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لمساهمات في الأنظمة الديناميكية غير العاديةا  

 

 ملخص
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. اكلالشروط المثلى اللازمة لفئة واسعة من المصغرات المحلية في مثل هذه المش

راتيودوري يُخصص الموضوع الأول للاحتواءات مورو الشاملة المضطربة بمجموع تابع لك
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ة غير تم إعطاء تطبيقات في الدارات الكهربائيشكل استمرار مطلق.  وتتحرك على

ورية يتم نقدم شروط مثالية ضر الآخر،. في الموضوع والمتراجحات المتغيرةالمنتظمة 

لة غير بديهية التعبير عنها بالكامل من حيث بيانات المشكلة ويتم توضيحها من خلال أمث
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Contribution to nonsmooth dynamical systems

Absract

In this dissertation, we study, on the one hand, the existence and uniqueness of solution for

integro-differential inclusions of the Volterra type and, on the other hand, the existence of

optimal solutions and then obtain necessary optimality conditions for a broad class of local

minimizers in such problems. The first topic is devoted to Moreau’s sweeping processes per-

turbed by a sum of a Carathéodory mapping and an integral forcing term in infinite dimensional

framework. The moving set is assumed to be prox-regular and moved in an absolutely variation

way. Applications to the theory of complementarity problems, non regular electric circuits and

evolution variational inequalities are given. In the other topic, we give necessary optimality

conditions which are expressed entirely in terms of the problem data and are illustrated by

nontrivial examples that include applications to optimal control models of non-regular electri-

cal circuits.

Key words: Moreau’s sweeping process, Moreau’s catching-up algorithm, Volterra integro-

differential equation, Gronwall’s inequality, Variational analysis, Optimal control, Discrete ap-

proximations, Necessary optimality conditions, Differential complementarity systems, Contact

problem, Applications to electronics.



Contribution aux systèmes dynamiques non- réguliers

Résumé

Cette thèse est consacrée, d’une part, à l’étude de l’existence et de l’unicité de solution pour

des inclusions intégro-différentielles de type Volterra et, d’autre part, à l’existence de solutions

optimales, puis obtenir les conditions nécessaires d’optimalité pour une large classe de min-

imiseur locaux dans de tels problèmes. Nous étudions dans la première partie des processus de

rafle de Moreau perturbés par la somme d’une fonction de Carathéodory et un terme de force

intégrale. L’ensemble mouvant est prox-régulier dans un espace de Hilbert réel quelconque et sa

variation est contrôlé par une fonction absolument continue. Des applications à la théorie de la

complémentarité, aux circuits électriques non réguliers et à celle des inéquations variationnelles

sont présentées. Dans la seconde partie, on donne les conditions nécessaires d’optimalité qui

sont exprimées entièrement en termes de données du problème et sont illustrées par des exem-

ples non triviaux qui incluent des applications à des modèles de contrôle optimal de circuits

électriques non réguliers.

Mots clés: Processus de balayage de Moreau, Algorithme de rattrapage de Moreau, Equation

intégro-différentielle de Volterra, Inégalité de Gronwall, Analyse variationnelle, Contrôle opti-

mal, Approximations discrètes, Conditions d’optimalité nécessaires, Systèmes de complémentarité

différentielle, Problème de contact, Applications à l’électronique.
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Notations

Operations and Symbols

i.e. Identically equivalent.

a.e. Almost every.

s.t. Such that.

resp Respectively.

:= Equal by definition.

≡ Identically equal.

〈·, ·〉 Inner product on a Hilbert space.

‖·‖ Norm of a Hilbert space.

| · | Euclidean norm.

sup, inf,max,min Supremum, Infimum, Maximum, Minimum, respectively.

un −→ u un converges to u strongly.

un ⇀ u un converges to u weakly (in weak topology).

un
S−→ u un −→ u and un ∈ S for all n.

un
f−→ u un −→ u and f(un) −→ f(u) for all n.

u.s.c Upper semicontinuous.

l.s.c Lower semicontinuous.

k ∗ I Convolution product between two functions k and I.

A∗ The transpose of a matrix A.
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Sets

B or BH Closed unit ball of space H.

co(S) Convex hull of S.

co(S) Closed convex hull of S.

bdr (S) Boundary of S.

int (S) Interior of S.

epi (f) Epigraph of an extended real valued function f.

dom (f) Effectif domain of an extended real valued function f.

rg(F ) The range of a set-valued map F.

gph (F ) Graph of a set-valued map F.

NP
S (x) Proximal normal cone to S at x.

NL
S (x) Limiting normal cone to S at x.

∂P f(x) Proximal subdifferential of f at x.

∂L f(x) Limiting subdifferential of f at x.

∇ f(x) Gradient vector of f at x.

∇2 f(z, x) or ∇x f(z, x) Gradient vector of f with respest to x for any z.

∇2 f(x) Hessian matrix of f at x.

∇2
x f(z, x) Hessian matrix of f with respest to x for any z.
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Spaces

N The set of positive integers.

R The real line.

R+ The set of nonnegative numbers.

R R ∪ {−∞,+∞}.
Rd The d-dimensional Euclidean space.

Sd The space of second order symmetric tensors on Rd.

Ω An open, bounded, connected set in Rd with a Lipschitz boundary Γ.

Γ The boundary of the domain; Ω.

Ω̄ The closure of Ω in Rd, i.e. Ω̄ = Ω ∪ Γ.

mes (A) Lebesgue measure of the measurable subset A ⊂ Γ.

H, V Hilbert spaces.

u ⊥ v Two orthogonal elements in the space H, i.e. 〈u, v〉 = 0.

L(V,X) The space of linear continuous operators from V to a normed space X.

L(V ) ≡ L(V, V ).

J Any interval (resp. closed set) in R (resp. R2).

C(J ;H) The space of continuous functions defined on J with values in H.

