Londdl 4l 3gcll & J1AL &) gped]
ol ondl 5 UL 31 35

République Algérienne Démocratique et Populaire

Ministére de I’Enseignement Supérieur et de la Recherche Scientifique

Université Mohammed Seddik - Jne - F o el ez il
\ Y el w.\” ¢ skl L5
SV el =

Benyahia-Jijel
Faculté des Sciences Exactes et

Informatique

Département d’Informatique

THESE

PRESENTE PAR
ABDELOUAHAB FORTAS

POUR L’OBTENTION DU DIPLOME DE DOCTORAT EN SCIENCES
FILIERE : INFORMATIQUE
OPTION : SYSTEME D’INFORMATION

THEME

MODELISATION ET ANALYSE DES APPLICATIONS DE L’INTERNET DES
OBJETS : UNE APPROCHE BASEE SUR L'INGENIERIE DIRIGEE PAR LES

MODELES

Soutenu publiquement le: 15/06/2023 Devant le jury composé de:
Nom et prénom Grade
M. Melit Ali Pr. Univ. de Jijel Président
M. Kerkouche Elhillali M.C.A Univ. de Jijel Rapporteur
M. Chaoui Allaoua Pr. Univ. de Constantine 2 Co-Rapporteur
M. Bourouis Abdelhabib Pr. Univ. d’Oum el Bouaghi Examinateur
M. Lemouari Ali Pr. Univ. de Tamaghasset Examinateur
M. Khelfaoui Khaled M.C.A Univ. de Jijel Examinateur

Année Universitaire: 2022/2023

Londdl 4l 3gcll & J1AL &) gped]

olall Sl 5 Ul dlh 515

Democratic and Popular Republic of Algeria

Ministry of Higher Education and Scientific Research

University of Mohammed Seddik

Ben Yahia- Jijel

Faculty of Exact Sciences and

Computer Science

Department of Computer Science

TO OBTAIN THE DEGREE OF DOCTOR OF SCIENCE

THESIS

PRESENTED BY
ABDELOUAHAB FORTAS

FiELD: COMPUTER SCIENCE
OPTION: INFORMATION SYSTEM

THEME

RIS [P IR FSNR Ay

JYI ¥l o3

MODELING AND ANALYSIS OF INTERNET OF THINGS APPLICATIONS:
A MODEL DRIVEN ENGINEERING BASED APPROACH

Publicly defended on:

Name and surname
Melit Ali

. Kerkouche Elhillali

. Chaoui Allaoua

. Bourouis Abdelhabib
. Lemouari Ali

. Khelfaoui Khaled

zzzzzz2

15/06/2023 In front of the jury composed of:
Grade
Pr. Univ. of Jijel President
M.C.A Univ. of Jijel Supervisor
Pr. Univ. of Constantine 2 Co-Supervisor
Pr. Univ. of Oum el Bouaghi = Examiner
Pr. Univ. of Tamaghasset Examiner
M.C.A Univ. of Jijel Examiner

Academic year: 2022/2023

iii

To my parents, may God keep them.
To my dear brothers and sisters.
To my dear wife and children.

To all my friends.

iv

Table of Contents

(Table of Contents| v
[List_of Tables ix
|List of Figures| X
|Acknowledgements| xii
[Abstractl xiii
G G [action 1
L Internet of Things: An overview 5
(L1 Introductionl. 5
.2 Definitions|. 5
[1.3 Applications of Io'T}. 6
(L3.1 Smart homes 7

3.2 Smartcities e 7
...................................... 8

M34 Healthl o oo e e 8

(1.3.5 Transport| 8

(L3.6 Manufacture] Lo 8

[1.3.7 Environment and agriculture] o oL 9

[L4 Architecture of ToTI. 9
[L.5 Emnabling technologies| L 11
[1.5.1 Object domain| 11

(Lo.2 Network domain| L e 14

(1.5.3 Middleware domainl 15

[1.6 IoT key issues and challenges|, 16
[1.6.1 Standardization and interoperability|o 16

[1.6.2 Scalability and availability]. oo 0o 00, 17

[1.6.3 Security and privacy|o o e e e 17

[1.6.4 Management and self-configuration| 18

[1.6.5 Modeling and simulation|. 19

(LY Conclusionl e 20

2 Modeling of IoT systems| 21
2.1 TIntroductionl. 21
[2.2 Model-Driven Engineering (MDE)| 22
[2.2.1 Meta-modeling] 22

Table of Contents vi
2.2.2 Model transtormation| Lo oo oo 23
2.2.3 Model Driven Architecturelo L. 23
[2.2.4 Domain-Specific Modeling Language| 24

[2.2.4.1 Abstract syntax| oo 25

2.2.4.2 Concrete syntax| e 26

2243 Semanticsl. o 26

2.3 MDE to address the Io'l' development challenges| 27
[2.3.1 Heterogeneity| 28
[2.3.2 Large-scale and emergent properties|, 28
[2.3.3 Context awareness and uncertainty| 29
[2.3.4 Dynamic discoverability of resources| 29
[2.3.5 Reusability] 29
[2.3.6 Security and trust| 30

2.4 MDE-based approaches for modeling lo'T systems|. 30
[2.4.1 Approaches with code generators| 31
[2.4.2 Approaches with formal verification tools| 33
[2.4.3 Synthesis| 34

2.5 Conclusion| 37
3 The ThingML approach| 38
8.1 Introductionl. 38
[3.2 ThingML, Domain-Specific Language| 38
B.2.1 Meta-modell Lo 39
3.2.2 Thing| e 41
[3.2.3 The plattorm-independent action language|. 43
[3.2.4 State machinel. Lo oo 43
[3.2.5 Configuration|o 44

3.3 Code generation framework|o oL 45
3.4 Lacks and limits of the ThingML approachl 46
3.5 Conclusion| 47
4 Rewriting Logic and Maude| 48
4.1 Introductionl. 48
4.2 Verification techniques| oo 49
H2T TTestl . . o o oo e 49
[42.2 Simulationl Lo 49
[4.2.3 Formal verification techniques|. o o0 50

4.3 Rewriting Logicl. 51
[4.3.1 Rewrite theory| 51
4.3.2 Deductionrules. 52

4.4 Maude languagel 53
4.4.1 Functional modulel o 53
[4.4.2 System module] 55
[4.4.3 Simulation and analysis in Maude] 56
4.4.3.1 Rewriting and search| 57

4.4.3.2 The Maude’s TT, model-checker 57

4.5 Executable operational semantics in Maude| o000 58
[4.5.1 Syntax definition| 59
[4.5.2 Big-step semantics| 61

4.6 Conclusion| e 64

Table of Contents vii

[F MDE-based formal approach| 65
b.1 TIntroductionl. 65
9.2 General overviewl Lo Lo e e e e e e e e 65
[5.3 Formalization of ThingML constructs| 66

5.3.1 NGl . o v o e e e e e e e e e e e 68
[5.3.2 Messages and ports|[.o oL 69
[5.3.3 Platform-independent language| oo 70
5.3.3.1 Expressions|. 70

0.3.3.2 Action language|o 72

[b.3.4 State machinel. oo 73
[5.3.5 Configuration| 74

5.4 ThingML2Maude: A translator tool of ThingML models to Maude| 76
5.5 Casestudy| e 78
[5.5.1 Specification| 79
b.5.2 Transformation| 83
[5.5.3 Simulation and analysis| oL oo 85
[5.5.3.1 Rewriting| 85

b.h.3.2 Searchl. 87

19.5.3.3 Linear Temporal Logic Model Checking| 87

b.6 Conclusion| 91

6 A simulation-based MDE approach| 93
6.1 Introductionl. 93
6.2 General overviewl 93
6.3 Underlying technologies| 95

[6.3.1 Eclipse Modeling Project (EMP)| 95
[6.3.1.1 Eclipse Modeling Framework (EMF)[. 95

[6.3.1.2 Sirius Frameworkl 00000 95

[6.3.1.3 Xtext Frameworkl 96

[6.3.2 Arduino plattorm|. 96
6.3.3 Proteus softwarel 96

6.4 'The hybrid graphical-textual modeling editor| 97
6.4.1 Xtext-based editor] L Lo 98
6.42 Sirfus-based editor] L Lo 98

6.5 Casestudy| e 99
[6.5.1 Specification| 99
[6.5.2 Code generation| 102
[6.5.3 Compilation of the sketches| 103
6.0.4 Simulationl 103

6.6 Conclusion| e 104

[General conclusionl 105

[Bibliography| XV

A ppend A xxviii
[A.1 Abstract syntax for the ThingML action language] xxviii
IA.2 Evaluation semantics for expressions| XXix

|A.3 Evaluation semantics for ThingML actions|. XXX

Table of Contents viii

List of Tables

[I.1 IoT enabling technologies and functional blocks [1].[. 12
[2.1 A comparative study of approaches to modeling IoT systems.| 36
3.1 The syntax of platform-independent action language in BNF'.| 43
[3.2 Platforms supported by the code generation framework [2|.| 45
.1 Summary of the correspondences between the main ThingML and Maude con- |

structs] 67
[5.2 Description of the atomic propositions| 88
6.1 The simulation resultsl 104

ix

List of Figures

[1.1 IoT applications| 7
[L.2 Three-layer (a) and five-layer (b) architectures of IoT.| 10
2.1 The Meta-modeling concepts.|, 22
[2.2 Basic concepts of model transformation.| 000 23
[2.3 The Modeling Language definition [3]] 25
[3.1 An excerpt of the ThingML meta-model.{. 40
[3.2 An excerpt of the ThingML meta-model (the state machine part).| 40
[3.3 An excerpt of the ThingML meta-model (the configuration part).|. 41
[3.4 ThingML framework extension points [2].| 46
4.1 Model Checking Process.|. o 50
4.2 Abstract syntax for Expd|o 59
4.3 Evaluation semantics for arithmetic expressions: =4 62
4.4 Evaluation semantics for Boolean expressions: =—pg| 62
[5.1 The workflow of the proposed MDE-based tormal approach. 66
5.2 Evaluation semantics for Boolean expression.| 71
[5.3 Evaluation semantics for some ThingML actions| 72
5.4 The message routing| L 75
[5.5 Automatic transformation process.|o 77
[5.6 The statechart of the PingServer thing.| 80
[5.7 'The statechart of the PingClient thing.|. 82
(6.8 Fxecution result of the fair rewrite command.)o 86
5.9 Execution result of the rewriting to a terminal state.| 86
.10 Result of the search command on states with counter > count-maxl]. 87
[5.11 Result of the search command on a state with counter =5. 1. 87
[5.12 Verification result of the 1st property.| 89
[5.13 Verification result of the 2nd property,|o oo 89
[5.14 Verification result of the 3rd property) 90
[5.15 Verification result of the 4th property| 90
[.16 Verification result of the 4th property on the modified specification.| 91
6.1 The workflow of the simulation based-approach.. 94
[6.2 (a) Arduino IDE. (b) Arduino Uno board.|, 97
|6.3 The structure of the state machine Viewpoint| 99
6.4 Graphical view of Things in the Traffic_Light application.| 100
[6.5 Graphical view of thing Trafhic_Light state chart.| 101
6.6 Graphical view of the Traffic_Light_App configuration.| 102
6.7 The code generation using Jar file.| o o000 103

List of Figures xi

6.8 The compilation of traffic light specification.|. 103
6.9 The traffic light hardware circuit| 104

Acknowledgements

El-Hamdou Li ALLAH the Almighty, for giving me the moral and physical strength to complete

this thesis.

The research presented in this thesis was conducted under the supervision of Dr. Kerkouche
Elhillali and Pr. Allaoua Chaoui. I want to express my deep gratitude to them for guiding and
supporting me throughout this research work. I thank them for their availability and patience,

all the advice they gave me, and the time they took to supervise me. Many thanks.

Thank Pr. Melit Ali, for giving me the honor of accepting to chair the jury of this thesis.

I also thank Pr. Bourouis Abdelhabib, Pr. Lemouari Ali, as well as Dr. Khelfaoui Khaled, for

having accepted to participate in the jury of this thesis.

I want to thank my family, colleagues, and friends for their moral support.

Finally, I want to express my gratitude to the people who supported me in one way or another

and contributed in one way or another during the realization of my doctoral thesis.

January, 2023 Abdelouahab FORTAS

xii

Abstract

AR Glaal Gt g D1 UKl e Sadas Olegez e 3k (T0T) sbes¥1 o) dokas]
NS5y (L\"‘:-”L. gand! Lnan - Jeolgly ddlaie ae iz oL & UK IS VG
pale Pl ¢ dns Wt LtV i) olada sk gl Jot N a Tale L)
plasialy alldy 4) Wall oda Js CJal) (MDE) 7ol G sll Ladl fe detes degita
A O sVl S Sligkd & ded asly UML &l slate) ga ThingML iculie i is ol
ez Lo Lyle oYYs Lo ThingML g2 ¥ o @3 & e ps Olas 4> y0
551 LY Lappl Slga¥l) s e of Lo ladl lagmd gy 3301 Gl ol
J&L:'Le La...e.»\,_V.CJ\.uc ojj\a\” o.ud sL..AH v.uu‘ OJP‘JUL@.-M‘JJOJL.«J‘ f)
BLoYL . Maude Ly ST Gole) slate f‘WL ThingML &I &3> oYY wasd MDE

PR W i g BNy &~ LAG Ly paiiy ThingML W sow) - 0@ 2 pshl e
ety ¢ domall ALY ThingML J 551 sla] ols dlaulsy oflad) £ i aall

gl duaigl iog0) (LS Bsle] et ¢ 33N 2= uL...N\ CAT R W > PR W

Abstract

Internet of Things (IoT) systems are complex assemblies of components that collaborate to
achieve common goals. These components are based on different heterogeneous technologies
and communicate with each other using various communication protocols. This heterogeneity
makes the design and development of IoT applications a challenging issue. Diverse approaches
based on Model-Driven Engineering (MDE) have been proposed to overcome this major issue
using suitable modeling languages. ThingML is a promising UML profile for modeling IoT
applications that aims to address the challenges of heterogeneity. However, ThingML does
not have rigorous semantics, which makes it unsuitable for formal verification and analysis

of system designs. It also lacks tools to test the generated code before deploying it in IoT

xiii

devices. In this thesis, we propose an MDE-based formal approach to define a formal semantics
for ThingML language using Rewriting Logic and its language Maude. In addition, we develop
a hybrid textual-graphical editor for the ThingML language and we present a simulation-based
approach to test the source code generated by the ThingML code generation framework. The

proposed approaches are illustrated through cose studies.

Key Words : Internet of Things, Formal verification, Rewriting logic, Maude language, Model

Driven Engineering.

Résumé

Les systemes de I'Internet des objets (IoT) sont des assemblages complexes de composants qui
collaborent pour atteindre des objectifs communs. Ces composants sont basés sur différentes
technologies hétérogenes et communiquent entre eux a l’aide de divers protocoles de commu-
nication. Cette hétérogénéité fait de la conception et du développement d’applications IoT
un véritable défi. Diverses approches basées sur 1'Ingénierie Dirigée par les Modeles (IDM)
ont été proposées pour surmonter ce probleme majeur en utilisant des langages de modélisa-
tion appropriés. ThingML est un profil UML prometteur pour la modélisation des applications
IoT qui vise a relever les défis de I’hétérogénéité. Cependant, ThingML ne possede pas de
sémantique rigoureuse, ce qui le rend inadapté a la vérification et a I'analyse formelles des
conceptions de systemes. Il manque également des outils pour tester le code généré avant de
le déployer dans les dispositifs IoT. Dans cette these, nous proposons une approche formelle
basée sur 'IDM pour définir une sémantique formelle pour le langage ThingML en utilisant la
logique de réécriture et son langage Maude. En outre, nous développons un éditeur hybride
textuel graphique pour le langage ThingML et nous présentons une approche basée sur la sim-
ulation pour tester le code source généré par le cadre de génération de code ThingML. Les

approches proposées sont illustrées a travers des études de cas.

Mots clés : Internet des Objets, Vérification formelle, Logique de réécriture, Langage Maude,

Ingénierie Dirigée par les Modéles.

Xiv

General introduction

ODAY, the Internet of Things (IoT) is undergoing a remarkable development where the
Tnumber of devices linked to the Internet has reached tens of billions, and the number is
expected to increase continuously [4]. Its use covers various areas of life, such as smart homes,
industry, transportation, health, and others. The development of modern technologies such as
wireless sensor networks and identification systems has helped to provide traditional objects
with new features such as identification, capture, communication, and computation [5]. These
features have been transformed from these traditional things to intelligent things that can collect
information from their environment, perform calculations, and communicate with each other to

achieve specific goals [6].

The IoT systems are based on heterogeneous hardware components ranging from microcon-
trollers to powerful cloud servers. Heterogeneity includes variability in resources, technologies and
protocols of communication, hardware and software platforms, data formats, and programming
languages. Such heterogeneity, with the lack of standardized software solutions, makes the design

and the development of IoT applications challenging [7, [§].

The Model-Driven Engineering (MDE) approach can help to surmount IoT applications de-
velopments’ technical challenges [§]. In MDE-based methods, the model represents an essential
artifact that can describe the system at a level of abstraction to facilitate system understanding
and analysis. The models describe the specified systems according to the used modeling language’s
meta-model. Furthermore, model transformation techniques are used to manipulate models and
mappings between models. They are used for different activities such as the translation of models

(expressed in different modeling languages), optimization of models, generating code from models,

General introduction 2

. . In MDE-based approaches, model transformation aims to save efforts and to reduce human

errors by automating model manipulation.

Diverse MDE-based approaches have been proposed to overcome IoT applications design and
development issue by using suitable modeling languages. ThingML [J] is a promising UML profile
for modeling IoT applications that aims to address the challenges of heterogeneity and distribution.
It conmsists of concepts (things, messages, ports, state machines, platform-independent action
language, and configurations) that provide straightforward modeling of IoT applications. More-
over, the ThingML language includes a highly customizable framework that supports automatic
code generation. The code generation framework can transform the ThingML models into opera-
tional code in various programming languages (Java, Javascript, and C / C ++) [9]. Therefore,

the time and effort needed to develop IoT applications can be significantly reduced.

However, the ThingML Domain-Specfic Languge (DSL) provides a textual syntax to describe
IoT applications. It describes the dynamic behavior of components using a mix of state charts,
communication by asynchronous messages, a platform-independent action language, and target
languages. Therefore, these specifications can include many details that decrease their legibility.
On the other hand, the ThingML approach lacks tools to test and verify generated code before
deployment on devices. In addition, ThingML does not have rigorous semantics to support formal
reasoning about system designs. Consequently, detecting unwanted behaviors becomes extra
complicated, notably for mission-critical IoT systems where reliability is necessary because failure

is potentially catastrophic.

Formal methods are effective techniques for analyzing such systems [10]. Rewriting Logic [11]
provides a powerful formal method to describe and analyze concurrent and distributed systems.
It has a well-defined semantics that can formally represent a wide range of languages [12HI4].
There are several language implementations of Rewriting Logic, such as Maude [I5]. Maude is
a promising system and language for formally defining the semantics of programming languages
[15]. Tt provides powerful verification tools, including simulation and Linear Temporal Logic (LTL)

Model Checking [16].

The principle contributions of this thesis are:

General introduction 3

The first and major contribution [I7] is proposing a formal approach to verify the ThingML
designs using Rewriting Logic [II]. This approach transforms the ThingML designs into Maude’s
Rewriting Logic language [I5]. The main advantage of this approach over other approaches lies in
the universality and versatility of Maude’s mathematical notation, which implements all ThingML
concepts and their behavioral aspects (components, instances, configurations, state machines,
communications by asynchronous messages, action language ...) in a unified formal logic. In
addition, the existing Maude language verification tools provide powerful analysis techniques,
including symbolic simulation and model checking, which enable rigorous analysis and verification
of ThingML designs. The approach proposes a semantics mapping between ThingML concepts
and Maude constructs. To this end, we have defined Maude structures to describe all ThingML
components and their behavioral aspects. We have also defined and implemented an operational
semantics [I8] for the ThingML action language in Maude. Finally, we have developed a tool
based on the Acceleo framework [19] that automatically transforms ThingML specifications into

the corresponding Maude models.

The second contribution [20] is developing a hybrid textual-graphical editor for the ThingML
language and proposing a simulation-guided approach based on the Proteus software [21I]. This
approach allows testing and verifying the source code generated by the ThingML generation
framework before deployment on IoT devices. It should be noted here that both approaches can
be integrated to verify and to test the developed artifacts at two different levels of abstraction.
The presence of bugs in the ThingML specification implies the presence of bugs in the resulting
code. At the same time, a bug-free ThingML specification does not necessarily mean a bug-free
source code. It may include some through the code generator itself. This is why we propose to
use simulation techniques to verify the generated code. It is worth mentioning that through the
second contribution, we presented the simulation of the Arduino code [22] in the Proteus program.
However, the same approach can be generalized to verify the resulting code for other languages
or platforms, and this can be done by using samilar or new tools adapted to the languages and

platforms.

Organization of the thesis

This thesis contains six chapters:

General introduction 4

- [The first chapter| presents generalities on the IoT systems, describing their application do-

mains and architectures. We present the IoT-enabling technologies and end with key open
problems and challenges such as standardization and Interoperability, scalability and avail-

ability, modeling and simulation,...

- [In the second chapter] we discuss the modeling and the analysis of IoT systems using the

MDE approach. We first present the essential concepts of the MDE as well as the terminology
we will use throughout this manuscript. Then, we present some challenges of developing
IoT systems that can be addressed using the MDE. The last part of the chapter discusses

some MDE-based approaches for modeling and analysis of [oT systems.

- [In the third chapter] we focus on the ThingML promoter approach. We start by presenting

the ThingML domain-specific language and the main concepts of this language, and then
we demonstrate the code generation framework. Finally, we present some lacks and limits

of the ThingML approach.

- [The fourth chapter| focuses on rewriting logic and their language Maude. In the first part,

we present the essential concepts of rewriting logic and give a detailed syntax of the Maude
language and the characteristics of its environment. Then, the second part details the

implementation of the executable operational semantics in Maude.

- [The fifth chapter| describes the proposed formal approach to verify and analyze ThingML

specifications. We will detail the formalization of ThingML constructs using the Maude
language. Then, we will present the ThingML2Maude tool, a model-text translator allowing
to translation of ThingML models into Maude code. Finally, we will illustrate our approach

through a case study.

- [In the sixth chapter] we will present an MDE and simulation-based approach to testing

IoT applications without the availability of devices. We will also present a hybrid modeling
editor for ThingML to facilitate the development process. Finally, we will illustrate our

approach through a case study.

- Finally, our thesis ends with a [general conclusion| summarizing the main points addressed

in this thesis and research perspectives.

CHAPTER 1

INTERNET OF THINGS: AN OVERVIEW

1.1 Introduction

HE Internet of Things (IoT) is one of the core technologies of current and future information
Tand communications technology sectors. IoT technologies will be deployed in numerous
industries, including: health, transport, smart cities, utility sectors, environment, security, and
many other areas. In this chapter, we introduce the concept of the Internet of Things. At the
beginning, we provide a complete definition and a general overview of the impact of IoT on our
societies through its different applications. After that, we present the enabling technologies that
are expected to form the building blocks of the IoT. Finally, we describe IoT architectures and

present the main challenges and difficulties encountered in developing IoT applications.

1.2 Definitions

The Internet of Things (IoT) is one of the significant communication developments of recent
years. It makes our everyday objects (e.g., health sensors, industrial equipment, vehicles, clothes)
connected to each other and to the Internet to achieve common goals. The definition of IoT is still
the subject of debate, as there is still no universal and unified definition for this concept. The lack
of clarity of this term may be due to its association with two concepts or terms (Internet & Things).
The Internet can be defined as a global network of interconnected computer networks based on the
TCP/IP communication protocol. A Thing is something that is not precisely identifiable. It may
be anything imaginable with features such as identifying, sensing, actuation, and the ability to

communicate. That gives the possibility to integrate them into the IoT environment.

Chapter 1. Internet of Things: An overview 6

Consequently, the IoT has been defined in many different ways. Van Kranenburg’s definition
[23] is among the first definitions of IoT. It defines this concept as “a dynamic global network in-
frastructure with self-configuring capabilities based on interoperable communication protocols where
virtual and physical things have an identity, physical attributes, and virtual personality and that

use intelligent interfaces embedded in an information network’.

More straightforwardly, Coetzee and Eksteen [24] define IoT as “a vision where objects become
part of the Internet, where all objects are uniquely identified and accessible through the network,
their positions and statuses are known, where the notion of intelligence is added to the Internet
thus merging the digital and physical world, impacting all professionals, people, and the social
environment'. Another definition by Vermesan et al. [25] defines the Internet of Things as
simply “an interaction between the physical and digital worlds. The digital world interacts with

the physical world using many sensors and actuators.

According to [26], the basic concept behind IoT is the pervasive presence around us of various
wireless technologies, such as Radio-Frequency IDentification (RFID) tags, sensors, actuators,
and mobile phones, in which computing and communication systems are seamlessly embedded.
These objects interact with each other through unique addressing schemes and cooperate to reach
common goals. In common parlance, IoT refers to a new world where almost all devices and
appliances are connected to a network. We can use them collaboratively to achieve complex tasks

requiring high intelligence [27].

1.3 Applications of IoT

IoT has a huge potential for developing intelligent applications in almost every vertical market.
IoT applications provide a set of functionalities and capabilities that can be grouped according
to the domain of utilization into four areas: monitoring (devices condition, environment state,
notifications, alert, etc.), control (control of devices functions), optimization (device performances,
diagnostics, repair, etc.) and autonomy (autonomous operations). Today, the IoT covers a wide

range of applications. It covers almost all areas of daily life, allowing the emergence of intelligent

spaces (see Figure [L.1]).

Chapter 1. Internet of Things: An overview 7

Environment and
Agriculture

FiGURE 1.1: IoT applications

1.3.1 Smart homes

Smart homes are one of the most popular IoT applications [28]. Its idea is to design a home
intelligently for the benefit of its residents. It allows them to control and monitor appliances,
lighting, heating, ventilation and air conditioning, as well as security systems. Equipping the home
with different sensors for light, humidity, and temperature allows the collection of information to
generate the optimum climate according to the parameters set by the user. Security systems
make the home more secure by automatically detecting and deterring intrusions using a variety of
infrared, sound, vibration, and motion sensors, as well as alarm systems [29]. In addition, smart
homes and the aids they provide make the elderly and disabled people more comfortable and safe

in their homes.

1.3.2 Smart cities

IoT will allow better management of the various networks that supply our cities (such as water,
electricity, and gas) by allowing continuous real-time and accurate monitoring. Sensors can be
used to economize water and energy, improve the management of parking lots and urban traffic,

and reduce traffic jams.

Chapter 1. Internet of Things: An overview 8

1.3.3 Energy

The management of electrical grids will be improved thanks to telemetry, allowing real-time
management of the energy distribution infrastructure and improving efficiency and productivity.
This large-scale interconnection will facilitate fault location, maintenance, consumption control,
and fraud detection. In addition, integrating sensors and actuators is likely to reduce the energy

consumption of all energy-consuming devices.

1.3.4 Health

In the field of health, IoT will enable the deployment of personal networks for controlling and
monitoring clinical parameters. This will facilitate the remote monitoring of patients and offer
solutions for the autonomy of people with reduced mobility [30]. One popular approach is to
use wearable technology. These wearable devices can provide information about clinical body
signs, such as heart rate, body temperature, and blood pressure, which can then be transmitted
in real-time to a remote site for storage and further analysis. Thus obtaining more and better
information about the patients to be able to treat them in a personalized way, without the need
to go to a medical center, avoiding transfers and assistance costs, and allowing doctor-patient

communication to be less complicated [31].

1.3.5 Transport

The IoT can significantly improve transport systems. It will support current efforts around intel-
ligent vehicles for road safety and driver assistance. This will include inter-vehicle communication
and communication between vehicles and road infrastructure. IoT will thus be a natural extension
of “intelligent transport systems' and their contributions to road safety, comfort, efficient traffic

management, and time and energy savings.

1.3.6 Manufacture

The application of IoT in the industry is often referred to as Industry 4.0 or the fourth Indus-

trial Revolution. Industry 4.0 builds on cyber-physical systems that tightly integrate machines,

Chapter 1. Internet of Things: An overview 9

software, sensors, Internet, and users. IoT will enable full tracking of products, from the produc-

tion chain to the logistics and distribution chain, by supervising supply conditions.

1.3.7 Environment and agriculture

By deploying environmental sensors, it will be possible to effectively monitor and measure water
and air quality, soil conditions, and hazardous chemicals and radiation. The IoT can contribute
to better predictions of earthquakes and tsunamis and earlier detection of forest fires, avalanches,
and landslides. All of this will help to preserve the environment better. On the other hand, the
IoT can distinguish and track wild animals, especially endangered species, allowing for better

study and understanding of these animals’ behavior, thus, better protection.

In the agriculture field, sensor networks interconnected to the IoT can be used to monitor
the crop environment and health. This will enable better decision support in agriculture, no-
tably in optimizing irrigation water, using fertilizers and plant protection products, and planning

agricultural work. These networks can also be used to combat air, soil, and water pollution.

1.4 Architecture of IoT

There is no consensus on a unified architecture for IoT, where several architectures have been
proposed. However, a three-layer high-level architecture is commonly accepted [32]. It is the
most basic architecture and it was introduced in this area’s early stages of research [32H34]. This
architecture consists of three layers: The perception Layer, Network Layer, and Application layer

(see Figure[L.2). A brief description of each layer is given [27]:

(i) The perception layer is the physical layer, whose main task is to perceive and gather the
physical properties of the environment. It has sensors to detect specific physical parameters
or to identify other intelligent objects. In addition, this layer is responsible for converting the

information into digital signals that are more convenient for transmission over the network.

(i) The network layer ensures connectivity between smart things, network devices, and
servers. Its features are also used for the reliable transmission of data generated in the

perception layer.

Chapter 1. Internet of Things: An overview 10

(iii) The application layer constitutes the front end of the IoT architecture through which IoT
potential will be exploited. It uses the processed data by the previous layer for delivering
application-specific services to the user. Moreover, this layer provides the required tools

(e.g., actuating devices) for developers to realize the IoT vision.

Business layer
Application layer

Application layer
Network layer Processing layer

Transport layer

Perception layer
Perception layer

FIGURE 1.2: Three-layer (a) and five-layer (b) architectures of ToT.

The three-layer architecture defines the main idea of the IoT, but it is insufficient for IoT
research because it often focuses on finer aspects of the IoT. This is why many other layered ar-
chitectures are proposed in the literature. One is the five-layer architecture, which includes adding
processing and business layers [5, 32-35]. The five layers are perception, transport, processing,
application, and business (see Figure . The role of the perception and application layers is the

same as the architecture with three layers. We outline the function of the remaining three layers.

(i) The transport layer is similar to the network layer in the three-layer architecture. It
transmits and receives information from the perception layer to the processing layer and
vice versa. It contains many technologies such as wireless, 3G, LAN, infrared, WiFi, RFID,

NFC, and Bluetooth.

(ii) The processing layer is also known as the middleware layer. Its responsibility is to process
the data that comes from the transport layer. The processing process has two main aspects
storage and analysis. It also can manage and provide a diverse set of services to the lower

layers. It is not easy to achieve the objective of this layer due to the large amount of

Chapter 1. Internet of Things: An overview 11

information collected from the system elements. Therefore, it employs many technologies,

such as databases, cloud computing, and big data processing modules.

(ii) The business (management) layer manages the overall IoT system activities and ser-
vices. The responsibilities of this layer are to build a business model, graphs, and flowcharts.
Based on the received data from the application layer. It should also design, analyze, im-
plement, evaluate, monitor, and develop IoT system-related elements. The business layer
makes it possible to support decision-making processes based on Big Data analysis. In ad-
dition, monitoring and management of the underlying four layers are achieved at this layer.
Moreover, this layer compares the output of each layer with the expected output to enhance

services and maintain users’ privacy [5l 32], 35].

1.5 Enabling technologies

IoT is not a single technology; it is an agglomeration of various technologies that work together.
This section focuses on the enabling technologies expected to form the IoT building blocks. IoT
enabling technologies can be summarized into several categories: identification and recognition
technologies, sensing technologies, communication technologies and networks, cloud platforms,
data processing solutions, security mechanisms, etc. The different technologies are classified into
three main domains: object domain, network domain, and middleware domain (see Table 1.1).
All these domains include hardware, software, and technologies with specific functionalities and

capabilities. In the following, we briefly introduce the building blocks of each category [T, 27].

1.5.1 Object domain

The object domain presents the endpoint layer that includes things. These objects have vari-
ous capabilities, such as sensing, actuation, identifying, data storage and processing, connecting
with other objects, and integration into communication networks. IoT objects include embed-
ded software (operating system, onboard application) and hardware (electrical and mechanical

components with embedded sensors, processors, and connectivity antennas).

