

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

UNIVERSITY MOHAMMED SEDDIK BENYAHIA

JIJEL

Faculty of Exact Sciences and Computer Science

Department of Computer Science

MASTER THESIS

Submitted to the Department of Computer Science in Partial

Fulfillment of the Requirements for the Degree of Master

Option: Computer System and Decision Support
Topic

Presented by:

Mr. Faris BOUKARIOUA

Supervised by:

Mr. Ali LEMOUARI

Optimized modularity for class detection in a graph:

Application Compare various community detection based on modularity

optimization.

Empty

To my dear parents.

II

Acknowledgments

Above all, I thank my Almighty God, who gave me strength, faith, health, will, and

guidance to accomplish this modest work.

I wish particularly to acknowledge my Supervisor MR. Ali LEMOUARI for having

supervised, helped, guided, trust, and encouraged me throughout my work.

Thanks to his instructions, the work has been adequately done.

I would like to extend my sincere thanks to all those who have contributed in one

way or another to the realization of this thesis.

My deepest gratitude goes to my family, who have been able to approach me without

letting go of the support during all these long years of study.

III

Contents

INTRODUCTION.. 1

CHAPTER 1: BASIC CONCEPTS .. 2

1 INTRODUCTION .. 2

2 Complex network ... 2

2.1 Complex network definition ... 2

2.2 Complex network domains ... 2

2.3 Complex network types .. 4

2.3.1 Strongly evolving network .. 4

2.3.2 Small-world network .. 4

3 Graph theory .. 4

3.1 Concepts and notations... 5

3.2 Temporal graphs .. 7

3.2.1 Contact sequences: .. 7

4 Conclusion: ... 7

CHAPTER 2: ... 8

1 INTRODUCTION .. 8

2 Definition of a community: .. 8

3 Detection of communities: .. 8

4 Detection of dynamic communities: ... 9

4.1 Operations on dynamic communities:.. 9

5 Community detection Methods:... 10

5.1 Approaches based on static algorithms: .. 10

5.1.1 Hierarchical approaches ... 11

5.1.2 Approaches based on the optimization of an objective function ... 12

5.1.3 Approaches based on cliques .. 13

5.2 Dynamic approaches: ... 14

5.2.1 Approaches based on network snapshots ... 14

5.2.2 Approaches working on temporal networks .. 17

6 State of the art synthesis .. 19

7 Modularity .. 20

8 Conclusion: ... 21

CHAPTER 3: ... 22

IV

1 INTRODUCTION .. 22

2 Clauset-Newman-Moore (CNM) algorithm... 22

3 Louvain Algorithm ... 23

3.1 Community Aggregation .. 24

4 Leiden Algorithm ... 26

5 Paris algorithm ... 29

6 The eigenvectors of matrices method for community detection ... 29

7 Conclusion .. 30

CHAPTER 4: ... 31

1 INTRODUCTION .. 31

2 Development Tools ... 31

2.1 Parrot OS:... 31

2.2 Pycharm IDE .. 32

2.3 Python3 ... 32

2.4 Anaconda .. 33

2.5 Jupyter Notebook ... 34

2.6 Projet requirements .. 35

3 Execution .. 36

4 Results .. 38

4.1 Karate_club .. 38

4.1.1 Louvain algorithm .. 38

4.1.2 CNM algorithm ... 39

4.1.3 Leiden Algorithm .. 39

4.1.4 Paris Algorithm ... 40

4.1.5 Eigenvector Algorithm .. 40

4.2 LFR benchmark ... 41

4.2.1 CNM .. 41

4.2.2 Leiden .. 42

4.2.3 Louvain ... 42

4.2.4 Paris... 43

4.3 generate LFR using uniform distribution in parameters .. 44

4.3.1 CNM .. 45

4.3.2 Leiden .. 46

V

4.3.3 Louvain ... 47

4.3.4 Paris... 48

4.3.5 Eigenvector.. 49

4.4 Results of comparison ... 50

5 Conclusion .. 52

References .. 53

VI

List of Tables

Table 1. Comparison of community detection approaches .. 19

Table 2. Mean running time & mean NMI .. 52

VII

List of Figures

Figure 1. Graphical representation of a theoretical social network... 3

Figure 2. The two best studied information networks. ... 3

Figure 3. Operations in dynamic communities. ... 10

Figure 4. Agglomerative and Divisive Hierarchical clustering algorithms .. 11

Figure 5. An example of the clink percolation algorithm with k = 3 .. 13

Figure 6. Representation of a method by successive static informed detections ... 16

Figure 7. Sequence of steps followed by Louvain algorithm. ... 25

Figure 8. Illustration of the Leiden algorithm.. 26

Figure 9. Parrot version ... 31

Figure 10. Project execution .. 37

Figure 11. Jupyter code source Run ... 37

Figure 12. Louvain algorithm (karate club) ... 38

Figure 13. CNM algorithm (karate club) ... 39

Figure 14. Leiden Algorithm (karate club) .. 39

Figure 15. Paris Algorithm (karate club) ... 40

Figure 16. Eigenvector Algorithm (karate club) .. 40

Figure 17. LFR benchmark for CNM ... 41

Figure 18. LFR benchmark for Leiden ... 42

Figure 19. LFR benchmark for Louvain ... 42

Figure 20. LFR benchmark for Louvain ... 43

Figure 21. LFR benchmark for Eigenvector ... 44

Figure 22. LFR benchmark for CNM using uniform distribution in parameters ... 45

Figure 23. LFR benchmark for Leiden using uniform distribution in parameters ... 46

Figure 24. LFR benchmark for Louvain using uniform distribution in parameters.. 47

Figure 25. LFR benchmark for Paris using uniform distribution in parameters .. 48

Figure 26. LFR benchmark for Eigenvector using uniform distribution in parameters 49

Figure 27. Mean NMI information .. 50

Figure 28. Mean compute time .. 51

VIII

Abstract

Complex systems from many disciplines can be modeled by networks, specifically by nodes connected

by edges. These networks exhibit a microscopic structure called "community structure". A community

is seen as a subgraph composed of densely linked nodes together and weakly linked to other network

nodes. The detection of this community structure is crucial to understanding the topology and operation

of these networks. The majority of work in the literature concerning the community detection relate to

static networks. However, many networks evolve over time. The traditional approach to community

detection reuses static algorithms on different snapshots of the network and suffer of instability problems.

In this work, we compare various community detection algorithms based on modularity optimization.

The comparison is achieved by applying various algorithms on different datasets (increasing the number

of nodes), while respecting two main aspects: time and information.

Keywords: algorithm, community detection, graph clustering, community, modularity, optimization.

IX

Résumé

Les systèmes complexes de nombreuses disciplines peuvent être modélisés par des réseaux, plus

précisément par des graphes de nœuds reliés par des arêtes. Ces réseaux présentent une structure

microscopique appelée "structure de communauté". Une communauté est vue comme un sous-graphe

composé de nœuds densément liés entre eux et faiblement liés aux autres nœuds du réseau. La

détection de cette structure communautaire est cruciale pour comprendre la topologie et le

fonctionnement de ces réseaux. La majorité des travaux dans la littérature concernant la détection des

communautés portent sur des réseaux statiques. Cependant, de nombreux réseaux évoluent dans le

temps. L'approche traditionnelle de la détection de communauté réutilise des algorithmes statiques sur

différents instantanés du réseau et souffre de problèmes d'instabilité. Dans ce travail, nous comparons

différents algorithmes de détection de communautés basés sur l'optimisation de la modularité. La

comparaison est réalisée en appliquant divers algorithmes sur différents ensembles de données (en

augmentant le nombre de nœuds), tout en respectant deux aspects principaux : le temps et l'information.

Mots clés : algorithme, détection de communauté, regroupement de graphes, communauté, modularité,

optimisation

1

INTRODUCTION

Complex networks are used in all fields. In computer science, the Internet can be seen as a set of

routers interacting via cables. In biology, the brain is a set of neurons interacting with each other. In the

field of sociology, the study of social networks leads to the study of how various agents interact with

each other. In general, these networks can be defined as a set of connected entities. And their modeling

is done by graphs called complex graphs.

The presence of complex networks in all domains is the essential reason that has led researchers to want

to understand and analyze these networks. The axis that has received a lot of interest in network analysis

is the detection of communities. A community is seen as a part of a graph composed of nodes that are

strongly connected to each other and weakly connected to the rest of the nodes in the network.

Community detection allows us to understand how the network works.

In this thesis, our work aims to compare the results of five algorithms on synthetic generated network

using Lancichinetti-Fortunato-Radicchi (LFR) benchmarks used for the detection of communities. The

results are obtained by the optimization of the gain function (modularity).

This thesis is composed of four chapters to which are added this introduction and a general conclusion.

In the first chapter, we define what a complex network is, its types and its application domains, then we

define some concepts considered necessary in graph theory.

The second chapter presents firstly the definitions related to the notion of community. A review of the

research related to the detection of dynamic communities will be presented thereafter.

In the third chapter, we present the five algorithms we will be using in the next chapter to retrieve the

results of the community detection. Each algorithm is presented with a brief description and a pseudo-

code.

In the fourth chapter, we first present the necessary software that we used to obtain our results. Next, we

provide from each Algorithm two application examples: the first one concerns a simple dataset of graphs

composed of few nodes and the second one is based on a dataset of many nodes. At the end of the

chapters, we present the results of our work in the form of curves, graphs and tables.