L1(J,H) The space of all mappings from J into H wich are Bochner integrable

on J with respect to the Lebesgue measure.

L2(Ω) The Lebesgue space of two integrable functions on Ω, with the

usual modification if p =∞.
L2(Ω)d The space of mapping v : Ω→ Rd, with vi ∈ L2(Ω)d, i = 1..., d.



Notations 7

Functions

dS(·) or d(·, S) Distance function.

ψS(·) or ψ(·, S) Indicator function of a set S.

σS(·) or σ(·, S) Support function of a set S.

ProjS(·) or Proj(·, S) Projection from H into S.

Mapping

f : X −→ Y Single-valued mapping from X to Y.

F : X ⇒ Y Set-valued mapping from X to Y.



General Introduction

In the seventies, sweeping processes are introduced and deeply studied by J. J. Moreau through

a series of papers, in particular [56, 57]. It is shown in [56] that such processes play an important

role in mechanics, especially in elasto-plasticity, quasi-statics, dynamics. Roughly speaking, a

point is swept by a moving closed convex set C(t) in a Hilbert space H, which can be formulated

in the form of differential inclusion as follows

(SP ) :

−ẋ(t) ∈ NC(t)(x(t)) a.e. t ∈ [T0, T ]

x(T0) = x0 ∈ C(T0),

where T0, T ∈ R with 0 ≤ T0 < T and NC(t)(·) denotes here the normal cone of C(t) in the

sense of convex analysis. The need of consideration of systems with external forces (see, e.g.,

[16, 83] and [15] for more details) led to study the following perturbed variant

(PSP ) :

−ẋ(t) ∈ NC(t)(x(t)) + f(t, x(t)) a.e. t ∈ [T0, T ]

x(T0) = x0 ∈ C(T0),

where f : [T0, T ] × H → H is a Carathéodory mapping, i.e., f(t, ·) is continuous and f(·, x)

is Bochner measurable for [T0, T ] endowed with the Borel σ-field B([T0, T ]). By Bochner mea-

surable mapping we mean here any limit of uniformly convergent sequence of simple mappings

from [T0, T ] into H with [T0, T ] endowed with its Borel σ-field.

Actually, diverse approaches for existence of solutions of (SP ) and (PSP ) are avail-

able in the literature: Catching-up method (see, e.g., [57]), regularization procedure (see, e.g.,

[56, 63]), reduction to unconstrained differential inclusion (see, e.g., [77]). The method in [57]

via the catching-up algorithm without the term f(·, ·) is based on a specific lemma of inequal-

ity involving the convexity of sets C(t) along with the projection mapping projC(t)(·) (see [57,

Lemma 1.(2a)]), whereas in presence of the term f(·, ·) Gronwall-type inequalities are generally

utilized for existence and uniqueness of solutions. In each method the corresponding lemma is

applied to two suitable approximate solutions x1, x2 of (PSP ), by means of the monotonicity

of NC(t)(·) ( hypomonotonicity when C(t) is prox-regular). Those features and the Lipschitz

8
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property of the forcing term f(t, ·) with respect to the state variable are employed to obtain

that the distance between x1(t) and x2(t) is nonincreasing with respect to time t. This rea-

soning allows in general the construction of a Cauchy net/sequence of approximate solutions,

converging to a solution.

Several extensions of the sweeping process in diverse ways (well-posedness and optimal

control) have been studied in the literature (see, e.g., [1], [2], [15], [30], [47], [77], [83] and

references therein).

Chapter 2: Nonconvex Integro-Differential Sweeping Process with Applications

In this chapter, aims to study the following new variant of the sweeping process

(Pf1,f2) :


−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s))ds, a.e. t ∈ [T0, T ]

x(T0) = x0 ∈ C(T0),

where NC(t)(·) denotes here a suitable normal cone to the subset C(t) of the Hilbert space

H. Assumptions will be considered below to ensure the desirable integrability in t or (s, t) of

f(t, s, x(s)). We called the differential inclusion (Pf1,f2) an integro-differential sweeping process

because the integral of the state and the velocity are defined in the dynamical system. One

can interpret (Pf1,f2) as follows: as long as x(t) is in the interior of the set C(t), we get

NC(t)(x(t)) = 0 and (Pf1,f2) reduces to a Volterra integro-differential equation

(Ef1,f2) :


−ẋ(t) = f1(t, x(t)) +

t∫
T0

f2(t, s, x(s))ds a.e. t ∈ [T0, T ]

x(T0) = x0,

(for at least a small period of time) to satisfy the constraint x(t) ∈ C(t), until x(t) hits the

boundary of the set C(t). At this moment, if the vector field −
(
f1(t, x(t)) +

t∫
T0

f2(t, s, x(s))ds
)

is pointed outside of the set C(t), then any component of this vector field in the direction

normal to C(t) at x(t) must be annihilated to maintain the motion of x within the constraint

set. So, the system (Pf1,f2) can be considered as a Volterra integro-differential equation (Ef1,f2)

under control term u(t) ∈ NC(t)(·) which guarantees that the trajectory x(t) always belongs to

the desired set C(t) for all t ∈ [T0, T ].

The well-posedness of the classical perturbed sweeping process (PSP ), i.e.,Pf1,0 ( f2 ≡
0), has been studied by many authors with different assumptions on data, see, e.g., [39, 40, 64]
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and references therein. Sweeping process involving integral perturbation, i.e., P0,f0,2 ( f1 ≡ 0

and the particular mapping f0,2(s, x) ) was considered earlier by Brenier, Gangbo and Savare

[17] and recently by Colombo and Kozaily [34]. In the latter paper [34] the authors proved the

existence and uniqueness of solution with the particular integral

t∫
T0

f0,2(s, x(s))ds, i.e., for the

following problem

(P0,f0,2) :


−ẋ(t) ∈ NC(t)(x(t)) +

t∫
T0

f0,2(s, x(s))ds, a.e. t ∈ [T0, T ],

x(T0) = x0 ∈ C(T0).