12

Chapter 1. Internet of Things: An overview

*039 ‘sdiyo JIo[[onpuo0d TetdydLia g ‘s1ossadoad eusts [eadiq

syred o119

‘(s.108$900.1d 010U “SID[OIIUOI0IITW “3'9)SITUN FUISSII0L] ‘(S9L19338q *3°9) S3aed [EOLIIOD[D pue [BOIUBYIIJA | X [EOTURYIIIA
£ddns
*039 ‘90BM}JOS PIROqUO ‘DremuLiy ‘sAe[dsip s393(qo urewop
tomod ‘uogenduios pue Futssaooid 29108 Yono3 (** YO @poon ¢ Juonedynuap] ‘sde . $101BMIOY ‘SI0SUIS POPPaqU oppoqu , A
eyep ‘unenoe ‘Sursuss ‘UONEIGHUAP] {onoy YO Ppodn DY)uonesynuap] 1 DAN/AIAY SI03BNI0Y S poppaquIyy pappaquy A
039 ‘O[OIIE] surroyyerd
‘G [9SSOL, ‘[[PAJIBIA ‘OUINPIDN Yor[{ dUOqaSeag ‘UOSIPT [9IU] ‘Od[I[BL) [9IU] ‘I Arraqdsey] ‘oumpay aaempJaey
. .) . SWISTUBY U
(1°9601 AL 019 ‘HOSLLY ‘NVIMOT19) 1ohe uondopy wondo
**(90189p-03-uoneorjdde ‘uonzeorjdde-o3 hdopv
FOOIADD ‘901A9P-01-901AdP) JOJSUBILY BIB(] “ N ‘ALY ‘6308 JdeJI9)UI urewop
{(Surfue pue suokue £q ssoymue | FAHAL OABAN-Z ‘NSM ‘9°¢ 1508 AAAL ‘ddOE 91308 AAAL ‘T°S 1508 AHAAL #'¢ 1508 ‘11508 AAAI YI0MIDN YIOMIIN
‘Qunfue) £}IAI}OIUUOD SSI[UWILIG T p . : : .
. o 032 (™ 1S ‘dASS ‘AS-SNA ‘SNAW) £1940081(] IS (9] FAJIHOMIIN s[02030.1q
(dan ‘do.) yodsuea], (™ 99308 ‘SA ‘ddINX ‘dONYV ‘LLOW ‘dvoD)uoneorddy uonEdUNWIWO)
939 9IN30931YDI. 25.103G (*'SIPAY ‘GO0 -
‘aseg [‘doopel] ‘eipuesse)) ‘qoSuolN) g ‘(priqdy ‘9rearid Orqnd) aanjonaseajur 95e.103g
“-Suruaea suryory ‘(swasAs 019 (" TASA “TXA ‘A “TMO DEM ‘NOSI) sa130[oupd) dnueuns ‘gqos 10U VIS swstueydour
SS{ pue 312dxy) 31oddns uorsa(q quG ‘OINpIdey ‘wiolg ‘exjey ‘doopey ayoedy ‘qerereq pnop) “Lwnd Sig ‘Sururw ere Suissoooad areq urewop
‘stskeue eep Sig “Suissaooad pue *030 ‘A[PATY Yeadgyury], ‘syquuiN ‘A[0[J ‘10T 2[0BIO ‘SYIO A\ MUY, ‘SSUry [J1ewig ‘pnof)Iosuag suroyyerd IEMI[PPIN
:obmwwgwmm ele(q 93ea01s ele ‘WO B[JOUQ ‘BSSAIY TNV LL ‘UOSIBAN JAE] ‘WnI[[2qI] ‘pno[) 9[8005) ‘uozewry ‘T.01uadQ pnopD
eyep «Suryp» Suisn 3ymq sdde woysnd pue pappaquug] 1dV pue
‘(INVH “TOPM “TINL) STV (PRGN Xnut[)n ‘SO 101y ‘PLoapuy ‘SO ‘SOLY DRU0D) SO IeMog
sal]1jeuoiouny salBojouyaal Buijgeusy urewoq

.

‘[1] syoorq [euonouny pue serdojourey Julqeus [0 :1°T @I1dV.],

Chapter 1. Internet of Things: An overview 13

Sensors are hardware components that capture and measure certain events or changes in
their environment, such as heat, light, sound, pressure, magnetism, or a particular movement.
They perform various actions to provide an output for further processing. Various sensors are
embedded in many objects (e.g., smartphones) to enable IoT-based value-added services. Sensors
transmit captured information using electrical signals to the devices to which they are connected.
An actuator is a device that can change the physical environment. Actuators receive commands
from their connected device and translate those electrical signals into actions. Some examples are
heating or cooling elements, speakers, lights, displays, and motors. For example, we can consider
a smart home system with many sensors and actuators. The actuators are used to lock/unlock
the doors, switch on/off the lights or other electrical appliances, alert users of any threats through

alarms or notifications, and control the temperature of a home (via a thermostat).

A unique ID should identify all devices. There are many identification methods, including
EPC (Electronic Product Code), uCode (Ubiquitous codes), and QR (Quick Response). Radio-
Frequency IDentification (RFID) technology is an important development in the embedded devices
field. RFiD allows the design of tiny microchips (called tags), which can be appended to objects.
As a result, stored data in these tags can automatically be used to identify and extract useful
information from the object. RFID tags have a unique identifier; the most commonly used is
EPC. Many applications from several fields use this kind of tag. Notably in retail, supply chain
management, and transportation. They are also used in bank cards, road toll tags as an access
control means, in the smart home context, and in hotels to provide automated customer check-in.

Another technology with similar identification management is NFC.

Connectivity components enable wireless or wired connections by using different communi-
cation technologies which allow an exchange of information between different objects. Sensor
Networks (SN) is a collection of sensors that communicate between each other or/and transmit
data to another infrastructure (e.g., Fog or/and Cloud). All these capabilities enable objects to
be aware of their environment and to exchange data which is one of the goals of IoT. Most IoT
products use Wireless Sensor Networks (WSN) solutions. IoT devices may contain gateways that
collect data from sensors and send it over the Internet to other infrastructure (e.g., Cloud). They

may be connected to other objects or networks via multiple gateways that can act as a proxy

Chapter 1. Internet of Things: An overview 14

between devices and networks. IoT hardware platforms can facilitate communication, data flow,

device, data, and application management.

1.5.2 Network domain

The network domain includes hardware, software, technologies, and protocols that enable con-
nectivity between objects and between objects and global infrastructure (e.g., the Internet). As
the IoT is proliferating, many heterogeneous smart devices are connecting to the Internet. A
wide range of IoT devices are battery-powered, with minimal computing and storage resources.
Because of their constrained nature, there are various communication challenges involved, which

are as follows [36]:

(1) Addressing and identification: millions of smart things will be connected to the Internet.
They will have to be identified through a unique address, based on which they will commu-

nicate. We need a large addressing space and a unique address for each smart object.

(2) Low power communication: communication of data between devices is a power-consuming
task, especially wireless communication. Therefore, we need a solution that facilitates com-

munication with low power consumption.
(3) Routing protocols with low memory requirements and efficient communication patterns.
(4) High-speed and non-lossy communication.

(5) Mobility of smart things.

IoT devices typically connect to the Internet through the IP (Internet Protocol) stack. This
stack is complex and demands a large amount of power and memory from the connecting devices.
The IoT devices can also connect locally through non-IP networks, which consume less power, and
connect to the Internet via a smart gateway. Non-IP communication channels such as Bluetooth,
RFID, and NFC are popular but limited in their range (up to a few meters). Therefore, their
applications are limited to small personal area networks. It was necessary to modify the IP stack
to facilitate low-power communication and to increase the range of such local networks. One of

the solutions is 6LoWPAN, which incorporates IPv6 with low-power personal area networks. The

Chapter 1. Internet of Things: An overview 15

range of a PAN with 6LoWPAN is similar to local area networks, and the power consumption
is much lower. The leading communication technologies in the IoT world are TEEE 802.15.4,
low-power WiFi, 6LoWPAN, RFID, NFC, Sigfox, LoraWAN, and other proprietary protocols for

wireless networks.

1.5.3 Middleware domain

The interoperability of IoT heterogeneous devices needs well-defined standards. However, stan-
dardization is difficult because of the varied requirements of different applications and devices.
For such heterogeneous applications, the solution is to have a middleware platform, which will
abstract the details of the things for applications [I]. IoT middleware is considered a system
constrained by software and infrastructure designed to be the intermediary between IoT objects
and the application layer. It will hide the details of the smart things. Some IoT middleware pro-
vides software (including OS) and Application Programming Interface (API) management while
enabling IoT applications to communicate over heterogeneous interfaces. Some common embed-
ded operating systems enable IoT applications’ functionalities, such as TinyOS, Contiki, LiteOS,
Android, and RIoT OS. These systems support low-power Internet communication and require
very few kilobytes of RAM. To summarize, the middleware abstracts the hardware and provides
an API for communication, data management, computation, security, and privacy [Il 27]. It can

meet a variety of challenges such as [37, 38]:

(1) Interoperability: different types of things can interact with each other easily with the
help of middleware services. Interoperability insulates the applications from the intricacies
of different protocols, and it ensures that applications are oblivious to different formats,

structures, and encoding of data.

(2) Device discovery and management: this feature enables the devices to be aware of all
other devices in the neighborhood and the services provided by them. Any IoT middleware
needs to perform load balancing, manage devices based on their levels of battery power, and

report problems in devices to the users.

(3) Scalability: a large number of devices are expected to communicate in an IoT setup.

Moreover, IoT applications need to scale due to ever-increasing requirements.

Chapter 1. Internet of Things: An overview 16

(4) Big data and analytics: IoT sensors typically collect a large amount of data. It is

necessary to analyze all of this data in more details.

(5) Security and privacy: the middleware should have built-in mechanisms to address security

and privacy issues in IoT environments that are mostly related to personal life or industry.

There are many middleware solutions available for the internet of Things that address one or
more of the aforementioned issues. All of them support interoperability and abstraction, which is

the foremost requirement of middleware.

1.6 10T key issues and challenges

The involvement of IoT-based systems in all aspects of human lives and various technologies
involved in data transfer between embedded devices made it complex and gave rise to several
issues and challenges. These issues are also a challenge for [oT developers in the advanced smart
tech society. Therefore, IoT developers need to think of new issues arising and should provide

solutions for them.

1.6.1 Standardization and interoperability

Diversities in technologies and standards are identified as one of the major challenges in the
development of IoT applications [, [39]. Standardization of IoT architecture and communication
technologies is considered a backbone for IoT development in the future [5, 40]. Interoperability
is the ability of multiple devices and systems to interoperate regardless of deployed hardware and
software. The interoperability issue arises due to the heterogeneous nature of different technology
and solutions used for IoT development. The four interoperability levels are technical, semantic,

syntactic, and organizational [I} 41].

- Technical interoperability is usually associated with communication infrastructure and
protocols. IoT systems need to provide interoperability over heterogeneous devices, net-
works, and a variety of communication protocols such as IPv6, IPv4, 6LoWPAN/RPL,

CoAP/CoRE, ZigBee, GSM/GPRS, WiFi, Bluetooth, RFID, etc.

Chapter 1. Internet of Things: An overview 17

- Syntactical interoperability is associated with understanding content (information) and

refers to data formats, syntaxes, and codings such as XML and HTML.

- Semantic interoperability enables the interpretation of content (the meaning of informa-
tion) to be shared by communicating parties. The term "semantic“ in the IoT refers to the
possibility of extracting knowledge from raw data collected from sensors. This “knowledge"

enables the provision of useful services and reports based on analyzed data.

- Organizational interoperability is usually associated with the ability to exchange data

regardless of the different information systems and infrastructure used.

Various functionalities are being provided by IoT systems to improve the interoperability that
ensures communication between different objects in a heterogeneous environment. Considering
interoperability an important issue, researchers approved several solutions that are also known as
interoperability handling approaches [42]. These solutions could be based on adapters/gateways,

virtual networks/overlay, service-oriented architecture, etc.

1.6.2 Scalability and availability

A system is scalable if it is possible to add new services, types of equipment, and devices without
degrading its performance. The main issue with IoT is to support a large number of devices with
different memory, processing, storage power, and bandwidth [43]. A great example of scalability
is Cloud-based IoT systems which provide sufficient support to scale the IoT network by adding
up new devices, storage, and processing power as required. Another important issue that must
be taken into consideration is availability. Availability means that IoT applications should be
available anywhere and anytime for every authorized object. Availability of the network and its
coverage area must enable the continuity of the services to use regardless of mobility, dynamic

change of network topology, or currently used technologies.

1.6.3 Security and privacy

One of the most important and challenging issues in the IoT is security and privacy due to several

threats, cyber-attacks, risks, and vulnerabilities. The issues that give rise to device-level privacy

Chapter 1. Internet of Things: An overview 18

are insufficient authorization and authentication, insecure software, firmware, web interface, and
poor transport layer encryption [41]. Besides, if communication takes place using wireless tech-
nologies within the IoT system, it becomes more vulnerable to security risks. Therefore, Security
mechanisms must be embedded at every layer of IoT architecture to prevent security threats and
attacks [44]. Developing such mechanisms is a difficult challenge, especially since a large part of
IoT devices have limited resources (memory, computation). Another issue is the different privacy
policies for different objects communicating within the IoT system. Therefore, each object should
be able to verify the privacy policies of other objects in the IoT system before transmitting the

data.

1.6.4 Management and self-configuration

Managing IoT applications and devices is a very critical factor for successful IoT deployments [45].
Management functionalities such as monitoring, control, and configuration are a big challenge due
to IoT complexity, heterogeneity, a large number of deployed devices, and traffic demands. IoT
software must be able to identify various smart objects and interact with them to provide efficient
management and self-configuration functionalities. Self-configuration means the IoT system has
capabilities of the dynamic adoption of changes in its environment. For example, if devices could
switch off when there is no activity, it would provide more efficiency in energy consumption [IJ.
Data management mechanisms need to provide various functionalities such as raw data aggrega-
tion, data analytics, data recovery, and security. They need to enable different kinds of reports.
Another challenge is to provide automatic decisions and self-configuring operations in complex,
integrated, and open IoT systems. The objects must acquire knowledge from the collected data
and, based on this, perform some context-aware actions.

Network management functionalities need to provide efficiency in network topology management,
device synchronization as well as traffic and congestion control management. A new network’s
design needs to deploy efficient management mechanisms to manage the large-scale of connected
devices, an enormous amount of data (traffic loads), and various services with different quality
of service requirements. Monitoring network infrastructure enables the detection of any changes
and events that affect network resource usage and security.

Devices management mechanisms need to provide monitoring and remote-control functionalities,

Chapter 1. Internet of Things: An overview 19

including remote devices’ activation or deactivation, firmware update, etc. Managing devices and
enabling seamless integration in various networks are challenges due to the deployment of various
hardware and software while providing operations such as addressing and optimization at the ar-
chitectural and protocol levels [46]. The challenge of device management is especially pronounced
because of the heterogeneity among devices and associated services. Some other open issues are
related to the development of lightweight and secure IoT device management frameworks which
provide functionalities such as location awareness, mobility, low power consumption, support for

various mobile OS, etc.

1.6.5 Modeling and simulation

Major challenges in developing IoT services are due to their complexity and heterogeneity in
all parts of system architecture. The heterogeneity embraces both software and hardware. Such
diversification is not trivial to handle and is exacerbated by an elemental peculiarity of the IoT: the
very same software functionalities are expected to be deployable on different devices, each having
only a limited set of common core characteristics. Moreover, things can be small or have limited
resources; they can have limited battery capacity, storage resources, or computational capabilities.
This adds complexity to deployment and redeployment of software functionalities across devices
with different capabilities. This heterogeneity and the lack of standardized platform-agnostic
software solutions make cross-platform development intractable [8, 47]. Therefore, IoT system
modeling for finding eligible deployments is challenging. On the one hand, the availability of many
diverse heterogeneous devices collaborating in the IoT represents an unprecedented opportunity
to improve the quality of life, in addition to the quality of service, through collaboration among
industrial and consumer devices. On the other hand, we must deal with new challenges at all
levels to benefit from the significant advantages the IoT will unleash. Heterogeneity, runtime
adaptability, reusability, interoperability, data mining, security, abstraction, automation, privacy,
middleware, and architectures are just some of the aspects we need to consider at both design

time and runtime and for which new software engineering approaches will be envisioned [§].

Simulation tools such as Opnet, NS-3, Cloudsim, and others can be used for understanding and

modeling the IoT system. However, the complexity and heterogeneity of loT scenarios complicate

Chapter 1. Internet of Things: An overview 20

these processes. This imposes the use of sophisticated, hybrid, and multi-level modeling and
simulation techniques [48]. An overview of some other modeling and simulation challenges has
been presented in [49]. For example, one of the main issues in existing simulation tools is the lack of
integrated options to simulate network and Cloud infrastructure to obtain the overall performance
of ToT systems. Also, there is a problem with simulating various protocols, security attacks,
computing, and other IoT processes to obtain different results, such as network performance
and energy consumption. Another important issue is enabling the simulation of IoT scenarios,
including many heterogeneous devices with various traffic loads and types. This implies that
the problem of simulating IoT scenarios is related to software tools and hardware performances
that provide enormous resources such as CPU and RAM. According to previous considerations, a
new enhancement of simulation tools should improve the ability to simulate small, medium, and
large-scale IoT scenarios. Simulation and modeling tools need to support the dynamic nature of
IoT, real-time requirements and increasing processing requirements. These scenarios include the
deployment of heterogeneous technologies. There is a need for the continuous enhancement of

simulation and modeling tools to address these shortcomings.

1.7 Conclusion

HE Internet of Things creates new opportunities to develop innovative applications by lever-
Taging existing and new technologies. In recent years, various consumer and industrial IoT
applications have been developed and deployed. In this chapter, we have given an overview of the
Internet of Things in general. We have seen the general concepts and the different application
areas of the IoT. Then, we have presented the different IoT architectures and the enabling tech-
nologies used in this context. Finally, we have described the various challenges and issues to be
resolved and which are seriously taken up by the scientific community. In what follows, we will
focus on the modeling aspect of IoT systems, in particular, the use of Model Driven Engineering

(MDE) as a mechanism for designing and analysing IoT applications.

CHAPTER 2

MODELING OF 10T SYSTEMS

2.1 Introduction

IGNIFICANT challenges come across developers of the [oT due to their heterogeneous nature.
SAS IoT systems are based on a set of heterogeneous, distributed and intelligent things, it
is difficult to handle this diversification aggravated by an elementary peculiarity of the IoT: the
very same software features should be deployable on different devices, each with only a limited
set of basic common features. Moreover, things can be low devices or have limited resources
(computational capabilities, storage resources, or battery capacity). This adds complexity to
deployment and redeployment of software functionalities across devices with different capabilities.
One promising approach to address these challenges and reduce the complexity of IoT development
is Model-Driven Engineering (MDE), which is frequently used in many domains for software

development.

The abundance of various hardware platforms available for IoT complicates their development.
There is a need for a methodology that enables an efficiently increased level of abstraction to
address such systems’ complexity and heterogeneity problems. To this end, many researchers
believe that MDE is a better solution to overcome challenges such as development complexity,
heterogeneity, adaptability, and reusability, and they propose various applications of MDE for IoT

development.

In this chapter, we will discuss the modeling and analysis of IoT systems using the MDE
approach. At first, we will recall the essential concepts of MDE as well as the terminology
we will use throughout this manuscript. Then, we will present some challenges of IoT systems
development that can be addressed using MDE-based approaches. Finally, we will discuss some

MDE-based approaches for modeling and analyzing IoT systems.

21

Chapter 2. Modeling of IoT systems 22

2.2 Model-Driven Engineering (MDE)

Model-Driven Engineering (MDE) [3, 50l 51] is a software engineering research area that places
the model notion at the center of the development cycle. It focuses on abstract concerns around
the models without considering the target technologies. In this paradigm, the source code is no
longer considered the central element in the development process but rather an artifact derived
from the modeling elements. MDE offers techniques for navigating between levels of abstraction.
On the one hand, they are based on meta-modeling, which allows the different aspects of a
modeling language to be defined and expressed. On the other hand, model transformation allows

the manipulation of models and the maping from one model to another.
2.2.1 Meta-modeling

The MDE approach aims to define a high level of abstraction of developed systems and automate
the development process. It is mainly based on three concepts: the model, the meta-model, and
the meta-meta-model. A model can be defined as a relevant abstraction of the system it models.
It must be sufficient and necessary to answer specific questions in place of the system it represents.
A model that describes using a modeling language must conform to a meta-model. The modeling

language itself must be specified as a model called a meta-model. A meta-model is a higher-

Instance of
defines

— Meta?-Model — > Meta-Language

A A
‘ Instance of

expressed using
Language < defines Meta-Model

A A
‘ Instance of

expressed using

Model

Models

FIGURE 2.1: The Meta-modeling concepts.

order abstraction highlighting the concepts used to define the model. It models the language

entities, their relationships as well as their constraints. As with the meta-model, which specifies

Chapter 2. Modeling of IoT systems 23

the modeling language and interprets models, the meta-meta-model has a language description in

which the meta-model is expressed [3].
2.2.2 Model transformation

In addition to meta-modeling, model transformation is the central element of the MDE approach.
It generates one or several target models from source models, where the source and target models
conform to their meta-models. The transformation of a source model is done in two steps. The first
step identifies the correspondences between the concepts of the source and target meta-models,
which induces the existence of a transformation function applicable to all instances of the source
meta-model. The second step involves applying the source model’s transformation to generate the

target model automatically by a program called the transformation engine or execution engine

Source Target
Meta-Model specified on E H specified on Meta-Model

o H
o iz
S i3
51 i
31 H
A f o)
i i Read by H
: \& :
Source Read by - Product Target
Model = Model
Transformation

tools

FIGURE 2.2: Basic concepts of model transformation.

2.2.3 Model Driven Architecture

OMG (Object Management Group) proposes the Model Driven Architecture (MDA) [52] approach
as a framework for model-driven application development. MDA is built on the separation of
concerns between an application’s logic and the platforms on which it will run. It aims to describe
models independently of the technical details of the execution platforms to allow the automatic
generation of application code and obtain a significant gain in productivity. In the MDA approach,

we can mainly distinguish four classes of models [52] [53]:

Chapter 2. Modeling of IoT systems 24

Computation Independent Model (CIM): models the requirements or needs of the system in-
dependently of any implementation. The CIM allows the system’s vision in the environment

where it will operate without going into the realization details or the treatments.

- Platform Independent Model (PIM): it is an analysis and design model that expresses the

systems’ functioning independently of any implementation technology.

- Platform Specific Model (PSM): is a code model that combines the PIM specifications with

platform-specific details. The PSM is essentially used to generate executable code.

- Platform Description Model (PDM): the PDM is the model that describes an execution
platform. It provides a set of technical concepts representing the different parts of the

platform and (or) the platform and (or) the services it provides.

2.2.4 Domain-Specific Modeling Language

In MDE-based approaches, the software artifacts are models created using modeling languages.
A modeling language could be a general-purpose language or a specific one. A General Purpose
Modeling Language (GPML) can express a wide range of systems and domains. When the models
are created using the problem domain concepts, we talk about Domain-Specific Modeling [54].
A Domain-Specific Modeling Language (DSML) contains distinctive concepts that allow the de-
scription of targeted systems. It has a restricted expressiveness that focuses on a specific domain.
The use of dedicated languages significantly facilitates the construction of software systems for
the domains to which they are dedicated. DSMLs are generally small and must be easily manip-
ulated, transformed, combined, etc. They are already successfully used in many fields, such as
telecommunications, avionics, aerospace, and automotive industries. The interest of DSML is to

benefit from the well-known advantages of domain-specific languages [55]:

- Allow solutions to be expressed with idioms at the level of abstraction of the addressed
domain. As a result, domain experts can understand, validate, modulate, and often develop

programs in dedicated languages.

- Facilitate code documentation.

Chapter 2. Modeling of IoT systems 25

- Improve quality, productivity, ability, maintainability, portability, and reusability.

- Enable domain-level validation. As long as elements of the language are safe, any sentence

written with these elements can be considered safe.

Generally, a modeling language is defined by a set of all possible models conforming to the
modeling language’s abstract syntax, represented by one or more concrete syntaxes that satisfy a
given semantics (see Figure[2.3)) [3]. In other words, a modeling language (L,,) is defined according
to the tuple {AS,CS™, M A, SD* M)} where AS is the abstract syntax, C'S™ is the concrete
syntax(es), MA,, is the set of mappings from the abstract syntax to the concrete syntax(es),
SD* is the semantic domain(s), and M,y is the set of mappings from the abstract syntax to the

semantic domain(s) [56].

Pragmatics -
Guides How To
Use
T Is Defined by
1 3 oy O 1
Abstract Sysntax Concrete Sysntax Semantics
« synonym » T synonym »
i)
Metamodel Structufal Notation
Semantics

FIGURE 2.3: The Modeling Language definition [3].

2.2.4.1 Abstract syntax

The definition of a modeling language typically begins with capturing and identifying the concepts,
abstractions, and relationships underlying the application domain. The result of this activity is the
abstract syntax of the modeling language. The abstract syntax of a modeling language expresses,
in a structural way, the set of its concepts and their relations. It is described using meta-modeling
languages that offer the concepts and elementary relations that allow a meta-model to be described
in modeling languages. A meta-model represents the abstract syntax of a modeling language

through classes linked by different relations (associations, compositions, or specializations). Each

Chapter 2. Modeling of IoT systems 26

class represents a concept of the dedicated modeling language, i.e., a concept of the domain for

which the language is designed.

Abstract syntax also includes “structural semantics' (or static semantics), mainly focused
on establishing linking rules between its elements. For example, structural semantics makes it
possible to define that an element of type A can be linked to other elements of type B according
to this or that constraint. In general, structural semantics can be described in different ways:
either by a declarative constraint language (e.g., the Object Constraint Language (OCL) [57]); by

an informal natural language specification; or a mixed approach.

2.2.4.2 Concrete syntax

Concrete syntax provides users with the notations needed to express models. It can be textual,
graphical, tabular or form-based, or a combination of these. The definition of concrete syntax
allows each modeling language construct defined in the abstract syntax to be annotated with one
(or more) concrete syntax decoration(s) that can be manipulated by the language used. In general,
graphical notations are most appropriate for illustrating relationships between concepts, changing
spatial or temporal distribution values, causal and temporal sequences between events, or data
and control flows in process modeling scenarios. However, graphical models are not as scalable
as textual or tabular models, which means that they are not the most appropriate for supporting
large models; they are also not very applicable for writing or visualizing complex expressions
or actions - for this, textual notations tend to be more appropriate. Finally, since a modeling
language can have several concrete syntaxes, it would be possible to combine them for the benefit
of its users. Several tools can be used to define concrete syntaxes. We mention mainly Sirius [58]

for graphical syntaxes and Xtext [59] for textual syntaxes.

2.2.4.3 Semantics

The semantics of a language denotes in a precise and unambiguous way the meaning of the
constructions of this language. It thus allows giving a precise meaning to the programs built
from it. A semantic is said to be formal when expressed in a mathematical formalism and allows

checking this definition’s coherence and completeness. Based on the concepts and models involved,

Chapter 2. Modeling of IoT systems 27

semantics can be of two types [3]: executable and non-executable. Non-executable semantics
concern concepts that are not directly related to software execution, such as user requirements
specification or deployment diagrams. On the other hand, executable semantics concern concepts
directly related to the execution order of programs, such as those found in activity, sequence,
and state machine diagrams. Most of the existing semantics frameworks are used to define the
semantics of executable models (such as UML state machines). Some of these frameworks are

“operational semantics" and “translational semantics" [3]:

- Operational semantics: it enables the description of the dynamic behavior of the con-
structs of a language. In the context of the MDE, it aims to express the behavioral semantics
of the concepts of the abstract syntax, using an action language, to allow the execution of
the models that conform to it. It gives an imperative vision by describing a program through
a set of transitions between the states of the execution context. These concepts are devoid
of semantics, but an action language makes it possible to express them and thus define the
tools supporting the execution. Such a language makes it possible to describe the model’s

evolution and produce one or more other states from a given state.

- Translational semantics: this is also called denotational semantics. Its principle is to rely
on a rigorous formalism to express the semantics of a given language. A translation of the
concepts of the original language is then made into this formalism. It is this translation that
gives the semantics of the original language. In the context of the MDE, it is a question of
expressing transformations towards another technical space, i.e., defining a bridge between
the source and target technical spaces. These technological bridges allow using simulation,

verification, and execution tools provided by the target technical spaces.

2.3 MDE to address the IoT development challenges

The availability of many diverse heterogeneous devices collaborating in the IoT represents an
unprecedented opportunity to improve the quality of life, as well as the quality of service, through
collaboration among industrial and consumer devices. However, to benet from the IoT advantages,

a whole host of new challenges must be addressed at all levels. Heterogeneity, runtime adaptability,

Chapter 2. Modeling of IoT systems 28

reusability, interoperability, data mining, security, abstraction, automation, privacy, middleware,
and architectures are just some of the aspects we need to consider at both design time and runtime
and for which new software engineering approaches will be envisioned. The MDE can help meet
the technical challenges of IoT system development and runtime management. Next, we show

how MDE techniques and tools can help tackle the challenges of developing IoT applications [8].

2.3.1 Heterogeneity

Heterogeneity is common in IoT systems, where they differ in resources, protocols, hardware and
software platforms, programming languages, etc. This heterogeneity and the lack of standardized
software solutions make IoT systems development intractable. Thanks to modeling languages,
MDE can provide a unique way to represent heterogeneous systems’ many aspects in one place.
Models defined through these languages can define software with concepts that do not necessarily
depend on the underlying platform or technology. Moreover, models can become complex and
challenging to grasp when heterogeneity is constantly present, even for experts. MDE offers
powerful instruments to support the separation of concerns in multiview modeling—defining and

managing models from different design viewpoints.

2.3.2 Large-scale and emergent properties

IoT systems can reach the size of tens or hundreds of distributed things. They should be engineered
to automatically scale to accommodate and to take advantage of an arbitrary number of devices.
These systems’ level of concurrency and complexity might lead them to expose emerging properties
that represent unexpected behaviors stemming from both interaction between system parts and
the system’s interaction with its context. IoT applications’ runtime evolution is a challenge.
This is particularly difficult if the application operates on code-based artifacts. For example,
imagine that a specific functionality of our surveillance system (such as management of suspicious
behavior) is implemented for a specific physical device that becomes unavailable at a certain
point. Reallocating the functionality to a different type of device would be difficult without

modifying the functionality itself. Models@Qruntime techniques [60] use models and abstractions

Chapter 2. Modeling of IoT systems 29

of the runtime system and environment to effectively manage the complexity of evolving behaviors

during execution.

2.3.3 Context awareness and uncertainty

IoT systems are characterized by uncertainty and unexpected changes in their context. To be
able to adapt these changes and thereby cope with uncertainty, things in the IoT system must be
designed as adaptive systems. MDE proposes various ways to define adaptive systems and support
adaptation under uncertainty. Researchers have proposed mechanisms that automatically gener-
ate alternative models to cope with different context conditions. Such mechanisms will identify
functional and nonfunctional tradeoffs between the models, thereby dealing with functional and

nonfunctional uncertainty [61].

2.3.4 Dynamic discoverability of resources

New, unknown, or recovered devices can appear anytime in dynamic environments such as IoT
systems. For the system to exploit them, it must have a mechanism that can dynamically discover
the available resources and constraints. The system should be able to recognize, communicate
with, and adjust the devices and their characteristics. The discoverability of resources and services
provided by newly available devices in the IoT is fundamental. Service-oriented modeling and
service-oriented architectures (SOAs) define the use of models and model transformations for
identifying, specifying, realizing, composing and orchestrating services [62]. IoT systems can
benefit from this mature discipline to exploit models for dynamic discoverability and realize new

resources and services.

2.3.5 Reusability

When developing an application very similar to previous ones from scratch, loT system developers
often become frustrated because they do not have the appropriate support for reusability. The
lack of a software engineering methodology and comprehensive abstraction mechanisms for han-

dling IoT systems complexity leads to countless similar, but not congruent, isolated solutions that

Chapter 2. Modeling of IoT systems 30

cannot be easily reused and combined. Systematic reusability is paramount to making IoT soft-
ware development sustainable in the market, where expectations for new-generation devices grow
incredibly. Reusability MDE is often combined with component-based software engineering to
define reusable and replaceable self-contained model entities that can be integrated appropriately
through architectures, connectors, and integration patterns to describe complex systems [63]. The
entities can be modeled as different components, which can be manipulated through dedicated
model transformation and analysis tools. Researchers have aimed to exploit the power of models
and model transformations to guarantee the runtime preservation of quality attributes in isolation

and combination [§].

