
 

 

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA 

UNIVERSITY MOHAMMED SEDDIK BENYAHIA 

JIJEL 

Faculty of Exact Sciences and Computer Science 

Department of Computer Science 

 

MASTER THESIS 

Submitted to the Department of Computer Science in Partial 

Fulfillment of the Requirements for the Degree of Master 

 

Option: Computer System and Decision Support 
Topic 

 

 

 

 

 

Presented by: 

Mr. Faris BOUKARIOUA 

Supervised by: 

Mr. Ali LEMOUARI

Optimized modularity for class detection in a graph: 

Application Compare various community detection based on modularity 

optimization. 



 

 

Empty 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

To my dear parents.



II 

 

Acknowledgments 

 

Above all, I thank my Almighty God, who gave me strength, faith, health, will, and          

guidance to accomplish this modest work. 

I wish particularly to acknowledge my Supervisor MR. Ali LEMOUARI for having 

supervised, helped, guided, trust, and encouraged me throughout my work. 

Thanks to his instructions, the work has been adequately done. 

I would like to extend my sincere thanks to all those who have contributed in one 

way or another to the realization of this thesis. 

My deepest gratitude goes to my family, who have been able to approach me without 

letting go of the support during all these long years of study. 

 

 

 

 

 

 

 

 

 

 

 



III 

 

Contents 

INTRODUCTION........................................................................................................................................ 1 

CHAPTER 1: BASIC CONCEPTS ................................................................................................................ 2 

1 INTRODUCTION .................................................................................................................................... 2 

2 Complex network ..................................................................................................................................... 2 

2.1 Complex network definition ............................................................................................................. 2 

2.2 Complex network domains ............................................................................................................... 2 

2.3 Complex network types .................................................................................................................... 4 

2.3.1 Strongly evolving network ........................................................................................................ 4 

2.3.2 Small-world network ................................................................................................................ 4 

3 Graph theory ............................................................................................................................................ 4 

3.1 Concepts and notations..................................................................................................................... 5 

3.2 Temporal graphs .............................................................................................................................. 7 

3.2.1 Contact sequences: .................................................................................................................... 7 

4 Conclusion: ............................................................................................................................................... 7 

CHAPTER 2: ................................................................................................................................................... 8 

1 INTRODUCTION .................................................................................................................................... 8 

2 Definition of a community: ...................................................................................................................... 8 

3 Detection of communities: ........................................................................................................................ 8 

4 Detection of dynamic communities: ......................................................................................................... 9 

4.1 Operations on dynamic communities:.............................................................................................. 9 

5 Community detection Methods:............................................................................................................. 10 

5.1 Approaches based on static algorithms: ........................................................................................ 10 

5.1.1 Hierarchical approaches ......................................................................................................... 11 

5.1.2 Approaches based on the optimization of an objective function ........................................... 12 

5.1.3 Approaches based on cliques .................................................................................................. 13 

5.2 Dynamic approaches: ..................................................................................................................... 14 

5.2.1 Approaches based on network snapshots ............................................................................... 14 

5.2.2 Approaches working on temporal networks .......................................................................... 17 

6 State of the art synthesis ........................................................................................................................ 19 

7 Modularity .............................................................................................................................................. 20 

8 Conclusion: ............................................................................................................................................. 21 

CHAPTER 3: ................................................................................................................................................. 22 



IV 

 

1 INTRODUCTION .................................................................................................................................. 22 

2 Clauset-Newman-Moore (CNM) algorithm........................................................................................... 22 

3 Louvain Algorithm ................................................................................................................................. 23 

3.1 Community Aggregation ................................................................................................................ 24 

4 Leiden Algorithm ................................................................................................................................... 26 

5 Paris algorithm ....................................................................................................................................... 29 

6 The eigenvectors of matrices method for community detection ........................................................... 29 

7 Conclusion .............................................................................................................................................. 30 

CHAPTER 4: ................................................................................................................................................. 31 

1 INTRODUCTION .................................................................................................................................. 31 

2 Development Tools ................................................................................................................................. 31 

2.1 Parrot OS:....................................................................................................................................... 31 

2.2 Pycharm IDE .................................................................................................................................. 32 

2.3 Python3 ........................................................................................................................................... 32 

2.4 Anaconda ........................................................................................................................................ 33 

2.5 Jupyter Notebook ........................................................................................................................... 34 

2.6 Projet requirements ........................................................................................................................ 35 

3 Execution ................................................................................................................................................ 36 

4 Results .................................................................................................................................................... 38 

4.1 Karate_club .................................................................................................................................... 38 

4.1.1 Louvain algorithm .................................................................................................................. 38 

4.1.2 CNM algorithm ....................................................................................................................... 39 

4.1.3 Leiden Algorithm .................................................................................................................... 39 

4.1.4 Paris Algorithm ....................................................................................................................... 40 

4.1.5 Eigenvector Algorithm ............................................................................................................ 40 

4.2 LFR benchmark ............................................................................................................................. 41 

4.2.1 CNM ........................................................................................................................................ 41 

4.2.2 Leiden ...................................................................................................................................... 42 

4.2.3 Louvain ................................................................................................................................... 42 

4.2.4 Paris......................................................................................................................................... 43 

4.3 generate LFR using uniform distribution in parameters .............................................................. 44 

4.3.1 CNM ........................................................................................................................................ 45 

4.3.2 Leiden ...................................................................................................................................... 46 



V 

 

4.3.3 Louvain ................................................................................................................................... 47 

4.3.4 Paris......................................................................................................................................... 48 

4.3.5 Eigenvector.............................................................................................................................. 49 

4.4 Results of comparison ..................................................................................................................... 50 

5 Conclusion .............................................................................................................................................. 52 

References ...................................................................................................................................................... 53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VI 

 

List of Tables 

Table 1. Comparison of community detection approaches ................................................................................ 19 

Table 2. Mean running time & mean NMI ........................................................................................................ 52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VII 

 

List of Figures 

Figure 1. Graphical representation of a theoretical social network....................................................................... 3 

Figure 2. The two best studied information networks. ......................................................................................... 3 

Figure 3. Operations in dynamic communities. ................................................................................................. 10 

Figure 4. Agglomerative and Divisive Hierarchical clustering algorithms .......................................................... 11 

Figure 5. An example of the clink percolation algorithm with k = 3 .................................................................. 13 

Figure 6. Representation of a method by successive static informed detections ................................................. 16 

Figure 7. Sequence of steps followed by Louvain algorithm. ..................................................................... 25 

Figure 8. Illustration of the Leiden algorithm.................................................................................................... 26 

Figure 9. Parrot version ................................................................................................................................... 31 

Figure 10. Project execution ............................................................................................................................ 37 

Figure 11. Jupyter code source Run ................................................................................................................. 37 

Figure 12. Louvain algorithm (karate club) ....................................................................................................... 38 

Figure 13. CNM algorithm (karate club) ........................................................................................................... 39 

Figure 14. Leiden Algorithm (karate club) ........................................................................................................ 39 

Figure 15. Paris Algorithm (karate club) ........................................................................................................... 40 

Figure 16. Eigenvector Algorithm (karate club) ................................................................................................ 40 

Figure 17.  LFR benchmark for CNM ................................................................................................................. 41 

Figure 18. LFR benchmark for Leiden ............................................................................................................... 42 

Figure 19. LFR benchmark for Louvain ............................................................................................................. 42 

Figure 20. LFR benchmark for Louvain ............................................................................................................. 43 

Figure 21. LFR benchmark for Eigenvector ....................................................................................................... 44 

Figure 22.  LFR benchmark for CNM using uniform distribution in parameters ................................................. 45 

Figure 23. LFR benchmark for Leiden using uniform distribution in parameters ............................................... 46 

Figure 24. LFR benchmark for Louvain using uniform distribution in parameters.............................................. 47 

Figure 25. LFR benchmark for Paris using uniform distribution in parameters .................................................. 48 

Figure 26. LFR benchmark for Eigenvector using uniform distribution in parameters ....................................... 49 

Figure 27. Mean NMI information .................................................................................................................... 50 

Figure 28. Mean compute time ........................................................................................................................ 51 

 

 

 

 

 

 

 



VIII 

 

Abstract 

Complex systems from many disciplines can be modeled by networks, specifically by nodes connected 

by edges. These networks exhibit a microscopic structure called "community structure". A community 

is seen as a subgraph composed of densely linked nodes together and weakly linked to other network 

nodes. The detection of this community structure is crucial to understanding the topology and operation 

of these networks. The majority of work in the literature concerning the community detection relate to 

static networks. However, many networks evolve over time. The traditional approach to community 

detection reuses static algorithms on different snapshots of the network and suffer of instability problems. 