Finally, we will end this thesis by returning to our proposal and by proposing some perspectives and

future wor

CHAPTER 1

BASIC CONCEPTS

2

CHAPTER 1: BASIC CONCEPTS

CHAPTER 1: BASIC CONCEPTS

1 INTRODUCTION

The purpose of this chapter is to introduce the basic concepts that will be used throughout this

work. It is divided into two parts. In the first part, we will introduce the notion of complex networks

and their different types with their characteristics. The second part will present the notions related to

graph theory, which is mainly used for the study of complex networks.

2 Complex network

2.1 Complex network definition

Complex network designates all graphs with a high number of vertices (or nodes) and edges. It differs

from the graphs traditionally studied in social network analysis where the number of vertices rarely

exceeds forty [1].

Complex networks are in fact a subclass of complex systems. A complex system is generally considered

as a set of mutually interacting elements, where the global behavior of the system cannot be deduced

from the sum of its parts and their properties.

2.2 Complex network domains

Complex networks are present in many different fields: biology, sociology, psychology, computer

science, They cover networks as diverse as the Internet, human networks, or even protein networks.

Thus, many studies have been done on them [2]. These networks can be grouped into four categories[1]:

➢ social networks

➢ information networks

➢ technological networks

➢ biological networks

A Social Network (SN) is a kind of network that reflects the social structure of its nodes and their

interdependency, such as friendship of people, co-authorship of researchers, and collaboration between

different parties. A SN can be treated as a complex network, which is made up of individuals in the

society and their relationships among the individuals. The scale of the network is usually very large. This

kind of complex social structure plays an important role in dissemination and diffusion of information[3].

3

CHAPTER 1: BASIC CONCEPTS

Figure 1. Graphical representation of a theoretical social network [4].

An information network (IN) can be related to the classical example of a network of citations between

scientific papers. The structure of the information is stored in the nodes, which is why we use the term

information network. The World Wide Web with its web pages (containing information) and its

hyperlinks is also an information network (not to be confused with the Internet which is the physical

network connecting computers all over the world) [1].

Figure 2. The two best studied information networks [1].

4

CHAPTER 1: BASIC CONCEPTS

A technology network (TN) is a man-made network primarily for the distribution of a service or energy.

Electrical, aerial and computer networks are part of this [1].

A biological network (BN) is a network of elements related to the living. An example of a biological

network is a network of interactions between proteins [1].

2.3 Complex network types

There are two families of complex network: the strongly evolving networks and the small-world

networks.

2.3.1 Strongly evolving network

We use this term to distinguish between, on the one hand, a network for which we have a small

number of evolutionary steps, for example a citation network for which we have one snapshot per year,

and, on the other hand, networks for which we have all the details of its evolution. If it is always arbitrary

to give a precise definition of this notion, we can define a strongly evolving network as a network for

which the number of evolution steps is higher than the total number of nodes of the network [5].

2.3.2 Small-world network

The notion of small world network can be slightly different. The general consensus is to characterize

them by the following properties:

• Short distance between nodes: the average number to link two n nodes of the network chosen

randomly by the shortest chain remains very small, whatever the size of the network. This average

distance is of the order of ln(n). In practice, recent studies [6] on the Facebook network would

tend to show that this number can still be small.

• Strong clustering: This property means that nodes tend to create dense local structures. It can

come from transitivity: if there is a link (a, b) and a link (b, c), then the probability that a link (a,

c) exists is reinforced s[5].

• Community structure: This property is strongly related to the previous one. In a small world

network, we observe microscopic structures, that is to say sets of nodes strongly linked to each

other and more weakly linked to the rest of the network.

3 Graph theory

Graph theory was born in 1736 when Leonhard Euler demonstrated that it was impossible to cross

each of the seven bridges in the Russian city of Konigsberg (now Kaliningrad).

5

CHAPTER 1: BASIC CONCEPTS

Graph theory then constitutes a field of mathematics which, historically, has also been used in various

disciplines such as chemistry (structure modelling), biology (genome), social sciences (modelling of

relationships) or for industrial applications (problem of the travelling salesman).

In general, a graph allows to represent simply the structure, the connections, the possible paths of a

complex set including a great number of situations, by expressing the relations, the dependences between

its elements.

3.1 Concepts and notations [7]

Graph theory is mainly the most used tool in the various studies of complex networks. In the

following, we will give some definitions of the concepts of this theory and some notations concerning

them. We will also present temporal graphs which represent a particular category for modeling dynamic

networks.

Definition 1. A graph G = (V, E) consists of a set V of vertices (also called nodes) and a set E of edges.

Definition 2. If an edge connects to a vertex we say the edge is incident to the vertex and say the vertex

is an endpoint of the edge.

Definition 3. If an edge has only one endpoint then it is called a loop edge.

Definition 4. If two or more edges have the same endpoints then they are called multiple

or parallel edges.

Definition 5. Two vertices that are joined by an edge are called adjacent vertices.

Definition 6. A pendant vertex is a vertex that is connected to exactly one other vertex by a single edge.

Definition 7. A walk in a graph is a sequence of alternating vertices and edges v1e1v2e2 . . . vnenvn+1 with

n ≥ 0. If v1 = vn+1 then the walk is closed. The length of the walk is the number of

edges in the walk. A walk of length zero is a trivial walk.

Definition 8. A trail is a walk with no repeated edges. A path is a walk with no repeated vertices. A

circuit is a closed trail and a trivial circuit has a single vertex and no edges. A trail or circuit is Eulerian

if it uses every edge in the graph.

Definition 9. A cycle is a nontrivial circuit in which the only repeated vertex is the first/last one.

6

CHAPTER 1: BASIC CONCEPTS

Definition 10. A simple graph is a graph with no loop edges or multiple edges. Edges in a simple graph

may be specified by a set {vi, vj} of the two vertices that the edge makes adjacent. A graph with more

than one edge between a pair of vertices is called a multigraph while a graph with loop edges is called

a pseudograph.

Definition 11. A directed graph is a graph in which the edges may only be traversed in one direction.

Edges in a simple directed graph may be specified by an ordered pair (vi, vj) of the two vertices that the

edge connects. We say that vi is adjacent to vi and vj is adjacent from vi

Definition 12. The degree of a vertex is the number of edges incident to the vertex and is denoted deg(v).

Definition 13. In a directed graph, the in-degree of a vertex is the number of edges incident to the vertex

and the out-degree of a vertex is the number of edges incident from the vertex.

Definition 14. A graph is connected if there is a walk between every pair of distinct vertices in the graph.

Definition 15. A graph H is a subgraph of a graph G if all vertices and edges in H are also in G.

Definition 16. A connected component of G is a connected subgraph H of G such that no other

connected subgraph of G contains H.

Definition 17. A graph is called Eulerian if it contains an Eulerian circuit.

Definition 18. A tree is a connected, simple graph that has no cycles. Vertices of degree 1 in a tree are

called the leaves of the tree.

Definition 19. Let G be a simple, connected graph. The subgraph T is a spanning tree of G if T is a tree

and every node in G is a node in T.

Definition 20. A weighted graph is a graph G = (V, E) along with a function w: E → R that associates

a numerical weight to each edge. If G is a weighted graph, then T is a minimal spanning tree of G if it

is a spanning tree and no other spanning tree of G has smaller total weight.

Definition 21. The complete graph on n nodes, denoted Kn, is the simple graph with nodes {1, …, n}

and an edge between every pair of distinct nodes.

Definition 22. A graph is called bipartite if its set of nodes can be partitioned into two disjoint sets S1

and S2 so that every edge in the graph has one endpoint in S1 and one endpoint in S2.

7

CHAPTER 1: BASIC CONCEPTS

Definition 23. The complete bipartite graph on n, m nodes, denoted Kn,m, is the simple bipartite graph

with nodes S1 = { a1, . . . , an} and S2 = { b1, . . . , bm} and with edges connecting each node in S1 to every

node in S2.

Definition 24. Simple graphs G and H are called isomorphic if there is a bijection f from the nodes of G

to the nodes of H such that {v, w} is an edge in G if and only if {f(v), f(w)} is an edge of H. The function

f is called an isomorphism.

Definition 25. A simple, connected graph is called planar if there is a way to draw it on a plane so that

no edges cross. Such a drawing is called an embedding of the graph in the plane.

Definition 26. For a planar graph G embedded in the plane, a face of the graph is a region of the plane

created by the drawing. The area of the plane outside the graph is also a face, called the unbounded face.

3.2 Temporal graphs

Temporal graphs are oriented acyclic graphs. The presence of an arc between two nodes n1 and n2

translates the fact that n2 is temporally located after n1. We distinguish two types of temporal graphs. We

will address the type called contract sequences[8].

3.2.1 Contact sequences:

In this type of graph, a link is represented by a triplet (i, j, t), such that i and j are nodes of the

graph and t is the instant when the link was activated. This triplet thus represents the interaction between

individuals i and i at time t. Contact sequences are particularly used to represent relationships between

individuals for which the duration of the interaction is not known, such as asynchronous communication

networks (emails, mails), or telephone communication networks, etc. [9].

