plausibility

Figure 2.10: Graphical representation of a projection of a population of neurons into a
single neuron

2.4.6 Inhibition
inhibitory neurons are neurons that release neurotransmitters to make the post-synaptic

neuron less-likely to generate an action potential.

Figure 2.11: Graphical representation of an inhibitory action

The difference between inhibition and projection graphical representation is the circle
at the end of the line.

2.5 Biological Plausibility
Recently, it has been discovered that neurovectors are at work within the brain complex

of insects. Lyu et al [58] demonstrated that a genus of flies known as drosophila have
neurons that are tuned to the allocentric traveling direction in their brain.
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2.5. Biological Plausibility

The central complex of drosophila includes three parts, the ellipsoid body, the proto-
cerebral bridge and the fan-shaped body. One of a few dozen sets of columnar neurons
in the central complex is the EPG cells, when the fly is walking or flying, the full popu-
lation of EPG expresses a bump of calcium activity in the ellipsoid body, and copies of
this bump in the left and right bridge. However, hδB cells, which are another type of
columnar neurons appear to show activity in coordination with the activity in the EPG
cells.

There exists sets of neurons that provide four motion-related inputs to the central
complex, these inputs L1, L2, L3, L4 represent the projections of the traveling vector of the
fly onto axes oriented ±45 and ±135 (Figure 2.12.a). The egocentric traveling direction
of the fly can be computed by adding the four vectors defined by these projection lengths
and angles. As to the allocentric traveling direction, it is calculated by referencing the
four projections to the allocentric heading H of the fly before taking the vector sum
(Figure 2.12.b). It was shown that these allocentric motion vectors can be represented
using sinusoids where the amplitudes and phases match the lengths L1-4 and angles ( 45
and 135) respectively. Then, the vector sum would be calculated by simply summing the
vectors’ corresponding sinusoids (Figure 2.12.c).

Figure 2.12: The allocentric travelling direction can be computed by vector ro-
tation and summation, which can be implemented by phasors. a, The travelling
direction vector (green) for a fly translating at an egocentric travelling angle, Tego, refer-
enced to its head direction (grey line with a circle), is projected onto four axes oriented
±45° and ±135° relative to the head, yielding four scalars L1–4. The +45° projection
is shown. The head direction of the fly represents 0° in this egocentric reference frame.
Angles are positive clockwise. b, The allocentric travelling direction, Tallo, of the fly can
be computed either by rotating the egocentric travelling angle (Tego) such that it becomes
referenced to the external world (that is, the sun) (left) or, as in the fly circuit, by first
referencing the ±45° and ±135ř projection axes to the external world (right) and then
taking the vector sum of the four projection vectors. Egocentric vectors are referenced to
the external world by adding H, the allocentric heading angle of the fly, to them. c, 2D
vectors can be represented by sinusoids, and adding sinusoids then implements addition
of vectors. Adapted from [58]
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2.6. Conclusion

There are another two types of columnar neurons which are PFNd and PFNv. Separate
arrays of PFNd and PFNv in the left and right bridge receive extensive monosynaptic
and disynaptic input from EPG cells, while also project axons to the fan shaped body
where they synapse onto hδB cells. The activity profiles across the bridge of the four PFN
populations are well fit by sinusoidal functions, and their bumps are poised to represent
the four allocentric projection vectors. Although their phases are not offset by ±45 and
±135, their projection anatomy allows their bumps to acquire ±45 and ±135 offsets from
the bridge to the fan-shape. And these sinusoids appear to be summed at the level of the
hδB axons that represent the allocentric traveling direction.

2.6 Conclusion
In this chapter, we explained the concept of neurovectors in both 2D and 3D spaces,

and also showed the different operations that can be performed on them and their corre-
sponding graphical representation.
In the next chapters, we are going to construct models to solve different drone flight
planning scenarios using neurovectors as well as running simulations and interpreting the
results to evaluate the performance of these models.
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Part II

Drone Flight Planning
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CHAPTER 3

MOTION CAMOUFLAGE

3.1 Introduction
Motion camouflage conceals the optical flow of a moving object, The most common

type of motion camouflage and the one most people are familiar with, entails an attacker
imitating the optic flow of the background as viewed by its victim. In contrast to the
traditional pursuit, this allows the attacker to approach the target while appearing to re-
main motionless from the target’s perspective (where the attacker moves straight towards
the target at all times and often appears to the target to move sideways). The attacker
chooses a flight path that keeps it on a straight line between the target and a landmark.
As a result, the target does not notice the attacker moving away from the landmark
point. The looming, the change in size as the attacker approaches, is the sole apparent
sign that the attacker is moving. Swaying to simulate plant movements in the wind or
ocean currents is one example of how motion can be employed for camouflage. Motion
camouflage by reducing optic flow was first observed in hoverflies in 1995 and has since
been demonstrated in another insect order, dragonflies, as well as two vertebrate taxa,
falcons, and echolocating bats. Because bats hunting at night cannot use the method for
camouflage, it has been given the moniker constant absolute target direction to describe
its mechanism. This is a good homing strategy, and it’s been argued that anti-aircraft
missiles could benefit from it as well. Motion can help camouflage, as shown in the leafy
sea dragon and several stick insects. These animals add to their passive camouflage by
swaying like plants, which allows predators to miss them.

3.2 Motion Signal Minimization (MSM)
Motion Signal Minimization (MSM) can be broken down into two subcategories. The

first involves reducing the motion signal, and the second involves reducing the motion
itself. Predators use the latter, perhaps the most evident motion camouflage strategy
when approaching stationary prey by moving slowly. The hunter sprints towards the prey
once it is close enough for the last interception. The first MSM technique is based on
the idea of reducing the amount of signal that reaches the prey’s visual data processing
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3.3. Disruptive Camouflage

system. The cuttlefish, with its dynamic stripes, is a well-known example. This animal
has the ability to change the patterns on its skin’s surface. The cuttlefish decreases
the prey’s perception of its true speed by generating horizontal stripes that move in the
same direction as its axis of movement, which gives it a distinct advantage when hunting.
Disruptive camouflage involves manipulating contours and shapes in order to generate a
lag effect in the prey’s or attacker’s perception of movement. Animals use this sort of
camouflage to blend in with their surroundings. The tiger’s coat, the cheetah’s spots, and
the cicada’s camouflage are all motifs that allow the wearer to confuse the spectator as
to the individual’s size, direction, and speed of movement. Disruptive camouflage was
utilized by the fleets of the belligerents in the First World War to hinder the efficacy of
enemy submarines at the turn of the century.