2.3.6 Security and trust

IoT applications rely on many interconnected components. The intrinsic complexity of such
systems, such as the multitude of protocols and APIs, exacerbates security issues, which must
be addressed. Thus, securing the decentralized architecture of IoT systems is critical. Security
has been addressed mainly in MDE. Exciting is model-driven security [64], which defines system
models and their security requirements and uses to generate complete and configured system
architectures and access control infrastructures. Model-driven mechanisms for enforcing trust and
managing privacy have been studied since MDE’s birth. MDE can facilitate defining and enforcing
user-friendly, precise, and adequate security and privacy specification policies. It also facilitates

the understanding of how violations of such policies might affect the system’s parts.

2.4 MDE-based approaches for modeling IoT systems

Many research works have been done using the model-based approach to develop IoT applications.
These works can be categorised according to the modeling activity they address, where it could be
intended for one or more modeling activities such as development (meta-modeling, transformation,
code generation, design process, and others), analysis, validation and verification, simulation,
monitoring, adaptability, correctness, and others. This section presents a collection of MDE-
based approaches for modeling and verifying IoT systems. We focus on approaches that provide

code generation and formal verification tools.

Chapter 2. Modeling of IoT systems 31

2.4.1 Approaches with code generators

The UMLA4IoT [65] consists of a UML profile representing the basic constructs of the LWM2M
protocol [66] and REST architectural paradigm for manufacturing environments. It has implicit
execution semantics. UML4IoT provides a code generator of the needed IoT-compliant interface

to integrate cyber-physical components into modern IoT manufacturing systems.

Ciccozzi et al. [67] have introduced MDE4IoT as an MDE framework to support the modeling
and self-adaptation of emergent configurations of IoT systems. The authors aim to address
many challenges, such as system heterogeneity and complexity, using high-level abstraction,
collaborative development through separation of concerns and runtime adaptations that are sup-
posed to be performed automatically by model transformations. The MDE4IoT framework
consists of UML-based domain-specific profiles. It defines the behavioral aspect of software
components using state machines and the Action Language for Foundational UML (ALF) [68].
ALF helps more accessible model validation and analysis and the generation of executable artefacts

for heterogeneous targets.

The IoTLink [69] is an IoT application development toolkit that follows a model-driven ap-
proach. It enables end-users with minimal development experience to build IoT applications. The
IoTLink toolkit comprises a graphical modeling language that encapsulates the heterogeneity and
complexity of the IoT applications and a code generator. Using visual notations, IoT developers
can specify application components in a platform-independent model, which then can be con-
verted into a platform-specific model. The code generator can translate compliant models into

Java source codes.

In [70], the authors have proposed COMFIT (Cloud and Model-based IDE for the Internet
of Things) a development environment for the IoT that was built on MDA principles and cloud
computing. COMFIT provides an MDA infrastructure (App Development Module) based on
UML for designing IoT applications using high abstraction and App management and execution
module cloud-based web, including simulators and compilers for developing IoT applications.

Using App Development Module, the COMFIT models can be transformed into source code for

Chapter 2. Modeling of IoT systems 32

two operating systems, Contiki and TinyOS. COMFIT also supports the compilation or simulation

of the generated code.

MontiThings [71] is a component and connector ADL (Architectural Description Language)
for modeling IoT applications. It describes the behavior of IoT applications using components
that exchange data with each other. MontiThings consists of a graphical and textual notation and
includes a code generator for the C++ language. It is an extension of the MontiArc [72] language

based on the Focus calculus [73]. Consequently, the MontiArc models can be verified [74].

In [75, [76], the authors have presented an MDD framework for IoT applications that addresses
the lack of division of roles and the heterogeneity of devices in IoT applications. It presents the
IoTSuite toolkit that aims to quickly develop IoT applications by providing automation. IoTsuite
supports the automation of tasks at the different phases of IoT application development. In
the current implementation, loTSuite targets Android and JavaSE-enabled devices and MQTT

middleware.

ThingML [2] is an approach for developing IoT applications. It consists of a textual DSL and
a set of tools. The DSL ThingML is aligned with UML by applying concepts of components,
statecharts, and communication by asynchronous messages. It also includes a complete action
language to describe the bevahior of components. The tools encompass a set of compilers tar-
geting a large set of platforms and communication protocols. It has a wide coverage of target
platforms (microcontrollers to servers). The ThingML code generation framework provides a
plugin mechanism that can support a wide range of communication protocols such as UART, 12C,

MQTT, Websocket, ROS, and others.

Thirwe et al. [77] have presented the CHESSIoT component-based modeling approach to
support the design and analysis of industrial loT systems. CHESSIoT provides a means to per-
form event-based modeling for code generation purposes. The CHESSIoT specifications will be
transformed into ThingML models to take advantage of ThingML’s code generators. In [78], the
authors have proposed an approach to transform CAPS models into ThingML language. It aims
to generate code from the CAPS specifications, where CAPS is an architecture-driven modeling

framework for IoT systems development. CyprloT [79] is a framework to model and control

Chapter 2. Modeling of IoT systems 33

network-based IoT systems. It uses a part of ThingML language to model IoT things and their

behaviors. It also uses and extends its code generator framework.

2.4.2 Approaches with formal verification tools

Much research has been proposed to verify and analyze the loT application using rewrite logic and
its Maude language. In [80], the authors have presented a transformation from Complex Event
Processing (CEP) [81] patterns into RT-Maude [82] specifications in order to help developers
to verify and to analyze the program’s properties. According to the authors, CEP is becoming
essential in diverse contexts, such as IoT systems. In [83], the authors present an approach
for analyzing Industrial IoT applications. They have proposed transforming the underlying IEC
61499 standard specifications into Business Process Model Notation (BPMN) models. The BPMN
models enable quantitative analysis of process models. This analysis is achieved by transforming
the business processes to Maude’s specifications. Abbas et al. [84] have proposed an extension of
BPMN 2.0 to model IoT applications and a based-Acceleo tool to transform the extended BPMN
2.0 diagrams into Maude code for analysis purposes. The Maude specifications obtained are used
for model simulation, analysis, and verification. Duran et al. [85] have proposed an approach for
supporting the reconfiguration of rule-based IoT applications. The proposed approach enables
a comparison of two versions of an application (before and after reconfiguration) to check if
several functional and quantitative properties are satisfied. The analysis techniques have been
implemented using formal languages. Where Maude language and its tools have been used to
check the functional properties, the LNT language [86] and the CADP [87] analysis tools have
been used to analyze quantitative properties. These techniques have been integrated into the

WebThings platform [88].

On the other hand, many works propose analyzing loT applications using different formal
methods. Costa et al. [89] have presented an MDE-based method to design and analyze IoT
applications. The authors have proposed the SysML4IoT modeling language for IoT systems.
SysMLAIoT is a SysML profile based on the IoT-A Reference Model [90]. After that, they defined
a mapping from SysML4IoT models into NuSMV model checker input language [91] using the

Acceleo framework to verify the developed system’s quality of service properties. Xu et al. [92]

Chapter 2. Modeling of IoT systems 34

have proposed extending ThingML to allow designers to model performance variations that are
affected by uncertain external environments. The obtained models are transformed into a Net-
work of Priced Timed Automata (NPTA) [93] for quantitative quality of service analysis of IoT
applications using UPPAAL-SMC. Oquendo et al. [94] consider IoT systems a System-Of-System
(SoS) class. They have suggested using SosADL language to describe the software architecture of
[oT systems. SosADL is an SoS Architecture Description Language (ADL) based on m-Calculus
theory. In the literature, SosADL designs have been transformed into several languages, such
as DEVS [95] for simulation and UPPAAL for model checking. In [96], the authors have pro-
posed an MDE-based approach to address security problems in IoT application. It proposes a
pre-execution verification method for IoT applications to meet security and safety requirements.
The authors introduce a domain-specific modeling language to describe IoT applications and a
code generator to convert the models into Lustre programs that can be checked using the Kind 2

[96] model-checker.

2.4.3 Synthesis

Thanks to the biographical study on MDE-based approaches proposed for modeling IoT systems, it
is clear that these methods have great diversity and heterogeneity in terms of techniques used, tools
and even objectives. This is due to the heterogeneity in the IoT regarding software, hardware or
different enabling technologies. It will not be easy to compare these approaches, but a comparison
can be made based on some requirements for approaches to generating operational source code. In
[7, 51], the authors stated a set of requirements that a modeling framework must meet to enable
accurate representation and simulation of systems in general. In addition, we propose two other
requirements (the R2 and R4 elements below) as specific requirements for the code generation
framework. In the following, we introduce each requirement and we analyse its fulfillment by

these IoT modeling approaches.

- Well-Defined Notation(R1): aiming to enable the representation of IoT systems. The
first requirement that a modeling framework must meet is to provide a well-defined notation.
It must cover the elements of its meta-model and provide a tool to support the specification

of ToT systems using the DSL [7].

Chapter 2. Modeling of IoT systems 35

- Supported platforms/languages (R2): in a heterogeneous environment like IoT systems
in which system roles may attach to devices with different platforms. It is beneficial to build
frameworks that allow generating code for multiple target platforms/languages. In addition,
provide mechanisms to address the diversity of communication protocols, where IoT systems

are distributed systems based on these communication protocols.

- Extensibility and customization (R3): the third requirement that a modeling frame-
work shall address is a clear definition of how to extend and customize it to allow representing
other aspects that are not covered by the DSL or to efficiently and easily customize parts

of the code generation process according to the developed applications’ peculiarities.

- Generated code quality (R4): code generation is not popular among practitioners. This
bad reputation is typically based on experiences with tools producing code with low read-
ability, hard to integrate with existing systems and other components and very hard to
maintain and (or) evolve. It is complicated to judge the quality of the generated code, and
this may require expert opinions in the target language/platform, real-world case studies
or through V&V (verification and validation) or simulation tools. It is also necessary to
evaluate the generated codes in terms of memory usage, execution time, readability, and

traceability.

- Explicit Execution Semantics (R5): to execute and simulate the model allowing an-
swering questions at design-time, the DSL must provide the execution semantics explicitly,

avoiding applying translational approaches.

Through the analysis of the research works done in the field of IoT systems modeling in
general and those specifically interested in code generation, we propose a comparative table (see
Table 2.1) based on the requirements mentioned above. The analysis of how the surveyed modeling

frameworks fulfill the abovementioned requirements is presented below.

Despite the diversity of approaches and contributions, we note that no single solution meets all
the criteria considered. The requirement R1 "Well-Defined Notation" is met by all the modeling
frameworks studied. The majority provide a graphical notation based on UML representing the

domain concepts. Some of these works relied on textual notation, such as [2], while others adopted

Chapter 2. Modeling of IoT systems 36

TABLE 2.1: A comparative study of approaches to modeling IoT systems.

Framework R1 R2 R3 R4 R5
UMLAIoT [63] v X X *! X
MDE4I0T [67] v X X *! v
IoTLink [69] v X X *! X
COMFIT [70] v X x!? X
MontiThings [71] v X X *! 4
ToTsuite [75], [76] v ¥ X *! X
ThingML [2] v v v P X

v/ = requirement fulfilled; X = requirement not fulfilled; ¥ = requirement partially fulfilled;
1 . 2 . 3 . .
: Case studies ; : Simulation ; : Industrial projects.

a mixed graphical and textual notation [71]. Regarding the second requirement (R2) - "Supported
platforms/languages", the result is that, except ThingML, none of the studied approaches pro-
vides a code generator that supports multiple languages/platforms and communication protocols.
ThingML supports three programming languages and nearly ten platforms and provides a plugin
mechanism to deal with a wide range of communication protocols. The IoTSuite and COMFIT
frameworks partially fulfil this requirement, as IoTSuite targets Android and JavaSE-enabled

devices while COMFIT supports devices running on the TinyOS and Contiki operating systems.

Concerning the third requirement (R3) — “Extensibility and customization,” none of the sur-
veyed approaches provides clear specifications of extensibility rules to extend the DSLs. In addi-
tion, if we exclude ThingML, none of the studied modeling frameworks provides a clear definition
of extending and customizing the code generation process according to the developed applications’
peculiarities. The code generation framework of ThingML has a modular structure that allows
for the customization of some extension points. It identifies ten different extension points, where
each extension point is basically an interface (or abstract class) in the code generation framework
with a set of methods responsible for generating the code associated with a given model element.
For requirement R4, the studied frameworks have demonstrated the quality of the code through
numerous case studies. The COMFIT framework supports the simulation of generated code. For
its part, ThingML has been used and evaluated in commercial and industrial projects. However,

there is still a need to provide means to verify the operability of the generated code while studying

Chapter 2. Modeling of IoT systems 37

its memory consumption and execution time, especially considering that many IoT devices have

limited memory and energy capacities, which require optimized code.

Finally, regarding the fifth requirement (R5) —“Explicit Execution Semantics” — we identify
that only MDE4IoT [67] and MontiThings [71] provide explicit execution semantics. MDE4IoT is
based on the ALF action language to express the behavioral semantics of the system. MontiThings
has formal semantics based on Focus calculus. Moreover, all the other surveyed approaches provide
DSLs with implicit execution semantics; thus, to execute and simulate the system behavior, it
would be necessary to deploy the components in the platforms and verify the various design
alternatives at runtime. Alternatively, it would require translating the system description into a

formal language to execute it.

2.5 Conclusion

In this chapter, we have discussed modeling IoT systems using MDE-based approaches. First, we
have presented in brief the basic concepts of MDE. Then, we have presented and identified some
challenges of modeling IoT systems, and we have also seen the different mechanisms provided
by MDE to address these challenges. Finally, we have presented some model-based approaches
for modeling and analysis of IoT systems with a comparative framework for these approaches.
Through this comparison, it was found that ThingML is a promising approach to modeling IoT
systems independently of the target platforms. The ThingML approach provides a code genera-
tion framework that supports multiple languages, platforms and communication protocols. This
generation framework is also customizable to adapt the specificities of the applications or to sup-
port new platforms or languages. In the next chapter, we will present the ThingML approach in

detail.

CHAPTER 3

THE THINGML APPROACH

3.1 Introduction

0T systems are complex assemblies of heterogeneous components, frameworks, and services
Ithat are reused, evolved, customized, and composed to create and evolve applications. To
address this complexity, MDE must provide solutions that adapt to this reality, focus on spe-
cific problems, and integrate into the software development process. It can be beneficial for
many purposes, such as increasing productivity by automatically generating code from mod-
els. ThingML [2] is an MDE-based approach to address the challenges of heterogeneity in
modeling [oT applications. It comprises a Domain-Specific Language (DSL) which combines well-
proven software modeling constructs for the design of IoT systems and advanced code generation
framework. The code generation framework can transform the ThingML models into operational
code in various programming languages (Java, Javascript, and C / C ++), targeting various hard-
ware platforms (from micro-controllers to powerful servers) and multiple communication protocols.
Therefore, the ThingML approach is especially beneficial for applications that include heteroge-
neous platforms and communication channels. In this chapter, we will present the ThingML
approach. We start by presenting the ThingML DSL, and the main concepts of this language.
Thereafter, we introduce the code generation framework. Finally, we present some lacks and limits

of the ThingML approach.

3.2 ThingML Domain-Specific Language

ThingML is a UML profile conceived to model IoT applications as a Domain-Specific Modeling
textual Language (DSML) [2,09]. Its textual syntax is defined using the Xtext framework [59] based

on the Eclipse Modeling Framework (EMF) [97]. Xtext allows the development of textual DSLs.

38

Chapter 3. The ThingML approach 39

It uses an Extended Backus-Naur Form (EBNF)-like language to define the DSL grammar of the
developed language. Listing [3.1] represents an excerpt from the ThingML grammar expressed in
the EBNF language. This excerpt shows part of the concrete textual syntax of the state machine
that consists of states. A state can be a simple, final, or composite state. It can include properties
and -internal- transitions, and perform actions on entry and exit. A transition must have a target,
and it can have a triggering event, a guard condition, and actions to be performed during the

transition.

[Kk Kk Kk ok K kK Kk Kk ok Kk Kk ok Kk K Kok Kk Kk Kk Kk K Kok Kk Kk ok Kk K Kok Kk Kok Kk Kk K Kk Kk K ko K
* STATE MECHINES *
i*xx**x)*xﬂ**7\7&*Kﬂ**x**xi*Kﬂ**7\7&*Kﬂ*kv**xi*xx**xi*Kﬂ**x**xi*xx**xi*xﬂ**x/'
State returns State:
StateMachine | FinalState | CompositeState
'state' name=ID (annotations+=PlatformAnnotation)* '{'
(properties+=Property) *
(
('on' 'entry' entry=Action)? &
('on' 'exit' exit=Action)? &
(properties+=Property | internal+=InternalTransition |
outgoing+=Transition) *

'}
Handler:
Transition | InternalTransition
;
Transition returns Transition:
'transition' (name=ID)? '->' target=[State|ID]
(annotations+=PlatformAnnotation)*
('event' event=Event)?
('guard' guard=Expression)?
('action' action=Action)?;

InternalTransition returns InternalTransition:
{InternalTransition}
'internal' (name=ID)?
(annotations+=PlatformAnnotation)*
('event' event=Event) ?
('guard' guard=Expression) ?
(Taction' Aaction=Action)?:

L1sTING 3.1: An excerpt of the ThingML grammar expressed in EBNF [98].

The Xtext framework uses the EBNF grammar to automatically generate a comprehensive
text editor and an Ecore-based meta-model of the developed language. The textual editor provides

developer help features such as syntax highlighting, error detection markers, and auto-completion.

3.2.1 Meta-model

ThingML is an open-source project; its meta-model, editors, and associated toolset of code gen-
eration are available in [08]. The ThingML DSL mainly relies on two structures [2]: Thing
and Configuration, where Thing represents the application components, and Configuration de-
scribes the instantiation of these components and their interconnection. Moreover, the component

behaviors are modeled using Statecharts and an imperative platform-independent action language.

Chapter 3. The ThingML approach 40

Import ‘ Expression ‘ ‘ Variable ‘ ‘ Action ‘ Parameter
0.4 impon§| I] 0.4
[0..1] init ‘ [0..1] body [0..] parameters parameters
Protocol ‘ Property Function Message
[0..%] protocols [0..17 init [0..1] index ‘ * [0..1] property [0..4] re
4 []
Configuration ‘ PropertyAssign StateMachine Port
P . [0.1] T
[0."] configs behaviour [0..*] functions
ThingMLModel [0..*] properties} Thing [0..*] messages InternalPort
o o —
[0..*] assign [0..*] ports |
L li—l
‘ RequiredPort ProvidedPort
Y [0..*] types | T | /|\ [0..*] includes ‘

FIGURE 3.1: An excerpt of the ThingML meta-model.

Figure [3.1] represents an excerpt of the ThingML meta-model. It shows the main ThingML
model concepts and the relationships between these concepts. In short, as stated earlier, a
ThingML model, described by the ThingMLModel class in this meta-model, can be expressed
as a combination of things and configurations. The Thing class includes (composition relation)
several components such as messages, functions, properties, state machines, and ports. Each of

these components is described by a class in the meta-model.

l [0..1] event | l L [0..1] guard [0..1] action

ReceiveMessage N Event Handler Expression Action
! i
\|/[0..1] message \|/[0‘.1] port []
Message Port Transition InternalTransition

[0..1] target [0..*] outgoing [0..*] internal ———
[0..1] exit Property

Session 0. session L ¢ [0..*] properties

State .J

[0..1] entry
CompositeState

Region —I-D q__l FinalState StateContainer
- [0..1] im [0..*] substate | | T

FIGURE 3.2: An excerpt of the ThingML meta-model (the state machine part).

Figure[3.2]shows the state machine part in the ThingML meta-model. The State class presents
the main class; it contains action on entry, action on exit, properties, and transitions. The states

may also contain composite states that can be sequential or concurrent. A transition has a target

Chapter 3. The ThingML approach 41

state and can contain an event, a guard condition, and an action. An event is a message that

arrives via a port.

o r 1

ProvidedPort InternalPort RequiredPort Port
[0..1] provided [0..1] required [0..1] port
1
Thing Connector Protocol ExternalConnector
[0..1] protocol
[0..1] type
v [0.1] srv J
Instance 0.7 Configuration AbstractConnector
- [0..*] instances - [0..*] instances

[0..1] inst

FIGURE 3.3: An excerpt of the ThingML meta-model (the configuration part).

Figure |3.3] presents the configuration part in the ThingML meta-model. A configuration can
include instances and connectors. A connector has a client instance (defined by the cli relation)
and a server instance (defined by the srv relation). It also has a provided port (defined by the
provided relation) and a required port (defined by the required relation). The type relation links

the two classes, Instance and Thing.

3.2.2 Thing

The main component in ThingML is the thing construct. A thing, called process or component
in other approaches, is mainly a software component but can represent a software wrapper of a
hardware component, for example a light-emitting diode, a piezoelectric buzzer, an algorithm, or
an entire program. The things are entirely modular, for example if a thing LED is created, this
LED can be reused for all LEDs used in the application, circuit, and even other applications. In
other words, the generic behavior of a LED is defined once and becomes available to be used in
all applications. A Thing can include messages, ports, functions, properties, and a state machine.
The internal behavior of the thing is defined as a state machine within the thing component.
Communication between things can only be made by asynchronous messages carried via ports.
Therefore, messages can only be sent and received through ports. These messages may contain
parameters of any data type supported by ThingML. Finally, the properties define local variables

that are only accessible by their thing’s state machines and functions.

Chapter 3. The ThingML approach 42

If a thing has one or more ports that it provides, these ports can be defined as a fragmented
thing or defined in the thing itself. A fragment defines a thing that cannot be instantiated but
is included in other things. The fragment is created by the keywords “thing fragment' and are
followed by a name that ends with “Msgs” (see Listing . Inside the fragment, all messages
that the port must handle must be defined. With all messages defined, this fragment can now be

used as an interface for things; this means that several different things can include this fragment.

1 // Thing fragment definition (this is a comment)

2 thing fragment LedMgs {

3 // Definition of messages
4 message led_ONQ);

5 message led_OFF(Q);

6 ¥

LisTING 3.2: Specification of a thing fragment and messages

The communication between things in ThingML happens through the use of ports. A port can
send and receive messages to and from other ports. A thing can provide a port, which becomes
available for other things to use. Ports can also be required, meaning a thing can state that it
uses another port. The communication through ports is done with asynchronous message passing.
The messages sent through the port are the main way of triggering transitions and internal events,
making the state machine change states and make the program go on. Listing |3.3| (Lines 10-12
and 18-20) presents an example of a required port and a provided port. These ports are taken

from the blink program provided in ThingML [99].

7 // Thing definition
8 thing Blink includes LEDMsgs {

9 // Required port definition
10 required port led {

11 sends led_0ON, led_OFF
12 }

13

14}

15 // Thing definition
16 thing LED includes LEDMsgs {

17 // Provided port definition
18 provided port ctrl {

19 receives led_ON, led_OFF
20 }

21

22 }

L1sTING 3.3: Declaration of ports in ThingML

Chapter 3. The ThingML approach 43

The ThingML language specifies the dynamic behavior of application components by a mix
of state machines, a platform-independent action language, and target languages [2]. Where
ThingML provides a set of annotations that enable designers to use the target languages and

benefit from existing libraries.

3.2.3 The platform-independent action language

ThingML describes the arithmetic and Boolean expressions, sending and receiving messages,
declaring local variables or functions, and calling functions with a platform-independent action
language. Note that the action language supports structured programming by if (-else) conditional
action and by while and for iterative actions (loops). Table presents a simplified excerpt of
the syntax of this action language described in the Backus-Naur Form (BNF) (see [98] for the
complete grammar).

TABLE 3.1: The syntax of platform-independent action language in BNF.

Exp ::= Byte | Char | String | Var | AExp | BExp

AExp := Int | Float | AVar | - AExp | AExp bin_op AExp

BExp ::= Bool | BVar | BExp bool_op BExp | not BExp | AExp rel_op AExp

bin_op e R R VARC

rel_op n= == l=|<=|<|>=]|>

bool_op = and | or

Para ::= ID : DataType

Action ::= do Action end | Action Action | var Para = Exp | Var = Exp | AVar = AExp |

BVar = BExp | ID ! ID [(parameters) | | AVar +4 | AVar -- | while (BExp)
Action | for (Para [, Para] in Array) Action | if (BExp) then Action | else
Action | | return Exp | print Exp | println Exp | error Exp | errorln Exp |
FunctionCallStatement

3.2.4 State machine

Conforming to UML statecharts, the state machine reacts according to events corresponding to
incoming messages on the ports and the local properties’ values. Their structure can include states
(atomic or composite), transitions, and parallel regions. The state machine can run actions or call
functions in three ways: entering the states, exiting the states, or during the transitions. The

transitions are the only way of changing the state machine from one state to another. They fire

Chapter 3. The ThingML approach 44

when a message arrives via ports, and their guard conditions are evaluated to be true. Parallel
regions are used to describe the orthogonal state mechanism (a.k.a. concurrent states). An
orthogonal state is a composite state containing several concurrent substates called regions. Each

region represents an execution flow.

7 // Thing behavior declaration

8 statechart Blink init ON {

9 state OFF {

10 on entry do

11 led!led_OFF()

12 timer!timer_start (0, 1000)

13 end

14 transition -> ON event e : timer?timer_timeout
15 }

16 state ON {

17 on entry do

18 led!led_ONQ)

19 timer!timer_start (0, 800)

20 end

21 transition -> OFF event e : timer7timer_timeout
22 }

23}

LISTING 3.4: Definition of a state machine in the ThingML language

3.2.5 Configuration

A configuration consists of instances and connectors describing a concrete application. The in-
stance inherits all parent Thing characteristics, such as messages, ports, properties, and behavior.
The connector represents a link between two ports, a required port on the first end and a provided

port on the second end, where the asynchronous messages are routed between these two ends.

7 // Configuration definition

8 configuration BlinkApp {

9 // Declaration of instances

10 // blink is an instance of the "Blink" thing

11 instance blink : Blink

12 // led is an instance of the "LED" thing

13 instance led : LED

14 // Connector declaration

15 connector blink.led => led.ctrl // a required port => a provided port
16}

LiSTING 3.5: Definition of a configuration in the ThingML language

Chapter 3. The ThingML approach 45

3.3 Code generation framework

One of the selling points of Model-Driven Software Engineering (MDSE) is the increased produc-
tivity offered by automatically generating code from models [2]. The ThingML approach includes
a modeling language and tool designed for supporting code generation and a multi-platform code
generation framework. It focuses on the customizability of its code generators while providing
the abstraction developers need to improve productivity [100]. The approach does not aim at
replacing programming or hiding source code but instead at helping developers produce better
source code more efficiently. ThingML is implemented in an open-source tool providing a family
of code generators targeting heterogeneous platforms. Where its code generation framework has
been used to generate code in 3 different languages (C/C++, Java, and Javascript), targeting
around ten different target platforms (ranging from tiny 8bit microcontrollers to servers) and ten
different communication protocols (see Table . The ThingML code generation framework also
provides a plugin mechanism that can support a wide range of communication protocols such as
UART, 12C, MQTT, Websocket, ROS, and others. It has been evaluated through several case
studies and it is used to develop a commercial ambient assisted living system [2]. The ThingML
approach is currently being used by the Norwegian company Tellu [I01] for the development of a

new range of eHealth and fall detection systems called Safe@Home [102] to be deployed in elderly

homes.
TABLE 3.2: Platforms supported by the code generation framework [2].

Platform Memory | Type ‘ Target language
Avr 8bits” 2-8 KB Micro Controller C/C++
TI MSP430 8 KB Micro Controller C/C++
ARM Cortex PSoC 4 32KB Embedded Processor C/C++
Espruino (ARM) 48KB Embedded Processor javascript(JS)
MIPS(Atheros AR9331) 64 MB Embedded Processor C/C++,J8,java
Raspberry Pi 0.5-1GB Embedded Processor C/CH+,JS,java
Intel Edison 1 GB Embedded Processor C/CH++,]S,java
x86 GBs Processor C/C++,JS,java
Linux/Windows GBs Cloud C/C++,JS,java

The structure of this framework makes it highly customizable, allowing the developer to

Chapter 3. The ThingML approach 46

efficiently and easily customize parts of the code generation process according to the developed
applications’ peculiarities [2, [9]. This modular structure allows for the customization of some
extension points while all the others can be reused as-is. Figure [3.4] presents the ten different
extension points we have identified. Each extension point is an interface (or abstract class) in the
code generation framework with a set of methods responsible for generating the code associated

with a given model element.

ThingML Model Validation

Configuration B - . Checker (@)

} !

.. Ports / Messages 3
Connectors / Channels 33 [Thing AP! @3 : Code
. Generator 10
Message queuing / State Machine @ Testing e
FIFOs Implementation Framework

Initialization and “Main” C Mock-up

Generator

Project structure / build
script

(4)
(5)
(7)
(8)

Generated code

FIGURE 3.4: ThingML framework extension points [2].

3.4 Lacks and limits of the ThingML approach

ThingML is a tool-supported model-driven software engineering approach targeting the hetero-
geneity and distribution challenges associated with developing IoT systems. ThingML is based
on a domain-specific modeling language integrating state-of-the-art concepts for modeling IoT
systems and comes with a set of compilers targeting a large set of platforms and communication
protocols. However, the ThingML approach may have some limitations, which can be summarized

as follows:

(I) ThingML does not have rigorous semantics to support formal reasoning about system

designs. Consequently, detecting unwanted behaviors becomes extra complicated, notably

Chapter 3. The ThingML approach 47

(IT)

3.5

for mission-critical IoT systems where reliability is necessary because failure is potentially
catastrophic. To address this limitation, , we propose a tool-based approach to transform the
ThingML designs into Maude’s Rewriting Logic language, which enables rigorous analysis

and verification of ThingML designs (see Chapter .

The ThingML DSL provides a textual syntax to describe applications IoT in a platform-
independent way. It describes the dynamic behavior of components using a mix of state
charts, communication by asynchronous messages, a platform-independent action language,
and target languages. Therefore, these specifications can include many details that decrease
their legibility. In this context, we develop a hybrid modeling editor for the ThingML lan-
guage (see Chapter @ The hybrid editors present the best modeling solutions that combine
textual notations with graphical notations and accumulate their advantages. It facilitates
the modeling process and helps to clarify and better understand textual models. On the
other hand, the ThingML approach lacks tools to test and analyse the generated codes from
specifications before deployment on devices. We adopt a simulation approach using Pro-
teus software in the second contribution (see Chapter @ It enables rapid prototyping of
the application hardware circuit and test and evaluates the generated code source on this

circuit.

Conclusion

In this chapter, we have presented the ThingML approach. We have focused on its DSL and its

code generation framework. We have explained the basic concepts of the ThingML DSL as well

as the main characteristics of the code generation framework. Finally, we went over the lacks

and limits of the ThingML approach. We have found that ThingML is a promising approach to

modeling IoT systems, especially their code generation framework, which generates an operational

code for several languages/platforms. However, it lacks explicit execution semantics to execute

and simulate the model to analyze and answer questions at design time. In the next chapter, we

will describe the basic concepts of Rewriting Logic, its purpose in providing a unifying semantic

framework for ThingML models and its power to describe their structural and behavioral aspects.

CHAPTER 4

REWRITING LOGIC AND MAUDE

4.1 Introduction

IVEN the increasing complexity of systems along with the safety and proper functioning
Gconstraints associated, developing these systems increasingly calls for modeling, verifica-
tion and validation activities. Modeling makes it possible to separate the different concerns in
the development cycle by providing developers with modeling languages to express precisely the
necessary information. To ensure the reliability and dependability of the system, especially in the
early stages of its design, it is necessary to use analysis techniques to check the models against
the expected properties. Many verification methods exist in the literature have proven their
effectiveness. These methods aim to discover errors during the system development process. For-
mal methods are effective techniques to achieve this purpose. Rewriting Logic provides a powerful
formal method that can formally represent a wide range of languages and systems. It also provides

powerful verification tools, including simulation and model checking.

In the first part of this chapter, we will present the verification methods that can be used
within the framework of a system engineering approach based on models. We will focus mainly on
formal verification methods. The second part of the chapter will be devoted to the presentation
of the Rewriting Logic and its language Maude. In particular, we will detail the implementation

of the executable operational semantics in Maude.

48

Chapter 4. Rewriting Logic and Maude 49

4.2 Verification techniques

4.2.1 Test

We mention testing among the means used to improve the quality of systems and ensure their
proper functioning. The aim is to verify that a certain number of scenarios respect the system’s
specifications to be developed. It can be used to verify different properties and requirements,
either functional or non-functional (such as reliability, performance, and security requirements).
Testing consists of stimulating the system with test inputs and comparing the obtained behavior
with the expected behavior [I03]. A test procedure is perfect if it confronts the system with
all possible inputs. This completeness is usually not possible. Dijkstra had already commented
on this fact in 1976: 'the test can only show the presence of bugs (errors), but it can never
demonstrate the absence of bugs'. Tests do not totally allow the validation of the final system.
However, some tools can be used to generate test sets from a specification to improve the coverage

and effectiveness of these tests.