In this work, we compare various community detection algorithms based on modularity optimization. 

The comparison is achieved by applying various algorithms on different datasets (increasing the number 

of nodes), while respecting two main aspects: time and information. 
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Résumé 

Les systèmes complexes de nombreuses disciplines peuvent être modélisés par des réseaux, plus 

précisément par des graphes de nœuds reliés par des arêtes. Ces réseaux présentent une structure 

microscopique appelée "structure de communauté". Une communauté est vue comme un sous-graphe 

composé de nœuds densément liés entre eux et faiblement liés aux autres nœuds du réseau. La 

détection de cette structure communautaire est cruciale pour comprendre la topologie et le 

fonctionnement de ces réseaux. La majorité des travaux dans la littérature concernant la détection des 

communautés portent sur des réseaux statiques. Cependant, de nombreux réseaux évoluent dans le 

temps. L'approche traditionnelle de la détection de communauté réutilise des algorithmes statiques sur 

différents instantanés du réseau et souffre de problèmes d'instabilité. Dans ce travail, nous comparons 

différents algorithmes de détection de communautés basés sur l'optimisation de la modularité. La 

comparaison est réalisée en appliquant divers algorithmes sur différents ensembles de données (en 

augmentant le nombre de nœuds), tout en respectant deux aspects principaux : le temps et l'information. 

 

Mots clés : algorithme, détection de communauté, regroupement de graphes, communauté, modularité, 

optimisation
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INTRODUCTION 

Complex networks are used in all fields. In computer science, the Internet can be seen as a set of 

routers interacting via cables. In biology, the brain is a set of neurons interacting with each other. In the 

field of sociology, the study of social networks leads to the study of how various agents interact with 

each other. In general, these networks can be defined as a set of connected entities. And their modeling 

is done by graphs called complex graphs. 

The presence of complex networks in all domains is the essential reason that has led researchers to want 

to understand and analyze these networks. The axis that has received a lot of interest in network analysis 

is the detection of communities. A community is seen as a part of a graph composed of nodes that are 

strongly connected to each other and weakly connected to the rest of the nodes in the network. 

Community detection allows us to understand how the network works. 

In this thesis, our work aims to compare the results of five algorithms on synthetic generated network 

using Lancichinetti-Fortunato-Radicchi (LFR) benchmarks used for the detection of communities. The 

results are obtained by the optimization of the gain function (modularity). 

This thesis is composed of four chapters to which are added this introduction and a general conclusion. 

In the first chapter, we define what a complex network is, its types and its application domains, then we 

define some concepts considered necessary in graph theory. 

The second chapter presents firstly the definitions related to the notion of community. A review of the 

research related to the detection of dynamic communities will be presented thereafter. 

In the third chapter, we present the five algorithms we will be using in the next chapter to retrieve the 

results of the community detection. Each algorithm is presented with a brief description and a pseudo-

code.  

In the fourth chapter, we first present the necessary software that we used to obtain our results. Next, we 

provide from each Algorithm two application examples: the first one concerns a simple dataset of graphs 

composed of few nodes and the second one is based on a dataset of many nodes. At the end of the 

chapters, we present the results of our work in the form of curves, graphs and tables.   

Finally, we will end this thesis by returning to our proposal and by proposing some perspectives and 

future wor
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CHAPTER 1: BASIC CONCEPTS 

CHAPTER 1: BASIC CONCEPTS 

1 INTRODUCTION 

The purpose of this chapter is to introduce the basic concepts that will be used throughout this 

work. It is divided into two parts. In the first part, we will introduce the notion of complex networks 

and their different types with their characteristics. The second part will present the notions related to 

graph theory, which is mainly used for the study of complex networks. 

2 Complex network 

2.1 Complex network definition  

Complex network designates all graphs with a high number of vertices (or nodes) and edges. It differs 

from the graphs traditionally studied in social network analysis where the number of vertices rarely 

exceeds forty [1].  

Complex networks are in fact a subclass of complex systems. A complex system is generally considered 

as a set of mutually interacting elements, where the global behavior of the system cannot be deduced 

from the sum of its parts and their properties. 

2.2 Complex network domains 

Complex networks are present in many different fields: biology, sociology, psychology, computer 

science, .... They cover networks as diverse as the Internet, human networks, or even protein networks. 

Thus, many studies have been done on them [2]. These networks can be grouped into four categories[1]: 

➢ social networks 

➢ information networks 

➢ technological networks 

➢ biological networks 

A Social Network (SN) is a kind of network that reflects the social structure of its nodes and their 

interdependency, such as friendship of people, co-authorship of researchers, and collaboration between 

different parties. A SN can be treated as a complex network, which is made up of individuals in the 

society and their relationships among the individuals. The scale of the network is usually very large. This 

kind of complex social structure plays an important role in dissemination and diffusion of information[3]. 
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Figure 1. Graphical representation of a theoretical social network [4]. 

An information network (IN) can be related to the classical example of a network of citations between 

scientific papers. The structure of the information is stored in the nodes, which is why we use the term 

information network. The World Wide Web with its web pages (containing information) and its 

hyperlinks is also an information network (not to be confused with the Internet which is the physical 

network connecting computers all over the world) [1]. 

 

Figure 2. The two best studied information networks [1]. 
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A technology network (TN) is a man-made network primarily for the distribution of a service or energy. 

Electrical, aerial and computer networks are part of this [1]. 

A biological network (BN) is a network of elements related to the living. An example of a biological 

network is a network of interactions between proteins [1]. 

2.3 Complex network types 

There are two families of complex network: the strongly evolving networks and the small-world 

networks. 

2.3.1 Strongly evolving network 

We use this term to distinguish between, on the one hand, a network for which we have a small 

number of evolutionary steps, for example a citation network for which we have one snapshot per year, 

and, on the other hand, networks for which we have all the details of its evolution. If it is always arbitrary 

to give a precise definition of this notion, we can define a strongly evolving network as a network for 

which the number of evolution steps is higher than the total number of nodes of the network [5]. 

2.3.2 Small-world network 

The notion of small world network can be slightly different. The general consensus is to characterize 

them by the following properties: 

• Short distance between nodes: the average number to link two n nodes of the network chosen 

randomly by the shortest chain remains very small, whatever the size of the network. This average 

distance is of the order of ln(n). In practice, recent studies [6] on the Facebook network would 

tend to show that this number can still be small. 

• Strong clustering: This property means that nodes tend to create dense local structures. It can 

come from transitivity: if there is a link (a, b) and a link (b, c), then the probability that a link (a, 

c) exists is reinforced s[5]. 

• Community structure: This property is strongly related to the previous one. In a small world 

network, we observe microscopic structures, that is to say sets of nodes strongly linked to each 

other and more weakly linked to the rest of the network. 

3 Graph theory 

Graph theory was born in 1736 when Leonhard Euler demonstrated that it was impossible to cross 

each of the seven bridges in the Russian city of Konigsberg (now Kaliningrad).  
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Graph theory then constitutes a field of mathematics which, historically, has also been used in various 

disciplines such as chemistry (structure modelling), biology (genome), social sciences (modelling of 

relationships) or for industrial applications (problem of the travelling salesman). 

In general, a graph allows to represent simply the structure, the connections, the possible paths of a 

complex set including a great number of situations, by expressing the relations, the dependences between 

its elements. 

3.1 Concepts and notations [7] 

Graph theory is mainly the most used tool in the various studies of complex networks. In the 

following, we will give some definitions of the concepts of this theory and some notations concerning 

them. We will also present temporal graphs which represent a particular category for modeling dynamic 

networks. 

Definition 1. A graph G = (V, E) consists of a set V of vertices (also called nodes) and a set E of edges. 

Definition 2. If an edge connects to a vertex we say the edge is incident to the vertex and say the vertex 

is an endpoint of the edge. 

Definition 3. If an edge has only one endpoint then it is called a loop edge. 

Definition 4. If two or more edges have the same endpoints then they are called multiple 

or parallel edges. 

Definition 5. Two vertices that are joined by an edge are called adjacent vertices. 

Definition 6. A pendant vertex is a vertex that is connected to exactly one other vertex by a single edge. 

