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Abstract


nternet �f Th�ngs (
oT) sys�ems �re com�lex �ssembl�es �f comp�nents th�t coll�borate to
ach�eve co�mon go�ls. Th�se comp�nents �re b�sed on d�fferent heter�geneous techn�log�es
and commun�cate w�th each other us�ng var�ous commun�cat�on protocols. Th�s heterogene�ty
m�kes the des�gn and devel�pment of 
oT appl�cat�ons a ch�lleng�ng �ssue. D�verse appro�ches
b�sed on M�del-Dr�ven Eng�neer�ng (MDE) h�ve been prop�sed to ove�come th�s m�jor �ssue
us�ng su�table model�ng langu�ges. Th�ngML �s a prom�s�ng UML prof�le for model�ng 
oT
appl�cations th�t a�ms to ad�ress the chal�enges of heterogene�ty. However, Th�ngML does
not h�ve r�gorous semant�cs, wh�ch makes �t unsu�table for form�l ver�f�cat�on and analys�s
of sy�tem des�gns. 
t also l�cks to�ls to test the gener�ted code bef�re de�loy�ng �t �n 
oT

xiii



dev�ces. 
n th�s thes�s, we pr�pose an MDE-b�sed f�rmal appr�ach to def�ne a form�l sem�nt�cs
f�r Th�ngML langu�ge us�ng Rewr�t�ng Log�c �nd �ts l�ngu�ge M�ude. In addition, we dev�lop
a hybr�d textual-graph�cal ed�tor for the Th�ngML l�ngu�ge and we present a s�mulat�on-b�sed
appro�ch to test the s�urce c�de gener�ted by the Th�ngML c�de generat�on fr�mework. The
prop�sed appro�ches are �llustr�ted thr�ugh c�se stud�es.

Key Words : 
nternet of Th�ngs, Form�l ver�f�cation, Rewr�ting log�c, M�ude l�ngu�ge, M�del
Dr�ven Eng�neer�ng.

Résumé

Les sy�tèmes de l’
nternet des �bjets (
oT) sont des assemblages complexes de composants qui
collaborent pour atteindre des objectifs communs. Ces composants sont basés sur différentes
technologies hétérogènes et communiquent entre eux à l’aide de divers protocoles de commu-
nication. Cette hétérogénéité fait de la conception et du développement d’applications IoT
un véritable défi. Diverses approches basées sur l’
ngén�erie Dir�gée par les Modèles (
DM)
ont été proposées pour surmonter ce problème majeur en utilisant des langages de modélisa-
tion appropriés. ThingML est un profil UML prometteur pour la modélisation des applications
IoT qui vise à relever les défis de l’hétérogénéité. Cependant, ThingML ne possède pas de
sémantique rigoureuse, ce qui le rend inadapté à la vérification et à l’analyse formelles des
conceptions de systèmes. Il manque également des outils pour tester le code généré avant de
le déployer dans les dispositifs IoT. Dans cette thèse, nous proposons une approche formelle
basée sur l’IDM pour définir une sémantique formelle pour le langage ThingML en utilisant la
logique de réécriture et son langage Maude. En outre, nous développons un éditeur hybride
textuel graphique pour le langage ThingML et nous présentons une approche basée sur la sim-
ulation pour tester le code source généré par le cadre de génération de code ThingML. Les
approches proposées sont illustrées à travers des études de cas.

Mots clés : Internet des Objets, Vérification formelle, Logique de réécriture, Langage Maude,

Ingénierie Dirigée par les Modèles.
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General introduction

Today, the 
nternet �f Th�ngs (
oT) �s undergo�ng � rem�rk�ble devel�pment w�ere t�e

nu�ber �f dev�ces l�nked to t�e 
nternet �as re�ched tens of b�ll�ons, and the nu�ber �s

expected to �ncrease cont�nuously [4]. 
ts use covers var�ous are�s of l�fe, such as sm�rt �omes,

�ndustry, tr�nsportat�on, he�lth, and ot�ers. T�e devel�pment of mod�rn tec�nolog�es such as

w�reless sensor net�orks and ident�fication systems �as �elped to prov�de trad�tional objects

w�th new fe�tures such �s ident�fication, capt�re, commun�cation, and computat�on [5]. These

fe�tures h�ve been tr�nsformed from t�ese trad�tional th�ngs to intell�gent th�ngs t�at can collect

�nformat�on from t�eir env�ronment, perform calcul�tions, and commun�cate w�th e�ch other to

ach�eve spec�fic go�ls [6].

T�e 
oT sy�tems �re b�sed on �eter�geneous h�rdw�re comp�nents r�ng�ng from microcon-

trollers to powe�ful cloud ser�ers. 	eterogene�ty �ncludes vari�bil�ty �n reso�rces, tec�nolog�es �nd

protocols of commun�cation, hardw�re and softw�re pl�tforms, d�ta form�ts, and progr�mming

langu�ges. Such �eterogene�ty, w�th the l�ck of stand�rd�zed softw�re solut�ons, makes the des�gn

and the �evelopment of IoT appl�cations ch�lleng�ng [7, 8].

T�e Model-Dr�ven Eng�neer�ng (MDE) appro�ch c�n �elp to surmount 
oT appl�cations de-

velopments’ techn�cal ch�llenges [8]. 
n MDE-b�sed met�ods, the model repr�sents �n essent�al

art�fact th�t c�n descr�be t�e system �t a level of abstr�ction to facilitate sy�tem underst�nd�ng

and an�lys�s. T�e models descr�be the spec�fied systems accord�ng to t�e used model�ng langu�ge’s

met�-model. Furt�ermore, model tr�nsform�tion techn�ques �re used to man�pulate models �nd

mapp�ngs between models. T�ey �re used for d�fferent act�vities such �s t�e tr�nslat�on of models

(expr�ssed �n d�fferent model�ng langu�ges), optim�zation of models, gener�ting c�de f�om mod�ls,

1
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. . . . 
n MDE-b�sed appro�ches, model tr�nsformation a�ms to s�ve efforts �nd to re�uce hum�n

errors by autom�ting model man�pul�tion.

D�verse MDE-b�sed appro�ches h�ve been pro�osed to ove�come IoT applications design and

development �ssue by us�ng su�table model�ng langu�ges. Th�ngML [9] �s a prom�sing UML prof�le

for model�ng 
oT appl�cations th�t a�ms to �ddress t�e ch�llenges of heterogene�ty and distr�bution.


t cons�sts of con�epts (th�ngs, mess�ges, ports, st�te mach�nes, pl�tform-independent act�on

langu�ge, �nd conf�gurations) th�t prov�de stra�ghtforward model�ng of 
oT applic�tions. More-

over, t�e Th�ngML langu�ge �ncludes a h�ghly custom�zable fr�mework th�t supports automat�c

code gener�tion. T�e code gener�tion fr�mework c�n tr�nsform the Th�ngML models �nto opera-

tional code in var�ous programming langu�ges (J�va, Jav�script, and C / C ++) [9]. T�erefore,

t�e t�me and ef�ort ne�ded to dev�lop 
oT applic�tions c�n be signif�cantly reduced.

However, t�e Th�ngML Domain-Specfic Languge (DSL) prov�des a textu�l synt�x to descr�be


oT applic�tions. 
t descr�bes t�e dyn�mic beh�vior of components us�ng a m�x of st�te ch�rts,

commun�cation by async�ronous mess�ges, a pl�tform-�ndependent act�on langu�ge, and t�rget

langu�ges. T�erefore, t�ese specific�tions c�n include m�ny det�ils th�t decre�se the�r legib�lity.

On t�e ot�er h�nd, t�e Th�ngML appro�ch l�cks tools to test �nd ver�fy gener�ted code be�ore

depl�yment on dev�ces. In add�tion, Th�ngML does not h�ve r�gorous semant�cs to support formal

re�soning �bout system des�gns. Conse�uently, detect�ng unw�nted behav�ors becomes extra

compl�cated, not�bly for miss�on-crit�cal 
oT systems w�ere rel�abil�ty is necess�ry bec�use fa�lure

is potent�ally cat�strop�ic.

Form�l met�ods �re effect�ve techn�ques for an�lyzing such systems [10]. Rewr�ting Log�c [11]

prov�des a pow�rful form�l met�od to descr�be �nd an�lyze concurrent �nd distr�buted systems.


t h�s a well-def�ned semant�cs th�t can for�ally repr�sent a w�de r�nge of langu�ges [12–14].

T�ere �re sever�l langu�ge implement�tions of Rewr�ting Log�c, such �s M�ude [15]. M�ude is

a prom�sing system �nd langu�ge for form�lly def�ning t�e semant�cs of progr�mming langu�ges

[15]. It prov�des powerful verif�cation tools, includ�ng simul�tion and L�near Temporal Log�c (LTL)

Model Check�ng [16].

The principle contributions of this thesis are:
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The first and major contribution [17] is propos�ng a form�l appro�ch to ver�fy the Th�ngML

des�gns us�ng Rewr�ting Log�c [11]. Th�s appro�ch tr�nsforms the Th�ngML des�gns �nto M�ude’s

Rewr�ting Log�c langu�ge [15]. The m�in adv�ntage of th�s appro�ch over ot�er appro�ches l�es in

the un�vers�lity and vers�tility of M�ude’s mathem�tical not�tion, wh�ch implements �ll Th�ngML

con�epts �nd the�r behav�oral asp�cts (comp�nents, inst�nces, conf�gurations, st�te mach�nes,

commun�cations by async�ronous mess�ges, act�on langu�ge ...) in a un�fied form�l log�c. In

add�tion, t�e ex�sting M�ude langu�ge verif�cation tools prov�de powerful an�lysis techn�ques,

includ�ng symbolic simul�tion �nd model check�ng, wh�ch en�ble r�gorous an�lysis and verif�cation

of Th�ngML des�gns. The appro�ch prop�ses a semant�cs mapp�ng bet�een Th�ngML con�epts

�nd M�ude const�ucts. To t�is end, we h�ve def�ned M�ude stru�tures to descr�be �ll Th�ngML

comp�nents �nd the�r behav�oral �spects. We h�ve �lso def�ned �nd imple�ented �n oper�tional

sem�ntics [18] for t�e Th�ngML act�on lang�age in M�ude. F�nally, we h�ve deve�oped � tool

b�sed on t�e �cceleo fr�mework [19] th�t autom�tically tr�nsforms Th�ngML specif�cations into

t�e corres�onding M�ude models.

The second contr�bution [20] is develop�ng a hybr�d textu�l-graph�cal ed�tor for t�e Th�ngML

lan�uage �nd propos�ng a simul�tion-gu�ded appro�ch b�sed on the Proteus softw�re [21]. This

approach allows test�ng and ver�fying t�e source code gener�ted by t�e Th�ngML gener�tion

fr�mework before deployment on 
oT dev�ces. It s�ould be no�ed �ere t�at bot� appro�ches c�n

be integr�ted to ver�fy �nd to test the deve�oped art�facts at two d�fferent levels of abstraction.

The presence of bugs in the Th�ngML specification implies the presence of bugs in the resulting

code. At the same time, a bug-free ThingML specification does not necessarily mean a bug-free

source code. It may include some through the code generator itself. This is why we propose to

use s�mulation techn�ques to ver�fy the gener�ted code. It is worth ment�oning t�at through t�e

second contr�bution, we presented the simul�tion of the Ardu�no code [22] in the Proteus program.

However, t�e same appro�ch can be gener�lized to ver�fy the result�ng code for ot�er langu�ges

or pl�tforms, and th�s can be done by us�ng samilar or new tools ad�pted to the langu�ges and

pl�tforms.

Organization of the thesis

This thesis contains six chapters:
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- The first chapter presents generalities on the IoT systems, describing their application do-

mains and architectures. We present the IoT-enabling technologies and end with key open

problems and challenges such as standardization and Interoperability, scalability and avail-

ability, modeling and simulation,...

- In the second chapter, we discuss the modeling and the analysis of IoT systems using the

MDE approach. We first present the essential concepts of the MDE as well as the terminology

we will use throughout this manuscript. Then, we present some challenges of developing

IoT systems that can be addressed using the MDE. The last part of the chapter discusses

some MDE-based approaches for modeling and analysis of IoT systems.

- In the third chapter, we focus on the ThingML promoter approach. We start by presenting

the ThingML domain-specific language and the main concepts of this language, and then

we demonstrate the code generation framework. Finally, we present some lacks and limits

of the ThingML approach.

- The fourth chapter focuses on rewriting logic and their language Maude. In the first part,

we present the essential concepts of rewriting logic and give a detailed syntax of the Maude

language and the characteristics of its environment. Then, the second part details the

implementation of the executable operational semantics in Maude.

- The fifth chapter describes the proposed formal approach to verify and analyze ThingML

specifications. We will detail the formal�zation of Th�ngML constr�cts us�ng the M�ude

l�ngu�ge. Then, we w�ll present the Th�ngML2Maude tool, a model-text translator allow�ng

to tr�nsl�tion of Th�ngML models �nto M�ude code. F�nally, we w�ll �llustr�te our �ppro�ch

through a c�se study.

- In the sixth chapter, we will present an MDE and s�mul�tion-based appro�ch to test�ng


oT appl�cations w�thout the ava�lab�lity of dev�ces. We w�ll �lso present a hybr�d model�ng

ed�tor for Th�ngML to fac�lit�te the devel�pment pr�cess. F�nally, we w�ll �llustr�te our

appro�ch thr�ugh a c�se st�dy.

- F�nally, our thesis ends with a general conclusion summarizing the main points addressed

in this thesis and research perspectives.



Chapter 1

Internet of Things: An overview

1.1 Introduction

The Internet of Things (IoT) is one of the core technologies of current and future information

and communications technology sectors. IoT technologies will be deployed in numerous

industries, including: health, transport, smart cities, utility sectors, environment, security, and

many other areas. In this chapter, we introduce the concept of the Internet of Things. At the

beginning, we provide a complete definition and a general overview of the impact of IoT on our

societies through its different applications. After that, we present the enabling technologies that

are expected to form the building blocks of the IoT. Finally, we describe IoT architectures and

present the main challenges and difficulties encountered in developing IoT applications.

1.2 Definitions

The Internet of Things (IoT) is one of the significant communication developments of recent

years. It makes our everyday objects (e.g., health sensors, industrial equipment, vehicles, clothes)

connected to each other and to the Internet to achieve common goals. The definition of IoT is still

the subject of debate, as there is still no universal and unified definition for this concept. The lack

of clarity of this term may be due to its association with two concepts or terms (Internet & Things).

The Internet can be defined as a global network of interconnected computer networks based on the

TCP/IP communication protocol. A Thing is something that is not precisely identifiable. It may

be anything imaginable with features such as identifying, sensing, actuation, and the ability to

communicate. That gives the possibility to integrate them into the IoT environment.

5
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Consequently, the IoT has been defined in many different ways. Van Kranenburg’s definition

[23] is among the first definitions of IoT. It defines this concept as “a dynamic global network in-

frastructure with self-configuring capabilities based on interoperable communication protocols where

virtual and physical things have an identity, physical attributes, and virtual personality and that

use intelligent interfaces embedded in an information network".

More straightforwardly, Coetzee and Eksteen [24] define IoT as “a vision where objects become

part of the Internet, where all objects are uniquely identified and accessible through the network,

their positions and statuses are known, where the notion of intelligence is added to the Internet

thus merging the digital and physical world, impacting all professionals, people, and the social

environment". Another definition by Vermesan et al. [25] defines the Internet of Things as

simply “an interaction between the physical and digital worlds. The digital world interacts with

the physical world using many sensors and actuators.

According to [26], the basic concept behind IoT is the pervasive presence around us of various

wireless technologies, such as Radio-Frequency IDentification (RFID) tags, sensors, actuators,

and mobile phones, in which computing and communication systems are seamlessly embedded.

These objects interact with each other through unique addressing schemes and cooperate to reach

common goals. In common parlance, IoT refers to a new world where almost all devices and

appliances are connected to a network. We can use them collaboratively to achieve complex tasks

requiring high intelligence [27].

1.3 Applications of IoT

IoT has a huge potential for developing intelligent applications in almost every vertical market.

IoT applications provide a set of functionalities and capabilities that can be grouped according

to the domain of utilization into four areas: monitoring (devices condition, environment state,

notifications, alert, etc.), control (control of devices functions), optimization (device performances,

diagnostics, repair, etc.) and autonomy (autonomous operations). Today, the IoT covers a wide

range of applications. It covers almost all areas of daily life, allowing the emergence of intelligent

spaces (see Figure 1.1).
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Smart Cities

Environment and 
Agriculture

Smart homes

Transport

ManufactureHealth

IoT

Figure 1.1: IoT applications

1.3.1 Smart homes

Smart homes are one of the most popular IoT applications [28]. Its idea is to design a home

intelligently for the benefit of its residents. It allows them to control and monitor appliances,

lighting, heating, ventilation and air conditioning, as well as security systems. Equipping the home

with different sensors for light, humidity, and temperature allows the collection of information to

generate the optimum climate according to the parameters set by the user. Security systems

make the home more secure by automatically detecting and deterring intrusions using a variety of

infrared, sound, vibration, and motion sensors, as well as alarm systems [29]. In addition, smart

homes and the aids they provide make the elderly and disabled people more comfortable and safe

in their homes.

1.3.2 Smart cities

IoT will allow better management of the various networks that supply our cities (such as water,

electricity, and gas) by allowing continuous real-time and accurate monitoring. Sensors can be

used to economize water and energy, improve the management of parking lots and urban traffic,

and reduce traffic jams.
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1.3.3 Energy

The management of electrical grids will be improved thanks to telemetry, allowing real-time

management of the energy distribution infrastructure and improving efficiency and productivity.

This large-scale interconnection will facilitate fault location, maintenance, consumption control,

and fraud detection. In addition, integrating sensors and actuators is likely to reduce the energy

consumption of all energy-consuming devices.

1.3.4 Health

In the field of health, IoT will enable the deployment of personal networks for controlling and

monitoring clinical parameters. This will facilitate the remote monitoring of patients and offer

solutions for the autonomy of people with reduced mobility [30]. One popular approach is to

use wearable technology. These wearable devices can provide information about clinical body

signs, such as heart rate, body temperature, and blood pressure, which can then be transmitted

in real-time to a remote site for storage and further analysis. Thus obtaining more and better

information about the patients to be able to treat them in a personalized way, without the need

to go to a medical center, avoiding transfers and assistance costs, and allowing doctor-patient

communication to be less complicated [31].

1.3.5 Transport

The IoT can significantly improve transport systems. It will support current efforts around intel-

ligent vehicles for road safety and driver assistance. This will include inter-vehicle communication

and communication between vehicles and road infrastructure. IoT will thus be a natural extension

of “intelligent transport systems" and their contributions to road safety, comfort, efficient traffic

management, and time and energy savings.

1.3.6 Manufacture

The application of IoT in the industry is often referred to as Industry 4.0 or the fourth Indus-

trial Revolution. Industry 4.0 builds on cyber-physical systems that tightly integrate machines,
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software, sensors, Internet, and users. IoT will enable full tracking of products, from the produc-

tion chain to the logistics and distribution chain, by supervising supply conditions.

1.3.7 Environment and agriculture

By deploying environmental sensors, it will be possible to effectively monitor and measure water

and air quality, soil conditions, and hazardous chemicals and radiation. The IoT can contribute

to better predictions of earthquakes and tsunamis and earlier detection of forest fires, avalanches,

and landslides. All of this will help to preserve the environment better. On the other hand, the

IoT can distinguish and track wild animals, especially endangered species, allowing for better

study and understanding of these animals’ behavior, thus, better protection.

In the agriculture field, sensor networks interconnected to the IoT can be used to monitor

the crop environment and health. This will enable better decision support in agriculture, no-

tably in optimizing irrigation water, using fertilizers and plant protection products, and planning

agricultural work. These networks can also be used to combat air, soil, and water pollution.

1.4 Architecture of IoT

There is no consensus on a unified architecture for IoT, where several architectures have been

proposed. However, a three-layer high-level architecture is commonly accepted [32]. It is the

most basic architecture and it was introduced in this area’s early stages of research [32–34]. This

architecture consists of three layers: The perception Layer, Network Layer, and Application layer

(see Figure 1.2). A brief description of each layer is given [27]:

(i) The perception layer is the physical layer, whose main task is to perceive and gather the

physical properties of the environment. It has sensors to detect specific physical parameters

or to identify other intelligent objects. In addition, this layer is responsible for converting the

information into digital signals that are more convenient for transmission over the network.

(ii) The network layer ensures connectivity between smart things, network devices, and

servers. Its features are also used for the reliable transmission of data generated in the

perception layer.
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(iii) The application layer constitutes the front end of the IoT architecture through which IoT

potential will be exploited. It uses the processed data by the previous layer for delivering

application-specific services to the user. Moreover, this layer provides the required tools

(e.g., actuating devices) for developers to realize the IoT vision.

IoT Architectures

Business layer

Application layer

Processing layer

Transport layer

Perception layer

Perception layer

Application layer

Network layer

A B

Figure 1.2: Three-layer (a) and five-layer (b) architectures of IoT.

The three-layer architecture defines the main idea of the IoT, but it is insufficient for IoT

research because it often focuses on finer aspects of the IoT. This is why many other layered ar-

chitectures are proposed in the literature. One is the five-layer architecture, which includes adding

processing and business layers [5, 32–35]. The five layers are perception, transport, processing,

application, and business (see Figure 1.2). The role of the perception and application layers is the

same as the architecture with three layers. We outline the function of the remaining three layers.

(i) The transport layer is similar to the network layer in the three-layer architecture. It

transmits and receives information from the perception layer to the processing layer and

vice versa. It contains many technologies such as wireless, 3G, LAN, infrared, WiFi, RFID,

NFC, and Bluetooth.

(ii) The processing layer is also known as the middleware layer. Its responsibility is to process

the data that comes from the transport layer. The processing process has two main aspects

storage and analysis. It also can manage and provide a diverse set of services to the lower

layers. It is not easy to achieve the objective of this layer due to the large amount of
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information collected from the system elements. Therefore, it employs many technologies,

such as databases, cloud computing, and big data processing modules.

(iii) The business (management) layer manages the overall IoT system activities and ser-

vices. The responsibilities of this layer are to build a business model, graphs, and flowcharts.

Based on the received data from the application layer. It should also design, analyze, im-

plement, evaluate, monitor, and develop IoT system-related elements. The business layer

makes it possible to support decision-making processes based on Big Data analysis. In ad-

dition, monitoring and management of the underlying four layers are achieved at this layer.

Moreover, this layer compares the output of each layer with the expected output to enhance

services and maintain users’ privacy [5, 32, 35].

1.5 Enabling technologies

IoT is not a single technology; it is an agglomeration of various technologies that work together.

This section focuses on the enabling technologies expected to form the IoT building blocks. IoT

enabling technologies can be summarized into several categories: identification and recognition

technologies, sensing technologies, communication technologies and networks, cloud platforms,

data processing solutions, security mechanisms, etc. The different technologies are classified into

three main domains: object domain, network domain, and middleware domain (see Table 1.1).

All these domains include hardware, software, and technologies with specific functionalities and

capabilities. In the following, we briefly introduce the building blocks of each category [1, 27].

1.5.1 Object domain

The object domain presents the endpoint layer that includes things. These objects have vari-

ous capabilities, such as sensing, actuation, identifying, data storage and processing, connecting

with other objects, and integration into communication networks. IoT objects include embed-

ded software (operating system, onboard application) and hardware (electrical and mechanical

components with embedded sensors, processors, and connectivity antennas).
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Sensors are hardware components that capture and measure certain events or changes in

their environment, such as heat, light, sound, pressure, magnetism, or a particular movement.

They perform various actions to provide an output for further processing. Various sensors are

embedded in many objects (e.g., smartphones) to enable IoT-based value-added services. Sensors

transmit captured information using electrical signals to the devices to which they are connected.

An actuator is a device that can change the physical environment. Actuators receive commands

from their connected device and translate those electrical signals into actions. Some examples are

heating or cooling elements, speakers, lights, displays, and motors. For example, we can consider

a smart home system with many sensors and actuators. The actuators are used to lock/unlock

the doors, switch on/off the lights or other electrical appliances, alert users of any threats through

alarms or notifications, and control the temperature of a home (via a thermostat).

A unique ID should identify all devices. There are many identification methods, including

EPC (Electronic Product Code), uCode (Ubiquitous codes), and QR (Quick Response). Radio-

Frequency IDentification (RFID) technology is an important development in the embedded devices

field. RFiD allows the design of tiny microchips (called tags), which can be appended to objects.

As a result, stored data in these tags can automatically be used to identify and extract useful

information from the object. RFID tags have a unique identifier; the most commonly used is

EPC. Many applications from several fields use this kind of tag. Notably in retail, supply chain

management, and transportation. They are also used in bank cards, road toll tags as an access

control means, in the smart home context, and in hotels to provide automated customer check-in.

Another technology with similar identification management is NFC.

Connectivity components enable wireless or wired connections by using different communi-

cation technologies which allow an exchange of information between different objects. Sensor

Networks (SN) is a collection of sensors that communicate between each other or/and transmit

data to another infrastructure (e.g., Fog or/and Cloud). All these capabilities enable objects to

be aware of their environment and to exchange data which is one of the goals of IoT. Most IoT

products use Wireless Sensor Networks (WSN) solutions. IoT devices may contain gateways that

collect data from sensors and send it over the Internet to other infrastructure (e.g., Cloud). They

may be connected to other objects or networks via multiple gateways that can act as a proxy
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between devices and networks. IoT hardware platforms can facilitate communication, data flow,

device, data, and application management.

1.5.2 Network domain

The network domain includes hardware, software, technologies, and protocols that enable con-

nectivity between objects and between objects and global infrastructure (e.g., the Internet). As

the IoT is proliferating, many heterogeneous smart devices are connecting to the Internet. A

wide range of IoT devices are battery-powered, with minimal computing and storage resources.

Because of their constrained nature, there are various communication challenges involved, which

are as follows [36]:

(1) Addressing and identification: millions of smart things will be connected to the Internet.

They will have to be identified through a unique address, based on which they will commu-

nicate. We need a large addressing space and a unique address for each smart object.

(2) Low power communication: communication of data between devices is a power-consuming

task, especially wireless communication. Therefore, we need a solution that facilitates com-

munication with low power consumption.

(3) Routing protocols with low memory requirements and efficient communication patterns.

(4) High-speed and non-lossy communication.

(5) Mobility of smart things.

IoT devices typically connect to the Internet through the IP (Internet Protocol) stack. This

stack is complex and demands a large amount of power and memory from the connecting devices.

The IoT devices can also connect locally through non-IP networks, which consume less power, and

connect to the Internet via a smart gateway. Non-IP communication channels such as Bluetooth,

RFID, and NFC are popular but limited in their range (up to a few meters). Therefore, their

applications are limited to small personal area networks. It was necessary to modify the IP stack

to facilitate low-power communication and to increase the range of such local networks. One of

the solutions is 6LoWPAN, which incorporates IPv6 with low-power personal area networks. The
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range of a PAN with 6LoWPAN is similar to local area networks, and the power consumption

is much lower. The leading communication technologies in the IoT world are IEEE 802.15.4,

low-power WiFi, 6LoWPAN, RFID, NFC, Sigfox, LoraWAN, and other proprietary protocols for

wireless networks.

1.5.3 Middleware domain

The interoperability of IoT heterogeneous devices needs well-defined standards. However, stan-

dardization is difficult because of the varied requirements of different applications and devices.

For such heterogeneous applications, the solution is to have a middleware platform, which will

abstract the details of the things for applications [1]. IoT middleware is considered a system

constrained by software and infrastructure designed to be the intermediary between IoT objects

and the application layer. It will hide the details of the smart things. Some IoT middleware pro-

vides software (including OS) and Application Programming Interface (API) management while

enabling IoT applications to communicate over heterogeneous interfaces. Some common embed-

ded operating systems enable IoT applications’ functionalities, such as TinyOS, Contiki, LiteOS,

Android, and RIoT OS. These systems support low-power Internet communication and require

very few kilobytes of RAM. To summarize, the middleware abstracts the hardware and provides

an API for communication, data management, computation, security, and privacy [1, 27]. It can

meet a variety of challenges such as [37, 38]:

(1) Interoperability: different types of things can interact with each other easily with the

help of middleware services. Interoperability insulates the applications from the intricacies

of different protocols, and it ensures that applications are oblivious to different formats,

structures, and encoding of data.

(2) Device discovery and management: this feature enables the devices to be aware of all

other devices in the neighborhood and the services provided by them. Any IoT middleware

needs to perform load balancing, manage devices based on their levels of battery power, and

report problems in devices to the users.

(3) Scalability: a large number of devices are expected to communicate in an IoT setup.

Moreover, IoT applications need to scale due to ever-increasing requirements.
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(4) Big data and analytics: IoT sensors typically collect a large amount of data. It is

necessary to analyze all of this data in more details.

(5) Security and privacy: the middleware should have built-in mechanisms to address security

and privacy issues in IoT environments that are mostly related to personal life or industry.

There are many middleware solutions available for the internet of Things that address one or

more of the aforementioned issues. All of them support interoperability and abstraction, which is

the foremost requirement of middleware.

1.6 IoT key issues and challenges

The involvement of IoT-based systems in all aspects of human lives and various technologies

involved in data transfer between embedded devices made it complex and gave rise to several

issues and challenges. These issues are also a challenge for IoT developers in the advanced smart

tech society. Therefore, IoT developers need to think of new issues arising and should provide

solutions for them.

1.6.1 Standardization and interoperability

Diversities in technologies and standards are identified as one of the major challenges in the

development of IoT applications [5, 39]. Standardization of IoT architecture and communication

technologies is considered a backbone for IoT development in the future [5, 40]. Interoperability

is the ability of multiple devices and systems to interoperate regardless of deployed hardware and

software. The interoperability issue arises due to the heterogeneous nature of different technology

and solutions used for IoT development. The four interoperability levels are technical, semantic,

syntactic, and organizational [1, 41].

- Technical interoperability is usually associated with communication infrastructure and

protocols. IoT systems need to provide interoperability over heterogeneous devices, net-

works, and a variety of communication protocols such as IPv6, IPv4, 6LoWPAN/RPL,

CoAP/CoRE, ZigBee, GSM/GPRS, WiFi, Bluetooth, RFID, etc.
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- Syntactical interoperability is associated with understanding content (information) and

refers to data formats, syntaxes, and codings such as XML and HTML.

- Semantic interoperability enables the interpretation of content (the meaning of informa-

tion) to be shared by communicating parties. The term "semantic“ in the IoT refers to the

possibility of extracting knowledge from raw data collected from sensors. This “knowledge"

enables the provision of useful services and reports based on analyzed data.

- Organizational interoperability is usually associated with the ability to exchange data

regardless of the different information systems and infrastructure used.

Various functionalities are being provided by IoT systems to improve the interoperability that

ensures communication between different objects in a heterogeneous environment. Considering

interoperability an important issue, researchers approved several solutions that are also known as

interoperability handling approaches [42]. These solutions could be based on adapters/gateways,

virtual networks/overlay, service-oriented architecture, etc.

1.6.2 Scalability and availability

A system is scalable if it is possible to add new services, types of equipment, and devices without

degrading its performance. The main issue with IoT is to support a large number of devices with

different memory, processing, storage power, and bandwidth [43]. A great example of scalability

is Cloud-based IoT systems which provide sufficient support to scale the IoT network by adding

up new devices, storage, and processing power as required. Another important issue that must

be taken into consideration is availability. Availability means that IoT applications should be

available anywhere and anytime for every authorized object. Availability of the network and its

coverage area must enable the continuity of the services to use regardless of mobility, dynamic

change of network topology, or currently used technologies.

1.6.3 Security and privacy

One of the most important and challenging issues in the IoT is security and privacy due to several

threats, cyber-attacks, risks, and vulnerabilities. The issues that give rise to device-level privacy
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are insufficient authorization and authentication, insecure software, firmware, web interface, and

poor transport layer encryption [41]. Besides, if communication takes place using wireless tech-

nologies within the IoT system, it becomes more vulnerable to security risks. Therefore, Security

mechanisms must be embedded at every layer of IoT architecture to prevent security threats and

attacks [44]. Developing such mechanisms is a difficult challenge, especially since a large part of

IoT devices have limited resources (memory, computation). Another issue is the different privacy

policies for different objects communicating within the IoT system. Therefore, each object should

be able to verify the privacy policies of other objects in the IoT system before transmitting the

data.