4.2.2 Simulation

Another way to validate systems is to simulate the dynamic behavior of the system and thus
obtain an execution trace. This simulation can be performed in batch from a pre-defined scenario
or interactively. This last solution allows the user to build the execution trace from the events he
injects progressively. The user can also see his model evolve throughout the execution and thus
visually control the system’s behaviour for a given execution. Simulation allows for improving the
understanding of a system without having to manipulate it, either because it is not yet defined or
available, or because it cannot be directly manipulated due to cost, time, resources or risk. The

simulation is therefore performed on a model of the system.

Simulation is generally defined in three stages. The first step consists in generating a rep-
resentation of the workload, i.e. the set of inputs to be applied to the studied system. This
representation can be a trace (or a scenario) describing an actual workload or more synthetic and

generated by a heuristic or a stochastic function. The second step consists in simulating the model

Chapter 4. Rewriting Logic and Maude 50

from the workload defined as the input to produce the results. Finally, the third step consists in

analyzing the results of the simulation to gain a better understanding of the considered system.
4.2.3 Formal verification techniques

Generally, there are two main families of techniques to formally verify a system’s correctness. First,
theorem-proving techniques are mathematical proofs in the classical sense of the term, where the
verification of properties is done by deduction from a set of axioms and rules of inference. The
second family of techniques is called model-checking and decides if a system behavior model

satisfies a given property (expressed in temporal logic) by exploring the model state space.

In the theorem-proving technique, the system and the properties sought are expressed as
formulas in mathematical logic. This logic is described by a formal system that defines a set of
axioms and deduction rules. Theorem proving is the process of finding the proof of a property
from the system’s axioms. This can be done with the help of an interactive proof assistant,
which is designed to help the user construct a formal axiomatic proof. The steps during the proof
involve the axioms, rules, the definitions and lemmas that were eventually derived. Theorem
proving can be used with infinite state spaces using techniques like structural induction. Its
primary disadvantage is that the verification process is usually slow, error-prone, labor-intensive

and requires very specialized users with much expertise.

Qf True
System
model
0 Result

Model-checker

Property x Counter
specification example

FIGURE 4.1: Model Checking Process.

Model checking is a formal verification technique to determine if a system satisfies a set of
properties. Solving the model-checking problem is done using a software tool called model checker.

Figure shows that a model checker typically supports two specification levels, system and

Chapter 4. Rewriting Logic and Maude 51

property. The system specification level, provided by the system model, formalizes the system’s
behavior to be analyzed. The property specification level in which we specify some property (or
properties) that we want to check about the analyzed system. Based on a partial or exhaustive
exploration of the model’s state space, the model checker either outputs a claim that the property

is true or provides a counterexample reporting the inconsistency.

4.3 Rewriting Logic

Rewriting Logic was proposed by J. Meseguer [I1] as a unified logic that generalizes equational
logic and term rewriting for concurrency. It is a general semantic framework in which many
(programming or modeling) languages and systems can be naturally specified and analyzed. We
present in this section the basic ideas about rewriting logic, the Maude system, and specifying

programming language semantics in Maude.

4.3.1 Rewrite theory

Definition 3.1. A signature of the membership equational logic is defined as a triple) =

(K, F,S), where:

w [is a set of Kinds;
w T is a set of K* * K function operations, where each symbol f € Fii 1, is denoted by
ki k, =k

w S =5, a K-kinded family of disjoint sets of sorts.
Definition 3.2. A membership equational theory is a pair (), E) with:

= 3 is a signature of the membership equational logic;

w [is a set of -possibly conditional-) —equations (t = ¢ if cond) and -possibly conditional-
S — memberships (¢ : s if cond) for t,t' € Ty (X)i and s € Si. Ty (X); denotes the set of
Y —terms with kind over the set X of kinded variables. cond is a condition of the general

form /\’Lp’L = q; A /\]w] . Sj.

Definition 3.3. A rewrite theory is defined as a triple R = (), F, R), where

Chapter 4. Rewriting Logic and Maude 52

w (% F) is an equational theory (it can be many-sorted, order-sorted, or a membership
equational theory [104]);

w R is a set of labeled -possibly conditional- rewriting rules applied modulo the equations E.

The equational theory () , E) describes system states as the algebraic data type T% 5, and the
rewriting rules R describe the dynamic behavior of concurrent systems. A rewriting rule has the
formr:t—t’ if Condwith r alabel and ¢, ¢’ terms. It indicates that the term ¢ is transformed
into ¢’ if the condition Cond is satisfied where a term represents the described system’s state or
partial state. A rule’s condition can have a conjunction of rewrites, equations, and memberships,

with the general form (A;u; = uy) A (At 85) A (A — wy).
4.3.2 Deduction rules

The rewrite theory is viewed as an executable specification or a prototype of the concurrent system
that it formalizes. Computation in a concurrent system is a sequence of transitions (rewrite rules)
executed from a given initial state. It corresponds to proof or deduction in the rewrite logic. This
deduction is intrinsically concurrent and allows correct reasoning on the system’s evolution from
one state to another. Given a rewriting theory R = (¥, E, R), we say that the sequence [t] — [¢']
is provable in R, and we write R & [t] = [¢'] if and only if [t] — [¢'] is obtained by finite

application of the following deduction rules [11]:

w Reflexivity. For each term [t] € Ty 5(X), DO where Ty p(X) is the set of) -terms

with variables built on the) -signature and E-equations.

[t:] = [£1]..[ta] = [1]
[f(tr, s ta)] = [f(t, o t)]
w Unconditional replacement. For each unconditional rule
[wi] = [wi].[w,] = [wy]

[t(w/z)] - [t(w'[)]

denotes the simultaneous substitution of x; by w; in ¢, with 1 <7 = n.

w Congruence. For each function fe€) ,neN,

re [y, 20)] = [E(2, . 2,)] € R, Knowing that t(w/z)

w Replacement. For cach rule r : [£(z)] = [¢'(Z)] if [u1(Z)] = [v1(Z)] A ... A [up(T)] =
[w] = [wi] ... [wy] = [wy]
[wi(w/z)] = [vi(w/2)] ... [uxg(w]Z)] = [vx(w0]Z)]

Lo(m)] & [H(w/1)] — [H(a']7)]

Chapter 4. Rewriting Logic and Maude 53

[t1] = [t2] [t2] = [15]
(1] - [ts]

= Transitivity.

4.4 Maude language

Rewriting logic has been implemented in different logical languages. The Maude language [15) 1T05]
is a widely used implementation of rewriting logic [I06]. It is a simple, expressive and efficient
language based on the equational membership logic and rewriting logic; it also supports executable
specification and programming [I07]. The basic units of specification or programming in Maude
are called modules. The basic types of modules in Core-Maude are functional modules and system
modules [108]. Functional modules to implement membership equational theories. System modules

implement rewriting theories and define the dynamic behavior of a system.

4.4.1 Functional module

The implementation of the functional modules is based on equational theories [109]. These mod-
ules allow the definition of data types and operators (operations on these data). An equational
simplification materializes the rewriting within these modules. Equational simplification is rewrit-
ing an initial expression until no equation is applicable. The result is called the canonical form,
which is the same whatever the order of execution of the equations. The keywords that introduce

a functional module are:

fmod ModuleId is Module body endfm

Moduleld is the identifier of the functional module, the module body defines data types and their

functions by means of a membership equational theory of the form (), M U EF U A), where:

(i)) is a signature defining the sorts, subsort, and the operations used in the theory. The sorts

present the data types; they are declared according to the syntax:

sort SortId .

We can order the data types by indicating the kinds that have a relationship between them

using the keyword subsort (or subsorts) according to the syntax:

subsort Sortl < Sort2 .

Chapter 4. Rewriting Logic and Maude 54

This means that Sort! is a subsort of Sort2. The operations used to declare the constants
and function symbols used in the theory. An operation with its arguments (sorts) is declared

in the general form:

op OpId : Sortl Sort2 ... SortN -> ResultSort .

If an operation’s argument set is empty, that operator is named a constant of ResultSort.
(ii) F is a set of -possibly conditional- equations used as simplification rules to evaluate the

terms to their canonical form. Reducing with the E equations is performed modulo A.

Unconditional equations are declared using the eq keyword according to the following general

schema:

eq Term-1 = Term-2 .

The terms Term-1 and Term-2 must both have the same sort. Conditional equations are

declared using the ceq keyword according to the following general schema:

ceq Term-1 = Term-2 if EqCondition .

A condition can be a single equation, membership, or conjunction of equations and mem-
berships.

(iii) A is a set of equational axioms (such as associativity, commutativity, and identity) satisfied
by some of the function symbols in) .

(iv) M is a collection of -possibly conditional- memberships. Unconditional. Membership axioms
specify terms as having a given sort. They are declared with the mb and c¢mb keywords

according to the following form:

mb Term : Sort . --- Unconditional Memberships

cmb Term : Sort if EqCondition . --- Conditional Memberships

Variables can be declared in modules using the var or vars keywords or introduced directly into
equations and membership tests in the form of an X: Sortld expression that declares a variable

named X of sort Sortld.

1 mod NAT-ADD is

2 sorts Nat NzNat .

3 subsort NzNat < Nat .

4 op 0 : -> Nat [ctor] .

5 op s_ : Nat -> Nat [ctor] .

6 op _+_ : Nat Nat -> Nat .

Chapter 4. Rewriting Logic and Maude 55

7 vars N M : Nat .

8 cmb N : NzNat if N =\= 0 .
9 eq 0+ N=0DN.

10 e s N+M=s (N+M .
11 endm

LisTING 4.1: Example of a functional module

Listing shows an example of a functional module named NAT-ADD introducing two sorts,
Nat to represent natural numbers and NzNat to represent non-zero natural numbers (lines 2, 8).
We declared the sort NzNat as a sub-sort of Nat (in line 3). This module shows an alternative
way to define natural numbers using the s (successor) operation (line 5). Thus, only one base
number exists (the constant '0") (line 4), and the other numbers are defined using the successor

operation (line 10).

4.4.2 System module

A system module specifies a rewrite theory of the form R = (Y ,M U E U A, R). It extends
the functional module by introducing a set of -possibly conditional- rewriting rules which define
the system behaviors. In other words, rewriting rules specify the concurrent local transitions

performed in the system. A system module is declared as follows:

mod ModuleId is Module body endm

Where Moduleld is the identifier of the system module, the module body contains the same

elements as those of the equational theory except for the rewriting rules.

w Unconditional rewriting rules: The system’s dynamism can be modeled using rewriting

rules. Each rule has the following form:

rl [label] : t => t' .

w Conditional rewriting rules: The rewrite rules of this category will be executed if their

conditions are evaluated to be true. These rules are declared as follows:

crl [label] : t => t' if C .

Chapter 4. Rewriting Logic and Maude 56

We consider a concurrent vending machine system to buy apples and cakes, where the user
can insert dollars and quarters [I05]. A cake costs a dollar, and an apple three quarters. When
the user buys an apple, the machine takes a dollar and returns a quarter. The machine can change
four quarters into a dollar. The system module shown in Listing [4.2] called VENDING-MACHINE,

presents a specification of the vending machine’s behavior.

1 mod VENDING-MACHINE is

2 sorts Coin Item Marking .
3 subsorts Coin Item < Marking .
4 op __ : Marking Marking -> Marking [assoc comm id: null] .

5 op null : -> Marking .

6 ops $ q : -> Coin .

7 ops a ¢ : —> Item .

8 var M : Marking .

9 rl [add-q] : M => M q .

10 rl [add-$] : M =>M $.

11 rl [buy-c] : $ => c .

12 rl [buy-al : $ =>a q .

13 rl [change]l] : g g qq=>§$.

14 endm

LisTING 4.2: Example of a system module

This specification introduces the § and ¢ constants to represent dollar and quarter coins,
respectively (line 6), and the a and ¢ constants to represent apples and cakes, respectively (line 7).
The operations performed by the machine are specified using the rewriting rules. These are the

following operations:

w Insert a quarter coin in the machine, described by the add-q rewriting rule (line 9).

w Insert a dollar coin in the machine, described by the add-$ rewriting rule (line 10).

w Buy a cake that costs 1 $, described by the buy-c rewriting rule (line 11).

= Buy an apple that costs three quarters, it described by the buy-a rewriting rule (line 12).

w Change four quarters into a dollar, described by the change rewriting rule (line 13).

4.4.3 Simulation and analysis in Maude

In Maude, simulating a behavior involves transforming the initial state to another by applying

one or more rewriting rules. Therefore, behavior means a sequence of rewriting steps. Maude

Chapter 4. Rewriting Logic and Maude 57

offers three main ways to simulate and analyze the modules: rewriting, searching, and LTL model

checking [15].

4.4.3.1 Rewriting and search

The reduce command (abbreviated as red) allows an initial term to be reduced by applying the
equations and membership axioms in a given module. While the rewrite command (abbreviated
as rew) and the frewrite (fair rewrite) command (abbreviated as frew) perform a single rewrite
sequence from a given initial term. They allow an initial term to be rewritten using the specified
module’s rules, equations, and membership axioms. Note that no rule will be applied if an equation
can be applied. In the case of the rewrite command, the default interpreter applies the rewriting
rules using a rule-fair top-down strategy and stops when the number of rule applications reaches
the given bound. The frewrite command rewrites a term using a rule- and position-fair strategy
that makes it possible for some rules to be applied that could be “starved” using the leftmost,

outermost rule fair strategy of the rewrite command.

Unlike the rewrite and frewrite commands, which explore only one possible behavior (sequence
of rewrites), the search command allows analysis of all possible sequences of rewrites from an
initial state (term). It searches if states corresponding to given patterns and satisfying certain
conditions can be accessed from the initial term. The execution of this command performs a
deep traversal of the computational tree (reachability tree) generated during this search to detect

invariant violations in systems with infinite states [15].

4.4.3.2 The Maude’s LTL model-checker

The Maude system provides an efficient model checker, a powerful formal method to verify the
specification properties [16]. In Maude’s LTL model checking, the system is defined using Maude
modules, and the properties to be checked are described using Linear Time Logic (LTL) [16]. We
first define a set of Atomic Propositions (AP) to formulate properties in LTL. Then, we use the
logical operators (the traditional operators of propositional calculus and temporal operators) to

define the LTL formulas inductively as follows [105]:

- T € LTL formula.

Chapter 4. Rewriting Logic and Maude 58

- if p € AP then p € LTL formula.
- if ¥ and ¢ € LTL formulas then = , ¢ V 9,0 9, and ¢ U) € LTL formulas.

Where U is the until operator, and o is the next operator. In addition to these fundamental
operators, other logical and temporal operators can be defined in terms of these connectives.

Following are the additional temporal operators [105].

- Bventually: & o =T U ¢

- Henceforth: Op = =0 =y

- Release: oRp = = ((=p)U(=¢))

- Unless: oW = (@U) v (Ogp)

- Leads-to: ¢ ~ 1 =0(p = (O))

- Strong implication: ¢ = 1 = 0O(p —)
- Strong equivalence: ¢ < ¢ = 0O(p <)

4.5 Executable operational semantics in Maude

The semantics of a programming language focuses on giving meaning to programs. It removes
any ambiguity in the definition of a programming language. There are different formal methods
to define these semantics. Operational semantics [110] give meaning to programs in terms of
computational steps. More precisely, it is interested in how states are changed when executing
instructions. Operational semantics inductively defines a program’s evaluation relation (inference
rule). This relation describes a system of transitions between different states of the programs.
Depending on the nature of transitions, there are two main approaches to operational semantics

[111]:

— Structural operational semantics (small-step semantics) [110]: also called computation se-
mantics [I12]. In this approach, the inference rules describe all the elementary computation

steps of a program’s execution.

— Big-step semantics (or natural semantics) [113]: in this approach, the inference rules link a
program to its final result without specifying the computation steps that led to this result.

Sometimes it is called the evaluation semantics [112].

Chapter 4. Rewriting Logic and Maude 59

For more details about the operational semantics, we direct the reader to M. Hennessy’s book

[112] which provides a clear introduction to the subject.

4.5.1 Syntax definition

We begin our description of how to implement operational semantics in Maude with a language of

arithmetic and Boolean expressions (Exp4) [112]. Exp4 is a language with arithmetic and Boolean

expressions, if-then-else, and local variable declarations (let). Figureshows the abstract syntax

of this language with obvious intuitive meaning.

1. Syntactic categories

e € Ezxp be € BExp
op € Op bop € BOp
n € Num x e Var
bx € BVar

2. Definitions

op = + | -] *

bop = And | Or

e = n|a| cope | letx = ¢ ine" | If be Then € Else e
be = br | T | F | be bop be" | Notbe' | Equal(e,e')

FIGURE 4.2: Abstract syntax for Exp4

This syntax is implemented in the following functional module EXP4-SYNTAX. Note that the

signature structure corresponds to the grammar structure defined by the language’s syntax in

Figure [1.2]

1

10

11

12

13

14

15

16

fmod EXP4-SYNTAX is

pr QID .
sorts Exp BExp Num Boolean Var BVar Op BOp
subsorts Num Var < Exp .

subsorts Boolean BVar < BExp .

op V : Qid -> Var .
ops + - * : => (Op .
op O : => Num .

op s : Num -> Num .
op ___ : Exp Op Exp -> Exp [prec 20] .
op If_Then_Else_ : BExp Exp Exp -> Exp [prec 25] .

op let_=_in_ : Var Exp Exp -> Exp [prec 25] .

op BV : Qid -> BVar .

Chapter 4. Rewriting Logic and Maude 60

17 ops And Or : -> BOp .

18 ops T F : -> Boolean .

19

20 op ___ : BExp BOp BExp -> BExp [prec 20]
21 op Equal : Exp Exp -> BExp .

22 op Not_ : BExp -> BExp [prec 15]

23 endfm

We use the predefined quoted identifiers, of sort Qid, for representing variable identifiers in
the language Fxp4. Instead of declaring this sort as a subsort of Var, since @id is also used to
represent Boolean variables, we have constructors V and BV that transform the Qids to values
of sorts Var and BVar, respectively. We use the natural numbers in Peano notation as arithmetic

constants, with constructors 0 and s.

1 fmod AP is

2 pr EXP4-SYNTAX .

3

4 op Ap : Op Num Num -> Num .

5 vars n n' : Num .

6 eq Ap(+, 0, n) =n .

7 eq Ap(+, s(n), n') = s(Ap(+, n, n'))

8 eq Ap(x, 0, n) =0 .

9 eq Ap(*, s(n), n') = Ap(+, n', Ap(*, n, n'))
10 eq Ap(-, 0, n) =0 .

11 eq Ap(-, s(n), 0) = s(n)

12 eq Ap(-, s(n), s(n')) = Ap(-, n, n')

13

14 op Ap : BOp Boolean Boolean -> Boolean .
15 var bv : Boolean .

16 eq Ap(And, T, bv) = bv .

17 eq Ap(And, F, bv) =F .

18 eq Ap(Or, T, bv) =T .

19 eq Ap(Or, F, bv) = bv .

20 endfm

In another functional module, AP, we define an operation Ap for applying a binary operator to
two already evaluated arguments. A third functional module ENV is used to define environments

that associate values to variables, either arithmetic or Boolean.

1 fmod ENV is

2 pr EXP4-SYNTAX .

3

4 sorts Value Variable .

5 subsorts Num Boolean < Value .
6 subsorts Var BVar < Variable .
7 sort ENV .

Chapter 4. Rewriting Logic and Maude 61

8
9 op mt : -> ENV .
10 op _=_ : Variable Value -> ENV [prec 20] .
11 op __ : ENV ENV -> ENV [assoc id: mt prec 30] .
12 op _'(_") : ENV Variable -> Value .
13 op _'[_/_'1 : ENV Value Variable -> ENV [prec 35] .
14 op remove : ENV Variable -> ENV .
15
16 vars X X' : Variable .
17 var V : Value .
18 var ro : ENV .
19 eq (X =V ro)(X') = if X == X' then V else ro(X') fi .
20 eq ro [V / X] = remove(ro, X) X =V .
21 eq remove(mt, X) = mt .
22 eq remove(X = V ro, X') = if X == X' then ro else X = V remove(ro,X') fi .
23 endfm
Operations mt, = __,and _ __ (in the module ENV) are used to build empty environments,

singleton environments, and union (with overriding) of environments, respectively. The operation
_ () is used to look up the value associated with a variable in an environment and is defined
recursively by an equation. The operation [/] is used to modify the binding between a
variable and a value in an environment, and it is defined by adding to the left a new binding to

the environment. The last equation removes repetitions.

4.5.2 Big-step semantics

The Big-step semantics for Exp4 is given using two relations: ==, and =g, corresponding
respectively to arithmetic and Boolean expressions. The judgments in this semantics will have
the form: < pbe =4 v > and < p bk be =5 bv > Where p is an environment that stores
the value of each variable, e (resp. be) is an arithmetic expression (resp. boolean expression) of
the language, and v (resp. bv) is the value at which the expression e (resp. be) evaluates. The

semantics rules of this language are shown in Figures [4.3] and [£.4]

In this type of semantics, it is usual that rules such as the rule OpR. This rule expresses
that to evaluate the expression e op ¢ in the environment p, one must evaluate both e and e'. To
obtain their values v and v', respectively, the total result being the application (with the function

Ap) of the binary operator op to the results v and v

Chapter 4. Rewriting Logic and Maude 62

Rule CR
pEn=,n
Rule VarR
px =4 p(x)
pHbe=p5T pbHbe=pF
Fe=,v Fe =40
Rule IfR P — b - :
pHI1f be Then e Else e =4 v ptHI1f be Then e Else e =4 v
pHe=4v
pl—e':Av'
Rule OpR - ;
pteope =4 Ap(op,v,v')
pHe=,v
vjz]be =40
Rule LocR plofz] - ,A ;
pEletx = eine =, v
FIGURE 4.3: Evaluation semantics for arithmetic expressions: = 4
Rule BCR pFT—gT pFF =g F
Rule BVarR
e Bt p bz =g p(br)
pe=4v pHe=4v
pl—e':>Av pl—e':>Av'
Rule EqR ; ;
pt Equal(e,e') =p T pF FEqual(e,e) =5 F
ifv#v'
pHbe=pbv
Rule BOoR pl—be':>Bbv'
e BYp p = be bop be' =5 Ap(bop, bv, bv')
pHbe=pT pbHbe=pF
Rule NotR pb Not be =g F pbH Notbe =T

FIGURE 4.4: Evaluation semantics for Boolean expressions: =g

The EVALUATION module has the rewrite rules representing the evaluation semantics for

Pl_’Q1~'~Pn_’Qn

Exp4, both for arithmetic and Boolean expressions. A semantics rule of the form PO

is transformed into a conditional rewriting rule of the form P, - QuifP, = Qi/\.../\P» = Q,,, Where
the conclusion becomes the main rewriting rule, and the premises become the rule condition that
includes rewrites [I07]. First, the elements on both sides of the arrow in a judgment must be
represented as terms in Maude to represent the semantic rules in Maude. In this semantics, we
have an environment and expression on the left. A term of the sort Statement represents these
two elements. On the right, we can have arithmetic or Boolean expression. Notice the use of the

sort Statement is to ensure that both sides of the rewrite rules will have a common sort.

Chapter 4. Rewriting Logic and Maude 63

sort Statement .

subsorts Num Boolean < Statement .
op _|-_ : ENV Exp -> Statement [prec 40] .

op _|-_ : ENV BExp -> Statement [prec 40] .

The axioms (semantics rules without premises) are translated as (unconditional) rewrite rules,

where the transition, in conclusion, becomes the rewrite rule.

var ro : ENV . var n : Num . var x : Var . var bx : BVar .
var op : Op . vars e e' : Exp . vars be be' : BExp . var v v' : Num
var bop : BOp . var bv bv' : Boolean .

rl [CR] :ro|-n =>n .

rl [VarR] : ro |- x => ro(x) .

rl [BCR1] : ro |- T =T .
rl [BCR2] : ro |- F = F .
rl [BVarR] : ro |- bx => ro(bx) .

The rest of the semantic rules (with premises) are translated to conditional rewrite rules where
the main rewrite corresponds to the transition in conclusion, and the rewrites in the conditions
correspond to the transitions in the premises. Conditions are ordered to be checked sequentially
from left to right, and therefore information can flow from one condition to the next; this happens

in the rule LocR below, where the value of v is obtained in the first condition and is later used in

the second.

crl [OpR] : ro |- e op e' => Ap(op,v,v') if ro |- e => v /\ ro |- e' = v' .
crl [IfR1] : ro |- If be Then e Else e' => v if ro |- be => T /\ ro |-e =v
crl [IfR2] : ro |- If be Then e Else e' => v'if ro |- be => F /\ ro |- e' = v' .
crl [LocR] : ro |- let x = e in e' => v' ifro|l-e =>v /\ rolv/x] |-¢e'" =>v'.

The EVALUATION module is admissible and directly executable in Maude. For example, The
following command evaluates the product of two numbers s(s(s(0))) and s(s(s(s(0)))) in the Maude

implementation presented above.

Maude> rew mt [- s(s(s(0))) * s(s(s(s(0)))) .
rewrite in EVALUATION : mt |- s(s(s(0))) * s(s(s(s(0)))) .
rewrites: 22 in Oms cpu (Oms real) (~ rewrites/second)

result Num: s(s(s(s(s(s(s(s(s(s(s(s(0))))))))))))

Chapter 4. Rewriting Logic and Maude 64

4.6 Conclusion

In this chapter, after introducing an overview of verification methods, we have seen some basic
concepts of Rewriting Logic, constituting a semantics framework for specifying languages and
concurrent systems. We have also presented the Maude language, its different modules, and its
main ways of simulation and analysis that can be performed. Finally, we have presented an
implementation of executable an semantics in Maude. The concepts presented in this chapter

constitute a necessary background for understanding our contribution in this thesis’s context.

CHAPTER 5

MDE-BASED FORMAL APPROACH

5.1 Introduction

HINGML is a promising approach to modeling IoT systems. However, it does not have
Trigorous semantics for formal reasoning about system designs. Consequently, detecting
unwanted behaviors becomes extra difficult, notably for mission-critical IoT systems where relia-
bility is a requisite need because failure is potentially catastrophic. In this chapter, we will present
an MDE-based formal approach to define and implement formal semantics of ThingML language
using rewriting logic and its Maude language. In this sense, ThingML and Maude language have
complementary characteristics which can be applied jointly. Using ThingML allows designers to
model their IoT applications and to benefit from a set of code generators for various platforms,

whereas Maude allows these designs to be analyzed and verified.

5.2 General overview

Figure gives a general overview of the proposed MDE-based formal approach [I7]. The
designers model the system’s functionality according to the ThingML meta-model. After that,
they transform obtained specifications into Maude models using the proposed transformation rules
implemented on the Acceleo framework [19]. Finally, the resulting Maude modules will be used
by the designers to verify system properties expressed in LTL logic. The model checker returns a
true when the specification is found to meet these properties. In this case, designers run the code
generation for the desired platform. Otherwise, the model checker provides a counterexample that

can be used to make corrections.

65

Chapter 5. MDE-based formal approach 66

| Validation

Model correction =
. -3
| 25
S i z3
| | i 8
. I Maude I 1z
ThingML | | Counter-example Q7
metamodel : fmod PINGMSGS is : \Jf
— Message H i
o | | op ping: > Msg . I ! =
’é‘ . a) : op ping : -> Msg . : E S
£ (@) alla — Parameters =
g . o F]CC@JSO | op ping.req : -> Var | u E
8 ! | op pong.req : -> Var. | Maude model z g
I O : endfm : checker g
=] 10 2O g
> + - H2
—— Model - To - Text i @3
| . LTL A
| ~N transformation . |
; Am; properties H
i N
1
L

ThingML models

FIGURE 5.1: The workflow of the proposed MDE-based formal approach.

5.3 Formalization of ThingML constructs

This section will explain how to express a ThingML program in Maude. By this formalization, we
intend to allow the analysis of ThingML specifications through the analysis results obtained from
the equivalent Maude specifications. Our formalization uses the structures declared in predefined
module CONFIGURATION that permit the modeling of object-based systems. This predefined
module provides basic sorts and constructors to represent the essential concepts of object, message,
and configuration. The objects are described as record-like structures of the form < O : C' | att; :
v1, ..., att, : v, >, where O is an object identifier, C' is a class identifier, att; are identifiers of
attributes, and v; are the current values of these attributes. The configuration has the structure

of a multi-set of objects and messages that evolves by concurrent rewriting [105].

In our formalization, ThingML instances are translated into Maude objects, including their
execution environment. The execution environment is implemented in Maude using an attribute
that includes two parts: Store and Action. The environment attribute allows objects to run
their actions and manage their information. The evaluation semantics for the ThingML action
language is given through big-step semantics in Maude language to evaluate the expressions and
execute the actions. Additionally, a rewriting rules-based semantics is defined to run the state
machine, which can change the object status based on events (or messages) that have arrived via
ports. Likewise, a semantics of message routing between objects through connectors is defined
using Maude rewriting rules. Connectors are translated into objects with two attributes, client and

server—knowing that the client and server are objects having the buffer attribute that temporarily

Chapter 5. MDE-based formal approach

67

stores the sent messages. The main ideas of our formalization can be summarized in Table

[17]. The details of our formalization will be presented in the following subsections.

TABLE 5.1: Summary of the correspondences between the main ThingML and Maude con-

structs.
Construct ‘ ThingML specification Corresponding Maude code
Thing thing fragment F-T { mod F-T is
} endm
thing T includes F-T { mod T is
pr F-T .
} op T : -> Thingld [ctor] . - The class identifier
endm
Messages message M() ; op M : -> Msgld [ctor] .
message M(par:DataType) ; op M : -> Msgld [ctor] .
op par : -> Var [ctor] .
eq parmsg(M) = par .
Ports provided port P { ... } op P : -> Portld [ctor] .
required port P { ... } op P : -> Portld [ctor] .
internal port P { ... } op P : -> Portld [ctor] .
properties property Pr : DataType = 0 op Pr: -> Var [ctor] .
readonly property Pr : op Pr: -> Var [ctor] .
DataType =0
Platform- - Data types (Char, String, | - Maude’s predefined sorts (Bool, Int, Nat,
independent Boolean, UInt8, Ulnt16, integer, | Float, String)
language Float ...)
- The Arithmetic, Boolean and re- | - New operations corresponding to Maude’s pre-
lational operations defined operations (with the same properties)
- An evaluation semantics of expression lan-
guage implemented in Maude
- Actions and Functions - Operations
- An evaluation semantics implemented in
Maude
statechart statechart SC init SO {
state SO { op SO : -> AtomicStateld [ctor] .
on entry Act-ent-S0 ---(These actions will be used in the rewriting
on exit Act-exi-SO rules corresponding to the transitions)
transition Tran -> S1 crl [Tran] :
event P 7 M < I:T | environment: < noAction,
guard Cond (status: SO) ; st ; (P 7 M) ; st” >>
action Act-T =>
} < I:T | environment: <Act-exi-SO ; Act-T ;
goto (S1) ; Act-ent-S1 , (status: noState) ; st ;
st” >> if Cond .
state S1 {...} op S1: -> AtomicStateld [ctor] .
composite state CS {...}} op CS : -> CompositeStateld [ctor] .

Chapter 5. MDE-based formal approach 68

Configuration | configuration Config mod Config is
{ op Config : -> Configuration .
instance I1 : T1 pr T1.
instance 12 : T2 pr T2 .
op I1 : -> Instanceld [ctor] . - An object iden-

tifier

op 12 : -> Instanceld [ctor] .

eq Config = < I1 : T1 | environment:
<Actl, (status: S0-1);(Pr = 0);...>>
<12 : T2 | environment: < Act2
(status: S0-2);(Pr = 0);... >>
connector I1.P1 => [2.P2 connector | client: < T1 . P1:

} RequiredPort | buffer: noMsg >
-->server: <12 . P2:

ProvidedPort | buffer: noMsg > .

endm

5.3.1 Thing

We propose to transform a Thing component specification into a system module in which we
declare: the class identifier corresponding to Thing, messages, ports, properties, states, and the
rewriting rules defining the behavior of this Thing. To declare the Thing class’s objects with the
environment attribute, we introduce the following structure [17]:

sorts Thingld Statement Store Action .

subsort ThingId < Cid . --- Cid : Class identifier

—--- Declaration of the environment attribute

op environment:_ : Statement -> Attribute [ctor gather (&)] .

op <_,_> : Action Store -> Statement [ctor] .

The environment attribute represents the key structure to implement the evaluation semantics of

the ThingML action and expression language. It acts like a memory consisting of two parts:

- Action: includes a sequence of actions to be executed. The proposed evaluation semantics
allows giving meaning to these actions (i.e., execute these actions in the desired order).

Details of these semantics will be found in Section [5.3.3

- Store: stores the status, sent messages, events, and different variables’ values. It serves as a
storage memory allowing the reading, writing and updating of the information it contains.
Therefore, the content of this memory is modified according to the actions that will be

executed.