Definition 7. A walk in a graph is a sequence of alternating vertices and edges v1e1v2e2 . . . vnenvn+1 with 

n ≥ 0. If v1 = vn+1 then the walk is closed. The length of the walk is the number of 

edges in the walk. A walk of length zero is a trivial walk. 

Definition 8. A trail is a walk with no repeated edges. A path is a walk with no repeated vertices. A 

circuit is a closed trail and a trivial circuit has a single vertex and no edges. A trail or circuit is Eulerian 

if it uses every edge in the graph. 

Definition 9. A cycle is a nontrivial circuit in which the only repeated vertex is the first/last one. 
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Definition 10. A simple graph is a graph with no loop edges or multiple edges. Edges in a simple graph 

may be specified by a set {vi, vj} of the two vertices that the edge makes adjacent. A graph with more 

than one edge between a pair of vertices is called a multigraph while a graph with loop edges is called 

a pseudograph. 

Definition 11. A directed graph is a graph in which the edges may only be traversed in one direction. 

Edges in a simple directed graph may be specified by an ordered pair (vi, vj) of the two vertices that the 

edge connects. We say that vi is adjacent to vi and vj is adjacent from vi 

Definition 12. The degree of a vertex is the number of edges incident to the vertex and is denoted deg(v). 

Definition 13. In a directed graph, the in-degree of a vertex is the number of edges incident to the vertex 

and the out-degree of a vertex is the number of edges incident from the vertex. 

Definition 14. A graph is connected if there is a walk between every pair of distinct vertices in the graph. 

Definition 15. A graph H is a subgraph of a graph G if all vertices and edges in H are also in G. 

Definition 16. A connected component of G is a connected subgraph H of G such that no other 

connected subgraph of G contains H. 

Definition 17. A graph is called Eulerian if it contains an Eulerian circuit. 

Definition 18. A tree is a connected, simple graph that has no cycles. Vertices of degree 1 in a tree are 

called the leaves of the tree. 

Definition 19. Let G be a simple, connected graph. The subgraph T is a spanning tree of G if T is a tree 

and every node in G is a node in T. 

Definition 20. A weighted graph is a graph G = (V, E) along with a function w: E → R that associates 

a numerical weight to each edge. If G is a weighted graph, then T is a minimal spanning tree of G if it 

is a spanning tree and no other spanning tree of G has smaller total weight. 

Definition 21. The complete graph on n nodes, denoted Kn, is the simple graph with nodes {1, …, n} 

and an edge between every pair of distinct nodes. 

Definition 22. A graph is called bipartite if its set of nodes can be partitioned into two disjoint sets S1 

and S2 so that every edge in the graph has one endpoint in S1 and one endpoint in S2. 
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Definition 23. The complete bipartite graph on n, m nodes, denoted Kn,m, is the simple bipartite graph 

with nodes S1 = { a1, . . . , an} and S2 = { b1, . . . , bm} and with edges connecting each node in S1 to every 

node in S2. 

Definition 24. Simple graphs G and H are called isomorphic if there is a bijection f from the nodes of G 

to the nodes of H such that {v, w} is an edge in G if and only if {f(v), f(w)} is an edge of H. The function 

f is called an isomorphism. 

Definition 25. A simple, connected graph is called planar if there is a way to draw it on a plane so that 

no edges cross. Such a drawing is called an embedding of the graph in the plane. 

Definition 26. For a planar graph G embedded in the plane, a face of the graph is a region of the plane 

created by the drawing. The area of the plane outside the graph is also a face, called the unbounded face. 

3.2 Temporal graphs 

Temporal graphs are oriented acyclic graphs. The presence of an arc between two nodes n1 and n2 

translates the fact that n2 is temporally located after n1. We distinguish two types of temporal graphs. We 

will address the type called contract sequences[8]. 

3.2.1 Contact sequences: 

In this type of graph, a link is represented by a triplet (i, j, t), such that i and j are nodes of the 

graph and t is the instant when the link was activated. This triplet thus represents the interaction between 

individuals i and i at time t. Contact sequences are particularly used to represent relationships between 

individuals for which the duration of the interaction is not known, such as asynchronous communication 

networks (emails, mails), or telephone communication networks, etc. [9]. 

4 Conclusion: 

In this chapter we have presented the basic notions concerning complex networks, their types and 

properties. We have also described the concepts and notation related to graph theory. The latter is 

considered as the most adequate tool for the representation of complex networks. In particular, we have 

introduced the concept of temporal graph which is dedicated to the study of complex networks evolving 

in time. The following chapter will present one of the essential problems of these networks which is the 

detection of communities. 
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CHAPTER 2:  

1 INTRODUCTION 

In this chapter, we introduce the notion of community as well as the problem of community 

detection. On the other hand, we will present the different approaches to detection. Thus, we will 

focus our attention on dynamic detection approaches. 

2 Definition of a community: 

A characteristic of complex graphs is the possibility of dividing them into communities. 

According to Newman and Girvan in 2004 [10] a community is defined as a subgraph composed of 

nodes densely linked to each other and weakly linked to other nodes of the graph. 

The communities may have different interpretations depending on the type of network 

considered. For information networks, they correspond to web pages dealing with the same subject. 

For metabolic networks, communities correspond for example to biological functions of the cell, etc. 

Community detection is therefore an important tool for understanding the structure and functioning 

of complex networks. 

3 Detection of communities: 

The detection of communities is a crucial problem when analyzing complex systems, for example, 

one may wish to study the interactions between individuals, between proteins or the links between 

different websites. These data can be represented in the form of a graph where each node represents 

an individual and a line an interaction between two individuals. These networks have the property of 

dividing into communities. This problem was first posed in the article by Girvan and Newman in 

2002 [11].  

The detection of communities approaches the two classical themes of Graph Partitioning and Data 

Clustering. The first one, initially introduced for the parallelization of processes, seeks to distribute 

the tasks represented by the vertices of a graph while minimizing the exchanges, represented by the 

edges. 

The second theme of data clustering is a more general theme in which we try to group data with 

common characteristics. 
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4 Detection of dynamic communities: 

Many works on community definition and detection have been proposed in the last years. 

However, in complex networks, interactions between communities evolve dynamically over time. 

For example, in the social network Facebook, users add or remove friends. The data is very often 

dynamic and a large amount of information is therefore completely ignored. This dynamism is a new 

challenge that has recently appeared in the detection of communities. 

4.1 Operations on dynamic communities: 

When communities are required to evolve, they can do so in several ways [12]. 

• Growth and Contraction: means the addition and removal of a node in an existing 

community. 

• Merging and splitting: are two slightly more complex operations, corresponding to the 

regrouping of two communities into a single community, or the decomposition of a 

community into two new communities. 

• Birth and Death: means the appearance of new communities and the disappearance of 

old communities. 

• Resurgence: a community can only disappear for a period and come back after this period as 

if it has never stopped. For example, in the case of the soccer team, let's imagine that they 

stop to play together during the summer vacations, while a snapshot of the network is taken 

every month. The community will be present in the snapshots of June and September, and all 

other months to the exception of the snapshots corresponding to July and August. This can be 

modeled as a resurgence of the community after two months. 
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Figure 3. Operations in dynamic communities[13]. 

 

5 Community detection Methods: 

5.1 Approaches based on static algorithms: 

Static community detection methods are classified into three categories. The first one contains 

the hierarchical classification methods which allow to choose a community structure by several 

hierarchical levels representing different possible structures. The second identifies communities by 

maximizing a quality function. Finally, the last category concerns heuristic-based methods whose 

formalisms are applied to the nodes of the network in an iterative way until a stable community 

structure is obtained [14]. 
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5.1.1 Hierarchical approaches 

Hierarchical methods work on several levels. They are divided into two   types, the first is the 

bottom-up (agglomerative) hierarchical algorithms and the second is the top-down (divisive) 

hierarchical algorithms. 

The idea of the first type is that the vertices of a graph are iteratively grouped into communities 

starting from a partition of 'n' communities composed of a single vertex. The groupings of 

communities are continued until a single community is obtained which groups all the vertices and a 

hierarchical structure of communities which is called a dendrogram. 

The second type of hierarchical methods consists in dividing the network into several 

communities by iteratively eliminating the links between the nodes. Starting with a single community 

(the whole network), at the top of the dendrogram, until we have 'n' communities at a single node 

representing the leaves of the dendrogram. In each iteration, any related network is considered as a 

community. 