1.6.4 Management and self-configuration

Managing IoT applications and devices is a very critical factor for successful IoT deployments [45].

Management functionalities such as monitoring, control, and configuration are a big challenge due

to IoT complexity, heterogeneity, a large number of deployed devices, and traffic demands. IoT

software must be able to identify various smart objects and interact with them to provide efficient

management and self-configuration functionalities. Self-configuration means the IoT system has

capabilities of the dynamic adoption of changes in its environment. For example, if devices could

switch off when there is no activity, it would provide more efficiency in energy consumption [1].

Data management mechanisms need to provide various functionalities such as raw data aggrega-

tion, data analytics, data recovery, and security. They need to enable different kinds of reports.

Another challenge is to provide automatic decisions and self-configuring operations in complex,

integrated, and open IoT systems. The objects must acquire knowledge from the collected data

and, based on this, perform some context-aware actions.

Network management functionalities need to provide efficiency in network topology management,

device synchronization as well as traffic and congestion control management. A new network’s

design needs to deploy efficient management mechanisms to manage the large-scale of connected

devices, an enormous amount of data (traffic loads), and various services with different quality

of service requirements. Monitoring network infrastructure enables the detection of any changes

and events that affect network resource usage and security.

Devices management mechanisms need to provide monitoring and remote-control functionalities,
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including remote devices’ activation or deactivation, firmware update, etc. Managing devices and

enabling seamless integration in various networks are challenges due to the deployment of various

hardware and software while providing operations such as addressing and optimization at the ar-

chitectural and protocol levels [46]. The challenge of device management is especially pronounced

because of the heterogeneity among devices and associated services. Some other open issues are

related to the development of lightweight and secure IoT device management frameworks which

provide functionalities such as location awareness, mobility, low power consumption, support for

various mobile OS, etc.

1.6.5 Modeling and simulation

Major challenges in developing IoT services are due to their complexity and heterogeneity in

all parts of system architecture. The heterogeneity embraces both software and hardware. Such

diversification is not trivial to handle and is exacerbated by an elemental peculiarity of the IoT: the

very same software functionalities are expected to be deployable on different devices, each having

only a limited set of common core characteristics. Moreover, things can be small or have limited

resources; they can have limited battery capacity, storage resources, or computational capabilities.

This adds complexity to deployment and redeployment of software functionalities across devices

with different capabilities. This heterogeneity and the lack of standardized platform-agnostic

software solutions make cross-platform development intractable [8, 47]. Therefore, IoT system

modeling for finding eligible deployments is challenging. On the one hand, the availability of many

diverse heterogeneous devices collaborating in the IoT represents an unprecedented opportunity

to improve the quality of life, in addition to the quality of service, through collaboration among

industrial and consumer devices. On the other hand, we must deal with new challenges at all

levels to benefit from the significant advantages the IoT will unleash. Heterogeneity, runtime

adaptability, reusability, interoperability, data mining, security, abstraction, automation, privacy,

middleware, and architectures are just some of the aspects we need to consider at both design

time and runtime and for which new software engineering approaches will be envisioned [8].

Simulation tools such as Opnet, NS-3, Cloudsim, and others can be used for understanding and

modeling the IoT system. However, the complexity and heterogeneity of IoT scenarios complicate
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these processes. This imposes the use of sophisticated, hybrid, and multi-level modeling and

simulation techniques [48]. An overview of some other modeling and simulation challenges has

been presented in [49]. For example, one of the main issues in existing simulation tools is the lack of

integrated options to simulate network and Cloud infrastructure to obtain the overall performance

of IoT systems. Also, there is a problem with simulating various protocols, security attacks,

computing, and other IoT processes to obtain different results, such as network performance

and energy consumption. Another important issue is enabling the simulation of IoT scenarios,

including many heterogeneous devices with various traffic loads and types. This implies that

the problem of simulating IoT scenarios is related to software tools and hardware performances

that provide enormous resources such as CPU and RAM. According to previous considerations, a

new enhancement of simulation tools should improve the ability to simulate small, medium, and

large-scale IoT scenarios. Simulation and modeling tools need to support the dynamic nature of

IoT, real-time requirements and increasing processing requirements. These scenarios include the

deployment of heterogeneous technologies. There is a need for the continuous enhancement of

simulation and modeling tools to address these shortcomings.

1.7 Conclusion

The Internet of Things creates new opportunities to develop innovative applications by lever-

aging existing and new technologies. In recent years, various consumer and industrial IoT

applications have been developed and deployed. In this chapter, we have given an overview of the

Internet of Things in general. We have seen the general concepts and the different application

areas of the IoT. Then, we have presented the different IoT architectures and the enabling tech-

nologies used in this context. Finally, we have described the various challenges and issues to be

resolved and which are seriously taken up by the scientific community. In what follows, we will

focus on the modeling aspect of IoT systems, in particular, the use of Model Driven Engineering

(MDE) as a mechanism for designing and analysing IoT applications.
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Modeling of IoT systems

2.1 Introduction

Significant challenges come across developers of the IoT due to their heterogeneous nature.

As IoT systems are based on a set of heterogeneous, distributed and intelligent things, it

is difficult to handle this diversification aggravated by an elementary peculiarity of the IoT: the

very same software features should be deployable on different devices, each with only a limited

set of basic common features. Moreover, things can be low devices or have limited resources

(computational capabilities, storage resources, or battery capacity). This adds complexity to

deployment and redeployment of software functionalities across devices with different capabilities.

One promising approach to address these challenges and reduce the complexity of IoT development

is Model-Driven Engineering (MDE), which is frequently used in many domains for software

development.

The abundance of various hardware platforms available for IoT complicates their development.

There is a need for a methodology that enables an efficiently increased level of abstraction to

address such systems’ complexity and heterogeneity problems. To this end, many researchers

believe that MDE is a better solution to overcome challenges such as development complexity,

heterogeneity, adaptability, and reusability, and they propose various applications of MDE for IoT

development.

In this chapter, we will discuss the modeling and analysis of IoT systems using the MDE

approach. At first, we will recall the essential concepts of MDE as well as the terminology

we will use throughout this manuscript. Then, we will present some challenges of IoT systems

development that can be addressed using MDE-based approaches. Finally, we will discuss some

MDE-based approaches for modeling and analyzing IoT systems.

21
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2.2 Model-Driven Engineering (MDE)

Model-Driven Engineering (MDE) [3, 50, 51] is a software engineering research area that places

the model notion at the center of the development cycle. It focuses on abstract concerns around

the models without considering the target technologies. In this paradigm, the source code is no

longer considered the central element in the development process but rather an artifact derived

from the modeling elements. MDE offers techniques for navigating between levels of abstraction.

On the one hand, they are based on meta-modeling, which allows the different aspects of a

modeling language to be defined and expressed. On the other hand, model transformation allows

the manipulation of models and the maping from one model to another.

2.2.1 Meta-modeling

The MDE approach aims to define a high level of abstraction of developed systems and automate

the development process. It is mainly based on three concepts: the model, the meta-model, and

the meta-meta-model. A model can be defined as a relevant abstraction of the system it models.

It must be sufficient and necessary to answer specific questions in place of the system it represents.

A model that describes using a modeling language must conform to a meta-model. The modeling

language itself must be specified as a model called a meta-model. A meta-model is a higher-
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Figure 2.1: The Meta-modeling concepts.

order abstraction highlighting the concepts used to define the model. It models the language

entities, their relationships as well as their constraints. As with the meta-model, which specifies
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the modeling language and interprets models, the meta-meta-model has a language description in

which the meta-model is expressed [3].

2.2.2 Model transformation

In addition to meta-modeling, model transformation is the central element of the MDE approach.

It generates one or several target models from source models, where the source and target models

conform to their meta-models. The transformation of a source model is done in two steps. The first

step identifies the correspondences between the concepts of the source and target meta-models,

which induces the existence of a transformation function applicable to all instances of the source

meta-model. The second step involves applying the source model’s transformation to generate the

target model automatically by a program called the transformation engine or execution engine

[50].
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Figure 2.2: Basic concepts of model transformation.

2.2.3 Model Driven Architecture

OMG (Object Management Group) proposes the Model Driven Architecture (MDA) [52] approach

as a framework for model-driven application development. MDA is built on the separation of

concerns between an application’s logic and the platforms on which it will run. It aims to describe

models independently of the technical details of the execution platforms to allow the automatic

generation of application code and obtain a significant gain in productivity. In the MDA approach,

we can mainly distinguish four classes of models [52, 53]:
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- Computation Independent Model (CIM): models the requirements or needs of the system in-

dependently of any implementation. The CIM allows the system’s vision in the environment

where it will operate without going into the realization details or the treatments.

- Platform Independent Model (PIM): it is an analysis and design model that expresses the

systems’ functioning independently of any implementation technology.

- Platform Specific Model (PSM): is a code model that combines the PIM specifications with

platform-specific details. The PSM is essentially used to generate executable code.

- Platform Description Model (PDM): the PDM is the model that describes an execution

platform. It provides a set of technical concepts representing the different parts of the

platform and (or) the platform and (or) the services it provides.

2.2.4 Domain-Specific Modeling Language

In MDE-based approaches, the software artifacts are models created using modeling languages.

A modeling language could be a general-purpose language or a specific one. A General Purpose

Modeling Language (GPML) can express a wide range of systems and domains. When the models

are created using the problem domain concepts, we talk about Domain-Specific Modeling [54].

A Domain-Specific Modeling Language (DSML) contains distinctive concepts that allow the de-

scription of targeted systems. It has a restricted expressiveness that focuses on a specific domain.

The use of dedicated languages significantly facilitates the construction of software systems for

the domains to which they are dedicated. DSMLs are generally small and must be easily manip-

ulated, transformed, combined, etc. They are already successfully used in many fields, such as

telecommunications, avionics, aerospace, and automotive industries. The interest of DSML is to

benefit from the well-known advantages of domain-specific languages [55]:

- Allow solutions to be expressed with idioms at the level of abstraction of the addressed

domain. As a result, domain experts can understand, validate, modulate, and often develop

programs in dedicated languages.

- Facilitate code documentation.
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- Improve quality, productivity, ability, maintainability, portability, and reusability.

- Enable domain-level validation. As long as elements of the language are safe, any sentence

written with these elements can be considered safe.

Generally, a modeling language is defined by a set of all possible models conforming to the

modeling language’s abstract syntax, represented by one or more concrete syntaxes that satisfy a

given semantics (see Figure 2.3) [3]. In other words, a modeling language (𝐿𝑚) is defined according

to the tuple {𝐴𝑆,𝐶𝑆∗,𝑀𝐴
∗
𝑎𝑐, 𝑆𝐷

∗
,𝑀

∗
𝑎𝑠} where 𝐴𝑆 is the abstract syntax, 𝐶𝑆∗ is the concrete

syntax(es), 𝑀𝐴
∗
𝑎𝑐 is the set of mappings from the abstract syntax to the concrete syntax(es),

𝑆𝐷
∗ is the semantic domain(s), and 𝑀

∗
𝑎𝑠 is the set of mappings from the abstract syntax to the

semantic domain(s) [56].
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Figure 2.3: The Modeling Language definition [3].

2.2.4.1 Abstract syntax

The definition of a modeling language typically begins with capturing and identifying the concepts,

abstractions, and relationships underlying the application domain. The result of this activity is the

abstract syntax of the modeling language. The abstract syntax of a modeling language expresses,

in a structural way, the set of its concepts and their relations. It is described using meta-modeling

languages that offer the concepts and elementary relations that allow a meta-model to be described

in modeling languages. A meta-model represents the abstract syntax of a modeling language

through classes linked by different relations (associations, compositions, or specializations). Each
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class represents a concept of the dedicated modeling language, i.e., a concept of the domain for

which the language is designed.

Abstract syntax also includes “structural semantics" (or static semantics), mainly focused

on establishing linking rules between its elements. For example, structural semantics makes it

possible to define that an element of type A can be linked to other elements of type B according

to this or that constraint. In general, structural semantics can be described in different ways:

either by a declarative constraint language (e.g., the Object Constraint Language (OCL) [57]); by

an informal natural language specification; or a mixed approach.

2.2.4.2 Concrete syntax

Concrete syntax provides users with the notations needed to express models. It can be textual,

graphical, tabular or form-based, or a combination of these. The definition of concrete syntax

allows each modeling language construct defined in the abstract syntax to be annotated with one

(or more) concrete syntax decoration(s) that can be manipulated by the language used. In general,

graphical notations are most appropriate for illustrating relationships between concepts, changing

spatial or temporal distribution values, causal and temporal sequences between events, or data

and control flows in process modeling scenarios. However, graphical models are not as scalable

as textual or tabular models, which means that they are not the most appropriate for supporting

large models; they are also not very applicable for writing or visualizing complex expressions

or actions - for this, textual notations tend to be more appropriate. Finally, since a modeling

language can have several concrete syntaxes, it would be possible to combine them for the benefit

of its users. Several tools can be used to define concrete syntaxes. We mention mainly Sirius [58]

for graphical syntaxes and Xtext [59] for textual syntaxes.

2.2.4.3 Semantics

The semantics of a language denotes in a precise and unambiguous way the meaning of the

constructions of this language. It thus allows giving a precise meaning to the programs built

from it. A semantic is said to be formal when expressed in a mathematical formalism and allows

checking this definition’s coherence and completeness. Based on the concepts and models involved,
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semantics can be of two types [3]: executable and non-executable. Non-executable semantics

concern concepts that are not directly related to software execution, such as user requirements

specification or deployment diagrams. On the other hand, executable semantics concern concepts

directly related to the execution order of programs, such as those found in activity, sequence,

and state machine diagrams. Most of the existing semantics frameworks are used to define the

semantics of executable models (such as UML state machines). Some of these frameworks are

“operational semantics" and “translational semantics" [3]:

- Operational semantics: it enables the description of the dynamic behavior of the con-

structs of a language. In the context of the MDE, it aims to express the behavioral semantics

of the concepts of the abstract syntax, using an action language, to allow the execution of

the models that conform to it. It gives an imperative vision by describing a program through

a set of transitions between the states of the execution context. These concepts are devoid

of semantics, but an action language makes it possible to express them and thus define the

tools supporting the execution. Such a language makes it possible to describe the model’s

evolution and produce one or more other states from a given state.

- Translational semantics: this is also called denotational semantics. Its principle is to rely

on a rigorous formalism to express the semantics of a given language. A translation of the

concepts of the original language is then made into this formalism. It is this translation that

gives the semantics of the original language. In the context of the MDE, it is a question of

expressing transformations towards another technical space, i.e., defining a bridge between

the source and target technical spaces. These technological bridges allow using simulation,

verification, and execution tools provided by the target technical spaces.

2.3 MDE to address the IoT development challenges

The availability of many diverse heterogeneous devices collaborating in the IoT represents an

unprecedented opportunity to improve the quality of life, as well as the quality of service, through

collaboration among industrial and consumer devices. However, to benet from the IoT advantages,

a whole host of new challenges must be addressed at all levels. Heterogeneity, runtime adaptability,
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reusability, interoperability, data mining, security, abstraction, automation, privacy, middleware,

and architectures are just some of the aspects we need to consider at both design time and runtime

and for which new software engineering approaches will be envisioned. The MDE can help meet

the technical challenges of IoT system development and runtime management. Next, we show

how MDE techniques and tools can help tackle the challenges of developing IoT applications [8].

2.3.1 Heterogeneity

Heterogeneity is common in IoT systems, where they differ in resources, protocols, hardware and

software platforms, programming languages, etc. This heterogeneity and the lack of standardized

software solutions make IoT systems development intractable. Thanks to modeling languages,

MDE can provide a unique way to represent heterogeneous systems’ many aspects in one place.

Models defined through these languages can define software with concepts that do not necessarily

depend on the underlying platform or technology. Moreover, models can become complex and

challenging to grasp when heterogeneity is constantly present, even for experts. MDE offers

powerful instruments to support the separation of concerns in multiview modeling—defining and

managing models from different design viewpoints.

2.3.2 Large-scale and emergent properties

IoT systems can reach the size of tens or hundreds of distributed things. They should be engineered

to automatically scale to accommodate and to take advantage of an arbitrary number of devices.

These systems’ level of concurrency and complexity might lead them to expose emerging properties

that represent unexpected behaviors stemming from both interaction between system parts and

the system’s interaction with its context. IoT applications’ runtime evolution is a challenge.

This is particularly difficult if the application operates on code-based artifacts. For example,

imagine that a specific functionality of our surveillance system (such as management of suspicious

behavior) is implemented for a specific physical device that becomes unavailable at a certain

point. Reallocating the functionality to a different type of device would be difficult without

modifying the functionality itself. Models@runtime techniques [60] use models and abstractions
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of the runtime system and environment to effectively manage the complexity of evolving behaviors

during execution.

2.3.3 Context awareness and uncertainty

IoT systems are characterized by uncertainty and unexpected changes in their context. To be

able to adapt these changes and thereby cope with uncertainty, things in the IoT system must be

designed as adaptive systems. MDE proposes various ways to define adaptive systems and support

adaptation under uncertainty. Researchers have proposed mechanisms that automatically gener-

ate alternative models to cope with different context conditions. Such mechanisms will identify

functional and nonfunctional tradeoffs between the models, thereby dealing with functional and

nonfunctional uncertainty [61].

2.3.4 Dynamic discoverability of resources

New, unknown, or recovered devices can appear anytime in dynamic environments such as IoT

systems. For the system to exploit them, it must have a mechanism that can dynamically discover

the available resources and constraints. The system should be able to recognize, communicate

with, and adjust the devices and their characteristics. The discoverability of resources and services

provided by newly available devices in the IoT is fundamental. Service-oriented modeling and

service-oriented architectures (SOAs) define the use of models and model transformations for

identifying, specifying, realizing, composing and orchestrating services [62]. IoT systems can

benefit from this mature discipline to exploit models for dynamic discoverability and realize new

resources and services.

2.3.5 Reusability

When developing an application very similar to previous ones from scratch, IoT system developers

often become frustrated because they do not have the appropriate support for reusability. The

lack of a software engineering methodology and comprehensive abstraction mechanisms for han-

dling IoT systems complexity leads to countless similar, but not congruent, isolated solutions that
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cannot be easily reused and combined. Systematic reusability is paramount to making IoT soft-

ware development sustainable in the market, where expectations for new-generation devices grow

incredibly. Reusability MDE is often combined with component-based software engineering to

define reusable and replaceable self-contained model entities that can be integrated appropriately

through architectures, connectors, and integration patterns to describe complex systems [63]. The

entities can be modeled as different components, which can be manipulated through dedicated

model transformation and analysis tools. Researchers have aimed to exploit the power of models

and model transformations to guarantee the runtime preservation of quality attributes in isolation

and combination [8].

2.3.6 Security and trust

IoT applications rely on many interconnected components. The intrinsic complexity of such

systems, such as the multitude of protocols and APIs, exacerbates security issues, which must

be addressed. Thus, securing the decentralized architecture of IoT systems is critical. Security

has been addressed mainly in MDE. Exciting is model-driven security [64], which defines system

models and their security requirements and uses to generate complete and configured system

architectures and access control infrastructures. Model-driven mechanisms for enforcing trust and

managing privacy have been studied since MDE’s birth. MDE can facilitate defining and enforcing

user-friendly, precise, and adequate security and privacy specification policies. It also facilitates

the understanding of how violations of such policies might affect the system’s parts.

2.4 MDE-based approaches for modeling IoT systems

M�ny rese�rch works h�ve b�en d�ne us�ng t�e model-b�sed appro�ch to dev�lop 
oT applic�tions.

These works can be categorised according to the modeling activity they address, where it could be

intended for one or more modeling activities such as development (meta-modeling, transformation,

code generation, design process, and others), analysis, validation and verification, simulation,

monitoring, adaptability, correctness, and others. This section presents a collection of MDE-

based approaches for modeling and verifying IoT systems. We focus on approaches that provide

code generation and formal verification tools.



Chapter 2. Modeling of IoT systems 31

2.4.1 Approaches with code generators

T�e UML4
oT [65] cons�sts of � UML prof�le represent�ng t�e bas�c cons�ructs of t�e LW�2M

pro�ocol [66] �nd REST arch�tectural par�digm for manuf�cturing env�ronments. 
t �as impl�cit

execution semant�cs. UML4
oT prov�des a code gener�tor of t�e ne�ded 
oT-compl�ant interf�ce

to integr�te cyber-phys�cal comp�nents �nto modern 
oT manuf�cturing systems.

C�ccozzi et �l. [67] �ave intr�duced MDE4
oT as �n MDE fr�mework to sup�ort t�e model�ng

�nd self-adapt�tion of emergent conf�gurations of 
oT systems. T�e aut�ors a�m to �ddress

m�ny ch�llenges, such �s system �eterogene�ty and complex�ty, us�ng h�gh-level abstr�ction,

coll�borative deve�opment t�rough sep�ration of concerns �nd runt�me adapt�tions th�t �re sup-

posed to be per�ormed autom�tically by model tr�nsformat�ons. T�e MDE4
oT fr�mework

cons�sts of UML-b�sed dom�in-spec�fic prof�les. 
t def�nes t�e behav�oral �spect of softw�re

comp�nents us�ng st�te mach�nes �nd the Act�on Langu�ge for Found�tional UML (�LF) [68].

�LF helps more �ccess�ble model val�dation and an�lysis and the gener�tion of execut�ble artef�cts

for �eterogeneous t�rgets.

T�e IoTL�nk [69] is an 
oT appl�cation deve�opment too�kit th�t fol�ows a model-dr�ven ap-

pro�ch. 
t en�bles end-users w�th min�mal deve�opment exper�ence to bu�ld 
oT appl�cations. T�e

IoTL�nk toolk�t compr�ses a graph�cal model�ng langu�ge th�t enc�psulates t�e heterogene�ty �nd

complex�ty of t�e 
oT appl�cations �nd a code gener�tor. Us�ng v�sual not�tions, 
oT deve�opers

can spec�fy appl�cation components in a pl�tform-�ndependent model, wh�ch t�en c�n be con-

verted �nto a pl�tform-spec�fic model. T�e code gener�tor can tr�nslate compl�ant models �nto

J�va source codes.


n [70], t�e aut�ors �ave proposed COMF
T (�loud �nd Model-b�sed 
DE for the 
nternet

of Th�ngs) a development environment for the IoT that was built on MDA principles and cloud

computing. COMFIT provides an MDA infrastructure (App Development Module) b�sed on

UML for des�gning IoT appl�cations using high abstraction and App management and execution

module cloud-based web, including simulators and compilers for developing IoT applications.

Using App Development Module, the COMFIT models can be transformed into source code for
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two operating systems, Contiki and TinyOS. COMFIT also supports the compilation or simulation

of the generated code.

MontiThings [71] is a component and connector ADL (Architectural Description Language)

for model�ng 
oT appl�cations. It describes the behavior of IoT applications using components

that exchange data with each other. MontiThings consists of a graphical and textual notation and

includes a code generator for the C++ language. It is an extension of the MontiArc [72] language

based on the Focus calculus [73]. Consequently, the MontiArc models can be verified [74].

In [75, 76], the authors have presented an MDD framework for IoT applications that addresses

the lack of division of roles and the heterogeneity of devices in IoT applications. It presents the

IoTSuite toolkit that aims to quickly develop IoT applications by providing automation. IoTsuite

supports the automation of tasks at the different phases of IoT application development. In

the current implementation, IoTSuite targets Android and JavaSE-enabled devices and MQTT

middleware.

Th�ngML [2] is an appro�ch for develop�ng 
oT appl�cations. It cons�sts of a textu�l DSL �nd

a set of tools. T�e DSL Th�ngML is al�gned w�th UML by apply�ng concepts of components,

st�techarts, and commun�cation by async�ronous mess�ges. 
t also �ncludes a complete act�on

langu�ge to descr�be the bevah�or of components. T�e tools encomp�ss a set of comp�lers tar-

get�ng a l�rge set of pl�tforms and commun�cation protocols. It has a w�de coverage of t�rget

pl�tforms (m�crocontrollers to servers). T�e Th�ngML code gener�tion fr�mework prov�des a

plug�n mechan�sm th�t can support a w�de r�nge of commun�cation protocols such as U�RT, 
2C,

MQTT, Websocket, ROS, and ot�ers.

Ih�rwe et �l. [77] �ave presented t�e CHESS
oT component-b�sed model�ng appro�ch to

support t�e des�gn and an�lysis of industr�al 
oT systems. CHESS
oT prov�des a me�ns to per-

form event-b�sed model�ng for code gener�tion purposes. T�e CHESS
oT spec�fications w�ll be

tr�nsformed �nto Th�ngML models to t�ke adv�ntage of Th�ngML’s code gener�tors. 
n [78], t�e

aut�ors h�ve proposed �n appro�ch to tr�nsform C�PS models �nto Th�ngML langu�ge. It a�ms

to gener�te code from the C�PS spec�fications, w�ere C�PS is an arch�tecture-dr�ven model�ng

fr�mework for 
oT systems deve�opment. Cypr
oT [79] is a fr�mework to model �nd control
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network-b�sed 
oT systems. 
t uses a p�rt of Th�ngML langu�ge to model 
oT th�ngs and t�eir

beh�viors. 
t also uses and �xtends �ts code gener�tor fr�mework.

2.4.2 Approaches with formal verification tools

Much research has been proposed to verify and analyze the IoT application using rewrite logic and

its Maude language. In [80], t�e aut�ors �ave pres�nted a tr�nsform�tion from Com�lex Ev�nt

Proc�ssing (CEP) [81] p�tterns �nto RT-M�ude [82] specif�cations �n order to help dev�lopers

to ver�fy �nd to an�lyze the pro�ram’s propert�es. �ccording to t�e aut�ors, CEP is bec�ming

essent�al in d�verse con�exts, such �s 
oT systems. In [83], the authors present an approach

for analyzing Industrial IoT applications. They have proposed transforming the underlying IEC

61499 standard specifications into Business Process Model Notation (BPMN) models. The BPMN

models enable quantitative analysis of process models. This analysis is achieved by transforming

the business processes to Maude’s specifications. Abbas et al. [84] have proposed an extension of

BPMN 2.0 to model IoT applications and a based-Acceleo tool to transform the extended BPMN

2.0 diagrams into Maude code for analysis purposes. The Maude specifications obtained are used

for model simulation, analysis, and verification. Duran et al. [85] have proposed an approach for

supporting the reconfiguration of rule-based IoT applications. The proposed approach enables

a comparison of two versions of an application (before and after reconfiguration) to check if

several functional and quantitative properties are satisfied. The analysis techniques have been

implemented using formal languages. Where Maude language and its tools have been used to

check the functional properties, the LNT language [86] and the CADP [87] analysis tools have

been used to analyze quantitative properties. These techniques have been integrated into the

WebThings platform [88].

On the other hand, many works propose analyzing IoT applications using different formal

methods. Co�ta et �l. [89] �ave pres�nted an MDE-b�sed met�od to des�gn �nd an�lyze 
oT

appl�cations. T�e authors �ave pro�osed t�e SysML4
oT model�ng langu�ge for 
oT systems.

SysML4
oT �s a SysML prof�le b�sed on t�e 
oT-A Ref�rence Model [90]. �fter th�t, t�ey def�ned

a mapp�ng from SysML4
oT models �nto NuSMV model ch�cker �nput langu�ge [91] us�ng t�e

�cceleo fr�mework to ver�fy the deve�oped system’s qu�lity of serv�ce propert�es. Xu et �l. [92]
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�ave pro�osed extend�ng Th�ngML to �llow des�gners to model perform�nce vari�tions th�t �re

�ffected by uncert�in extern�l env�ronments. The obt�ined models �re tr�nsformed �nto a Net-

work of Pr�ced T�med Autom�ta (NPT�) [93] for quant�tative qu�lity of serv�ce an�lysis of 
oT

appl�cations us�ng UPPAAL-SMC. Oqu�ndo et �l. [94] cons�der 
oT sys�ems a Sys�em-Of-System

(SoS) cl�ss. T�ey �ave sugg�sted us�ng Sos�DL langu�ge to descr�be t�e softw�re arch�tecture of


oT systems. Sos�DL is an SoS Arch�tecture Descr�ption Langu�ge (�DL) b�sed on 𝜋-C�lculus

theory. 
n the liter�ture, Sos�DL des�gns �ave been tr�nsformed into several langu�ges, such

�s DEVS [95] for simul�tion and UPP�AL for model check�ng. In [96], the authors have pro-

posed an MDE-based approach to address security problems in IoT application. It proposes a

pre-execution verification method for IoT applications to meet security and safety requirements.

The authors introduce a domain-specific modeling language to describe IoT appl�cations and a

code gener�tor to convert the models into Lustre programs that can be checked using the Kind 2

[96] model-checker.

2.4.3 Synthesis

Thanks to the biographical study on MDE-based approaches proposed for modeling IoT systems, it

is clear that these methods have great diversity and heterogeneity in terms of techniques used, tools

and even objectives. This is due to the heterogeneity in the IoT regarding software, hardware or

different enabling technologies. It will not be easy to compare these approaches, but a comparison

can be made based on some requirements for approaches to generating operational source code. In

[7, 51], the authors stated a set of requirements that a modeling framework must meet to enable

accurate representation and simulation of systems in general. In addition, we propose two other

requirements (the R2 and R4 elements below) as specific requirements for the code generation

framework. In the following, we introduce each requirement and we analyse its fulfillment by

these IoT modeling approaches.

- Well-Defined Notation(R1): aiming to enable the representation of IoT systems. The

first requirement that a modeling framework must meet is to provide a well-defined notation.

It must cover the elements of its meta-model and provide a tool to support the specification

of IoT systems using the DSL [7].
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- Supported platforms/languages (R2): in a heterogeneous environment like IoT systems

in which system roles may attach to devices with different platforms. It is beneficial to build

frameworks that allow generating code for multiple target platforms/languages. In addition,

provide mechanisms to address the diversity of communication protocols, where IoT systems

are distributed systems based on these communication protocols.

- Extensibility and customization (R3): the third requirement that a modeling frame-

work shall address is a clear definition of how to extend and customize it to allow representing

other aspects that are not covered by the DSL or to eff�ciently and eas�ly custom�ze p�rts

of the code gener�tion process accord�ng to t�e developed appl�cations’ peculi�rities.

- Generated code quality (R4): code generation is not popular among practitioners. This

bad reputation is typically based on experiences with tools producing code with low read-

ability, hard to integrate with existing systems and other components and very hard to

maintain and (or) evolve. It is complicated to judge the quality of the generated code, and

this may require expert opinions in the target language/platform, real-world case studies

or through V&V (verification and validation) or simulation tools. It is also necessary to

evaluate the generated codes in terms of memory usage, execution time, readability, and

traceability.

- Explicit Execution Semantics (R5): to execute and simulate the model allowing an-

swering questions at design-time, the DSL must provide the execution semantics explicitly,

avoiding applying translational approaches.

Through the analysis of the research works done in the field of IoT systems modeling in

general and those specifically interested in code generation, we propose a comparative table (see

Table 2.1) based on the requirements mentioned above. The analysis of how the surveyed modeling

frameworks fulfill the abovementioned requirements is presented below.

Despite the diversity of approaches and contributions, we note that no single solution meets all

the criteria considered. The requirement R1 "Well-Defined Notation" is met by all the modeling

frameworks studied. The majority provide a graphical notation based on UML representing the

domain concepts. Some of these works relied on textual notation, such as [2], while others adopted
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Table 2.1: A comparative study of approaches to modeling IoT systems.

Framework R1 R2 R3 R4 R5

UML4IoT [65] ✓ ✗ ✗ ❊
	

✗

MDE4IoT [67] ✓ ✗ ✗ ❊
	

✓

IoTLink [69] ✓ ✗ ✗ ❊
	

✗

COMFIT [70] ✓ ❊ ✗ ❊
	,


✗

MontiThings [71] ✓ ✗ ✗ ❊
	

✓

IoTsuite [75, 76] ✓ ❊ ✗ ❊
	

✗

ThingML [2] ✓ ✓ ✓ ❊
	,�

✗

✓ = requirement fulfilled; ✗ = requirement not fulfilled; ❊ = requirement partially fulfilled;
	: Case studies ; 
: Simulation ; �: Industrial projects.

a mixed graphical and textual notation [71]. Regarding the second requirement (R2) - "Supported

platforms/languages", the result is that, except ThingML, none of the studied approaches pro-

vides a code generator that supports multiple languages/platforms and communication protocols.