It is also worth mentioning that Colombo and Kozaily say in their paper [34]: ”of course,

existence and uniqueness to (P0,f0,2) is not surprising”. We point out that with the above

integral

t∫
T0

f0,2(s, x(s))ds, the integro-differential sweeping process (Pf1,f0,2) is equivalent to

−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) + y(t), ẏ(t) = f0,2(t, x(t)), x(T0) = x0, y(T0) = 0,

and so
−Ẋ(t)︷ ︸︸ ︷−ẋ(t)

−ẏ(t)

 ∈ NC(t)×H

X(t)︷ ︸︸ ︷x(t)

y(t)

+

f(t,X(t))︷ ︸︸ ︷f1(t, x(t)) + y(t)

−f0,2(t, x(t))

,
which is a special case of the classical perturbed sweeping process (PSP ), see, e.g., [57, 39, 64]

for the situation of unbounded moving sets. Otherwise stated, (P0,f0,2) is reduced to the now

classical perturbed sweeping process (PSP ).

In [34] the motivation of the authors for studying (P0,f0,2) was designing a smoother

method of penalization, the motivation of which comes from applications to deriving necessary

optimality conditions for optimal control problems with sweeping processes. Notice that the

more general differential inclusion

(Pϕ) :


−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) + ϕ(t)

t∫
T0

f0,2(s, x(s))ds, a.e. t ∈ [T0, T ]

x(T0) = x0 ∈ C(T0),

with ϕ : [T0, T ]→ R, can be reduced as above to (PSP ) via

−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) + ϕ(t) y(t), ẏ(t) = f0,2(t, x(t)), x(T0) = x0, y(T0) = 0,

that is,
−Ẋ(t)︷ ︸︸ ︷−ẋ(t)

−ẏ(t)

 ∈ NC(t)×H

X(t)︷ ︸︸ ︷x(t)

y(t)

+

f(t,X(t))︷ ︸︸ ︷f1(t, x(t)) + ϕ(t) y(t)

−f0,2(t, x(t))

 .
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Now, if the integral involving f2 depends on the two time-variables, the reduction of (Pf1,f2)

there to the perturbed sweeping process (PSP ) cannot be applied.

To the best of our knowledge, for the problem under consideration in the case of the

function f2 depending on two time-variables, that is, in the case of a general integro-differential

sweeping process of Volterra type (Pf1,f2), a well-posedness result, including the existence,

uniqueness, and stability of the solution, has not been obtained up to now.

In this work,, we obtain results on the existence and uniqueness of a solution to the

Volterra sweeping process (Pf1,f2) in a Hilbert space. This is done with the help of a new

Gronwall-like inequality (see Section 2.1) and of a new scheme corresponding to the existence

of absolutely continuous solutions for the quasi-autonomous sweeping processes

−ẋn(t) ∈ NC(t)(xn(t)) + f1(t, xn(tk)) +
k−1∑
j=0

tj+1∫
tj

f2(t, s, xn(tj)) ds

+

t∫
tk

f2(t, s, xn(tk)) ds a.e. t ∈ [tk, tk+1]

xn(T0) = x0 ∈ C(T0),

where T0 = t0 < t1 < ... < tn = T is a discretization of the interval [T0, T ]. Such discretization

methods via suitable catching-up algorithms are desirable approaches, especially for nummerical

simulations1. They are used numerically for integro-differential sweeping process in [10, 11]. We

must also say that our approach only assumes for (Pf1,f2) the growth condition ‖f2(t, s, x)‖ ≤
β(t, s)(1 + ‖x‖), while for the particular inclusion (P0,f0,2) the authors of [34] require for some

real M > 0 the boundedness condition ‖f0,2(s, x)‖ ≤M for all s ∈ [T0, T ] and all x in an open

set Ω ⊃
⋃
t∈[T0,T ] C(t).

The outline of the chapter is as follows. In Section 2.1, we prove a new Gronwall-

like inequality (differential inequality). Then, in Section 2.2, we present our main existence,

uniqueness, and stability result. In Section 2.3 we use those results in the study of nonlinear

integro-differential complementarity systems. This is realized by transforming such systems into

integro-differential sweeping processes of the form (2.2) where the moving set C(t) is described

by a finite number of inequalities. We also provide sufficient verifiable conditions ensuring the

absolute continuity of the moving set. In Section 2.4, we give a second application of our results

to non-regular electrical circuits containing time-varying capacitors and nonsmooth electronic

device like diodes. A circuit with tranmission line, diode and inductor is also presented. Section

2.5 is concerned with an application to frictionless contact problems in mechanics.

1The books, e.g., [8, 12] show how sweeping processes provide efficient tools and catching-up discretizations

which can help engineers for the simulation of complicated electrical circuits.
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Chapter 3: On the Discretization of Truncated Integro-Differential Sweeping

Process and Optimal Control

The purpose of this chapter is twofold: first, to show the solvability (in the sense existence and

uniqueness) of general integro-differential sweeping process of Volterra type (Pf1,f2) by using

an appropriate catching-up algorithm (full discretization), and second, to show the existence

of optimal solutions to an optimal control problem involving the Volterra integro-differential

sweeping process.

The Moreau catching-up algorithm is a quite old approach to deal with sweeping pro-

cesses. From a numerical point of view, the time-integration (also known as time-stepping)

schemes have been applied to find an approximation of the solution to the sweeping process.

The so-called catching-up algorithm was introduced by Moreau [61, 57, 62] to prove the exis-

tence of a solution to sweeping process. It consists in building discretized solutions in dividing

the time interval into sub-intervals where the moving set does not vary too much. Then by com-

pactness arguments or Cauchy property, one can construct a limit mapping (when the length of

subintervals tends to zero) which satisfies the desired differential inclusion. The catching-up al-

gorithm has never been used, even in the convex case, to study the Volterra integro-differential

sweeping process.