3.3 Disruptive Camouflage
Disruptive coloration (also known as disruptive camouflage or disruptive patterning) is
a type of camouflage that uses a highly contrasting pattern to break up the outlines of
an animal, soldier, or military vehicle. It’s frequently used in conjunction with other
crypsis techniques, such as background color matching and countershading; unique cases
include concurrent disruptive coloring and the disruptive eye mask present in several
fish, amphibians, and reptiles. It appears counterintuitive as a technique of not being
noticed, because disruption of edges requires great contrast, making the patches of color
themselves noticeable. In 1909, the artist Abbott Thayer anticipated the necessity of high-
contrast patterns for successful disruption, and zoologist Hugh Cott predicted it explicitly
in 1940. Experimental research has since begun to back up these expectations. When all
of the components of a disruptive pattern match the background, it works best. When an
animal or a military vehicle has a range of backgrounds, disruptive coloration is a more
effective tactic than background matching. Animals that indicate their presence with
warning colors (aposematism), on the other hand, adopt patterns that enhance rather
than disrupt their outlines. Skunks, salamanders, and monarch butterflies, for example,
all have high-contrast patterns that show their contours.

3.4 Mimicking Optic Flow of Background
An attacker can imitate the background’s optic flow by choosing a flight path that

keeps it on a straight line between the target and a real landmark point or an infinitely
distant point (giving different pursuit algorithms). As a result, it does not move away
from the target’s landmark point, though it does loom larger as it approaches. This is not
the same as moving straight towards the target (classical pursuit), which causes visible
sideways motion and a visible difference in optic flow from the background. Whether the
background is plain or textured, the strategy works [31]. While studying hoverfly mating
behavior in 1995, M. V. Srinivasan and M. Davey discovered and modeled this motion
camouflage strategy as an algorithm. The male hoverfly appeared to be approaching po-
tential mates using the tracking technique [31]. Males of the Australian emperor dragonfly,
Hemianax papuensis, were seen choosing their flight paths to appear stationary to their
rivals in 6 of 15 encounters, demonstrating motion camouflage in high-speed territorial
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3.5. Fixed-Point Motion Camouflage

battles between dragonflies. They used both real-point and infinity-point strategies to
achieve their goals [32] [33].

Figure 3.1: Optical flow minimisation using in relation to a fixed-point.

3.5 Fixed-Point Motion Camouflage

r'(t)

c(t - Δt)

Pc(t)

Pp(t + Δt)
p

Pp(0)

p

d(t)

r(t)

p

Ref (t)

P(t)

cRef (t)

Figure 3.2: Fixed point motion camouflage.

In terms of limiting optical flow, the first technique is the most effective. Indeed,
it works regardless of the distance between the predator and the background, unlike
the infinite point technique, which requires an endless plane behind the predator as a
requirement. The predator’s first absolute position will serve as the fixed point for the
remainder of the chase. The meaning of the vectors discussed previously is illustrated
in Figure 3.2. Two reference vectors refp(t) and refc(t) are used for this method, which
designates respectively the position of the predator and the prey in relation to the fixed
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3.6. Infinite-Point Motion Camouflage

point of reference pp(0). The purpose is to use the predator’s information to construct a
vector formulation of the elementary displacement vector d(t). The displacement vector
d(t) can be obtained from the Chasles with the constraint that this vector must always
locate the predator on the line passing through the fixed point and the prey (see Figure
3.2). As a result, it is required to maintain this equality 3.1

refp(t) + d(t) = λrefc(t) (3.1)

where λ is a parameter that will be described later. The predator can obtain the
information refc(t) by adding the vector sum of its reference position refp(t), which is
the inverse vector of the aiming vector towards the fixed point, and the aiming vector
r′(t). It is possible to reformulate the previous equation by using vector substitutions
deduced from Figure 3.2 by

d(t) = λ(refp(t) + r′(t))− refp(t) (3.2)

d(t) = λr′(t) + (λ− 1)refp(t) (3.3)

The parameter λ is the expression of parallelism between two vectors in space. When
two vectors x and y are parallel, they form a linear analytic relationship known as x = λy.
Given that the predator must always remain on the line between the fixed point and the
prey, the new reference position refp(t) must remain parallel to refc(t) for each d(t)
resulting in the formulation of equation (3.3). This movement must also allow for a
reduction in the distance between the predator and the target, allowing for an interception.
The position of the predator coincides with the fixed point at the start of the chase, giving
it a value of zero. In order for the predator to intercept the prey, refp(t) must be equal
to refc(t), implying that the predator and prey positions must coincide. To achieve this
equality, the value must change from 0 to 1 according to a linear relationship of type
λ(t) = αt where α is the velocity of the approach. In our example, we chose an inverse
exponential variation, which increases towards the start of the chase and slows down
towards the end, as determined by this differential equation: [30]

dλ(t)
dt

= α(1− λ(t)) (3.4)

Neuronal Modeling
The neuron model that enables the fixed-point motion camouflage demands the predator

to provide two vectors. The first one is r′(t) which is the reference vector from the current
position to the position of the target, and it is extracted by the predator’s vision system,
the other one, is refp(t) which is another reference vector to the fixed point. Each vector
is represented with a neurovector and d(t) is calculated by summing and multiplying these
neurovectors according to previous equations 3.3. Figure 3.3 visualizes the whole process.

3.6 Infinite-Point Motion Camouflage
Flying predators use the infinity point approach to take advantage of the unlimited

distance plane represented by the sky. It has been established that the bat uses this
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3.6. Infinite-Point Motion Camouflage

r`(t) refp(t)

d(t)

(1-λ)λ

Figure 3.3: A fixed point camouflage modelization using neurovectors.
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r(t)

d(t)

Pp(t)

Figure 3.4: Infinite point motion camouflage.

method to hunt flying insects and to save hunting time by following an optimally concealed
route [34]. A pursuit with respect to an infinite point is equivalent to following a trajectory
in which the vector connecting the prey and the predator is always parallel to the reference
vector. Traditionally, this reference vector is built using the predator and prey initial
positions (at the start of the chase). This technique is diagrammed in Figure 3.4. The
infinite point method uses the same vector notations as to the fixed point method. The
purpose is to find an equation for the displacement vector d(t) for each instant t that,
when added to the predator’s current position, ensures that two essential criteria are met:

• The aiming vector of the prey-predator remains parallel to a reference vector Rref .

• The distance between prey and predator reduces with time to allow interception.

The parallelism criteria between the targeting vector and the reference vector Rref =
pc(0)− pp(0) imposes this equality, at all times:

r(t) = λRref (3.5)

d(t) = r′(t)− λRref (3.6)

The fluctuation of the parameter λ identifies the predator’s velocity of approach, which
is inversely related to the hunting duration, just as it does in the fixed point method. In
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3.6. Infinite-Point Motion Camouflage

this scenario, instead of varying from 0 to 1, the value of λ now varies from 1 to 0. This
variation is governed by the differential equation:

dλ(t)
t

= −αλ(t) (3.7)

Neuronal modeling
The neuron model that enables the infinite-point motion camouflage demands the preda-

tor to provide two vectors. The first one is r′(t) which is the reference vector from the
current position to the position of the target, and it is extracted by the predator’s vision
system, the other one, Rref is also a reference vector from the current position of the
predator to the position of the target but it is not going to change over time as it is only
going to be extracted as the chase starts. Each vector is represented with a neurovec-
tor and d(t) is calculated by summing and multiplying these neurovectors according to
previous equations 3.7. Figure 3.5 visualizes the whole process.

r`(t) Rref

d(t)

λ

Figure 3.5: An infinite point camouflage modelization using neurovectors.
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3.7. Simulations and Results

3.7 Simulations and Results
To evaluate the performance of the proposed models, we have developed a neurovector-

based simulator that can emulate neurovectors calculations using the Python program-
ming language, and all the graphics were implemented using the OpenGL graphics library.
Using this simulator, we are going to study the fixed and infinite point camouflage and
the other scenarios with different prey’s movement trajectories and track the predator’s
behavior and error, as well as the efficiency of neurovectors with a population of 42 neu-
rons.