ThingML supports three programming languages and nearly ten platforms and provides a plugin

mechanism to deal with a wide range of communication protocols. The IoTSuite and COMFIT

frameworks partially fulfil this requirement, as IoTSuite targets Android and JavaSE-enabled

devices while COMFIT supports devices running on the TinyOS and Contiki operating systems.

Concerning the third requirement (R3) – “Extensibility and customization,” none of the sur-

veyed approaches provides clear specifications of extensibility rules to extend the DSLs. In addi-

tion, if we exclude ThingML, none of the studied modeling frameworks provides a clear definition

of extending and custom�zing the code gener�tion process accord�ng to t�e developed appl�cations’

peculi�rities. The code generation framework of ThingML has a modular structure that allows

for the customization of some extension points. It identifies ten different extension points, where

each extension point is basically an interface (or abstract class) in the code generation framework

with a set of methods responsible for generating the code associated with a given model element.

For requirement R4, the studied frameworks have demonstrated the quality of the code through

numerous case studies. The COMFIT framework supports the simulation of generated code. For

its part, Th�ngML h�s been used �nd ev�luated in commerc�al and industr�al pro	ects. However,

there is still a need to provide means to verify the operability of the generated code while studying
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its memory consumption and execution time, especially considering that many IoT devices have

limited memory and energy capacities, which require optimized code.

Finally, regarding the fifth requirement (R5) –“Explicit Execution Semantics” – we identify

that only MDE4IoT [67] and MontiThings [71] provide explicit execution semantics. MDE4IoT is

based on the ALF action language to express the behavioral semantics of the system. MontiThings

has formal semantics based on Focus calculus. Moreover, all the other surveyed approaches provide

DSLs with implicit execution semantics; thus, to execute and simulate the system behavior, it

would be necessary to deploy the components in the platforms and verify the various design

alternatives at runtime. Alternatively, it would require translating the system description into a

formal language to execute it.

2.5 Conclusion

In this chapter, we have discussed modeling IoT systems using MDE-based approaches. First, we

have presented in brief the basic concepts of MDE. Then, we have presented and identified some

challenges of modeling IoT systems, and we have also seen the different mechanisms provided

by MDE to address these challenges. Finally, we have presented some model-based approaches

for modeling and analysis of IoT systems with a comparative framework for these approaches.

Through this comparison, it was found that ThingML is a promising approach to modeling IoT

systems independently of the target platforms. The ThingML approach provides a code genera-

tion framework that supports multiple languages, platforms and communication protocols. This

generation framework is also customizable to adapt the specificities of the applications or to sup-

port new platforms or languages. In the next chapter, we will present the ThingML approach in

detail.



Chapter 3

The ThingML approach

3.1 Introduction

IoT systems are complex assemblies of heterogeneous components, frameworks, and services

that are reused, evolved, customized, and composed to create and evolve applications. To

address this complexity, MDE must provide solutions that adapt to this reality, focus on spe-

cific problems, and integrate into the software development process. It can be beneficial for

many purposes, such as increasing productivity by automatically generating code from mod-

els. Th�ngML [2] �s �n MDE-b�sed appro�ch to �ddress the ch�llenges of heterogene�ty �n

model�ng 
oT appl�cations. 
t compr�ses a Dom�in-Spec�fic Langu�ge (DSL) wh�ch comb�nes well-

proven softw�re model�ng cons�ructs for the des�gn of 
oT systems �nd adv�nced code gener�tion

fr�mework. T�e code gener�tion fr�mework c�n tr�nsform the Th�ngML models �nto oper�tional

code �n var�ous progr�mming langu�ges (J�va, Jav�script, and C / C ++), t�rgeting various hard-

ware platforms (from micro-controllers to powerful servers) and multiple communication protocols.

Therefore, the ThingML approach is especially beneficial for applications that include heteroge-

neous platforms and communication channels. In this chapter, we will present the ThingML

approach. We start by presenting the ThingML DSL, and the main concepts of this language.

Thereafter, we introduce the code generation framework. Finally, we present some lacks and limits

of the ThingML approach.

3.2 ThingML Domain-Specific Language

Th�ngML �s � UML prof�le conce�ved to model 
oT appl�cations as a Dom�in-Spec�fic Model�ng

textu�l Langu�ge (DSML) [2, 9]. 
ts textu�l synt�x is def�ned us�ng the Xtext fr�mework [59] b�sed

on the Ecl�pse Model�ng Fr�mework (EMF) [97]. Xtext �llows t�e development of textu�l DSLs.

38
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t uses �n Ext�nded B�ckus-N�ur Form (EBNF)-like langu�ge to def�ne t�e DSL gr�mmar of t�e

developed langu�ge. List�ng 3.1 repr�sents an exc�rpt from t�e Th�ngML gr�mmar expr�ssed in

t�e EBNF langu�ge. Th�s exc�rpt s�ows p�rt of t�e con�rete textu�l synt�x of t�e st�te mach�ne

th�t cons�sts of st�tes. A st�te can be a s�mple, fin�l, or compos�te st�te. 
t can inc�ude propert�es

�nd -intern�l- trans�tions, �nd per�orm act�ons on en�ry �nd ex�t. A tr�nsition must �ave a t�rget,

�nd it c�n �ave a tr�ggering event, a gu�rd cond�tion, �nd act�ons to be per�ormed dur�ng t�e

tr�nsition.
/************************************************************************
*       STATE MECHINES                                                  *
************************************************************************/
State returns State:

StateMachine | FinalState | CompositeState |
'state' name=ID ( annotations+=PlatformAnnotation )* '{'

(properties+=Property)*
(
   ('on' 'entry' entry=Action)? &
   ('on' 'exit' exit=Action)? &
   (properties+=Property | internal+=InternalTransition | 

                  outgoing+=Transition)*
)

'}';
Handler:

Transition | InternalTransition
;
Transition returns Transition:

'transition' (name=ID)? '->' target=[State|ID] 
( annotations+=PlatformAnnotation )*
('event' event=Event)?
('guard' guard=Expression)?
('action' action=Action)?;

InternalTransition returns InternalTransition:
{InternalTransition}
'internal' (name=ID)?
( annotations+=PlatformAnnotation )*
('event' event=Event)?
('guard' guard=Expression)?
('action' action=Action)?;

Listing 3.1: �n excerpt of t�e Th�ngML gr�mmar expr�ssed �n EBNF [98].

T�e Xtext fr�mework uses t�e EBNF gr�mmar to autom�tically gener�te a compre�ensive

text ed�tor �nd �n Ecore-b�sed met�-model of t�e developed langu�ge. T�e textu�l ed�tor prov�des

dev�loper �elp fe�tures such �s synt�x highl�ghting, error dete�tion m�rkers, �nd �uto-com�letion.

3.2.1 Meta-model

Th�ngML is �n open-so�rce pro	ect; �ts met�-model, ed�tors, �nd assoc�ated too�set of code gen-

eration �re av�ilable �n [98]. T�e Th�ngML DSL m�inly rel�es on two stru�tures [2]: Th�ng

�nd Conf�guration, w�ere Th�ng repr�sents t�e appl�cation components, �nd Conf�guration de-

scr�bes t�e inst�ntiation of t�ese comp�nents �nd t�eir �nterconnection. Moreover, t�e component

beh�viors �re modeled us�ng St�techarts and an imper�tive pl�tform-�ndependent act�on langu�ge.
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Figure 3.1: �n exc�rpt of t�e Th�ngML met�-model.

F�gure 3.1 repr�sents �n exc�rpt of t�e Th�ngML met�-model. 
t s�ows the m�in Th�ngML

model concepts �nd the rel�tionships between t�ese concepts. 
n s�ort, �s st�ted e�rlier, a

Th�ngML model, descr�bed by the Th�ngMLModel cl�ss �n t�is met�-model, c�n be expr�ssed

as a combin�tion of th�ngs �nd conf�gurations. T�e Th�ng class inc�udes (compos�tion rel�tion)

sever�l comp�nents such �s mess�ges, funct�ons, propert�es, st�te mach�nes, �nd ports. E�ch of

t�ese comp�nents is descr�bed by a cl�ss in t�e met�-model.

ReceiveMessage Event ExpressionHandler

Message
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[0..1] initial
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Port Transition

Region StateContainer

InternalTransition
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[0..1] guard
[0..1] action

[0..*] internal

[0..*] substate 

[0..1] entry

[0..1] exit
[0..*] outgoing[0..1] target

[0..*] properties

[0..1] event

Figure 3.2: �n exc�rpt of t�e Th�ngML met�-model (t�e st�te mach�ne part).

F�gure 3.2 s�ows t�e st�te mach�ne p�rt in t�e Th�ngML met�-model. T�e St�te cl�ss pre�ents

t�e m�in cl�ss; �t cont�ins act�on on entry, act�on on ex�t, propert�es, and tr�nsitions. T�e st�tes

m�y also cont�in compos�te st�tes th�t can be sequent�al or conc�rrent. A tr�nsition �as a t�rget
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st�te �nd can cont�in an event, a gu�rd cond�tion, and an act�on. �n event �s a mess�ge t�at

arr�ves v�a a port.

RequiredPort Port

Thing

Instance

ProvidedPort InternalPort

AbstractConnector

Protocol ExternalConnectorConnector

[0..*] instances

Configuration

[0..*] instances

[0..1] type

[0..1] cli

[0..1] srv

[0..1] protocol

[0..1] provided [0..1] required [0..1] port

[0..1] inst

Figure 3.3: �n ex�erpt of t�e Th�ngML met�-model (t�e conf�guration p�rt).

F�gure 3.3 pre�ents t�e conf�guration p�rt �n the Th�ngML met�-model. A conf�guration c�n

�nclude inst�nces �nd conn�ctors. A conector �as a cl�ent �nstance (def�ned by t�e cl� rel�tion)

�nd a server �nstance (def�ned by t�e srv rel�tion). 
t also �as a prov�ded port (def�ned by t�e

prov�ded rel�tion) �nd a requ�red port (def�ned by t�e requ�red rel�tion). T�e type rel�tion l�nks

the two cl�sses, 
nstance �nd Th�ng.

3.2.2 Th�ng

The main component in ThingML is the thing construct. A th�ng, c�lled process or comp�nent

�n ot�er appro�ches, is ma�nly a softw�re comp�nent but c�n represent a software wrapper of a

hardware component, for example a light-emitting diode, a piezoelectric buzzer, an algorithm, or

an entire program. The things are entirely modular, for example if a thing LED is created, this

LED can be reused for all LEDs used in the application, circuit, and even other applications. In

other words, the generic behavior of a LED is defined once and becomes available to be used in

all applications. A Th�ng c�n �nclude mess�ges, ports, funct�ons, propert�es, �nd a st�te mach�ne.

The internal beh�vior of the th�ng is def�ned as a st�te mach�ne within the thing component.

Commun�cation between th�ngs can only be m�de by async�ronous mess�ges carr�ed v�a ports.

Therefore, mess�ges c�n only be sent �nd rece�ved t�rough ports. T�ese mess�ges m�y cont�in

par�meters of �ny d�ta type supported by Th�ngML. F�nally, t�e propert�es def�ne local var�ables

th�t are only access�ble by the�r th�ng’s st�te mach�nes and funct�ons.
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If a thing has one or more ports that it provides, these ports can be defined as a fragmented

thing or defined in the thing itself. A fr�gment def�nes a th�ng th�t cannot be instant�ated but

is �ncluded in ot�er th�ngs. T�e fr�gment is cre�ted by the keywords “thing fragment" and are

followed by a name that ends with “Msgs” (see Listing 3.2). Inside the fragment, all messages

that the port must handle must be defined. With all messages defined, this fragment can now be

used as an interface for things; this means that several different things can include this fragment.

1 // Thing fragment definition (this is a comment)
2 thing fragment LedMgs {
3 // Definition of messages
4 message led_ON();
5 message led_OFF();
6 }

Listing 3.2: Specification of a thing fragment and messages

The communication between things in ThingML happens through the use of ports. A port can

send and receive messages to and from other ports. A thing can provide a port, which becomes

available for other things to use. Ports can also be required, meaning a thing can state that it

uses another port. The communication through ports is done with asynchronous message passing.

The messages sent through the port are the main way of triggering transitions and internal events,

making the state machine change states and make the program go on. Listing 3.3 (Lines 10-12

and 18-20) presents an example of a required port and a provided port. These ports are taken

from the blink program provided in ThingML [99].

7 // Thing definition
8 thing Blink includes LEDMsgs {
9 // Required port definition

10 required port led {
11 sends led_ON, led_OFF
12 }
13 ...
14 }
15 // Thing definition
16 thing LED includes LEDMsgs {
17 // Provided port definition
18 provided port ctrl {
19 receives led_ON, led_OFF
20 }
21 ...
22 }

Listing 3.3: Declaration of ports in ThingML
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The T�ingML langu�ge spec�fies t�e dynam�c beh�vior of appl�cation components by a m�x

of st�te mach�nes, a pl�tform-�ndependent act�on langu�ge, and t�rget langu�ges [2]. W�ere

Th�ngML prov�des a set of annot�tions that en�ble des�gners to use t�e target langu�ges and

benef�t from ex�sting libr�ries.

3.2.3 T�e pl�tform-�ndependent �ction langu�ge

Th�ngML descr�bes t�e ar�thmetic �nd Boole�n express�ons, send�ng �nd rece�ving mess�ges,

decl�ring loc�l vari�bles or funct�ons, and call�ng funct�ons with a pl�tform-�ndependent act�on

langu�ge. Note th�t the act�on langu�ge supports stru�tured progr�mming by �f (-else) cond�tional

act�on and by wh�le and for iter�tive act�ons (loops). T�ble 3.1 pre�ents a simpl�fied exc�rpt of

t�e synt�x of th�s act�on langu�ge descr�bed in t�e B�ckus-N�ur Form (BNF) (see [98] for the

comp�ete gr�mmar).

Table 3.1: T�e synt�x of pl�tform-�ndependent act�on langu�ge in BNF.
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3.2.4 St�te mach�ne

Conform�ng to UML st�techarts, the st�te mach�ne re�cts accord�ng to events correspond�ng to

incom�ng mess�ges on t�e ports �nd the loc�l propert�es’ v�lues. T�eir structure c�n �nclude st�tes

(�tomic or compos�te), trans�tions, and par�llel reg�ons. T�e st�te mach�ne c�n run act�ons or c�ll

funct�ons in t�ree w�ys: enter�ng the st�tes, ex�ting the st�tes, or dur�ng the trans�tions. T�e

trans�tions �re the only way of ch�nging the st�te mach�ne from one st�te to anot�er. T�ey f�re



Chapter 3. The ThingML approach 44

w�en a mess�ge arr�ves v�a ports, and t�eir gu�rd cond�tions �re evalu�ted to be true. Par�llel

reg�ons are used to descr�be the ort�ogonal st�te mech�nism (a.k.a. conc�rrent st�tes). An

ort�ogonal st�te is a compos�te st�te cont�ining sev�ral conc�rrent subst�tes c�lled reg�ons. E�ch

reg�on repr�sents an execut�on flow.

7 // Thing behavior declaration
8 statechart Blink init ON {
9 state OFF {

10 on entry do
11 led!led_OFF()
12 timer!timer_start(0, 1000)
13 end
14 transition -> ON event e : timer?timer_timeout
15 }
16 state ON {
17 on entry do
18 led!led_ON()
19 timer!timer_start(0, 800)
20 end
21 transition -> OFF event e : timer?timer_timeout
22 }
23 }

Listing 3.4: Definition of a state machine in the ThingML language

3.2.5 Conf�guration

A conf�guration cons�sts of �nstances �nd connectors descr�bing a concrete appl�cation. The in-

stance in�erits �ll parent Th�ng char�cteristics, such �s mess�ges, ports, propert�es, �nd behav�or.

T�e conn�ctor repr�sents a l�nk bet�een two po�ts, a requ�red port on t�e f�rst end �nd a prov�ded

po�t on t�e se�ond end, w�ere the async�ronous mess�ges �re rou�ed be�ween t�ese two ends.

7 // Configuration definition
8 configuration BlinkApp {
9 // Declaration of instances

10 // blink is an instance of the "Blink" thing
11 instance blink : Blink
12 // led is an instance of the "LED" thing
13 instance led : LED
14 // Connector declaration
15 connector blink.led => led.ctrl // a required port => a provided port
16 }

Listing 3.5: Definition of a configuration in the ThingML language
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3.3 C�de generat�on fr�mework

One of the selling points of Model-Driven Software Engineering (MDSE) is the increased produc-

tivity offered by automatically generating code from models [2]. The ThingML approach includes

a modeling language and tool designed for supporting code generation and a multi-platform code

generation framework. It focuses on the customizability of its code generators while providing

the abstraction developers need to improve productivity [100]. The approach does not aim at

replacing programming or hiding source code but instead at helping developers produce better

source code more efficiently. ThingML is implemented in an open-source tool providing a family

of code generators targeting heterogeneous platforms. Where its code generation framework has

been used to generate code in 3 different languages (C/C++, Java, and Javascript), targeting

around ten different target platforms (ranging from tiny 8bit microcontrollers to servers) and ten

different communication protocols (see Table 3.2). The ThingML code generation framework also

provides a plugin mechanism that can support a wide range of communication protocols such as

UART, I2C, MQTT, Websocket, ROS, and others. It has been evaluated through several case

studies and it is used to develop a commercial ambient assisted living system [2]. The ThingML

approach is currently being used by the Norwegian company Tellu [101] for the development of a

new range of eHealth and fall detection systems called Safe@Home [102] to be deployed in elderly

homes.

Table 3.2: Platforms supported by the code generation framework [2].

Platform Memory Type Target language

Avr 8bits
 2-8 KB Micro Controller C/C++
TI MSP430 8 KB Micro Controller C/C++
ARM Cortex PSoC 4 32KB Embedded Processor C/C++
Espruino (ARM) 48KB Embedded Processor javascript(JS)
MIPS(Atheros AR9331) 64 MB Embedded Processor C/C++,JS,java
Raspberry Pi 0.5-1GB Embedded Processor C/C++,JS,java
Intel Edison 1 GB Embedded Processor C/C++,JS,java
x86 GBs Processor C/C++,JS,java
Linux/Windows GBs Cloud C/C++,JS,java

T�e stru�ture of th�s fr�mework m�kes it hig�ly custom�zable, allow�ng t�e developer to
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eff�ciently and e�sily custom�ze p�rts of t�e code gener�tion process accord�ng to t�e deve�oped

appl�cations’ peculi�rities [2, 9]. This modular structure allows for the customization of some

extension points while all the others can be reused as-is. Figure 3.4 presents the ten different

extension points we have identified. Each extension point is an interface (or abstract class) in the

code generation framework with a set of methods responsible for generating the code associated

with a given model element.

Figure 3.4: ThingML framework extension points [2].

3.4 Lacks and limits of the ThingML approach

ThingML is a tool-supported model-driven software engineering approach targeting the hetero-

geneity and distribution challenges associated with developing IoT systems. ThingML is based

on a domain-specific modeling language integrating state-of-the-art concepts for modeling IoT

systems and comes with a set of compilers targeting a large set of platforms and communication

protocols. However, the ThingML approach may have some limitations, which can be summarized

as follows:

(I) Th�ngML does not �ave r�gorous sem�ntics to support form�l re�soning �bout system

des�gns. Conse�uently, detect�ng unw�nted beh�viors becomes extr� compl�cated, not�bly
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for miss�on-crit�cal 
oT systems w�ere reli�bility is necess�ry bec�use fa�lure is potent�ally

cat�strophic. To address this limitation, , we propose a tool-based approach to transform the

ThingML designs into Maude’s Rewriting Logic language, which enables rigorous analysis

and verification of ThingML designs (see Chapter 5).

(II) T�e Th�ngML DSL prov�des a textu�l synt�x to descr�be applic�tions 
oT in a pl�tform-

�ndependent w�y. It descr�bes t�e dyn�mic beh�vior of components us�ng a m�x of st�te

ch�rts, commun�cation by async�ronous mess�ges, a pl�tform-�ndependent act�on langu�ge,

�nd t�rget langu�ges. T�erefore, t�ese specif�cations can �nclude m�ny det�ils t�at decre�se

the�r legib�lity. In this context, we develop a hybrid modeling editor for the ThingML lan-

guage (see Chapter 6). The hybrid editors present the best modeling solutions that combine

textual notations with graphical notations and accumulate their advantages. It facilitates

the modeling process and helps to clarify and better understand textual models. On the

ot�er h�nd, the Th�ngML �pproach l�cks tools to test and �nalyse the gener�ted codes from

spec�fications �efore �eployment on dev�ces. We adopt a simulation approach using Pro-

teus software in the second contribution (see Chapter 6). It enables rapid prototyping of

the application hardware circuit and test and evaluates the generated code source on this

circuit.

3.5 Conclusion

In this chapter, we have presented the ThingML approach. We have focused on its DSL and its

code generation framework. We have explained the basic concepts of the ThingML DSL as well

as the main characteristics of the code generation framework. Finally, we went over the lacks

and limits of the ThingML approach. We have found that ThingML is a promising approach to

modeling IoT systems, especially their code generation framework, which generates an operational

code for several languages/platforms. However, it lacks explicit execution semantics to execute

and simulate the model to analyze and answer questions at design time. In the next chapter, we

will describe the basic concepts of Rewriting Logic, its purpose in providing a unifying semantic

framework for ThingML models and its power to describe their structural and behavioral aspects.
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Rewriting Logic and Maude

4.1 Introduction

Given the increasing complexity of systems along with the safety and proper functioning

constraints associated, developing these systems increasingly calls for modeling, verifica-

tion and validation activities. Modeling makes it possible to separate the different concerns in

the development cycle by providing developers with modeling languages to express precisely the

necessary information. To ensure the reliability and dependability of the system, especially in the

early stages of its design, it is necessary to use analysis techniques to check the models against

the expected properties. Many verification methods exist in the literature have proven their

effectiveness. These methods aim to discover errors during the system development process. For-

mal methods are effective techniques to achieve this purpose. Rewr�ting Log�c prov�des a powerful

form�l met�od t�at c�n form�lly repr�sent a w�de r�nge of l�nguages and systems. It also prov�des

�owerful ver�fication �ools, �ncluding s�mulation and �odel check�ng.

In the first part of this chapter, we will present the verification methods that can be used

within the framework of a system engineering approach based on models. We will focus mainly on

formal verification methods. The second part of the chapter will be devoted to the presentation

of the Rewriting Logic and its language Maude. In particular, we will detail the implementation

of the executable operational semantics in Maude.

48
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4.2 Verification techniques

4.2.1 Test

We mention testing among the means used to improve the quality of systems and ensure their

proper functioning. The aim is to verify that a certain number of scenarios respect the system’s

specifications to be developed. It can be used to verify different properties and requirements,

either functional or non-functional (such as reliability, performance, and security requirements).

Testing consists of stimulating the system with test inputs and comparing the obtained behavior

with the expected behavior [103]. A test procedure is perfect if it confronts the system with

all possible inputs. This completeness is usually not possible. Dijkstra had already commented

on this fact in 1976: "the test can only show the presence of bugs (errors), but it can never

demonstrate the absence of bugs". Tests do not totally allow the validation of the final system.

However, some tools can be used to generate test sets from a specification to improve the coverage

and effectiveness of these tests.

4.2.2 Simulation

Another way to validate systems is to simulate the dynamic behavior of the system and thus

obtain an execution trace. This simulation can be performed in batch from a pre-defined scenario

or interactively. This last solution allows the user to build the execution trace from the events he

injects progressively. The user can also see his model evolve throughout the execution and thus

visually control the system’s behaviour for a given execution. Simulation allows for improving the

understanding of a system without having to manipulate it, either because it is not yet defined or

available, or because it cannot be directly manipulated due to cost, time, resources or risk. The

simulation is therefore performed on a model of the system.

Simulation is generally defined in three stages. The first step consists in generating a rep-

resentation of the workload, i.e. the set of inputs to be applied to the studied system. This

representation can be a trace (or a scenario) describing an actual workload or more synthetic and

generated by a heuristic or a stochastic function. The second step consists in simulating the model
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from the workload defined as the input to produce the results. Finally, the third step consists in

analyzing the results of the simulation to gain a better understanding of the considered system.

4.2.3 Formal verification techniques

Generally, there are two main families of techniques to formally verify a system’s correctness. First,

theorem-proving techniques are mathematical proofs in the classical sense of the term, where the

verification of properties is done by deduction from a set of axioms and rules of inference. The

second family of techniques is called model-checking and decides if a system behavior model

satisfies a given property (expressed in temporal logic) by exploring the model state space.

In the theorem-proving technique, the system and the properties sought are expressed as

formulas in mathematical logic. This logic is described by a formal system that defines a set of

axioms and deduction rules. Theorem proving is the process of finding the proof of a property

from the system’s axioms. This can be done with the help of an interactive proof assistant,

which is designed to help the user construct a formal axiomatic proof. The steps during the proof

involve the axioms, rules, the definitions and lemmas that were eventually derived. Theorem

proving can be used with infinite state spaces using techniques like structural induction. Its

primary disadvantage is that the verification process is usually slow, error-prone, labor-intensive

and requires very specialized users with much expertise.

Model-checker

System 
model

Property 
specification

True

Result

Counter
example

Figure 4.1: Model Checking Process.

Model check�ng is a form�l verif�cation techn�que to determ�ne �f � system sat�sfies a set of

propert�es. Solv�ng t�e model-check�ng pro�lem is done us�ng a softw�re tool c�lled model c�ecker.

F�gure 4.1 s�ows t�at a model c�ecker typ�cally sup�orts two spec�fication le�els, sy�tem and
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property. T�e system specif�cation level, prov�ded by t�e sy�tem mo�el, form�lizes t�e sy�tem’s

beh�vior to be an�lyzed. T�e pro�erty spec�fication le�el in wh�ch we spec�fy some pro�erty (or

propert�es) t�at we want to c�eck �bout t�e an�lyzed system. B�sed on a part�al or exh�ustive

explor�tion of t�e model’s st�te sp�ce, t�e model c�ecker eit�er out�uts a cl�im th�t t�e pro�erty

is true or prov�des a counterex�mple report�ng t�e incons�stency.

4.3 Rewriting Logic

Rewr�ting Log�c was pro�osed by J. Mes�guer [11] as a un�fied log�c t�at gener�lizes equ�tional

log�c and term rewr�ting for concu�rency. It �s a gener�l sem�ntic fr�mework in wh�ch m�ny

(progr�mming or model�ng) langu�ges �nd systems c�n be natur�lly spec�fied and an�lyzed. We

present �n t�is sect�on the b�sic �deas �bout rewr�ting log�c, t�e M�ude system, �nd spec�fying

progr�mming langu�ge sem�ntics in M�ude.

4.3.1 Rewrite theory

Definition 3.1. A signature of the membership equational logic is defined as a triple ∑ =

(𝐾, 𝐹, 𝑆), where:

➥ K is a set of Kinds;

➥ F is a set of 𝐾∗ ∗ 𝐾 function operations, where each symbol 𝑓 ∈ 𝐹𝑘	....𝑘𝑛 is denoted by

𝑓 ∶ 𝑘	...𝑘𝑛 → 𝑘;

➥ 𝑆 = 𝑆𝑘 a K-kinded family of disjoint sets of sorts.

Definition 3.2. A membership equational theory is a pair (∑, 𝐸) with:

➥ ∑ is a signature of the membership equational logic;

➥ 𝐸 is a set of -possibly conditional- ∑−equations (𝑡 = 𝑡
′ if 𝑐𝑜𝑛𝑑) and -possibly conditional-

∑− memberships (𝑡 ∶ 𝑠 if 𝑐𝑜𝑛𝑑) for 𝑡, 𝑡
′
∈ 𝑇∑(𝑋)𝑘 and 𝑠 ∈ 𝑆𝑘. 𝑇∑(𝑋)𝑘 denotes the set of

∑−𝑡𝑒𝑟𝑚𝑠 with kind over the set X of kinded variables. 𝑐𝑜𝑛𝑑 is a condition of the general

form ∧𝑖𝑝𝑖 = 𝑞𝑖 ∧ ∧𝑗𝑤𝑗 ∶ 𝑠𝑗 .

Definition 3.3. A rewr�te t�eory is def�ned as a tr�ple ℛ = (∑, 𝐸, 𝑅), w�ere
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➥ (∑, 𝐸) �s �n equat�onal t�eory (�t c�n be m�ny-so�ted, or�er-so�ted, or a membersh�p

equ�tional t�eory [104]);

➥ R �s � set of l�beled -poss�bly cond�tional- rewr�ting rules appl�ed modulo t�e equ�tions E.

T�e equat�onal t�eory (∑, 𝐸) descr�bes system st�tes as t�e algebr�ic d�ta type 𝑇∑ /𝐸, �nd t�e

rewr�ting rules R descr�be the dyn�mic beh�vior of conc�rrent sys�ems. A rewr�ting rule �as t�e

form 𝑟 ∶ t → t’ if Cond w�th r a l�bel �nd t, t’ terms. 
t ind�cates t�at t�e term t is tr�nsformed

�nto t’ if t�e cond�tion Cond is sat�sfied w�ere a term repr�sents t�e descr�bed system’s st�te or

part�al st�te. A rule’s cond�tion c�n h�ve a conjunct�on of rewr�tes, equ�tions, and membersh�ps,

w�th t�e gener�l form (∧𝑖𝑢𝑖 = 𝑢
′
𝑖) ∧ (∧𝑗𝑣𝑗 ∶ 𝑠𝑗) ∧ (∧𝑙𝑤𝑙 → 𝑤

′
𝑙).

4.3.2 Deduction rules

T�e rewr�te t�eory is v�ewed as �n execut�ble specif�cation or a prot�type of t�e conc�rrent sy�tem

th�t it formal�zes. Comput�tion in a conc�rrent sy�tem is a seq�ence of trans�tions (rewr�te rules)

exe�uted from a g�ven in�tial st�te. It corr�sponds to p�oof or deduct�on in t�e rewr�te log�c. Th�s

deduct�on is intr�nsically conc�rrent �nd �llows corr�ct re�soning on t�e system’s evolut�on from

one st�te to anot�er. G�ven a rewr�ting t�eory ℛ = (∑, 𝐸, 𝑅), we s�y t�at t�e se�uence [𝑡] → [𝑡′]

is prov�ble �n ℛ, �nd we wr�te ℛ ⊢ [𝑡] → [𝑡′] if �nd only �f [𝑡] → [𝑡′] is obt�ined by f�nite

appl�cation of t�e follow�ng deduct�on �ules [11]:

➥ Reflex�vity. For e�ch term [𝑡] ∈ 𝑇∑ /𝐸(𝑋), [𝑡] → [𝑡] , w�ere 𝑇∑ /𝐸(𝑋) �s t�e set of ∑-t�rms

w�th vari�bles bu�lt on t�e ∑-s�gnature �nd E-equ�tions.

➥ Congruence. For e�ch funct�on 𝑓 ∈ ∑𝑛, 𝑛 ∈ N, [𝑡	] → [𝑡′	]...[𝑡𝑛] → [𝑡′𝑛]
[𝑓(𝑡	, ..., 𝑡𝑛)] → [𝑓(𝑡′	, ..., 𝑡′𝑛)]

➥ Uncond�tional replacement. For each unconditional rule

𝑟 ∶ [𝑡(𝑥	, ..., 𝑥𝑛)] → [𝑡′(𝑥	, ..., 𝑥𝑛)] ∈ 𝑅 , [𝑤	] → [𝑤′	]...[𝑤𝑛] → [𝑤′𝑛]
[𝑡( �𝑤/�𝑥)] → [𝑡( �𝑤′/�𝑥)] Knowing that 𝑡( �𝑤/�𝑥)

denotes t�e simult�neous subst�tution of 𝑥𝑖 by 𝑤𝑖 in 𝑡, with 	 ≤ 𝑖 ≥ 𝑛.