The chapter is organized as follows. Section 3.1, by extending the catching-up scheme

of Moreau [57, 62] to integro-differential sweeping processes, we prove solvability of absolutely

continuous integro-differential sweeping processes with hypomonotone dependence on the state

of the external dynamic perturbations, and Lipschitz dependence on the state of the integral

parts of the sweeping dynamics. Next, in Section 3.2, we apply our results to a model appearing

in non-regular electrical circuits with nonlinear resistors which generate the non Lipschitz parts

of the sweeping dynamics and time-varying capacitors which generate the Lipschitz parts of the

sweeping dynamics. Section 3.3 contains some numerical simulations and presents a realistic

example showing that the obtained algorithm allows us to compute solutions. Finally, in Section

3.4, an optimal control problem governed by Volterra integro-differential sweeping process is

introduced, and a solvability result for the optimal control problem is established.
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Chapter 4: Optimal Control of Nonconvex Integro-Differential Sweeping

Processes

This chapter continues a series of recent publications devoted to the rather new optimal control

theory for discontinuous differential inclusions governed by controlled sweeping processes.

One of the most remarkable features of Moreau’s sweeping process and its extensions is

that the Cauchy problem for them has a unique solution. This excludes any optimization of the

discontinuous sweeping dynamics of type (SP ). A new view on sweeping processes was offered in

[25], were the authors suggested to parameterize the moving sets in (SP ) by control functions

C(t) = C(u(t)) that allowed them to formulate an optimal control problem and derive first

necessary optimality conditions in sweeping control theory. Since that, optimal control theory

for various types of controlled sweeping processes governed by ordinary differential inclusions

of type (SP ) has been developed in many publications with deriving necessary optimality

conditions and applications; see, e.g., [5, 7, 18, 20, 21, 22, 26, 27, 68, 81, 53, 54, 85] and the

references therein.

In contrast to the previous publications, in this chapter we consider controlled sweeping

processes with the dynamics governed by integro-differential inclusions of the Volterra type:

−ẋ(t) ∈ NC(u(t))(x(t)) + f1(a(t), x(t)) +

t∫
0

f2

(
b(s), x(s)

)
ds, a.e. [0, T ],

(
u(·), a(·), b(·)

)
∈ W 1,2([0, T ],Rn)× L2([0, T ],Rm+d),

(a(t), b(t)) ∈ A×B ⊂ Rm × Rd a.e. t ∈ [0, T ],

x(0) = x0 ∈ C(0),

(1)

on the fixed time interval [0, T ], where the triple (u(·), a(·), b(·)) signifies feasible controls acting

in the moving sets, additive perturbations, and the integral part of the sweeping dynamics,

respectively. The controlled moving sets are given in the form

C(t) := C(u(t)) = C + u(t), C :=
{
x ∈ Rn

∣∣ gi(x) ≥ 0, i = 1, . . . , s
}
. (2)

Since the sets C(t) are generally nonconvex, the normal cone in (1) is understood in the gener-

alized sense defined in Section 4.1, which reduces to the one in (SP ) for the case of convexity.

Given further a terminal cost function ϕ : Rn → R := (−∞,∞] and a running cost

l0 : [0, T ]×R4n+m+d → R, the sweeping optimal control problem (P ) consists of minimizing the
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Bolza-type functional

J0[x, u, a, b] := ϕ(x(T )) +

T∫
0

l0
(
t, x(t), u(t), a(t), b(t), ẋ(t), u̇(t)

)
dt,

on the set of feasible control (u(·), a(·), b(·)) where (a(·), b(·)) ∈ L2([0, T ];Rm+d) are measurable

functions and the corresponding trajectories x(·) of (1) from the space W 1,2([0.T ],Rn). Such

quadruples (x(·), u(·), a(·), b(·)) are called feasible solutions to (P ). The existence results for

feasible and optimal solutions to (P ) are given in Section 4.2. The required assumptions on the

functions ϕ, l0, gi and the mappings f1 : Rm+n → Rn and f2 : Rd+n → Rn will be formulated in

Section 4.1.

Note that controls u(·) from one side and (a(·), b(·)) from the other have different

functional natures. This is the most natural and essential for our model and developed approach

to derive necessary optimality conditions for (P ). Various attempts to unify control actions

by moving one group of controls to the other, as well as reducing integral perturbations to

the differential sweeping dynamics with the subsequent application of known results, lead us

to extra regularity assumptions and would not allow us to obtain new optimality conditions

specific for the controlled integro-differential sweeping process under consideration, see below.

As follows from the sweeping inclusion (1) and the structure of the controlled moving

sets (2), problem (P ) automatically involves the pointwise mixed state-control constraints

gi(x(t)− u(t)) ≥ 0 for all t ∈ [0, T ] and i = 1, . . . , s,

which have been recognized among the most challenging issues even in standard optimal control

theory for systems governed by smooth controlled ordinary differential equations.

The uncontrolled integro-differential sweeping process (1) was first introduced in [17]

for the case where f1 ≡ 0, f2 ≡ f2(x), and where C(t) := En is the nonnegative orthant of

Rn. The motivation in [17] came from the study a one-dimensional flow of particles subject

to a force field generated by the fluid itself. Then (again uncontrolled) integro-differential

sweeping process (1) with f1 ≡ 0 and f2 ≡ f2(x) ∈ γB was considered in [34], where the

authors established the existence and uniqueness of solutions by developing a new penalization

approach. Quite recently, the existence and uniqueness issues for a generalized uncontrolled

version of (1) have been revisited in [9] with the extension of the results in [34] to a more general

framework of (1) by using a new Gronwall-like differential inequality within a developed semi-

discretization method. Furthermore, paper [9] contains results on the continuous dependence

of solutions of (1) on the initial data with some applications to sweeping dynamical models

arising in electronics.