 

Figure 4. Agglomerative and Divisive Hierarchical clustering algorithms 

Hierarchical methods have the advantage of finding small communities even in a very large 

graph. However, the disadvantage with these approaches is the determination of the threshold of the 

dendrogram cut, as well as the lack of overlapping of the classes. 
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5.1.2 Approaches based on the optimization of an objective function 

The first modern method for community detection, still used in several domains, is the one proposed 

in 2002 by Girvan and Newman [11]. 

This method is based on the principle of divisive algorithms.  Initially, all nodes in the network are 

considered to belong to a single community. We then successively remove the links, one by one, always 

removing the one with the maximum intermediary centrality. Gradually, the graph becomes non-

connected, and each of the connected components thus formed is a community. The result is a 

dendrogram, containing at its root one community, two in the next step, then three, and so on until each 

node forms its own community (tree roots). For the splitting of the dendrogram in an optimal way, there 

was penetration of modularity, which is a metric used in the field of community detection. 

This metric could be considered as a definition of what a "good community" is. From then on, they had 

the idea to directly search for the community partitioning corresponding to the maximum value of the 

modularity for a given graph. The problem of community detection thus became a mathematical problem 

of optimization, consisting in exploring a space of solutions to find the one corresponding to the 

maximum of modularity, this one was defined by Girvan and Newman of 2002 [11]. It is calculated as 

the difference between the proportion of internal links in the community and the proportion of links that 

random communities of the same size would have, this quality function is the following: 

𝑀 = ∑ 𝐶𝑖 𝑒(𝐶𝑖) −  𝑎(𝐶𝑖)2  (1) 

Where: e(Ci) represents the proportion of edges with both ends in the community with node i. and a(Ci): 

is the probability that an edge has an end in the community Ci. 

This function has been used in several works like [10], [15], [16],[17] 

The problem highlighted is that modularity presupposes certain properties of the communities from the 

properties of the network to be studied. For a given size of network with a given density, the modularity 

will not be able to find communities smaller than√
𝑴

𝟐
. 

Any smaller community, even one that is clearly separated from the network, will be merged with other 

communities to obtain communities of the size expected by the modularity. 
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Moreover, in large graphs there are a large number of partitions that have modularity values that are very 

close to the maximum modularity and yet correspond to very different partitions. 

5.1.3 Approaches based on cliques 

In this category of approaches a community is defined as a chain of adjacent k-cliques. A k-clique is a 

subset of k nodes all adjacent to each other, and two k-cliques are adjacent if they share k-1 nodes. The 

idea of these algorithms is that, starting from k-cliques, to build little by little the communities. The 

immediate advantage of such an approach is the detection of overlapping communities, where a node can 

belong to several k-cliques that are not necessarily adjacent. CPM (clique percolation method) is the first 

proposed method. It is the basis of many works like[12]. Later on, like the EGALE algorithm[18]. 

CPM method [12]: 

Palla et all propose the CFinder algorithm which is structured in three main steps: 

• Compute the set of cliques of size k (parameter of the algorithm) in the target graph G. 

• Construct a graph of cliques where each clique is represented by a node. Two nodes are 

connected by a link if the two associated cliques share k-1 nodes in the graph G. 

The communities in the graph G are then the related components identified in the clique graph 

constructed in step 2. 

 

Figure 5. An example of the clink percolation algorithm with k = 3 
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This approach is conceptually simple. Also, its advantage is that it works very well in field 

networks. Another limitation is related to the parameterization: the value of k (the size of the communities 

to consider). Moreover, this method is sensitive to certain configurations. For example, if we imagine a 

sequence of cliques of size k, having (k-1) nodes in common, and forming a chain, this method will 

detect them as a community, whereas this is generally not relevant. 

5.2 Dynamic approaches: 

The study of dynamic communities is carried out in two broad directions: 

To study communities among different captures using algorithms adapted for static graphs or to use 

directly the temporal information during the detection. 

5.2.1 Approaches based on network snapshots 

There are two categories of approaches working on network snapshots. The first category is the 

successive static detection approaches. The idea is to consider the dynamic graph as a succession of 

independent snapshots. A first step is to apply a static algorithm on each of these snapshots, which allows 

to obtain a series of partitions, one for each snapshot. Then to find a correspondence (association) 

between the existing communities in consecutive time instants. Many works fall into this category [12], 

[19], [20] 

Chen and al. algorithm [20] 

Chen et al. use pure nodes defined as the nodes existing at time t-1, t and t+1 to reduce the number 

of communities to consider. 

They define the communities initially as the maximal cliques and can thus have overlapping 

communities. Nevertheless, the number of communities can be high and they use the notion of core nodes 

to consider only communities containing core nodes and thus reduce their number. 

Obviously, the main weakness of this method is that it defines the communities as being maximal cliques, 

which, on the one hand, often gives communities that are not very relevant and, on the other hand, leads 

to a far too large number of communities in large graphs with a high density of large graphs with a high 

density. 
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The second category is that of the successive static informed detection approaches. They propose to 

consider the results obtained at time t during the detection of communities at time t+1. This allows to 

reduce the instability of the algorithms, i.e. the algorithm gives quite distant results for very close graphs. 

By imposing the choice between two different decoupling, and could take the most similar to the previous 

decoupling, this approach is applied in the works [21], [22], [23] In the following we have detailed an 

algorithm that uses the second category. 

Lin and al. algorithm [21] 

This algorithm proposes a solution based on a probabilistic generative model, which consists in 

formulating a quality function as a non-negative matrix factorization problem that jointly optimizes the 

quality and stability of communities. 

Although this method has the advantage of allowing the detection of overlapping communities, it imposes 

strong constraints: the number of communities must be known in advance, and it is a priori not possible 

to add or remove nodes over time. It also does not allow operations such as merging or splitting 

communities. 



 

16 

 

CHAPTER 2: COMMUNITY DETECTION 

 

Figure 6. Representation of a method by successive static informed detections 
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5.2.2 Approaches working on temporal networks 

In the algorithms working directly on the temporal network, the evolution of the network is 

considered as a succession of modifications on the network. The idea is to consider the last 

modifications made on the network, and to modify the existing communities accordingly. Its 

advantage is that there is no more problem of instability. There are two algorithms that work based 

on this method and that treat the case of overlapping. We will describe them in the next section. 

Falkowski and al. algorithm [24]: 

Falkowski et al first define a distance between the nodes of a network and then define the 

neighborhood of a node as the topological ball of radius R (varying between 0 and 1). They consider 

only the nodes whose neighborhood is larger than a given boundary S and consider them as core 

nodes. The nodes present in the neighborhood of a core node are border nodes. They then define 

communities as the unions of neighborhoods sharing nodes. 

They then propose techniques to update neighborhoods and communities: at each new step, the 

distance values between nodes are updated. If one of these modifications makes a new core node 

appear, it is integrated into a new community, or a new one is created if it has no core node in its 

neighborhood. In the same way, if the nodes that were in the radius r of a core node go beyond this 

radius, they leave the community, and so on. 

However, the problem with this solution is that the definition of community used is very particular, 

and is quite far from what is generally considered as a good community. Moreover, it still depends 

on the chosen values of parameters R and S. 

Cazabet Algorithm [5] 

The iLCD (intrinsic Longitudinal Community Detection) algorithm proposed by Cazabet[5], is 

innovative because it was one of the first algorithms to be able to detect dynamic communities in a 

temporal network, i.e., communities that realistically change when the network evolves. 

iLCD describes the way community detection should be performed and represents the set of 

actions performed (Te) on temporal networks. The sequence of actions Te is composed of quadruplets 

(i, j, a, t) with i and j the affected nodes, a, the action that takes place, which can be an addition or a 
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deletion of a link, and t the instant at which this modification takes place. These actions are ordered 

by increasing t. The principle of ILCD is the following: 

• For each addition of a link (i, j) in the network, if i is in a community and j does not belong 

to C, we look if j must be integrated in C. 

• Then we find all the new communities formed by the appearance of this new link. New 

communities that are not included in an existing community are kept. 

• For each deletion of a link (i, j), if this link is inside a community (i є C Ո j є C), we 

calculate if C loses one or more nodes, which can cause it to split. 

• After each change in the network, if one or more communities have been changed. We 

look if they should be merged with other communities. The candidate communities are 

those that share nodes with the modified community. 