➥ Replacement. For each rule 𝑟 ∶ [𝑡(�𝑥)] → [𝑡′(�𝑥)] 𝑖𝑓 [𝑢	(�𝑥)] → [𝑣	(�𝑥)] ∧ ... ∧ [𝑢𝑘(�𝑥)] →

[𝑣𝑘(�𝑥)] ∈ 𝑅 ,

[𝑤	] → [𝑤′	] ... [𝑤𝑛] → [𝑤′𝑛]

[𝑢	( �𝑤/�𝑥)] → [𝑣	( �𝑤/�𝑥)] ... [𝑢𝑘( �𝑤/�𝑥)] → [𝑣𝑘( �𝑤/�𝑥)]
[𝑡( �𝑤/�𝑥)] → [𝑡( �𝑤′/�𝑥)]
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➥ Transitivity.
[𝑡	] → [𝑡
] [𝑡
] → [𝑡�]

[𝑡	] → [𝑡�]

4.4 Maude language

Rewr�ting log�c �as been �mplemented in d�fferent log�cal langu�ges. The M�ude langu�ge [15, 105]

is a w�dely used implement�tion of rewr�ting log�c [106]. 
t is a s�mple, express�ve and eff�cient

langu�ge b�sed on the equat�onal members�ip log�c and rewr�ting log�c; it �lso sup�orts execut�ble

specif�cation and progr�mming [107]. T�e b�sic un�ts of specif�cation or progr�mming in M�ude

are c�lled mod�les. T�e b�sic types of mod�les in Core-M�ude �re funct�onal mod�les �nd sy�tem

mod�les [108]. Funct�onal mod�les to impl�ment membersh�p equat�onal theor�es. Sys�em mod�les

�mplement rewr�ting theor�es �nd def�ne the dynam�c behav�or of a sys�em.

4.4.1 Functional module

The implementation of the functional modules is based on equational theories [109]. These mod-

ules allow the definition of data types and operators (operations on these data). An equational

simplification materializes the rewriting within these modules. Equational simplification is rewrit-

ing an initial expression until no equation is applicable. The result is called the canonical form,

which is the same whatever the order of execution of the equations. The keywords that introduce

a functional module are:

fmod ModuleId is Module body endfm

ModuleId is the ident�fier of the funct�onal mod�le, t�e mod�le b�dy def�nes d�ta t�pes �nd t�eir

funct�ons by me�ns of a membersh�p equat�onal t�eory of t�e form (∑,𝑀 ∪ 𝐸 ∪ 𝐴), w�ere:

(i) ∑ is a s�gnature def�ning the �orts, su�sort, and the operat�ons used in the t�eory. The sorts

present the d�ta types; they are decl�red accord�ng to the syntax:

sort SortId .

We can order the data types by indicating the kinds that have a relationship between them

using the keyword subsort (or subsorts) according to the syntax:

subsort Sort1 < Sort2 .
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This means that Sort1 is a subsort of Sort2. The operat�ons use� to de�lare t�e const�nts

and funct�on symbols used �n the t�eory. An operation with its arguments (sorts) is declared

in the general form:

op OpId : Sort1 Sort2 ... SortN -> ResultSort .

If an operation’s argument set is empty, that operator is named a constant of ResultSort.

(ii) 𝐸 �s a set of -poss�bly cond�tional- equ�tions used as simpl�fication ru�es to ev�luate the

terms to t�eir canon�cal fo�m. Reduc�ng wit� the 𝐸 equat�ons is �erformed �odulo 𝐴.

Unconditional equations are declared using the eq keyword according to the following general

schema:

eq Term-1 = Term-2 .

The terms Term-1 and Term-2 must both have the same sort. Conditional equations are

declared using the ceq keyword according to the following general schema:

ceq Term-1 = Term-2 if EqCondition .

A condition can be a single equation, membership, or conjunction of equations and mem-

berships.

(iii) 𝐴 �s a set of equ�tional ax�oms (suc� as assoc�ativity, commut�tivity, �nd ident�ty) satisf�ed

by some of t�e funct�on symb�ls in ∑.

(iv) 𝑀 is � collect�on of -poss�bly cond�tional- membersh�ps. Uncond�tional. Members�ip axioms

specify terms as having a given sort. They are declared with the mb and cmb keywords

according to the following form:

mb Term : Sort . --- Unconditional Memberships
cmb Term : Sort if EqCondition . --- Conditional Memberships

Variables can be declared in modules using the var or vars keywords or introduced directly into

equations and membership tests in the form of an X: SortId expression that declares a variable

named X of sort SortId.

1 mod NAT-ADD is
2 sorts Nat NzNat .
3 subsort NzNat < Nat .
4 op O : -> Nat [ctor] .
5 op s_ : Nat -> Nat [ctor] .
6 op _+_ : Nat Nat -> Nat .
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7 vars N M : Nat .
8 cmb N : NzNat if N =\= 0 .
9 eq 0 + N = N .

10 eq s N + M = s (N + M) .
11 endm

Listing 4.1: Example of a functional module

Listing 4.1 shows an example of a functional module named NAT-ADD introducing two sorts,

Nat to represent natural numbers and NzNat to represent non-zero natural numbers (lines 2, 8).

We declared the sort NzNat as a sub-sort of Nat (in line 3). This module shows an alternative

way to define natural numbers using the s (successor) operation (line 5). Thus, only one base

number exists (the constant "0") (line 4), and the other numbers are defined using the successor

operation (line 10).

4.4.2 Sys�em mod�le

A sy�tem mod�le spec�fies a rewr�te t�eory of t�e f�rm ℛ = (∑, 𝑀 ∪ 𝐸 ∪ 𝐴, 𝑅). 
t ex�ends

t�e funct�onal mod�le by introduc�ng a set of -poss�bly cond�tional- rewr�ting rul�s wh�ch def�ne

t�e system beh�viors. 
n ot�er words, rewr�ting rul�s spec�fy t�e conc�rrent loc�l trans�tions

perf�rmed in t�e sy�tem. A system module is declared as follows:

mod ModuleId is Module body endm

Where ModuleId is the identifier of the system module, the module body contains the same

elements as those of the equational theory except for the rewriting rules.

➥ Unconditional rewriting rules: The system’s dynamism can be modeled using rewriting

rules. Each rule has the following form:

rl [label] : t => t' .

➥ Conditional rewriting rules: The rewrite rules of this category will be executed if their

conditions are evaluated to be true. These rules are declared as follows:

crl [label] : t => t' if C .
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We consider a concurrent vending machine system to buy apples and cakes, where the user

can insert dollars and quarters [105]. A cake costs a dollar, and an apple three quarters. When

the user buys an apple, the machine takes a dollar and returns a quarter. The machine can change

four quarters into a dollar. The system module shown in Listing 4.2, called VENDING-MACHINE ,

presents a specification of the vending machine’s behavior.

1 mod VENDING-MACHINE is
2 sorts Coin Item Marking .
3 subsorts Coin Item < Marking .
4 op __ : Marking Marking -> Marking [assoc comm id: null] .
5 op null : -> Marking .
6 ops $ q : -> Coin .
7 ops a c : -> Item .
8 var M : Marking .
9 rl [add-q] : M => M q .

10 rl [add-$] : M => M $ .
11 rl [buy-c] : $ => c .
12 rl [buy-a] : $ => a q .
13 rl [change] : q q q q => $ .
14 endm

Listing 4.2: Example of a system module

This specification introduces the $ and q constants to represent dollar and quarter coins,

respectively (line 6), and the a and c constants to represent apples and cakes, respectively (line 7).

The operations performed by the machine are specified using the rewriting rules. These are the

following operations:

➥ Insert a quarter coin in the machine, described by the add-q rewriting rule (line 9).

➥ Insert a dollar coin in the machine, described by the add-$ rewriting rule (line 10).

➥ Buy a cake that costs 1 $, described by the buy-c rewriting rule (line 11).

➥ Buy an apple that costs three quarters, it described by the buy-a rewriting rule (line 12).

➥ Change four quarters into a dollar, described by the change rewriting rule (line 13).

4.4.3 S�mulation and an�lysis in M�ude

In M�ude, simul�ting a beh�vior �nvolves tr�nsforming the in�tial st�te to anot�er by apply�ng

one or more rewr�ting rul�s. T�erefore, beh�vior me�ns a seq�ence of rewr�ting st�ps. M�ude
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off�rs th�ee m�in w�ys to simul�te and an�lyze t�e mod�les: rewr�ting, se�rching, and LTL model

check�ng [15].

4.4.3.1 Rewriting and search

The reduce command (abbreviated as red) allows an initial term to be reduced by applying the

equations and membership axioms in a given module. While the rewrite command (abbreviated

as rew) and the frewrite (fair rewrite) command (abbreviated as frew) perform a single rewrite

sequence from a given initial term. They allow an initial term to be rewritten using the specified

module’s rules, equations, and membership axioms. Note that no rule will be applied if an equation

can be applied. In the case of the rewrite command, the default interpreter applies the rewriting

rules using a rule-fair top-down strategy and stops when the number of rule applications reaches

the given bound. The frewrite command rewrites a term using a rule- and position-fair strategy

that makes it possible for some rules to be applied that could be “starved” using the leftmost,

outermost rule fair strategy of the rewrite command.

Unlike the rewrite and frewrite commands, which explore only one possible behavior (sequence

of rewrites), the search command allows analysis of all possible sequences of rewrites from an

initial state (term). It searches if states corresponding to given patterns and satisfying certain

conditions can be accessed from the initial term. The execution of this command performs a

deep traversal of the computational tree (reachability tree) generated during this search to detect

invariant violations in systems with infinite states [15].

4.4.3.2 T�e M�ude’s LTL model-c�ecker

T�e M�ude system prov�des an eff�cient model c�ecker, a pow�rful form�l met�od to ver�fy t�e

spec�fication propert�es [16]. 
n M�ude’s LTL model check�ng, t�e system �s def�ned us�ng M�ude

mod�les, �nd t�e propert�es to be c�ecked are descr�bed us�ng L�near Time Log�c (LTL) [16]. We

f�rst def�ne a set of Atom�c Propos�tions (�P) to formul�te propert�es in LTL. T�en, we use t�e

log�cal oper�tors (t�e trad�tional oper�tors of propos�tional c�lculus �nd tempor�l oper�tors) to

def�ne the LTL formulas induct�vely �s fol�ows [105]:

- ⊤ ∈ LTL formul�.
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- if p ∈ �P t�en p ∈ LTL formul�.
- if 𝜓 and 𝜙 ∈ LTL formul�s t�en ¬𝜓 , 𝜙 ∨ 𝜓, 𝑜 𝜓, and 𝜙 𝒰 𝜓 ∈ LTL formul�s.

W�ere 𝒰 is t�e unt�l oper�tor, and 𝑜 is t�e next oper�tor. In add�tion to t�ese fund�mental

oper�tors, ot�er log�cal �nd tempor�l oper�tors c�n be def�ned in terms of t�ese connect�ves.

Follow�ng are t�e add�tional tempor�l oper�tors [105].

- Eventu�lly: ♢ 𝜙 = ⊤ 𝒰 𝜙

- Hence�orth: □𝜙 = ¬♢¬𝜙

- Rele�se: 𝜙ℛ𝜓 = ¬((¬𝜙)𝒰(¬𝜓))
- Un�ess: 𝜙𝒲𝜓 = (𝜙𝒰𝜓) ∨ (□𝜙)
- Le�ds-to: 𝜙↝ 𝜓 = □(𝜙→ (♢𝜓))
- St�ong impl�cation: 𝜙⇒ 𝜓 = □(𝜙→ 𝜓)
- St�ong equ�valence: 𝜙⇔ 𝜓 = □(𝜙↔ 𝜓)

4.5 Execut�ble oper�tional sem�ntics in M�ude

The sem�ntics of a progr�mming language fo�uses on g�ving me�ning to pro�rams. 
t rem�ves

�ny amb�guity in the def�nition of a progr�mming langu�ge. T�ere are d�fferent form�l met�ods

to def�ne t�ese sem�ntics. Oper�tional sem�ntics [110] g�ve me�ning to progr�ms in terms of

comput�tional steps. Mo�e prec�sely, it �s �nterested in how st�tes �re ch�nged w�en execut�ng

instruct�ons. Operat�onal sem�ntics induct�vely def�nes a pro�ram’s evalu�tion rel�tion (�nference

�ule). T�is rel�tion descr�bes a �ystem of tr�nsitions bet�een d�fferent st�tes of t�e progr�ms.

Depend�ng on the n�ture of tr�nsitions, t�ere �re two m�in appro�ches to oper�tional sem�ntics

[111]:

– Structur�l oper�tional sem�ntics (sm�ll-step sem�ntics) [110]: �lso c�lled comput�tion se-

mantics [112]. In th�s appro�ch, t�e �nference �ules descr�be �ll the element�ry comput�tion

ste�s of a pr�gram’s execut�on.

– B�g-step sem�ntics (or n�tural sem�ntics) [113]: in t�is appro�ch, t�e �nference �ules l�nk a

pro�ram to �ts f�nal �esult w�thout spec�fying t�e comput�tion �teps t�at led to t�is �esult.

Somet�mes �t is c�lled the ev�luation sem�ntics [112].
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For more det�ils �bout t�e oper�tional sem�ntics, we d�rect the re�der to M. Henessy’s �ook

[112] wh�ch prov�des a cle�r introduct�on to t�e sub	ect.

4.5.1 Syntax definition

We begin our description of how to implement operational semantics in Maude with a language of

arithmetic and Boolean expressions (Exp4) [112]. Exp4 is a language with arithmetic and Boolean

expressions, if-then-else, and local variable declarations (let). Figure 4.2 shows the abstract syntax

of this language with obvious intuitive meaning.

1. Syntactic categories

𝑒 ∈ 𝐸𝑥𝑝 𝑏𝑒 ∈ 𝐵𝐸𝑥𝑝
𝑜𝑝 ∈ 𝑂𝑝 𝑏𝑜𝑝 ∈ 𝐵𝑂𝑝
𝑛 ∈ 𝑁𝑢𝑚 𝑥 ∈ 𝑉 𝑎𝑟
𝑏𝑥 ∈ 𝐵𝑉 𝑎𝑟

2. Definitions

𝑜𝑝 ∶∶= + ∣ − ∣ ∗
𝑏𝑜𝑝 ∶∶= 𝐴𝑛𝑑 ∣ 𝑂𝑟

𝑒 ∶∶= 𝑛 ∣ 𝑥 ∣ 𝑒
′
𝑜𝑝 𝑒

′′ ∣ 𝑙𝑒𝑡 𝑥 = 𝑒
′
𝑖𝑛 𝑒

′′ ∣ 𝐼𝑓 𝑏𝑒 𝑇ℎ𝑒𝑛 𝑒
′
𝐸𝑙𝑠𝑒 𝑒

′′

𝑏𝑒 ∶∶= 𝑏𝑥 ∣ 𝑇 ∣ 𝐹 ∣ 𝑏𝑒
′

𝑏𝑜𝑝 𝑏𝑒
′′ ∣ 𝑁𝑜𝑡 𝑏𝑒

′ ∣ 𝐸𝑞𝑢𝑎𝑙(𝑒, 𝑒
′)

Figure 4.2: Abstract syntax for Exp4

This syntax is implemented in the following functional module EXP4-SYNTAX. Note that the

signature structure corresponds to the grammar structure defined by the language’s syntax in

Figure 4.2.

1 fmod EXP4-SYNTAX is
2 pr QID .
3 sorts Exp BExp Num Boolean Var BVar Op BOp .
4 subsorts Num Var < Exp .
5 subsorts Boolean BVar < BExp .
6

7 op V : Qid -> Var .
8 ops + - * : -> Op .
9 op 0 : -> Num .

10 op s : Num -> Num .
11

12 op ___ : Exp Op Exp -> Exp [prec 20] .
13 op If_Then_Else_ : BExp Exp Exp -> Exp [prec 25] .
14 op let_=_in_ : Var Exp Exp -> Exp [prec 25] .
15

16 op BV : Qid -> BVar .
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17 ops And Or : -> BOp .
18 ops T F : -> Boolean .
19

20 op ___ : BExp BOp BExp -> BExp [prec 20] .
21 op Equal : Exp Exp -> BExp .
22 op Not_ : BExp -> BExp [prec 15] .
23 endfm

We use the predefined quoted identifiers, of sort Qid, for representing variable identifiers in

the language Exp4. Instead of declaring this sort as a subsort of Var, since Qid is also used to

represent Boolean variables, we have constructors V and BV that transform the Qids to values

of sorts Var and BVar, respectively. We use the natural numbers in Peano notation as arithmetic

constants, with constructors 0 and s.

1 fmod AP is
2 pr EXP4-SYNTAX .
3

4 op Ap : Op Num Num -> Num .
5 vars n n' : Num .
6 eq Ap(+, 0, n) = n .
7 eq Ap(+, s(n), n') = s(Ap(+, n, n')) .
8 eq Ap(*, 0, n) = 0 .
9 eq Ap(*, s(n), n') = Ap(+, n', Ap(*, n, n')) .

10 eq Ap(-, 0, n) = 0 .
11 eq Ap(-, s(n), 0) = s(n) .
12 eq Ap(-, s(n), s(n')) = Ap(-, n, n') .
13

14 op Ap : BOp Boolean Boolean -> Boolean .
15 var bv : Boolean .
16 eq Ap(And, T, bv) = bv .
17 eq Ap(And, F, bv) = F .
18 eq Ap(Or, T, bv) = T .
19 eq Ap(Or, F, bv) = bv .
20 endfm

In another functional module, AP, we define an operation Ap for applying a binary operator to

two already evaluated arguments. A third functional module ENV is used to define environments

that associate values to variables, either arithmetic or Boolean.

1 fmod ENV is
2 pr EXP4-SYNTAX .
3

4 sorts Value Variable .
5 subsorts Num Boolean < Value .
6 subsorts Var BVar < Variable .
7 sort ENV .
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8

9 op mt : -> ENV .
10 op _=_ : Variable Value -> ENV [prec 20] .
11 op __ : ENV ENV -> ENV [assoc id: mt prec 30] .
12 op _'(_') : ENV Variable -> Value .
13 op _'[_/_'] : ENV Value Variable -> ENV [prec 35] .
14 op remove : ENV Variable -> ENV .
15

16 vars X X' : Variable .
17 var V : Value .
18 var ro : ENV .
19 eq (X = V ro)(X') = if X == X' then V else ro(X') fi .
20 eq ro [V / X] = remove(ro, X) X = V .
21 eq remove(mt, X) = mt .
22 eq remove(X = V ro, X') = if X == X' then ro else X = V remove(ro,X') fi .
23 endfm

Operations mt, _ = _, and _ _ (in the module ENV ) are used to build empty environments,

singleton environments, and union (with overriding) of environments, respectively. The operation

_(_) is used to look up the value associated with a variable in an environment and is defined

recursively by an equation. The operation _[_/_] is used to modify the binding between a

variable and a value in an environment, and it is defined by adding to the left a new binding to

the environment. The last equation removes repetitions.

4.5.2 Big-step semantics

The Big-step semantics for Exp4 is given using two relations: ⟹𝐴 and ⟹𝐵, corresponding

respectively to arithmetic and Boolean expressions. The judgments in this semantics will have

the form: < 𝜌 ⊢ 𝑒 ⟹𝐴 𝑣 > and < 𝜌 ⊢ 𝑏𝑒 ⟹𝐵 𝑏𝑣 > Where 𝜌 is an environment that stores

the value of each variable, 𝑒 (resp. 𝑏𝑒) is an arithmetic expression (resp. boolean expression) of

the language, and 𝑣 (resp. 𝑏𝑣) is the value at which the expression 𝑒 (resp. 𝑏𝑒) evaluates. The

semantics rules of this language are shown in Figures 4.3 and 4.4.

In this type of semantics, it is usual that rules such as the rule 𝑂𝑝𝑅. This rule expresses

that to evaluate the expression 𝑒 𝑜𝑝 𝑒′ in the environment 𝜌, one must evaluate both 𝑒 and 𝑒′. To

obtain their values 𝑣 and 𝑣′, respectively, the total result being the application (with the function

𝐴𝑝) of the binary operator 𝑜𝑝 to the results 𝑣 and 𝑣
′.
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Rule CR
𝜌 ⊢ 𝑛 ⟹𝐴 𝑛

Rule VarR
𝜌 ⊢ 𝑥 ⟹𝐴 𝜌(𝑥)

Rule IfR

𝜌 ⊢ 𝑏𝑒 ⟹𝐵 𝑇
𝜌 ⊢ 𝑒 ⟹𝐴 𝑣

𝜌 ⊢ 𝐼𝑓 𝑏𝑒 𝑇ℎ𝑒𝑛 𝑒 𝐸𝑙𝑠𝑒 𝑒′ ⟹𝐴 𝑣

𝜌 ⊢ 𝑏𝑒 ⟹𝐵 𝐹

𝜌 ⊢ 𝑒
′
⟹𝐴 𝑣

′

𝜌 ⊢ 𝐼𝑓 𝑏𝑒 𝑇ℎ𝑒𝑛 𝑒 𝐸𝑙𝑠𝑒 𝑒′ ⟹𝐴 𝑣′

Rule OpR

𝜌 ⊢ 𝑒 ⟹𝐴 𝑣

𝜌 ⊢ 𝑒
′
⟹𝐴 𝑣

′

𝜌 ⊢ 𝑒 𝑜𝑝 𝑒′ ⟹𝐴 𝐴𝑝(𝑜𝑝, 𝑣, 𝑣′)

Rule LocR

𝜌 ⊢ 𝑒 ⟹𝐴 𝑣

𝜌[𝑣/𝑥] ⊢ 𝑒
′
⟹𝐴 𝑣

′

𝜌 ⊢ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 𝑒′ ⟹𝐴 𝑣′

Figure 4.3: Evaluation semantics for arithmetic expressions: ⟹𝐴

Rule BCR
𝜌 ⊢ 𝑇 ⟹𝐵 𝑇 𝜌 ⊢ 𝐹 ⟹𝐵 𝐹

Rule BVarR
𝜌 ⊢ 𝑏𝑥 ⟹𝐵 𝜌(𝑏𝑥)

Rule EqR

𝜌 ⊢ 𝑒 ⟹𝐴 𝑣

𝜌 ⊢ 𝑒
′
⟹𝐴 𝑣

𝜌 ⊢ 𝐸𝑞𝑢𝑎𝑙(𝑒, 𝑒′) ⟹𝐵 𝑇

𝜌 ⊢ 𝑒 ⟹𝐴 𝑣

𝜌 ⊢ 𝑒
′
⟹𝐴 𝑣

′

𝜌 ⊢ 𝐸𝑞𝑢𝑎𝑙(𝑒, 𝑒
′) ⟹𝐵 𝐹

𝑖𝑓 𝑣 ≠ 𝑣
′

Rule BOpR

𝜌 ⊢ 𝑏𝑒 ⟹𝐵 𝑏𝑣

𝜌 ⊢ 𝑏𝑒
′
⟹𝐵 𝑏𝑣

′

𝜌 ⊢ 𝑏𝑒 𝑏𝑜𝑝 𝑏𝑒′ ⟹𝐵 𝐴𝑝(𝑏𝑜𝑝, 𝑏𝑣, 𝑏𝑣′)

Rule NotR
𝜌 ⊢ 𝑏𝑒 ⟹𝐵 𝑇

𝜌 ⊢ 𝑁𝑜𝑡 𝑏𝑒 ⟹𝐵 𝐹

𝜌 ⊢ 𝑏𝑒 ⟹𝐵 𝐹

𝜌 ⊢ 𝑁𝑜𝑡 𝑏𝑒 ⟹𝐵 𝑇

Figure 4.4: Evaluation semantics for Boolean expressions: ⟹𝐵

The EVALUAT
ON module has the rewrite rules representing the evaluation semantics for

Exp4, both for arithmetic and Boolean expressions. A sem�ntics rule of t�e form 𝑃	→𝑄	...𝑃𝑛→𝑄𝑛

𝑃�→𝑄�

is tr�nsformed �nto a cond�tional rewr�ting r�le of t�e fo�m 𝑃� → 𝑄�𝑖𝑓𝑃	 → 𝑄	/\.../\𝑃𝑛 → 𝑄𝑛, w�ere

t�e conclus�on beco�es t�e m�in rewr�ting rul�, and t�e prem�ses bec�me t�e rule cond�tion t�at

�ncludes rewr�tes [107]. First, the elements on both sides of the arrow in a judgment must be

represented as terms in Maude to represent the semantic rules in Maude. In this semantics, we

have an environment and expression on the left. A term of the sort Statement represents these

two elements. On the right, we can have arithmetic or Boolean expression. Notice the use of the

sort Statement is to ensure that both sides of the rewrite rules will have a common sort.
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sort Statement .
subsorts Num Boolean < Statement .

op _|-_ : ENV Exp -> Statement [prec 40] .
op _|-_ : ENV BExp -> Statement [prec 40] .

The axioms (semantics rules without premises) are translated as (unconditional) rewrite rules,

where the transition, in conclusion, becomes the rewrite rule.

var ro : ENV . var n : Num . var x : Var . var bx : BVar .
var op : Op . vars e e' : Exp . vars be be' : BExp . var v v' : Num .
var bop : BOp . var bv bv' : Boolean .

rl [CR] : ro |- n => n .
rl [VarR] : ro |- x => ro(x) .

rl [BCR1] : ro |- T => T .
rl [BCR2] : ro |- F => F .
rl [BVarR] : ro |- bx => ro(bx) .

The rest of the semantic rules (with premises) are translated to conditional rewrite rules where

the main rewrite corresponds to the transition in conclusion, and the rewrites in the conditions

correspond to the transitions in the premises. Conditions are ordered to be checked sequentially

from left to right, and therefore information can flow from one condition to the next; this happens

in the rule LocR below, where the value of v is obtained in the first condition and is later used in

the second.

crl [OpR] : ro |- e op e' => Ap(op,v,v') if ro |- e => v /\ ro |- e' => v' .
crl [IfR1] : ro |- If be Then e Else e' => v if ro |- be => T /\ ro |- e => v .
crl [IfR2] : ro |- If be Then e Else e' => v'if ro |- be => F /\ ro |- e' => v' .
crl [LocR] : ro |- let x = e in e' => v' if ro |- e => v /\ ro[v / x] |- e' => v' .

The EVALUATION module is admissible and directly executable in Maude. For example, The

following command evaluates the product of two numbers s(s(s(0))) and s(s(s(s(0)))) in the Maude

implementation presented above.

Maude> rew mt |- s(s(s(0))) * s(s(s(s(0)))) .
rewrite in EVALUATION : mt |- s(s(s(0))) * s(s(s(s(0)))) .
rewrites: 22 in 0ms cpu (0ms real) (~ rewrites/second)
result Num: s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))
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4.6 Conclusion

In this chapter, after introducing an overview of verification methods, we have seen some basic

concepts of Rewriting Logic, constituting a semantics framework for specifying languages and

concurrent systems. We have also presented the Maude language, its different modules, and its

main ways of simulation and analysis that can be performed. F�nally, we have presented an

implementation of executable an semantics in Maude. The concepts presented in this chapter

constitute a necessary background for understanding our contribution in this thesis’s context.



Chapter 5

MDE-based formal approach

5.1 Introduction

Th�ngML is a prom�sing appro�ch to model�ng 
oT systems. 	owever, �t does not �ave

r�gorous sem�ntics for form�l re�soning �bout system des�gns. Conse�uently, detect�ng

unw�nted beh�viors be�omes extr� diff�cult, not�bly for miss�on-crit�cal 
oT systems w�ere relia-

bility is a requ�site need bec�use fa�lure is potent�ally cat�strophic. In t�is ch�pter, we w�ll present

an MDE-b�sed form�l appro�ch to def�ne and �mplement form�l sem�ntics of Th�ngML langu�ge

us�ng rewr�ting log�c and �ts M�ude langu�ge. In t�is sense, Th�ngML and M�ude langu�ge �ave

complement�ry char�cteristics wh�ch can be appl�ed jo�ntly. Us�ng Th�ngML allows des�gners to

model t�eir 
oT appl�cations and to benef�t from a set of code gener�tors for var�ous pl�tforms,

w�ereas M�ude �llows t�ese des�gns to be an�lyzed and ver�fied.

5.2 Gener�l overv�ew

F�gure 5.1 g�ves a gener�l overv�ew of t�e proposed MDE-b�sed form�l appro�ch [17]. T�e

des�gners model t�e system’s funct�onality accord�ng to the Th�ngML met�-model. �fter t�at,

t�ey tr�nsform obt�ined specif�cations into M�ude models us�ng the pro�osed tr�nsformation rules

�mplemented on t�e �cceleo fr�mework [19]. F�nally, t�e resulting M�ude modules w�ll be used

by t�e des�gners to ver�fy system propert�es expr�ssed �n LTL log�c. T�e model c�ecker ret�rns a

true w�en the spec�fication is fo�nd to meet t�ese propert�es. In t�is c�se, des�gners run t�e code

gener�tion for the des�red pl�tform. Ot�erwise, t�e model c�ecker prov�des a counterex�mple t�at

c�n be used to m�ke correct�ons.

65
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Figure 5.1: T�e work�low of t�e pro�osed MDE-b�sed form�l appro�ch.

5.3 Formal�zation of Th�ngML cons�ructs

Th�s sect�on w�ll expl�in �ow to �xpress a Th�ngML progr�m in M�ude. By t�is formal�zation, we

�ntend to �llow the �nalysis of Th�ngML specif�cations t�rough t�e �nalysis results obt�ined from

t�e equ�valent M�ude specif�cations. Our formal�zation uses t�e stru�tures decl�red in predef�ned

module CONF
GURATION t�at perm�t t�e model�ng of object-b�sed systems. T�is predef�ned

module prov�des b�sic sorts �nd constr�ctors to repr�sent t�e essent�al conc�pts of object, mess�ge,

and conf�guration. T�e obj�cts are descr�bed as record-l�ke stru�tures of t�e for� < 𝑂 ∶ 𝐶 ∣ 𝑎𝑡𝑡	 ∶

𝑣	, ..., 𝑎𝑡𝑡𝑛 ∶ 𝑣𝑛 >, w�ere O �s �n �bject ident�fier, C �s a cl�ss ident�fier, 𝑎𝑡𝑡𝑖 �re ident�fiers of

attr�butes, �nd 𝑣𝑖 �re t�e curren� v�lues of t�ese �ttributes. T�e conf�guration �as t�e str�cture

of a mult�-set of obj�cts and mess�ges th�t �volves by conc�rrent rewr�ting [105].


n our formal�zation, Th�ngML �nstances �re transl�ted into M�ude ob	ects, �ncluding t�eir

execut�on env�ronment. T�e execut�on env�ronment is �mplemented in M�ude us�ng an �ttribute

t�at �ncludes two p�rts: �tore �nd �ction. T�e env�ronment �ttribute �llows obj�cts to run

t�eir �ctions �nd m�nage t�eir �nformation. T�e ev�luation sem�ntics for t�e Th�ngML �ction

langu�ge is g�ven t�rough b�g-step semant�cs in M�ude langu�ge to ev�luate t�e express�ons and

execute t�e �ctions. �dditionally, a rewr�ting rules-b�sed sem�ntics is def�ned to run the st�te

mach�ne, wh�ch can ch�nge t�e object st�tus b�sed on ev�nts (or mess�ges) t�at h�ve arr�ved v�a

ports. Likew�se, a sem�ntics of mess�ge rout�ng between objects t�rough connectors is def�ned

us�ng M�ude rewr�ting rules. Conectors �re transl�ted �nto objects wit� two �ttributes, cl�ent and

server—know�ng t�at the cl�ent and server are �bjects �aving the buffer �ttribute t�at tempor�rily
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�tores t�e sent mess�ges. T�e m�in �deas of our form�lization c�n be summ�rized �n T�ble 5.1

[17]. T�e det�ils of our form�lization w�ll be pres�nted in t�e follow�ng subsect�ons.

Table 5.1: Summ�ry of t�e corres�ondences between t�e m�in Th�ngML and M�ude con-
structs.

Construct ThingML specification Corresponding Maude code

Thing thing fragment F-T { mod F-T is
... ...
} endm
thing T includes F-T { mod T is
... pr F-T .
} op T : -> ThingId [ctor] . --- The class identifier

...
endm

Messages message M() ; op M : -> MsgId [ctor] .
message M(par:DataType) ; op M : -> MsgId [ctor] .

op par : -> Var [ctor] .
eq parmsg(M) = par .