To the best of our knowledge, optimal control problems for integro-differential sweeping
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processes have been never formulated and studied in the literature even in the case of convex

and uncontrolled moving sets. The closest prototype of (P ) in the case of sweeping differen-

tial inclusions with no integral part was considered in [22], where the authors established the

existence of optimal solutions and obtained necessary optimality conditions for local minimiz-

ers. Furthermore, in [23] they applied the necessary optimality conditions from [22] to optimal

control of the planar version of the crowd motion model in traffic equilibria. The approach to

deriving necessary optimality conditions in [22] was based on the method of discrete approxi-

mations developed in [51, 49] for optimal control of Lipschitzian differential inclusions and then

extended in [20, 21, 22, 26, 27, 81, 53, 54] to various control systems governed by discontinuous

differential inclusions of the sweeping type.

Here we conduct a detailed study of the formulated optimal control problem (P ) for

integro-differential sweeping processes with proving the existence of optimal solutions and deriv-

ing comprehensive necessary optimality conditions for a broad family of local minimizers of (P ),

where the obtained conditions are expressed entirely in terms of the problem data. On one side,

the achieved results extend those from [22] to the new class of controlled sweeping processes.

On the other hand, we establish a novel necessary optimality condition of the Volterra type,

which is characteristic for integro-differential sweeping control systems while being particularly

useful for calculations of optimal solutions.

To reach our goals, we develop the method of discrete approximations in the new set-

ting of dynamical systems governed by controlled sweeping integro-differential inclusions, with

justifying the well-posedness of discrete approximations in the sense of establishing the W 1,2-

strong approximation of feasible solutions for (P ) by their extended discrete counterparts as

well as verifying the W 1,2-strong convergence of discrete optimal solutions to a prescribed local

minimizer of (P ). The results obtained in this direction are of their own interest (including

numerical issues), while they are exploited in the paper as a driving force to derive necessary

optimality conditions in problem (P ) by doing this first for the discrete-time problems and

then by passing to the limit from them with the diminishing discretization step. To proceed

in such a way, we need—by taking into account the very structure of the integro-differential

sweeping dynamics in (1)—to employ appropriate tools of first-order and (mainly) second-order

variational analysis and generalized differentiation. It occurs that the best pick for the needed

constructions are those introduced by the third author and then developed in many publica-

tions; see Section 4.5 for more discussions and references. Moving in this direction allows us to

establish below a comprehensive collection of necessary optimality conditions for problem (P )

and its discrete approximations, which are of their independent benefits. The given applica-

tions to the formulated optimal control models for non-regular electric circuits with numerical
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calculations illustrate the efficiency of the obtained necessary optimality conditions to solve par-

ticular control problems of the integro-differential type (P ) that naturally appear in practical

modeling.

The rest of the chapter is organized as follows. Section 4.1 describes the standing

assumptions used below. In Section 4.2 we first establish the existence of feasible and optimal

solutions to problem (P ) and then define and discuss the notion of local minimizers for which

the necessary optimality conditions are derived below.

Section 4.3 is devoted to the construction of discrete approximations for controlled

integro-differential sweeping processes (1) and to the proof that any feasible solution to (1) can

be W 1,2-strongly approximated by feasible solutions to discrete problems, which are piecewise

linearly extended to the whole interval [0, T ]. The obtained crucial result goes far beyond

optimization and occurs to be useful as an efficient machinery of the qualitative and numerical

analysis of discontinuous integro-differential inclusions of the sweeping type.

Section 4.4 continues the discrete approximation developments of Section 4.3 while now

concentrating on the approximation of the entire problem (P ) and its prescribed local minimizer

by optimal solutions to discrete-time problems. Here we show that the constructed discrete

approximations always admit optimal solutions whose extensions on [0, T ] strongly converge to

the given local minimizer under in the W 1,2 topology.

To proceed with deriving necessary optimality conditions, we recall in Section 4.5

the basic generalized differential constructions of variational analysis that are needed for our

study. Although all the mappings involved in the description of (P ) are assumed to be smooth,

the unavoidable source of nonsmoothness comes from the sweeping dynamics in (1), which

requires the usage of appropriate second-order constructions applied to (nonconvex) graphs of

the normal cones. We review the employed constructions of generalized differentiation and

present calculation formulas for them expressed entirely via the given data.

In Section 4.6 we derive necessary optimality conditions for the discrete approximations

of problem (P ) by using the generalized differential constructions of Section 4.5, their well-

developed calculi, and the second-order computations. The obtained results are important for

their own sake as necessary optimality conditions for discrete-time counterparts of the controlled

integro-differential sweeping processes. Furthermore, the strong convergence of discrete optimal

solutions established in Section 4.4 allows us to view the the obtained necessary optimality

conditions for discrete approximations as suboptimality conditions for the original problem (P )

governed by the sweeping integro-differential inclusions.

Section 4.7 accumulates the developments of all the previous sections and provides
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necessary optimality conditions for the designated class local minimizers of the original op-

timal control problem (P ) for the integro-differential sweeping processes (1) with the mixed

state-control constraints (4.4). By using the method of discrete approximations together with

the aforementioned tools of variational analysis and generalized differentiation, we derive a

comprehensive set of necessary optimality conditions of the following two types: those which

extend to the integro-differential systems the recently obtained conditions for the sweeping

processes governed by differential inclusions [22], and completely novel ones that are specific

for the controlled integro-differential sweeping dynamics.

The final Section 4.8 is devoted to applications of the obtained necessary optimality

conditions for integro-differential control problems governed by integro-differential sweeping

processes to some real-life models appearing in non-regular electrical circuits. We formulate

two models of this type and present a realistic example showing that the obtained results

allow us to determine and fully compute optimal solutions. The novel Volterra type optimality

condition occurs to be especially useful for the provided computations.