3.7.1 Fixed-Point Motion Camouflage

Straight Movement

In the first phase the prey moves in a straight line with respect to the fixed point at a
constant speed (see Figure 3.6), the predator starts at high speed, and then it begins to
decelerate as it gets closer to the prey to first keep its camouflage intact and then catch
up to it. The deviation of the predator’s angle from the line between the fixed point and
the prey starts from almost 0° until it reaches about 6° at the end of the simulation, and
this is because as the predator gets closer to the prey, it becomes challenging to stay on
the line between the fixed-point and the prey.

Helical Movement

In the next scenario the prey moves in a rotational way with respect to the fixed
point (rotates around the fixed point without moving away or approaching) at a constant
speed (see Figure 3.7), the predator behavior does not change a lot compared to the last
simulation. It starts at a slower speed compared to the straight movement, and then it
decelerates as it gets closer to the prey in order to keep its camouflage intact and then
catch up to it. The deviation of the predator’s angle from the line between the fixed point
and the prey starts from almost 0° until it reaches about 2° at the end of the simulation,
with an average of 0.76°. This movement has better results compared to the last one, and
this is due to the fact that the distance between every fixed-point/prey line is so much
lower and constant, this makes it easier for the predator to stay on the line.

Random Movement

For this last scenario the prey moves in a random trajectory at a constant speed (see
Figure 3.8), the predator’s velocity profile is noisy, the explanation for the sudden acceler-
ations of the predators comes from the fact that it is probable that the prey moves away
from the fixed point when it starts randomly moving, the deviation of the predator’s angle
from the line between fixed point and prey, reaches 10° with an average of 1°.
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Figure 3.6: Straight movement camouflage relative to a fixed point. On the right, the
velocity profiles of the predator. On the left, the cosine of the angle deviation of the
predator from the line of camouflage.

3.7.2 Infinite-Point Motion Camouflage

Straight Movement

In the first phase the prey moves in a straight line with respect to the fixed point at
a constant speed (see Figure 3.9), the predator’s behavior is similar to its behavior from
the fixed point simulation. It starts at high speed, and then it begins to decelerate as
it gets closer to the prey to first keep its camouflage intact and then catch up to it, the
only difference is the angle results became more precise as the deviation of the predator’s
angle starts from almost 0° until it reaches about 2° at the end of the simulation which is
x3 times better than the fixed point.
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3.7. Simulations and Results

Figure 3.7: Helical movement camouflage relative to a fixed point.

Helical Movement

In the next phase, the prey moves in a rotational way at a constant speed (see Figure
3.10), the simulation results got better angle-wise compared to the fixed point. It starts
at high speed, and then it decelerates as it gets closer to the prey, the deviation of the
predator’s angle from the line between fixed point and prey starts from almost 0° until it
reaches about 3.62° at the end of the simulation.
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3.8. Conclusion

Figure 3.8: Random movement camouflage relative to a fixed point.

Random Movement

For this last phase, the prey moves in a random trajectory at a constant speed (see Fig-
ure 3.11), The predator’s velocity profile is noisy, as well as the deviation of the predator’s
angle reaches 5°, compared to random movement from the fixed point simulation this is
x2 times more precise.

3.8 Conclusion
Two neural models for stealth hunting with motion camouflage are presented in this

chapter. The first model enables the predator to conceal itself by acting as a stationary
point in the immediate surroundings. In the second illustration, the predator represents
an infinite point in the background of the animal. It has been demonstrated through
experiments that vector equations controlling the dynamics of flight and hunting can be
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3.8. Conclusion

Figure 3.9: Straight movement camouflage relative to an infinite point. On the right,
the velocity profiles of the predator. On the left, the cosine of the angle deviation of the
predator from the line of camouflage.

applied to populations of neurons that form sinusoidal matrices. As long as there are at
least 16 neurons per population of neurons, flight pathways are extremely precise, effective
at camouflaging, and durable. The results show that the camouflage model for an infinite
point has a higher precision.
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3.8. Conclusion

Figure 3.10: Helical movement camouflage relative to an infinite point.
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3.8. Conclusion

Figure 3.11: Random movement camouflage relative to an infinite point.
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CHAPTER 4

TARGET TRACKING

4.1 Introduction
One of the many applications of UAVs is dynamic target tracking, where one UAV

or a swarm of UAVs are given the mission of following and tracking a given target that
moves freely in the environment. In this chapter, we will address the case of a single UAV
tracking a single target. However, the target could be considered to be a person or even a
car and move on the ground as shown in Figure4.1.a, or it could have more freedom and
move in the 3D space. For example Figure 4.1.b, where a UAV is tracking another UAV.

Aerial tracking of both ground and flying targets can be a game changer in various
complex missions, especially in military fields [35], or in civilian fields such as surveillance,
search, and rescue [36], where the UAV is given the task of hovering over the target at
the desired distance or to maintain the target within a certain distance.

We consider that the UAV can determine its own altitude and the position of the
target through advanced monitoring systems. Using the provided visual information, the
UAV is actually mimicking flying creatures’ behaviour such as birds and insects [37], that
depends only on their visualization while flying. In this chapter, we are going to extract
two separate sets of kinematic equations to control the UAV’s movement and allow it to
track the target, and then propose and test the neuronal models for both scenarios.
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Figure 4.1: UAV for target tracking. (a) Ground target, (b) Flying target.

4.2 Vector Model
In order to exploit the neurovectors in the earlier mentioned scenarios, first, we need to

provide the two vector models that schematize the entire structure, so that every single
vector will be represented by a neurovector. In this section, the entire process is described.

4.2.1 Ground Target
In this first scenario, we consider the target to be moving on the ground, this last has

the freedom to move in any direction, with any velocity and acceleration. From one side,
knowing that the UAV has the privilege of moving in 3D space, it will always be superior
to the ground target considering that the road is not straight all the way, so all the ups
and downs of the road will not be in his favour. But on the other side, the UAV also
needs to consider this and adapt its position to avoid any possible collision.

In order for the UAV to determine its next position, it only needs the position of the
ground target which is already provided. Taking into account the allowed height limit
hmin from the ground, and the distance ld to keep from the target, the vector equations
that allow the UAV to make the next step will be derived.
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Figure 4.2: vector model for ground target tracking .