The iLCD algorithm uses two metrics: 

Representativeness: is a metric that indicates how representative a node is of a community. It is 

defined by the following function: 

𝑅𝑃(𝑖 , 𝑐) =  
𝑑𝑖𝑛𝑡𝑐(𝑖)

𝑑(𝑖)
 (2) 

Where:     𝑑𝑖𝑛𝑡𝑐(𝑖): is the internal degree of node i in the community c. 

       𝑑(𝑖): is the total degree of node i. 

Membership strength: it is quantified by a node i and a community C. Its value is bounded 

between 0 and 1. It is defined by the following function: 

𝐹𝐴(𝑖, 𝑐) =  ∑ 𝑅𝑃(𝑗, 𝑐)𝑗є𝑁𝑐(𝑖)   (3) 

Where:    𝑁𝑐(𝑖): are the nodes of the community where node i is located. 

iLCD is not based on modularity, but rather on the idea that communities are defined 

locally. This algorithm allows to follow the operations of communities (birth, death, division, 

death). The advantage of this algorithm is that there is no more instability problem. However, this 

algorithm has some limitations. 
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First of all, it does not consider the hierarchical aspect and it is only applicable on non-

oriented graphs. Moreover, iLCD does not perform a division operation in the real sense of the 

word but it treats it in a partial way. 

6 State of the art synthesis 

A comparison between the different approaches is provided in the table below. We have 

considered the following criteria: 

1) Instability: the algorithm gives quite distant results for very close graphs. 

2) Hierarchical: the algorithm allows a community detection at several levels. 

3) Large graph: the algorithm is applicable on complex graphs. 

4) Iterative: the final result provided by the algorithm appears only after several executions. 

5) Parameterization: the algorithm requires one or more input parameters. 

6) Community overlapping: the algorithm allows to detect the multiple membership of a node 

to several communities. 

The following symbols are also used: 

K: size of the initial communities 

R: radius of the node 

S: neighborhood boundary 

Algorithms 

 

 

 

 

 

criteria 

Static approaches Dynamic approaches 

Girvan 

and 

Newman 

2002 

CPM 

2007 

Lin  

and  

All 

2008 

Eagle 

2009 

Palla 

2007 

Falkowski 

2008 

Lin 

and 

All 

2012 

ILCD 

2013 

overlapping + + + + + + - + 

Instability - - - - + + + - 

Hierarchical - - - - - - - - 

Large graph - + - + + + + + 

Iterative + + - + - + + - 

Parameterization - K - - - S, R + - 

Table 1. Comparison of community detection approaches 
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From the state of the art, we found that there are a large number of iterative algorithms for 

community detection. These algorithms are often costly in execution. 

Moreover, in methods requiring parameterization such as CPM [12], the results depend on the input 

parameters. However, this method (CPM) is among the first to be able to detect overlapping communities 

and to be applied in large graphs in contrast to traditional approaches like Girvan and Newman [11]. 

The state-of-the-art shows that there are two approaches for dynamic community detection. The first 

approach considers the graph as a succession of snapshots and has the clear advantage of reusing static 

algorithms. However, this approach has a very clear limitation which is instability. 

In the second approach, working on temporal graphs, there is no more instability problem. Nevertheless, 

the evolution of communities is not consideration. For example, in the work of Cazabet [5] the division 

operation is partially implemented. 

7 Modularity 

Comparing results of different network partitioning algorithms can be challenging, especially when 

network structure is not known beforehand. A concept of modularity defined in [15] provides a measure 

of the quality of a particular partitioning of a network. Modularity (Q) quantifies the community strength 

by comparing the fraction of edges within the community with such fraction when random connections 

between the nodes are made. The justification is that a community should have more links between 

themselves than a random gathering of people. Thus, the Q value close to 0 means that the fraction of 

edges inside communities is no better than the random case, and the value of 1 means that a network 

community structure has the highest possible strength. 

Formally, modularity (Q) can be defined as: 

𝑄 =
1

2𝑊
∑ 𝐵𝑖𝑗𝛿(𝐶𝑖, 𝐶𝑗)𝑖,𝑗  , 𝐵𝑖𝑗 = 𝐴𝑖𝑗 − 𝑃𝑖𝑗   (4) 

𝑄 =  ∑ [
|𝐸𝑐𝑖

𝑖𝑛|

|𝐸|
 −  (

|𝐸𝑐𝑖
𝑖𝑛|+|𝐸𝑐𝑖

𝑜𝑢𝑡|

2|𝐸|
)

2

]𝑐𝑖∈𝐶   (5) 

where C is the set of all the communities, 𝑐𝑖 is a specific community in C, |𝐸𝑐𝑖
𝑖𝑛|  is the number of 

edges between nodes within community C, |𝐸𝑐𝑖
𝑜𝑢𝑡| is the number of edges from the nodes in community 

𝑐𝑖 to the nodes outside 𝑐𝑖, and |𝐸| is the total number of edges in the network. 
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Modularity can also be expressed in the following from: 

𝑄 =  
1

2|𝐸|
∑ [𝐴𝑖𝑗  −  

𝑘𝑖𝑘𝑗

2|𝐸|
] 𝛿𝑐𝑖,𝑐𝑖𝑖𝑗  (6) 

where 𝑘𝑖 is the degree of node i, 𝐴𝑖𝑗 is an element of the adjacency matrix, 𝛿𝑐𝑖,𝑐𝑖
 is the Kronecker delta 

symbol, and 𝑐𝑖 is the label of the community to which node i is assigned. 

8 Conclusion: 

In this chapter we have examined the different static and dynamic approaches to community 

detection. Three static approaches have been presented: hierarchical approaches, approaches based on 

modularity optimization and clique-based approaches. The latter is very simple and is the first to be able 

to detect overlapping communities. 

For dynamic approaches, we have distinguished two categories. The first one considers the network as 

instantaneous and uses static algorithms. It suffers from the problem of instability. The second approach 

using temporal networks eliminates the instability problem. However, it does not allow to follow all the 

evolutionary stages of the communities. Our proposal, which will be described in the next chapter, is 

interested in this last category and tries to follow the whole evolution of communities.
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CHAPTER 3:  

1 INTRODUCTION 

In this chapter we will talk about different algorithms we used in our project which is based on 

comparing various Community Detection using modularity maximization algorithms on synthetic 

generated network using Lancichinetti-Fortunato-Radicchi (LFR) benchmarks.  

2 Clauset-Newman-Moore (CNM) algorithm 

The method of Clauset, Newman and More (CNM)[15] is a heuristic method designed to identify 

communities of large-scale networks in a fast and efficient manner. Due to the greedy nature of CNM, 

its application may lead to partitions which differ from the optimal solution and, in many cases, the 

modularity obtained is lesser than what could be obtained using other approaches. 

The CNM method uses an algorithm proposed by Newman (later improved by Clauset et al.) as follows: 

1. Associate each node of the network with a community; 

2. Repeatedly combine the communities to produce the highest increase in modularity; 

3. After 𝑛−1 combination the result is only one community containing all the nodes, and the 

algorithm stops (considering a network of n nodes). 

Newman [2] proposes a strategy to evaluate the gain obtained by the union of two generic communities 

C𝑎 and C𝑏 , taking an 𝑛 ×𝑛 matrix as basis. The union of two communities C𝑎 and C𝑏 corresponds to the 

substitution of the 𝑎𝑡ℎ and 𝑏𝑡ℎ lines (and columns) of the matrix by their sums. 

However, as shown by Clauset et al, the sparsity of the matrix results in a memory waste and a high 

execution cost to apply the union of communities over the complete lines/columns.  

Thus, Clauset et al. propose a matrix M in order to store the modularity gain caused by the union of two 

generic communities C𝑎 and C𝑏 , keeping just the elements M𝑎𝑏 linked by at least one edge [1]. The 

elements M𝑎𝑏 of M are initialized as: 

𝑀𝑎𝑏 = {
1

2𝑚
−

𝑑𝑎

(2𝑚)2 , 𝑖𝑓 𝐶𝑎 𝑎𝑛𝑑 𝐶𝑏 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
   [3] (7) 

where d is a vector which stores the sum of the degrees of the nodes belonging to a community C𝑎 and 

the elements d𝑎 are defined as 𝑑𝑎 = ∑ 𝑘𝑖, 𝑣𝑖𝜖𝐶𝑎𝑖  [4].  
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After calculating the initial value of M, the method performs successive unions of communities until no 

more gain in the modularity can be obtained. For the union of a particular pair of communities C𝑎 and C𝑏 

(where the resulting community is stored as C𝑎), only the line and the column indexed by 𝑎 must be 

updated.  