Chapter 5. MDE-based formal approach 69

In [107], the authors have propose implementing the Store concept in Maude. However, their
implementation is limited to arithmetic and Boolean variables. To take into consideration all
Thing information, we extend Store’s functionality to enable storing and managing the thing’s
status, messages, properties, parameters, and events. The THINGML-STORE module represents
the implementation of these functionalities. It includes operators and equations that ensure
different functions such as reading, writing, and modifying variables (arithmetic, Boolean, and

string), status, messages, and events.

--— (_=_") : use to associate a value to their variable

op “(_=_7) : Variable Value -> Store [prec 20] . --- SS of a variable
op ~(_7) : Event -> Store [prec 20] . --- SS of a event

op “(_Via_") : Msg PortId -> Store [prec 20] . --- SS of a message

op ~(status:_") : Status -> Store [prec 20] . --- SS of the status
op _;_ : Store Store -> Store [assoc id: mt prec 30] . --- Union of SSs

—--- The next operators are used to add or update the SEs of the:

op _“[_/_"1 : Store Value Variable -> Store [prec 35] . --- variable
op _~[_/_"1 : Store ValList VarList -> Store [prec 35] . --- var list
op _"[_I-_"1 : Store Msg PortId -> Store [prec 35] . --- massage
op _"[_"1 : Store Status -> Store [prec 35] . --- status

-—— ~(_7) : returns a value (or a list) of the variable (or a list)

op _~(_") : Store Variable -> Value
op _~(_") : Store VarList -> ValList .

--— The next part of the module represents the implementation of the operations defined above

5.3.2 Messages and ports

We map messages, parameters, and properties to operators. We declare the parameters and the
properties as operators of the Var sort (variable). For the messages, we propose the following

Maude code where these messages can include parameters [17].

sorts Msgld MsgSet .

op _~ () : MsgId -> Msg [ctor]

op _~(_") : Msgld ExpList -> Msg [ctor]

subsort Msg < MsgSet .

op nolMsg : -> MsgSet [ctor]

op _;_ : MsgSet MsgSet -> MsgSet [ctor comm assoc id: noMsg]
op parmsg : Msgld -> VarList .

Ports are endpoints for channels transporting asynchronous messages between thing instances.

We propose the following structure to describe the ThingML ports as port class objects having

Chapter 5. MDE-based formal approach 70

the buffer attribute that temporarily stores the sent messages through their port. As appears in

this code, there are three classes of ports: ProvidedPort, RequiredPort, and InternalPort.

sorts Port PortId PortName .

subsort Port < Cid . --- Cid : Class identifier
subsort PortName < 0id . --- 0id : Object identifier
op _._ : Instanceld PortId -> PortName [ctor] .

--— Declaration of port classes

ops ProvidedPort RequiredPort InternalPort : -> Port .
--- class ProvidedPort | buffer: MsgSet .

--- class RequiredPort | buffer: MsgSet .

--- class InternalPort | buffer: MsgSet .

--- Declaration of the buffer attribute

op buffer:_ : MsgSet -> Attribute [ctor gather (&)] .

The operators defined in the THINGML-STORE module allow saving a sent message as a
singleton store (m Via port) in the emitting object’s environment. The implementation of message

routing will be discussed in Section [b.3.5| after demonstrating the connector concept.

5.3.3 Platform-independent language

This section shows the syntax and the semantics to execute the ThingML action language in
Maude. The first step is to define the formal semantics of the action and expression language. For
this purpose, we use the notation of evaluation semantics presented in [I8]. Then, we implement
these semantics in the Maude language based on the work presented in [107]. We describe only a

few examples illustrating the principle operations (See Appendices A and B for more details).

5.3.3.1 Expressions

We define the evaluation semantics of language expressions in terms of the relations: = 4, =35,
and = corresponding respectively to the arithmetic, Boolean, and relational expressions. An
evaluation relation is given by the notation = : < e, st > — v, where it takes a pair consisting
of an expression and a memory and returns a value, the result of evaluating the expression in this
memory [18]. Figure [17] describes the Boolean expressions’ evaluation rules (=pg). Ap (bop,
bu, bv’) denotes the Boolean operator’s application (denoted bop) to both Boolean values bv and

bv’.

Chapter 5. MDE-based formal approach 71

Value R : —(bv‘ oS —— ()
BVar R : (bx, st) =g st(bx) 2)
<be, st>=p bv
! 14
BOp.R : <be', st> =>p bv @A)

(be bop be', st) =g Ap (bop,bv,bv")

FIGURE 5.2: Evaluation semantics for Boolean expression.

In Maude, to evaluate the expressions, we first map the data types of the ThingML language
to Maude’s predefined sorts. Then, we define new arithmetic and logical operations corresponding

to Maude’s predefined operations, where we keep the same properties [17].

--- "And" and "Or" operations corresponding to the "and" and

or" operations of the BOOL module

ops And Or : -> Bop .
op _And_ : BExp BExp -> BExp [ctor assoc comm prec 55]
op _Or_ : BExp BExp -> BExp [ctor assoc comm prec 59]

Next, we implement the evaluation rules using the rewriting logic as follows:

op <_,_> : BExp Store -> Statement . --- corresponding to rule =>B : < e , st > -> v

--- To make sure that both parties of a rewriting rule take the same sort.

subsorts Bool Int Nat Float String Store < Statement

vars be be' : BExp . var bx : BVar . vars bv bv' : Bool .

—--- The rewriting rule corresponding to the evaluation rule (1)

rl [Value-R] : < bv, st > => bv .

--- The rewriting rule corresponding to the evaluation rule (2)

--- st(_) : is previously defined in the THINGML-STORE module above.

rl [BVar-R] : < bx, st > => st(bx)

—--- The rewriting rules implementing the evaluation rule (3)

crl [BOp-R-And] : <be And be', st> => Ap(And,bv,bv') if < be, st > => bv /\ < be', st > => bv'
crl [BOp-R-Or] : < be Or be', st > => Ap(Or,bv,bv') if < be, st > => bv /\ < be', st > => bv'

Finally, we use the Ap operation that enables to apply a binary operator to two already
evaluated arguments [I07]. It allows switching between the defined operations and the corre-
sponding Maude’s predefined operations. The latter enables the execution of the arithmetic and
logical operations concretely.
op Ap : BOp Bool Bool -> Bool .

eq Ap(And,bv,bv') = bv and bv'
eq Ap(Or,bv,bv') = bv or bv'

Similarly, we describe and implement the other arithmetic, logical and relational operations.

Chapter 5. MDE-based formal approach 72

5.3.3.2 Action language

We give the action evaluation semantics in terms of the relation = p described by the notation:
=p:< A, st > st’, where it takes a pair consisting of the A action and the st memory and
returns the st” modified memory. Figure shows the evaluation rules for three actions goto(),

_ ! (send action), and conditional action.

GotoR : (goto(s), st) =>p st(s) 4)
SR G Tmsg0, 50 =p StmsgO - p] (B Imsg@D), 50 =p Mg -l
(xl, st) =>p vl .
(p!'msg(xl), st) =>p st[msg@l)|-p] ®)
(be, st) >p true (be, st) =p false
! ! !
If R : (A, st) >p st (4, sty =p st ©)

(If beThen A Else A', st) =>p st' (If beThen A Else A', st) =>p st’

FI1GURE 5.3: Evaluation semantics for some ThingML actions

After defining the semantics, all that remains is implementing it in the Maude language. For
that, we first translate the ThingML actions into Maude operators according to the following

structure [17):

sort Action .

op noAction : -> Action .

op _:=_ : Var Exp -> Action .

op _;_ : Action Action -> Action [assoc]
op _!_ : PortId Msg -> Action .

op _++ : Var -> Action .

op _—-— : Var -> Action .

op If_Then_ : BExp Action -> Action .

op print (_") : STring -> Action .

op If_Then_Else_ : BExp Action Action -> Action .
op While_Do_ : BExp Action -> Action .
op goto (_") : Status -> Action .

Then, we transform the semantics evaluation rules into rewriting rules enabling the actions

placed in the environment attribute to be executed in the desired order.

var be : BExp . vars st st': Store . vars A A' : Action .
var msg : Msgld . var p : PortId . var x1 : VarList .
var vl : Valist . var s : Status .

--- The rewriting rule corresponding to the evaluation rule (4)

Chapter 5. MDE-based formal approach 73

--- st[_] : is previously defined in the THINGML-STORE module above

rl [GoTo-R] : < goto(s) , st > => st[s]

—--- The rewriting rules corresponding to the evaluation rule (5)

rl [Send-R3] : < p ! msg() , st > => st [msg() - p1

rl [Send-R2] : < p ! msg(vl) , st > => st [msg(vl) |- p]

crl [Send-R1] : < p ! msg(xl) , st > => st [msg(vl) |- p] if < x1 , st > => vl .

—--- The rewriting rules implementing to the evaluation rule (6)
crl [If-R1] : < If be Then A Else A', st > => st' if < be, st > => true /\ < A , st > => st'
crl [If-R2] : < If be Then A Else A', st > => st' if < be, st > => false /\ < A', st > => st'

Action goto(__) is not included in the action language of ThingML. However, we have proposed
to define it to implement state transition. Performing this action changes the object status to
the specified state in the parameter [I7]. We explain the reason for adding goto() action in the

following subsection.

5.3.4 State machine

The state machine comprises a set of states (i.e., atomic, composite, or regions) and transitions
to change the system state according to events that arrived via ports. First, to represent the
different types of states, we propose the following structure in Maude [17]:

sorts StateId CompositeStateld AtomicStateld .

subsorts CompositeStateld AtomicStateId < Stateld .

sort Status .
subsort AtomicStateId < Status .

op _~(_") : CompositeStateId Status -> Status [ctor]
op noState : -> Status [ctor]
op _II_ : Status Status -> Status [ctor assoc id: noState]

As a reminder, an object status is specified by a singleton store (status: __)in the environment
attribute of that object. In addition, an event is described as a singleton store in the receiving
object’s environment. For this purpose, we declare the Event sort and _ 7 operator to describe
the events.

sort Event .

op _7_ : PortId MsgId -> Event [ctor]

Finally, we transform the transitions into rewriting rules. To illustrate the mapping process,
we present the transformation of a typical transaction. The following description in ThingML

shows a T transition links two states, S and R. The S state has an action block executed on exit,

Chapter 5. MDE-based formal approach 74

and the R state has an action block executed on entry. The T transition represents a change in
the system state from S to R, triggered upon the arrival of a Msg message via the P port if the

C condition is verified.

1 state S {

2 on exit do S-Exit-Acts end

3 transition T -> R event P7Msg

4 guard C

5 action do T-Acts end
6 }

7 state R {

8 on entry do R-Entry-Acts end

9 }

The transformation produces the following rewriting rule:

crl [S-To-R] : < I : Thing | enviromment: < noAction , (status: S) ; st ; (P 7 Msg) ; st' > >
=> < I : Thing | environment: < S-Exit-Acts ; T-Acts ; goto(R) ; R-Entry-Acts , (
status: noState) ; st ; st' > >

if <C, st ; st' > => true .

Therefore, when the I instance changes its status from S to R, it first goes to the noState state
(i.e., the instance is changing its status). We introduce the noState state to freeze the instance
status on this transitional state until the end of the execution of the exit actions of the S state (S-
FEzit-Acts) and the T transition actions (7-Acts). When the execution of these actions is finished,
the instance goes to the R state using the goto(R) action. Finally, the instance executes the entry
actions of the R state (R-Entry-Acts) [I7]. The rule condition is a reachability relation of the
form < be, st >=> true, where be is a Boolean expression, and st is the instance environment,

which will be evaluated using the semantics of expressions presented in Section [5.3.3.1

5.3.5 Configuration

We transform a ThingML configuration into a system module in which we declare a Maude
configuration. The latter consists of objects corresponding to ThingML instances and connectors
declared in the ThingML configuration. We map ThingML instances into objects of the corre-
sponding class, and we transform the connectors according to the following proposed structure

[17]:

Chapter 5. MDE-based formal approach

sort Instanceld .
subsort Instanceld < 0id . --- 0id : Object identifier
sort Connector .

subsort Connector < Object

op connector | client:_--> server:_ : Object Object -> Connector [ctor]

This structure defines the connector as an object with two attributes, client and server, objects

of RequiredPort and ProvidedPort classes respectively. It describes the connection between two

ThingML instances as a channel for carrying messages. Figure [5.4] shows the message routing

steps from the sender instance to the receiver instance. When sending a message, the emitting

object (corresponding to the emitting ThingML instances) stores this message with the port used

as a singleton store (msg Via port) in its environment attribute. Then, the message is moved to

the connector using the following rewriting rules [17]:

--- To move the messages from instance environment to the connector (client buffer)

rl [Env2CliBuff] : < I : T | environment: < A , st ; (M Via Po) ; st'

< I . Po : RequiredPort | buffer: MS > --> server:
= <I:T | environment: < A , st ; st' > >
< I . Po : RequiredPort | buffer: (MS ; M) > -->

--- To move the messages from instance environment to the connector (server buffer)
rl [Env2SerBuff] : < I : T | environment: < A , st ; (M Via Po) ; st' > > connector | client: O
--> server: < I . Po : ProvidedPort | buffer: MS >

=> < I : T| environment: < A , st ; st' > > connector | client: O
--> server: < I . Po : ProvidedPort | buffer: (MS ; M) >

Sender instance Connector Receiver instance
4 S { React according to
B Save message ’ Move message to f g
o B connector buffer
4
o' —
_— — | Msg Q

Store

Event

¥ state machine

— o
—_—

om r p—
n Send message a Store as event

FIGURE 5.4: The message routing

After that, the message travels by the connector to be eventually stored in the receiving object

environment as an event. The following rules enable this progression, where two cases can be

Chapter 5. MDE-based formal approach 76

distinguished. In the first case, the sent message does not include any parameters. Consequently,

only the event (Po 7 Msgld) will be stored in the object environment.

--- To move the messages from connector (server buffer) to instance environment (message
without parameters)

rl [BuffSer2EnvR1] : < I : T | environment: < A , st > > connector | client: < I . Po :
RequiredPort | ATTS > --> server: < P : ProvidedPort | buffer: ((msgId ()) ; MS) >

=>< I :T| environment: < A , st ; (Po ? msgIld) > > connector | client: < I . Po :

RequiredPort | ATTS > --> server: < P : ProvidedPort | buffer: MS >

--- To move the messages from connector (client buffer) to instance environment (message
without parameters)

rl [BuffCli2EnvR1] : < I : T | environment: < A , st > > connector | client: < P : RequiredPort
| buffer: ((msgId ()) ; MS) > --> server: < I . Po : ProvidedPort | ATTS >

=>< I : T | environment: < A , st ; (Po ? msgIld) > > connector | client: < P : RequiredPort |
buffer: MS > --> server: < I . Po : ProvidedPort | ATTS >

In the second case, the sent message includes parameters. Therefore, all events (Po? Msgld)
and the list of parameters (st [vl / (parmsg (msgld))) will be stored in the object environment.

The parameters are saved as variables to be used later in processing.

--- To move the messages from connector (server buffer) to instance environment (message with
parameters)

rl [BuffSer2EnvR2] : < I : T | environment: < A , st > > connector | client: < I . Po :
RequiredPort | ATTS > --> server: < P : ProvidedPort | buffer: ((msgId (vl)) ; MS) >

=>< I : T| environment: < A , (st [vl / (parmsg(msgId)) 1) ; (Po ? msgId) > > connector |
client: < I . Po : RequiredPort | ATTS > --> server: < P : ProvidedPort | buffer: MS >

--- To move the messages from connector (client buffer) to instance environment (message with
parameters)

rl [BuffCli2EnvR2] : < I : T | environment: < A , st > > connector | client: < P : RequiredPort
| buffer: ((msgId (v1)) ; MS) > --> server: < I . Po : ProvidedPort | ATTS >

=>< I :T| environment: < A , (st [vl / (parmsg(msgId)) 1) ; (Po ? msgId) > > connector |
client: < P : RequiredPort | buffer: MS > --> server: < I . Po : ProvidedPort | ATTS >

5.4 ThingML2Maude: A translator tool of ThingML models to
Maude

This section presents the ThingML2Maude tool [I7], a model-to-text translator to map the
ThingML models into Maude code. ThingML2Maude is a code generator based on the Acceleo
framework that automatically generates Maude specifications from ThingML models. It is imple-
mented on the Eclipse modeling framework on which the Xtext editor of ThingML works. Once

the designer have finished designing IoT systems using ThingML’s Xtext-based editor, it opens

Chapter 5. MDE-based formal approach 77

the ThingML2Maude Acceleo project to translate their models into Maude code. Thereafter, it
sets the execution parameters like input and output files. The input files include the ThingML
designs, and the output files are the files where the resulting Maude code will be generated. The
last step is to start the run of the ThingML2Maude tools with a simple click to generate the

Maude specifications (see Figure [17]).

/" Work product
Tool
3 Activity
[. Specification of loT | _ _ _. N o
output applications use o
ThingML Based-Xtext editor of

specifications ThingML

! Maude code generation

|

i Open the Acceleo

H project

|

|

i Set run parameters

T e T (input and output . >. O

input files) use o
ThingML2Maude
(Acceleo project)
Start execution
€ - —
I output

QECLIPSE MODELING FRAMEWORK

Maude code T s@ e mf

FIGURE 5.5: Automatic transformation process.

Acceleo [19] is a template-based technology that allows the implementation of transformation
rules. Each rule transforms an element from the meta-model to the corresponding code. The
Acceleo projects require a single source meta-model to generate text from models. We propose
around thirty templates that implement dozens of transformation rules to browse the models con-
forming to the ThingML meta-model and generate the corresponding Maude code. For example,
Listing [17] describes the genConfiguration template that takes as parameters a configuration.
This template transforms the instances and the connectors into corresponding Maude code where
three other templates, namely InitState(), InitAction(), and InitProperty(), are called to initialize

status, actions, and properties, respectively.

Listing [T7] describes another template that transforms all messages of a thing into the cor-
responding Maude code. This template takes as parameters a Thing and recalls another template

named ParaMsgVar used to transform the parameters of messages.

Chapter 5. MDE-based formal approach 78

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
44
41
42

17
18
19
20
21
22
23
24
25
26
27

[template public genConfiguration (aConfiguration : Configuration)]
mod [aConfiguration.name.toUpper()/] is

[if (aConfiguration.instances -> size()) > 0]
[for (aInstance : Instance | aConfiguration.instances)]
pr [aInstance.type.name.toUpper () /]
[/ for]
[/if]
[if (aConfiguration.instances -> size()) > 0]
[for (aInstance : Instance | aConfiguration.instances)]
op [aInstance.name/] : -> ThingId
[/ for]
[/if]
op [aConfiguration.name/] : -> Configuration
eq [aConfiguration.name/] =
[if (aConfiguration.instances -> size()) > 0]
[for (aInstance : Instance | aConfiguration.instances)]
< [aInstance.name/] : [aInstance.type.name/] |
envirenment: < [alnstance.type.InitProperty()/]
[aInstance.type.behaviour.InitAction()/] , (status:
[aInstance.type.behaviour.InitState()/]) > >
[/for]
[/if]
[if (aConfiguration.connectors -> size()) > 0]
[for (aConnector : Connector | aConfiguration.eAllContents (Connector))]
connector |
client: < [aConnector.cli.name/] . [aConnector.required.name/]
RequiredPort | buffer: noMsg >
—-—>
server: < [aConnector.srv.name/] . [aConnector.provided.name/]
ProvidedPort | buffer: noMsg >
[/ for]
[/if]
endm
[/template]

LisTING 5.1: Example of Acceleo Template: the genConfiguration template.

[template public message (aThing : Thing)) post (trim())]
--- Messages
[for (msg : Message | aThing.messages)]
op [msg.name/] : -> MsglId [ctor]
[/ for]

--- Parameters of messages

[for (msg : Message | aThing.messages)]
[msg.ParaMsgVar () /]

[/ for]

[/template]

LisTING 5.2: Example of Acceleo Template: the message template.

5.5 Case study

To illustrate the proposed approach’s practical usefulness, we consider a ThingML design extracted

from the HEADS research project (Heterogeneous and Distributed Services for the Future Com-

puting Continuum) [I14] I15]. The PingPong design [116] presents a fully platform-independent

ThingML program (only uses ThingML statements). It shows the primary constructs of the

ThingML language. This design demonstrates how to use two components to exchange asyn-

chronous messages. The behavior of these two components is described by state machines that

Chapter 5. MDE-based formal approach 79

react according to arrived events. These events correspond to incoming messages that are sent by
the other component. Therefore, the problem of ensuring consistency between the state machines
of the components may arise. For this reason, the PingPong design is a good and simple example
to explain our approach for checking the consistency and correctness of ThingML specifications

7.

5.5.1 Specification

The PingPong design includes four components: the PingServer and PingClient things, PingMsgs
as a thing fragment, and the PingConfig configuration. In this model, the PingClient component
sends a ping parameterized message to the PingServer component that responds with a pong
message once receiving the ping message. The PingClient status is changed based on the value of
local properties and the pong message parameter. Finally, the PingConfig configuration represents

a concrete application composed of two instances, client and server, and one connector.

Listing[5.3]describes the PingMsgs thing fragment with ping and pong parameterized messages.
The ping and pong messages are used in implementing the behavior of PingClient and PingServer
things. They include a parameter with the UInt8 data type of ThingML. This parameter describes

the number of ping or pong messages sent.

1 thing fragment PinglMsgs

2 A{

3 message ping(req : UInt8);
4 message pong(req' : UInt8);
5}

LisTING 5.3: ThingML implementation of PingMsgs thing fragment

Listing shows the ThingML specification of the PingServer thing, including the PingMsgs
thing fragment, a provided port, and a statechart defining their behavior. The pingservice port
enables the PingServer thing to exchange messages with other things. It allows sending the pong
message and receiving the ping message. The PingServerMachine statechart that implements the
PingServer thing behavior includes two states Waiting and Pong. It initially enters the Waiting
state. It passes from the Waiting state to the Pong state when a ping message arrives through

the pingservice port. Upon entering the Pong state, PingServer sends a pong message via the

Chapter 5. MDE-based formal approach

80

pingservice port, and then passes again to the Waiting state. Figure [5.6| presents graphically the

statechart of the PingServer thing [17].

6 thing PingServer includes Pinglsgs

7 A{

8 provided port pingservice

9 {

10 sends pong

11 receives ping

12 }

13 statechart PingServerMachine init Waiting

14 {

15 property count : UInt8 = 0

16 state Waiting

17 {

18 transition -> Pong

19 event m : pingservice?ping // 7 : Receive
20 //the ping message on pingservice port
21 action count = m.req

22 }

23 state Pong

24 {

25 on entry pingservice!pong(count)

26 // ' : Send message pong on pingservice port.
27 on exit print "Send Pong", count, "..."

28 transition -> Waiting

29 }

30 }

31}

LisTiING 5.4: ThingML implementation of PingServer thing.

pingservice?ping / count = m.req

Waiting Pong
Entry / pingservicelpong (count)

Exit/ ping "send Pong", count , "

FIGURE 5.6: The statechart of the PingServer thing.

Listing[5.5] presents the ThingML specification of the PingClient thing, including the PingMsgs

thing fragment, two properties, a required port, and a statechart defining their behavior.

32 thing PingClient includes PingMsgs {
33 readonly property count_max : UInt8 = 5

34 property counter: UInt8 = 1

Chapter 5. MDE-based formal approach

81

35 required port pingservice

36 {

37 receives pong

38 sends ping

39 }

40 statechart PingClientMachine init Ping

41 {

42 state Ping

43 {

44 on entry do

45 print "Send Ping", counter, "..."
46 pingservice!ping(counter)

47 end

48 transition -> Waiting

49 }

50 state Waiting

51 {

52 transition -> Ping

53 event e : pingservice?pong
54 guard e.req' == counter and counter < count_max
55 action do println "[OK]"
56 counter = counter + 1
57 end

58 transition -> Stop

59 event e : pingservice?pong
60 guard e.req' != counter

61 transition -> OK

62 event e : pingservice?pong
63 guard e.req' == counter and counter >= count_max
64 }

65 final state OK

66 {

67 on entry

68 println "[0K] Bye."

69 }

70 final state Stop

71 {

72 on entry

73 println " [Error]"

74 }

75 }

76}

LisTING 5.5: ThingML implementation of PingClient thing.

In this specification, we declare a required port that enables the PingClient thing to exchange

messages with other things. This port allows sending the ping message and receiving the pong

message. As shown in the specification, the types of sent messages (resp. received messages) via

the required port correspond to the types of received messages (resp. sent messages) through the

provided port. The PingClientMachine statechart that implements the PingClient thing behavior

Chapter 5. MDE-based formal approach 82

includes four states (Waiting, Ping, OK, and Stop), where OK and Stop are the final states.
The PingClient thing initially enters the Ping state. Upon entering the Ping state, PingClient
sends a ping message via the pingservice port. Then passes to the Waiting state, which has three
transitions. These transitions fire when a pong message arrives through the pingservice port, and
their guard conditions are satisfied. Therefore, the PingClient status passes from the Waiting state
to the Ping, OK, or Stop state, following the guard conditions. Figure presents graphically

the statechart of the PingClient thing [17].

e : pingservice?pong / e.req’ == counter and counter < count_max /
l Printin « [OK] » counter = counter + 1 ’

Ping Waiting
Entry / print ("Send Ping", counter, "..."

count_max

A
N —|e
pingservice!ping(counter) ’ ol §
g8
o —
3|2
C
e : pingservice?pong / e.req’ != counter and counter HE
| O
! “E
=< S
Q.
Stop Ok i
ol 2
Entry / printin ("[Error]") entry/ printn "[OK] Bye." g
— —
o
i
T
o
o

FI1GURE 5.7: The statechart of the PingClient thing.

Listing describes the ThingML implementation of the PingConfig concrete application.
The PingConfig configuration comprises two instances and a connector. The client is an instance
of the PingClient thing, and the server is an instance of the PingServer thing. The connector
links these instances via their ports, where the required port of the client instance is at the first

end, and the provided port of the server instance is at the second end.

77 configuration PingConfig

8 {

79 instance client: PingClient

80 instance server: PingServer

81 connector client.pingservice => server.pingservice
g2}

LisTING 5.6: ThingML implementation of PingConfig configuration.

Chapter 5. MDE-based formal approach 83

5.5.2 Transformation

To verify and analyze this design, we transform it into the corresponding Maude code. We use
the ThingML2Maude tool to realize this transformation. The following four modules present the
Maude specification resulting from the automatic transformation. First, the PINGMSGS system
module [I7] represents the specification of the PingMsgs thing fragment in Maude. This module
contains the pong and ping operators of the Msgld sort (message identifiers) corresponding to the
messages declared in the PingMsgs thing fragment. It also contains the req and req’ operators
of the Var sort (variable) corresponding to the message parameters. Finally, it includes two

equations that determine the parameters of the pong and ping messages.

1 mod PINGMSGS is

2 pr THINGML-MSG-SEMANTIC .

3 --- Messages

4 ops pong ping : -> MsgIld [ctor]
5 —--- Parameters of messages

6 ops req req' : -> Var [ctor]

7 eq parmsg(ping) = req .

8 eq parmsg(pong) = req'

9 endm

LISTING 5.7: System module corresponding to PingMsgs thing fragment.

Second, two other system modules describe PingServer and PingClient things in the Maude

language. They are named PINGSERVER and PINGCLIENT [17].

1 mod PINGSERVER is

2 pr PINGMSGS .

3 --- Operetors

4 op PingServer : -> ThingId [ctor]

5 op count : -> Var [ctor]

6 ops Waiting Pong : -> AtomicStateId [ctor]

7 op pingservice : -> PortId [ctor]

8 --— Variables

9 vars st st' : Store . vars A A' : Action .
10 var I : Instanceld . var VL : ValList .

11 --- Rewriting rules

12 rl [Waiting-To-Pong] : < I : PingServer | environment: < noAction , (status: Waiting)

; st ; (pingservice 7 ping) ; st' > > =>

13 < I : PingServer | environment: < count := req ; goto(Pong) ; pingservice ! pong (
count)) , (status: noState) ; st ; st' > > .

14

15 rl [Pong-To-Waiting] : < I : PingServer | environment: < noAction , (status: Pong) ;

st > > =>

Chapter 5. MDE-based formal approach 84

16 < I : PingServer | enviromment: < print("Send Pong count...") ; goto(Waiting) , (
status: noState) ; st > >

17 endm

LisTING 5.8: System module corresponding to PingServer thing.

In these modules, we declare the PingServer and PingClient things as classes having the
environment attribute containing information about the current status, variable values, actions,
and messages. The classes are declared using operators of the Thingld sort, where the Thingld
sort is a subsort of the Cid sort (Class identifier). The PINGSERVER and PINGCLIENT modules
also declare the states, variables, and ports of things as operators of the sorts AtomicStateld,
Var, and Portld, respectively. Finally, they include the rewriting rules (possibly conditional)

corresponding to transitions of the thing statechart.

1 mod PINGCLIENT is

2 pr PINGMSGS .

3 --- Operators

4 op PingClient : -> ThingId [ctor]

5 ops count-max counter : -> Var [ctor]

6 ops Ping Waiting OK Stop : -> AtomicStateId [ctor]
7 op pingservice : -> PortId [ctor]

8 --- Variables

9 vars st st' : Store . vars A A' : Action .

10 var I : Instanceld . var VL : Valist .

11 --- Rewriting rules

12 rl [Ping-To-Waiting] : < I : PingClient | environment: < noAction , (status: Ping) ; st

> > => < I : PingClient | environment: < goto(Waiting) , (status: noState) ; st >
> .
13
14 crl [Waiting-To-Ping] : < I : PingClient | environment: < noAction , (status: Waiting)
; st ; (pingservice ? pong) ; st' > > => < I : PingClient | environment: < print("[
0K]") ; counter := counter .+ 1 ; goto(Ping) ; print("Send Ping counter...") ; (
pingservice ! ping(counter)) , (status: noState) ; st ; st' > >
15 if < ((req' .= counter) And (counter .< count-max)) , st ; st' > => true
16
17 crl [Waiting-To-Stop] : < I : PingClient | environment: < noAction , (status: Waiting)
; st ; (pingservice ? pong) ; st' > > => < I : PingClient | environment: < goto(
Stop) ; print("[Error]") , (status: noState) ; st ; st' > >
18 if < req' .!= counter , st ; st' > => true .
19
20 crl [Waiting-To-0K] : < I : PingClient | environment: < noAction , (status: Waiting) ;
st ; (pingservice ? pong) ; st' > > => < I : PingClient | environment: < goto(0K
) ; print("Bye.") , (status: noState) ; st ; st' > >
21 if < ((req' .= counter) And (counter .>= count-max)) , st ; st' > => true

22 endm

LISTING 5.9: System module corresponding to PingClient thing.

Chapter 5. MDE-based formal approach 85

Finally, the PINGCONFIG module [I7] describes the configuration specification. In this mod-
ule, the transformation products two operators (client and server) of the Instanceld sort and
an operator PingConfig of the Configuration sort. The PingConfig configuration contains two
objects and a connector. We initialize the environment attribute of objects according to the
parent thing’s specification, where the initialization includes the initial state, entry actions, and
variable values. The connector is described as an object with two attributes, client and server,
objects of RequiredPort and ProvidedPort classes, respectively. We initialize the buffer attribute

of the ports by noMsg value (no message in buffer).

1 mod PINGCONFIG is

2 pr PINGCLIENT .

3 pr PINGSERVER .

4

5 ops client server : -> Instanceld [ctor] .

6 op PingConfig : -> Configuration .

7 eq PingConfig = < client : PingClient | environment: < count-max := 5 ; counter := 1 ;
print("Send Ping counter...") ; (pingservice ! ping(counter)) , (status: Ping) > >
< server : PingServer | enviromnment: < count := O ,(status: Waiting) > > connector
| client: < client . pingservice : RequiredPort | buffer: noMsg > --> server: <

server . pingservice : ProvidedPort | buffer: noMsg > .
8 endm

LisTING 5.10: System module corresponding to PingConfig configuration.

After obtaining the generated Maude specification, it remains to verify and analyze the

developed models, which will be the next section’s subject.

5.5.3 Simulation and analysis

In Maude, simulating a behavior involves transforming the initial state to another by applying
one or more rewriting rules. Therefore, behavior means a sequence of rewriting steps. Maude
offers three main ways to simulate and analyze the modules: rewriting, search, and LTL model

checking [15].

5.5.3.1 Rewriting

Maude’s rewrite and fair rewrite commands simulate one system behavior starting with a given

initial state. The following command simulates our Maude specification from the initial state

Chapter 5. MDE-based formal approach 86

PingConfig [I7]. The bracketed number that appears in the first command provides an upper

limit for the allowed number of rules that will be applied.

Maude> frew [27] PingConfig .

frewrite in PINGCONFIG : PingConfig .

rewrites: 130 in 4ms cpu (2ms real) (32500 rewrites/second)

result Configuration: (connector | client: < client . pingservice : RequiredPort | buffer:
~ ping(2) > --> server: < server . pingservice : ProvidedPort | buffer: noMsg >)< client :
~ PingClient | environment: < noAction ,(status: Waiting) ; (count-max = 5) ; (req' = 1) ;
- (counter = 2) > > < server : PingServer | environment: < noAction, (status: Waiting) ; (
-~ req =1) ; (count = 1) > >

FIGURE 5.8: Execution result of the fair rewrite command.