First, let’s define the set of three-dimensional vectors from Figure 4.2 and the variables
needed in the process: ⃗P (t) designates the absolute position of the UAV at time t, and

⃗T (t) designates the absolute position of the target at time t. ⃗h(t) represents the altitude
vector that is the height at which the UAV flies at time t. The Target-UAV reference
vector ⃗r(t) can be extracted from the difference :

⃗r(t) = ⃗T (t)− ⃗P (t) (4.1)

For the UAV to follow the target and take the shortest path for energy saving, it
should move according to ⃗r(t), taking into account the distance ld that should be kept
from the target, we derive the vector d⃗r as follows :

d⃗r = λ ⃗r(t) (4.2)

where λ = 1− ld

∥ ⃗r(t)∥ , and
∥∥∥ ⃗r(t)

∥∥∥ is the length of the vector ⃗r(t).
However, the UAV needs to keep its altitude always above a height limit hmin from

the ground. For this purpose, we introduce two vectors h⃗m and d⃗h. h⃗m is parallel to ⃗h(t),
with opposite direction and with a magnitude equal to hmin, and dh is defined as follows
:

d⃗h = ⃗r(t) + h⃗m (4.3)

Hence, the movement vector ⃗d(t) is given as follows :

⃗d(t) = (1− α)d⃗r + αd⃗h (4.4)

where α = 1
∥ ⃗h(t)∥−hmin

, so when the altitude of the UAV drop, λ get bigger, and
increasing the altitude is prioritized over conserving the distance from the target.

4.2.2 Flying Target
In this scenario, the target has the freedom to move in the 3D space, in any direction in

the sky, with any velocity. And the UAV is only limited by the distance ld that should be
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kept from the target. Hence, the UAV’s movement vector ⃗d(t) will always be the vector
that represents the shortest path to the target, so the UAV would avoid any unnecessary
movement that affects its energy availability. To find ⃗d(t) we only need the vector ⃗T (t) of
the target’s position at time t and is derived as follows :

⃗d(t) = λ ⃗r(t) (4.5)

where λ = 1− ld

∥ ⃗r(t)∥ , ⃗r(t) = ⃗T (t)− ⃗P (t) and
∥∥∥ ⃗r(t)

∥∥∥ is the length of the vector ⃗r(t).

 

 

  

ld

r(t)

P(t)

T(t)
d(t)

Figure 4.3: vector model for flying target tracking.

4.3 Neuronal Modelling
The vector equations 4.1 and 4.2 extracted previously allow the UAV to perform an

immediate shift to the next position that allows it to track effectively the target; these
equations involve three-dimensional vectors that are straightforwardly calculated by the
UAV and can be represented using neuron populations via neurovectors. Next, we’re
going to present the neuron model for both ground target and flying target tracking.

4.3.1 Ground Target
The neuron model that enables the tracking of the ground target demands the UAV to

provide two vectors. The first one is ⃗r(t) which is the position of the target compared to
its own position, and it is extracted by the UAV’s vision system, the other one is h⃗m which
is a unit vector h⃗ directed from the ground up and multiplied by hmin. Each vector is
represented with a neurovector, and ⃗d(t) is calculated by summing and multiplying these
neurovectors according to equations 4.2, 4.3 and 4.4. Figure 4.4 summarizes the whole
process.
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λ

h

hmin

hmr(t)

dr dh

d(t)

(1-α) α

Figure 4.4: Neuronal model the for ground target tracking.

4.3.2 Flying Target

For this kind of tracking the only vector that the UAV needs to provide is ⃗r(t) the refer-
ence vector that represents the target’s position, this last is represented with a neurovector
that is multiplied by a scalar according to equation 4.5 as shown in Figure4.5.

r(t)

d(t)

λ

Figure 4.5: Neuronal model the for flying target tracking.

4.4 Simulations and Results
To test the performance of the proposed neuronal models, we set up a few simulation

scenarios for the tracking of the two types of targets. For the following simulations we
used neurovectors with a population size of (10× 10).
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4.4.1 Ground Target
For this scenario, the ground target starts off on the flat ground moving with a fixed

speed, than getting to the up-road, it starts to slow down to stabilize on the top, and it
picks up the pace as it goes down to go back to its initial velocity. In this simulation,
we set the UAV’s height limit hmin = 6(a.u.) , and the distance to keep from the target
ld = 10(a.u.).

Figure 4.6 shows the trajectory of both the target and the UAV, and we can see that at
the beginning the UAV increased its altitude to respect the height limit, then he adapted
to the target movement and speed while keeping the distance ld.

Figure 4.6: Simulation snapshot showing the trajectory of both the UAV and the ground
target.

Figure 4.7(a) shows the speed of both the target and the UAV. At first, as the UAV
takes off, its speed is relatively high to reduce the distance from the target to reach ld,
then the UAV picks the target’s pace and moves according to it, getting to the up road,
as the target starts decreasing its speed, the UAV does too to keep the distance while
trying to stay above the height limit. In Figure 4.7(b) we can see that the distance is a
little bit above ld, and that gap is a compromise that the UAV makes to stay above the
height limit at all times.
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Figure 4.7: Numerical result for ground target tracking: (a) Speed of the UAV and the
ground target, (b) Distance between the UAV and the target.

4.4.2 Flying Target
In this scenario, the target is flying in the 3D space with a fixed velocity and moving

according to a random movement, where an initial random direction vector is picked and
after a certain amount of time, the vector is rotated with a given angle around one of the
three axes. The distance ld in this simulation is equal to 5(a.u.).

Figure 4.8: Simulation snapshot showing the trajectory of both the UAV and flying target.

47



4.5. Conclusion

Figure 4.8 shows the trajectory of both the UAV and the target, even if the target is
moving openly within the space the UAV only makes the minimum necessary movement to
keep the distance ld in between, and that is what shows Figure 4.9 wherein (a) we can see
that the speed of the UAV is always lower than the speed of the target and that because
when the target performs a helicoidal movement where he moves around the UAV, this
last doesn’t need to move as long as the distance is respected, and it’s what is shown in
Figure 4.9 (b). Despite the random movement of the target the distance is almost equal
to 5(a.u.) at all times.

Figure 4.9: Numerical result for flying target tracking: (a) Speed of the UAV and the
flying target, (b) Distance between the UAV and the target.

4.5 Conclusion
In this chapter, we presented two neuronal models for target tracking, the first one

handled the case where the target is moving on the ground so the UAV had to keep a
constant distance from the target to avoid of any possible collision with the ground (ups
and downs of the road), and in the second one, the target was moving in the air, so he
had the freedom to move in the 3D space.

From the simulation results, we could see that the UAV in both tracking scenarios was
successful in tracking the target by keeping a constant distance from the flying target,
and for maintaining a relatively close distance and avoiding any collision with the ground
target. Hence, the neurovectors representing the vector models were precise and effective.
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CHAPTER 5

AUTONOMOUS 3D DEPLOYMENT OF AERIAL
BASE STATIONS FOR WIRELESS COVERAGE IN

CELLULAR NETWORKS

5.1 Introduction
In recent years, the demands for higher data rates and better quality of service have

been continuously growing [38], this goes back to the increase in the number of users, and
the expansion of cellular communication use into different fields. As a result, the network
capacity should be enhanced in order to satisfy all the needs. Instead of deploying a
higher number of terrestrial base stations (TBSs) which could be a waste of resources to
invest in an infrastructure that will only be required for a short amount of time in peak
hours of the day [39]. A promising solution has been open to discussion over the past few
years, which is the deployment of unmanned aerial Vehicles (UAVs) acting as aerial base
stations (ABSs).