Input: A network 𝐺 = (V, E)                                                                                  

Output: A community structure C = {C𝑎, 𝑎 = 1, . . ., 𝑛𝑐}                                      

Calculate the initial values for M (3); 

Calculate the initial modularity value 𝑄; 

𝑛𝑐 ← 𝑛;        

repeat 

    Join the pair of communities C𝑎 and C𝑏 corresponding to the highest value of M (max(M)): M𝑎𝑏; 

    Update matrix M (2);  

    𝑛𝑐 ← 𝑛𝑐 − 1; 

    𝑄=𝑄+ M𝑎𝑏; 

until max(Δ𝑄) < 0; 

Algorithm of Clauset, Newman, and Moore 

3 Louvain Algorithm 

Louvain algorithm is an efficient hierarchical clustering algorithm based on graph theory created by 

Blondel et al.[25] from the University of Louvain . The idea behind it is to continuously iterate using 

mobile nodes to increase the modularity of the community partition outcome and ultimately provide the 

best possible community partition.  

The main steps of the Louvain algorithm are as follows: 

• Step 1: Initialize the community and set each node as a separate community, namely, community 

1: (node1), community 2: (node2), and so on. 

• Step 2: Find out all the communities connected to node 1, and calculate the change of modularity 

after moving node 2 to each neighbor community. Move node 1 to the community, which can 

increase the modularity to the maximum. 

• Step 3: Iterate over all the nodes and execute step 2 until there are no nodes to move and get a 

layer of community partition. 

• Step 4: Merge each community in step 3 into a new node. The relationship between new nodes is 

the relationship between the original communities. Return to step 1 until all nodes are finally 
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merged into one community. The multilevel community partition is obtained, and the partition 

with the highest modularity is selected as the final partition result. 

This algorithm has the advantage of requiring less calculation time each iteration than the Fast Newman 

algorithm. Meanwhile, when calculating the movement of a single node, only the modularity gain of the 

node in the two communities where the movement occurs needs to be calculated.  So, the computational 

efficiency is obviously better than that of the Fast Newman algorithm and the time complexity of this 

algorithm is approximately to o(m + n). 

The value to be optimized is modularity is defined within the range -1 and 1 that measures the density of 

links inside communities compared to links between communities. Modularity for a weighted graph is 

defined as [26]:  

𝑄 =
1

2𝑚
∑ [𝐴𝑖𝑗 −  

𝑘𝑖𝑘𝑗

2𝑚
]

𝑖,𝑗
 𝛿(𝐶𝑖,𝐶𝑗  ), (8) 

where: 

𝐴𝑖𝑗 is the adjacency matrix. 

𝑘𝑖 and 𝑘𝑗  are the degrees of nodes i and j respectively. 

m is the number of edges. 

the δ-function is the Kronecker function: 1 if both nodes i and j belong on the same community 

(𝐶𝑖,𝐶𝑗 ), 0 otherwise [27] [28]. 

3.1  Community Aggregation 

After finishing the first step, all nodes belonging to the same community are merged into a single 

giant node. Links connecting giant nodes are the sum of the ones previously connecting nodes from 

the same different communities. This step also generates self-loops which are the sum of all links 

inside a given community, before being collapsed into one node. 
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Figure 7. Sequence of steps followed by Louvain algorithm [25]. 

G the initial network 

repeat  

    put each node of G in its own community  

    while 

        for all node n of G do 

            place n in its neighboring community including 

            its own which maximizes the modularity gain 

        end for 

    end while 

    if the new modularity is higher than the initial then 

        G = the network between communities of G 

    else 

        Terminate 

    end if 

until 

 

Algorithm: Pseudo-code of Louvain Method [29] 
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4 Leiden Algorithm 

Traag et al [30] introduced the Leiden algorithm based on smart local move algorithm [31], which 

is also an improvement of the Louvain algorithm. The Leiden algorithm also takes advantage of 

the idea of speeding up the local moving of nodes[32], [33] and the idea of moving nodes to 

random neighbors[34]. The Leiden algorithm consists of three phases:  

• local moving of nodes 

• refinement of the partition and 

• aggregation of the network based on the refined partition, using the non-refined partition 

to create an initial partition for the aggregate network. 

 

Figure 8. Illustration of the Leiden algorithm. 
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The Leiden algorithm starts from a singleton partition (a). The algorithm moves individual nodes from 

one community to another to find a partition (b), which is then refined (c). An aggregate network (d) is 

created based on the refined partition, using the non-refined partition to create an initial partition for the 

aggregate network. For example, the red community in (b) is refined into two subcommunities in (c), 

which after aggregation become two separate nodes in (d), both belonging to the same community. The 

algorithm then moves individual nodes in the aggregate network (e). In this case, refinement does not 

change the partition (f). These steps are repeated until no further improvements can be made. 

After each iteration of the Leiden algorithm, it is guaranteed that 

1) All communities are γ-separated. 

2) All communities are γ-connected. 

3) All nodes are locally optimally assigned. 

4) All communities are sub-partition γ-dense. 

5) All communities are uniformly γ-dense. 

6) All communities are subset optimal. 

function Leiden (Graph G, partition P) 

    do 

        p ← MoveNodesFast (G, P) 

        done ← |P| = |V(G)| 

        if not done then 

            𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑 ← RefinePartition (G,P) 

            G ← AggregateGraph(G, 𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑) 

            P ← {{v | v ⊆ C, v ∈ V(G)} | C ∈ P} 

        end if  

    while not done  

    return flat*(P)  

end function 

 

function MoveNodesFast(Graph G, Partition P)  

    Q ← Queue(V(G)) 

    do 

        V ← Q.remove() 

        C’ ← argmax𝐶∈𝑃∪∅ 𝛥𝐻𝑝 (v →  𝐶)     

        if ℋ𝓅 > 0 then 

            v → C'(v →  𝐶) 

            N ← {u | (u,v) ∈}E(G), u ∉ C’} 

            Q.add(N-Q)         

        end if 
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    while Q ≠  𝜃 

    return P  

end function 

 

 

function REFINEPARTITION (Graph G. Partition P) 

    𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑 ← SingletonPartition (G) 

    For C ∈ P do 

        𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑  ← MergoNodesSubset (G, 𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑 , G) 

    end for 

return 𝑃𝑟𝑒𝑓𝑖𝑛𝑒𝑑 

end function 

 

 

function MergoNodesSubset(Graph G. Partition P. Subset S) 

    R = {𝑣| 𝑣 ∈ 𝑆, 𝐸(𝑣, 𝑆 − 𝑣) ≥ 𝛾 ∥ 𝑣 ∥  .  (‖𝑆‖ − ‖𝑣‖)} 

    for  𝑣 ∈  𝑅  do 

        if v in singleton community then 

            T←{C| 𝐶 ∈ 𝑃 , 𝐶 ⊆ 𝑆, E(S — C)≥ 𝛾‖𝐶‖ . (‖𝑆‖ − ‖𝐶‖)} 

            𝑃𝑟(𝒞′ = 𝒞) ∼ {
𝑒𝑥𝑝 (

1

𝜃
 △ ℋ𝓅(𝜐 ↦ 𝐶))  𝑖𝑓 △ ℋ𝓅(𝜐 ↦ 𝐶) ≥ 0

0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     for 𝒞 ∈ 𝒯 

            𝓋 ↦ 𝒞′ 
 

        end if 

    end for 

    return 𝒫 

end function 

 

 

function AggregateGraph(Graph 𝐺 , Partition 𝒫) 

    𝑉 ← 𝒫 

    E ← {(𝒞, 𝐷) | (𝑢, 𝓋) ∈ 𝐸(𝐺), 𝑢 ∈ 𝒞 ∈  𝒫, 𝓋 ∈ 𝐷 ∈ 𝒫 } 

    return Graph (V, E) 

end function 

 

function SlNGLETONPARTITION(Graph G) 

    return {{v}| v E V(G)} 

end function 
 

 

Pseudocode Algorithm Leiden (Traag et al., 2019) 

 



 

29 

 

CHAPTER 3: MODULARITY MAXIMIZATION ALGORITHMS 

5 Paris algorithm 

Many datasets can be represented as graphs, being the graph explicitly embedded in data (e.g., 

the friendship relation of a social network) or built through some suitable similarity measure between 

data items (e.g., the number of papers co-authored by two researchers). Most graph clustering 

algorithms are not hierarchical and rely on some resolution parameter that allows one to adapt the 

clustering to the dataset and to the intended purpose [35], [36], [37], [38]. This parameter is hard to 

adjust in practice. 