We interpret the results as follows: after applying twenty-seven rewriting rules, the client
instance sent two ping messages (counter = 2) and received a single pong message (req’ = 1),
where it awaits the following pong message (status: Waiting). On the other side, the server
instance awaits the following ping message (status: Waiting), where it received one ping message
(req = 1) and sent one pong message. Moreover, no actions to run for both client and server
instances. The connector contains the ping (2) message in the client buffer (i.e., there is an

undelivered message).

Maude> frew PingConfig .

frewrite in PINGCONFIG-PREDS : PingConfig .

rewrites: 560 in 8ms cpu (9ms real) (70000 rewrites/second)

result Configuration: (connector | client: < client . pingservice : RequiredPort | buffer:

-~ noMsg > --> server: < server . pingservice : ProvidedPort | buffer: noMsg >) < client :

~ PingClient | environment: < noActionm, (status: OK) ; (count-max = 5) ; (counter = 5) ; (req'
- =05) > > < server : PingServer | environment: < noAction, (status: Waiting) ; (req = 5) ;

- (count = 5) > >

FIGURE 5.9: Execution result of the rewriting to a terminal state.

Figure [17] shows rewriting to a terminal state. In this state, the client instance sent five
ping messages (counter = 5) and received five pong messages (req” = 5), where it passes to the
Ok final state. On the other side, the server instance received five ping messages (req = 5) and
sent five pong messages. Moreover, no actions to run for both client and server instances. The

connector has no messages in the client and server buffer (i.e., all messages are delivered).

Chapter 5. MDE-based formal approach 87

5.5.3.2 Search

All the system state space reachable from an initial state is explored in different ways to find
the states satisfying a given search pattern. The following search command shows that no
state with counter > count-max can be reached starting with the initial state PingConfig in the
module PINGCONFIG (i.e., the number of sent ping messages never exceeds the allowed maximum

number).

Maude> search PingConfig =>* < client : PingClient | environment: < A:Action, st:Store ;

—~ (counter = N:Nat) ; st':Store > > C:Configuration such that N:Nat > 5 .

search in PINGCONFIG : PingConfig =>#* C:Configuration < client : PingClient | environment: <
o A:Action, st:Store ; (counter = N:Nat) ; st':Store > > such that N:Nat > 5 = true .

No solution.

states: 566 rewrites: 13362 in 184ms cpu (185ms real) (72619 rewrites/second)

FIGURE 5.10: Result of the search command on states with counter > count-max.

On the other hand, if we search one state in which the counter = 5, the Maude system finds
many solutions satisfying this condition. The following code describes the search command and

the Maude system response.

Maude> search [1] PingConfig =>* < client : PingClient | environment: < A:Action, st:Store ;
< (counter = N:Nat) ; st':Store > > C:Configuration such that N:Nat = 5 .

search in PINGCONFIG : PingConfig =>* C:Configuration < client : PingClient | environment: <
o A:Action, st:Store ; (counter = N:Nat) ; st':Store > > such that N:Nat = 5 .

Solution 1 (state 446)

states: 447 rewrites: 10599 in 148ms cpu (153ms real) (71614 rewrites/second)
C:Configuration --> (connector | client: < client . pingservice : RequiredPort | buffer: noMsg
» > -=> server: < server . pingservice : ProvidedPort | buffer: noMsg >) < server :

-~ PingServer | environment: < noAction, (status: Pong) ; (req = 4) ; (count = 4) > >
A:Action --> noAction

st:Store --> (status: Ping) ; (count-max = 5) ; (req' = 4)

N:Nat --> 5

st':Store --> (ping(5) Via pingservice)

FIGURE 5.11: Result of the search command on a state with counter = 5.

5.5.3.3 Linear Temporal Logic Model Checking

This section discusses how to verify the correctness of a set of properties of the specification.
Properties can be specific to a particular system, like those related to system states. In contrast,

other properties can be generalized to several systems or programs, like the absence of the deadlock

Chapter 5. MDE-based formal approach 88

in the system. Maude uses a model checker to check whether all system behaviors satisfy a
property. Maude’s model checking is based on Linear Temporal Logic (LTL) to specify models’
properties. First, we define a set of atomic propositions in a new module called PINGCONFIG-

PREDS that implements the predicates presented in Table [17].

1 mod PINGCONFIG-PREDS is
2 inc PINGCONFIG .
3 inc SATISFACTION .
4 inc MODEL-CHECKER .
5 subsort Configuration < State
6 --- Variables
7 var N : Nat . vars st st' : Store . var A : Action . var C : Configuration .
8 var P : Portld . var M : MsgIld . var I : Instanceld . var T : ThingId
9 var Ms : Msg . var Po : Port . var 0 : Object
10 --— Predicates declaration
11 ops Ping Pong : Instanceld Nat -> Prop . --- Ping and Pong predicates
12 eq < I : T | environment: < A, st ; (ping(N) Via P) ; st' > > C |= Ping(I, N) = true .
13 eq < I : T | environment: < A, st ; (pong(N) Via P) ; st' > > C |= Pong(I, N) = true .
14
15 op Msg-In-Env : Instanceld -> Prop . --- The Msg-In-Env predicate
16 eq < I : T | environment: < A , st ; (Ms Via P) ; st' > > C |= Msg-In-Env(I) = true .
17
18 op Msg-In-Buffer : -> Prop . -—- The lMsg-In-Buffer predicate
19 ceq (connector | client: < I . P : Po | buffer: Ms > --> server: 0) C
20 |= Msg-In-Buffer = true if Ms =/= noMsg .
21 ceq (connector | client: O --> server: < I . P : Po | buffer: Ms >) C
22 |= Msg-In-Buffer = true if Ms =/= noMsg .
23
24 op Event-In-Env : Instanceld -> Prop . --- The Event-In-Env predicate
25 eq < I : T | environment: < A , st ; (P ? M ; st' > > C |= Event-In-Env(I) = true
26
27 op Action-In-Env : Instanceld -> Prop . --- The Action-In-Env predicate
28 ceq <I : T | environment: <A , st > > C |= Action-In-Env(I) = true if A =/= noAction .
29
30 op Waiting : Instanceld -> Prop . --- The Waiting predicate
31 eq < I : T | environment: < A , (status: Waiting) ; st > > C |= Waiting(I) = true
32 endm

LisTiNG 5.11: PINGCONFIG-PREDS system module.

TABLE 5.2: Description of the atomic propositions

Predicate Description
Ping True when the instance sends the ping message
Pong True if the instance responded with the pong message
Msg-In-Env This predicate describes the pending messages in the instance environment
Msg-In-Buffer Returns true if there are messages in the connector buffers
Action-In-Env Return true if actions are being run
Waiting The instance in the Waiting state

Chapter 5. MDE-based formal approach 89

We define the formulas of the propositional LTL from this set of atomic propositions. LTL
formulas are composed of atomic propositions and logical operators that include the traditional
operators of propositional calculus (not: ~, and: /\, or: \/, implies: ->, and equivalent: <->)

and temporal operators (eventually: <>, always: [], ...).

Property 1. The first property to check is: “If the client sends a ping message, the server will
respond by a pong message". This property is specific to this case study, it is linked to the message
defined in the PingPong design. The following command checks whether the specification will

satisfy this property:

Maude> red modelCheck(PingConfig, [](Ping(client , N:Nat)-> <> Pong(server, N:Nat))) .

reduce in PINGCONFIG-PREDS : modelCheck(PingConfig, [](Ping(client, N) -> <> Pong(server, N)))
rewrites: 12961 in 184ms cpu (186ms real) (70440 rewrites/second)

result Bool: true

FIGURE 5.12: Verification result of the 1st property.

The result shows that the model checker returns the Boolean value true, which means that

this property is satisfied. Otherwise, the model checker will provide a counterexample.

Property 2. The second property: “At the end of the execution, all the messages in the system
will be consumed . In other words, the connector buffers are empty and no events, and no messages

in the instance environments.

Maude> red modelCheck (PingConfig, <>([] ~(Msg-In-Buffer \|/ Msg-In-Env(client) \/

-~ Msg-In-Env(server) \| Event-In-Env(client) \/ Event-In-Env(server)))) .

reduce in PINGCONFIG-PREDS : modelCheck (PingConfig, <> []~ (Event-In-Env(server) \/

- (Event-In-Env(client) \/ (Msg-In-Env(server) \| (Msg-In-Buffer \| Msg-In-Env(client)))))) .
rewrites: 13368 in 196ms cpu (196ms real) (68204 rewrites/second)

result Bool: true

FIGURE 5.13: Verification result of the 2nd property.

Property 3. Next, we check if “All actions in the system will be executed’. Properties 2 and 3
are general properties that can be checked in any system. However, the actual formulas of these

properties are system specific because they contain the system instances’ identifiers.

Chapter 5. MDE-based formal approach 90

Maude> red modelCheck(PingConfig, [] (Action-In-Env(client) -> <> ~ Action-In-Env(client)) [\
» [] (Action-In-Env(server) -> <> ~ Action-In-Env(server))) .

reduce in PINGCONFIG-PREDS : modelCheck(PingConfig, [](Action-In-Env(client) -> <> ~

o Action-In-Env(client)) [\ [](Action-In-Env(server) —-> <> ~ Action-In-Env(server))) .
rewrites: 14109 in 192ms cpu (195ms real) (73484 rewrites/second))

result Bool: true

FIGURE 5.14: Verification result of the 3rd property.

Property 4. Finally, we verify if “Both client and server instances will never hang in a state

where their status is in Waiting”. That is the absence of the deadlock in the system.

Maude> red modelCheck(PingConfig,~ <>([] (Waiting(client) |\ Waiting (server)))) .
reduce in PINGCONFIG-PREDS : modelCheck(PingConfig, ~ <> [] (Waiting(client) [\

- Waiting(server))) .

rewrites: 12966 in 180ms cpu (182ms real) (72033 rewrites/second)

result Bool: true

FIGURE 5.15: Verification result of the 4th property.

The result of previous commands is always the Boolean value true, which means that the
PingPong design satisfies all preceding properties. To show the practical utility of the proposed
approach to finding problems with ThingML designs. We introduce a bug in the PingPong
specification and show how the analysis exposes it. Bugs in ThingML designs can be caused by
many reasons, such as consistency between things statecharts or forgetting to describe a transition
or action in things statecharts. In our case study, we modify the PingServer thing implementation,
where we remove the entring action from the Pong state. Listing shows the new ThingML

specification of the PingServer thing that contains a bug [17].

5 thing PingServer includes PingMsgs {

6 provided port pingservice {

7 sends pong

8 receives ping }

9 statechart PingServerMachine init Waiting {

10 property count : UInt8 = 0

11 state Waiting{

12 transition -> Pong event m : pingservice?ping
13 action count = m.req 1}
14 state Pong{

15 on exit print "Send Pong", count, "..."

16 transition -> Waiting I}

17}

LisTiNG 5.12: A new ThingML implementation of PingServer thing.

Chapter 5. MDE-based formal approach 91

After transforming the new ThingML specification into the corresponding Maude code, we
verify the absence of the deadlock (Property 4). The following command checks whether the new

specification will satisfy this property.

Maude> red modelCheck(PingConfig,~ <>([] (Waiting(client) |\ Waiting (server))))

reduce in PINGCONFIG-PREDS : modelCheck(PingConfig, ~ <> [] (Waiting(client) |\

- Waiting(server)))

rewrites: 86 in Oms cpu (3ms real) (~ rewrites/second)

result ModelCheckResult: counterexample({(connector | client: < client . pingservice :

-~ RequiredPort | buffer: noMsg > --> server: < server . pingservice : ProvidedPort | buffer:

- noMsg >) < client : PingClient | environment: < count-max := 5 ; counter := 1 ; print("Send
~ Pingcounter...") ; (pingservice ! ping(counter)) ; noAction, (status: Ping) > > < server :
~ PingServer | enviromment: < count := 0 ; noAction, (status: Waiting) > >, 'Act-R}

{(connector | client: < client . pingservice : RequiredPort | buffer: noMsg > --> server: <
~ server . pingservice : ProvidedPort | buffer: noMsg >) < client : PingClient | environment:

- < counter := 1 ; print("Send Pingcounter...") ; (pingservice ! ping(counter)) ;
-~ noAction, (status: Ping) ; (count-max = 5) > > < server : PingServer | environment: < count
» := 0 ; noAction, (status: Waiting) > >,'Act-R}

(Several system states are displayed here)

{(connector | client: < client . pingservice : RequiredPort | buffer: noMsg > --> server: <

- server . pingservice : ProvidedPort | buffer: noMsg >) < client : PingClient | environment:
~ < noAction, (status: Waiting) ; (count-max = 5) ; (counter = 1) > > < server : PingServer |
- environment: < noAction, (status: Waiting) ; (req = 1) ; (count = 1) > >,deadlock})

FIGURE 5.16: Verification result of the 4th property on the modified specification.

The results show that the property is not satisfied with the modified specification. According
to the counter-example path, the client and server instances will hang in a state where their status
is in Waiting. We can correct our model based on the detailed execution trace provided by the

model checker (counter-example).

5.6 Conclusion

In this chapter, we have proposed an approach that allows the automatic translation of IoT
systems designs described using ThingML into a Maude specification. We have defined Maude
structures to describe all ThingML components and their behavioral aspects. We have defined
a big-step semantics (evaluation semantics) for actions and functions described by the ThingML
action language. Then, we have implemented these semantics in the Maude language. Our
approach aims to jointly apply the ThingML and Maude languages to integrate and benefit from

their advantages. The transformation gives precise semantics to the ThingML language and

Chapter 5. MDE-based formal approach 92

benefits from the Maude environment to analyze and verify the obtained Maude specifications.
Experimental results using a case study show that our approach can generate an executable
specification in the Maude environment, effectively allowing the simulation of ThingML designs
and verifying IoT systems’ properties. Using Maude’s LTL model checker allows us to check the
desirable (or undesirable) properties that must be guaranteed within a system under development.

Linear Time Logic (LTL) is used to define these properties.

CHAPTER 6

A SIMULATION-BASED MDE APPROACH

6.1 Introduction

HE ThingML approach is based on a Domain-Specific Language (DSL) and a code generation
Tframework. The ThingML textual DSL allows describing IoT applications in a platform
independent way. In ThingML models, the dynamic behavior of components is described using
a mix of state charts, communication by asynchronous messages, a platform-independent action
language, and target languages. Therefore, these specifications include many details that decrease
their legibility and comprehension since they are expressed only in textual form. On another
side, The ThingML code generation framework allows the generation of application source code
in several languages from ThingML specifications, where several hardware platforms support the
application’s source code. However, the ThingML approach does not allow rapid prototyping and
experimentation to expedite the evaluation and testing of generated codes before deploying in IoT

devices.

In this context, we propose an MDE and simulation-based approach to quickly develop and
test IoT applications. It can help users to quickly create and test IoT applications. More precisely,
we develop a hybrid (graphical-textual) modeling editor for ThingML to facilitate the development
process. We also adopt a simulation approach using Proteus software to evaluate the generated

codes.

6.2 General overview

Figure gives a general overview of our approach [20]. We use the ThingML language to

describe IoT applications using the developed hybrid editor. This hybrid editor facilitates and

93

Chapter 6. A simulation-based MDE approach 94

speeds the modeling process and helps to clarify and better understand textual models. After
that, we transform the obtained specifications into a source code using the ThingML generator
code. For the analysis purposes, we finally use the Proteus software for rapid prototyping of the
application hardware circuit, and then simulating the previously generated source code on this

circuit.

o Specification of loT O
e — e e >,
I output applications use o -
ThingML The blent_ied editor of H
specifications ThingML £
! iput OF
s P H
Code generation e >oo ;
ThingML code B
I output generation -
P

Compilation

Arduino IDE

—
A
|
i
i
i
i
i
i
i
i
i
i
I
K
|
i
o}
ARDUINO

Simulation
Design of the
application

hardware circuit

v
- Set parameters
(Program file)
Start simulation

Proteus

g
O
* PROTEUS

/ Work product

o Tool
() Activity

FIGURE 6.1: The workflow of the simulation based-approach.

Our approach is structured according to the following steps [20]:

- Step 1. Design and modeling of IoT applications using the ThingML language.

- Step 2. The code generation is done using the ThingML code generation framework. In
this work, we will use the Arduino hardware platform. The resulting source code is called
sketches.

- Step 3. Compiling the sketches code into object code that the Arduino runs (an extension
file ".hez"). Arduino IDE is used to perform this compilation.

- Step 4. The simulation will be performed with Proteus software. It consists of three sub-

operations: design of the hardware circuit of the application, the definition of the parameters

Chapter 6. A simulation-based MDE approach 95

(Program file), and launching the simulation.

The following section presents the underlying technologies used in this work.

6.3 Underlying technologies

This section provides an overview of the Eclipse modeling project, the Arduino platform, and the

Proteus software utilized in this work.

6.3.1 Eclipse Modeling Project (EMP)

The Eclipse Modelling Project (EMP) [I17] is a collection of frameworks and tools for the Model
Driven Engineering on the Eclipse platform. In short, they provide a wide range of solutions for
various aspects of model driven development, from language definition, generative development of
language editors to code generation as well as model verification and validation. In the following,

some of the tools from Eclipse Modelling Project that have been used in this work are introduced.

6.3.1.1 Eclipse Modeling Framework (EMF)

The EMF project [97] is an open-source modeling framework that forms the basis for building
all the frameworks and tools in the Eclipse modeling project. It uses the object-oriented meta-
modeling language FEcore to define the developed modeling languages’ abstract syntax (meta-
model). To define the concrete syntax and build editors’ workbenches for the modeling language,

the designers can use many EMF-based frameworks like Sirius and Xtext.

6.3.1.2 Sirius Framework

The Sirius framework [58] is an open-source Eclipse project that enables the creation of graphical
DSL editors. It is built on the Eclipse Modelling technologies, like EMF and GMF. The purpose
is to give a generic workbench for model-based architecture engineering that could simplify prod-
uction, reduce design time, and increase productivity when building a graphical editor [I1§]. In
contrast to GMF, which generates a massive quantity of very complex code, with Sirius, no code

is generated from the specification but interpreted. Consequently, the changes to the specification

Chapter 6. A simulation-based MDE approach 96

immediately come into effect without the need to run a new eclipse configuration. Sirius is
also integrated with other technologies that give more strength to the tool, like the Sirius-Xtext

integration.

6.3.1.3 Xtext Framework

Xtext [09] is an EMF component that enables the building of text-based DSLs. It defines
a DSL grammar using an Extended Backus-Naur Form (EBNF)-like language, which may be
used to produce a metamodel and associated infrastructure such as a parser and linker. Xtext
provides a comprehensive text editor with developer-help features such as syntax highlighting,

error indicators, and code completion.

6.3.2 Arduino platform

In the field of electronics, Arduino [22] is a well-known open-source platform. It has been intended
to be user-friendly for those without prior knowledge of electronics. Arduino enables the creation
of things capable of controlling a motor, turning on a light, and sending alerts, among other

functions. It is mainly based on two components: hardware and software.

- Arduino hardware: the Arduino board can control and respond to the components connected
to it. These components may be sensors or actuators (lights and LEDs, relays, displays,

motors) that allow them to communicate with the outside world.

- Arduino software: the Arduino board may readily be programmed utilizing Arduino inte-
grated development environment (IDE). The IDE allows users to create software programs
known as sketches using a simplified version of C++. Then, it converts those programs to

object code compatible with Arduino hardware.

6.3.3 Proteus software

Developed by Labcenter Electronics, Proteus [2I] is a software suite used primarily to design

electrical schematics. It comprises packages such as Proteus PCB Design for the printed circuit

Chapter 6. A simulation-based MDE approach 97

Eile Edit Sketch Tools Help

» O |2
Genuino
ARDUINO

(a) (b)

FIGURE 6.2: (a) Arduino IDE. (b) Arduino Uno board.

and Proteus Virtual System Modeling (VSM) for the simulation. The VSM package is used to
simulate circuits with microprocessors. It enables rapid prototyping of hardware and firmware
designs. Proteus VSM enables the simulation of the interaction between software running on a
microcontroller and any analog or digital electronics connected to it. Also, it simulates the exe-
cution of object code, just like a real chip. Besides, Proteus VSM supports several microprocessor

families (PIC16, PIC18, AVR, Arduino, ...).

6.4 The hybrid graphical-textual modeling editor

Several notations can be used as concrete syntaxes for DSL. It can be textual, graphical, tabular,
form-based, or a combination of these. Each of these notations provides benefits that are un-
available in the other notations. The combination of multiple notations permits accumulating
the benefits of each notation, and it may reveal a variety of advantages [119]. Nevertheless,
the modeling frameworks traditionally relied on one specific editing notation. Using a single
type of notation has the disadvantage of restricting the tools available for developing and ma-
nipulating models that may be required. On the other hand, a modeling framework based
on multi-notations might reveal many advantages and provide a better performance regarding
single-notation modeling [119]. Hybrid (or blended) modeling can be defined as manipulating
a common underlying model resource using several editors based on different notations [119].
Flexible separation of concerns, enhanced human comprehension, better communication, multi-
view modeling based on different notations, the ability to manipiling the models outside a modeling
environment, and speedier-modeling tasks are among the features. The study presented in [I19)]

shows the potential benefits of hybrid modeling for more details.

Chapter 6. A simulation-based MDE approach 98

The ThingML approach is based on a textual Domain-Specific Language (DSL), where the
dynamic behavior of components is described using a mix of state charts, communication by
asynchronous messages, a platform-independent action language, and target languages. Therefore,
these specifications can include many details that decrease their legibility. In this context, we
develop a hybrid modeling editor for the ThingML language. The hybrid editors present the
best modeling solutions that combine textual notations with graphical notations and accumulate
their advantages [I19]. It is well known that graphical specification is better suited for de-
scribing the system components and their relationships. States and transitions in the state ma-
chine are specified graphically, whereas actions in states and guards in transitions are specified
using a textual expression language. Thus, each system aspect will be described using the most
appropriate view (textual/graphical). Therefore, the hybrid editor for the ThingML language can
speed up modeling tasks and facilitate understanding. We use well-known frameworks and tools

under the Eclipse platform to achieve this goal, such as Sirius and Xtext.

6.4.1 Xtext-based editor

ThingML is an open-source project [98] presented as textual SDL to develop IoT applications.
Its syntax is defined using the Xtext framework [59], which uses an EBNF-like language to define
the DSL grammar. The Xtext framework uses the EBNF grammar to automatically generate a
comprehensive text editor and an meta-model. The textual editor provides developer help features
such as syntax highlighting, error detection markers, and auto-completion. Based on the generated
meta-model, we will develop a graphical editor where we define a graphical representation for each

meta-model class.

6.4.2 Sirius-based editor

The ThingML graphical editor [20] has been developed utilizing the Sirius framework. Starting
from the generated metamodel, Sirius allows a model-based specification of visual concrete syntax
organized in viewpoints. Graphical and textual editors are synchronized thanks to the Sirius and

Xtext integration. We have developed three Viewpoints for viewing and editing Things, state

Chapter 6. A simulation-based MDE approach 99

machines and configurations. Figure [6.3] shows the structure of the state machine Viewpoint.

Other figures on the graphic editors are shown in subsection (See Figures and [6.6)).

v & ThingMimmi Designi
& Things Description
~ & State Machine description
v States

[Gradient white to light_gray
n

[Gradient white to light_gray
~ @ Section StateMachine Tools
& Section Types
Container Creation Region
Cont

FIGURE 6.3: The structure of the state machine Viewpoint

6.5 Case study

This section presents the experimental results of the case study of the traffic light controller. We
use ThingML version 2.0.0.202107160746 (available in [98]) as code generator. We also conduct
a series of simulations under the Proteus software (version 18.1). This case study aims to build a
simple traffic light controller using the Arduino platform. We hope this case study will help the
reader understand the fundamental design concepts of ThingML. Three LEDs (Light-Emitting
Diodes) are used in this system: green, yellow, and red. They are linked to an Arduino Uno
board. The traffic light works endlessly over time in the same way: it will remain green for 8

seconds, yellow for 3 seconds, and red for 5 seconds.

6.5.1 Specification

The ThingML language is used to model this system, where we have mainly defined two Things
and a Configuration. Figure [20] presents a graphical view of the Traffic_ Light application
components. It shows the Things, their relationships, and their messages and ports. Listing [6.1
describes the LED Thing that presents the LED controller software. It comprises a provided
port, two functions, and a state machine. The state machine describes an implementation of the

behavior of this Thing and has two states: ON and OFF, with the OFF state being the initial. It

Chapter 6. A simulation-based MDE approach 100

changes from the OFF to the ON state upon the event ctri?ledON (the ledON() message arriving

over the ctrl port). Similarly, when the event ctri?ledON is triggered, the Thing changes state

from ON to OFF.

El ThingML.cdesign | & ThingML Model 52 = 0
BeBiv H By =@ &~ ~ | & & |100% - @ |- Palette 3

<<Import>> lp LN

E = = led_ON = led_OFF =
[5 URI: _Datatypes.thingml = Types ®
©) From: ‘ | B Thing
messages § messages = Message
] LEDMsgs

* Required port
™ provider port
Internal port

= Property

L ‘ = Import R
Due] Traffic_Light Himport
= timery| = Relationships «
= PIN: UInt8 et
P— \ Generalasation
_(E04
Yellow_led = Messages R
Red_led] @ parameter

FIGURE 6.4: Graphical view of Things in the Traffic_Light application.

10

11

12

13

14

15

16

17

18

19

20

thing LED includes LEDMsgs {

property PIN: UInt8 = 10

provided port ctrl { receives led_ON, led_OFF }

function setDigitalOutput(pin: UInt8) do
“pinMode (" &pin&~, OUTPUT);"

end

function digitalWrite(pin: UInt8, value : DigitalState) do
“digitalWrite("&pin&~, ~&value&);"

end

statechart LED init OFF {

on entry setDigitalOutput (PIN)

state OFF {
transition -> ON event ctrl?led_ON
action digitalWrite(PIN, DigitalState:HIGH) }
state ON {

transition -> OFF event ctrl?led_OFF
action digitalWrite(PIN, DigitalState:LOW)

LisTING 6.1: ThingML implementation of the LED thing.

Traffic_Light’s second software component describes the implementation of the traffic light

controller (see Listing . This Thing is comprised of four ports and a state machine. The ports

will be used to connect to the LEDs. A state machine describes the Thing’s behavior with three

states: RED, GREEN, and YELLOW. It is initially in the RED state and switches from one

state to another when the timer?Timer_timeout event is triggered (that is, at the end of the time

allotted for each state). When the Thing enters or exits these states, it acts, on entering, it sends

Chapter 6. A simulation-based MDE approach 101

the led ON message through the associated port, and on exit, it sends the led OFF message via

the corresponding port.

1 thing Traffic_Light includes TimerMsgs , LEDMsgs {

2 required port timer { sends timer_start receives timer_timeout }
3 required port Red_led { sends led_ON led_OFF }

4 required port Green_led { sends led_ON led_OFF }

5 required port Yellow_led { sends led_ON led_OFF }

6 statechart Traffic_Light init RED {

7 state RED {

8 on entry do

9 Red_led!led_ONQ)

10 timer!timer_start (5000)

11 end

12 transition -> GREEN event timer?timer_timeout
13 on exit Red_led!led_OFF() }

14 state GREEN {

15 on entry do

16 Green_led!led_ON()

17 timer!timer_start (8000)

18 end

19 transition -> YELLOW event timer?timer_timeout
20 on exit Green_led!led_OFF() }

21 state YELLOW {

22 on entry do

23 Yellow_led!led_ON()

24 timer!timer_start (3000)

25 end

26 transition -> RED event timer?7timer_timeout
27 on exit Yellow_led!led_OFF() } }

28 }

29 }

LisTING 6.2: ThingML implementation of the TrafficLight thing.

The graphical view of the state diagram of the Traffic_ Light Thing is presented in Fig. [20].

] ThingML.odesign £ State Machine Diagram 2 = 78
BrBiv H Fvwr> mE &« - | @ @ F_- @ - Palette |4
PYCECT R
Traffic_Light -

=SM_Tools =
@ Region
&9 State
@ Finalstate
@ Transition

ActionBlock

timer 7 timer_timeoul

ActionBlock timer ? timer_timeout

timer ? timer_timeout YELLOW

ActionBlock

FIGURE 6.5: Graphical view of thing Traffic_Light state chart.

Chapter 6. A simulation-based MDE approach 102

The Traffic_Light _App configuration, shown in Listing[6.3] presents the concrete application.
It consists of four instances; three LED and one Traffi Light. These instances are interconnected
using four connectors. Each connector must link a required port with another provided port.
Each instance’s PIN property is initialized with a value corresponding to the genuine value of the

Arduino board’s Digital Pic.

1 configuration Traffic_Light_App {

2 instance traffic_light : Traffic_Light

3 instance red_led : LED

4 set red_led.PIN = 11

5 instance green_led : LED

6 set green_led.PIN = 12

7 instance yellow_led : LED

8 set yellow_led.PIN = 13

9 connector traffic_light.Red_led => red_led.ctrl

10 connector traffic_light.Green_led => green_led.ctrl
11 connector traffic_light.Yellow_led => yellow_led.ctrl
12 connector traffic_light.timer over Timer

13}

LisTING 6.3: ThingML implementation of Traffic_Light_App configuration.

The graphical view of the Traffic Light App configuration is shown in Fig. [20].

) *ThingML.odesign £ Configuration Description 52 = A
B~ & ODvw~ @t &~ | @& @/|100% v | @ | Palette >
ERAD- A~
a?Trafflc_nght_ApD & sm_Tools &

oﬂ Configuration
cl

Hinstance

[red_led
[ic i
= ([traffic_light & Connector
4" Red_led
|
|

&l green_led
timer

il

' :_2 Green_led

= yellow_led 3 Yellow_led
arl / k

FIGURE 6.6: Graphical view of the Traffic_Light_App configuration.

6.5.2 Code generation

After the system modeling, the ThingML code generator will be used to generate the code source
automatically. There are two methods, either by using the Eclipse platform or the Jar file. Fig.

shows the code generation process using the Jar file.

Chapter 6. A simulation-based MDE approach

103

abdo@Aspire-v5-123: /mnt/wind/ThingML

i/mnt/wind /ThingMLS java -jar ThingML-CLI.jar -c arduino -s /mnt/wind/ThingML/Traffic_Li

ght/TrafficLight.thingml -o /mnt/wind/ThingML/TT

Running ThingML -c arduino -s /mnt/wind/ThingML/Traffic_Light/TrafficLight.thingml -o /mnt/wind/ThingML/TT

Checking for EMF errors and warnings
Checking for EMF errors and warnings
Checking for EMF errors and warnings

Generating code for configuration: Traffic_Light_App. InputDirectory is /mnt/wind/ThingML/Traffic_Light
Running C/C++ for Arduino (AVR Microcontrollers) compiler on configuration Traffic_Light_App [Sat Dec 18 1

3:32:14 CET 2021]
Checking configuration...

Checking configuration... Done! Took 796 ms.
Compilation complete [Sat Dec 18 13:32:20 CET 2021]. Took 223 ms.
[N Ny b S B V A O

[R ¥ I N A N AR AVA B |

[T Y P

[) B, VP Y PR |

[

SUCCESS.

: /mnt/wind/ThingML$ [

FIGURE 6.7: The code generation using Jar file.

6.5.3 Compilation of the sketches

The next step in the process is to compile the sketches. The compilation step is done with the

Arduino IDE. Figure presents the results of the compilation, showing that the sketches are

compiled correctly. The result is an object file (with .hex extension).

@ Traffic_Light_fpp | Srduino 1.8.13

Fichier Edition Croquis Outils Aide

Traffic_Light_App

kinclude <stdint. h>
#include <Adrduino.lc-

* Headers for type : Traffic_Light
A Definition of the instance struct:
struct Traffic_Light_Instance {

/4 Instances of different sessions
£

i es. Le

e, ce qui la 712 octets 1t 3, Le maximum

Arduing Uno

FIGURE 6.8: The compilation of traffic light specification.

6.5.4 Simulation

A A A R A A A A A A AR A AR EAAARF AT I ARSI FF AN SFFAHAAN

B A A A A N AN A AN A AR A A A TN AT NTAAAGE A AANTHRATAN S

sur COM1

In the simulation step, we first build the application hardware circuit. The traffic light hardware

circuit seen in Fig. [20] was created using the Proteus program. It consists of an Arduino

Uno board and three LEDs. The red, yellow, and green LEDs are connected to the 11, 12, and

Chapter 6. A simulation-based MDE approach 104

13 digital pins of Arduino Uno, respectively. We then define the program file of the Arduino
component by the object file obtained in the compilation step. Finally, we simulate the code
obtained in the developed circuit.