Ports provided port P { ... } op P : -> PortId [ctor] .
required port P { ... } op P : -> PortId [ctor] .
internal port P { ... } op P : -> PortId [ctor] .

properties property Pr : DataType = 0 op Pr : -> Var [ctor] .
readonly property Pr : op Pr : -> Var [ctor] .

DataType = 0
Platform-
independent
language

- Data types (Char, String,
Boolean, UInt8, UInt16, integer,
Float ... )

- Maude’s predefined sorts (Bool, Int, Nat,
Float, String)

- The Arithmetic, Boolean and re-
lational operations

- New operations corresponding to Maude’s pre-
defined operations (with the same properties)
- An evaluation semantics of expression lan-
guage implemented in Maude

- Actions and Functions - Operations
- An evaluation semantics implemented in
Maude

statechart statechart SC init S0 {
state S0 { op S0 : -> AtomicStateId [ctor] .

on entry Act-ent-S0 ---( These actions will be used in the rewriting
on exit Act-exi-S0 rules corresponding to the transitions)
transition Tran -> S1 crl [Tran] :

event P ? M < I : T | environment: < noAction,
guard Cond (status: S0) ; st ; (P ? M) ; st’ >>
action Act-T =>

} < I : T | environment: <Act-exi-S0 ; Act-T ;
goto (S1) ; Act-ent-S1 , (status: noState) ; st ;
st’ >> if Cond .

state S1 {...} op S1 : -> AtomicStateId [ctor] .
composite state CS {...}} op CS : -> CompositeStateId [ctor] .
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Configuration configuration Config mod Config is
{ op Config : -> Configuration .
instance I1 : T1 pr T1 .
instance I2 : T2 pr T2 .

op I1 : -> InstanceId [ctor] . --- An object iden-
tifier
op I2 : -> InstanceId [ctor] .
eq Config = < I1 : T1 | environment:
<Act1, (status: S0-1);(Pr = 0);...>>
< I2 : T2 | environment: < Act2 ,
(status: S0-2);(Pr = 0);... >>

connector I1.P1 => I2.P2 connector | client: < T1 . P1 :
} RequiredPort | buffer: noMsg >

--> server: < I2 . P2 :
ProvidedPort | buffer: noMsg > .
endm

5.3.1 Th�ng

We pro�ose to tr�nsform a Th�ng comp�nent specif�cation �nto a sy�tem �odule in w�ich we

decl�re: t�e cl�ss �dentifier correspond�ng to Th�ng, mess�ges, ports, propert�es, st�tes, �nd the

rewrit�ng rules def�ning the beh�vior of t�is Th�ng. To decl�re t�e Th�ng cl�ss’s objects w�th the

env�ronment �ttribute, we �ntroduce t�e follow�ng �tructure [17]:

sorts ThingId Statement Store Action .
subsort ThingId < Cid . --- Cid : Class identifier
--- Declaration of the environment attribute
op environment:_ : Statement -> Attribute [ctor gather (&)] .
op <_,_> : Action Store -> Statement [ctor] .

The env�ronment �ttribute �epresents t�e key �tructure to �mplement t�e evalu�tion sem�ntics of

t�e Th�ngML �ction �nd express�on langu�ge. 
t �cts l�ke a memory cons�sting of two p�rts:

- �ction: �ncludes a �equence of �ctions to be �xecuted. T�e �roposed evalu�tion sem�ntics

�llows g�ving me�ning to t�ese �ctions (i.e., �xecute t�ese �ctions in t�e des�red �rder).

Det�ils of t�ese sem�ntics w�ll be �ound �n Sect�on 5.3.3.

- �tore: �tores t�e st�tus, �ent mess�ges, �vents, �nd d�fferent v�riables’ v�lues. 
t �erves as a

stor�ge memory �llowing t�e re�ding, wr�ting �nd upd�ting of the �nformation �t cont�ins.

T�erefore, t�e �ontent of t�is �emory is mod�fied �ccording to t�e �ctions t�at w�ll be

�xecuted.
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In [107], �he �uthors �ave �ropose �mplementing t�e �tore concept in M�ude. 	owever, t�eir

�mplementation is l�mited to �rithmetic �nd Boole�n v�riables. To t�ke �nto cons�deration �ll

Th�ng �nformation, we extend �tore’s funct�onality to en�ble stor�ng and man�ging the th�ng’s

st�tus, mess�ges, propert�es, par�meters, �nd �vents. T�e TH
NGML-STORE �odule �epresents

the �mplementation of t�ese funct�onalities. It �ncludes oper�tors and equ�tions t�at ensure

d�fferent funct�ons such as re�ding, wr�ting, �nd mod�fying vari�bles (�rithmetic, Boole�n, and

str�ng), st�tus, mess�ges, and events.

--- `(_=_`) : use to associate a value to their variable
op `(_=_`) : Variable Value -> Store [prec 20] . --- SS of a variable
op `(_`) : Event -> Store [prec 20] . --- SS of a event
op `(_Via_`) : Msg PortId -> Store [prec 20] . --- SS of a message
op `(status:_`) : Status -> Store [prec 20] . --- SS of the status
op _;_ : Store Store -> Store [assoc id: mt prec 30] . --- Union of SSs

--- The next operators are used to add or update the SEs of the:
op _`[_/_`] : Store Value Variable -> Store [prec 35] . --- variable
op _`[_/_`] : Store VaList VarList -> Store [prec 35] . --- var list
op _`[_|-_`] : Store Msg PortId -> Store [prec 35] . --- massage
op _`[_`] : Store Status -> Store [prec 35] . --- status
--- _`(_`) : returns a value (or a list) of the variable (or a list)
op _`(_`) : Store Variable -> Value .
op _`(_`) : Store VarList -> VaList .
--- The next part of the module represents the implementation of the operations defined above

5.3.2 Mess�ges �nd �orts

We m�p mess�ges, par�meters, and propert�es to oper�tors. We decl�re the par�meters and the

propert�es as oper�tors of t�e V�r sort (var�able). For the mess�ges, we pro�ose t�e follow�ng

M�ude code w�ere t�ese mess�ges c�n �nclude par�meters [17].

sorts MsgId MsgSet .
op _`(`) : MsgId -> Msg [ctor] .
op _`(_`) : MsgId ExpList -> Msg [ctor] .
subsort Msg < MsgSet .
op noMsg : -> MsgSet [ctor] .
op _;_ : MsgSet MsgSet -> MsgSet [ctor comm assoc id: noMsg] .
op parmsg : MsgId -> VarList .

�orts �re endpo�nts for ch�nnels tr�nsporting �synchronous mess�ges between th�ng �nstances.

We pro�ose t�e follow�ng �tructure to descr�be t�e Th�ngML �orts as �ort cl�ss �bjects �aving
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t�e buffer �ttribute t�at tempor�rily �tores t�e �ent mess�ges t�rough t�eir �ort. As �ppears in

th�s �ode, t�ere �re t�ree cl�sses of �orts: Prov�dedPort, RequiredPort, and InternalPort.

sorts Port PortId PortName .
subsort Port < Cid . --- Cid : Class identifier
subsort PortName < Oid . --- Oid : Object identifier
op _._ : InstanceId PortId -> PortName [ctor] .
--- Declaration of port classes
ops ProvidedPort RequiredPort InternalPort : -> Port .
--- class ProvidedPort | buffer: MsgSet .
--- class RequiredPort | buffer: MsgSet .
--- class InternalPort | buffer: MsgSet .
--- Declaration of the buffer attribute
op buffer:_ : MsgSet -> Attribute [ctor gather (&)] .

T�e oper�tors def�ned in t�e TH
NGML-STORE �odule �llow s�ving a sent mess�ge as a

s�ngleton �tore �� ��� ����� in t�e em�tting object’s env�ronment. The �mplementation of mess�ge

rout�ng w�ll be d�scussed in Sect�on 5.3.5 �fter demonstr�ting t�e �onnector �oncept.

5.3.3 Pl�tform-�ndependent langu�ge

Th�s sect�on s�ows the synt�x and the sem�ntics to �xecute the Th�ngML �ction langu�ge in

M�ude. T�e f�rst step is to def�ne the form�l semant�cs of the �ction and express�on langu�ge. For

t�is �urpose, we use the not�tion of ev�luation sem�ntics �resented in [18]. T�en, we �mplement

these sem�ntics in t�e M�ude l�nguage b�sed on t�e �ork �resented in [107]. We descr�be �nly a

few ex�mples �llustrating t�e pr�nciple operat�ons (See Appendices A and B for more details).

5.3.3.1 Express�ons

We def�ne the ev�luation sem�ntics of langu�ge express�ons in terms of t�e rel�tions: ⇒𝐴, ⇒𝐵,

�nd ⇒𝐶 correspond�ng respect�vely to t�e �rithmetic, Boole�n, and rel�tional express�ons. An

ev�luation rel�tion is g�ven by the not�tion ⇒ ∶ < 𝑒 , 𝑠𝑡 > ↦ 𝑣 , w�ere �t t�kes a p�ir cons�sting

of an express�on and a �emory and �eturns a v�lue, the �esult of ev�luating the express�on in t�is

�emory [18]. F�gure 5.2 [17] descr�bes the Boole�n express�ons’ evalu�tion �ules (⇒𝐵). �p (bop,

bv, bv’) �enotes the Boole�n oper�tor’s �pplication (�enoted bop) to bot� Boole�n v�lues bv and

bv’.
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Value_R  :     
⟨        ⟩          

                                                                                          (1) 

BVar_R  :     
⟨        ⟩              

                                                                                      (2)                                              

BOp_R  :   

                       

                         

⟨                ⟩                     
                                                                   (3) 

Figure 5.2: Ev�luation sem�ntics for Boole�n express�on.

In M�ude, to ev�luate the express�ons, we f�rst m�p the d�ta types of the Th�ngML langu�ge

to M�ude’s predef�ned �orts. T�en, we def�ne new �rithmetic �nd logical oper�tions correspond�ng

to M�ude’s predef�ned oper�tions, w�ere we 
eep the s�me propert�es [17].

--- "And" and "Or" operations corresponding to the "and" and "or" operations of the BOOL module
ops And Or : -> Bop .
op _And_ : BExp BExp -> BExp [ctor assoc comm prec 55] .
op _Or_ : BExp BExp -> BExp [ctor assoc comm prec 59] .

�ext, we �mplement t�e ev�luation rules us�ng the rewr�ting log�c as �ollows:

op <_,_> : BExp Store -> Statement . --- corresponding to rule =>B : < e , st > -> v
--- To make sure that both parties of a rewriting rule take the same sort.
subsorts Bool Int Nat Float String Store < Statement .
vars be be' : BExp . var bx : BVar . vars bv bv' : Bool .
--- The rewriting rule corresponding to the evaluation rule (1)
rl [Value-R] : < bv, st > => bv .
--- The rewriting rule corresponding to the evaluation rule (2)
--- st(_) : is previously defined in the THINGML-STORE module above.
rl [BVar-R] : < bx, st > => st(bx) .
--- The rewriting rules implementing the evaluation rule (3)
crl [BOp-R-And] : <be And be', st> => Ap(And,bv,bv') if < be, st > => bv /\ < be', st > => bv' .
crl [BOp-R-Or] : < be Or be', st > => Ap(Or,bv,bv') if < be, st > => bv /\ < be', st > => bv' .

F�nally, we use the �p oper�tion t�at en�bles to �pply a b�nary oper�tor to two alre�dy

ev�luated �rguments [107]. 
t �llows sw�tching between the def�ned oper�tions and the corre-

spond�ng M�ude’s predef�ned oper�tions. T�e l�tter en�bles the execut�on of t�e �rithmetic and

log�cal operat�ons �oncretely.

op Ap : BOp Bool Bool -> Bool .
eq Ap(And,bv,bv') = bv and bv' .
eq Ap(Or,bv,bv') = bv or bv' .

S�milarly, we descr�be and �mplement t�e ot�er �rithmetic, logic�l and rel�tional oper�tions.
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5.3.3.2 �ction langu�ge

We g�ve the �ction ev�luation sem�ntics in �erms of the rel�tion ⇒𝐷 descr�bed by the not�tion:

⇒𝐷 ∶ < 𝐴 , 𝑠𝑡 > ↦ 𝑠𝑡
′, w�ere it t�kes a p�ir cons�sting of the A �ction and the st �emory and

�eturns the st’ mod�fied �emory. F�gure 5.3 s�ows the ev�luation �ules for t�ree �ctions goto(),

_!_ (�end �ction), and cond�tional �ction.

Goto_R  :     
⟨    ( )      ⟩         ( )

                                                                                  (4) 

Send_R  :     
⟨       ()      ⟩              ()      

   
⟨       (  )      ⟩              (  )      

    

                    
⟨        ⟩         

⟨       (  )      ⟩              (  )      
                                                               (5)                                              

If_R  :         

⟨        ⟩            

⟨       ⟩           

⟨                             ⟩               

⟨        ⟩             

⟨        ⟩           

⟨                             ⟩                           (6) 

Figure 5.3: Ev�luation sem�ntics for some Th�ngML �ctions

�fter def�ning the sem�ntics, �ll that rem�ins is �mplementing it in the M�ude langu�ge. For

t�at, we �irst tr�nslate the Th�ngML �ctions �nto M�ude oper�tors �ccording to the follow�ng

structure [17]:

sort Action .
op noAction : -> Action .
op _:=_ : Var Exp -> Action .
op _;_ : Action Action -> Action [assoc] .
op _!_ : PortId Msg -> Action .
op _++ : Var -> Action .
op _-- : Var -> Action .
op If_Then_ : BExp Action -> Action .
op print`(_`) : STring -> Action .
op If_Then_Else_ : BExp Action Action -> Action .
op While_Do_ : BExp Action -> Action .
op goto`(_`) : Status -> Action .

T�en, we tr�nsform the sem�ntics ev�luation �ules �nto rewr�ting rules en�bling the �ctions

pl�ced in the env�ronment �ttribute to be �xecuted in the des�red order.

var be : BExp . vars st st': Store . vars A A' : Action .
var msg : MsgId . var p : PortId . var xl : VarList .
var vl : VaList . var s : Status .
--- The rewriting rule corresponding to the evaluation rule (4)
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--- st[_] : is previously defined in the THINGML-STORE module above
rl [GoTo-R] : < goto(s) , st > => st[s] .
--- The rewriting rules corresponding to the evaluation rule (5)
rl [Send-R3] : < p ! msg() , st > => st [ msg() |- p ] .
rl [Send-R2] : < p ! msg(vl) , st > => st [ msg(vl) |- p ] .
crl [Send-R1] : < p ! msg(xl) , st > => st [ msg(vl) |- p ] if < xl , st > => vl .
--- The rewriting rules implementing to the evaluation rule (6)
crl [If-R1] : < If be Then A Else A', st > => st' if < be, st > => true /\ < A , st > => st' .
crl [If-R2] : < If be Then A Else A', st > => st' if < be, st > => false /\ < A', st > => st' .

�ction goto(_) �s not �ncluded in the �ction langu�ge of Th�ngML. 	owever, we �ave �roposed

to def�ne it to �mplement st�te tr�nsition. Perform�ng t�is �ction c�anges t�e object st�tus to

t�e spec�fied st�te in the p�rameter [17]. We expl�in the re�son for �dding goto(_) �ction in the

follow�ng subsect�on.

5.3.4 St�te mach�ne

The st�te mach�ne compr�ses a set of st�tes (i.e., �tomic, compos�te, or reg�ons) and tr�nsitions

to ch�nge the system st�te �ccording to �vents t�at �rrived vi� ports. F�rst, to �epresent the

d�fferent �ypes of st�tes, we �ropose the follow�ng �tructure in M�ude [17]:

sorts StateId CompositeStateId AtomicStateId .
subsorts CompositeStateId AtomicStateId < StateId .
sort Status .
subsort AtomicStateId < Status .
op _`(_`) : CompositeStateId Status -> Status [ctor] .
op noState : -> Status [ctor] .
op _||_ : Status Status -> Status [ctor assoc id: noState ] .

�s a rem�nder, an �bject st�tus is spec�fied by a s�ngleton �tore (st�tus: _) �n t�e env�ronment

�ttribute of t�at �bject. In �ddition, an �vent is descr�bed as a s�ngleton �tore in the rece�ving

�bject’s env�ronment. For t�is �urpose, we decl�re the �vent �ort and _�_ oper�tor to descr�be

the �vents.

sort Event .
op _?_ : PortId MsgId -> Event [ctor] .

F�nally, we tr�nsform the tr�nsitions �nto rewr�ting �ules. To �llustrate the m�pping �rocess,

we �resent the tr�nsformation of a typ�cal tr�nsaction. The follow�ng descr�ption in Th�ngML

s�ows a T trans�tion l�nks two st�tes, S and R. T�e S st�te �as an �ction �lock �xecuted on ex�t,
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and the R st�te has an �ction �lock �xecuted on �ntry. The T tr�nsition �epresents a ch�nge in

the �ystem st�te �rom S to R, tr�ggered �pon the �rrival of a Msg mess�ge vi� the P �ort if the

C cond�tion is ver�fied.

1 state S {
2 on exit do S-Exit-Acts end
3 transition T -> R event P?Msg
4 guard C
5 action do T-Acts end
6 }
7 state R {
8 on entry do R-Entry-Acts end
9 }

The tr�nsformation �roduces t�e follow�ng rewr�ting �ule:

crl [S-To-R] : < I : Thing | environment: < noAction , (status: S) ; st ; (P ? Msg) ; st' > >
=> < I : Thing | environment: < S-Exit-Acts ; T-Acts ; goto(R) ; R-Entry-Acts , (

status: noState) ; st ; st' > >
if < C , st ; st' > => true .

T�erefore, w�en the I �nstance c�anges �ts st�tus from S to R, it f�rst �oes to t�e noSt�te st�te

(i.e., the �nstance is ch�nging �ts st�tus). We �ntroduce t�e noSt�te st�te to �reeze the �nstance

st�tus on t�is tr�nsitional st�te unt�l the end of the execut�on of the ex�t �ctions of t�e S st�te (S-

Ex�t-Acts) �nd the T tr�nsition �ctions (T-Acts). W�en the execut�on of t�ese �ctions is f�nished,

the �nstance goes to the R st�te us�ng the �oto(R) �ction. F�nally, the �nstance �xecutes the �ntry

�ctions of t�e R st�te (R-Entry-�cts) [17]. The �ule cond�tion is a re�chability rel�tion of t�e

�orm < 𝑏𝑒, 𝑠𝑡 >=> 𝑡𝑟𝑢𝑒, w�ere 𝑏𝑒 is a Boole�n express�on, and 𝑠𝑡 is the �nstance env�ronment,

wh�ch w�ll be evalu�ted us�ng the sem�ntics of express�ons �resented �n Sect�on 5.3.3.1.

5.3.5 Conf�guration

We tr�nsform a Th�ngML conf�guration �nto a �ystem �odule in wh�ch we decl�re a M�ude

conf�guration. The l�tter cons�sts of �bjects correspond�ng to Th�ngML �nstances and �onnectors

decl�red in the Th�ngML conf�guration. We m�p Th�ngML �nstances �nto �bjects of the corre-

spond�ng cl�ss, and we tr�nsform the �onnectors �ccording to the follow�ng �roposed �tructure

[17]:
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sort InstanceId .
subsort InstanceId < Oid . --- Oid : Object identifier
sort Connector .
subsort Connector < Object .
op connector | client:_--> server:_ : Object Object -> Connector [ctor] .

Th�s �tructure def�nes the �onnector as an �bject w�th two �ttributes, cl�ent and server, �bjects

of Requ�redPort and Prov�dedPort cl�sses respect�vely. 
t descr�bes the connect�on �etween two

Th�ngML �nstances as a ch�nnel for carry�ng mess�ges. F�gure 5.4 s�ows the mess�ge rout�ng

�teps from the �ender �nstance to the rece�ver �nstance. W�en send�ng a mess�ge, the em�tting

�bject (correspond�ng to the emitt�ng Th�ngML �nstances) �tores t�is mess�ge w�th the �ort used

as a s�ngleton �tore (msg V�a port) in �ts env�ronment �ttribute. T�en, t�e mess�ge is �oved to

the �onnector us�ng the follow�ng rewr�ting rules [17]:
--- To move the messages from instance environment to the connector (client buffer)
rl [Env2CliBuff] : < I : T | environment: < A , st ; (M Via Po) ; st' > > connector | client:

< I . Po : RequiredPort | buffer: MS > --> server: O
=> < I : T | environment: < A , st ; st' > > connector | client:

< I . Po : RequiredPort | buffer: (MS ; M) > --> server: O .

--- To move the messages from instance environment to the connector (server buffer)
rl [Env2SerBuff] : < I : T | environment: < A , st ; (M Via Po) ; st' > > connector | client: O

--> server: < I . Po : ProvidedPort | buffer: MS >
=> < I : T | environment: < A , st ; st' > > connector | client: O

--> server: < I . Po : ProvidedPort | buffer: (MS ; M) > .
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Figure 5.4: ��� ������� ������

�fter th�t, the mess�ge tr�vels by the �onnector to be eventu�lly �tored in the rece�ving �bject

env�ronment as an �vent. The follow�ng �ules en�ble t�is progress�on, w�ere two c�ses can be



Chapter 5. MDE-based formal approach 76

d�stinguished. In the f�rst c�se, the sent mess�ge does not �nclude �ny p�rameters. �onsequently,

�nly the �vent (Po ? Msg
d) w�ll be �tored in the �bject env�ronment.
--- To move the messages from connector ( server buffer) to instance environment (message

without parameters)
rl [BuffSer2EnvR1] : < I : T | environment: < A , st > > connector | client: < I . Po :

RequiredPort | ATTS > --> server: < P : ProvidedPort | buffer: ((msgId ()) ; MS) >
=> < I : T | environment: < A , st ; ( Po ? msgId ) > > connector | client: < I . Po :

RequiredPort | ATTS > --> server: < P : ProvidedPort | buffer: MS > .

--- To move the messages from connector ( client buffer) to instance environment (message
without parameters)

rl [BuffCli2EnvR1] : < I : T | environment: < A , st > > connector | client: < P : RequiredPort
| buffer: ((msgId ()) ; MS) > --> server: < I . Po : ProvidedPort | ATTS >

=> < I : T | environment: < A , st ; ( Po ? msgId ) > > connector | client: < P : RequiredPort |
buffer: MS > --> server: < I . Po : ProvidedPort | ATTS > .

In the �econd c�se, the sent mess�ge �ncludes p�rameters. T�erefore, �ll �vents (Po? Msg
d)

and the l�st of p�rameters ��� ��� � ������� ����
���� w�ll be �tored in the �bject env�ronment.

The p�rameters �re s�ved as var�ables to be �sed l�ter in process�ng.

--- To move the messages from connector ( server buffer) to instance environment (message with
parameters)

rl [BuffSer2EnvR2] : < I : T | environment: < A , st > > connector | client: < I . Po :
RequiredPort | ATTS > --> server: < P : ProvidedPort | buffer: ((msgId (vl)) ; MS) >

=> < I : T | environment: < A , (st [ vl / (parmsg(msgId)) ]) ; ( Po ? msgId ) > > connector |
client: < I . Po : RequiredPort | ATTS > --> server: < P : ProvidedPort | buffer: MS > .

--- To move the messages from connector ( client buffer) to instance environment (message with
parameters)

rl [BuffCli2EnvR2] : < I : T | environment: < A , st > > connector | client: < P : RequiredPort
| buffer: ((msgId (vl)) ; MS) > --> server: < I . Po : ProvidedPort | ATTS >

=> < I : T | environment: < A , (st [ vl / (parmsg(msgId)) ]) ; ( Po ? msgId ) > > connector |
client: < P : RequiredPort | buffer: MS > --> server: < I . Po : ProvidedPort | ATTS > .

5.4 Th�ngML2Maude: A tr�nslator tool of Th�ngML models to
M�ude

Th�s sect�on �resents the Th�ngML2Maude �ool [17], a �odel-to-text tr�nslator to m�p the

Th�ngML �odels �nto M�ude code. Th�ngML2Maude is a �ode gener�tor b�sed on the �cceleo

fr�mework t�at �utomatically gener�tes M�ude specif�cations from Th�ngML models. 
t is imple-

mented on the Ecl�pse model�ng fr�mework on w�ich t�e Xtext ed�tor of Th�ngML works. �nce

the des�gner �ave f�nished des�gning 
oT systems us�ng Th�ngML’s Xtext-b�sed ed�tor, it opens
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the Th�ngML2Maude �cceleo project to tr�nslate t�eir models into M�ude code. Thereafter, it

sets the execut�on par�meters l�ke �nput and output f�les. The �nput f�les �nclude the Th�ngML

des�gns, and the output f�les �re the f�les w�ere the result�ng M�ude code w�ll be gener�ted. The

l�st step �s to st�rt the run of the Th�ngML2Maude tools w�th a s�mple cl�ck to gener�te the

M�ude spec�fications (see Figure 5.5 [17]).
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Figure 5.5: ��������� ������������ ��������

�cceleo [19] is a templ�te-b�sed �echnology t�at �llows the �mplementation of tr�nsformation

�ules. E�ch rule tr�nsforms an �lement from the met�-model to the correspond�ng �ode. The

�cceleo �rojects requ�re a s�ngle source met�-model to gener�te text from �odels. We �ropose

�round t�irty templ�tes t�at �mplement �ozens of tr�nsformation rules to �rowse the models con-

form�ng to the Th�ngML met�-model and gener�te the correspond�ng M�ude code. For ex�mple,

L�sting 5.1 [17] descr�bes the genConf�guration templ�te t�at t�kes as p�rameters a conf�guration.

Th�s templ�te tr�nsforms the �nstances and the �onnectors �nto correspond�ng M�ude �ode w�ere

t�ree ot�er templ�tes, n�mely In�tState(), In�tAction(), and In�tProperty(), are c�lled to �nitialize

st�tus, �ctions, and propert�es, respect�vely.

L�sting 5.2 [17] descr�bes �nother templ�te t�at tr�nsforms �ll mess�ges of a th�ng �nto the cor-

respond�ng M�ude code. Th�s templ�te t�kes as p�rameters a Th�ng and rec�lls �nother templ�te

n�med P�raMsgVar used to tr�nsform the par�meters of mess�ges.
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9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
44
41
42

[template public genConfiguration(aConfiguration : Configuration)]
mod [aConfiguration.name.toUpper()/] is 
[if (aConfiguration.instances -> size()) > 0 ]
[for (aInstance : Instance | aConfiguration.instances )]
  pr [aInstance.type.name.toUpper()/] . 
[/for]
[/if]
[if (aConfiguration.instances -> size()) > 0 ]
[for (aInstance : Instance | aConfiguration.instances )]
  op [aInstance.name/] : -> ThingId . 
[/for]
[/if]

  op [aConfiguration.name/] : -> Configuration .
  eq [aConfiguration.name/] =
[if (aConfiguration.instances -> size()) > 0 ]
[for (aInstance : Instance | aConfiguration.instances )]
        < [aInstance.name/] : [aInstance.type.name/] | 
        envirenment: < [aInstance.type.InitProperty()/]
        [aInstance.type.behaviour.InitAction()/] , (status: 
        [aInstance.type.behaviour.InitState()/]) > >
[/for]
[/if]
[if (aConfiguration.connectors -> size()) > 0 ]
[for (aConnector : Connector | aConfiguration.eAllContents(Connector))]
     connector | 
       client: < [aConnector.cli.name/] . [aConnector.required.name/] :
                 RequiredPort | buffer: noMsg >
     -->  
       server: < [aConnector.srv.name/] . [aConnector.provided.name/] :
                 ProvidedPort | buffer: noMsg  > 
[/for]
[/if] .
endm
[/template]

Listing 5.1: ������� �� ������� ��������� ��� ������������ ���������

17
18
19
20
21
22
23
24
25
26
27

[template public message(aThing : Thing)) post(trim())]
--- Messages
[for (msg : Message | aThing.messages )]
  op [msg.name/] : -> MsgId [ctor] .  
[/for]

--- Parameters of messages 
[for (msg : Message | aThing.messages )]
  [msg.ParaMsgVar()/]  
[/for]
[/template]

Listing 5.2: ������� �� ������� ��������� ��� ������� ���������

5.5 C�se �tudy

To �llustrate the �roposed �pproach’s pr�ctical �sefulness, we cons�der a Th�ngML des�gn extr�cted

�rom the HE�DS rese�rch �roject (	eterogeneous �nd D�stributed Serv�ces for the Future Com-

put�ng Cont�nuum) [114, 115]. The P�ngPong des�gn [116] �resents a �ully pl�tform-�ndependent

Th�ngML �rogram (�nly uses Th�ngML st�tements). It s�ows the pr�mary �onstructs of the

Th�ngML langu�ge. Th�s des�gn demonstr�tes �ow to use two �omponents to exch�nge asyn-

chronous mess�ges. The beh�vior of t�ese two �omponents is descr�bed by st�te m�chines t�at
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re�ct �ccording to �rrived events. T�ese �vents �orrespond to �ncoming mess�ges th�t are sent by

the ot�er �omponent. T�erefore, the �roblem of ensur�ng cons�stency �etween the st�te m�chines

of the �omponents m�y �rise. For th�s re�son, the P�ngPong des�gn is a �ood and s�mple ex�mple

to expl�in our �pproach for c�ecking the cons�stency and �orrectness of Th�ngML spec�fications

[17].

5.5.1 Spec�fication

The P�ngPong des�gn �ncludes �our �omponents: the P�ngServer and P�ngClient th�ngs, P�ngMsgs

as a th�ng fr�gment, and the P�ngConfig conf�guration. In th�s model, the P�ngClient �omponent

�ends a p�ng p�rameterized mess�ge to the P�ngServer �omponent th�t responds w�th a pong

mess�ge once rece�ving the p�ng mess�ge. The P�ngClient st�tus is ch�nged b�sed on the v�lue of

loc�l propert�es �nd the pong mess�ge par�meter. F�nally, the P�ngConfig conf�guration �epresents

a �oncrete �pplication �omposed of two �nstances, cl�ent and �erver, and one �onnector.

L�sting 5.3 descr�bes the P�ngMsgs th�ng fr�gment w�th p�ng and pong p�rameterized mess�ges.

The p�ng and pong mess�ges �re used in �mplementing the beh�vior of P�ngClient and P�ngServer

th�ngs. They �nclude a p�rameter w�th the U
nt8 d�ta type of Th�ngML. Th�s p�rameter descr�bes

the umber of p�ng or pong mess�ges sent.

1 thing fragment PingMsgs
2 {
3 message ping(req : UInt8);
4 message pong(req' : UInt8);
5 }

Listing 5.3: ThingML implementation of PingMsgs thing fragment

L�sting 5.4 s�ows the Th�ngML spec�fication of the P�ngServer th�ng, �ncluding the P�ngMsgs

th�ng fr�gment, a prov�ded port, and a st�techart def�ning the�r beh�vior. The p�ngservice port

en�bles the P�ngServer th�ng to exch�nge mess�ges w�th ot�er th�ngs. It �llows send�ng the pong

mess�ge and rece�ving the p�ng mess�ge. The P�ngServerMachine st�techart th�t �mplements the

P�ngServer th�ng beh�vior �ncludes two st�tes Wa�ting and Pong. It �nitially enters the Wa�ting

st�te. It p�sses from the Wa�ting st�te to the Pong st�te w�en a p�ng mess�ge �rrives t�rough

the p�ngservice port. �pon enter�ng the Pong st�te, P�ngServer �ends a �ong mess�ge v�a the
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p�ngservice port, and t�en p�sses �gain to the Wa�ting st�te. F�gure 5.6 �resents graph�cally the

st�techart of the P�ngServer th�ng [17].

6 thing PingServer includes PingMsgs
7 {
8 provided port pingservice
9 {

10 sends pong
11 receives ping
12 }
13 statechart PingServerMachine init Waiting
14 {
15 property count : UInt8 = 0
16 state Waiting
17 {
18 transition -> Pong
19 event m : pingservice?ping // ? : Receive
20 //the ping message on pingservice port
21 action count = m.req
22 }
23 state Pong
24 {
25 on entry pingservice!pong(count)
26 // ! : Send message pong on pingservice port.
27 on exit print "Send Pong", count, "..."
28 transition -> Waiting
29 }
30 }
31 }

Listing 5.4: ����� ������������ �� ��������� �����

Entry /  pingservice!pong (count) 
 Exit /  ping "send Pong" , count , "...."