4 Conclusion:

In this chapter we have presented the basic notions concerning complex networks, their types and

properties. We have also described the concepts and notation related to graph theory. The latter is

considered as the most adequate tool for the representation of complex networks. In particular, we have

introduced the concept of temporal graph which is dedicated to the study of complex networks evolving

in time. The following chapter will present one of the essential problems of these networks which is the

detection of communities.

CHAPTER 2

COMMUNITY DETECTION

8

CHAPTER 2: COMMUNITY DETECTION

CHAPTER 2:

1 INTRODUCTION

In this chapter, we introduce the notion of community as well as the problem of community

detection. On the other hand, we will present the different approaches to detection. Thus, we will

focus our attention on dynamic detection approaches.

2 Definition of a community:

A characteristic of complex graphs is the possibility of dividing them into communities.

According to Newman and Girvan in 2004 [10] a community is defined as a subgraph composed of

nodes densely linked to each other and weakly linked to other nodes of the graph.

The communities may have different interpretations depending on the type of network

considered. For information networks, they correspond to web pages dealing with the same subject.

For metabolic networks, communities correspond for example to biological functions of the cell, etc.

Community detection is therefore an important tool for understanding the structure and functioning

of complex networks.

3 Detection of communities:

The detection of communities is a crucial problem when analyzing complex systems, for example,

one may wish to study the interactions between individuals, between proteins or the links between

different websites. These data can be represented in the form of a graph where each node represents

an individual and a line an interaction between two individuals. These networks have the property of

dividing into communities. This problem was first posed in the article by Girvan and Newman in

2002 [11].

The detection of communities approaches the two classical themes of Graph Partitioning and Data

Clustering. The first one, initially introduced for the parallelization of processes, seeks to distribute

the tasks represented by the vertices of a graph while minimizing the exchanges, represented by the

edges.

The second theme of data clustering is a more general theme in which we try to group data with

common characteristics.

9

CHAPTER 2: COMMUNITY DETECTION

4 Detection of dynamic communities:

Many works on community definition and detection have been proposed in the last years.

However, in complex networks, interactions between communities evolve dynamically over time.

For example, in the social network Facebook, users add or remove friends. The data is very often

dynamic and a large amount of information is therefore completely ignored. This dynamism is a new

challenge that has recently appeared in the detection of communities.

4.1 Operations on dynamic communities:

When communities are required to evolve, they can do so in several ways [12].

• Growth and Contraction: means the addition and removal of a node in an existing

community.

• Merging and splitting: are two slightly more complex operations, corresponding to the

regrouping of two communities into a single community, or the decomposition of a

community into two new communities.

• Birth and Death: means the appearance of new communities and the disappearance of

old communities.

• Resurgence: a community can only disappear for a period and come back after this period as

if it has never stopped. For example, in the case of the soccer team, let's imagine that they

stop to play together during the summer vacations, while a snapshot of the network is taken

every month. The community will be present in the snapshots of June and September, and all

other months to the exception of the snapshots corresponding to July and August. This can be

modeled as a resurgence of the community after two months.

10

CHAPTER 2: COMMUNITY DETECTION

Figure 3. Operations in dynamic communities[13].

5 Community detection Methods:

5.1 Approaches based on static algorithms:

Static community detection methods are classified into three categories. The first one contains

the hierarchical classification methods which allow to choose a community structure by several

hierarchical levels representing different possible structures. The second identifies communities by

maximizing a quality function. Finally, the last category concerns heuristic-based methods whose

formalisms are applied to the nodes of the network in an iterative way until a stable community

structure is obtained [14].

11

CHAPTER 2: COMMUNITY DETECTION

5.1.1 Hierarchical approaches

Hierarchical methods work on several levels. They are divided into two types, the first is the

bottom-up (agglomerative) hierarchical algorithms and the second is the top-down (divisive)

hierarchical algorithms.

The idea of the first type is that the vertices of a graph are iteratively grouped into communities

starting from a partition of 'n' communities composed of a single vertex. The groupings of

communities are continued until a single community is obtained which groups all the vertices and a

hierarchical structure of communities which is called a dendrogram.

The second type of hierarchical methods consists in dividing the network into several

communities by iteratively eliminating the links between the nodes. Starting with a single community

(the whole network), at the top of the dendrogram, until we have 'n' communities at a single node

representing the leaves of the dendrogram. In each iteration, any related network is considered as a

community.

Figure 4. Agglomerative and Divisive Hierarchical clustering algorithms

Hierarchical methods have the advantage of finding small communities even in a very large

graph. However, the disadvantage with these approaches is the determination of the threshold of the

dendrogram cut, as well as the lack of overlapping of the classes.

12

CHAPTER 2: COMMUNITY DETECTION

5.1.2 Approaches based on the optimization of an objective function

The first modern method for community detection, still used in several domains, is the one proposed

in 2002 by Girvan and Newman [11].

This method is based on the principle of divisive algorithms. Initially, all nodes in the network are

considered to belong to a single community. We then successively remove the links, one by one, always

removing the one with the maximum intermediary centrality. Gradually, the graph becomes non-

connected, and each of the connected components thus formed is a community. The result is a

dendrogram, containing at its root one community, two in the next step, then three, and so on until each

node forms its own community (tree roots). For the splitting of the dendrogram in an optimal way, there

was penetration of modularity, which is a metric used in the field of community detection.

This metric could be considered as a definition of what a "good community" is. From then on, they had

the idea to directly search for the community partitioning corresponding to the maximum value of the

modularity for a given graph. The problem of community detection thus became a mathematical problem

of optimization, consisting in exploring a space of solutions to find the one corresponding to the

maximum of modularity, this one was defined by Girvan and Newman of 2002 [11]. It is calculated as

the difference between the proportion of internal links in the community and the proportion of links that

random communities of the same size would have, this quality function is the following:

𝑀 = ∑ 𝐶𝑖 𝑒(𝐶𝑖) − 𝑎(𝐶𝑖)2 (1)

Where: e(Ci) represents the proportion of edges with both ends in the community with node i. and a(Ci):

is the probability that an edge has an end in the community Ci.

This function has been used in several works like [10], [15], [16],[17]

The problem highlighted is that modularity presupposes certain properties of the communities from the

properties of the network to be studied. For a given size of network with a given density, the modularity

will not be able to find communities smaller than√
𝑴

𝟐
.

Any smaller community, even one that is clearly separated from the network, will be merged with other

communities to obtain communities of the size expected by the modularity.

13

CHAPTER 2: COMMUNITY DETECTION

Moreover, in large graphs there are a large number of partitions that have modularity values that are very

close to the maximum modularity and yet correspond to very different partitions.

5.1.3 Approaches based on cliques

In this category of approaches a community is defined as a chain of adjacent k-cliques. A k-clique is a

subset of k nodes all adjacent to each other, and two k-cliques are adjacent if they share k-1 nodes. The

idea of these algorithms is that, starting from k-cliques, to build little by little the communities. The

immediate advantage of such an approach is the detection of overlapping communities, where a node can

belong to several k-cliques that are not necessarily adjacent. CPM (clique percolation method) is the first

proposed method. It is the basis of many works like[12]. Later on, like the EGALE algorithm[18].

CPM method [12]:

Palla et all propose the CFinder algorithm which is structured in three main steps:

• Compute the set of cliques of size k (parameter of the algorithm) in the target graph G.

• Construct a graph of cliques where each clique is represented by a node. Two nodes are

connected by a link if the two associated cliques share k-1 nodes in the graph G.

The communities in the graph G are then the related components identified in the clique graph

constructed in step 2.

Figure 5. An example of the clink percolation algorithm with k = 3

14

CHAPTER 2: COMMUNITY DETECTION

This approach is conceptually simple. Also, its advantage is that it works very well in field

networks. Another limitation is related to the parameterization: the value of k (the size of the communities

to consider). Moreover, this method is sensitive to certain configurations. For example, if we imagine a

sequence of cliques of size k, having (k-1) nodes in common, and forming a chain, this method will

detect them as a community, whereas this is generally not relevant.

5.2 Dynamic approaches:

The study of dynamic communities is carried out in two broad directions:

To study communities among different captures using algorithms adapted for static graphs or to use

directly the temporal information during the detection.

5.2.1 Approaches based on network snapshots

There are two categories of approaches working on network snapshots. The first category is the

successive static detection approaches. The idea is to consider the dynamic graph as a succession of

independent snapshots. A first step is to apply a static algorithm on each of these snapshots, which allows

to obtain a series of partitions, one for each snapshot. Then to find a correspondence (association)

between the existing communities in consecutive time instants. Many works fall into this category [12],

[19], [20]

Chen and al. algorithm [20]

Chen et al. use pure nodes defined as the nodes existing at time t-1, t and t+1 to reduce the number

of communities to consider.

They define the communities initially as the maximal cliques and can thus have overlapping

communities. Nevertheless, the number of communities can be high and they use the notion of core nodes

to consider only communities containing core nodes and thus reduce their number.

Obviously, the main weakness of this method is that it defines the communities as being maximal cliques,

which, on the one hand, often gives communities that are not very relevant and, on the other hand, leads

to a far too large number of communities in large graphs with a high density of large graphs with a high

density.

15

CHAPTER 2: COMMUNITY DETECTION

The second category is that of the successive static informed detection approaches. They propose to

consider the results obtained at time t during the detection of communities at time t+1. This allows to

reduce the instability of the algorithms, i.e. the algorithm gives quite distant results for very close graphs.