A novel algorithm for hierarchical clustering is called Hierarchical Graph Clustering by Node Pair 

Sampling (which is based on Louvain Algorithm) that captures the multi-scale nature of real graphs. 

The algorithm was refered as Paris1 (developed by Thomas Bonaldis, Bertrand Charpentier, Alexis 

Galland and Alexandre Hollocou) is fast, memory-efficient and parameter-free. It relies on a novel 

notion of distance between clusters induced by the probability of sampling node pairs. We prove that 

this distance is reducible, which guarantees that the resulting hierarchical clustering can be 

represented by regular dendrograms and enables a fast implementation of our algorithm through the 

nearest-neighbor chain scheme, a classical technique for agglomerative algorithms [39]. 

The hierarchy is induced by the successive aggregation steps of the algorithm using Louvain 

Algorithm [25]. This is not a full hierarchy, however, as there are typically a few aggregation steps. 

Moreover, the same resolution is used in the optimization of modularity across all levels of the 

hierarchy, while the numbers of clusters decrease rapidly after a few aggregation steps. 

6 The eigenvectors of matrices method for community detection 

The “eigenvectors of matrices” by M. E. J. Newman is a method aiming at detecting communities 

or modules in networks, groups of vertices with a higher-than-average density of edges connecting 

them.  

Unlike other methods which use the maximization of the modularity (the benefit function), this 

approach is different in which it rewrites the modularity function in matrix terms, which allows to 

express the optimization task as a spectral problem in linear algebra. 

This approach leads to a family of fast new computer algorithms (such as leading eigenvector method, 

vector partitioning algorithm…) for community detection that produce results competitive with the 

best previous methods. This work is by no means the first to find connections between divisions of 

networks and matrix spectra [40], [41], [42]. Once an explicit expression for the modularity is built, 

                                                             
1 Pairwise AgglomeRation Induced by Sampling 
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the community structure is determined by maximizing the modularity over possible divisions of the 

network. 

 

7 Conclusion 

In this chapter we have presented some community detection algorithms. These algorithms are based 

on modularity maximization on synthetic generated network using Lancichinetti-Fortunato-Radicchi 

(LFR) benchmarks. In the next chapter, we will focus on the implementation and validation of these 

algorithms.
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CHAPTER 4:  

 

1 INTRODUCTION 

In order to highlight the problem of community detection, we have given in the previous chapter a 

brief overview of the methods applied in the community detection.  

 In order to support these theoretical concepts, we propose in this chapter some applications on 

different set of nodes (250 to 10000). Our goal is to compare several methods in order to verify: 

• The robustness of the solution (convergence to the global maximum). 

• The performance of the numerical method (simulation time, number of iterations). 

• The quality of the solution provided by each method.  

 All our applications are realized on the Jupyter Notebook where we computed our results using 

different methods. Our results from each algorithm have been compared. 

2 Development Tools 

2.1 Parrot OS:  

is a Linux distribution based on Debian.2 

 

Figure 9. Parrot version 

                                                             
2 https://www.parrotsec.org/ 
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2.2 Pycharm IDE 

Is an open source, single-language integrated developer environment (IDE) for Python projects 

created by JetBrains. 3 

PyCharm features:  

• Coding Assistance and Analysis, with code completion, syntax and error highlighting, linter 

integration, and quick fixes 

• Project and Code Navigation: specialized project views, file structure views and quick jumping 

between files, classes, methods and usages 

• Python Refactoring: including rename, extract method, introduce variable, introduce constant, 

pull up, push down and others 

• Support for web frameworks: Django, web2py and Flask 

• Integrated Python Debugger 

• Integrated Unit Testing, with line-by-line coverage 

• Google App Engine Python Development 

• Version Control Integration: unified user interface for Mercurial, Git, Subversion, Perforce and 

CVS with changelists and merge. 

In this project we used pycharm-community-2022.2 

2.3 Python3 

Is a great object-oriented, interpreted, and interactive programming language. First appeared 20 

February 19914. 

Installation: 

1. Install the dependencies necessary to build Python 

sudo apt update 

sudo apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev     libnss3-dev 

libssl-dev libsqlite3-dev libreadline-dev libffi-dev curl libbz2-dev 

 

                                                             
3 https://www.jetbrains.com/pycharm/ 
4 https://wiki.python.org/moin/FrontPage 
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2. Download the latest release’s source code from the Python download page with wget: 

wget https://www.python.org/ftp/python/3.9.12/Python-3.9.12.tgz 

 

3. Once the download is complete, extract the gzipped archive: 

tar -xf Python-3.9.12.tgz 

 

4. Navigate to the Python source directory and execute the configure script: 

cd Python-3.9.12 

./configure --enable-optimizations 

 

5. Start the Python 3.9.12 build process: 

make -j 2 

 

6. When the build process is complete, install the Python binaries by typing: 

sudo make altinstall 

 

input 

python3 –version 

output 

Python 3.9.12 

 

2.4 Anaconda 

Anaconda is a software development and consulting company of passionate open source 

advocates based in Austin, Texas, USA. founded by Peter Wang and Travis Oliphant in 20125 . 

Anaconda is a distribution of the Python and R programming languages for scientific computing (data 

science, machine learning applications, large-scale data processing, predictive analytics, etc.) 

                                                             
5 https://docs.anaconda.com/anacondaorg/faq/#what-is-anaconda-inc 
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Installation: 

1.  

shasum -a 256 /Downloads/Anaconda-2022.05-Linux-x86_64.sh 

2.  

bash ~/Downloads/Anaconda-2022.05-Linux-x86_64.sh 

 

3. Press Enter to review the license agreement. Then press and hold Enter to scroll 

4. Enter “yes” to agree to the license agreement. 

5. Use Enter to accept the default install location 

6. The installer prompts you to choose whether to initialize Anaconda Distribution by running conda 

init. Anaconda recommends entering “yes”. 

7. The installer finishes and displays, “Thank you for installing Anaconda” 

8. To open anaconda navigator just open terminal and type: 

 

anaconda-navigator 

  

 more details about anaconda6. 

2.5 Jupyter Notebook 

The Jupyter Notebook is the original web application for creating and sharing computational 

documents. It offers a simple, streamlined, document-centric experience.7 

Jupyter Notebook open in browser, you may have notice that the URL for the dashboard is something 

like https://localhost:8888/tree. Localhost is not a website, but indicates that the content is being 

served from your local machine: your own computer. 

Installation : 

conda install -c anaconda jupyter 

 

                                                             
6 Installing on Linux — Anaconda documentation 
7 Project Jupyter | Home 

https://docs.anaconda.com/anaconda/install/linux/
https://jupyter.org/
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2.6 Projet requirements 

To run our project, you need all mentioned software above, as well as for some required libraries: 

1. Create new conda environment:  

conda create --name FsProect (name of the environment) python==3.8 

conda activate FsProect 

 

2. Numpy  

NumPy is the fundamental package for scientific computing in Python. It is a Python library that 

provides a multidimensional array object, various derived objects (such as masked arrays and 

matrices), and an assortment of routines for fast operations on arrays, including mathematical, logical, 

shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic 

statistical operations, random simulation and much more.8 

Installation : 

conda install -c anaconda jupyter 

 

3. Matplotlib  

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in 

Python. Matplotlib makes easy things easy and hard things possible.9 

• Create publication quality plots. 

• Make interactive figures that can zoom, pan, update. 

• Customize visual style and layout. 

• Export to many file formats. 

• Embed in JupyterLab and Graphical User Interfaces. 

• Use a rich array of third-party packages built on Matplotlib. 

Installation: 

conda jupyter conda install -c conda-forge matplotlib 

                                                             
8 NumPy documentation — NumPy v1.23 Manual 
9 Matplotlib — Visualization with Python 

https://numpy.org/doc/stable/
https://matplotlib.org/
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conda install -c conda-forge/label/testing/gcc7 matplotlib 

conda install -c conda-forge/label/testing matplotlib 

conda install -c conda-forge/label/cf202003 matplotlib 

conda install -c conda-forge/label/matplotlib_rc matplotlib 

conda install -c conda-forge/label/gcc7 matplotlib 

conda install -c conda-forge/label/broken matplotlib 

conda install -c conda-forge/label/broken-test matplotlib 

conda install -c conda-forge/label/rc matplotlib 

conda install -c conda-forge/label/cf201901 matplotlib 

 

4. Cdlib 

is a Python software package that allows to extract, compare and evaluate communities from complex 

networks. 