R1

100

LED-YELLOW

R2

100

LED-GREEN

@
<
(=
=
z
O

(~Wmd) vLI9Ia

'www.arduino.cc
‘ blogembarcado.blogspot.com ‘
SIMULINO UNO

FIGURE 6.9: The traffic light hardware circuit

We have conducted a series of simulations that demonstrate that the source code generated by
the ThingML code generation from our specification is executed correctly on the circuit developed
in Proteus. T able presents the simulation results for 10, 20, and 50 traffic light cycles (a cycle
is the switching between Red, Green, Yellow, and then Red) [20].

TABLE 6.1: The simulation results

10 cycles 20 cycles 50 cycles
Execution ttme 160 s 320 s 800 s
Result executed correctly executed correctly executed correctly

6.6 Conclusion

In this chapter, we have presented an approach to design and simulate IoT applications. In this
approach, we have used ThingML to design the applications and generate a source code from this
specification using ThingML code generation, where we have developed a hybrid editor for the
ThingML language. Then, we have used the Proteus software to build the application circuit and
to simulate generated code on this circuit. The simulation results demonstrate that the source
code generated is executed correctly on the circuit developed. Consequently, the users can test

their applications without the availability of IoT devices.

(General conclusion

HE last few years have seen a strong development in the use of Internet of Things technologies,
Twhere a large number of user devices need to collaborate in order to perform a common
task. The availability of many diverse heterogeneous devices collaborating in the IoT represents
an unprecedented opportunity to improve the quality of life, along with the quality of service,
through collaboration among industrial and consumer devices. However, to benet from the IoT
advantages, a whole host of new challenges must be addressed at all levels. MDE can help meet

the technical challenges of IoT system development.

In this thesis, we are interested in proposing an approach for modeling and analyzing IoT
applications based on Model-Driven Engineering (MDE). We have made a tour of the paradigm
of the IoT, as well as the modeling of [oT systems using the MDE approach. We have shown the
existing approaches in the literature by making a comparative study that allows discussing the
advantages and disadvantages for each of them. We then discussed the two languages used, namely
ThingML, as a semi-formal modeling language, and Maude, as a formal specification language.
After that, we have proposed an MDE-based formal approach, which aims to jointly apply the
ThingML and Maude languages to integrate and benefit from their advantages. It consists in
using ThingML for modeling IoT applications and benefiting from a set of code generators for
various platforms. This is followed by the automatic translation of ThingML specifications into
Maude code to allow verification and analysis. We have defined Maude structures to describe
all ThingML components and their behavioral aspects. We have defined big-step semantics
(evaluation semantics) for actions and functions described by the ThingML action language.
Then, we implemented these semantics in the Maude language. The transformation gives precise

semantics to the ThingML language and benefits from the Maude environment to analyze and

105

General conclusion 106

verify the obtained Maude specifications. Experimental results using a case study show that our
approach can generate an executable specification in the Maude environment, effectively allowing
the simulation of ThingML designs and verifying IoT systems’ properties. Using Maude’s LTL
model checker allows us to check the desirable (or undesirable) properties that must be guaranteed

within a system under development. Linear Time Logic (LTL) is used to define these properties.

In a second contribution, we have developed a hybrid textual-graphical editor that facilitates
the development process and addresses some of the shortcomings of using a textual editor. We
have also suggested using Proteus software as a tool to build the hardware circuit of the application

as well as to simulate and test the previously generated code before deployment on IoT devices.

In the current version of the formal approach, we have implemented the semantics of the
ThingML action language using rewriting rules with reachability conditions. These rewriting rules
may need more computational resources, especially for significant case studies. For this reason,
we plan to study the scalability of our formal framework. For that, we propose to introduce the
real-time aspect using RT-Maude, which will enable us to analyze more extensive real case studies,
we will try to streamline the semantics following different approaches such as presented in [120)].
To wrap ups, we will try to make a critical comparison of the results of the applied approaches
to choose the most appropriate. In addition, we plan to develop a formal tool based on Maude
for the ThingML language that can hide formal details from designers. Such a tool allows the
automatic generation of Maude LTL expressions and automatically displays the interpretation of

the analysis results in the source models.

Bibliography

Alem Colakovié¢ and Mesud Hadziali¢. Internet of Things (IoT): A review of enabling tech-

nologies, challenges, and open research issues. Computer networks, 144:17-39, 2018.

Nicolas Harrand, Franck Fleurey, Brice Morin, and Knut Eilif Husa. ThingML: a language
and code generation framework for heterogeneous targets. In Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems, Saint-

Malo, France, October 2-7, 2016, pages 125-135, 2016.

Alberto Rodrigues Da Silva. Model-driven engineering: A survey supported by the unified

conceptual model. Computer Languages, Systems & Structures, 43:139-155, 2015.

Strategyanalytics, Global Connected and IoT Device Forecast Update, [On-
line]. Available: https://www.strategyanalytics.com/access-services/
devices/connected-home/consumer-electronics/reports/report-detail/

global-connected-and-iot-device-forecast-update/|[Accessed June-2022].

Ala I. Al-Fugaha, Mohsen Guizani, Mehdi Mohammadi, Mohammed Aledhari, and Moussa
Ayyash. Internet of Things: A Survey on Enabling Technologies, Protocols, and Applica-

tions. IEEE Communications Surveys and Tutorials, 17(4):2347-2376, 2015.

Eleonora Borgia. The Internet of Things vision: Key features, applications and open issues.

Computer Communications, 54:1-31, 2014.

Bruno Costa, Paulo F. Pires, and Flavia Coimbra Delicato. Towards the adoption of OMG

standards in the development of SOA-based IoT systems. J. Syst. Softw., 169:110720, 2020.

XV

https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update/
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update/
https://www.strategyanalytics.com/access-services/devices/connected-home/consumer-electronics/reports/report-detail/global-connected-and-iot-device-forecast-update/

Bibliographie xvi

8]

[10]

[11]

[12]

[16]

[17]

Federico Ciccozzi, Ivica Crnkovic, Davide Di Ruscio, Ivano Malavolta, Patrizio Pelliccione,
and Romina Spalazzese. Model-Driven Engineering for Mission-Critical loT Systems. IEEE

Software, 34(1):46-53, 2017.

Brice Morin, Nicolas Harrand, and Franck Fleurey. Model-Based Software Engineering to

Tame the IoT Jungle. IEEE Software, 34(1):30-36, 2017.

Alireza Souri and Monire Norouzi. A state-of-the-art survey on formal verification of the

Internet of Things applications. Journal of Service Science Research, 11(1):47-67, 2019.

José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical

computer science, 96(1):73-155, 1992. Publisher: Elsevier.

Joel dos Santos, Christiano Braga, and Débora C Muchaluat-Saade. A rewriting logic

semantics for NCL. Science of Computer Programming, 107:64-92, 2015.

Francisco Duran, Camilo Rocha, and Gwen Salaiin. Stochastic analysis of BPMN with time

in rewriting logic. Science of Computer Programming, 168:1-17, 2018.

Elhillali Kerkouche, Khaled Khalfaoui, and Allaoua Chaoui. A rewriting logic-based seman-
tics and analysis of UML activity diagrams: a graph transformation approach. International
Journal of Computer Aided Engineering and Technology, 12(2):237-262, 2020. Publisher:

Inderscience Publishers (IEL).

Manuel Clavel, Francisco Durdn, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, José
Meseguer, and Carolyn Talcott. All about Maude-a high-performance logical framework:

how to specify, program and verify systems in rewriting logic. Springer-Verlag, 2007.

Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude LTL model

checker. Electronic Notes in Theoretical Computer Science, 71:162—-187, 2004.

Abdelouahab Fortas, Elhillali Kerkouche, and Allaoua Chaoui. Formal verification of IoT
applications using rewriting logic: An MDE-based approach. Science of Computer Program-

ming, 222:102859, 2022. ISSN 0167-6423.

Carl A Gunter. Semantics of programming languages: structures and techniques. MIT press,

1992.

Bibliographie xvii

[19]

[20]

[24]

[25]

[27]

[28]

[29]

Accele, [Online]. Available: https://www.eclipse.org/acceleo/| [Accessed June-2022].

Abdelouahab Fortas, Elhillali Kerkouche, and Allaoua Chaoui. Application of MDE in the
development of IoT systems: A simulation-based approach. In 2022 First International

Conference on Computer Communications and Intelligent Systems (I3CIS), pages 93-98.

IEEE, 2022.
Proteus, [Online|. Available: https://www.labcenter.com/ [Accessed June-2022].
Arduino, [Online]. Available: https://www.arduino.cc| [Accessed June-2022].

Rob Van Kranenburg. The Internet of Things: A critique of ambient technology and the

all-seeing network of RFID. Institute of Network Cultures, 2008.

Louis Coetzee and Johan Eksteen. The Internet of Things-promise for the future? an

introduction. In 2011 IST-Africa Conference Proceedings, pages 1-9. IEEE, 2011.

Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli, Harald Sundmaeker,
Alessandro Bassi, Ignacio Soler Jubert, Margaretha Mazura, Mark Harrison, Markus Eisen-
hauer, et al. Internet of Things strategic research roadmap. In Internet of things-global

technological and societal trends from smart environments and spaces to green ICT, pages

9-52. River Publishers, 2022.

Luigi Atzori, Antonio lera, and Giacomo Morabito. The Internet of Things: A survey.

Computer networks, 54(15):2787-2805, 2010.

Pallavi Sethi and Smruti R Sarangi. Internet of Things: architectures, protocols, and ap-

plications. Journal of Electrical and Computer Engineering, 2017, 2017.

Perry Xiao. Designing Embedded Systems and the Internet of Things (IoT) with the ARM

mbed. John Wiley & Sons, 2018.

Hemant Ghayvat, Subhas Mukhopadhyay, Xiang Gui, and Nagender Suryadevara. WSN-and
IOT-based smart homes and their extension to smart buildings. Sensors, 15(5):10350-10379,

2015.

Gaye Abdourahime and Dieynaba Mall. Analysis of authentication mechanisms and identity

management in IoT: the resource constraints and security needs. In 2021 International

https://www.eclipse.org/acceleo/
https://www.labcenter.com/
https://www.arduino.cc

Bibliographie xviii

[34]

[36]

Conference on Information Systems and Advanced Technologies (ICISAT), pages 1-6. IEEE,

2021.

Luca Catarinucci, Danilo De Donno, Luca Mainetti, Luca Palano, Luigi Patrono,
Maria Laura Stefanizzi, and Luciano Tarricone. An loT-aware architecture for smart health-

care systems. [EEE internet of things journal, 2(6):515-526, 2015.

Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du. Research on the archi-
tecture of Internet of Things. In 2010 3rd international conference on advanced computer

theory and engineering (ICACTE), volume 5, pages V5-484. IEEE, 2010.

Omar Said and Mehedi Masud. Towards Internet of Things: Survey and future vision.

International Journal of Computer Networks, 5(1):1-17, 2013.

Ibrahim Mashal, Osama Alsaryrah, Tein-Yaw Chung, Cheng-Zen Yang, Wen-Hsing Kuo,
and Dharma P Agrawal. Choices for interaction with things on Internet and underlying

issues. Ad Hoc Networks, 28:68-90, 2015.

Rafiullah Khan, Sarmad Ullah Khan, Rifagat Zaheer, and Shahid Khan. Future internet:
the Internet of Things architecture, possible applications and key challenges. In 2012 10th

international conference on frontiers of information technology, pages 257-260. IEEE, 2012.

Deze Zeng, Song Guo, and Zixue Cheng. The Web of Things: A survey. J. Commun., 6(6):

424-438, 2011.

Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti, and Subhajit Dutta. Role of
middleware for Internet of Things: A study. International Journal of Computer Science and

Engineering Survey, 2(3):94-105, 2011.

Mohammad Abdur Razzaque, Marija Milojevic-Jevric, Andrei Palade, and Siobhan Clarke.
Middleware for Internet of Things: a survey. IEEE Internet of things journal, 3(1):70-95,

2015.

Noboru Koshizuka and Ken Sakamura. Ubiquitous ID: standards for ubiquitous computing

and the Internet of Things. IEEE Pervasive Computing, 9(4):98-101, 2010.

Bibliographie xix

[40]

[41]

[44]

[45]

[49]

Maria Rita Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne, Luigi Alfredo
Grieco, Gennaro Boggia, and Mischa Dohler. Standardized protocol stack for the Internet

of (important) Things. IEEE communications surveys & tutorials, 15(3):1389-1406, 2012.

Sachin Kumar, Prayag Tiwari, and Mikhail Zymbler. Internet of Things is a revolutionary

approach for future technology enhancement: a review. Journal of Big data, 6(1):1-21, 2019.

Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. Interoperability in Inter-
net of Things infrastructure: classification, challenges, and future work. In International

Conference on Internet of Things as a Service, pages 11-18. Springer, 2017.

Carlos Pereira and Ana Aguiar. Towards efficient mobile M2M communications: Survey

and open challenges. Sensors, 14(10):19582-19608, 2014.

Zheng Yan, Peng Zhang, and Athanasios V Vasilakos. A survey on trust management for

Internet of Things. Journal of network and computer applications, 42:120-134, 2014.

MA Rajan, P Balamuralidhar, KP Chethan, and M Swarnahpriyaah. A self-reconfigurable
sensor network management system for Internet of Things paradigm. In 2011 International

Conference on Devices and Communications (ICDeCom), pages 1-5. IEEE, 2011.

Debasis Bandyopadhyay and Jaydip Sen. Internet of Things: Applications and challenges

in technology and standardization. Wireless personal communications, 58(1):49-69, 2011.

Komal Batool and Muaz A Niazi. Modeling the Internet of Things: a hybrid modeling ap-
proach using complex networks and agent-based models. Complex Adaptive Systems Mod-

eling, 5(1):1-19, 2017.

Gabriele D’Angelo, Stefano Ferretti, and Vittorio Ghini. Modeling the Internet of Things: a
simulation perspective. In 2017 International Conference on High Performance Computing

& Simulation (HPCS), pages 18-27. IEEE, 2017.

Gabor Kecskemeti, Giuliano Casale, Devki Nandan Jha, Justin Lyon, and Rajiv Ranjan.
Modelling and simulation challenges in Internet of Things. IEFE cloud computing, 4(1):

62-69, 2017.

Bibliographie XX

[50]

[55]

[61]

[62]

Robert France and Bernhard Rumpe. Model-driven development of complex software: A

research roadmap. In Future of Software Engineering (FOSE’07), pages 37-54. IEEE, 2007.

Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven software engineering in

practice. Synthesis lectures on software engineering, 3(1):1-207, 2017.
Richard Soley et al. Model driven architecture. OMG white paper, 308(308):5, 2000.

Alan W Brown. Model driven architecture: Principles and practice. Software and systems

modeling, 3(4):314-327, 2004.

Tomaz Kosar, Nuno Oliveira, Marjan Mernik, Varanda Jodao Maria Pereira, Matej Crepinsek,
Cruz Daniela Da, and Rangel Pedro Henriques. Comparing general-purpose and domain-
specific languages: An empirical study. Computer Science and Information Systems, 7(2):

24'7-264, 2010.

Ankica Bariic, Vasco Amaral, and Miguel Goulao. Usability evaluation of domain-specific
languages. In 2012 FEighth International Conference on the Quality of Information and

Communications Technology, pages 342-347. IEEE, 2012.
Benoit Combemale. Ingénierie dirigée par les modeles (IDM)—état de l'art. 2008.

OMG. Object Constraint Language (OCL), [Online]. Available: http://www.omg.org/

spec/0CL/| [Accessed June-2022].

Eclipse Sirius, [Online|. Available: https://www.eclipse.org/sirius/ [Accessed June-

2022].
Xtext, [Online]. Available: https://eclipse.org/Xtext/ [Accessed June-2022].

Nelly Bencomo, Robert B France, Betty HC Cheng, and Uwe Amann. Models@ run. time:

foundations, applications, and roadmaps, volume 8378. Springer, 2014.

Heather J Goldsby and Betty HC Cheng. Automatically generating behavioral models of
adaptive systems to address uncertainty. In International Conference on Model Driven

Engineering Languages and Systems, pages 568-583. Springer, 2008.

Ali Arsanjani. Service-oriented modeling and architecture. IBM developer works, 1:15, 2004.

http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
https://www.eclipse.org/sirius/
https://eclipse.org/Xtext/

Bibliographie xxi

[63]

[66]

[67]

[70]

Antonio Cicchetti, Federico Ciccozzi, Silvia Mazzini, Stefano Puri, Marco Panunzio, Alessan-
dro Zovi, and Tullio Vardanega. CHESS: a model-driven engineering tool environment for
aiding the development of complex industrial systems. In Proceedings of the 27th IEEE/ACM

International Conference on Automated Software Engineering, pages 362-365, 2012.

David Basin, Jiirgen Doser, and Torsten Lodderstedt. Model driven security: From UML
models to access control infrastructures. ACM Transactions on Software Engineering and

Methodology (TOSEM), 15(1):39-91, 2006.

Kleanthis Thramboulidis and Foivos Christoulakis. UML4IoT—A UML-based approach to
exploit IoT in cyber-physical manufacturing systems. Computers in Industry, 82:259 — 272,

2016.

Open Mobile Alliance (OMA), “Lightweight Machine to Machine Technical Spec-
ification: Core', Approved Version: 1.1.1 - 2019 06 17, [Online]. Available:
http://www.openmobilealliance.org/release/LightweightM2M/V1 1 1-20190617-A/

OMA-TS-LightweightM2M_Core-V1_1 1-20190617-A.pdf| [Accessed June-2022].

Federico Ciccozzi and Romina Spalazzese. MDEA4IoT: supporting the internet of things
with model-driven engineering. In International Symposium on Intelligent and Distributed

Computing, pages 67-76. Springer, 2016.

Action Language For Foundational UML - ALF, [Online|. Available: https://www.omng.

org/spec/ALF/| [Accessed June-2022).

Ferry Pramudianto, Carlos Alberto Kamienski, Eduardo Souto, Fabrizio Borelli, Lucas L
Gomes, Djamel Sadok, and Matthias Jarke. IoT link: An Internet of Things prototyping
toolkit. In 2014 IEEE 11th Intl Conf on Ubiquitous Intelligence and Computing and 2014
IEEFE 11th Intl Conf on Autonomic and Trusted Computing and 2014 IEEE 14th Intl Conf on
Scalable Computing and Communications and Its Associated Workshops, pages 1-9. IEEE,

2014.

C.M. de Farias, I.C. Brito, L. Pirmez, F.C. Delicato, P.F. Pires, T.C. Rodrigues, I.L. dos

Santos, L.F.R.C. Carmo, and T. Batista. COMFIT: A development environment for the

http://www.openmobilealliance.org/release/LightweightM2M/V1_1_1-20190617-A/OMA-TS-LightweightM2M_Core-V1_1_1-20190617-A.pdf
http://www.openmobilealliance.org/release/LightweightM2M/V1_1_1-20190617-A/OMA-TS-LightweightM2M_Core-V1_1_1-20190617-A.pdf
https://www.omg.org/spec/ALF/
https://www.omg.org/spec/ALF/

Bibliographie xxii

[75]

[76]

[78]

Internet of Things. Future Generation Computer Systems, 75:128-144, 2017. doi: 10.1016/

j.future.2016.06.031.

J.C. Kirchhof, B. Rumpe, D. Schmalzing, and A. Wortmann. MontiThings: Model-Driven
Development and Deployment of Reliable IoT Applications. Journal of Systems and Soft-

ware, 183, 2022. doi: 10.1016/j.jss.2021.111087.

Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. Montiarc-architectural modeling of

interactive distributed and cyber-physical systems. arXiv preprint arXiv:1409.6578, 2014.

Manfred Broy and Ketil Stelen. Specification and development of interactive systems: focus

on streams, interfaces, and refinement. Springer Science & Business Media, 2012.

Hendrik Kausch, Mathias Pfeiffer, Deni Raco, and Bernhard Rumpe. MontiBelle-Toolbox
for a model-based development and verification of distributed critical systems for compliance

with functional safety. In AIAA Scitech 2020 Forum, page 0671, 2020.

Dimitris Soukaras, Pankesh Patel, Hui Song, and Sanjay Chaudhary. IoTSuite: a tool-
suite for prototyping Internet of Things applications. In The 4th International Workshop
on Computing and Networking for Internet of Things (ComNet-IoT), co-located with 16th

International Conference on Distributed Computing and Networking (ICDCN), page 6, 2015.

P. Patel and D. Cassou. Enabling high-level application development for the Internet of
Things. Journal of Systems and Software, 103:62-84, 2015. ISSN 01641212 (ISSN). doi:

10.1016/j.j88.2015.01.027. Publisher: Elsevier Inc.

Felicien Thirwe, Davide Di Ruscio, Silvia Mazzini, and Alfonso Pierantonio. Towards a mod-
eling and analysis environment for industrial loT systems. arXiv preprint arXiv:2105.14136,

2021.

Mohammad Sharaf, Mai Abusair, Rami Eleiwi, Yara Shana’a, Ithar Saleh, and Henry Muc-
cini. Modeling and Code Generation Framework for IoT. In Pau Fonseca i Casas, Maria-
Ribera Sancho, and Edel Sherratt, editors, System Analysis and Modeling. Languages, Meth-
ods, and Tools for Industry 4.0, Lecture Notes in Computer Science, pages 99-115, Cham,

2019. Springer International Publishing. ISBN 978-3-030-30690-8.

Bibliographie xxiii

[79]

[80]

[84]

[85]

[87]

[88]

I. Berrouyne, M. Adda, J.-M. Mottu, and M. Tisi. A Model-Driven Methodology to Accel-
erate Software Engineering in the Internet of Things. IEEE Internet of Things Journal, 9

(20):19757-19772, 2022. doi: 10.1109/JI0T.2022.3170500.

L. Burgueno, J. Boubeta-Puig, and A. Vallecillo. Formalizing Complex Event Processing

Systems in Maude. IEEE Access, 6:23222-23241, 2018.

Gianpaolo Cugola and Alessandro Margara. Processing flows of information: From data

stream to complex event processing. ACM Computing Surveys (CSUR), 44(3):1-62, 2012.

P. C. Olveczky and J. Meseguer. Semantics and Pragmatics of Real-Time Maude. Higher-

Order and Symbolic Computation, 20(1-2):161-196, 2007. Publisher: Springer.

Ajay Krishna and Gwen Salaiin. Business process models for analysis of industrial ToT
applications. In 11th International Conference on the Internet of Things, pages 102-109,

2021.

Sofia Abbas, El Hillali Kerkouche, Khaled Khalfaoui, and Allaoua Chaoui. Combined use of
PBMN and rewriting logic for specification and analysis of IoT applications. In International
Symposium on Modelling and Implementation of Complex Systems, pages 62-75. Springer,

2023.

Francisco Duran, Ajay Krishna, Michel Le Pallec, Radu Mateescu, and Gwen Salatin. Mod-
els and analysis for user-driven reconfiguration of rule-based IoT applications. Internet of

Things, 19:100515, 2022.

David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Frédéric Lang, Christine
McKinty, Vincent Powazny, Wendelin Serwe, and Gideon Smeding. Reference manual of the

LNT to LOTOS translator, 2018.

Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. CADP 2011: a
toolbox for the construction and analysis of distributed processes. International Journal on

Software Tools for Technology Transfer, 15(2):89-107, 2013.

Mozilla, WebThings, [Online]. Available: https://iot.mozilla.org/| [Accessed June-

2022].

https://iot.mozilla.org/

Bibliographie xxiv

[89]

[94]

[95]

Bruno Costa, Paulo F. Pires, Flavia Coimbra Delicato, Wei Li, and Albert Y. Zomaya. De-
sign and Analysis of IoT Applications: A Model-Driven Approach. In 2016 IEEE 1jth Intl
Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intel-
ligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber
Science and Technology Congress, DASC/PiCom/DataCom/CyberSciTech 2016, Auckland,

New Zealand, August 8-12, 2016, pages 392-399. IEEE Computer Society, 2016.

Martin Bauer, M Boussard, N Bui, F Carrez, C Jardak, J De Loof, C Magerkurth, S Meiss-
ner, A Nettstriter, A Olivereau, et al. Deliverable D1. 5—Final architectural reference

model for the 10T v3. 0. Internet of things architecture (I0T-A), 2013.

Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore,
Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An opensource tool
for symbolic model checking. In International Conference on Computer Aided Verification,

pages 359-364. Springer, 2002.

S. Xu, W. Miao, T. Kunz, T. Wei, and M. Chen. Quantitative Analysis of Variation-Aware
Internet of Things Designs Using Statistical Model Checking. In 2016 IEEE International
Conference on Software Quality, Reliability and Security (QRS), pages 274-285, August

2016.

Alexandre David, Kim G Larsen, Axel Legay, Marius Mikucionis, and Danny Bggsted
Poulsen. Uppaal SMC tutorial. International Journal on Software Tools for Technology

Transfer, 17(4):397-415, 2015.

Flavio Oquendo. Formally Describing Self-organizing Architectures for Systems-of-Systems
on the Internet-of-Things. In Carlos E. Cuesta, David Garlan, and Jennifer Pérez, edi-
tors, Software Architecture - 12th Furopean Conference on Software Architecture, ECSA
2018, Madrid, Spain, September 24-28, 2018, Proceedings, volume 11048 of Lecture Notes

in Computer Science, pages 20-36. Springer, 2018.

Valdemar Vicente Graciano Neto. Validating emergent behaviours in systems-of-systems

through model transformations. In SRC@ MoDELS, 2016.

Bibliographie XXV

[96]

[97]

[100]

[101]

[102]

103]

[104]

[105)

W. Tang, H. Feng, K. Hisazumi, and A. Fukuda. A Verification Method for Security and
Safety of IoT Applications through DSM Language and Lustre. In ACM International

Conference Proceeding Series, pages 166-170, 2020. doi: 10.1145/3388176.3388211.

Eclipse Modelling Framework (EMF), [Online]. Available: |https://www.eclipse.org/

modeling/emf/ [Accessed June-2022].

ThingML open-source project, [Online]. Available: https://github.com/TelluloT/

ThingML [Accessed June-2022].

Blink specification, [Online|. Available: https://github.com/TelluloT/ThingML/blob/
master/org.thingml.samples/src/main/thingml/samples/blink.thingml [Accessed

June-2022].

Paulo Eduardo Papotti, Antonio Francisco do Prado, Wanderley Lopes de Souza, Car-
los Eduardo Cirilo, and Luis Ferreira Pires. A quantitative analysis of model-driven code
generation through software experimentation. In International Conference on Advanced

Information Systems Engineering, pages 321-337. Springer, 2013.
Tellu , [Online]. Available: https://tellu.no/ [Accessed June-2022].

Brice Morin, Franck Fleurey, Knut Eilif Husa, and Olivier Barais. A Generative Middleware
for Heterogeneous and Distributed Services. In 19th International ACM SIGSOFT Sym-
posium on Component-Based Software Engineering, CBSE 2016, Venice, Italy, April 5-8,

2016, pages 107-116. IEEE Computer Society, 2016.

Moez Krichen. Contributions to model-based testing of dynamic and distributed real-time

systems. PhD thesis, Ecole Nationale d’Ingénieurs de Sfax (Tunisie), 2018.

Adel Bouhoula, Jean-Pierre Jouannaud, and José Meseguer. Specification and proof in

membership equational logic. Theoretical Computer Science, 236(1-2):35-132, 2000.

Manuel Clavel, Francisco Duran, Steven Eker, Santiago Escobar, Patrick Lincoln, Narciso
Marti-Oliet, José Meseguer, and C Talcott. Maude manual (version 3.1). SRI Interna-
tional University of Illinois at Urbana-Champaign, 2020. URL http://maude.lcc.unma.

es/maude31-manual-html/maude-manual . htmll

https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://github.com/TelluIoT/ThingML
https://github.com/TelluIoT/ThingML
https://github.com/TelluIoT/ThingML/blob/master/org.thingml.samples/src/main/thingml/samples/blink.thingml
https://github.com/TelluIoT/ThingML/blob/master/org.thingml.samples/src/main/thingml/samples/blink.thingml
https://tellu.no/
http://maude.lcc.uma.es/maude31-manual-html/maude-manual.html
http://maude.lcc.uma.es/maude31-manual-html/maude-manual.html

Bibliographie xxvi

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

114] .

[115]

[116]

José Meseguer. Rewriting logic and Maude: a wide-spectrum semantic framework for object-
based distributed systems. In International Conference on Formal Methods for Open Object-

Based Distributed Systems, pages 89-117. Springer, 2000.

Alberto Verdejo and Narciso Marti-Oliet. Executable structural operational semantics in
Maude. The Journal of Logic and Algebraic Programming, 67(1-2):226-293, 2006. Publisher:

Elsevier.

Francisco Duran, Steven Eker, Santiago Escobar, Narciso Marti-Oliet, José Meseguer, Rubén
Rubio, and Carolyn Talcott. Programming and symbolic computation in Maude. Journal

of Logical and Algebraic Methods in Programming, 110:100497, 2020.

José Meseguer. Membership algebra as a logical framework for equational specification. In

International Workshop on Algebraic Development Techniques, pages 18-61. Springer, 1997.

Gordon D Plotkin. A structural approach to operational semantics. 1981. Publisher:

Computer Science Department, Aarhus University Denmark.

Traian Florin Serbanuta, Grigore Rosu, and José Meseguer. A rewriting logic approach
to operational semantics. Information and Computation, 207(2):305-340, 2009. Publisher:

Elsevier.

Matthew Hennessy. The semantics of programming languages: an elementary introduction

using structural operational semantics. John Wiley & Sons, 1990.

Gilles Kahn. Natural semantics. In Annual symposium on theoretical aspects of computer

science, pages 22-39. Springer, 1987.

HEADS-project, [Online|. Available: https://github.com/HEADS-project [Accessed
June-2022].
. HEADS research project, [Online|. Available: https://cordis.europa.eu/project/id/

611337| [Accessed June-2022].

PingPong, [Online|. Available: https://github.com/HEADS-project/training/tree/

master/1.ThingML_Basics/2.PingPong/| [Accessed June-2022].

https://github.com/HEADS-project
https://cordis.europa.eu/project/id/611337
https://cordis.europa.eu/project/id/611337
https://github.com/HEADS-project/training/tree/master/1.ThingML_Basics/2.PingPong/
https://github.com/HEADS-project/training/tree/master/1.ThingML_Basics/2.PingPong/

Bibliographie xxvii

[117] Eclipse modeling project (EMP), [Online]. Available: http://www.eclipse.org/

modeling/| [Accessed June-2022].

[118] Vladimir Viyovié¢, Mirjam Maksimovi¢, and Branko Perisi¢. Sirius: A rapid development of
DSM graphical editor. In IEEE 18th International Conference on Intelligent Engineering

Systems INES 2014, pages 233-238. IEEE, 2014.

[119] Lorenzo Addazi and Federico Ciccozzi. Blended graphical and textual modelling for UML

profiles: A proof-of-concept implementation and experiment. Journal of Systems and Soft-

ware, 175:110912, 2021.

[120] José Meseguer and Grigore Rosu. The rewriting logic semantics project: A progress report.

Information and Computation, 231:38-69, 2013.

http://www.eclipse.org/modeling/
http://www.eclipse.org/modeling/

APPENDIX A

A.1 Abstract syntax for the ThingML action language

1. Syntactic categories

A € Action

e € Exp

be € Bexp

v € Val

bv € BVal

vl S ValList

T € Var

bx € Buar

xl € VarList

op € Op

rop € ROp

bop € Bop

v € Val

bv € BVal

] € Status

P € Portld

m € Msgld

msg € Msg
2. Definitions

e RE v]z|eope| —e

op RE +| = | x|/ |rem

rop n= =|!l=]<|>|=|=
be n= bu | bz | Not be' | be bop be' | e rop €' | be = be' | be ! = be'
bop RE And | Or

bu n= true | false

vl n= vl bv |l ol

xl BE x| bz |2l ol

msg RE m() | m(vl) | m(xl)

A = zwi=e| A A" | If be Then A Else A' | If be Then A | While be Do A | x +

+|xz——=|p!msg| goto(s)

xxviii

Appendix A xxix

A.2 Evaluation semantics for expressions

Val__Rule —
(v,st) =>4 v

V. Rule :
ar—e (7, 5t) =4 st(x)

ValList_ Rule : _
(vl, st) = 4 vl

VarList_ Rule :
arist_hue (xl, st) = 4 st(xl)

(e,st)y =>4 v

<e'7 st) =4 v

(e op €', st) =4 Ap (op,v,?')