By imposing the choice between two different decoupling, and could take the most similar to the previous

decoupling, this approach is applied in the works [21], [22], [23] In the following we have detailed an

algorithm that uses the second category.

Lin and al. algorithm [21]

This algorithm proposes a solution based on a probabilistic generative model, which consists in

formulating a quality function as a non-negative matrix factorization problem that jointly optimizes the

quality and stability of communities.

Although this method has the advantage of allowing the detection of overlapping communities, it imposes

strong constraints: the number of communities must be known in advance, and it is a priori not possible

to add or remove nodes over time. It also does not allow operations such as merging or splitting

communities.

16

CHAPTER 2: COMMUNITY DETECTION

Figure 6. Representation of a method by successive static informed detections

17

CHAPTER 2: COMMUNITY DETECTION

5.2.2 Approaches working on temporal networks

In the algorithms working directly on the temporal network, the evolution of the network is

considered as a succession of modifications on the network. The idea is to consider the last

modifications made on the network, and to modify the existing communities accordingly. Its

advantage is that there is no more problem of instability. There are two algorithms that work based

on this method and that treat the case of overlapping. We will describe them in the next section.

Falkowski and al. algorithm [24]:

Falkowski et al first define a distance between the nodes of a network and then define the

neighborhood of a node as the topological ball of radius R (varying between 0 and 1). They consider

only the nodes whose neighborhood is larger than a given boundary S and consider them as core

nodes. The nodes present in the neighborhood of a core node are border nodes. They then define

communities as the unions of neighborhoods sharing nodes.

They then propose techniques to update neighborhoods and communities: at each new step, the

distance values between nodes are updated. If one of these modifications makes a new core node

appear, it is integrated into a new community, or a new one is created if it has no core node in its

neighborhood. In the same way, if the nodes that were in the radius r of a core node go beyond this

radius, they leave the community, and so on.

However, the problem with this solution is that the definition of community used is very particular,

and is quite far from what is generally considered as a good community. Moreover, it still depends

on the chosen values of parameters R and S.

Cazabet Algorithm [5]

The iLCD (intrinsic Longitudinal Community Detection) algorithm proposed by Cazabet[5], is

innovative because it was one of the first algorithms to be able to detect dynamic communities in a

temporal network, i.e., communities that realistically change when the network evolves.

iLCD describes the way community detection should be performed and represents the set of

actions performed (Te) on temporal networks. The sequence of actions Te is composed of quadruplets

(i, j, a, t) with i and j the affected nodes, a, the action that takes place, which can be an addition or a

18

CHAPTER 2: COMMUNITY DETECTION

deletion of a link, and t the instant at which this modification takes place. These actions are ordered

by increasing t. The principle of ILCD is the following:

• For each addition of a link (i, j) in the network, if i is in a community and j does not belong

to C, we look if j must be integrated in C.

• Then we find all the new communities formed by the appearance of this new link. New

communities that are not included in an existing community are kept.

• For each deletion of a link (i, j), if this link is inside a community (i є C Ո j є C), we

calculate if C loses one or more nodes, which can cause it to split.

• After each change in the network, if one or more communities have been changed. We

look if they should be merged with other communities. The candidate communities are

those that share nodes with the modified community.

The iLCD algorithm uses two metrics:

Representativeness: is a metric that indicates how representative a node is of a community. It is

defined by the following function:

𝑅𝑃(𝑖 , 𝑐) =
𝑑𝑖𝑛𝑡𝑐(𝑖)

𝑑(𝑖)
 (2)

Where: 𝑑𝑖𝑛𝑡𝑐(𝑖): is the internal degree of node i in the community c.

 𝑑(𝑖): is the total degree of node i.

Membership strength: it is quantified by a node i and a community C. Its value is bounded

between 0 and 1. It is defined by the following function:

𝐹𝐴(𝑖, 𝑐) = ∑ 𝑅𝑃(𝑗, 𝑐)𝑗є𝑁𝑐(𝑖) (3)

Where: 𝑁𝑐(𝑖): are the nodes of the community where node i is located.

iLCD is not based on modularity, but rather on the idea that communities are defined

locally. This algorithm allows to follow the operations of communities (birth, death, division,

death). The advantage of this algorithm is that there is no more instability problem. However, this

algorithm has some limitations.

19

CHAPTER 2: COMMUNITY DETECTION

First of all, it does not consider the hierarchical aspect and it is only applicable on non-

oriented graphs. Moreover, iLCD does not perform a division operation in the real sense of the

word but it treats it in a partial way.

6 State of the art synthesis

A comparison between the different approaches is provided in the table below. We have

considered the following criteria:

1) Instability: the algorithm gives quite distant results for very close graphs.

2) Hierarchical: the algorithm allows a community detection at several levels.

3) Large graph: the algorithm is applicable on complex graphs.

4) Iterative: the final result provided by the algorithm appears only after several executions.

5) Parameterization: the algorithm requires one or more input parameters.

6) Community overlapping: the algorithm allows to detect the multiple membership of a node

to several communities.

The following symbols are also used:

K: size of the initial communities

R: radius of the node

S: neighborhood boundary

Algorithms

criteria

Static approaches Dynamic approaches

Girvan

and

Newman

2002

CPM

2007

Lin

and

All

2008

Eagle

2009

Palla

2007

Falkowski

2008

Lin

and

All

2012

ILCD

2013

overlapping + + + + + + - +

Instability - - - - + + + -

Hierarchical - - - - - - - -

Large graph - + - + + + + +

Iterative + + - + - + + -

Parameterization - K - - - S, R + -

Table 1. Comparison of community detection approaches

20

CHAPTER 2: COMMUNITY DETECTION

From the state of the art, we found that there are a large number of iterative algorithms for

community detection. These algorithms are often costly in execution.

Moreover, in methods requiring parameterization such as CPM [12], the results depend on the input

parameters. However, this method (CPM) is among the first to be able to detect overlapping communities

and to be applied in large graphs in contrast to traditional approaches like Girvan and Newman [11].

The state-of-the-art shows that there are two approaches for dynamic community detection. The first

approach considers the graph as a succession of snapshots and has the clear advantage of reusing static

algorithms. However, this approach has a very clear limitation which is instability.

In the second approach, working on temporal graphs, there is no more instability problem. Nevertheless,

the evolution of communities is not consideration. For example, in the work of Cazabet [5] the division

operation is partially implemented.

7 Modularity

Comparing results of different network partitioning algorithms can be challenging, especially when

network structure is not known beforehand. A concept of modularity defined in [15] provides a measure

of the quality of a particular partitioning of a network. Modularity (Q) quantifies the community strength

by comparing the fraction of edges within the community with such fraction when random connections

between the nodes are made. The justification is that a community should have more links between

themselves than a random gathering of people. Thus, the Q value close to 0 means that the fraction of

edges inside communities is no better than the random case, and the value of 1 means that a network

community structure has the highest possible strength.

Formally, modularity (Q) can be defined as:

𝑄 =
1

2𝑊
∑ 𝐵𝑖𝑗𝛿(𝐶𝑖, 𝐶𝑗)𝑖,𝑗 , 𝐵𝑖𝑗 = 𝐴𝑖𝑗 − 𝑃𝑖𝑗 (4)

𝑄 = ∑ [
|𝐸𝑐𝑖

𝑖𝑛|

|𝐸|
 − (

|𝐸𝑐𝑖
𝑖𝑛|+|𝐸𝑐𝑖

𝑜𝑢𝑡|

2|𝐸|
)

2

]𝑐𝑖∈𝐶 (5)

where C is the set of all the communities, 𝑐𝑖 is a specific community in C, |𝐸𝑐𝑖
𝑖𝑛| is the number of

edges between nodes within community C, |𝐸𝑐𝑖
𝑜𝑢𝑡| is the number of edges from the nodes in community

𝑐𝑖 to the nodes outside 𝑐𝑖, and |𝐸| is the total number of edges in the network.

21

CHAPTER 2: COMMUNITY DETECTION

Modularity can also be expressed in the following from:

𝑄 =
1

2|𝐸|
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2|𝐸|
] 𝛿𝑐𝑖,𝑐𝑖𝑖𝑗 (6)

where 𝑘𝑖 is the degree of node i, 𝐴𝑖𝑗 is an element of the adjacency matrix, 𝛿𝑐𝑖,𝑐𝑖
 is the Kronecker delta

symbol, and 𝑐𝑖 is the label of the community to which node i is assigned.

8 Conclusion:

In this chapter we have examined the different static and dynamic approaches to community

detection. Three static approaches have been presented: hierarchical approaches, approaches based on

modularity optimization and clique-based approaches. The latter is very simple and is the first to be able

to detect overlapping communities.

For dynamic approaches, we have distinguished two categories. The first one considers the network as

instantaneous and uses static algorithms. It suffers from the problem of instability. The second approach

using temporal networks eliminates the instability problem. However, it does not allow to follow all the

evolutionary stages of the communities. Our proposal, which will be described in the next chapter, is

interested in this last category and tries to follow the whole evolution of communities.

 CHAPTER 3:

MODULARITY MAXIMIZATION
ALGORITHMS

22

CHAPTER 3: MODULARITY MAXIMIZATION ALGORITHMS

CHAPTER 3:

1 INTRODUCTION

In this chapter we will talk about different algorithms we used in our project which is based on

comparing various Community Detection using modularity maximization algorithms on synthetic

generated network using Lancichinetti-Fortunato-Radicchi (LFR) benchmarks.