The library provides a standardized input/output for several existing Community Discovery 

algorithms. The implementations of all CD algorithms are inherited from existing projects.10 

Installation: 

conda config --add channels giuliorossetti 

conda config --add channels conda-forge 

conda install cdlib  

Note: the reason why we choose Linux is this specific library. It’s easier to install on Linux and 

MacOS. And all steps mentioned above are required to be able to execute our project. 

3 Execution 

In our project we made sure the execution is as simple as possible. After all required libraries are 

installed all we need to do is to run the python main page. 

                                                             
10 CDlib - Community Discovery Library — CDlib - Community Discovery library 

https://cdlib.readthedocs.io/en/latest/
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Figure 10. Project execution 

To run the Jupyter code source you need to lunch Jupyter throw Anaconda navigator. Then you can 

simply run it (see fig11). 

 

Figure 11. Jupyter code source Run 
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4 Results 

4.1 Karate_club 

The dataset contains social ties among the members of a university karate club collected by Wayne 

Zachary in 1977. 

Network Data Statistics: 

Nodes 34 

Edges 78 

Density 0.139037 

4.1.1 Louvain algorithm 

 

Figure 12. Louvain algorithm (karate club) 
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4.1.2 CNM algorithm  

 

Figure 13. CNM algorithm (karate club) 

4.1.3 Leiden Algorithm 

 

Figure 14. Leiden Algorithm (karate club) 
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4.1.4 Paris Algorithm  

 

Figure 15. Paris Algorithm (karate club) 

4.1.5 Eigenvector Algorithm 

 

Figure 16. Eigenvector Algorithm (karate club) 
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4.2 LFR benchmark   

LFR IS an algorithm that generates benchmark networks (artificial networks that resemble real-

world networks). They have a priori known communities and are used to compare different 

community detection methods. 

This dataset is a collection of undirected and unweighted LFR benchmark graphs as proposed by 

Lancichinetti et al. 

4.2.1 CNM 

 
Figure 17.  LFR benchmark for CNM 
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4.2.2 Leiden 

 

Figure 18. LFR benchmark for Leiden 

4.2.3 Louvain 

 

Figure 19. LFR benchmark for Louvain 
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4.2.4 Paris 

 

Figure 20. LFR benchmark for Louvain 
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4.2.5 Eigenvector 

 

Figure 21. LFR benchmark for Eigenvector 

4.3 generate LFR using uniform distribution in parameters 

The results of the methods generating LFR using uniform distribution in parameters applied on a set 

of networks composed of 250 to 10000 nodes. Where we compare using two factors time and 

information. 

Execution parameters 

Generated graphs: low = 250, high = 10000. 

Mean time limit: 250 
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Std (standard time) limit: 250 

Mean NMI limit: 0.9 

Std NMI limit: 0.9 

  

4.3.1 CNM 

The results of the CNM method generating LFR using uniform distribution in parameters applied on 

a set of networks composed of 250 to 10000 nodes are given in the figure 21. 

 

Figure 22.  LFR benchmark for CNM using uniform distribution in parameters 
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The increase of nodes for CNM method results in an exponential increase of the time value for both mean time 

and standard time. on the other hand, the mean NMI presents two fast peaks (<2000 nodes) max and min. after 

that the method converges to a maximum. As far for std NMI presents instability. 

 

4.3.2 Leiden 

The results of the Leiden method generating LFR using uniform distribution in parameters applied 

on a set of networks are given in the figure 22. 

 

Figure 23. LFR benchmark for Leiden using uniform distribution in parameters 
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The increase of nodes in Leiden results in an exponential increase of the time value for mean time, but 

the Std compute time increases and converges to an acceptable maximum. on the other hand, the mean 

NMI converges to a maximum. Std time is more optimal than mean NMI. As far for std NMI presents 

instability. 

 

4.3.3 Louvain 

The results of the Louvain method generating LFR using uniform distribution in parameters applied 

on a set of networks composed of 250 to 10000 nodes are given in the figure 23. 

 

Figure 24. LFR benchmark for Louvain using uniform distribution in parameters 
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The increase of nodes results in an exponential increase of the time value for both mean time and standard time. 

on the other hand, the mean NMI presents two fast peaks (<2000 nodes) max and min. after that the method 

converges to an acceptable maximum. As far for std NMI presents instability. 

 

 

4.3.4 Paris 

The results of the Paris method generating LFR using uniform distribution in parameters applied on 

a set of networks are given in the figure 24. 

 

Figure 25. LFR benchmark for Paris using uniform distribution in parameters 
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The increase of nodes for Paris method results in an exponential increase of the time value for both mean time 

and standard time. on the other hand, both mean time and standard time in mutual information converges to an 

acceptable maximum 

4.3.5 Eigenvector 

The results of the Eigenvector method generating LFR using uniform distribution in parameters 

applied on a set of networks composed of 250 to 10000 nodes are given in the figure 25. 

 

Figure 26. LFR benchmark for Eigenvector using uniform distribution in parameters 

The increase of nodes for Eigenvector method results are not satisfied neither for time nor information. 
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4.4 Results of comparison 

We distinguish two types of results obtained by the above-mentioned algorithms: results that converge (the 

existence of an acceptable maximum) and results that are unstable (the divergence from the desired solution.  

NMI (normalized Mutual Information)  

 

Figure 27. Mean NMI information 

we notice that Louvain and Leiden converge to a local maximum (almost 7000 nodes). we note that after 

7000 nodes these two methods diverge. however, CNM presents a stability of the solution (converges to a 

maximum at 4000 which remains stable until 7000) after the CNM diverges. Regarding the mean running time, 

all the methods are acceptable.  
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Compute time  

 

Figure 28. Mean compute time 

We notice that Leiden method converges to a stable solution, in a short running time. All other methods didn’t 

provide good solutions, in addition to that CNM took the longer running among all methods. 
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Mean running time & mean NMI (normalized Mutual Information) 

 mean running time mean NMI 

louvain 1.0073463344573974 S 0.6948521613442102 

leiden 0.19180045127868653 S 0.6952985766395726 

CNM 47.10265590286255 S 0.4231966138797867 

Eigenvector 0.856269947052002 S 0.2496902833722903 

paris 1.0773232898712157 S 0.4477204113384476 
 

Table 2. Mean running time & mean NMI 

The final exclusion results for the mean running time for all five algorithms and the mean normalized 

mutual information for the same five algorithms. 

 

5 Conclusion 

The optimization strategy we have adopted in this work is not valid for networks 

consisting of a number of huge number of nodes. On the other hand, this strategy is better 

for small networks according to literature. 

This does not preclude the existence of methods that give acceptable results for large 

networks. Such as CNM and Louvain for NMI, and Leiden for mean compute time. 

The strategy we adopted confirmed that the complexity of some algorithms, which lead 

to considerable computation time, does not necessarily lead to a better solution. It is also 

important to remember that the computation time depends on the complexity (number of 

operations, search strategy) of the method.
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CONCLUSION 

When analyzing different networks, it may be important to discover communities inside them. 

Community detection techniques are useful for social media algorithms to discover people with common 

interests and keep them tightly connected. Community detection can be used in machine learning to 

detect groups with similar properties and extract groups for various reasons. For example, this technique 

can be used to discover manipulative groups inside a social network or a stock market. 

To meet the requirements of community detection, different algorithms are applied in order to achieve 

the desired optimization results. The search for an optimal tell solution (the max in our case) has become 

then more than a necessity for this purpose, the detection of communities in a rather complex network is 

crucial, it requires the establishment of a more stable and efficient computational method to meet this 

need. 

In this work, our first concern was to find a method to solve the problem of detection of communities, 

the solution is done by two methods (compute time, NMI). These methods are programmed on python 

(Andaconda) and are executed using Jupyter Notebook, and are tested on a variable network (the number 

of nodes goes from 250 to 10000). 

In the second phase of our work, we presented the solution of the problem of community detection using 

five different algorithms that are based on modularity. These methods, despite providing some acceptable 

solutions, they don’t always respond to the desired results. 
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