Because of their high mobility, and adjustable altitude, ABSs can avoid obstacles and
increase their probability of establishing line-of-sight (LoS) communication links with the
ground users which improves the network quality [40]. Hence, in urban areas, ABSs are
superior to TBSs because they can adapt to the ground users’ requirements and their
movement. Another use case is when the TBS is damaged or not completely functional
due to a disaster, e.g. earthquake [41], or when the network is overloaded. And due to
their small size and fast movement, they can be deployed to access unreachable places in
a very short period of time. Also, they can be very practical to provide uncovered areas,
e.g. suburban areas with network connectivity.

The deployment of ABSs can be challenging. taking into account the power consump-
tion, coverage optimization and interference management [42], the ABSs should find the
optimal positions for them to provide the demanded quality of service for the mobile
ground users. In this chapter, we present a neurovectors electrostatic-based solution for
the 3D deployment of a swarm of ABSs to provide wireless coverage, the proposed neuron
model will be tested and discussed.
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5.2 Related works
There have been many interesting works that addressed the placement problem of ABSs,

most of them studied the optimal position of a single ABS for either static or mobile
ground users, for a group of non-vehicle users, the authors in [43] consider the different
urban environment conditions and the maximum allowable path loss to derive the optimal
altitude of the UAV that maximize the coverage on the ground. In [44], the placement
problem was decoupled, so the placement in the vertical and horizontal dimensions were
separately studied. First, the optimal altitude that results in the maximum coverage
region was found. Then, the optimal 2-D position was determined by modelling the
problem as a circle placement problem and a smallest enclosing circle problem. Finally,
the altitude is recalculated to maximize the number of covered users and minimize the
transmit power. And in [45], the UAV was used as a relay between the base station (BS)
and the users, the structure of the UAV-user propagation was exploited to find the UAV’s
optimal position. In order to minimize the transmission power or maximize the capacity,
the UAV searches for the opportunity of having a LOS propagation toward the user, while
maintaining a good connection with the BS

Some other works consider the situation of busy traffic and assumed the users to be in
a crowd and move linearly mimicking the movement of vehicles on the road, for a fixed
altitude, the authors in [46] studied the automatic self-organization of an ABS, where
ABS update its position according to the users’ requirement and mobility, it was proven
that a single ABS can replace 10 TBSs deployed along that street. In [47], the goal was
to enhance the duration of communication coverage in future mobile networks based on
NOMA (non-orthogonal multiple access), the optimal transmission power was studied in
terms of the users’ clustering for NOMA purposes and the positioning of the ABS over
time as the users move. The work in [48] focused on optimizing the placement update
interval so the ABS can adapt its position to maximize the number of covered users, an
iterative approach that takes into account two metrics which are, the total ABS flight
time and user coverage probability were proposed. In [49], the authors used a Q-learning
algorithm to find the optimal updated 3D position of the ABS after the users’ movement
and the QoS drop under the specified threshold; this method was shown to be successful
in compensating for QoS loss due to user mobility.

Some other works investigated the 3-D placement of multiple UAVs, and even fewer
considered the users to be in movement. for a static set of ground users, the authors
in [42] assumed that the UAVs had the same transmit power and altitude, which means
all the UAVs have an equal coverage radius, the problem was formulated and modelled
as a circle packing problem, where several circles corresponding to the UAVs coverage
regions are packed in the coverage area in a way that there’s no overlapping between
the circles, and the UAVs use a minimum transmit power. In [50], the optimal altitude
that leads to maximum coverage and minimum required transmit power was derived.
Then, the deployment of two ABSs in both interference and interference-free situations
was studied. The results have shown the existence of an optimal separation distance that
provides maximum coverage for a given area. In [41], the 3D placement of the UAVs
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was investigated while considering two scenarios. In the first one, the maximum hover
time and the users’ spatial distribution were taken into account to find the optimal cell
portioning of the area using the optimal transport theory, and associate each cell with
a UAV. In the second scenario, given the load requirement of each user, the minimum
average hover time needed was determined.

Unlike the above contributions, the authors in [51]studied the deployment of multiple
UAVs while considering the users’ mobility, their main objective was to find the minimum
number of needed UAVs, and their optimal 3D position to provide efficient connectivity
with a minimum cost, to solve the positioning problem, an algorithm based on electrostatic
forces was proposed. The authors assumed the users to be particles with static negative
charges, and the ABSs to be particles with dynamic positive charges, the attractive forces
formed between the ABSs and the users and the repulsive forces formed between the ABSs
make these lasts move until electrostatic equilibrium is achieved. However, the authors
assumed that the ABSs use separate frequency bands and do not interfere with each other.

The ABSs deployment with consideration of interference was shown in [52], where
the ABSs are used to support existing terrestrial base stations (TBSs), and they both
communicate with the ground users using the same bandwidth to maximize the frequency
reuse, so the interference among all the base stations (ABSs and TBSs) is considered.
The authors’ objective was to maximize the ABSs’ deployment efficiency by maximizing
the number of satisfied users to the energy consumed by the ABSs to get to their initial
positions. First, the sets of users associated with each ABS are determined by clustering
the unsatisfied users, and each ABS is placed at the gravity centre of its corresponding
cluster. Then, depending on Coulomb’s law the optimal position of each ABS is the sum
vector of all the forces exerted by the users, other ABSs and the ABS base camp.

In [53], the authors proposed a genetic-algorithm-based approach to determine the num-
ber and locations of the ABSs, An SDN architecture was considered, so, the management
and placement decisions of the ABSs were made by a centralized node (CN). In order
to reduce the complexity of the deployment task, the altitude of each ABS was assumed
to be fixed, hence, the position to be selected is only the 2D coordinates of each ABS
location. In all the previous works, the deployment problem of ABSs for wireless coverage
considers either the deployment of a single ABS and static users or a single ABS and
moving crowd. Some works handled the problem of the deployment of multiple ABSs,
but the users were stable. However, the few works that did deploy multiple ABSs to cover
dynamic users have fixed their altitude which limits the vertical movement of the ABSs.
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5.3 System Model

move

update position

 overloaded 
base station

Figure 5.1: System model.

We consider the cellular communication system illustrated in Figure 5.1, where the
users’ requirements are not fully fulfilled or cannot be handled since the existing terrestrial
base stations (TBSs) are damaged, overloaded or unavailable. To generalize our scenario,
we consider both cases where a set D of UAV-mounted base stations (where D=d1,..,dk
and k is the number of ABSs) denoted as aerial base stations (ABSs) are deployed either
to support existing TBSs or to replace them. Let B be the set of all base stations (ABSs
and TBSs) denoted as BSs (where B=b1,...,bi and i is the number of BSs), each BS b ∈ B

is located in the 3D space at (xb, yb, zb), where (xb, yb) is the horizontal position of the
ABS, and zb represents its altitude, each ABS is equipped with a directional antenna, in
addition, we suppose that the TBSs and ABSs operate at different frequency bands.