2 Clauset-Newman-Moore (CNM) algorithm

The method of Clauset, Newman and More (CNM)[15] is a heuristic method designed to identify

communities of large-scale networks in a fast and efficient manner. Due to the greedy nature of CNM,

its application may lead to partitions which differ from the optimal solution and, in many cases, the

modularity obtained is lesser than what could be obtained using other approaches.

The CNM method uses an algorithm proposed by Newman (later improved by Clauset et al.) as follows:

1. Associate each node of the network with a community;

2. Repeatedly combine the communities to produce the highest increase in modularity;

3. After 𝑛−1 combination the result is only one community containing all the nodes, and the

algorithm stops (considering a network of n nodes).

Newman [2] proposes a strategy to evaluate the gain obtained by the union of two generic communities

C𝑎 and C𝑏 , taking an 𝑛 ×𝑛 matrix as basis. The union of two communities C𝑎 and C𝑏 corresponds to the

substitution of the 𝑎𝑡ℎ and 𝑏𝑡ℎ lines (and columns) of the matrix by their sums.

However, as shown by Clauset et al, the sparsity of the matrix results in a memory waste and a high

execution cost to apply the union of communities over the complete lines/columns.

Thus, Clauset et al. propose a matrix M in order to store the modularity gain caused by the union of two

generic communities C𝑎 and C𝑏 , keeping just the elements M𝑎𝑏 linked by at least one edge [1]. The

elements M𝑎𝑏 of M are initialized as:

𝑀𝑎𝑏 = {
1

2𝑚
−

𝑑𝑎

(2𝑚)2 , 𝑖𝑓 𝐶𝑎 𝑎𝑛𝑑 𝐶𝑏 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 [3] (7)

where d is a vector which stores the sum of the degrees of the nodes belonging to a community C𝑎 and

the elements d𝑎 are defined as 𝑑𝑎 = ∑ 𝑘𝑖, 𝑣𝑖𝜖𝐶𝑎𝑖 [4].

23

CHAPTER 3: MODULARITY MAXIMIZATION ALGORITHMS

After calculating the initial value of M, the method performs successive unions of communities until no

more gain in the modularity can be obtained. For the union of a particular pair of communities C𝑎 and C𝑏

(where the resulting community is stored as C𝑎), only the line and the column indexed by 𝑎 must be

updated.

Input: A network 𝐺 = (V, E)

Output: A community structure C = {C𝑎, 𝑎 = 1, . . ., 𝑛𝑐}

Calculate the initial values for M (3);

Calculate the initial modularity value 𝑄;

𝑛𝑐 ← 𝑛;

repeat

 Join the pair of communities C𝑎 and C𝑏 corresponding to the highest value of M (max(M)): M𝑎𝑏;

 Update matrix M (2);

 𝑛𝑐 ← 𝑛𝑐 − 1;

 𝑄=𝑄+ M𝑎𝑏;

until max(Δ𝑄) < 0;

Algorithm of Clauset, Newman, and Moore

3 Louvain Algorithm

Louvain algorithm is an efficient hierarchical clustering algorithm based on graph theory created by

Blondel et al.[25] from the University of Louvain . The idea behind it is to continuously iterate using

mobile nodes to increase the modularity of the community partition outcome and ultimately provide the

best possible community partition.

The main steps of the Louvain algorithm are as follows:

• Step 1: Initialize the community and set each node as a separate community, namely, community

1: (node1), community 2: (node2), and so on.

• Step 2: Find out all the communities connected to node 1, and calculate the change of modularity

after moving node 2 to each neighbor community. Move node 1 to the community, which can

increase the modularity to the maximum.

• Step 3: Iterate over all the nodes and execute step 2 until there are no nodes to move and get a

layer of community partition.

• Step 4: Merge each community in step 3 into a new node. The relationship between new nodes is

the relationship between the original communities. Return to step 1 until all nodes are finally

24

CHAPTER 3: MODULARITY MAXIMIZATION ALGORITHMS

merged into one community. The multilevel community partition is obtained, and the partition

with the highest modularity is selected as the final partition result.

This algorithm has the advantage of requiring less calculation time each iteration than the Fast Newman

algorithm. Meanwhile, when calculating the movement of a single node, only the modularity gain of the

node in the two communities where the movement occurs needs to be calculated. So, the computational

efficiency is obviously better than that of the Fast Newman algorithm and the time complexity of this

algorithm is approximately to o(m + n).

The value to be optimized is modularity is defined within the range -1 and 1 that measures the density of

links inside communities compared to links between communities. Modularity for a weighted graph is

defined as [26]:

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
]

𝑖,𝑗
 𝛿(𝐶𝑖,𝐶𝑗), (8)

where:

𝐴𝑖𝑗 is the adjacency matrix.

𝑘𝑖 and 𝑘𝑗 are the degrees of nodes i and j respectively.

m is the number of edges.

the δ-function is the Kronecker function: 1 if both nodes i and j belong on the same community

(𝐶𝑖,𝐶𝑗), 0 otherwise [27] [28].

3.1 Community Aggregation

After finishing the first step, all nodes belonging to the same community are merged into a single

giant node. Links connecting giant nodes are the sum of the ones previously connecting nodes from

the same different communities. This step also generates self-loops which are the sum of all links

inside a given community, before being collapsed into one node.

25

CHAPTER 3: MODULARITY MAXIMIZATION ALGORITHMS

Figure 7. Sequence of steps followed by Louvain algorithm [25].

G the initial network

repeat

 put each node of G in its own community

 while

 for all node n of G do

 place n in its neighboring community including

 its own which maximizes the modularity gain

 end for

 end while

 if the new modularity is higher than the initial then

 G = the network between communities of G

 else

 Terminate

 end if

until

Algorithm: Pseudo-code of Louvain Method [29]

26

CHAPTER 3: MODULARITY MAXIMIZATION ALGORITHMS

4 Leiden Algorithm

Traag et al [30] introduced the Leiden algorithm based on smart local move algorithm [31], which

is also an improvement of the Louvain algorithm. The Leiden algorithm also takes advantage of

the idea of speeding up the local moving of nodes[32], [33] and the idea of moving nodes to

random neighbors[34]. The Leiden algorithm consists of three phases:

• local moving of nodes

• refinement of the partition and

• aggregation of the network based on the refined partition, using the non-refined partition

to create an initial partition for the aggregate network.

Figure 8. Illustration of the Leiden algorithm.

27

CHAPTER 3: MODULARITY MAXIMIZATION ALGORITHMS

The Leiden algorithm starts from a singleton partition (a). The algorithm moves individual nodes from

one community to another to find a partition (b), which is then refined (c). An aggregate network (d) is

created based on the refined partition, using the non-refined partition to create an initial partition for the

aggregate network. For example, the red community in (b) is refined into two subcommunities in (c),

which after aggregation become two separate nodes in (d), both belonging to the same community. The

algorithm then moves individual nodes in the aggregate network (e). In this case, refinement does not

change the partition (f). These steps are repeated until no further improvements can be made.

After each iteration of the Leiden algorithm, it is guaranteed that

1) All communities are γ-separated.

2) All communities are γ-connected.

3) All nodes are locally optimally assigned.

4) All communities are sub-partition γ-dense.

5) All communities are uniformly γ-dense.

6) All communities are subset optimal.

function Leiden (Graph G, partition P)

 do

 p ← MoveNodesFast (G, P)

 done ← |P| = |V(G)|

 if not done then

 𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑 ← RefinePartition (G,P)

 G ← AggregateGraph(G, 𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑)

 P ← {{v | v ⊆ C, v ∈ V(G)} | C ∈ P}

 end if

 while not done

 return flat*(P)

end function

function MoveNodesFast(Graph G, Partition P)

 Q ← Queue(V(G))

 do

 V ← Q.remove()

 C’ ← argmax𝐶∈𝑃∪∅ 𝛥𝐻𝑝 (v → 𝐶)

 if ℋ𝓅 > 0 then

 v → C'(v → 𝐶)

 N ← {u | (u,v) ∈}E(G), u ∉ C’}

 Q.add(N-Q)

 end if

28

CHAPTER 3: MODULARITY MAXIMIZATION ALGORITHMS

 while Q ≠ 𝜃

 return P

end function

function REFINEPARTITION (Graph G. Partition P)

 𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑 ← SingletonPartition (G)

 For C ∈ P do

 𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑 ← MergoNodesSubset (G, 𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑 , G)

 end for

return 𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑

end function

function MergoNodesSubset(Graph G. Partition P. Subset S)

 R = {𝑣| 𝑣 ∈ 𝑆, 𝐸(𝑣, 𝑆 − 𝑣) ≥ 𝛾 ∥ 𝑣 ∥ . (‖𝑆‖ − ‖𝑣‖)}

 for 𝑣 ∈ 𝑅 do

 if v in singleton community then

 T←{C| 𝐶 ∈ 𝑃 , 𝐶 ⊆ 𝑆, E(S — C)≥ 𝛾‖𝐶‖ . (‖𝑆‖ − ‖𝐶‖)}

 𝑃𝑟(𝒞′ = 𝒞) ∼ {
𝑒𝑥𝑝 (

1

𝜃
 △ ℋ𝓅(𝜐 ↦ 𝐶)) 𝑖𝑓 △ ℋ𝓅(𝜐 ↦ 𝐶) ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 for 𝒞 ∈ 𝒯

 𝓋 ↦ 𝒞′

 end if

 end for

 return 𝒫

end function

function AggregateGraph(Graph 𝐺 , Partition 𝒫)

 𝑉 ← 𝒫

 E ← {(𝒞, 𝐷) | (𝑢, 𝓋) ∈ 𝐸(𝐺), 𝑢 ∈ 𝒞 ∈ 𝒫, 𝓋 ∈ 𝐷 ∈ 𝒫 }

 return Graph (V, E)

end function

function SlNGLETONPARTITION(Graph G)

 return {{v}| v E V(G)}

end function

Pseudocode Algorithm Leiden (Traag et al., 2019)

29

CHAPTER 3: MODULARITY MAXIMIZATION ALGORITHMS

5 Paris algorithm

Many datasets can be represented as graphs, being the graph explicitly embedded in data (e.g.,

the friendship relation of a social network) or built through some suitable similarity measure between

data items (e.g., the number of papers co-authored by two researchers). Most graph clustering

algorithms are not hierarchical and rely on some resolution parameter that allows one to adapt the

clustering to the dataset and to the intended purpose [35], [36], [37], [38]. This parameter is hard to

adjust in practice.