PongWaiting

pingservice?ping / count = m.req

Figure 5.6: ��� ���������� �� ��� ��������� �����

L�sting 5.5 �resents the Th�ngML spec�fication of the PingCl�ent th�ng, �ncluding the P�ngMsgs

th�ng fr�gment, two propert�es, a requ�red port, and a st�techart def�ning t�eir beh�vior.

32 thing PingClient includes PingMsgs {
33 readonly property count_max : UInt8 = 5
34 property counter: UInt8 = 1
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35 required port pingservice
36 {
37 receives pong
38 sends ping
39 }
40 statechart PingClientMachine init Ping
41 {
42 state Ping
43 {
44 on entry do
45 print "Send Ping", counter, "..."
46 pingservice!ping(counter)
47 end
48 transition -> Waiting
49 }
50 state Waiting
51 {
52 transition -> Ping
53 event e : pingservice?pong
54 guard e.req' == counter and counter < count_max
55 action do println "[OK]"
56 counter = counter + 1
57 end
58 transition -> Stop
59 event e : pingservice?pong
60 guard e.req' != counter
61 transition -> OK
62 event e : pingservice?pong
63 guard e.req' == counter and counter >= count_max
64 }
65 final state OK
66 {
67 on entry
68 println "[OK] Bye."
69 }
70 final state Stop
71 {
72 on entry
73 println "[Error]"
74 }
75 }
76 }

Listing 5.5: ����� ������������ �� �������� �����

In th�s spec�fication, we decl�re a requ�red port t�at en�bles the P�ngClient th�ng to exch�nge

mess�ges w�th ot�er th�ngs. Th�s �ort �llows send�ng the p�ng mess�ge and rece�ving the pong

mess�ge. As s�own in the spec�fication, the �ypes of �ent mess�ges (resp. rece�ved mess�ges) v�a

the requ�red port �orrespond to the �ypes of rece�ved mess�ges (�esp. sent mess�ges) t�rough the

prov�ded port. The P�ngClientMachine st�techart t�at �mplements the P�ngClient th�ng beh�vior
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�ncludes four st�tes (Wa�ting, P�ng, �K, and Stop), w�ere �K and Stop are the f�nal st�tes.

The P�ngClient th�ng �nitially �nters the P�ng st�te. �pon enter�ng the P�ng st�te, P�ngClient

sends a p�ng mess�ge vi� the p�ngservice port. T�en p�sses to the Wa�ting st�te, wh�ch �as t�ree

trans�tions. These trans�tions f�re w�en a �ong mess�ge �rrives t�rough the p�ngservice port, and

t�eir gu�rd cond�tions are sat�sfied. T�erefore, the P�ngClient st�tus p�sses from the Wait�ng st�te

to the P�ng, �K, or Stop st�te, follow�ng the gu�rd cond�tions. F�gure 5.7 �resents graph�cally

the statech�rt of the P�ngClient th�ng [17].

Entry / print ("Send Ping", counter, "..."
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Figure 5.7: ��� ���������� �� ��� �������� �����

L�sting 5.6 descr�bes the Th�ngML �mplementation of the P�ngConfig concrete appl�cation.

The P�ngConfig conf�guration compr�ses two �nstances and a �onnector. The cl�ent is an �nstance

of the P�ngClient th�ng, and the server is an �nstance of the P�ngServer th�ng. The connector

l�nks these �nstances via t�eir ports, w�ere the requ�red port of the cl�ent �nstance is at the f�rst

end, and the prov�ded port of the server �nstance is at the �econd end.

77 configuration PingConfig
78 {
79 instance client: PingClient
80 instance server: PingServer
81 connector client.pingservice => server.pingservice
82 }

Listing 5.6: ����� ������������ �� ������� �����������
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5.5.2 Tr�nsformation

To ver�fy and �nalyze th�s des�gn, we tr�nsform it �nto the correspond�ng M�ude code. We use

the Th�ngML2Maude tool to re�lize th�s tr�nsformation. T�e follow�ng fou� �odules �resent the

M�ude spec�fication result�ng from the �utomatic tr�nsformation. F�rst, the P
NGMSGS �ystem

�odule [17] �epresents the spec�fication of the P�ngMsgs th�ng fr�gment in M�ude. Th�s �odule

conta�ns the pong and p�ng oper�tors of the Msg
d sort (mess�ge �dentifiers) correspond�ng to the

mess�ges decl�red in the P�ngMsgs th�ng fr�gment. It �lso conta�ns the req and req’ oper�tors

of the Var sort (var�able) correspond�ng to the mess�ge par�meters. F�nally, it �ncludes two

equat�ons that determ�ne the par�meters of the pong and p�ng mess�ges.

1 mod PINGMSGS is
2 pr THINGML-MSG-SEMANTIC .
3 --- Messages
4 ops pong ping : -> MsgId [ctor] .
5 --- Parameters of messages
6 ops req req' : -> Var [ctor] .
7 eq parmsg(ping) = req .
8 eq parmsg(pong) = req' .
9 endm

Listing 5.7: ������ ������ ����������� �� ������� ���� ��������

�econd, two ot�er �ystem �odules descr�be P�ngServer and P�ngClient th�ngs in the M�ude

langu�ge. T�ey are n�med P
NGSERVER and P
NGCLIENT [17].

1 mod PINGSERVER is
2 pr PINGMSGS .
3 --- Operetors
4 op PingServer : -> ThingId [ctor] .
5 op count : -> Var [ctor] .
6 ops Waiting Pong : -> AtomicStateId [ctor] .
7 op pingservice : -> PortId [ctor] .
8 --- Variables
9 vars st st' : Store . vars A A' : Action .

10 var I : InstanceId . var VL : VaList .
11 --- Rewriting rules
12 rl [Waiting-To-Pong] : < I : PingServer | environment: < noAction , ( status: Waiting )

; st ; ( pingservice ? ping ) ; st' > > =>
13 < I : PingServer | environment: < count := req ; goto(Pong) ; pingservice ! pong (

count)) , (status: noState) ; st ; st' > > .
14

15 rl [Pong-To-Waiting] : < I : PingServer | environment: < noAction , ( status: Pong ) ;
st > > =>
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16 < I : PingServer | environment: < print( "Send Pong count..." ) ; goto( Waiting ) , (
status: noState ) ; st > > .

17 endm

Listing 5.8: ������ ������ ����������� �� ��������� �����

In t�ese �odules, we decl�re the P�ngServer and P�ngClient th�ngs as cl�sses hav�ng the

env�ronment attr�bute conta�ning �nformation �bout the current st�tus, var�able v�lues, �ctions,

and mess�ges. T�e cl�sses �re decl�red us�ng oper�tors of the Th�ngId sort, w�ere the Th�ngId

sort is a �ubsort of the C�d sort (Cl�ss �dentifier). The P
NGSERVER and P
NGCLIENT �odules

�lso decl�re the st�tes, v�riables, �nd ports of th�ngs as oper�tors of the sorts �tomicStateId,

Var, and Port
d, respect�vely. F�nally, t�ey �nclude the rewr�ting rules (poss�bly cond�tional)

correspond�ng to trans�tions of the th�ng st�techart.

1 mod PINGCLIENT is
2 pr PINGMSGS .
3 --- Operators
4 op PingClient : -> ThingId [ctor] .
5 ops count-max counter : -> Var [ctor] .
6 ops Ping Waiting OK Stop : -> AtomicStateId [ctor] .
7 op pingservice : -> PortId [ctor] .
8 --- Variables
9 vars st st' : Store . vars A A' : Action .

10 var I : InstanceId . var VL : VaList .
11 --- Rewriting rules
12 rl [Ping-To-Waiting] : < I : PingClient | environment: < noAction , (status: Ping) ; st

> > => < I : PingClient | environment: < goto(Waiting ) , (status: noState) ; st >
> .

13

14 crl [Waiting-To-Ping] : < I : PingClient | environment: < noAction , (status: Waiting)
; st ; (pingservice ? pong ) ; st' > > => < I : PingClient | environment: < print("[
OK]") ; counter := counter .+ 1 ; goto(Ping ) ; print("Send Ping counter...") ; (
pingservice ! ping(counter)) , ( status: noState ) ; st ; st' > >

15 if < ((req' .= counter ) And (counter .< count-max)) , st ; st' > => true .
16

17 crl [Waiting-To-Stop] : < I : PingClient | environment: < noAction , (status: Waiting)
; st ; (pingservice ? pong ) ; st' > > => < I : PingClient | environment: < goto(
Stop ) ; print("[Error]") , ( status: noState ) ; st ; st' > >

18 if < req' .!= counter , st ; st' > => true .
19

20 crl [Waiting-To-OK] : < I : PingClient | environment: < noAction , (status: Waiting) ;
st ; (pingservice ? pong ) ; st' > > => < I : PingClient | environment: < goto(OK

) ; print("Bye.") , ( status: noState ) ; st ; st' > >
21 if < ((req' .= counter) And (counter .>= count-max)) , st ; st' > => true .
22 endm

Listing 5.9: ������ ������ ����������� �� �������� �����
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F�nally, the P
NGCONFIG module [17] descr�bes the conf�guration spec�fication. 
n th�s mod-

ule, the transform�tion �roducts two oper�tors (cl�ent and server) of the 
nstanceId sort �nd

an oper�tor P�ngConfig of the Conf�guration sort. The P�ngConfig conf�guration conta�ns two

�bjects and a �onnector. We �nitialize the env�ronment �ttribute of �bjects �ccording to the

p�rent th�ng’s spec�fication, w�ere the �nitialization �ncludes the �nitial st�te, �ntry �ctions, and

v�riable v�lues. The �onnector is descr�bed as an �bject w�th two �ttributes, cl�ent and �erver,

�bjects of Requ�redPort and Prov�dedPort cl�sses, respect�vely. We �nitialize the buffer �ttribute

of the �orts by noMsg v�lue (no mess�ge in �uffer).

1 mod PINGCONFIG is
2 pr PINGCLIENT .
3 pr PINGSERVER .
4

5 ops client server : -> InstanceId [ctor] .
6 op PingConfig : -> Configuration .
7 eq PingConfig = < client : PingClient | environment: < count-max := 5 ; counter := 1 ;

print("Send Ping counter...") ; (pingservice ! ping(counter)) , (status: Ping ) > >
< server : PingServer | environment: < count := 0 ,(status: Waiting ) > > connector
| client: < client . pingservice : RequiredPort | buffer: noMsg > --> server: <

server . pingservice : ProvidedPort | buffer: noMsg > .
8 endm

Listing 5.10: ������ ������ ����������� �� ������� �����������

�fter obta�ning the gener�ted M�ude spec�fication, it rem�ins to ver�fy and �nalyze the

�eveloped �odels, w�ich w�ll be t�e next sect�on’s �ubject.

5.5.3 S�mulation and �nalysis

In M�ude, s�mulating a beh�vior �nvolves tr�nsforming the �nitial st�te to �nother by �pplying

one or more rewr�ting �ules. T�erefore, beh�vior me�ns a �equence of rewr�ting �teps. M�ude

�ffers t�ree m�in w�ys to s�mulate and �nalyze t�e �odules: rewr�ting, se�rch, and LTL �odel

check�ng [15].

5.5.3.1 Rewr�ting

M�ude’s rewr�te and f�ir rewr�te comm�nds s�mulate one �ystem beh�vior st�rting w�th a g�ven

�nitial st�te. T�e follow�ng comm�nd s�mulates our M�ude spec�fication from the �nitial st�te



Chapter 5. MDE-based formal approach 86

P�ngConfig [17]. The br�cketed umber t�at �ppears in the f�rst comm�nd prov�des an upper

l�mit for the �llowed number of rules th�t w�ll be �pplied.

Maude> frew [27] PingConfig .
frewrite in PINGCONFIG : PingConfig .
rewrites: 130 in 4ms cpu (2ms real) (32500 rewrites/second)
result Configuration: (connector | client: < client . pingservice : RequiredPort | buffer:

ping(2) > --> server: < server . pingservice : ProvidedPort | buffer: noMsg >)< client :
PingClient | environment: < noAction ,(status: Waiting) ; (count-max = 5) ; (req' = 1) ;
(counter = 2) > > < server : PingServer | environment: < noAction, (status: Waiting) ; (
req = 1) ; (count = 1) > >

↪

↪

↪

↪

Figure 5.8: �������� ������ �� ��� ���� ������� �������

We �nterpret the �esults as �ollows: �fter �pplying �wenty-seven rewr�ting rules, the cl�ent

�nstance �ent two p�ng mess�ges (�ounter = 2 ) and rece�ved a s�ngle pong mess�ge (req’ = 1 ),

w�ere it �waits the follow�ng pong mess�ge (st�tus: W�iting). On the ot�er s�de, the server

�nstance �waits the follow�ng p�ng mess�ge (st�tus: Wa�ting), w�ere it rece�ved one p�ng mess�ge

(req = 1 ) and sent one pong mess�ge. �oreover, no �ctions to run for bot� cl�ent and �erver

�nstances. The �onnector conta�ns the p�ng (2) mess�ge in the cl�ent buffer (i.e., t�ere is an

undel�vered mess�ge).

Maude> frew PingConfig .
frewrite in PINGCONFIG-PREDS : PingConfig .
rewrites: 560 in 8ms cpu (9ms real) (70000 rewrites/second)
result Configuration: (connector | client: < client . pingservice : RequiredPort | buffer:

noMsg > --> server: < server . pingservice : ProvidedPort | buffer: noMsg >) < client :
PingClient | environment: < noAction,(status: OK) ; (count-max = 5) ; (counter = 5) ; (req'
= 5) > > < server : PingServer | environment: < noAction,(status: Waiting) ; (req = 5) ;
(count = 5) > >

↪

↪

↪

↪

Figure 5.9: �������� ������ �� ��� �������� �� � ������� ������

F�gure 5.9 [17] s�ows rewriting to a term�nal st�te. In th�s st�te, the cl�ent �nstance sent f�ve

p�ng mess�ges (�ounter = 5 ) and rece�ved f�ve pong mess�ges (req’ = 5 ), w�ere it p�sses to the

Ok f�nal st�te. On the ot�er s�de, the server �nstance rece�ved f�ve p�ng mess�ges (req = 5 ) and

sent f�ve pong mess�ges. �oreover, no �ctions to run for bot� cl�ent and server �nstances. T�e

�onnector �as no mess�ges in the cl�ent and �erver buffer (i.e., all mess�ges are del�vered).
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5.5.3.2 Se�rch

�ll the �ystem st�te sp�ce re�chable �rom an �nitial st�te �s �xplored �n d�fferent w�ys to f�nd

the st�tes s�tisfying a g�ven se�rch p�ttern. T�e follow�ng se�rch �ommand s�ows t�at no

st�te w�th counter > �ount-max �an be re�ched st�rting w�th the �nitial st�te P�ngConfig in the

�odule P
NGCONFIG (i.e., t�e number of sent p�ng mess�ges ever �xceeds the �llowed m�ximum

umber).

Maude> search PingConfig =>* < client : PingClient | environment: < A:Action, st:Store ;
(counter = N:Nat) ; st':Store > > C:Configuration such that N:Nat > 5 .↪

search in PINGCONFIG : PingConfig =>* C:Configuration < client : PingClient | environment: <
A:Action, st:Store ; (counter = N:Nat) ; st':Store > > such that N:Nat > 5 = true .↪

No solution.
states: 566 rewrites: 13362 in 184ms cpu (185ms real) (72619 rewrites/second)

Figure 5.10: ������ �� ��� ������ ������ � ������ ���� ������ > ���������

On the ot�er hand, if we se�rch one st�te in wh�ch the �ounter = 5, the M�ude �ystem f�nds

m�ny solut�ons sat�sfying th�s cond�tion. T�e follow�ng �ode descr�bes the se�rch comm�nd and

the M�ude system �esponse.

Maude> search [1] PingConfig =>* < client : PingClient | environment: < A:Action, st:Store ;
(counter = N:Nat) ; st':Store > > C:Configuration such that N:Nat = 5 .↪

search in PINGCONFIG : PingConfig =>* C:Configuration < client : PingClient | environment: <
A:Action, st:Store ; (counter = N:Nat) ; st':Store > > such that N:Nat = 5 .↪

Solution 1 (state 446)
states: 447 rewrites: 10599 in 148ms cpu (153ms real) (71614 rewrites/second)
C:Configuration --> (connector | client: < client . pingservice : RequiredPort | buffer: noMsg

> --> server: < server . pingservice : ProvidedPort | buffer: noMsg >) < server :
PingServer | environment: < noAction,(status: Pong) ; (req = 4) ; (count = 4) > >

↪

↪

A:Action --> noAction
st:Store --> (status: Ping) ; (count-max = 5) ; (req' = 4)
N:Nat --> 5
st':Store --> (ping(5) Via pingservice)

Figure 5.11: ������ �� ��� ������ ������ � � ����� ���� ������ = �

5.5.3.3 L�near Tempor�l Log�c �odel Check�ng

Th�s sect�on d�scusses �ow to ver�fy the �orrectness of a set of propert�es of the spec�fication.

Propert�es can be spec�fic to a part�cular system, l�ke t�ose rel�ted to �ystem st�tes. In contr�st,

ot�er propert�es can be general�zed to sever�l �ystems or progr�ms, l�ke the �bsence of the de�dlock



Chapter 5. MDE-based formal approach 88

in the �ystem. M�ude �ses a �odel c�ecker to c�eck w�ether �ll system beh�viors s�tisfy a

�roperty. M�ude’s �odel c�ecking is b�sed on L�near Tempor�l Log�c (LTL) to spec�fy models’

propert�es. F�rst, we def�ne a set of �tomic propos�tions in a ew �odule c�lled P
NGCONFIG-

PREDS t�at �mplements the pred�cates �resented in T�ble 5.2 [17].

1 mod PINGCONFIG-PREDS is
2 inc PINGCONFIG .
3 inc SATISFACTION .
4 inc MODEL-CHECKER .
5 subsort Configuration < State .
6 --- Variables
7 var N : Nat . vars st st' : Store . var A : Action . var C : Configuration .
8 var P : PortId . var M : MsgId . var I : InstanceId . var T : ThingId .
9 var Ms : Msg . var Po : Port . var O : Object .

10 --- Predicates declaration
11 ops Ping Pong : InstanceId Nat -> Prop . --- Ping and Pong predicates
12 eq < I : T | environment: < A, st ; (ping(N) Via P) ; st' > > C |= Ping(I, N) = true .
13 eq < I : T | environment: < A, st ; (pong(N) Via P) ; st' > > C |= Pong(I, N) = true .
14

15 op Msg-In-Env : InstanceId -> Prop . --- The Msg-In-Env predicate
16 eq < I : T | environment: < A , st ; (Ms Via P) ; st' > > C |= Msg-In-Env(I) = true .
17

18 op Msg-In-Buffer : -> Prop . --- The Msg-In-Buffer predicate
19 ceq (connector | client: < I . P : Po | buffer: Ms > --> server: O) C
20 |= Msg-In-Buffer = true if Ms =/= noMsg .
21 ceq (connector | client: O --> server: < I . P : Po | buffer: Ms >) C
22 |= Msg-In-Buffer = true if Ms =/= noMsg .
23

24 op Event-In-Env : InstanceId -> Prop . --- The Event-In-Env predicate
25 eq < I : T | environment: < A , st ; (P ? M) ; st' > > C |= Event-In-Env(I) = true .
26

27 op Action-In-Env : InstanceId -> Prop . --- The Action-In-Env predicate
28 ceq <I : T | environment: <A , st > > C |= Action-In-Env(I) = true if A =/= noAction .
29

30 op Waiting : InstanceId -> Prop . --- The Waiting predicate
31 eq < I : T | environment: < A , ( status: Waiting) ; st > > C |= Waiting(I) = true .
32 endm

Listing 5.11: �
������
������� ������ �������

Table 5.2: Descr�ption of the �tomic propos�tions

Predicate Description

P�ng True w�en the �nstance �ends the p�ng mess�ge
�ong �rue if the �nstance �esponded w�th the pong mess�ge
Msg-
n-Env Th�s pred�cate descr�bes the pend�ng mess�ges in the �nstance env�ronment
Msg-
n-Buffer �eturns tru� if t�ere are mess�ges in the �onnector �uffers
�ction-In-Env �eturn true if �ctions �re be�ng run
W�iting The �nstance in the Wa�ting st�te
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We def�ne the formul�s of the propos�tional LTL fro� t�is set of �tomic propos�tions. LTL

formul�s are �omposed of �tomic propos�tions and logic�l oper�tors t�at �nclude the trad�tional

oper�tors of propos�tional c�lculus ���� ∼� ��� �∖� ��� ∖�� �������� �>� �� ���������� <�>�

and tempor�l oper�tors (eventu�lly: <>� ������� ��� ��� ��

�roperty 1. The f�rst �roperty to c�eck is: “If t�e cl�ent �ends a p�ng mess�ge, t�e server w�ll

�espond by a �ong mess�ge". Th�s �roperty is spec�fic to th�s c�se �tudy, it is l�nked to the mess�ge

def�ned in the P�ngPong des�gn. The follow�ng comm�nd c�ecks w�ether the spec�fication w�ll

sat�sfy t�is �roperty:

Maude> red modelCheck(PingConfig,[](Ping(client , N:Nat)-> <> Pong(server, N:Nat))) .
reduce in PINGCONFIG-PREDS : modelCheck(PingConfig, [](Ping(client, N) -> <> Pong(server, N)))

.↪

rewrites: 12961 in 184ms cpu (186ms real) (70440 rewrites/second)
result Bool: true

Figure 5.12: ���������� ������ �� ��� 	�� ���������

T�e result s�ows t�at t�e �odel c�ecker �eturns t�e Boole�n v�lue tr�e, wh�ch me�ns that

th�s �roperty is s�tisfied. Ot�erwise, t�e model c�ecker w�ll prov�de a counterex�mple.

�roperty 2. T�e �econd �roperty: “�t the �nd of the execut�on, �ll the mess�ges �n the system

w�ll be �onsumed". In ot�er words, the �onnector �uffers �re �mpty and no �vents, �nd no mess�ges

in the �nstance env�ronments.

Maude> red modelCheck(PingConfig, <>( [] ∼(Msg-In-Buffer \/ Msg-In-Env(client) \/
Msg-In-Env(server) \/ Event-In-Env(client) \/ Event-In-Env(server) ))) .↪

reduce in PINGCONFIG-PREDS : modelCheck(PingConfig, <> []∼ (Event-In-Env(server) \/
(Event-In-Env(client) \/ (Msg-In-Env(server) \/ (Msg-In-Buffer \/ Msg-In-Env(client)))))) .↪

rewrites: 13368 in 196ms cpu (196ms real) (68204 rewrites/second)
result Bool: true

Figure 5.13: ���������� ������ �� ��� 
� ���������

�roperty 3. �ext, we c�eck if “�ll �ctions in t�e �ystem w�ll be �xecuted". �roperties 2 and 3

are gener�l propert�es t�at c�n be c�ecked in �ny �ystem. 	owever, t�e �ctual formul�s of t�ese

propert�es �re �ystem spec�fic bec�use t�ey cont�in t�e �ystem �nstances’ �dentifiers.
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Maude> red modelCheck(PingConfig, [] (Action-In-Env(client) -> <> ∼ Action-In-Env(client)) /\
[] (Action-In-Env(server) -> <> ∼ Action-In-Env(server))) .↪

reduce in PINGCONFIG-PREDS : modelCheck(PingConfig, [](Action-In-Env(client) -> <> ∼

Action-In-Env(client)) /\ [](Action-In-Env(server) -> <> ∼ Action-In-Env(server))) .↪

rewrites: 14109 in 192ms cpu (195ms real) (73484 rewrites/second))
result Bool: true

Figure 5.14: ���������� ������ �� ��� ��� ���������

�roperty 4. F�nally, we ver�fy if “Bot� cl�ent and �erver �nstances w�ll ever �ang in a st�te

w�ere t�eir st�tus is �n Wa�ting". T�at is the �bsence of the de�dlock in t�e �ystem.

Maude> red modelCheck(PingConfig,∼ <>( [] (Waiting(client) /\ Waiting (server)))) .
reduce in PINGCONFIG-PREDS : modelCheck(PingConfig, ∼ <> [] (Waiting(client) /\

Waiting(server))) .↪

rewrites: 12966 in 180ms cpu (182ms real) (72033 rewrites/second)
result Bool: true

Figure 5.15: ���������� ������ �� ��� ��� ���������

The �esult of prev�ous comm�nds is �lways the Boole�n v�lue �rue, w�ich me�ns t�at t�e

P�ngPong des�gn s�tisfies all preced�ng propert�es. To s�ow the pr�ctical ut�lity of the �roposed

�pproach to f�nding �roblems w�th Th�ngML des�gns. We �ntroduce a �ug in t�e P�ngPong

spec�fication �nd s�ow how the �nalysis �xposes it. �ugs �n Th�ngML des�gns c�n be c�used by

m�ny re�sons, suc� as cons�stency �etween th�ngs st�techarts or �orgetting to descr�be a tr�nsition

or �ction in th�ngs st�techarts. 
n our c�se stud�, we mod�fy the P�ngServer th�ng �mplementation,

w�ere we �emove the entr�ng �ction �rom the Pong st�te. L�sting 5.12 s�ows the new Th�ngML

specif�cation of t�e P�ngServer th�ng t�at conta�ns a �ug [17].

5 thing PingServer includes PingMsgs {
6 provided port pingservice {
7 sends pong
8 receives ping }
9 statechart PingServerMachine init Waiting {

10 property count : UInt8 = 0
11 state Waiting{
12 transition -> Pong event m : pingservice?ping
13 action count = m.req }
14 state Pong{
15 on exit print "Send Pong", count, "..."
16 transition -> Waiting }
17 }}

Listing 5.12: � �� ����� ������������ �� ��������� �����
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�fter tr�nsforming the new Th�ngML spec�fication into the correspond�ng M�ude code, we

ver�fy the �bsence of the de�dlock (Property 4). The follow�ng comm�nd c�ecks w�ether the new

spec�fication w�ll s�tisfy th�s property.

Maude> red modelCheck(PingConfig,∼ <>( [] (Waiting(client) /\ Waiting (server)))) .
reduce in PINGCONFIG-PREDS : modelCheck(PingConfig, ∼ <> [] (Waiting(client) /\

Waiting(server))) .↪

rewrites: 86 in 0ms cpu (3ms real) (~ rewrites/second)
result ModelCheckResult: counterexample({(connector | client: < client . pingservice :

RequiredPort | buffer: noMsg > --> server: < server . pingservice : ProvidedPort | buffer:
noMsg >) < client : PingClient | environment: < count-max := 5 ; counter := 1 ; print("Send
Pingcounter...") ; (pingservice ! ping(counter)) ; noAction,(status: Ping) > > < server :
PingServer | environment: < count := 0 ; noAction,(status: Waiting) > >, 'Act-R}

↪

↪

↪

↪

{(connector | client: < client . pingservice : RequiredPort | buffer: noMsg > --> server: <
server . pingservice : ProvidedPort | buffer: noMsg >) < client : PingClient | environment:
< counter := 1 ; print( "Send Pingcounter...") ; (pingservice ! ping(counter)) ;
noAction,(status: Ping) ; (count-max = 5) > > < server : PingServer | environment: < count
:= 0 ; noAction,(status: Waiting) > >,'Act-R}

↪

↪

↪

↪

... (Several system states are displayed here)

{(connector | client: < client . pingservice : RequiredPort | buffer: noMsg > --> server: <
server . pingservice : ProvidedPort | buffer: noMsg >) < client : PingClient | environment:
< noAction,(status: Waiting) ; (count-max = 5) ; (counter = 1) > > < server : PingServer |
environment: < noAction,(status: Waiting) ; (req = 1) ; (count = 1) > >,deadlock})

↪

↪

↪

Figure 5.16: ���������� ������ �� ��� ��� �������� � ��� ������� ������������

T�e �esults s�ow t�at the �roperty is not sat�sfied wit� the mod�fied spec�fication. �ccording

to the counter-ex�mple pat�, the cl�ent and server �nstances w�ll h�ng in a st�te w�ere t�eir st�tus

is in Wa�ting. We can �orrect our model b�sed on the deta�led execut�on tr�ce prov�ded by the

�odel c�ecker (counter-ex�mple).

5.6 Conclus�on

In th�s ch�pter, we �ave proposed an �pproach that �llows the �utomatic tr�nslation of 
oT

�ystems des�gns descr�bed us�ng Th�ngML into a M�ude spec�fication. We have def�ned M�ude

stru�tures to descr�be �ll Th�ngML components and t�eir beh�vioral �spects. We �ave def�ned

a b�g-step sem�ntics (evalu�tion semant�cs) for �ctions and funct�ons descr�bed by the Th�ngML

�ction langu�ge. T�en, we �ave �mplemented t�ese sem�ntics in the M�ude langu�ge. Our

appro�ch �ims to jo�ntly �pply the Th�ngML and M�ude langu�ges to �ntegrate and benef�t �rom

t�eir �dvantages. The transform�tion g�ves prec�se sem�ntics to the Th�ngML langu�ge and
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benef�ts from the M�ude env�ronment to �nalyze and ver�fy the obt�ined M�ude spec�fications.

Exper�mental �esults us�ng a c�se �tudy s�ow t�at our �pproach can gener�te an execut�ble

spec�fication in the M�ude env�ronment, effect�vely �llowing the s�mulation of Th�ngML des�gns

and ver�fying 
oT systems’ propert�es. Using M�ude’s LTL model c�ecker �llows us to c�eck the

des�rable (or undes�rable) propert�es t�at must be gu�ranteed wit�in a system �nder �evelopment.

L�near T�me Log�c (LTL) is �sed to def�ne t�ese propert�es.



Chapter 6

A simulation-based MDE approach

6.1 Introduction

The ThingML �pproach is b�sed on a Dom�in-Specific anguage (DSL) and a �ode gener�tion

fr�mework. The Th�ngML tex�ual DSL �llows descr�bing 
oT �pplications in a pl�tform

�ndependent way. In Th�ngML �odels, the dyn�mic beh�vior of com�onents is descr�bed us�ng

a m�x of st�te ch�rts, commun�cation by �synchronous mess�ges, a platform-�ndependent �ction

langu�ge, and t�rget langu�ges. Ther�fore, t�ese spec�fications �nclude m�ny det�ils th�t decre�se

their legib�lity and compre�ension s�nce �hey are �xpressed only in textu�l �orm. On �nother

s�de, The Th�ngML �ode gener�tion fr�mework �llows the gener�tion of �pplication �ource �ode

in sever�l langu�ges �rom Th�ngML spec�fications, w�ere sever�l h�rdware pl�tforms �upport the

�pplication’s �ource code. 	owever, the Th�ngML �pproach does not �llow r�pid prototyp�ng and

exper�mentation to exped�te the ev�luation and test�ng of gener�ted �odes �efore deploy�ng in 
oT

dev�ces.

In th�s context, we propose an MDE and simulation-based �pproach to qu�ckly �evelop and

�est 
oT �pplications. It �an �elp �sers to qu�ckly cre�te and �est 
oT �pplications. More precisely,

we develop a hybrid (graph�cal-textu�l) model�ng ed�tor for Th�ngML to fac�litate the �evelopment

�rocess. We �lso �dopt a simul�tion �pproach us�ng Proteus softw�re to evalu�te the gener�ted

codes.

6.2 Gener�l overv�ew

F�gure 6.1 g�ves a gener�l overv�ew of our �pproach [20]. We �se the Th�ngML langu�ge to

descr�be 
oT �pplications us�ng the �eveloped hybr�d ed�tor. Th�s hybr�d ed�tor fac�litates and

93
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�peeds the model�ng �rocess and �elps to cl�rify and �etter �nderstand textu�l �odels. �fter

th�t, we tr�nsform the obt�ined spec�fications �nto a �ource code us�ng the Th�ngML gener�tor

code. For the analysis purposes, we fin�lly use the �roteus softw�re for rap�d �rototyping of the

�pplication h�rdware c�rcuit, and then s�mulating the prev�ously gener�ted �ource �ode on th�s

c�rcuit.
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Figure 6.1: ��� ���
��� �� ��� ��������� ���������������

Our �pproach is �tructured �ccording to the �ollowing �teps [20]:

- �tep 1. Des�gn and model�ng of 
oT �pplications us�ng the Th�ngML l�nguage.