The set U (where U=u1,...,uN and N is the number of users) groups all the users of the
covered area, for a user u ∈ U to be considered connected, the received signal needs to be
above a certain threshold T . Hence, the set U is divided into, a set U t with the cardinality
Nut that represents the users successfully connected, and the set Ua with the cardinality
Nua that represents the non-connected users or the ones with a poor quality of service
(QoS), Each user u ∈ U is located at position (xu, yu, zu). Assuming that the users are
moving following a random walk mobility model, our objective is to find in real time the
optimal placement of the ABSs in the 3D space in order to provide efficient connectivity
to the ground users. Knowing that every ABS d ∈ D has a maximum available bandwidth
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Bd and limited resources, each ABS has a constraint CA that represents the maximum
number of users connected to that ABS.

5.3.1 Signal Propagation Model
In order to determine the signal power Pr that a user receives from an ABS, we adopt

the air-to-ground propagation channel model given by [54], the approach is basically based
on considering the links of line-of-sight (LoS) and non-line-of-sight (NLoS) between the
ABS and ground user separately, each link has a probability of occurrence, and it depends
on the elevation angle between the ABS and the user, the environment (suburban, urban,
dense, etc), and the distance in between. The probability of having a LOS connection is
given by [44]:

1
1 + a ∗ exp(−b(180

π
∗ tan−1(h

d
)− a))

(5.1)

where a and b are environment related constants and are given by [54], d denotes the
euclidean distance between the ABS and the user, and h represents the ABS’s altitude,
moreover, the probability of having a NLoS is equal to:

P (NLoS) = 1− P (LoS) (5.2)

According to [54], the path loss model in decibels (dB) for LoS and NLoS links are
respectively:

LoS = 20 ∗ log(4πfcdi

c
) + ηLoS (5.3)

NLoS = 20 ∗ log(4πfcdi

c
) + ηNLoS (5.4)

where fc is the carrier frequency, di is the distance between the ABS and the user
i, given by di =

√
h2 + r2 . Furthermore, ηLoS and ηNLoS are the average additional

losses for LoS and NLoS, respectively, they depend on the environment and they are given
in [54]. The probabilistic mean path loss is given by:

L(h, d) = LoS × P (LoS) + NLoS × P (NLoS) (5.5)

Furthermore, considering an ABS transmitting its signal with the power of Pt, the
received power by the user is determined as:

Pr = Pt− L(h, d) (5.6)

The data rate of the user u ∈ Ua is calculated as:

ru = bdu ∗ log2(1 + Pr

σ2 ) (5.7)

where bdu is the communication bandwidth, and σ2 represents the thermal noise.
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5.3.2 Energy Consumption Model for Rotary-Wing UAV
The UAV energy consumption is generally related to two factors, the first one is com-

munication related energy, which means the energy needed for circuitry, signal processing
and signal transmission and reception. However, this energy is usually neglected as it
represents only 16% of the total energy of the UAV [44]. The second factor and the most
important one is the propulsion energy needed to keep the UAV in the air and support
its mobility.

Generally, the propulsion energy depends on the speed of the UAV, as shown in Figure
5.2, the plot of the power consumption along with its three components. So, as derived
in [55], for a rotary-wing UAV flying with speed V, the propulsion power consumption is
modelled as follows:

P (V ) = P0(1 + 3 V 2

U2
tip

) + Pi(
√

1 + V 4

4 v2
0
− V 2

2 v2
0
) + 1

2 d0 ρ s A V 3 (5.8)

where P0 and Pi represent the blade profile power and induced power in hovering
status, respectively, Utip denotes the tip speed of the rotor blade, v0 is known as the mean
rotor induced velocity in hover, d0 and s are the fuselage drag ratio and rotor solidity,
respectively, ρ and A denote the air density and rotor disc area.

Figure 5.2: Propulsion power versus speed of rotary-wing UAV. Adapted from [55].

In order to estimate the coverage duration and the endurance of the UAVs, we assume
that a UAV is provided with an engine that draws its energy from a battery with a capacity
of Bc and a voltage V .

At each time t, the UAV consumes the power P (t) from hovering with a certain speed,
and it’s calculated using Formula 5.8. So, the amount of energy consumed is calculated
as follows:
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E(t) = P (t)/V (5.9)

Knowing that the battery’s capacity decrease as the UAV keeps on hovering, hence,
at each time t the amount of energy left in the battery is :

Bc(t) = Bc(t− 1)− E(t) (5.10)

5.4 Problem Formulation
Our objective is to determine the optimal position of the ABSs to provide efficient

wireless coverage and to maximize the number of connected ground users with respect of
the data rate ru received by each individual u ∈ Ua. In this section, we formulate the
problem as a mixed integer programming optimization problem.

We introduce ld and cdu as decision variables, where:

ld =
{

1, if ABS d is deployed

0, otherwise

}
(5.11)

And

cud =
{

1, if user u is connected to ABS d

0, otherwise

}
(5.12)

Assuming that the user u is connected to the ABS d, if the data rate experienced by
the user satisfies its data rate is above the threshold T (ru ≤ T ).

The problem is formulated as follows:

Max Nut (5.13)

s.t∑
d∈D

cdu ≤ 1, ∀u ∈ U (5.14)

ru ≥ T, ∀u ∈ U t (5.15)∑
u∈U

cdu ≤ CA, ∀d ∈ D (5.16)

√
(xd1 − xd2)2 + (yd1 − yd2)2 + (zd1 − zd2)2 > Dist, ∀d1, d2 ∈ D (5.17)

zd ≥ hmin, ∀d ∈ D (5.18)

The objective function 5.13 maximizes the number of connected ground users. The
constraint 5.14 ensures that a user is served by only one ABS at a time, 5.15 guarantees
that the users’ data rates are acceptable if they are above a certain threshold T, 5.16 makes
sure that the capacity of an ABS regarding the number of connected users is respected,
constraint 5.17 enforce a safety distance between the set of all ABS, and 5.18 limit the
altitude of the ABS to stay above the height hmin.
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5.5 An Electrostatic Neurovectors Based 3D Deploy-

ment of Aerial Base Station for Small Cellular
Networks

The problem formulated in the previous section is of high complexity, because of the
non-linearity of some equations, and the difference in the decision variables type, the
problem is an MINLP, which is an NP-hard problem [56]. In this section, we aim to come
up with a solution to find the ABSs’ optimal 3-D position to provide wireless coverage
to a set of ground users. To this end, we propose an algorithm based on the notion
of electrostatic forces, that uses neurovectors as a computational basis to determine the
optimal position of the ABSs.

First, only an initial minimum number of ABSs is deployed, this number can increase
after if it’s necessary. Then, the set of all ABSs and users are considered to be electrically
charged particles, and by using Coulomb’s law the attraction and repulsion forces between
them are calculated and exploited to move the ABSs until the electrical equilibrium is
achieved [51] [52]. The force between two particles is defined as:

Fab = qaqb

∥a⃗b∥2 âb (5.19)

where ∥a⃗b∥ is the magnitude of the vector a⃗b, and âb its direction.