A novel algorithm for hierarchical clustering is called Hierarchical Graph Clustering by Node Pair

Sampling (which is based on Louvain Algorithm) that captures the multi-scale nature of real graphs.

The algorithm was refered as Paris1 (developed by Thomas Bonaldis, Bertrand Charpentier, Alexis

Galland and Alexandre Hollocou) is fast, memory-efficient and parameter-free. It relies on a novel

notion of distance between clusters induced by the probability of sampling node pairs. We prove that

this distance is reducible, which guarantees that the resulting hierarchical clustering can be

represented by regular dendrograms and enables a fast implementation of our algorithm through the

nearest-neighbor chain scheme, a classical technique for agglomerative algorithms [39].

The hierarchy is induced by the successive aggregation steps of the algorithm using Louvain

Algorithm [25]. This is not a full hierarchy, however, as there are typically a few aggregation steps.

Moreover, the same resolution is used in the optimization of modularity across all levels of the

hierarchy, while the numbers of clusters decrease rapidly after a few aggregation steps.

6 The eigenvectors of matrices method for community detection

The “eigenvectors of matrices” by M. E. J. Newman is a method aiming at detecting communities

or modules in networks, groups of vertices with a higher-than-average density of edges connecting

them.

Unlike other methods which use the maximization of the modularity (the benefit function), this

approach is different in which it rewrites the modularity function in matrix terms, which allows to

express the optimization task as a spectral problem in linear algebra.

This approach leads to a family of fast new computer algorithms (such as leading eigenvector method,

vector partitioning algorithm…) for community detection that produce results competitive with the

best previous methods. This work is by no means the first to find connections between divisions of

networks and matrix spectra [40], [41], [42]. Once an explicit expression for the modularity is built,

1 Pairwise AgglomeRation Induced by Sampling

30

CHAPTER 3: MODULARITY MAXIMIZATION ALGORITHMS

the community structure is determined by maximizing the modularity over possible divisions of the

network.

7 Conclusion

In this chapter we have presented some community detection algorithms. These algorithms are based

on modularity maximization on synthetic generated network using Lancichinetti-Fortunato-Radicchi

(LFR) benchmarks. In the next chapter, we will focus on the implementation and validation of these

algorithms.

CHAPTER 4:

REALIZATION &

IMPLEMENTATION

31

CHAPTER 4: REALIZATION & IMPLEMENTATION

CHAPTER 4:

1 INTRODUCTION

In order to highlight the problem of community detection, we have given in the previous chapter a

brief overview of the methods applied in the community detection.

 In order to support these theoretical concepts, we propose in this chapter some applications on

different set of nodes (250 to 10000). Our goal is to compare several methods in order to verify:

• The robustness of the solution (convergence to the global maximum).

• The performance of the numerical method (simulation time, number of iterations).

• The quality of the solution provided by each method.

 All our applications are realized on the Jupyter Notebook where we computed our results using

different methods. Our results from each algorithm have been compared.

2 Development Tools

2.1 Parrot OS:

is a Linux distribution based on Debian.2

Figure 9. Parrot version

2 https://www.parrotsec.org/

32

CHAPTER 4: REALIZATION & IMPLEMENTATION

2.2 Pycharm IDE

Is an open source, single-language integrated developer environment (IDE) for Python projects

created by JetBrains. 3

PyCharm features:

• Coding Assistance and Analysis, with code completion, syntax and error highlighting, linter

integration, and quick fixes

• Project and Code Navigation: specialized project views, file structure views and quick jumping

between files, classes, methods and usages

• Python Refactoring: including rename, extract method, introduce variable, introduce constant,

pull up, push down and others

• Support for web frameworks: Django, web2py and Flask

• Integrated Python Debugger

• Integrated Unit Testing, with line-by-line coverage

• Google App Engine Python Development

• Version Control Integration: unified user interface for Mercurial, Git, Subversion, Perforce and

CVS with changelists and merge.

In this project we used pycharm-community-2022.2

2.3 Python3

Is a great object-oriented, interpreted, and interactive programming language. First appeared 20

February 19914.

Installation:

1. Install the dependencies necessary to build Python

sudo apt update

sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev

libssl-dev libsqlite3-dev libreadline-dev libffi-dev curl libbz2-dev

3 https://www.jetbrains.com/pycharm/
4 https://wiki.python.org/moin/FrontPage

33

CHAPTER 4: REALIZATION & IMPLEMENTATION

2. Download the latest release’s source code from the Python download page with wget:

wget https://www.python.org/ftp/python/3.9.12/Python-3.9.12.tgz

3. Once the download is complete, extract the gzipped archive:

tar -xf Python-3.9.12.tgz

4. Navigate to the Python source directory and execute the configure script:

cd Python-3.9.12

./configure --enable-optimizations

5. Start the Python 3.9.12 build process:

make -j 2

6. When the build process is complete, install the Python binaries by typing:

sudo make altinstall

input

python3 –version

output

Python 3.9.12

2.4 Anaconda

Anaconda is a software development and consulting company of passionate open source

advocates based in Austin, Texas, USA. founded by Peter Wang and Travis Oliphant in 20125 .

Anaconda is a distribution of the Python and R programming languages for scientific computing (data

science, machine learning applications, large-scale data processing, predictive analytics, etc.)

5 https://docs.anaconda.com/anacondaorg/faq/#what-is-anaconda-inc

34

CHAPTER 4: REALIZATION & IMPLEMENTATION

Installation:

1.

shasum -a 256 /Downloads/Anaconda-2022.05-Linux-x86_64.sh

2.

bash ~/Downloads/Anaconda-2022.05-Linux-x86_64.sh

3. Press Enter to review the license agreement. Then press and hold Enter to scroll

4. Enter “yes” to agree to the license agreement.

5. Use Enter to accept the default install location

6. The installer prompts you to choose whether to initialize Anaconda Distribution by running conda

init. Anaconda recommends entering “yes”.

7. The installer finishes and displays, “Thank you for installing Anaconda”

8. To open anaconda navigator just open terminal and type:

anaconda-navigator

 more details about anaconda6.

2.5 Jupyter Notebook

The Jupyter Notebook is the original web application for creating and sharing computational

documents. It offers a simple, streamlined, document-centric experience.7

Jupyter Notebook open in browser, you may have notice that the URL for the dashboard is something

like https://localhost:8888/tree. Localhost is not a website, but indicates that the content is being

served from your local machine: your own computer.

Installation :

conda install -c anaconda jupyter

6 Installing on Linux — Anaconda documentation
7 Project Jupyter | Home

https://docs.anaconda.com/anaconda/install/linux/
https://jupyter.org/

35

CHAPTER 4: REALIZATION & IMPLEMENTATION

2.6 Projet requirements

To run our project, you need all mentioned software above, as well as for some required libraries:

1. Create new conda environment:

conda create --name FsProect (name of the environment) python==3.8

conda activate FsProect

2. Numpy

NumPy is the fundamental package for scientific computing in Python. It is a Python library that

provides a multidimensional array object, various derived objects (such as masked arrays and

matrices), and an assortment of routines for fast operations on arrays, including mathematical, logical,

shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic

statistical operations, random simulation and much more.8

Installation :

conda install -c anaconda jupyter

3. Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in

Python. Matplotlib makes easy things easy and hard things possible.9

• Create publication quality plots.

• Make interactive figures that can zoom, pan, update.

• Customize visual style and layout.

• Export to many file formats.

• Embed in JupyterLab and Graphical User Interfaces.

• Use a rich array of third-party packages built on Matplotlib.

Installation:

conda jupyter conda install -c conda-forge matplotlib

8 NumPy documentation — NumPy v1.23 Manual
9 Matplotlib — Visualization with Python

https://numpy.org/doc/stable/
https://matplotlib.org/

36

CHAPTER 4: REALIZATION & IMPLEMENTATION

conda install -c conda-forge/label/testing/gcc7 matplotlib

conda install -c conda-forge/label/testing matplotlib

conda install -c conda-forge/label/cf202003 matplotlib

conda install -c conda-forge/label/matplotlib_rc matplotlib

conda install -c conda-forge/label/gcc7 matplotlib

conda install -c conda-forge/label/broken matplotlib

conda install -c conda-forge/label/broken-test matplotlib

conda install -c conda-forge/label/rc matplotlib

conda install -c conda-forge/label/cf201901 matplotlib

4. Cdlib

is a Python software package that allows to extract, compare and evaluate communities from complex

networks.