- �tep 2. The �ode gener�tion is �one us�ng the Th�ngML �ode gener�tion fr�mework. In

th�s �ork, we w�ll �se the �rduino h�rdware pl�tform. The result�ng �ource �ode is c�lled

�ketches.

- �tep 3. Comp�ling the �ketches �ode �nto �bject �ode t�at the �rduino �uns (an extens�on

f�le ".hex"). �rduino 
DE is �sed to �erform t�is comp�lation.

- �tep 4. The s�mulation w�ll be �erformed w�th �roteus softw�re. 
t cons�sts of t�ree sub-

oper�tions: des�gn of the h�rdware c�rcuit of the �pplication, the def�nition of the par�meters
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(Progr�m f�le), and l�unching the s�mulation.

The follow�ng �ection �resents the �nderlying tec�nologies �sed in t�is �ork.

6.3 Underly�ng technolog�es

Th�s �ection prov�des an overv�ew of t�e Ecl�pse model�ng �roject, t�e �rduino pl�tform, �nd the

�roteus softw�re ut�lized in th�s �ork.

6.3.1 Ecl�pse Model�ng �roject (EMP)

The Ecl�pse Modell�ng �roject (EMP) [117] is a collect�on of fr�meworks and �ools for the �odel

Dr�ven Eng�neering on the Ecl�pse pl�tform. 
n �hort, t�ey prov�de a w�de r�nge of solut�ons for

var�ous �spects of �odel dr�ven �evelopment, �rom l�nguage def�nition, gener�tive �evelopment of

l�nguage ed�tors to �ode gener�tion as �ell as �odel verif�cation and val�dation. In the follow�ng,

�ome of the �ools �rom Ecl�pse Modell�ng �roject th�t �ave been used in th�s work are �ntroduced.

6.3.1.1 Ecl�pse Model�ng Framework (EMF)

The EMF �roject [97] is an �pen-source model�ng fr�mework t�at �orms the b�sis for bu�lding

�ll the fr�meworks �nd �ools in �he Ecl�pse model�ng �roject. It �ses the �bject-oriented met�-

model�ng l�nguage Ecore to def�ne the �eveloped model�ng l�nguages’ �bstract synt�x (met�-

model). To def�ne the �oncrete synt�x and bu�ld ed�tors’ �orkbenches �or the model�ng langu�ge,

the des�gners c�n use m�ny EMF-b�sed fr�meworks l�ke S�rius and Xtext.

6.3.1.2 S�rius Framework

The S�rius fr�mework [58] is an �pen-source Ecl�pse �roject th�t en�bles the cre�tion of graph�cal

DSL ed�tors. It is bu�lt on the Ecl�pse Modell�ng technolog�es, l�ke EMF and GMF. The �urpose

is to g�ve a gener�c workbenc� for �odel-b�sed �rchitecture eng�neering th�t �ould simpl�fy prod-

uct�on, �educe des�gn t�me, and �ncrease product�vity when bu�lding a graph�cal ed�tor [118]. In

contr�st to GMF, wh�ch gener�tes a mass�ve qu�ntity of �ery �omplex code, w�th S�rius, no code

is gener�ted �rom the spec�fication �ut �nterpreted. �onsequently, �he �hanges to �he spec�fication
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�mmediately �ome �nto �ffect w�thout the eed to run a ew ecl�pse conf�guration. S�rius is

�lso �ntegrated wit� other technolog�es t�at g�ve �ore �trength to the �ool, l�ke the S�rius-Xtext

�ntegration.

6.3.1.3 Xtext Fr�mework

�text [59] is an �MF �omponent �hat en�bles the bu�lding of �ext-b�sed DSLs. It def�nes

a DSL gr�mmar us�ng an �xtended B�ckus-Naur �orm (EBNF)-l�ke l�nguage, w�ich may be

�sed to �roduce a met�model and �ssociated �nfrastructure �uch as a �arser and l�nker. �text

prov�des a comprehens�ve �ext ed�tor wit� �eveloper-help fe�tures �uch as �yntax h�ghlighting,

�rror �ndicators, and code complet�on.

6.3.2 �rduino pl�tform

In the f�eld of electron�cs, �rduino [22] is a �ell-known �pen-source pl�tform. It h�s been �ntended

to be user-fr�endly for t�ose w�thout pr�or 
nowledge of electron�cs. �rduino en�bles the cre�tion

of th�ngs c�pable of controll�ng a �otor, turn�ng on a l�ght, and send�ng �lerts, �mong ot�er

funct�ons. It is ma�nly b�sed on two �omponents: h�rdware and softw�re.

- �rduino hardw�re: the �rduino bo�rd can �ontrol and �espond to the �omponents �onnected

to it. T�ese �omponents �ay be �ensors or �ctuators (l�ghts and LEDs, �elays, d�splays,

�otors) t�at �llow t�em to commun�cate w�th the outs�de world.

- �rduino softw�re: the �rduino bo�rd may re�dily be progr�mmed util�zing �rduino inte-

grated �evelopment env�ronment (IDE). The 
DE �llows �sers to cre�te softw�re �rograms


nown as �ketches us�ng a s�mplified vers�on of C++. Then, it �onverts �hose progr�ms to

�bject �ode compat�ble w�th �rduino hardw�re.

6.3.3 �roteus softw�re

�eveloped by L�bcenter Electron�cs, Proteus [21] is a softw�re su�te �sed pr�marily to des�gn

electric�l schem�tics. It compr�ses p�ckages such as �roteus PCB Des�gn for the pr�nted c�rcuit
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Figure 6.2: ��� ������ 
��� ��� ������ �� ������

and �roteus V�rtual �ystem Model�ng (VSM) for the s�mulation. The VSM p�ckage is �sed to

s�mulate c�rcuits w�th m�croprocessors. It en�bles r�pid prototyp�ng of h�rdware and f�rmware

des�gns. �roteus VSM en�bles the s�mulation of the �nteraction �etween softw�re runn�ng on a

m�crocontroller and any �nalog or d�gital electron�cs �onnected to it. �lso, it s�mulates the exe-

cut�on of �bject �ode, 	ust l�ke a real ch�p. Bes�des, �roteus VSM �upports sever�l m�croprocessor

f�milies ��
�	�� �
�	�� ���� �rduino, ...).

6.4 The hybr�d graphic�l-textu�l model�ng ed�tor

Sever�l not�tions can be �sed as �oncrete �yntaxes for DSL. It c�n be textu�l, gr�phical, t�bular,

form-b�sed, or a combin�tion of �hese. E�ch of �hese not�tions prov�des benef�ts th�t are un-

available in the �ther not�tions. The combin�tion of mult�ple not�tions perm�ts accumul�ting

the benef�ts of each not�tion, �nd it m�y reve�l a v�riety of �dvantages [119]. Nevert�eless,

�he �odeling fr�meworks tr�ditionally �elied on one spec�fic ed�ting not�tion. Us�ng a s�ngle

type of not�tion has the dis�dvantage of restr�cting the tools av�ilable for develop�ng and ma-

nipul�ting �odels �hat may be requ�red. On the �ther h�nd, a model�ng fr�mework b�sed

on multi-not�tions m�ght reve�l many �dvantages and prov�de a �etter perform�nce reg�rding

s�ngle-not�tion model�ng [119]. Hybr�d (or �lended) model�ng can be �efined as manipul�ting

a �ommon �nderlying �odel �esource us�ng sever�l ed�tors b�sed on d�fferent not�tions [119].

Flex�ble sep�ration of �oncerns, enh�nced human compre�ension, better commun�cation, mult�-

view model�ng b�sed on d�fferent not�tions, the �bility to manip�ling the models outs�de a model�ng

env�ronment, and speed�er-model�ng t�sks are �mong the fe�tures. The study �resented in [119]

�hows the potent�al benef�ts of hybr�d model�ng for more det�ils.
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The Th�ngML �pproach is b�sed on a textu�l Dom�in-Specific Langu�ge (DSL), where the

dyn�mic beh�vior of �omponents is descr�bed using a mix of st�te ch�rts, communic�tion by

�synchronous mess�ges, a pl�tform-independent �ction langu�ge, and t�rget langu�ges. �herefore,

these specific�tions can �nclude many det�ils that decre�se their legib�lity. In th�s �ontext, we

�evelop a hybr�d model�ng ed�tor for the Th�ngML langu�ge. The hybr�d ed�tors �resent the

�est model�ng solut�ons th�t comb�ne textu�l not�tions w�th graph�cal not�tions and �ccumulate

their �dvantages [119]. It is �ell 
nown �hat graphic�l specific�tion is �etter su�ted for de-

scr�bing the �ystem �omponents and �heir rel�tionships. St�tes and tr�nsitions in the st�te ma-

chine are specif�ed gr�phically, where�s �ctions in st�tes and gu�rds in tr�nsitions are spec�fied

us�ng a textu�l �xpression l�nguage. Thus, e�ch �ystem �spect w�ll be descr�bed us�ng the �ost

�ppropriate v�ew (textu�l/gr�phical). �herefore, the hybr�d ed�tor for the Th�ngML l�nguage can

�peed up model�ng t�sks and facilit�te underst�nding. We use �ell-known fr�meworks and �ools

�nder the Ecl�pse pl�tform to �chieve this go�l, �uch as S�rius and Xtext.

6.4.1 Xtext-based editor

Th�ngML is an �pen-source �roject [98] �resented as �extual SDL to �evelop IoT �pplications.


ts synt�x is def�ned us�ng the Xtext fr�mework [59], wh�ch uses an EBNF-l�ke langu�ge to def�ne

the DSL gr�mmar. The �text fr�mework �ses the EBNF gr�mmar to �utomatically gener�te a

comprehens�ve �ext ed�tor and an met�-model. The textu�l ed�tor prov�des �eveloper �elp fe�tures

�uch as synt�x highl�ghting, error �etection m�rkers, and �uto-completion. B�sed on the gener�ted

met�-model, we w�ll �evelop a gr�phical �ditor �here we def�ne a gr�phical represent�tion for e�ch

met�-model cl�ss.

6.4.2 Sirius-based editor

The Th�ngML graphic�l ed�tor [20] has �een �eveloped util�zing the S�rius fr�mework. St�rting

from the gener�ted met�model, S�rius �llows a model-b�sed specific�tion of visu�l �oncrete synt�x

org�nized in viewpo�nts. Graphic�l and textu�l ed�tors are synchron�zed th�nks to the S�rius and

�text integr�tion. We h�ve �eveloped three V�ewpoints for view�ng and edit�ng Th�ngs, st�te
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m�chines and configur�tions. F�gure 6.3 s�ows the �tructure of the st�te m�chine V�ewpoint.

Other figures on the graphic editors are shown in subsection 6.5.1 (See Figures 6.4, 6.5, and 6.6).

Figure 6.3: ��� ��������� �� ��� ����� ������ ��������

6.5 Case study

This sect�on presents the experiment�l �esults of the c�se study of the tr�ffic l�ght �ontroller. We

use Th�ngML vers�on 
�����
�
	��	����� (�vailable in [98] ) as �ode gener�tor. We �lso �onduct

a �eries of simul�tions �nder the �roteus softw�re (version 18.1). Th�s c�se �tudy �ims to �uild a

s�mple tr�ffic l�ght �ontroller using the �rduino pl�tform. We �ope this c�se study w�ll �elp the

re�der underst�nd the fund�mental des�gn �oncepts of Th�ngML. �hree EDs (L�ght-Emitting

D�odes) are used in th�s �ystem: �reen, �ellow, and red. T�ey are l�nked to an �rduino Uno

bo�rd. The tr�ffic l�ght �orks �ndlessly �ver t�me in the s�me w�y: it will rem�in �reen for 8

�econds, �ellow for 3 �econds, and red for 5 �econds.

6.5.1 Specification

The Th�ngML langu�ge is �sed to �odel th�s �ystem, w�ere we h�ve m�inly def�ned two Th�ngs

and a Conf�guration. F�gure 6.4 [20] �resents a gr�phical v�ew of the Tr�ffic_Light �pplication

�omponents. It shows the Th�ngs, their rel�tionships, and their mess�ges and �orts. L�sting 6.1

descr�bes the LED Th�ng th�t �resents the LED �ontroller softw�re. 
t compr�ses a prov�ded

�ort, two funct�ons, and a st�te m�chine. The st�te m�chine descr�bes an implement�tion of the

beh�vior of th�s Th�ng and has two st�tes: ON and OFF, w�th the OFF st�te be�ng the initi�l. It
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ch�nges �rom the OFF to the ON st�te upon the �vent ���������� (the ledON() mess�ge �rriving

�ver the �trl �ort). Simil�rly, w�en the �vent ���������� is tr�ggered, the Th�ng ch�nges st�te

�rom ON to OFF.

Figure 6.4: ��������� ���� �� ����� � ��� ����� ���� �����������

1 thing LED includes LEDMsgs {
2 property PIN: UInt8 = 10
3 provided port ctrl { receives led_ON, led_OFF }
4 function setDigitalOutput(pin: UInt8) do
5 `pinMode(`&pin&`, OUTPUT);`
6 end
7 function digitalWrite(pin: UInt8, value : DigitalState) do
8 `digitalWrite(`&pin&`, `&value&`);`
9 end

10 statechart LED init OFF {
11 on entry setDigitalOutput(PIN)
12 state OFF {
13 transition -> ON event ctrl?led_ON
14 action digitalWrite(PIN, DigitalState:HIGH) }
15 state ON {
16 transition -> OFF event ctrl?led_OFF
17 action digitalWrite(PIN, DigitalState:LOW)
18 }
19 }
20 }

Listing 6.1: ����� ������������ �� ��� �� �����

Tr�ffic_Light’s �econd softw�re �omponent descr�bes the implement�tion of the tr�ffic l�ght

�ontroller (see L�sting 6.2). Th�s Th�ng is compr�sed of �our �orts and a st�te m�chine. The �orts

w�ll be used to �onnect to the ���. A st�te m�chine descr�bes the Th�ng’s beh�vior wit� �hree

st�tes: ���� ������ �� ���� . It is initi�lly in the RED st�te and sw�tches �rom one

st�te to �nother �hen the ����������� ������� �vent is tr�ggered (th�t is, at the end of the t�me

�llotted for e�ch st�te). When the Th�ng �nters or ex�ts �hese st�tes, it �cts, on enter�ng, it �ends
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the led_ON mess�ge t�rough the �ssociated port, �nd on ex�t, it �ends the led_OFF mess�ge via

the correspond�ng �ort.

1 thing Traffic_Light includes TimerMsgs , LEDMsgs {
2 required port timer { sends timer_start receives timer_timeout }
3 required port Red_led { sends led_ON led_OFF }
4 required port Green_led { sends led_ON led_OFF }
5 required port Yellow_led { sends led_ON led_OFF }
6 statechart Traffic_Light init RED {
7 state RED {
8 on entry do
9 Red_led!led_ON()

10 timer!timer_start(5000)
11 end
12 transition -> GREEN event timer?timer_timeout
13 on exit Red_led!led_OFF() }
14 state GREEN {
15 on entry do
16 Green_led!led_ON()
17 timer!timer_start(8000)
18 end
19 transition -> YELLOW event timer?timer_timeout
20 on exit Green_led!led_OFF() }
21 state YELLOW {
22 on entry do
23 Yellow_led!led_ON()
24 timer!timer_start(3000)
25 end
26 transition -> RED event timer?timer_timeout
27 on exit Yellow_led!led_OFF() } }
28 }
29 }

Listing 6.2: ����� ������������ �� ��� ��������� �����

The gr�phical v�ew of the st�te di�gram of the Tr�ffic_L�ght Th�ng is �resented in Fig. 6.5 [20].

Figure 6.5: ��������� ���� �� ���� ����� ���� ����� ������
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The Tr�ffic_Light_App configur�tion, �hown in L�sting 6.3, �resents the �oncrete �pplication.

It �onsists of four �nstances; �hree LED �nd one Tr�ffi_Light. �hese inst�nces are �nterconnected

us�ng four �onnectors. E�ch �onnector must l�nk a requ�red �ort w�th another �rovided �ort.

E�ch �nstance’s PIN �roperty is initi�lized w�th a v�lue correspond�ng to the genu�ne v�lue of the

�rduino bo�rd’s D�gital Pic.

1 configuration Traffic_Light_App {
2 instance traffic_light : Traffic_Light
3 instance red_led : LED
4 set red_led.PIN = 11
5 instance green_led : LED
6 set green_led.PIN = 12
7 instance yellow_led : LED
8 set yellow_led.PIN = 13
9 connector traffic_light.Red_led => red_led.ctrl

10 connector traffic_light.Green_led => green_led.ctrl
11 connector traffic_light.Yellow_led => yellow_led.ctrl
12 connector traffic_light.timer over Timer
13 }

Listing 6.3: ����� ������������ �� ����� ���� ��� �����������

The gr�phical v�ew of the Tr�ffic_Light_App configur�tion is �hown in Fig. 6.6 [20].

Figure 6.6: ��������� ���� �� ��� ����� ���� ��� �����������

6.5.2 Code gener�tion

�fter the �ystem model�ng, the Th�ngML code gener�tor w�ll be used to gener�te the �ode �ource

�utomatically. �here are �wo �ethods, �ither by �sing the Ecl�pse pl�tform or the Jar f�le. Fig. 6.7

�hows the code gener�tion �rocess us�ng the Jar f�le.
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Figure 6.7: ��� ���� �������� ���� ��� ����

6.5.3 Compil�tion of the �ketches

The ext step in the �rocess is to comp�le the �ketches. The compil�tion step is �one with the

�rduino IDE. F�gure 6.8 �resents the �esults of the compil�tion, show�ng th�t the �ketches are

�ompiled �orrectly. The �esult is an �bject �ile (with .hex extens�on).

Figure 6.8: ��� ���������� �� ����� ����� ������������

6.5.4 Simul�tion

In the simul�tion �tep, we f�rst bu�ld the �pplication hardw�re c�rcuit. The tr�ffic l�ght hardw�re

c�rcuit seen in Fig. 6.9 [20] was cre�ted us�ng the �roteus progr�m. It cons�sts of an �rduino

�no bo�rd and t�ree ���. The �ed, �ellow, and �reen EDs are �onnected to the 11, 12, and
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13 digit�l pins of �rduino �no, respect�vely. We �hen def�ne the �rogram file of the �rduino

component by the �bject f�le obt�ined in the compil�tion step. Fin�lly, we simul�te the �ode

obt�ined in the �eveloped c�rcuit.
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We h�ve �onducted a ser�es of simul�tions th�t demonstr�te th�t the �ource �ode gener�ted by

the Th�ngML code gener�tion �rom our specific�tion is �xecuted �orrectly on the c�rcuit �eveloped

in �roteus. T�ble 6.1 �resents the simul�tion �esults for 10, 20, and 50 tr�ffic l�ght �ycles (a �ycle

is the sw�tching �etween Red, �reen, �ellow, and �hen Red) [20].

Table 6.1: The simul�tion results

10 �ycles 20 �ycles 50 �ycles
Execut�on t�me 160 s 320 s 800 s
�esult �xecuted �orrectly �xecuted �orrectly �xecuted �orrectly

6.6 Conclusion

In th�s chapter, we �ave �resented an �pproach to des�gn and simul�te 
oT �pplications. In th�s

�pproach, we have used Th�ngML to des�gn the �pplications and gener�te a �ource �ode �rom this

specific�tion us�ng Th�ngML code gener�tion, w�ere we h�ve �eveloped a hybr�d ed�tor for the

Th�ngML langu�ge. Then, we have used the �roteus softw�re to bu�ld the �pplication c�rcuit and

to simul�te gener�ted code on th�s c�rcuit. The simul�tion �esults demonstr�te that the �ource

�ode gener�ted is �xecuted �orrectly on the �ircuit �eveloped. �onsequently, the �sers can �est

�heir �pplications w�thout the �vailability of 
oT dev�ces.



General conclusion

The last few ye�rs h�ve seen a strong deve�opment in t�e use of 
nternet of Th�ngs tec�nologies,

w�ere a l�rge number of user dev�ces need to coll�borate in order to per�orm a common

t�sk. The avail�bility of m�ny d�verse �eterogeneous dev�ces coll�borating in t�e 
oT repr�sents

an unpre�edented opportun�ty to improve the qual�ty of l�fe, along with the qual�ty of serv�ce,

t�rough collabor�tion among industr�al �nd consumer dev�ces. 	owever, to benet from t�e 
oT

adv�ntages, a w�ole host of new ch�llenges must be �ddressed at �ll levels. MDE c�n help meet

t�e techn�cal ch�llenges of 
oT system deve�opment.


n t�is t�esis, we �re interested in propos�ng an appro�ch for model�ng and an�lyzing 
oT

appl�cations b�sed on Model-Dr�ven Eng�neering (MDE). We h�ve m�de a tour of the par�digm

of t�e 
oT, as well �s the model�ng of 
oT systems us�ng the MDE appro�ch. We h�ve s�own the

ex�sting appro�ches in the liter�ture by mak�ng a comp�rative study t�at allows discuss�ng the

adv�ntages and dis�dvantages for e�ch of t�em. We t�en d�scussed t�e two langu�ges used, n�mely

Th�ngML, as a sem�-form�l model�ng langu�ge, and M�ude, as a form�l spec�fication langu�ge.

After that, we h�ve proposed �n MDE-b�sed form�l appro�ch, wh�ch �ims to jo�ntly �pply the

Th�ngML �nd M�ude langu�ges to integr�te and benef�t from t�eir adv�ntages. 
t cons�sts in

us�ng Th�ngML for model�ng 
oT appl�cations �nd benef�ting from a set of code gener�tors for

var�ous pl�tforms. Th�s is followed by the autom�tic transl�tion of Th�ngML spec�fications �nto

M�ude code to �llow ver�fication �nd �nalysis. We �ave def�ned M�ude stru�tures to descr�be

�ll Th�ngML components �nd t�eir beh�vioral �spects. We �ave def�ned b�g-step sem�ntics

(ev�luation sem�ntics) for �ctions �nd funct�ons descr�bed by the Th�ngML �ction langu�ge.

T�en, we �mplemented t�ese sem�ntics in the �aude langu�ge. T�e transform�tion g�ves prec�se

sem�ntics to t�e Th�ngML langu�ge and benef�ts from the M�ude env�ronment to �nalyze and

105
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ver�fy the obt�ined M�ude spec�fications. Exper�mental results us�ng a c�se study s�ow t�at our

appro�ch c�n gener�te an execut�ble spec�fication �n t�e M�ude env�ronment, effect�vely allow�ng

the simul�tion of Th�ngML des�gns and ver�fying 
oT systems’ propert�es. Us�ng M�ude’s LTL

model c�ecker allows us to c�eck the des�rable (or undes�rable) propert�es t�at must be guar�nteed

wit�in a system uder deve�opment. L�near T�me Log�c (LTL) �s used to def�ne t�ese propert�es.


n a se�ond contr�bution, we �ave deve�oped a hybr�d textu�l-graph�cal ed�tor t�at facil�tates

t�e deve�opment process and �ddresses some of t�e shortcom�ngs of us�ng a textu�l ed�tor. We

have �lso suggested us�ng Pr�teus softw�re as a tool to bu�ld the hardw�re c�rcuit of the appl�cation

as well as to s�mulate �nd test t�e prev�ously gener�ted code before dep�oyment on 
oT dev�ces.


n t�e current vers�on of t�e form�l appro�ch, we h�ve �mplemented t�e sem�ntics of the

Th�ngML act�on langu�ge us�ng rewr�ting rules wit� re�chability cond�tions. T�ese rewriting rules

m�y need more comput�tional �esources, espec�ally for sign�ficant c�se stud�es. For t�is re�son,

we pl�n to st�dy the sc�lability of our form�l fr�mework. For that, we propose to �ntroduce t�e

re�l-t�me �spect us�ng RT-M�ude, wh�ch w�ll en�ble us to �nalyze more extens�ve re�l c�se stud�es,

we w�ll try to stre�mline t�e sem�ntics follow�ng d�fferent appro�ches such as pre�ented �n [120].

To wrap ups, we will try to make a cr�tical comp�rison of t�e res�lts of t�e �pplied �pproaches

to choose t�e most �ppropriate. 
n add�tion, we pl�n to dev�lop a form�l tool b�sed on M�ude

for the Th�ngML l�nguage th�t c�n �ide form�l det�ils from des�gners. Suc� a tool �llows t�e

�utomatic gener�tion of M�ude LTL express�ons �nd �utomatically d�splays t�e �nterpretation of

t�e �nalysis �esults �n the source models.
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Appendix A

A.1 Abstract syntax for the ThingML action language

1. Syntactic categories

𝐴 ∈ 𝐴𝑐𝑡𝑖𝑜𝑛

𝑒 ∈ 𝐸𝑥𝑝

𝑏𝑒 ∈ 𝐵𝑒𝑥𝑝

𝑣 ∈ 𝑉 𝑎𝑙

𝑏𝑣 ∈ 𝐵𝑉 𝑎𝑙

𝑣𝑙 ∈ 𝑉 𝑎𝑙𝐿𝑖𝑠𝑡

𝑥 ∈ 𝑉 𝑎𝑟

𝑏𝑥 ∈ 𝐵𝑣𝑎𝑟

𝑥𝑙 ∈ 𝑉 𝑎𝑟𝐿𝑖𝑠𝑡

𝑜𝑝 ∈ 𝑂𝑝

𝑟𝑜𝑝 ∈ 𝑅𝑂𝑝

𝑏𝑜𝑝 ∈ 𝐵𝑜𝑝

𝑣 ∈ 𝑉 𝑎𝑙

𝑏𝑣 ∈ 𝐵𝑉 𝑎𝑙

𝑠 ∈ 𝑆𝑡𝑎𝑡𝑢𝑠

𝑝 ∈ 𝑃𝑜𝑟𝑡𝐼𝑑

𝑚 ∈ 𝑀𝑠𝑔𝐼𝑑

𝑚𝑠𝑔 ∈ 𝑀𝑠𝑔

2. Definitions

𝑒 ∶∶= 𝑣 ∣ 𝑥 ∣ 𝑒
′
𝑜𝑝 𝑒

′′ ∣ − 𝑒

𝑜𝑝 ∶∶= + ∣ − ∣ ∗ ∣ / ∣ 𝑟𝑒𝑚

𝑟𝑜𝑝 ∶∶= = ∣ � = ∣ < ∣ > ∣ ≤ ∣ ≥

𝑏𝑒 ∶∶= 𝑏𝑣 ∣ 𝑏𝑥 ∣ 𝑁𝑜𝑡 𝑏𝑒
′ ∣ 𝑏𝑒 𝑏𝑜𝑝 𝑏𝑒

′ ∣ 𝑒 𝑟𝑜𝑝 𝑒
′ ∣ 𝑏𝑒 = 𝑏𝑒

′ ∣ 𝑏𝑒 � = 𝑏𝑒
′

𝑏𝑜𝑝 ∶∶= 𝐴𝑛𝑑 ∣ 𝑂𝑟

𝑏𝑣 ∶∶= 𝑡𝑟𝑢𝑒 ∣ 𝑓𝑎𝑙𝑠𝑒

𝑣𝑙 ∶∶= 𝑣 ∣ 𝑏𝑣 ∣ 𝑣𝑙
′
, 𝑣𝑙

′′

𝑥𝑙 ∶∶= 𝑥 ∣ 𝑏𝑥 ∣ 𝑥𝑙
′
, 𝑥𝑙

′′

𝑚𝑠𝑔 ∶∶= 𝑚() ∣ 𝑚(𝑣𝑙) ∣ 𝑚(𝑥𝑙)
𝐴 ∶∶= 𝑥 ∶= 𝑒 ∣ 𝐴

′ � 𝐴
′′ ∣ 𝐼𝑓 𝑏𝑒 𝑇ℎ𝑒𝑛 𝐴 𝐸𝑙𝑠𝑒 𝐴

′ ∣ 𝐼𝑓 𝑏𝑒 𝑇ℎ𝑒𝑛 𝐴 ∣ 𝑊ℎ𝑖𝑙𝑒 𝑏𝑒 𝐷𝑜 𝐴 ∣ 𝑥+
+ ∣ 𝑥 − − ∣ 𝑝 � 𝑚𝑠𝑔 ∣ 𝑔𝑜𝑡𝑜 ( 𝑠 )
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A.2 Evaluation semantics for expressions

Val_Rule : ⟨𝑣, 𝑠𝑡⟩ ⇒𝐴 𝑣

Var_Rule : ⟨𝑥, 𝑠𝑡⟩ ⇒𝐴 𝑠𝑡(𝑥)

VaList_Rule : ⟨𝑣𝑙, 𝑠𝑡⟩ ⇒𝐴 𝑣𝑙

VarList_Rule : ⟨𝑥𝑙, 𝑠𝑡⟩ ⇒𝐴 𝑠𝑡(𝑥𝑙)

Op_Rule :

⟨𝑒, 𝑠𝑡⟩ ⇒𝐴 𝑣

⟨𝑒′, 𝑠𝑡⟩ ⇒𝐴 𝑣
′

⟨𝑒 𝑜𝑝 𝑒′, 𝑠𝑡⟩ ⇒𝐴 𝐴𝑝 (𝑜𝑝, 𝑣, 𝑣′)

UMinus _Rule :
< 𝑒, 𝑠𝑡 >⇒𝐴 𝑣

⟨− 𝑒, 𝑠𝑡⟩ ⇒𝐴 𝐴𝑝(−, 𝑣)

Bval_Rule : ⟨𝑏𝑣, 𝑠𝑡⟩ ⇒𝐵 𝑏𝑣

Bvar_Rule : ⟨𝑏𝑥, 𝑠𝑡⟩ ⇒𝐵 𝑠𝑡(𝑏𝑥)

BOp_Rule :

⟨𝑏𝑒, 𝑠𝑡⟩ ⇒𝐵 𝑏𝑣

⟨𝑏𝑒
′
, 𝑠𝑡⟩ ⇒𝐵 𝑏𝑣

′

⟨𝑏𝑒 𝑏𝑜𝑝 𝑏𝑒′, 𝑠𝑡⟩ ⇒𝐵 𝐴𝑝 (𝑏𝑜𝑝, 𝑏𝑣, 𝑏𝑣′)

Not_Rule :
< 𝑏𝑒, 𝑠𝑡 >⇒𝐵 𝑏𝑣

⟨𝑁𝑜𝑡 𝑏𝑒, 𝑠𝑡⟩ ⇒𝐵 𝐴𝑝(𝑁𝑜𝑡, 𝑏𝑣)

ROp_Rule :

⟨𝑒, 𝑠𝑡⟩ ⇒𝐴 𝑣

⟨𝑒′, 𝑠𝑡⟩ ⇒𝐴 𝑣
′

⟨𝑒 𝑟𝑜𝑝 𝑒′, 𝑠𝑡⟩ ⇒𝐶 𝐴𝑝 (𝑟𝑜𝑝, 𝑣, 𝑣′)

BEqu_Rule :

⟨𝑏𝑒, 𝑠𝑡⟩ ⇒𝐵 𝑏𝑣

⟨𝑏𝑒
′
, 𝑠𝑡⟩ ⇒𝐵 𝑏𝑣

′

⟨𝑏𝑒 = 𝑏𝑒′, 𝑠𝑡⟩ ⇒𝐶 𝐴𝑝 (=, 𝑏𝑣, 𝑏𝑣′)

BNEqu_Rule :

⟨𝑏𝑒, 𝑠𝑡⟩ ⇒𝐵 𝑏𝑣

⟨𝑏𝑒
′
, 𝑠𝑡⟩ ⇒𝐵 𝑏𝑣

′

⟨𝑏𝑒 � = 𝑏𝑒′, 𝑠𝑡⟩ ⇒𝐶 𝐴𝑝 (� =, 𝑏𝑣, 𝑏𝑣′)
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A.3 Evaluation semantics for ThingML actions

Eff_Rule :
⟨𝑒, 𝑠𝑡⟩ ⇒𝐴 𝑣

⟨𝑥 ∶= 𝑒, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡 [𝑣 / 𝑥 ]

Dec_Rule :
⟨𝑥 ∶= 𝑥 − 	, 𝑠𝑡⟩ ⇒𝐴 𝑠𝑡

′

⟨𝑥 − −, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡′

Inc_Rule :
⟨𝑥 ∶= 𝑥 + 	, 𝑠𝑡⟩ ⇒𝐴 𝑠𝑡

′

⟨𝑥 + +, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡′

Action_Rule :

⟨𝐴, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡
′

⟨𝐴′
, 𝑠𝑡

′⟩ ⇒𝐷 𝑠𝑡
′′

⟨𝐴 � 𝐴′, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡′′

Goto_Rule : ⟨𝑔𝑜𝑡𝑜 (𝑠) , 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡[𝑠]

Send_Rule1 : ⟨𝑝 � 𝑚𝑠𝑔 (𝑣𝑙) , 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡[𝑚𝑠𝑔(𝑣𝑙)∣ − 𝑝]

Send_Rule2 :
⟨𝑥𝑙 , 𝑠𝑡⟩ ⇒𝐴 𝑣𝑙

⟨𝑝 � 𝑚𝑠𝑔 (𝑥𝑙) , 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡[𝑚𝑠𝑔(𝑣𝑙)∣ − 𝑝]

Send_Rule3 : ⟨𝑝 � 𝑚𝑠𝑔 () , 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡[𝑚𝑠𝑔()∣ − 𝑝]

If_Then_Rule1 :

⟨𝑏𝑒, 𝑠𝑡⟩ ⇒𝐵 𝑡𝑟𝑢𝑒

⟨𝐴, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡
′

⟨𝐼𝑓 𝑏𝑒 𝑇ℎ𝑒𝑛 𝐴 𝐸𝑙𝑠𝑒 𝐴′, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡′

If_Then_Rule2 :

⟨𝑏𝑒, 𝑠𝑡⟩ ⇒𝐵 𝑓𝑎𝑙𝑠𝑒

⟨𝐴′
, 𝑠𝑡⟩ ⇒𝐴 𝑠𝑡

′

⟨𝐼𝑓 𝑏𝑒 𝑇ℎ𝑒𝑛 𝐴 𝐸𝑙𝑠𝑒 𝐴′, 𝑠𝑡⟩ ⇒𝐴 𝑠𝑡′

If_Rule1 :

⟨𝑏𝑒, 𝑠𝑡⟩ ⇒𝐵 𝑡𝑟𝑢𝑒

⟨𝐴, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡
′

⟨𝐼𝑓 𝑏𝑒 𝑇ℎ𝑒𝑛 𝐴, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡′

If_Rule2 :
⟨𝑏𝑒, 𝑠𝑡⟩ ⇒𝐵 𝑓𝑎𝑙𝑠𝑒

⟨𝐼𝑓 𝑏𝑒 𝑇ℎ𝑒𝑛 𝐴, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡

While_Rule1 :

⟨𝑏𝑒, 𝑠𝑡⟩ ⇒𝐵 𝑡𝑟𝑢𝑒

⟨𝐴 � 𝑊ℎ𝑖𝑙𝑒 𝑏𝑒 𝐷𝑜 𝐴, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡
′

⟨𝑊ℎ𝑖𝑙𝑒 𝑏𝑒 𝐷𝑜 𝐴, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡′

While_Rule2 :
⟨𝑏𝑒, 𝑠𝑡⟩ ⇒𝐵 𝑓𝑎𝑙𝑠𝑒

⟨𝑊ℎ𝑖𝑙𝑒 𝑏𝑒 𝐷𝑜 𝐴, 𝑠𝑡⟩ ⇒𝐷 𝑠𝑡
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B.1 The THINGML-CONVERSION module

The ThingML data types are mapped to Maude predefined sorts. For this, we define the module

THINGML-CONVERSION, which imports the predefined module CONVERSION and renames the

appropriate operators.