In order to determine the new positions of the ABSs that make them provide the
intended quality of service, we calculate the shift vector ⃗d(t) for each ABS d E D. the
vector ⃗d(t) has the same direction as the force vector obtained by summing all the forces
exerted on the ABS d.

The first force exerted on the ABS is the attraction force exerted by the users to attract
the ABS and get delivered the required services. knowing that the power transmitted by
the ABS and received by the user has an inverse relationship with the distance between
the ABS and the user, meaning that the farther the user is from the ABS, the weaker
the signal. Hence, the attraction force exerted by one user will increase as the distance
increases. In addition, the force’s magnitude is also related to the number of non-connected
users, so, if the number expands as the users distribute, the attraction force decreases and
the ABS goes up to expand its coverage zone. The force can be formulated as follows :

F⃗du = αd̂u (5.20)

where α == ∥d⃗u∥−1

∥d⃗u∥×Nua
. Hence, the attraction force exerted on ABS d by all the non

connected users is given by :

⃗FUd =
∑

u∈Ua

αd̂u (5.21)
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The second force applied on the ABS is considered to satisfy constraint 5.17, which is
the repulsion force exerted by other ABSs, these forces make sure that a safety distance
between all the ABSs is always respected. The force applied on one ABS by another
one has a proportional relation with the distance between the, therefore, as the distance
between the two ABS d1 and d2 decreases the repulsion increase to keep them from
colliding. For a more efficient distribution of the ABSs in the space, the repulsion force
will also be related to the number of non-connected users, so it can be formulated as
follows:

⃗Fd1d2 = βd̂1d2 (5.22)

where β = Nua

∥ ⃗d1d2∥ . As we consider the repulsion forces exerted by all the ABSs, the
force is written as:

⃗FDd =
∑

d1∈D

βd̂d1 (5.23)

In order to fulfil constraint 5.18, we apply another force on the ABSs which is the
repulsion force of the ground to make sure that the ABSs are always above a certain
altitude limit, The force exerted on ABS d is expressed as:

⃗FGd = γr⃗ (5.24)

where γ = N
z2

b
, and r⃗ is the direction vector of the force which is orthogonal to the

ground.

Taking into account all the forces exerted on an ABS, this last calculate the total force
which is the sum of all the applied forces, when the QoS experienced by the users drops,
the ABSs need to update their position to adapt to requirements, so each ABS calculate
the sum vector F⃗ of all the exerted forces that we mentioned above, and move in that
direction towards the new position. Figure 5.3 is an illustration of the drone and the
forces exerted on it, the total force F⃗ applied on ABS d is calculated as:

F⃗ = ⃗FUd − ⃗FDd + ⃗FGd (5.25)

As shown in Figure 5.2 the power consumed by the UAV while flying increases as the
speed of the UAV increases, so in order to minimize the consumed power, extend the
battery’s lifetime and provide wireless coverage for a longer time, we set a threshold to
control the UAV’s velocity. In that matter, the vector F⃗ would not be directly applied to
the UAVs’ position, instead the movement vector ⃗d(t) is extracted.

⃗d(t) = λF⃗ (5.26)
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FD
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Figure 5.3: Vector model for electrostatic ABS wireless 3D coverage

Furthermore, to give our ABSs more flexibility and the ability to move in a more dense
urban environments with high buildings that they have to make their way around them
in order to get to the users, we add an additional force ⃗FOd, which is a repulsive force
exerted on the ABS by the obstacle to keep it away, so it only depends on the distance
between the ABS and the obstacle so the smaller the distance, the stronger the force.
given an obstacle o, the force is formulated as follows :

⃗FOd = δd̂o (5.27)

where δ = 1
∥d⃗u∥2 . Hence, the total force F⃗ applied on ABS d is calculated as :

F⃗ = ⃗FUd − ⃗FDd + ⃗FGd − ⃗FOd (5.28)

5.6 Neuronal Modeling
For the UAVs to position themselves to provide wireless coverage for the ground users

and more essential to avoid any potential collision between them, each UAV needs to
estimate two groups of vectors. In the first group, regarding the users’ positions, for the
UAV to determine the force vector ⃗FUd that enables it to cover a certain number of users,
it needs to estimate the reference vectors of the users’ positions ui . Each vector is encoded
by a neurovector. Then, the vector ⃗FUd is calculated according to Equation 5.21.

The second class of vectors, associated with the UAVs’ positions, at each movement the
UAVs should always respect a safe distance in between to avoid any possible collisions,
also, to let the UAVs be distributed in a way to provide a more efficient coverage to a
maximum number of users. Each UAV needs to estimate the vectors of the other UAVs’
positions relative to its own position, each force is calculated individually according to
Equation 5.22, and the vector ⃗FDd is calculated by summing the neurovectors encoding
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the UAVs positions di . However, as the force is repulsive the inverse of the vector ˘ ⃗FDd

is calculated.

After the neurovector representing ⃗FGd is determined, the neurovector F is calculated
according to Equation 5.25. Using the graphical representation proposed in chapter 2, we
presented in Figure 5.4 the neuron model that allows a group of UAVs to provide cellular
wireless coverage.

αn

u1 ...

α1 α2

FUd

βnβ1 β2

FDd

r

γ

FGd

F

u2 ... un d1 d2 dn......

Figure 5.4: Neuron model for wireless coverage.

5.7 Simulations and Results
In this section, we present a simulation scenario and numerical results to evaluate the

performance of our proposed solution.

5.7.1 Simulation Scenario
We consider a simulation area of 600 x 600 m, the users are homogeneously and ran-

domly distributed in the area and move according to a random walk model where every
user moves at constant speed v picked randomly from [1.25 m/s, 1.5 m/s] [57], according
to a heading defined by the angle θ, the equation of the movement is defined as follows:

∆x = v ∗ cos(θ)∆t

∆y = v ∗ sin(θ)∆t
(5.29)

The users initially move according to θ that changes slightly with each step conforming
to the formula ∆θ = 0.3 − 0.6β, where β is a random number picked between 0 and 1,
This alteration allows the users to distribute in the whole area. After a fixed amount of
time n, the value of θ is replaced with a new one, picked randomly between 0 and 2π [30].
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Table 5.1: System parameters for the signal propagation model

Parameter Notation Value
ABS maximum capacity CA 30

ABS transmit power Pt 20 dBm
Carrier frequency fc 2 GHz

Bandwidth Bd 100 MHz
thermal noise power σ -80 dB

SNR threshold T 2dB
a from (1) - 9.61
b from (1) - 0.16

Additional pathloss under LoS ηLoS 1
Additional pathloss under NLoS ηNLoS 20

Table 5.2: System parameters for the energy consumption model

Parameter Notation Value
Blade profile power P0 79.86 W

Induced power Pi 88.62 W
Tip speed of the rotor blade Utip 120 m/s
Mean rotor induced velocity v0 4.03 m/s

Fuselage drag ratio d0 0.6
Air density ρ 1.225 kg/m3

Rotor solidity s 0.05
Rotor disc area A 0.503 m2

Battery capacity Bc 5870 mAh
voltage V 15.2 V

UAV’s speed - 10.21 m/s

For the signal propagation model, we used parameters used for the suburban environ-
ment summarized in Table 5.1 [39]. For the energy consumption model, the parameters
are summarized in Table 5.2 [59]. For the neurovectors we used a population size of
(10× 10).