The library provides a standardized input/output for several existing Community Discovery

algorithms. The implementations of all CD algorithms are inherited from existing projects.10

Installation:

conda config --add channels giuliorossetti

conda config --add channels conda-forge

conda install cdlib

Note: the reason why we choose Linux is this specific library. It’s easier to install on Linux and

MacOS. And all steps mentioned above are required to be able to execute our project.

3 Execution

In our project we made sure the execution is as simple as possible. After all required libraries are

installed all we need to do is to run the python main page.

10 CDlib - Community Discovery Library — CDlib - Community Discovery library

https://cdlib.readthedocs.io/en/latest/

37

CHAPTER 4: REALIZATION & IMPLEMENTATION

Figure 10. Project execution

To run the Jupyter code source you need to lunch Jupyter throw Anaconda navigator. Then you can

simply run it (see fig11).

Figure 11. Jupyter code source Run

38

CHAPTER 4: REALIZATION & IMPLEMENTATION

4 Results

4.1 Karate_club

The dataset contains social ties among the members of a university karate club collected by Wayne

Zachary in 1977.

Network Data Statistics:

Nodes 34

Edges 78

Density 0.139037

4.1.1 Louvain algorithm

Figure 12. Louvain algorithm (karate club)

39

CHAPTER 4: REALIZATION & IMPLEMENTATION

4.1.2 CNM algorithm

Figure 13. CNM algorithm (karate club)

4.1.3 Leiden Algorithm

Figure 14. Leiden Algorithm (karate club)

40

CHAPTER 4: REALIZATION & IMPLEMENTATION

4.1.4 Paris Algorithm

Figure 15. Paris Algorithm (karate club)

4.1.5 Eigenvector Algorithm

Figure 16. Eigenvector Algorithm (karate club)

41

CHAPTER 4: REALIZATION & IMPLEMENTATION

4.2 LFR benchmark

LFR IS an algorithm that generates benchmark networks (artificial networks that resemble real-

world networks). They have a priori known communities and are used to compare different

community detection methods.

This dataset is a collection of undirected and unweighted LFR benchmark graphs as proposed by

Lancichinetti et al.

4.2.1 CNM

Figure 17. LFR benchmark for CNM

42

CHAPTER 4: REALIZATION & IMPLEMENTATION

4.2.2 Leiden

Figure 18. LFR benchmark for Leiden

4.2.3 Louvain

Figure 19. LFR benchmark for Louvain

43

CHAPTER 4: REALIZATION & IMPLEMENTATION

4.2.4 Paris

Figure 20. LFR benchmark for Louvain

44

CHAPTER 4: REALIZATION & IMPLEMENTATION

4.2.5 Eigenvector

Figure 21. LFR benchmark for Eigenvector

4.3 generate LFR using uniform distribution in parameters

The results of the methods generating LFR using uniform distribution in parameters applied on a set

of networks composed of 250 to 10000 nodes. Where we compare using two factors time and

information.

Execution parameters

Generated graphs: low = 250, high = 10000.

Mean time limit: 250

45

CHAPTER 4: REALIZATION & IMPLEMENTATION

Std (standard time) limit: 250

Mean NMI limit: 0.9

Std NMI limit: 0.9

4.3.1 CNM

The results of the CNM method generating LFR using uniform distribution in parameters applied on

a set of networks composed of 250 to 10000 nodes are given in the figure 21.

Figure 22. LFR benchmark for CNM using uniform distribution in parameters

46

CHAPTER 4: REALIZATION & IMPLEMENTATION

The increase of nodes for CNM method results in an exponential increase of the time value for both mean time

and standard time. on the other hand, the mean NMI presents two fast peaks (<2000 nodes) max and min. after

that the method converges to a maximum. As far for std NMI presents instability.

4.3.2 Leiden

The results of the Leiden method generating LFR using uniform distribution in parameters applied

on a set of networks are given in the figure 22.

Figure 23. LFR benchmark for Leiden using uniform distribution in parameters

47

CHAPTER 4: REALIZATION & IMPLEMENTATION

The increase of nodes in Leiden results in an exponential increase of the time value for mean time, but

the Std compute time increases and converges to an acceptable maximum. on the other hand, the mean

NMI converges to a maximum. Std time is more optimal than mean NMI. As far for std NMI presents

instability.

4.3.3 Louvain

The results of the Louvain method generating LFR using uniform distribution in parameters applied

on a set of networks composed of 250 to 10000 nodes are given in the figure 23.

Figure 24. LFR benchmark for Louvain using uniform distribution in parameters

48

CHAPTER 4: REALIZATION & IMPLEMENTATION

The increase of nodes results in an exponential increase of the time value for both mean time and standard time.

on the other hand, the mean NMI presents two fast peaks (<2000 nodes) max and min. after that the method

converges to an acceptable maximum. As far for std NMI presents instability.

4.3.4 Paris

The results of the Paris method generating LFR using uniform distribution in parameters applied on

a set of networks are given in the figure 24.

Figure 25. LFR benchmark for Paris using uniform distribution in parameters

49

CHAPTER 4: REALIZATION & IMPLEMENTATION

The increase of nodes for Paris method results in an exponential increase of the time value for both mean time

and standard time. on the other hand, both mean time and standard time in mutual information converges to an

acceptable maximum

4.3.5 Eigenvector

The results of the Eigenvector method generating LFR using uniform distribution in parameters

applied on a set of networks composed of 250 to 10000 nodes are given in the figure 25.

Figure 26. LFR benchmark for Eigenvector using uniform distribution in parameters

The increase of nodes for Eigenvector method results are not satisfied neither for time nor information.

50

CHAPTER 4: REALIZATION & IMPLEMENTATION

4.4 Results of comparison

We distinguish two types of results obtained by the above-mentioned algorithms: results that converge (the

existence of an acceptable maximum) and results that are unstable (the divergence from the desired solution.

NMI (normalized Mutual Information)

Figure 27. Mean NMI information

we notice that Louvain and Leiden converge to a local maximum (almost 7000 nodes). we note that after

7000 nodes these two methods diverge. however, CNM presents a stability of the solution (converges to a

maximum at 4000 which remains stable until 7000) after the CNM diverges. Regarding the mean running time,

all the methods are acceptable.

51

CHAPTER 4: REALIZATION & IMPLEMENTATION

Compute time

Figure 28. Mean compute time

We notice that Leiden method converges to a stable solution, in a short running time. All other methods didn’t

provide good solutions, in addition to that CNM took the longer running among all methods.

52

CHAPTER 4: REALIZATION & IMPLEMENTATION

Mean running time & mean NMI (normalized Mutual Information)

 mean running time mean NMI

louvain 1.0073463344573974 S 0.6948521613442102

leiden 0.19180045127868653 S 0.6952985766395726

CNM 47.10265590286255 S 0.4231966138797867

Eigenvector 0.856269947052002 S 0.2496902833722903

paris 1.0773232898712157 S 0.4477204113384476

Table 2. Mean running time & mean NMI

The final exclusion results for the mean running time for all five algorithms and the mean normalized

mutual information for the same five algorithms.

5 Conclusion

The optimization strategy we have adopted in this work is not valid for networks

consisting of a number of huge number of nodes. On the other hand, this strategy is better

for small networks according to literature.

This does not preclude the existence of methods that give acceptable results for large

networks. Such as CNM and Louvain for NMI, and Leiden for mean compute time.

The strategy we adopted confirmed that the complexity of some algorithms, which lead

to considerable computation time, does not necessarily lead to a better solution. It is also

important to remember that the computation time depends on the complexity (number of

operations, search strategy) of the method.

52

CONCLUSION

When analyzing different networks, it may be important to discover communities inside them.

Community detection techniques are useful for social media algorithms to discover people with common

interests and keep them tightly connected. Community detection can be used in machine learning to

detect groups with similar properties and extract groups for various reasons. For example, this technique

can be used to discover manipulative groups inside a social network or a stock market.

To meet the requirements of community detection, different algorithms are applied in order to achieve

the desired optimization results. The search for an optimal tell solution (the max in our case) has become

then more than a necessity for this purpose, the detection of communities in a rather complex network is

crucial, it requires the establishment of a more stable and efficient computational method to meet this

need.

In this work, our first concern was to find a method to solve the problem of detection of communities,

the solution is done by two methods (compute time, NMI). These methods are programmed on python

(Andaconda) and are executed using Jupyter Notebook, and are tested on a variable network (the number

of nodes goes from 250 to 10000).

In the second phase of our work, we presented the solution of the problem of community detection using

five different algorithms that are based on modularity. These methods, despite providing some acceptable

solutions, they don’t always respond to the desired results.

53

References

[1] M. E. J. Newman, “The structure and function of complex networks,” 2003, doi:

10.48550/ARXIV.COND-MAT/0303516.

[2] R. Shang, J. Bai, L. Jiao, and C. Jin, “Community detection based on modularity and an improved

genetic algorithm,” Physica A: Statistical Mechanics and its Applications, vol. 392, no. 5, pp.