Chapter 1
Preliminaries

In this chapter we describe the notation, the definitions and basic results that are going to be

used throughout the thesis. The reader is referred to the monographs [66, 67, 41, 32, 33, 49, 71,

78, 84] for a deeper understanding of the tools and standard results exposed in this chapter.

Throughout H is a real Hilbert space endowed with the inner product 〈·, ·〉 and asso-

ciated norm ‖ · ‖. As usual, we will denote by BH(x, δ) (resp. BH [x, δ]) the open (resp. closed)

ball around x ∈ H with radius δ > 0. It will be convenient to write BH or B in place of B[0, 1].

When there is no risk of ambiguity, we will remove the subscript H.

For a nonempty subset S of H consider the distance function dS(x) := infy∈S ‖x − y‖ be the

projection operator ProjS : H ⇒ S by

ProjS(x) := {y ∈ S : dS(x) = ‖x− y‖}, x ∈ H.

Further, we called indicator and support function of S that note by ψ(·, S) and σS(·) respictively,

the functions defined by

ψ(x, S) =

 0 if x ∈ S
+∞ if x /∈ S

, and σ(ξ, S) = sup
x∈S
〈ξ, x〉 , ∀ ξ ∈ H.

By C([T0, T ], H) we denote the space of continuous mappings from [T0, T ] into H equipped with

the supremum norm ‖ · ‖∞, where we recall that −∞ < T0 < T < +∞. In various cases, it will

be convenient to use the notation I := [T0, T ] and put

Q∆ := {(t, s) ∈ I2 : s ≤ t}.

18
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1.1 Normal Cones

A generalization of ‘outward normal vector’ to general closed sets is presented in the following

definition (see [84]):

Definition 1.1.1. We say that a vector v ∈ H is a proximal normal vector of S at x ∈ S if

and only if there are reals σ ≥ 0 and δ > 0 such that

〈v, y − x〉 ≤ σ‖y − x‖2 for all y ∈ S ∩B(x, δ). (1.1)

The cone of all proximal normal vectors to S at some point x ∈ S is called the proximal normal

cone, and denoted by NP
S (x).

Remark 1.1.1. It is worth noting that, whenever ProjS(y) 6= ∅, one has

y − z ∈ NP
S (z) for all z ∈ ProjS(y).

Definition 1.1.2. We say that a vector v ∈ H is a limiting normal vector of S at x ∈ S if

there exist sequences xi
S−→ x and vi → v such that

vi ∈ NP
S (xi) for all i.

The cone of all limiting normal vectors to S at x ∈ S is denoted by NL
S (x) and known as the

limiting normal cone to S at x.

Recall now the notions of convex sets.

Definition 1.1.3. A subset S ⊂ H is called convex if and only if

∀ a, b ∈ S, ∀λ ∈ [0, 1], λa+ (1− λ)b ∈ S.

In other words S is convex if it contains all the line segment of these points.

Figure 1.1: Convex and non convex set.

If the set is non convex, we can defined its convex hull as follows:
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Definition 1.1.4. The convex hull of subset A ⊂ H is intersection of all convex sets containing

A. Therfore, is the smallest convex that containing A. and we note co(A).

Figure 1.2: Convex hulls in Rd.

In other words we have this characterization

co(A) =

{
n∑
i=1

βixi, βi ≥ 0, xi ∈ A,
n∑
i=1

βi = 1

}
.

The definition of closed convex hull is given by

Definition 1.1.5. The closed convex hull of subset A ⊂ H is intersection of all closed convex

sets containing A. Therfore, is the smallest closed convex that containing A. and we note

co(A).

If we deal with convex closed sets S, we recover with Definitions 1.1.1 and 1.1.2 a

familiar construction from convex analysis as follows:

Proposition 1.1.1. Let S be a closed and convex set and x ∈ S, then

NP
S (x) = NL

S (x) = {v ∈ H : 〈v, y − x〉 ≤ 0, ∀ y ∈ S} .

In other words the normal cone is the collection of all vectors that not form an acute angle with

the vector ~v = (y − x) at the point x.

We list below some properties satisfied by the proximal and the limiting normal cones:

Proposition 1.1.2. Take a closed subset S of H and a point x ∈ S. Then, the proximal and

limiting normal cones have the following properties:

(a) NP
S (x) and NL

S (x) are cones in H, containing {0} such that NP
S (x) ⊂ NL

S (x).

(b) If x ∈ int {S}, then NP
S (x) = NL

S (x) = {0}; and if x ∈ bdr {S}, NL
S (x) has nonzero

elements.



1.2. Subdifferential 21

(c) NP
S (x) is convex (but possibly not closed).

(d) The set-valued mapping x ⇒ NL
S (x) has a closed graph, in the sense that, for any se-

quences xi
S−→ x and vi → v such that vi ∈ NP

S (xi) for all i, we have v ∈ NL
S (x).

We refer to [84] for a detailed proof of Proposition 1.1.1 and Proposition 1.1.2.

1.2 Subdifferential

In this section, we will give definitions of different types of subdifferentials of non-convex func-

tions and some properties. More details on these definitions can be found in [33, 78, 84] and

references therein.

Definition 1.2.1. Let f be a real function define from H to R. The effective domain of f is

the set

dom (f) = {x ∈ H : f(x) <∞} .

Definition 1.2.2. A function f is said proper if dom (f) 6= ∅.

Definition 1.2.3. Let f be a real function define from H to R. The epigraph of f is the set

epi (f) = {(x, t) ∈ H × R : f(x) ≤ t} .

Definition 1.2.4. The real function f define from H to R is said convex if for all β ∈ [0; 1],

we have

f(βx+ (1− β)y) ≤ βf(x) + (1− β)f(y), ∀ β ∈ [0, 1], ∀x, y ∈ dom (f).