First, to evaluate the efficiency of our solution, we deploy the ABSs according to
the “force” algorithm from [51] which is also based on electrostatic forces next to our
neurovectors-based solution, in order to compare the performances of the two solutions.

To further evaluate the performance of the solution in more dense urban areas where
there are buildings for the ABSs to overcome, we add a few obstacles in the simulation
area that the users can go around, and see the behaviour of the ABSs.

5.7.2 Numerical Results
In this section we evaluate the performance of our proposed solution in terms of user

satisfaction, energy consumption and ABSs deployment efficiency.
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Figure 5.5: simulation snapshot showing the distribution of the UAVs.

In Figure 5.5, we can see the distribution of the UAVs in the simulation area to cover
the users. The colored dots represent the connected users, which means the users who
have the same color are connected to the same UAV, and the black dots represent the
non-connected users or the one with poor quality of service.

To show the adaptation of the ABSs with the users’ movement, we track the data
rate, the percentage of connected users and standard deviation to evaluate the difference
between the users’ received data rate. We deploy a fixed number of ABSs k = 7 to provide
wireless coverage for a given number of users N = 200. At first the users are grouped in
the middle of the simulation area, and the ABSs are deployed to provide coverage. Then
as the users start to distribute in the area the ABSs move according to them to maintain
connectivity.

Figure 5.6: Numerical results from simulations of our solution and the “force” algorithm
:Data rate (a), User connectivity (b), Standard deviation of users’ data rate(c).

Figure 5.6 is a representation of the results obtained from monitoring the data rate,
users connectivity and standard deviation for a period of time as the users move and
distribute throughout the whole simulation area. In Figure 5.6.a, we show the average
data rate received by the users, the data rate achieved by our proposed solution is slightly
underneath the one achieved by the force algorithm, however, our solution did maintain
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almost the same data rate all the time compared to the force algorithm where it kept
bouncing up and down.

Figure 5.6.b represents the percentage of connected users, we can see that our solution
sustained the same gain of around 90% constantly, which means that more than 180 users
out of 200 were connected at all times, as for the other 20, they represents the isolated
users who get out from the ABS coverage zone, so, if a user leaves an ABS’s coverage
area and enter to another one’s coverage zone, he will automatically be connected to
that new zone, but if its new destination is not covered by any ABS, the user will be
disconnected, as the attraction force of a number of users grouped in one spot would be
stronger against one or two isolated users. In contrast to the force algorithm, the user
connectivity percentage was very unstable as the users moved, and decreased to reach
60%, which means 80 users received a non-acceptable data rate which is quite high, that
because our model allows the ABSs to have more freedom in the 3D space, so it can adjust
its altitude to connect more users as they distribute.

In Figure 5.6.c, we display the standard deviation that indicates by how much the data
rate received by the users differs from the average data rate, for our solution the standard
deviation is steady and equal to 10, which means that the users have a stable, close to
average data rate the whole simulation, on the contrary, the force algorithm marked a
noticeable gap in the data rate experienced by the users that go up to 70.

From these results, we can deduce that our neurovectors-based solution delivers quite
good results compared to the force algorithm and it’s much more robust and can adapt
to the users’ mobility while keeping a stable data rate experience, and that because our
ABSs can move freely in the 3D space and adjust their altitude according to the users’
distribution.
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Figure 5.7: Simulation snapshot showing the path of an ABS moving through obstacles.

For the next experience, we set a few obstacles in the simulation area, on the way of the
ABS to the users. These obstacles could be buildings in real life, so, their height is quite
high, and the ABS won’t be able to make its way above the building. Figure 5.7, shows
the path of the ABS going from the starting point till getting to the users to provide
wireless coverage, the ABS did navigate its way through the obstacles without collapsing,
and with leaving a safety distance in between.

Figure 5.8: Average battery life of one UAV through time.

Figure 5.8, represents the average battery life through time of one UAV while hovering
and providing wireless coverage, the graph is a straight line which means at each time t the
same amount of energy is consumed, and that because as the UAVs’ velocity is constant
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and set to 10.21 m/s, which is the speed that leads to minimum power consumption
according to Figure 5.2, hence, battery endurance is maximized.

5.8 Conclusion
In this chapter we have studied the deployment of a fleet of UAVs mounted base station

in the 3D space to provide wireless coverage to a set of ground users in an area where there
is no service or where the existing infrastructure is damaged or overloaded, we formulated
the problem and proposed a solution based on electrostatic forces where each UAV moves
according to a force which is the sum of an attraction force exerted by the users to get
connected, a repulsion force from the other UAVs to avoid collision, and the repulsion
force exerted by the ground to keep it up in the air, in addition to another repulsion force
comes from obstacles if exist. This solution is structured into a vector model and then
represented using neurovectors.

The simulation results which are based on various system parameters were compared to
an existing work from the literature, they showed close results analyzing the data rate and
a superior performance regarding its ability to adapt to the users’ movements. We also
tested and confirmed its ability to overcome obstacles and adjust with the environment.
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Conclusion
Our objective in this thesis was to present a bio-inspired computing model using artificial
neurons for drones to use and navigate in the 3D space. In this context, we were interested
in proposing several neuron models to let drones navigate in different flying scenarios. The
first one focuses on the bat’s stealthy hunting style, which enables the animal to approach
its prey without being noticed. To replicate the movement camouflage tactic, we have
offered two models: the first with regard to a fixed point in the environment and the second
with respect to a point at infinity. To do this, we used a neural representation for three-
dimensional vectors using the discretization of the sine-matrix, a periodic function (MS).
In the second scenario, we constructed two neuron models that allow a UAV to track a
target, the first focused on tracking a ground target while considering the height limit that
should be respected. The other one assumes that the target can fly and move in 3D space,
and the UAV should track the target while keeping a constant distance. These models
were tested and the results showed that the UAV was successful in tracking the target in
both cases. In the last scenario, a neuron model that allows a fleet of UAVs to provide
wireless coverage for a set of ground users while considering their data requirements and
their mobility, the model was tested and compared to existing work from the literature,
and the result has showed better results considering the stability of the provided data rate.
Thanks to neurovectors, we were able to create neural architectures that isomorphically
represent the vector equations of motion enabling concealment during hunting. These
structures accurately mimic camouflage even when there are a low number of neurons (16
neurons per vector). This novel method of vector representation may pave the way for
neural modeling of additional problems arising from vector differential equations. The
models we provide, however, suffer from an idealization of the signals conveyed between
the populations of neurons and an absence of realism in the simulation of the neurons
involved (simulations without noise).

Perspectives
This work could pave the way for neural modeling of other problems emerging from vector
differential equations, it will allow the solving of many problems using a biologically
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plausible approach, and it will also reduce, using real-time neuromorphic computing, the
computational time of tasks that require complicated calculations.
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