1215–1231, Mar. 2013, doi: 10.1016/j.physa.2012.11.003.

[3] F. Bonchi, C. Castillo, A. Gionis, and A. Jaimes, “Social Network Analysis and Mining for

Business Applications,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–37, Apr. 2011, doi:

10.1145/1961189.1961194.

[4] C. Sueur, A. Jacobs, F. Amblard, O. Petit, and A. J. King, “How can social network analysis

improve the study of primate behavior?,” Am. J. Primatol., vol. 73, no. 8, pp. 703–719, Aug.

2011, doi: 10.1002/ajp.20915.

[5] Rémy Cazabet, “Détection de communautés dynamiques dans des réseaux temporels,” Université

Paul Sabatier - Toulouse III, 2013.

[6] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “The Anatomy of the Facebook Social

Graph,” 2011, doi: 10.48550/ARXIV.1111.4503.

[7] M. S. Rahman, Basic Graph Theory, 1st ed. 2017. Cham: Springer International Publishing :

Imprint: Springer, 2017. doi: 10.1007/978-3-319-49475-3.

[8] V. Kostakos, “Temporal graphs,” Physica A: Statistical Mechanics and its Applications, vol. 388,

no. 6, pp. 1007–1023, Mar. 2009, doi: 10.1016/j.physa.2008.11.021.

[9] P. Hui and N. Sastry, “Real World Routing Using Virtual World Information,” in 2009

International Conference on Computational Science and Engineering, Vancouver, BC, Canada,

2009, pp. 1103–1108. doi: 10.1109/CSE.2009.315.

[10] M. E. J. Newman, “Fast algorithm for detecting community structure in networks,” Phys. Rev. E,

vol. 69, no. 6, p. 066133, Jun. 2004, doi: 10.1103/PhysRevE.69.066133.

[11] M. Girvan and M. E. J. Newman, “Community structure in social and biological networks,” Proc.

Natl. Acad. Sci. U.S.A., vol. 99, no. 12, pp. 7821–7826, Jun. 2002, doi: 10.1073/pnas.122653799.

[12] G. Palla, A.-L. Barabási, and T. Vicsek, “Quantifying social group evolution,” Nature, vol. 446,

no. 7136, pp. 664–667, Apr. 2007, doi: 10.1038/nature05670.

[13] J. Chen, D. Liu, F. Hao, and H. Wang, “Community detection in dynamic signed network: an

intimacy evolutionary clustering algorithm,” J Ambient Intell Human Comput, vol. 11, no. 2, pp.

891–900, Feb. 2020, doi: 10.1007/s12652-019-01215-3.

[14] K. Taha, “Static and Dynamic Community Detection Methods That Optimize a Specific Objective

Function: A Survey and Experimental Evaluation,” IEEE Access, vol. 8, pp. 98330–98358, 2020,

doi: 10.1109/ACCESS.2020.2996595.

[15] A. Clauset, M. E. J. Newman, and C. Moore, “Finding community structure in very large

networks,” Phys. Rev. E, vol. 70, no. 6, p. 066111, Dec. 2004, doi: 10.1103/PhysRevE.70.066111.

[16] L. Danon, A. Díaz-Guilera, and A. Arenas, “The effect of size heterogeneity on community

identification in complex networks,” J. Stat. Mech., vol. 2006, no. 11, pp. P11010–P11010, Nov.

2006, doi: 10.1088/1742-5468/2006/11/P11010.

[17] K. Wakita and T. Tsurumi, “Finding community structure in mega-scale social networks:

[extended abstract],” in Proceedings of the 16th international conference on World Wide Web -

WWW ’07, Banff, Alberta, Canada, 2007, p. 1275. doi: 10.1145/1242572.1242805.

54

[18] H. Shen, X. Cheng, K. Cai, and M.-B. Hu, “Detect overlapping and hierarchical community

structure in networks,” Physica A: Statistical Mechanics and its Applications, vol. 388, no. 8, pp.

1706–1712, Apr. 2009, doi: 10.1016/j.physa.2008.12.021.

[19] E. F. Qinna Wang, “Mining time-dependent communities,” 2010.

[20] Z. Chen, K. A. Wilson, Y. Jin, W. Hendrix, and N. F. Samatova, “Detecting and Tracking

Community Dynamics in Evolutionary Networks,” in 2010 IEEE International Conference on

Data Mining Workshops, Sydney, TBD, Australia, Dec. 2010, pp. 318–327. doi:

10.1109/ICDMW.2010.32.

[21] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng, “Analyzing communities and their

evolutions in dynamic social networks,” ACM Trans. Knowl. Discov. Data, vol. 3, no. 2, pp. 1–31,

Apr. 2009, doi: 10.1145/1514888.1514891.

[22] J. Xie, B. K. Szymanski, and X. Liu, “SLPA: Uncovering Overlapping Communities in Social

Networks via A Speaker-listener Interaction Dynamic Process,” 2011, doi:

10.48550/ARXIV.1109.5720.

[23] Qinna Wang, “Overlapping community detection in dynamic networks,” Ecole normale

supérieure de lyon - ENS LYON, 2012.

[24] Falkowski, Tanja & Barth, Anja & Spiliopoulou, Myra, “Studying Community Dynamics with an

Incremental Graph Mining Algorithm.,” vol. 5, Jan. 2008.

[25] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities in

large networks,” J. Stat. Mech., vol. 2008, no. 10, p. P10008, Oct. 2008, doi: 10.1088/1742-

5468/2008/10/P10008.

[26] M. E. J. Newman, “Analysis of weighted networks,” Phys. Rev. E, vol. 70, no. 5, p. 056131, Nov.

2004, doi: 10.1103/PhysRevE.70.056131.

[27] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,”

2003, doi: 10.48550/ARXIV.COND-MAT/0308217.

[28] M. E. J. Newman, “Modularity and community structure in networks,” 2006, doi:

10.48550/ARXIV.PHYSICS/0602124.

[29] C. S. Q. Siew, “Community structure in the phonological network,” Front. Psychol., vol. 4, 2013,

doi: 10.3389/fpsyg.2013.00553.

[30] V. A. Traag, L. Waltman, and N. J. van Eck, “From Louvain to Leiden: guaranteeing well-

connected communities,” Sci Rep, vol. 9, no. 1, p. 5233, Dec. 2019, doi: 10.1038/s41598-019-

41695-z.

[31] L. Waltman and N. J. van Eck, “A smart local moving algorithm for large-scale modularity-based

community detection,” Eur. Phys. J. B, vol. 86, no. 11, p. 471, Nov. 2013, doi:

10.1140/epjb/e2013-40829-0.

[32] the Graduate School of Information Science and Technology, University of Tokyo, Tokyo, Japan.,

N. Ozaki, H. Tezuka, and M. Inaba, “A Simple Acceleration Method for the Louvain Algorithm,”

IJCEE, vol. 8, no. 3, pp. 207–218, 2016, doi: 10.17706/IJCEE.2016.8.3.207-218.

[33] S.-H. Bae, D. Halperin, J. D. West, M. Rosvall, and B. Howe, “Scalable and Efficient Flow-Based

Community Detection for Large-Scale Graph Analysis,” ACM Trans. Knowl. Discov. Data, vol.

11, no. 3, pp. 1–30, Apr. 2017, doi: 10.1145/2992785.

[34] V. A. Traag, “Faster unfolding of communities: Speeding up the Louvain algorithm,” Phys. Rev.

E, vol. 92, no. 3, p. 032801, Sep. 2015, doi: 10.1103/PhysRevE.92.032801.

[35] A. Arenas, A. Fernandez, and S. Gomez, “Analysis of the structure of complex networks at

different resolution levels,” 2007, doi: 10.48550/ARXIV.PHYSICS/0703218.

55

[36] R. Lambiotte, J.-C. Delvenne, and M. Barahona, “Random Walks, Markov Processes and the

Multiscale Modular Organization of Complex Networks,” IEEE Trans. Netw. Sci. Eng., vol. 1, no.

2, pp. 76–90, Jul. 2014, doi: 10.1109/TNSE.2015.2391998.

[37] M. E. J. Newman, “Community detection in networks: Modularity optimization and maximum

likelihood are equivalent,” 2016, doi: 10.48550/ARXIV.1606.02319.

[38] J. Reichardt and S. Bornholdt, “Statistical mechanics of community detection,” Phys. Rev. E, vol.

74, no. 1, p. 016110, Jul. 2006, doi: 10.1103/PhysRevE.74.016110.

[39] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an overview,” WIREs Data

Mining Knowl Discov, vol. 2, no. 1, pp. 86–97, Jan. 2012, doi: 10.1002/widm.53.

[40] M. Fiedler, “Algebraic connectivity of graphs,” Czech. Math. J., vol. 23, no. 2, pp. 298–305,

1973, doi: 10.21136/CMJ.1973.101168.

[41] Per-Olof Fjällström, “Algorithms for Graph Partitioning: A Survey.,” no. Vol. 3(1998): nr 010,

Aug. 1998, [Online]. Available: http://www.ep.liu.se/ea/cis/1998/010/

[42] A. Pothen, H. D. Simon, and K.-P. Liou, “Partitioning Sparse Matrices with Eigenvectors of

Graphs,” SIAM J. Matrix Anal. & Appl., vol. 11, no. 3, pp. 430–452, Jul. 1990, doi:

10.1137/0611030.