Definition 1.2.5. Let f : H −→ R ∪ {+∞} be a proper function, f is lower semicontinuous

at x0, if for each sequence (xk)k∈N in H with xk −→ x0 we get

lim inf
k→+∞

f(xk) ≥ f(x0), as k −→ +∞.

Moreover, f is called lower semicontinuous if it’s lower semicontinuous at every point of H.

Definition 1.2.6. We called that f is upper semicontinuous at x0 if −f is lower semicontinuous

function at x0. Moreover, recall that f is continuous at the point x0 if it’s lower semicontinuous

and upper semicontinuous on x0.

Definition 1.2.7. For a function f : H → R ∪ {+∞},
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(a) the proximal subdifferential ∂Pf(x) of f at x ∈ dom (f) is defined by

∂Pf(x) := {υ ∈ H : (υ,−1) ∈ NP (epi f ; (x, f(x)))}.

The set ∂Pf(x) of all proximal subgradients of f at x is the proximal subdifferential of f

at x.

(b) the limiting subdifferential ∂Lf(x) of f at x ∈ dom (f) is defined by

∂Lf(x) := {υ ∈ H : (υ,−1) ∈ NL(epi f ; (x, f(x)))}.

The set ∂Lf(x) of all limiting subgradients of f at x is the limiting subdifferential of f at

x.

Of course, ∂Pf(x) = ∂Lf(x) = ∅ if f(x) = +∞. Notice that, since NP
S (x) ⊂ NL

S (x), we have

∂Pf(x) ⊂ ∂Lf(x).

We refer to [84] for a detailed proof of the following Proposition.

Proposition 1.2.1. Let f : H → R ∪ {+∞} be convex proper function, and consider a point

x ∈ dom (f), then

∂Pf(x) = ∂Lf(x) = {v ∈ H : 〈v, y − x〉 ≤ f(y)− f(x), ∀ y ∈ H} .

This coincides with the definition of subgradients in the convex analysis sense.

The following figures give the subdifferential of some functions.

Figure 1.3: Some functions and their subdifferential.

Definition 1.2.8. Let a function f : H → R ∪ {+∞}, and consider a point x ∈ dom (f),

(a) A vector v ∈ H is a proximal subgradient of f at x, if there exist some reals σ ≥ 0 and

δ > 0 such that

〈v, y − x〉 ≤ f(y)− f(x) + σ‖y − x‖2 for all y ∈ B(x, δ).
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(b) A vector v ∈ H is a limiting subgradient of f at x, if there exist sequences xi
f−→ x and

vi → v such that vi ∈ ∂Pf(xi) for all i.

Remark 1.2.1.

(a) There is another link between the proximal (resp., limiting) normal cone and the proximal

(resp., limiting) subdifferential, given by ∂PψS(x) = NP
S (x) (resp., ∂LψS(x) = NL

S (x)).

(b) The proximal normal cone is also connected with the distance function to S through the

equalities

∂PdS(x) = NP
S (x) ∩ BH and NP

S (x) = R+∂PdS(x), for all x ∈ S. (1.2)

1.3 Prox-regularity

In this section we give the definition and some property of some classe of set, which generalize

the class of convex sets.

We start with a very useful characterization of proximal normal cone. That is, the proximal

normal cone can be described in the following geometrical way (see, e.g., [33])

NP
S (x) = {v ∈ H : ∃r > 0 such that x ∈ ProjS(x+ rv)}, if x ∈ S, (1.3)

with NP
S (x) = ∅ if x /∈ S; see Figure 1.4

Figure 1.4: Proximal normal cones.

The proximal normal cone is the right concept to use for defining the prox-regularity

of a set S by requiring in (1.3) that the constant r be uniform for all the unit proximal normal

vectors of S. The sets which satisfy that property are known as (uniformly) prox-regular sets.
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Definition 1.3.1. [67] Given r ∈]0,+∞], the closed subset S is r-prox-regular provided that,

for every x ∈ S, every unit vector v ∈ NP
S (x) with ‖v‖ ≤ 1 and every real t ∈]0, r] one has

x ∈ ProjS(x+ tv).

Equivalently, S is r-prox-regular if for all x ∈ S and v ∈ NP
S (x) with ‖v‖ ≤ 1, we have

S ∩BH(x+ rv, r) = ∅.

In other words, S is r-prox-regular if any external ball with radius smaller than r can

be rolled around it; see Figure 1.5

Figure 1.5: Uniform prox-regular set and non uniform prox-regular set.

The next propositions summarize some basic properties of prox-regularity needed in

the thesis. For the proof of these results, we refer the reader to [35, 67, 78].

Proposition 1.3.1. For a given r ∈]0,∞], a closed subset S of the Hilbert space H is uniformly

r-prox-regular, or r-prox-regular for short, if and only if for all x ∈ S and all 0 6= v ∈ NP
S (x)

one has 〈
v

‖v‖
, y − x

〉
≤ ‖y − x‖

2

2r
, ∀ y ∈ S. (1.4)

Of course, in the latter inequality, 1
r

= 0 for r = +∞ (as usual). It is worth pointing out that

for r = +∞, the r-prox-regularity of the closed set S amounts to its convexity.

Proposition 1.3.2. Let S be a nonempty closed set in H which is uniformly r-prox-regular for

some r ∈]0,+∞]. Then for any xi ∈ S, vi ∈ NP
S (xi) with i = 1, 2 one has:

〈v2 − v1, x2 − x1〉 ≥ −
1

2

(
‖v2‖+ ‖v1‖

r

)
‖x2 − x1‖2.

Proposition 1.3.3. Let S be a nonempty closed subset in H and let r ∈]0,∞]. If the subset S

is uniformly r-prox-regular, then the following hold:

(a) The proximal and limiting normal cones of S coincide at any point in S.
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(b) For all x ∈ H with dS(x) < r, ProjS(x) is nonempty and is a singleton set .

(c) The Clarke and the proximal subdifferentials of dS coincide at all points x ∈ H with

dS(x) < r .