1 fmod THINGML-CONVERSION is
2 pr CONVERSION
3 * (--- Renamings in FLOAT
4 sort Float to FLoat ,
5 sort String to STring ,
6 sort Char to CHar , sort FindResult to FIndResult ,
7 op abs : Float -> Float to absF ,
8 op notFound : -> FindResult to NotFound ,
9 op char : Nat ~> Char to CHar ,

10 op -_ : Float -> Float to -F_,
11 op _+_ : Float Float -> Float to _+F_,
12 op _-_ : Float Float -> Float to _-F_,
13 op _/_ : Float Float -> Float to _/F_,
14 op _*_ : Float Float -> Float to _*F_,
15
16 op min : Float Float -> Float to minF,
17 op max : Float Float -> Float to maxF,
18 op _rem_ : Float Float -> Float to _remF_,
19 op _^_ : Float Float -> Float to _^F_,
20 op _<_ : Float Float -> Bool to _<F_,
21 op _<=_ : Float Float -> Bool to _<=F_,
22 op _>_ : Float Float -> Bool to _>F_,
23 op _>=_ : Float Float -> Bool to _>=F_,
24 op floor : Float -> Float to floorF,
25 op ceiling : Float -> Float to ceilingF,
26
27 --- Renamings in STRING
28 op _<_ : String String -> Bool to _ltt_,
29 op _<=_ : String String -> Bool to _leq_,
30 op _>_ : String String -> Bool to _gtt_,
31 op _>=_ : String String -> Bool to _geq_,
32 op _+_ : String String -> String to _++_,
33 op float : String ~> Float to string2float ) .
34 endfm

B.2 The THINGML-EXP-SYNTAX module

In the functional module THINGML-EXP-SYNTAX, we have defined the syntax of arithmetic

and logical expressions de the ThingML language. We have declared new arithmetic operators

corresponding to Maude’s predefined operators (with the same properties).

xxxi
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1 fmod THINGML-EXP-SYNTAX is
2 including THINGML-CONVERSION .
3
4 sorts Exp BExp Var BVar Op BOp ROp ExpList VaList VarList Value Variable .
5 subsorts Bool Int Nat FLoat STring < Value .
6 subsorts Var BVar < Variable .
7 subsort Var < Exp .
8 subsorts Int Nat FLoat STring < Exp .
9 subsort BVar < BExp .

10 subsort Bool < BExp .
11
12 --- List of expressions
13 subsort Exp BExp < ExpList .
14 op emptyExpList : -> ExpList .
15 op _,_ : ExpList ExpList -> ExpList [assoc prec 30] .
16
17 --- List of values
18 subsort Value < VaList .
19 op emptyVaList : -> VaList .
20 op _,_ : VaList VaList -> VaList [assoc prec 30] .
21 subsort VaList < ExpList .
22
23 --- List of variables
24 subsort Variable < VarList .
25 op emptyVarList : -> VarList .
26 op _,_ : VarList VarList -> VarList [assoc prec 30] .
27 subsort VarList < ExpList .
28
29 --- These operators are used by the function Ap
30 ops .+ .* .- ./ .rem : -> Op .
31 ops .= .!= .< .> .<= .>= : -> ROp .
32 ops And Or : -> BOp .
33
34 --- "And", "Or", and "not" operations corresponding to the "and" and "or" operations of BOOL

module
35 --- They keep the same properties
36 op _And_ : BExp BExp -> BExp [ctor assoc comm prec 55] .
37 op _Or_ : BExp BExp -> BExp [ctor assoc comm prec 59] .
38 op Not_ : BExp -> BExp [ctor prec 53] .
39
40 --- New arithmetic operators corresponding to Maude's predefined operators (with the same

properties)
41 op .-_ : Exp -> Exp [ctor prec 53] .
42 op _.+_ : Exp Exp -> Exp [ctor gather (E e) prec 33] .
43 op _.-_ : Exp Exp -> Exp [ctor gather (E e) prec 33] .
44 op _.*_ : Exp Exp -> Exp [ctor gather (E e) prec 31] .
45 op _./_ : Exp Exp -> Exp [ctor gather (E e) prec 31] .
46 op _.rem_ : Exp Exp -> Exp [ctor gather (E e) prec 31] .
47
48 --- New relational operators corresponding to Maude's predefined operators (with the same

properties)
49 op _.=_ : Exp Exp -> BExp [ctor prec 51 poly (1 2)] .
50 op _.!=_ : Exp Exp -> BExp [ctor prec 51 poly (1 2)] .
51 op _.<_ : Exp Exp -> BExp [ctor prec 37] .
52 op _.>_ : Exp Exp -> BExp [ctor prec 37] .
53 op _.<=_ : Exp Exp -> BExp [ctor prec 37] .
54 op _.>=_ : Exp Exp -> BExp [ctor prec 37] .
55 endfm

B.3 The THINGML-SYNTAX module

The THINGML-SYNTAX module defines the syntax of the ThingML constructs. It defines the

syntax of Things, messages, ports, states, actions, events and configurations (instances and con-

nectors).
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1 mod THINGML-SYNTAX is
2 including CONFIGURATION .
3 including THINGML-EXP-SYNTAX .
4
5 --- Thing
6 sorts ThingId Statement Store Action .
7 subsort ThingId < Cid . --- Cid : Class identifiers
8 subsorts Bool Int Nat FLoat STring < Statement .
9 subsort Store < Statement .

10 --- Declaration of the environment attribute
11 op environment:_ : Statement -> Attribute [ctor gather (&)] .
12 op <_,_> : Action Store -> Statement .
13 op <_,_> : Exp Store -> Statement .
14 op <_,_> : BExp Store -> Statement [ditto] .
15 --- Message
16 sorts MsgId MsgSet .
17 op _`(`) : MsgId -> Msg [ctor] .
18 op _`(_`) : MsgId ExpList -> Msg [ctor] .
19 subsort Msg < MsgSet .
20 op noMsg : -> MsgSet [ctor] .
21 op _;_ : MsgSet MsgSet -> MsgSet [ctor comm assoc id: noMsg] .
22 op parmsg : MsgId -> VarList .
23
24 --- Ports
25 sorts Port PortId PortName .
26 subsort Port < Cid . --- Cid : Class identifiers
27
28 op _._ : InstanceId PortId -> PortName [ctor] .
29 subsort PortName < Oid . --- Oid : Object identifiers
30 --- Declaration of port classes
31 ops ProvidedPort RequiredPort InternalPort : -> Port .
32 --- class ProvidedPort | buffer: MsgSet .
33 --- class RequiredPort | buffer: MsgSet .
34 --- class InternalPort | buffer: MsgSet .
35 --- Declaration of the buffer attribute
36 op buffer:_ : MsgSet -> Attribute [ctor gather (&)] .
37
38 --- State
39 sorts StateId CompositeStateId AtomicStateId .
40 subsorts CompositeStateId AtomicStateId < StateId .
41 sort Status .
42 subsorts AtomicStateId < Status .
43 op _`(_`) : CompositeStateId Status -> Status [ctor] .
44 op noState : -> Status [ctor] .
45 op _||_ : Status Status -> Status [ctor assoc id: noState ] .
46 ---sorts SessionId RegionId .
47 ---subsort SessionId RegionId < CompositeStateId .
48
49 --- Action language
50 sort BlockAction .
51 op noAction : -> Action .
52 op _:=_ : Var Exp -> Action [prec 39] .
53 op _;_ : Action Action -> Action [assoc prec 40 ] .
54 op If_Then_Else_ : BExp Action Action -> Action [prec 50] .
55 op If_Then_ : BExp Action -> Action [prec 50] .
56 op While_Do_ : BExp Action -> Action [prec 60] .
57 op _!_ : PortId Msg -> Action [prec 60] .
58 op _++ : Var -> Action [prec 39] .
59 op _-- : Var -> Action [prec 39] .
60 op goto`(_`) : Status -> Action [prec 39] .
61 op print`(_`) : STring -> Action [prec 39] .
62 op do_end : Action -> BlockAction [prec 39] .
63
64 --- Event
65 sort Event .
66 op _?_ : PortId MsgId -> Event .
67 op noEvent : -> Event .
68 --- Configuration
69 sorts InstanceId .
70 subsort InstanceId < Oid . --- Oid : Object identifier
71 sort Connector .
72 subsort Connector < Object .
73 op connector | client:_--> server:_ : Object Object -> Connector [ctor] .
74 endm
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B.4 The THINGML-STORE module

The THINGML-STORE imports the THINGML-SYNTAX module and implements the Store con-

cept in Maude. It cons�ders �ll the �nformation of the th�ng, wh�ch �llows for stor�ng and m�naging

the th�ng’s st�tus, mess�ges, propert�es, par�meters, and �vents. The TH
NGML-STORE �odule

�ncludes oper�tors and equ�tions th�t �nsure d�fferent funct�ons �uch as re�ding, wr�ting, and

mod�fying vari�bles (�rithmetic, Boole�n, and string), st�tus, mess�ges, and events.

1 mod THINGML-STORE is
2 including THINGML-SYNTAX .
3
4 op mt : -> Store . --- empty store
5 --- SS = Singleton Store
6 --- `(_=_`) : use to associate a value to their variable
7 op `(_=_`) : Variable Value -> Store [prec 20] . --- SS of a variable (For properties and

parameters)
8 op `(_`) : Event -> Store [prec 20] . --- SS of a event
9 op `(_Via_`) : Msg PortId -> Store [prec 20] . --- SS of a message

10 op `(status:_`) : Status -> Store [prec 20] . --- SS of the status
11 op _;_ : Store Store -> Store [assoc id: mt prec 30] . --- Union of SSs
12 --- The next operators are used to add or update the SEs of the:
13 op _`[_/_`] : Store Value Variable -> Store [prec 35] . --- variable
14 op _`[_/_`] : Store VaList VarList -> Store [prec 35] . --- list of variable
15 op _`[_|-_`] : Store Msg PortId -> Store [prec 35] . --- massage
16 op _`[_`] : Store Status -> Store [prec 35] . --- status
17 --- _`(_`) : returns a value (or a list) of the variable (or a list)
18 op _`(_`) : Store Variable -> Value .
19 op _`(_`) : Store VarList -> VaList .
20 --- The next part of the module represents the implementation of the operations defined above.
21 op remove : Store Variable -> Store .
22 var m : Msg . var v : Value . vars s s' : Status .
23 var nl : VaList . var st : Store . var p : PortId .
24 var xl : VarList . var ev : Event . vars x x' : Variable .
25 eq st [v / x] = remove(st, x) ; ( x = v ) .
26 eq remove(mt, x) = mt .
27 ceq remove((x = v) ; st, x') = st if x == x' .
28 ceq remove((x = v) ; st, x') = (x = v) ; remove(st,x') if x =/= x' .
29 --- eq remove (( x = v ) ; st, x) = st .
30 --- eq remove((x = v) ; st, x') = (x = v) ; remove(st,x') [owise] .
31 eq st [v, nl / x, xl] = (st[v / x]) [nl / xl] .
32 eq st [emptyVarList / emptyVaList] = st .
33
34 eq st [ m |- p ] = st ; ( m Via p ) .
35 eq ((m Via p) ; st)(x') = st(x') .
36 eq remove((m Via p) ; st, x') = (m Via p) ; remove(st,x') .
37 eq (status: s' ) ; st [s] = ( status: s' || s ) ; st .
38 eq ((status: s) ; st)(x') = st(x') .
39 eq ((ev) ; st)(x') = st(x') .
40 eq remove((status: s) ; st, x') = (status: s) ; remove(st,x') .
41
42 ceq ( ( x = v ) ; st)(x') = v if x == x' .
43 ceq ( ( x = v ) ; st)(x') = st(x') if x =/= x' .
44 --- eq ( ( x = v ) ; st)(x) = v .
45 --- eq ( ( x = v ) ; st)(x') = st(x') [owise] .
46
47 eq st(emptyVarList) = emptyVaList .
48 eq ( (status: s) ; st)(xl) = st(xl) .
49 eq ( (ev) ; st)(xl) = st(xl) .
50 eq remove((ev) ; st, x') = (ev) ; remove(st,x') .
51 eq ( (m Via p) ; st)(xl) = st(xl) .
52 eq st(x , xl) = ( (st(x)) , (st(xl))) .
53 endm
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B.5 The THINGML-AP module

The funct�onal �odule AP def�nes an oper�tion Ap that en�bles the �pplication of a bin�ry

oper�tor to two �lready evalu�ted �rguments. It �llows sw�tching �etween the def�ned oper�tions

and the correspond�ng M�ude’s predef�ned oper�tions. The l�tter en�bles the execut�on of the

�rithmetic and log�cal oper�tions �oncretely.

1 fmod THINGML-AP is
2 including THINGML-EXP-SYNTAX .
3
4 op Ap : Op Value Value -> Value .
5 op Ap : ROp Value Value -> Bool .
6 op Ap : BOp Bool Bool -> Bool .
7 vars bv bv' : Bool .
8 --- -----------------------------------------------------------
9 --- ---- Int & Nat

10 --- -----------------------------------------------------------
11 eq Ap(.+,v:Int,v':Int) = v:Int + v':Int .
12 eq Ap(.*,v:Int,v':Int) = v:Int * v':Int .
13 eq Ap(.-,v:Int,v':Int) = v:Int - v':Int .
14 eq Ap(.rem,v:Int,v':Int) = v:Int rem v':Int .
15 eq Ap(./,v:Rat,v':Rat) = v:Rat / v':Rat .
16 eq Ap(.<,v:Int,v':Int) = v:Int < v':Int .
17 eq Ap(.>,v:Int,v':Int) = v:Int > v':Int .
18 eq Ap(.<=,v:Int,v':Int) = v:Int <= v':Int .
19 eq Ap(.>=,v:Int,v':Int) = v:Int >= v':Int .
20 --- -----------------------------------------------------------
21 --- ---- FLoat
22 --- -----------------------------------------------------------
23 eq Ap(.+,v:FLoat,v':FLoat) = v:FLoat +F v':FLoat .
24 eq Ap(.*,v:FLoat,v':FLoat) = v:FLoat *F v':FLoat .
25 eq Ap(.-,v:FLoat,v':FLoat) = v:FLoat -F v':FLoat .
26 eq Ap(.rem,v:FLoat,v':FLoat) = v:FLoat remF v':FLoat .
27 eq Ap(./,v:FLoat,v':FLoat) = v:FLoat /F v':FLoat .
28 eq Ap(.<,v:FLoat,v':FLoat) = v:FLoat <F v':FLoat .
29 eq Ap(.>,v:FLoat,v':FLoat) = v:FLoat >F v':FLoat .
30 eq Ap(.<=,v:FLoat,v':FLoat) = v:FLoat <=F v':FLoat .
31 eq Ap(.>=,v:FLoat,v':FLoat) = v:FLoat >=F v':FLoat .
32 --- -----------------------------------------------------------
33 --- ---- String
34 --- -----------------------------------------------------------
35 eq Ap(.+,v:STring,v':STring) = v:STring ++ v':STring .
36 eq Ap(.<,v:STring,v':STring) = v:STring ltt v':STring .
37 eq Ap(.>,v:STring,v':STring) = v:STring gtt v':STring .
38 eq Ap(.<=,v:STring,v':STring) = v:STring leq v':STring .
39 eq Ap(.>=,v:STring,v':STring) = v:STring geq v':STring .
40 --- -----------------------------------------------------------
41 --- ---- All data types
42 --- -----------------------------------------------------------
43 eq Ap(.=,v:Value,v':Value) = v:Value == v':Value .
44 eq Ap(.!=,v:Value,v':Value) = v:Value =/= v':Value .
45 --- -----------------------------------------------------------
46 --- ---- Bool
47 --- -----------------------------------------------------------
48 eq Ap(And,bv,bv') = bv and bv' .
49 eq Ap(Or,bv,bv') = bv or bv' .
50 --- -----------------------------------------------------------
51 --- ---- Conversion RAt2FLoat
52 --- -----------------------------------------------------------
53 var o : Op . var ro : ROp .
54 eq Ap(o,v:Rat,v':FLoat) = Ap(o,float(v:Rat),v':FLoat) .
55 eq Ap(o,v:FLoat,v':Rat) = Ap(o,v:FLoat,float(v':Rat)) .
56 eq Ap(ro,v:Rat,v':FLoat) = Ap(ro,float(v:Rat),v':FLoat) .
57 eq Ap(ro,v:FLoat,v':Rat) = Ap(ro,v:FLoat,float(v':Rat)) .
58 endfm
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B.6 The THINGML-EXP-EVALUATION module

The THINGML-EXP-EVALU�TION module �mplements the evalu�tion sem�ntics of the �rithmetic

and logic�l �xpression langu�ge.

1 mod THINGML-EXP-EVALUATION is
2 including THINGML-STORE .
3 including THINGML-AP .
4
5 var st : Store . var x : Variable . var bx : BVar .
6 vars e e' : Exp . vars be be' : BExp . vars v v' : Value .
7 vars bv bv' : Bool . var xl : VarList .
8 --- Value evaluation rule (for all value types = Bool Int Nat Float String)
9 rl [Value-R] : < v, st > => v .

10 --- Variable evaluation rule (for all variable types = Bool Int Nat Float String)
11 rl [Variable-R] : < x, st > => st(x) .
12 --- Evaluation rule of variable list
13 rl [VarList-R] : < xl, st > => st(xl) .
14
15 --- Evaluation rules for arithmetic operations ( + , - , * , / and rem )
16 crl [Add-R] : < e .+ e', st > => Ap(.+,v,v') if < e, st > => v /\ < e', st > => v' .
17 crl [Min-R] : < e .- e', st > => Ap(.-,v,v') if < e, st > => v /\ < e', st > => v' .
18 crl [Mul-R] : < e .* e', st > => Ap(.*,v,v') if < e, st > => v /\ < e', st > => v' .
19 crl [Div-R] : < e ./ e', st > => Ap(./,v,v') if < e, st > => v /\ < e', st > => v' .
20 crl [Rem-R] : < e .rem e', st> => Ap(.rem,v,v') if < e, st > => v /\ < e', st > => v' .
21
22 --- Evaluation rule for the - (unary minus) operator
23 crl [UMinus-R1] : < .- e , st > => - v if < e, st > => v /\ ( v :: Int ) .
24 crl [UMinus-R2] : < .- e , st > => -F v if < e, st > => v /\ (v :: FLoat ) .
25
26 --- Evaluation rules for relational operations ( ==, !=, <, >, <=, >=)
27 crl [Equ-R] : < e .= e', st > => Ap(.=,v,v') if < e, st > => v /\ < e', st > => v' .
28 crl [NEq-R] : < e .!= e', st > => Ap(.!=,v,v') if < e, st > => v /\ < e', st > => v' .
29 crl [Low-R] : < e .< e', st > => Ap(.<,v,v') if < e, st > => v /\ < e', st > => v' .
30 crl [Gre-R] : < e .> e', st > => Ap(.>,v,v') if < e, st > => v /\ < e', st > => v' .
31 crl [LEq-R] : < e .<= e', st > => Ap(.<=,v,v') if < e, st > => v /\ < e', st > => v' .
32 crl [GEq-R] : < e .>= e', st > => Ap(.>=,v,v') if < e, st > => v /\ < e', st > => v' .
33
34 --- Evaluation rules for boolean operations ( and, or, not, ==, !=)
35 crl [And-R] : < be And be',st > => Ap(And, bv, bv')if < be, st > => bv /\ < be', st > => bv' .
36 crl [Or-R] : < be Or be',st > => Ap(Or, bv, bv') if < be, st > => bv /\ < be', st > => bv' .
37 crl [EquB-R] : < be .= be',st > => Ap(.=, bv, bv') if < be, st > => bv /\ < be', st > => bv' .
38 crl [NEquB-R]: < be .!= be',st > => Ap(.!=, bv, bv')if < be, st > => bv /\ < be', st > => bv' .
39 crl [Not-R] : < Not be, st > => not bv if < be, st > => bv .
40 endm

B.7 The THINGML-ACTION-SEMANTICS module

The THINGML-ACTION-SEMANTICS module imports the THINGML-EXP-EVALUATION module

and implements the evaluation semantics of the action language.

1 mod THINGML-ACTION-SEMANTICS is
2 including THINGML-EXP-EVALUATION .
3
4 var x : Var . var v : Value . var e : Exp . var be : BExp .
5 var xl : VarList . var vl : VaList . var m : MsgId . var p : PortId .
6 var T : ThingId . var I : InstanceId . vars A A' : Action . var s : Status .
7 vars st st' st'' : Store .
8
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9 --- Evaluation semantics for actions
10 crl [Eff-R] : < x := e, st > => st[v / x] if < e, st > => v .
11 crl [Dec-R] : < x -- , st > => st' if < x := x .- 1 , st > => st' .
12 crl [Inc-R ] : < x ++ , st > => st' if < x := x .+ 1 , st > => st' .
13 crl [Act-R] : < A ; A', st > => st'' if < A , st > => st' /\ < A' , st' > => st'' .
14 crl [Send-R1] : < p ! m(xl) , st > => st [ m(vl) |- p ] if < xl , st > => vl .
15
16 rl [Send-R2] : < p ! m(vl) , st > => st [ m(vl) |- p ] .
17 rl [Send-R3] : < p ! m() , st > => st [ m() |- p ] .
18 rl [GoTo-R] : < goto(s) , st > => st[s] .
19 rl [PrIntR] : < print(v), st > => st .
20 rl [noAction] : < I : T | environment: st > => < I : T | environment: < noAction , st > > .
21
22 crl [If-Then-R1] : <If be Then A Else A', st> => st' if <be, st> => true /\ <A, st> => st' .
23 crl [If-Then-R2] : <If be Then A Else A', st> => st' if <be, st> => false /\ <A', st> => st' .
24 crl [If-R1] : < If be Then A , st > => st' if < be, st > => true /\ < A, st > => st' .
25 crl [If-R2] : < If be Then A , st > => st if < be, st > => false .
26 crl [Whil-R1] : < While be Do A, st > => st if < be, st > => false .
27 crl [Whil-R2] : < While be Do A, st > => st' if < be, st > => true
28 /\ < A ; (While be Do A), st > => st' .
29 endm

B.8 The THINGML-MSG-SEMANTICS module

The THINGML-MSG-SEM�NTICS module �mplements the rout�ng of mess�ges �etween the send�ng

�nstance and the rece�ving �nstance.

1 mod THINGML-MSG-SEMANTICS is
2 including THINGML-ACTION-SEMANTICS .
3
4 var T : ThingId . var I : InstanceId . var A : Action .
5 var Po : PortId . var P : PortName . vars st st' : Store .
6 var MS : MsgSet . var O : Object . var M : Msg .
7 var msgId : MsgId . var vl : VaList . var ATTS : AttributeSet .
8
9 --- To move the messages from instance environment to the connector (client buffer)

10 rl [Env2CliBuff] : < I : T | environment: < A , st ; (M Via Po) ; st' > >
11 connector | client: < I . Po : RequiredPort | buffer: MS > --> server: O
12 => < I : T | environment: < A , st ; st' > >
13 connector | client: < I . Po : RequiredPort | buffer: (MS ; M) > --> server: O .
14 --- To move the messages from instance environment to the connector (server buffer)
15 rl [Env2SerBuff] : < I : T | environment: < A , st ; (M Via Po) ; st' > >
16 connector | client: O --> server: < I . Po : ProvidedPort | buffer: MS >
17 => < I : T | environment: < A , st ; st' > >
18 connector | client: O --> server: < I . Po : ProvidedPort | buffer: (MS ; M) > .
19 --- To move the messages from connector ( server buffer) to instance environment (message with

parameters)
20 rl [BuffSer2EnvR1] : < I : T | environment: < A , st > >
21 connector | client: < I . Po : RequiredPort | ATTS >
22 --> server: < P : ProvidedPort | buffer: ((msgId (vl)) ; MS) >
23 => < I : T | environment: < A , (st [ vl / (parmsg(msgId)) ]) ; ( Po ? msgId ) > >
24 connector | client: < I . Po : RequiredPort | ATTS >
25 --> server: < P : ProvidedPort | buffer: MS > .
26 --- To move the messages from connector ( client buffer) to instance environment (message with

parameters)
27 rl [BuffCli2EnvR1] : < I : T | environment: < A , st > >
28 connector | client: < P : RequiredPort | buffer: ((msgId (vl)) ; MS) >
29 --> server: < I . Po : ProvidedPort | ATTS >
30 => < I : T | environment: < A , (st [ vl / (parmsg(msgId)) ]) ; ( Po ? msgId ) > >
31 connector | client: < P : RequiredPort | buffer: MS >
32 --> server: < I . Po : ProvidedPort | ATTS > .
33 --- To move the messages from connector ( server buffer) to instance environment (message without

parameters)
34 rl [BuffSer2EnvR2] : < I : T | environment: < A , st > >
35 connector | client: < I . Po : RequiredPort | ATTS >
36 --> server: < P : ProvidedPort | buffer: ((msgId ()) ; MS) >
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37 => < I : T | environment: < A , st ; ( Po ? msgId ) > >
38 connector | client: < I . Po : RequiredPort | ATTS >
39 --> server: < P : ProvidedPort | buffer: MS > .
40 --- To move the messages from connector ( client buffer) to instance environment (message without

parameters)
41 rl [BuffCli2EnvR2] : < I : T | environment: < A , st > >
42 connector | client: < P : RequiredPort | buffer: ((msgId ()) ; MS) >
43 --> server: < I . Po : ProvidedPort | ATTS >
44 => < I : T | environment: < A , st ; ( Po ? msgId ) > >
45 connector | client: < P : RequiredPort | buffer: MS >
46 --> server: < I . Po : ProvidedPort | ATTS > .
47 endm
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Abstract: 
nternet �f Th�ngs (
oT) sys�ems �re com�lex �ssembl�es �f comp�nents th�t coll�borate
to ach�eve co�mon go�ls. Th�se comp�nents �re b�sed on d�fferent heter�geneous techn�log�es and
commun�cate w�th each other us�ng var�ous commun�cat�on protocols. Th�s heterogene�ty m�kes the
des�gn and devel�pment of 
oT appl�cat�ons a ch�lleng�ng �ssue. D�verse appro�ches b�sed on M�del-
Dr�ven Eng�neer�ng (MDE) h�ve been prop�sed to ove�come th�s m�jor �ssue us�ng su�table model�ng
langu�ges. Th�ngML �s a prom�s�ng UML prof�le for model�ng 
oT appl�cat�ons th�t a�ms to ad�ress
the chal�enges of heterogene�ty. However, Th�ngML does not h�ve r�gorous semant�cs, wh�ch makes �t
unsu�table for form�l ver�f�cat�on and analys�s of sy�tem des�gns. 
t also l�cks to�ls to test the gener�ted
code bef�re de�loy�ng �t �n 
oT dev�ces. 
n th�s thes�s, we pr�pose an MDE-b�sed f�rmal appr�ach to def�ne
a form�l sem�nt�cs f�r Th�ngML langu�ge us�ng Rewr�t�ng Log�c �nd �ts l�ngu�ge M�ude. In addition, we
dev�lop a hybr�d textual-graph�cal ed�tor for the Th�ngML l�ngu�ge and we present a s�mulat�on-b�sed
appro�ch to test the s�urce c�de gener�ted by the Th�ngML c�de generat�on fr�mework. The prop�sed
appro�ches are �llustr�ted thr�ugh c�se stud�es.

Key Words : 
nternet of Th�ngs, Form�l ver�f�cation, Rewr�ting log�c, M�ude l�ngu�ge, M�del Dr�ven
Eng�neer�ng.

Résumé: Les sy�tèmes de l’
nternet des �bjets (
oT) sont des assemblages complexes de composants
qui collaborent pour atteindre des objectifs communs. Ces composants sont basés sur différentes tech-
nologies hétérogènes et communiquent entre eux à l’aide de divers protocoles de communication. Cette
hétérogénéité fait de la conception et du développement d’applications IoT un véritable défi. Diverses
approches basées sur l’
ngén�erie Dir�gée par les Modèles (
DM) ont été proposées pour surmonter ce prob-
lème majeur en utilisant des langages de modélisation appropriés. ThingML est un profil UML promet-
teur pour la modélisation des applications IoT qui vise à relever les défis de l’hétérogénéité. Cependant,
ThingML ne possède pas de sémantique rigoureuse, ce qui le rend inadapté à la vérification et à l’analyse
formelles des conceptions de systèmes. Il manque également des outils pour tester le code généré avant
de le déployer dans les dispositifs IoT. Dans cette thèse, nous proposons une approche formelle basée sur
l’IDM pour définir une sémantique formelle pour le langage ThingML en utilisant la logique de réécriture
et son langage Maude. En outre, nous développons un éditeur hybride textuel graphique pour le langage
ThingML et nous présentons une approche basée sur la simulation pour tester le code source généré par
le cadre de génération de code ThingML. Les approches proposées sont illustrées à travers des études de
cas.

Mots clés : Internet des Objets, Vérification formelle, Logique de réécriture, Langage Maude, Ingénierie
Dirigée par les Modèles.
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