<est>>40
<_ 6,815) =A Ap(—,U)

Bval_Rule : m
B Rule :
var_huie (bx, st) =g st(bx)
(be, st) =p bv
1 1
BOp_ Rule : (b’ 5t) = bu
-) (be bop be', st) = Ap (bop, bv, bv')
< be, st >=>p bu
t_ Rule :
ot_Hue ot be, st =g Ap(Not, bv
N (Not b Ap(Not, bv)
(6, St> =AU
1 I
ROp_ Rule : (. st) = v
- ' (e rop €, st) = Ap (rop,v,0")
(be, st) =g b
1 1
BEqu__Rule : <be78t> =50
-) (be = be,st) = Ap(=,bv,bv')
(be, st) =p bv
1 1
BNEqu_ Rule : (be i 8t> = b

(be ! = be',st) =c Ap (! =, bv, bv'")

Appendiz A

XXX

A.3 Evaluation semantics for ThingML actions

Eff Rule :

Dec_ Rule :

Inc_ Rule :

Action_ Rule :

Goto_ Rule :

Send_ Rulel :

Send_ Rule2 :

Send_ Rule3 :

If Rulel :

If Rule2 :

While_Rulel :

While_ Rule2 :

(e,st) =>4 v

r = est)=pst|v/x

{ sty =pstv/a]

(x 1=z — 1,st) =4 st
(x ——,st) =p st

(z := 2 + 1,st) =4 st'

(x ++,st) =p st'

(A, st) =p st
<A',5t'> =p st

(A; A sty =p st"

(goto (s) , st) =p st[s]

{p ! msg (vl) ,st) =p stlmsg(vl)| - p]

(zl , st) =4 vl

(p ! msg (al) ,st) =p stlmsg(vl)| - p]

If Then_ Rulel :

If Then_ Rule2 :

(p!'msg () ,st) =p st[msg()| - p]

(be, st) =g true
(A, sty =p st
(If be Then A Else A',st) =p st'

(be, st) =5 false
(A',5t> =4 st'
(If be Then A Else A',st) = 4 st'

(be, st) = p true
(A, st) =p st
(If be Then A, st) =p st'

(be, st) =p false
(If be Then A,st) =p st

(be, st) = p true
(A ; While be Do A, st) =p st'
(While be Do A, st) =p st'

(be, st) =5 false
W hile be Do A, st) =p st
(;

APPENDIX B

B.1 The THINGML-CONVERSION module

The ThingML data types are mapped to Maude predefined sorts. For this, we define the module
THINGML-CONVERSION, which imports the predefined module CONVERSION and renames the

appropriate operators.

1 fmod THINGML-CONVERSION is

2 pr CONVERSION

3 * (--- Renamings in FLOAT

4 sort Float to FLoat ,

5 sort String to STring ,

6 sort Char to CHar , sort FindResult to FIndResult ,
7 op abs : Float -> Float to absF ,

8 op notFound : -> FindResult to NotFound ,
9 op char : Nat ~> Char to CHar ,

10 op —_ : Float -> Float to -F_,

11 op _+_ : Float Float -> Float to _+F_,
12 op _-—_ : Float Float -> Float to _-F_,
13 op _/_ : Float Float -> Float to _/F_,
14 op _*_ : Float Float -> Float to _*F_,
15

16 op min : Float Float -> Float to minF,
17 op max : Float Float -> Float to maxF,
18 op _rem_ : Float Float -> Float to _remF_,
19 op _"_ : Float Float -> Float to _"F_,
20 op _<_ : Float Float -> Bool to _<F_,
21 op _<=_ : Float Float -> Bool to _<=F_,
22 op _>_ : Float Float -> Bool to _>F_,
23 op _>=_ : Float Float -> Bool to _>=F_,
24 op floor : Float -> Float to floorF,

25 op ceiling : Float -> Float to ceilingF,
26

27 --- Renamings in STRING

28 op _<_ : String String -> Bool to _ltt_,
29 op _<=_ : String String -> Bool to _leq_,
30 op _>_ : String String -> Bool to _gtt_,
31 op _>=_ : String String -> Bool to _geq_,
32 op _+_ : String String -> String to _++_,
33 op float : String ~> Float to string2float)
34 endfm

B.2 The THINGML-EXP-SYNTAX module

In the functional module THINGML-EXP-SYNTAX, we have defined the syntax of arithmetic
and logical expressions de the ThingML language. We have declared new arithmetic operators

corresponding to Maude’s predefined operators (with the same properties).

XxXX1

Appendiz B

xxxii

35
36
37
38
39
40

41
42
43
44
45
46
47
48

49
50
51
52
53
54
55

fmod THINGML-EXP-SYNTAX is
including THINGML-CONVERSION .

sorts Exp BExp Var BVar Op BOp ROp ExpList VaList VarList Value Variable .

subsorts Bool Int Nat FLoat STring < Value .

subsorts Var BVar < Variable .
subsort Var < Exp .

subsorts Int Nat FLoat STring < Exp .
subsort BVar < BExp .

subsort Bool < BExp .

--- List of expressions
subsort Exp BExp < ExpList
op emptyExpList : -> ExpList
oP _,_

--— List of values

subsort Value < ValList .
op emptyVaList : -> Valist
op _,_ :
subsort VaList < ExpList .

--- List of variables
subsort Variable < VarList
op emptyVarList : -> VarList
op _,_ :
subsort VarList < ExpList

"Or", and "not" operations corresponding to the "and" and

: ExpList ExpList -> ExpList [assoc prec 30]

Valist VaList -> Valist [assoc prec 30]

VarList VarList -> VarList [assoc prec 30]

These operators are used by the function Ap

"or" operations of BOOL

ops .+ .x .- ./ .rem : -> Op .

ops .= .l!= .< .> <= . >=: -> ROp .

ops And Or : -> BOp .

--- "And",

module

--- They keep the same properties

op _And_ : BExp BExp -> BExp [ctor assoc comm prec 55]
op _Or_ : BExp BExp -> BExp [ctor assoc comm prec 59]
op Not_ : BExp -> BExp [ctor prec 53]

--- New arithmetic operators corresponding to Maude's predefined operators (with the same

properties)

op .-_ : Exp -> Exp [ctor prec 53]

op _.+_ : Exp Exp -> Exp [ctor gather (E

op _.-_ : Exp Exp -> Exp [ctor gather (E

op _.*_ : Exp Exp -> Exp [ctor gather (E

op _./_ : Exp Exp -> Exp [ctor gather (E

op _.rem_ : Exp Exp -> Exp [ctor gather (E

--- New relational operators corresponding to

properties)

op _.=_ : Exp Exp -> BExp [ctor prec

op _.!=_ : Exp Exp -> BExp [ctor prec

op _.<_ : Exp Exp -> BExp [ctor prec 37]

op _.>_ : Exp Exp -> BExp [ctor prec 37]

op _.<=_ : Exp Exp -> BExp [ctor prec 37]

op _.>=_ : Exp Exp -> BExp [ctor prec 37]
endfm

e) prec 33]
e) prec 33]
e) prec 31]
e) prec 31]
e) prec 31]

Maude's predefined operators (with the same

51 poly (1 2)]
51 poly (1 2)]

B.3 The THINGML-SYNTAX module

The THINGML-SYNTAX module defines the syntax of the ThingML constructs. It defines the

syntax of Things, messages, ports, states, actions, events and configurations (instances and con-

nectors).

Appendiz B

XXX

o

=

—e

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

mod

endm

THINGML-SYNTAX is
including CONFIGURATION .
including THINGML-EXP-SYNTAX

--- Thing
sorts Thingld Statement Store Action .
subsort ThingId < Cid . --- Cid : Class identifiers

subsorts Bool Int Nat FLoat STring < Statement

subsort Store < Statement

--- Declaration of the environment attribute

op environment:_ : Statement -> Attribute [ctor gather (&)]
op <_,_> : Action Store -> Statement

op <_,_> : Exp Store -> Statement

op <_,_> : BExp Store -> Statement [ditto]

--— Message

sorts Msgld MsgSet

op _~ () : Msgld -> Msg [ctor]

op _~(_") : MsgId ExpList -> Msg [ctor]

subsort Msg < MsgSet

op noMsg : -> MsgSet [ctor]

op _;_ : MsgSet MsgSet -> MsgSet [ctor comm assoc id: noMsg]
op parmsg : Msgld -> VarList

--- Ports
sorts Port PortId PortName
subsort Port < Cid . --- Cid : Class identifiers

op _._ : Instanceld PortId -> PortName [ctor]

subsort PortName < 0id . --- 0id : Object identifiers
--- Declaration of port classes

ops ProvidedPort RequiredPort InternalPort : -> Port
--- class ProvidedPort | buffer: MsgSet

--- class RequiredPort | buffer: MsgSet

--- class InternalPort | buffer: MsgSet

--- Declaration of the buffer attribute

op buffer:_ : MsgSet -> Attribute [ctor gather (&)]

--- State

sorts Stateld CompositeStateld AtomicStateId .

subsorts CompositeStateId AtomicStateld < Stateld .

sort Status

subsorts AtomicStateId < Status

op _~(_") : CompositeStateld Status -> Status [ctor]

op noState : -> Status [ctor]

op _Il_ : Status Status -> Status [ctor assoc id: noState]
---sorts Sessionld RegionId .

---subsort SessionlId RegionId < CompositeStateld

--- Action language
sort BlockAction .

op noAction : -> Action .
op _:=_ : Var Exp -> Action [prec 39]
op _;_ : Action Action -> Action [assoc prec 40]

op If_Then_Else_ : BExp Action Action -> Action [prec 50]
op If_Then_ : BExp Action -> Action [prec 50]
op While_Do_ : BExp Action -> Action [prec 60]

op _!_ : Portld Msg -> Action [prec 60]
op _++ : Var -> Action [prec 39]
op _—- : Var -> Action [prec 39]

op goto™(_") : Status -> Action [prec 39] .
op print”(_") : STring -> Action [prec 39] .
op do_end : Action -> BlockAction [prec 39]

--- Event

sort Event

op _7?_ : PortId MsglId -> Event

op noEvent : -> Event

--- Configuration

sorts Instanceld .

subsort Instanceld < 0id . --- 0id : Object identifier
sort Connector

subsort Connector < Object

op connector | client:_--> server:_ : Object Object -> Connector [ctor]

Appendiz B XXXiv

B.4 The THINGML-STORE module

The THINGML-STORE imports the THINGML-SYNTAX module and implements the Store con-
cept in Maude. It considers all the information of the thing, which allows for storing and managing
the thing’s status, messages, properties, parameters, and events. The THINGML-STORE module
includes operators and equations that ensure different functions such as reading, writing, and

modifying variables (arithmetic, Boolean, and string), status, messages, and events.

1 mod THINGML-STORE is

2 including THINGML-SYNTAX .

3

4 op mt : -> Store . --- empty store

5 --- 8S = Singleton Store

6 --- “(_=_") : use to associate a value to their variable

7 op “(_=_7) : Variable Value -> Store [prec 20] . --- SS of a variable (For properties and
parameters)
op “(_7) : Event -> Store [prec 20] . -—- SS of a event
op ~(_Via_") : Msg PortId -> Store [prec 20] . --- SS of a message

10 op ~(status:_") : Status -> Store [prec 20] . --- SS of the status

11 op _;_ : Store Store -> Store [assoc id: mt prec 30] . --- Union of SSs

12 --- The next operators are used to add or update the SEs of the:

13 op _"[_/_"]1 : Store Value Variable -> Store [prec 35] . --- variable

14 op _~[_/_"]1 : Store ValList VarList -> Store [prec 35] . --- list of variable

15 op _~[_I-_"1 : Store Msg PortId -> Store [prec 36] . --- massage

16 op _~[_7] : Store Status -> Store [prec 35] . --- status

17 --— _~(_7) : returns a value (or a list) of the variable (or a list)

18 op _~(_") : Store Variable -> Value .

19 op _~(_") : Store VarList -> Valist .

20 --- The next part of the module represents the implementation of the operations defined above.

21 op remove : Store Variable -> Store .

22 var m : Msg . var v : Value . vars s s' : Status .

23 var nl : Valist . var st : Store . var p : PortlId .

24 var x1 : VarList . var ev : Event . vars x x' : Variable .

25 eq st [v / x] = remove(st, x) ; (x =v)

26 eq remove(mt, x) = mt .

27 ceq remove((x = v) ; st, x') = st if x == x'

28 ceq remove((x = v) ; st, x') = (x = v) ; remove(st,x') if x =/= x'

29 --- eq remove ((x =v) ; st, x) = st .

30 --- eq remove((x = v) ; st, x') = (x = v) ; remove(st,x') [owise]

31 eq st [v, nl / x, x11 = (stlv / x]1) [nl / x1]

32 eq st [emptyVarList / emptyValist] = st .

33

34 eqst [m|-p]l=st; (mViap)

35 eq ((m Via p) ; st)(x') = st(x')

36 eq remove((m Via p) ; st, x') = (m Via p) ; remove(st,x')

37 eq (status: s') ; st [s] = (status: s' || s) ; st .

38 eq ((status: s) ; st)(x') = st(x')

39 eq ((ev) ; st)(x') = st(x') .

40 eq remove((status: s) ; st, x') = (status: s) ; remove(st,x')

41

42 ceq (((x=v) ; st)(x') =v if x == x' .

43 ceq ((x=v) ; st)(x') = st(x') if x =/= x'

44 -——eq ((x=v) ;st)x =v .

45 -———eq ((x=v) ; st)(x') = st(x') [owisel

46

47 eq st(emptyVarList) = emptyValist .

48 eq ((status: s) ; st)(xl) = st(xl)

49 eq ((ev) ; st)(xl) = st(xl)

50 eq remove((ev) ; st, x') = (ev) ; remove(st,x')

51 eq ((m Via p) ; st)(xl) = st(xl)

52 eq st(x , x1) = ((st(x)) , (st(x1)))

53 endm

Appendiz B XXXV

B.5 The THINGML-AP module

The functional module AP defines an operation Ap that enables the application of a binary
operator to two already evaluated arguments. It allows switching between the defined operations
and the corresponding Maude’s predefined operations. The latter enables the execution of the

arithmetic and logical operations concretely.

1 fmod THINGML-AP is

2 including THINGML-EXP-SYNTAX .

3

4 op Ap : Op Value Value -> Value

5 op Ap : ROp Value Value -> Bool

6 op Ap : BOp Bool Bool -> Bool

7 vars bv bv' : Bool .

8 O,
9 --- ---- Int & Nat

10 s
11 eq Ap(.+,v:Int,v':Int) = v:Int + v':Int

12 eq Ap(.*,v:Int,v':Int) = v:Int * v':Int

13 eq Ap(.-,v:Int,v':Int) = v:Int - v':Int

14 eq Ap(.rem,v:Int,v':Int) = v:Int rem v':Int

15 eq Ap(./,v:Rat,v':Rat) = v:Rat / v':Rat

16 eq Ap(.<,v:Int,v':Int) = wv:Int < v':Int

17 eq Ap(.>,v:Int,v':Int) = v:Int > v':Int

18 eq Ap(.<=,v:Int,v':Int) = v:Int <= v':Int

19 eq Ap(.>=,v:Int,v':Int) = v:Int >= v':Int

20 T T T T T T T T T T oo
21 --- —---- FLoat

22 s
23 eq Ap(.+,v:FLoat,v':FLoat) = v:FLoat +F v':FLoat

24 eq Ap(.*,v:FLoat,v':FLoat) = v:FLoat *F v':FLoat

25 eq Ap(.-,v:FLoat,v':FLoat) = v:FLoat -F v':FLoat

26 eq Ap(.rem,v:FLoat,v':FLoat) = v:FLoat remF v':FLoat

27 eq Ap(./,v:FLoat,v':FLoat) = v:FLoat /F v':FLoat

28 eq Ap(.<,v:FLoat,v':FLoat) = v:FLoat <F v':FLoat

29 eq Ap(.>,v:FLoat,v':FLoat) = v:FLoat >F v':FLoat

30 eq Ap(.<=,v:FLoat,v':FLoat) = v:FLoat <=F v':FLoat

31 eq Ap(.>=,v:FLoat,v':FLoat) = v:FLoat >=F v':FLoat

32 ettt e e S L e
33 --- ---- String

34 T T T T T T
35 eq Ap(.+,v:STring,v':STring) = v:8Tring ++ v':STring

36 eq Ap(.<,v:STring,v':STring) = v:8Tring 1ltt v':STring

37 eq Ap(.>,v:STring,v':STring) = v:8Tring gtt v':STring

38 eq Ap(.<=,v:STring,v':STring) = v:STring leq v':STring

39 eq Ap(.>=,v:STring,v':STring) = v:STring geq v':STring

40 s
41 --- --—— All data types

42 s
43 eq Ap(.=,v:Value,v':Value) = v:Value == v':Value

44 eq Ap(.!=,v:Value,v':Value) = v:Value =/= v':Value

45 T T T T T T T T T T oo
46 --- —--—- Bool

47 T T T T T T T T T T T oo
48 eq Ap(And,bv,bv') = bv and bv'

49 eq Ap(Or,bv,bv') = bv or bv'

50 T T T T T T T oo
51 -—-- -—--- Conversion RAt2FLoat

52 e
53 var o : Op . var ro : ROp .

54 eq Ap(o,v:Rat,v':FLoat) = Ap(o,float(v:Rat),v':FLoat)
55 eq Ap(o,v:FLoat,v':Rat) = Ap(o,v:FLoat,float(v':Rat))
56 eq Ap(ro,v:Rat,v':FLoat) = Ap(ro,float(v:Rat),v':FLoat)
57 eq Ap(ro,v:FLoat,v':Rat) = Ap(ro,v:FLoat,float(v':Rat))
58 endfm

Appendiz B XXXVi

B.6 The THINGML-EXP-EVALUATION module

The THINGML-EXP-EVALUATION module implements the evaluation semantics of the arithmetic

and logical expression language.

1 mod THINGML-EXP-EVALUATION is

2 including THINGML-STORE .

3 including THINGML-AP .

4

5 var st : Store . var x : Variable var bx : BVar

6 vars e e' : Exp . vars be be' : BExp . vars v v' : Value

7 vars bv bv' : Bool . var x1 : VarList .

8 --- Value evaluation rule (for all value types = Bool Int Nat Float String)

9 rl [Value-R] 1 < v, st > = v .

10 --- Variable evaluation rule (for all variable types = Bool Int Nat Float String)

11 rl [Variable-R] : < x, st > => st(x)

12 -—-- Evaluation rule of variable list

13 rl [VarList-R] : < x1, st > => st(x1)

14

15 --- Evaluation rules for arithmetic operations (+ , - , * , / and rem)

16 crl [Add-R] : < e .+ e', st > => Ap(.+,v,v') if <e, st > =>v /\<e', st> =>v'
17 crl [Min-R] : <e .- e', st > => Ap(.-,v,v') if <e, st > =>v /\<e', st> =>yv'
18 crl [Mul-R] : <e .xe', st > => Ap(.*,v,v') if <e, st > =>v /\<e', st> =>v'
19 crl [Div-R] : < e ./ e', st > => Ap(./,v,v') if <e, st > =>v /\<e', st > =>yv'
20 crl [Rem-R] : < e .rem e', st> => Ap(.rem,v,v') if < e, st > =>v /\<e', st > =>v'
21

22 --- Evaluation rule for the - (unary minus) operator

23 crl [UMinus-R1] : < .- e , st > = -v if <e,st> = v /\ (v Int)

24 crl [UMinus-R2] : < .- e , st > = -Fv if <e, st> = v /\ v FLoat)

25

26 --- Evaluation rules for relational operations ==, I=, <, >, <=, >=)

27 crl [Equ-R] : < e .=e', st > => Ap(.=,v,v') if <e, st > =>v /\<e', st> =>v'
28 crl [NEq-R] : < e .l=e', st > => Ap(.!=,v,v') if < e, st > =v /\<e', st > = v'
29 crl [Low-R] : < e .<e', st > =>Ap(.<,v,v') if <e, st > =>v /\<e', st> =>v'
30 crl [Gre-R] : < e .>e', st > => Ap(.>,v,v') if < e, st > =>v /\<e', st > = v'
31 crl [LEq-R] : < e .<=e', st > => Ap(.<=,v,v') if < e, st > =>v /\<e', st> =>v'
32 crl [GEq-R] : < e .>=e', st > => Ap(.>=,v,v') if < e, st > =>v /\<e', st> =y
33

34 --- Evaluation rules for boolean operations (and, or, not, ==, !=)

35 crl [And-R] : < be And be',st > => Ap(And, bv, bv')if < be, st > => bv /\ < be', st > => bv'
36 crl [0r-R] : < be Or be',st > => Ap(Or, bv, bv') if < be, st > => bv /\ < be', st > => bv'
37 crl [EquB-R] : < be .= be',st > => Ap(.=, bv, bv') if < be, st > => bv /\ < be', st > => bv'
38 crl [NEquB-R]: < be .!= be',st > => Ap(.!=, bv, bv')if < be, st > => bv /\ < be', st > => bv'
39 crl [Not-R] < Not be, st > => not bv if < be, st > => bv

40 endm

B.7 The THINGML-ACTION-SEMANTICS module

The THINGML-ACTION-SEMANTICS module imports the THINGML-EXP-EVALUATION module

and implements the evaluation semantics of the action language.

mod THINGML-ACTION-SEMANTICS is
including THINGML-EXP-EVALUATION .

var x : Var var v : Value var e : Exp var be : BExp

VarList . var vl : ValList var m : Msgld var p : PortId
var T : Thingld . var I : Instanceld . vars A A' : Action var s : Status
vars st st' st'' : Store .

1
2
3
4
5 var x1 :
6
7
8

Appendiz B xxXVvii

9 --- Evaluation semantics for actions

10 crl [Eff-R] : <X :=e, st > => stlv / x] if < e, st > = v

11 crl [Dec-R] <x --, st > => st' if < x :=x .- 1, st > =>st'

12 crl [Inc-R 1] < x ++ , st > => st' if <x :=x .+1, st >=>st'

13 crl [Act-R] <A ; A, st> => st'' if <A, st> =>st'/\ <A, st'>=>st"'
14 crl [Send-R1i] <p!m(xl) , st >=>st [m(vl) |[-p] if < x1 , st > => vl

15

16 rl [Send-R2] <p ! m(vl) , st > => st [m(vl) |- p]

17 rl [Send-R3] <p!m(, st> => st [m() |-p]

18 rl [GoTo-R] : < goto(s) , st > => st[s]

19 rl [PrIntR] < print(v), st > => st .

20 rl [noAction] : < I : T | environment: st > => < I : T | environment: < noAction , st > > .
21

22 crl [If-Then-R1] : <If be Then A Else A', st> => st' if <be, st> => true /\ <A, st> => st'
23 crl [If-Then-R2] : <If be Then A Else A', st> => st' if <be, st> => false /\ <A', st> => st'
24 crl [If-R1] : < If be Then A , st > => st' if < be, st > => true /\ < A, st > => st'
25 crl [If-R2] < If be Then A , st > => st if < be, st > => false .

26 crl [Whil-R1] : < While be Do A, st > => st if < be, st > => false .

27 crl [Whil-R2] < While be Do A, st > => st' if < be, st > => true

28 /\ < A ; (While be Do A), st > => st'
29 endm

B.8 The THINGML-MSG-SEMANTICS module

The THINGML-MSG-SEMANTICS module implements the routing of messages between the sending

instance and the receiving instance.

1 mod THINGML-MSG-SEMANTICS is

2 including THINGML-ACTION-SEMANTICS .

3

4 var T : Thingld . var I : Instanceld . var A : Action

5 var Po : Portld . var P : PortName . vars st st' : Store

6 var MS : MsgSet . var 0 : Object . var M : Msg

7 var msgld : Msgld . var vl : Valist . var ATTS : AttributeSet

8

9 --- To move the messages from instance environment to the connector (client buffer)

10 rl [Env2CliBuff] : < I : T | environment: < A , st ; (M Via Po) ; st' > >

11 connector | client: < I . Po : RequiredPort | buffer: MS > --> server: 0

12 => < I :T| environment: < A , st ; st' > >

13 connector | client: < I . Po : RequiredPort | buffer: (MS ; M) > --> server: 0 .

14 --- To move the messages from instance environment to the connector (server buffer)

15 rl [Env2SerBuff] : < I : T | environment: < A , st ; (M Via Po) ; st' > >

16 connector | client: 0O --> server: < I . Po : ProvidedPort | buffer: MS >

17 => < I :T/| environment: < A , st ; st' > >

18 connector | client: 0 --> server: < I . Po : ProvidedPort | buffer: (MS ; M) > .

19 --- To move the messages from connector (server buffer) to instance environment (message with
parameters)

20 rl [BuffSer2EnvR1] : < I : T | environment: < A , st > >

21 connector | client: < I . Po : RequiredPort | ATTS >

22 --> server: < P : ProvidedPort | buffer: ((msgId (v1)) ; MS) >

23 => <I:T| environment: < A , (st [vl / (parmsg(msgId)) 1) ; (Po ? msgld) > >

24 connector | client: < I . Po : RequiredPort | ATTS >

25 -—> server: < P : ProvidedPort | buffer: MS >

26 --- To move the messages from connector (client buffer) to instance environment (message with
parameters)

27 rl [BuffCli2EnvR1] : < I : T | environment: < A , st > >

28 connector | client: < P : RequiredPort | buffer: ((msgId (vl1)) ; MS) >

29 d server: < I . Po : ProvidedPort | ATTS >

30 => <I: T| environment: < A , (st [vl / (parmsg(msgId)) 1) ; (Po 7 msgld) > >

31 connector | client: < P : RequiredPort | buffer: MS >

32 -—> server: < I . Po : ProvidedPort | ATTS >

33 --- To move the messages from connector (server buffer) to instance environment (message without
parameters)

34 rl [BuffSer2EnvR2] : < I : T | environment: < A , st > >

35 connector | client: < I . Po : RequiredPort | ATTS >

36 -=> server: < P : ProvidedPort | buffer: ((msgId ()) ; MS) >

Appendiz B XXXV

o
e
=y

37
38
39
40

41
42
43
44
45
46
47

=> <I:T| environment: < A , st ; (Po ? msgld) > >
connector | client: < I . Po : RequiredPort | ATTS >
-—=> server: < P : ProvidedPort | buffer: MS >
--- To move the messages from connector (client buffer) to instance environment (message without
parameters)
rl [BuffCli2EnvR2] : < I : T | environment: < A , st > >
connector | client: < P : RequiredPort | buffer: ((msgId ()) ; MS) >
-=> server: < I . Po : ProvidedPort | ATTS >
=> <I: T| environment: < A , st ; (Po ? msgld) > >
connector | client: < P : RequiredPort | buffer: MS >
-—> server: < I . Po : ProvidedPort | ATTS >

endm

.
I3
.

SR Glaal G ool @ UK e Saiee Slogez e Ble (T0T) btV o) dola]
e . dakiz Jlai) &Y sSssy rb;'&.ﬂl{ ozl Lnasy & Jeolsty Lilnte a8 Lz Ol s el o
O R e e AtV i) olada sk gl Jot)

s ThingML il &add oW plusiul dldy duad)l 411 oda o Cdall (MDE) #3504 sl
N oooels = il s Sl Galee) Cuge iVl Co) ol dn e asly UML &l sl
ol L ru;.;n Slogaad bt s 5N Ganl Colie a8 bt L dojlo oYY Je ThingML (5534
oda 3okt i) Bl g dlead U5 ojla] £ g 5 Ly dpul eV) Wl
B3le] Glate plastdl ThingML &l &3> o¥Y¥s woasd MDE Je 66 Gds Gy A %w
e 4B By oy ThingML &) gou; - el 52 psht W (i BLaYL . Maude Ly 2SI
& el LN L ThingML J 59 olsd) deols Zadss 03L8) £ U aall s Ly sl
A ol dauly Yoy

i 3sadl Luaigl g0 &) (HUSN Bole) Glate ¢ 33 Gl olsV i) s Lo Lo

Abstract: Internet of Things (IoT) systems are complex assemblies of components that collaborate
to achieve common goals. These components are based on different heterogeneous technologies and
communicate with each other using various communication protocols. This heterogeneity makes the
design and development of IoT applications a challenging issue. Diverse approaches based on Model-
Driven Engineering (MDE) have been proposed to overcome this major issue using suitable modeling
languages. ThingML is a promising UML profile for modeling IoT applications that aims to address
the challenges of heterogeneity. However, ThingML does not have rigorous semantics, which makes it
unsuitable for formal verification and analysis of system designs. It also lacks tools to test the generated
code before deploying it in IoT devices. In this thesis, we propose an MDE-based formal approach to define
a formal semantics for ThingML language using Rewriting Logic and its language Maude. In addition, we
develop a hybrid textual-graphical editor for the ThingML language and we present a simulation-based
approach to test the source code generated by the ThingML code generation framework. The proposed
approaches are illustrated through cose studies.

Key Words : Internet of Things, Formal verification, Rewriting logic, Maude language, Model Driven
Engineering.

Résumé: Les systémes de I'Internet des objets (IoT) sont des assemblages complexes de composants
qui collaborent pour atteindre des objectifs communs. Ces composants sont basés sur différentes tech-
nologies hétérogenes et communiquent entre eux a l'aide de divers protocoles de communication. Cette
hétérogénéité fait de la conception et du développement d’applications IoT un véritable défi. Diverses
approches basées sur I'Ingénierie Dirigée par les Modeles (IDM) ont été proposées pour surmonter ce prob-
leme majeur en utilisant des langages de modélisation appropriés. ThingML est un profil UML promet-
teur pour la modélisation des applications IoT qui vise a relever les défis de 'hétérogénéité. Cependant,
ThingML ne possede pas de sémantique rigoureuse, ce qui le rend inadapté a la vérification et a I’analyse
formelles des conceptions de systémes. Il manque également des outils pour tester le code généré avant
de le déployer dans les dispositifs IoT. Dans cette thése, nous proposons une approche formelle basée sur
I'IDM pour définir une sémantique formelle pour le langage ThingML en utilisant la logique de réécriture
et son langage Maude. En outre, nous développons un éditeur hybride textuel graphique pour le langage
ThingML et nous présentons une approche basée sur la simulation pour tester le code source généré par
le cadre de génération de code ThingML. Les approches proposées sont illustrées a travers des études de
cas.

Mots clés : Internet des Objets, Vérification formelle, Logique de réécriture, Langage Maude, Ingénierie
Dirigée par les Modéles.

	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Abstract
	General introduction
	Internet of Things: An overview
	Introduction
	Definitions
	Applications of IoT
	Smart homes
	Smart cities
	Energy
	Health
	Transport
	Manufacture
	Environment and agriculture

	Architecture of IoT
	Enabling technologies
	Object domain
	Network domain
	Middleware domain

	IoT key issues and challenges
	Standardization and interoperability
	Scalability and availability
	Security and privacy
	Management and self-configuration
	Modeling and simulation

	Conclusion

	Modeling of IoT systems
	Introduction
	Model-Driven Engineering (MDE)
	Meta-modeling
	Model transformation
	Model Driven Architecture
	Domain-Specific Modeling Language
	Abstract syntax
	Concrete syntax
	Semantics

	MDE to address the IoT development challenges
	Heterogeneity
	Large-scale and emergent properties
	Context awareness and uncertainty
	Dynamic discoverability of resources
	Reusability
	Security and trust

	MDE-based approaches for modeling IoT systems
	Approaches with code generators
	Approaches with formal verification tools
	Synthesis

	Conclusion

	The ThingML approach
	Introduction
	ThingML Domain-Specific Language
	Meta-model
	Thing
	The platform-independent action language
	State machine
	Configuration

	Code generation framework
	Lacks and limits of the ThingML approach
	Conclusion

	Rewriting Logic and Maude
	Introduction
	Verification techniques
	Test
	Simulation
	Formal verification techniques

	Rewriting Logic
	Rewrite theory
	Deduction rules

	Maude language
	Functional module
	System module
	Simulation and analysis in Maude
	Rewriting and search
	The Maude's LTL model-checker

	Executable operational semantics in Maude
	Syntax definition
	Big-step semantics

	Conclusion

	MDE-based formal approach
	Introduction
	General overview
	Formalization of ThingML constructs
	Thing
	Messages and ports
	Platform-independent language
	Expressions
	Action language

	State machine
	Configuration

	ThingML2Maude: A translator tool of ThingML models to Maude
	Case study
	Specification
	Transformation
	Simulation and analysis
	Rewriting
	Search
	Linear Temporal Logic Model Checking

	Conclusion

	A simulation-based MDE approach
	Introduction
	General overview
	Underlying technologies
	Eclipse Modeling Project (EMP)
	Eclipse Modeling Framework (EMF)
	Sirius Framework
	Xtext Framework

	Arduino platform
	Proteus software

	The hybrid graphical-textual modeling editor
	Xtext-based editor
	Sirius-based editor

	Case study
	Specification
	Code generation
	Compilation of the sketches
	Simulation

	Conclusion

	General conclusion
	Bibliography
	Appendix A
	Abstract syntax for the ThingML action language
	Evaluation semantics for expressions
	Evaluation semantics for ThingML actions
	Appendix B
	The THINGML-CONVERSION module
	The THINGML-EXP-SYNTAX module
	The THINGML-SYNTAX module
	The THINGML-STORE module
	The THINGML-AP module
	The THINGML-EXP-EVALUATION module
	The THINGML-ACTION-SEMANTICS module

	The THINGML-MSG-SEMANTICS module