Remark 1.3.1. The assertion (a) in Proposition 1.3.3 leads us to put

NS(x) := NL
S (x) = NP

S (x), (1.5)

whenever the set S is r-prox-regular.

Proposition 1.3.4. Let S be a nonempty closed subset in H and let r ∈]0,∞]. If the subset S

is uniformly r-prox-regular, then the following hold:

(a) For any x ∈ S and any v ∈ ∂PdS(x) one has for any y ∈ H such that dS(y) < r

〈v, y − x〉 ≤ 2

r
‖y − x‖2 + dS(y).

(b) For any x ∈ H with dS(x) < r, the proximal subdifferential ∂PdS(x) is a nonempty closed

convex subset in H.

1.4 Hausdorff-Pompeiu distance

Let S, S ′ be two closed subset of H. We define the excess of S over S ′ as

exc(S, S ′) := sup
x∈S

dS′(x),

the excess may well be +∞ (for example, this will occur if S is bounded and S ′ is unbounded).

It is not difficult to prove that

exc(S, S ′) := sup
x∈H

(dS(x)− dS′(x)).

The Hausdorff-Pompeiu distance between S and S ′ is defined by:

haus(S, S ′) := max {exc(S, S ′), exc(S ′, S)}.

Furthermore, the Hausdorff distance between S and S ′ as the uniform distance between dS(·)
and dS′(·) i.e.,

haus(S, S ′) := sup
x∈H
|dS(x)− dS′(x)|,
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Let ρ ∈]0,+∞] be an extended real. The ρ-pseudo excess of S over S ′ (also called the pseudo

excess of the ρ-truncation of S over S ′) is defined as the extended real

excρ(S, S
′) := sup

x∈S∩ρB
dS′(x),

where by convention ρB = H if ρ = +∞. The Hausdorff-Pompeiu ρ-pseudo distance between

S and S ′ is then defined as:

hausρ(S, S
′) := max {excρ(S, S

′), excρ(S
′, S)}. (1.6)

If ρ = +∞, we see that the ρ-pseudo excess of S over S ′ (resp., the Hausdorff-Pompeiu ρ-pseudo

distance between S and S ′) is the usual excess of S over S ′ (resp., the usual Hausdorff-Pompeiu

distance between S and S ′), i.e.,

exc∞(S, S ′) := sup
x∈S

dS′(x) := exc(S, S ′)

(resp., haus∞(S, S ′) := max {exc(S, S ′), exc(S ′, S)} =: haus(S, S ′)).

It is easily seen that, for every real α > 0 such that excρ(S, S
′) < α, one has

S ∩ ρB ⊂ S ′ + αB.

It is also readily seen that

dS′(x
′) ≤ ‖x− x′‖+ excρ(S, S

′) for all x ∈ S ∩ ρB, x′ ∈ H. (1.7)

1.5 Some useful results

In this section we give some useful results that will be used in the following chapters.

Definition 1.5.1. Let a function x : [T0, T ] −→ H, a subinterval J ⊂ [T0, T ], we define the

variation of u on I by the following expression

var(x, J) := sup

{
n∑
i=1

||x(ti)− x(ti−1)||, n ∈ N, ti ∈ J, t0 < t1 < ... < tn

}
.

We said that x has a bounded variation on the interval [T0, T ] if var(x, J) < +∞.

Definition 1.5.2. A function f : [a; b] → H is said to be absolutely continuous if for each

ε > 0 there exists δ > 0 such that for ]an; bn[ are pairwise disjoint subintervals of [a; b]∑
n≥0

(bn − an) < δ ⇒
∑
n≥0

‖f(an)− f(bn)‖ < ε.
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Moreover, The function f : [a, b] −→ H is absolutely continuous if and only if

f(b)− f(a) =

b∫
a

f ′(s)ds.

Any absolutely continuous function f is continuous.

Lemma 1.5.1. [47, Lemma 4] Let x : [T0, T ] −→ H be an absolutely continuous function.

Then

• 1

2

(
d

dt
||x(t)||2

)
= 〈ẋ(t), x(t)〉.

•
∫ T

T0

〈ẋ(t), x(t)〉 =
1

2
||x(T )||2 − 1

2
||x(T0)||2.

We denote by L1([T0, T ];H) the space of Bochner integrable functions defined over

[T0, T ] with respect to the Lebesgue measure. A set K ⊆ L1([T0, T ];H) is uniformly integrable

if there exists g ∈ L1([T0, T ];H) such that for all f ∈ K

‖f(t)‖ ≤ g(t) a.e. t ∈ [T0, T ].

Now, we recall the Dunford-Pettis theorem (see [42, Theorem 2.3.24]), which characterizes

relatively weakly compact subsets of L1.

Theorem 1.5.1 (Dunford-Pettis theorem). A bounded set K ⊆ L1([T0, T ];H) is relatively

weakly compact in L1([T0, T ];H) if and only if it is uniformly integrable.

We recall the classical Arzela-Ascoli theorem (see [42, Theorem 2.3.2]), which charac-

terizes the relatively compact subsets of C([T0, T ], H).

Theorem 1.5.2 (Arzela-Ascoli). A set K ⊂ C([T0, T ];H) is relatively compact if and only if

1. for every t ∈ [T0, T ], the set K(t) := {u(t) : u ∈ K} is relatively compact in H.

2. K is uniformly equicontinuous, i.e.,for every ε > 0 there exists δ(ε) > 0, such that, if

t, s ∈ [T0, T ] and |t− s| ≤ δ, then

||u(t)− u(s)|| < ε, ∀u ∈ K.

The next lemma shows that any weakly convergent sequence in a normed space has a

sequence of convex combinations of its members that converges strongly to the same limit (see

[19, p. 61]).
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Lemma 1.5.2 (Mazur lemma). Let X be a Banach space, assume that (xn)n converges weakly

to x on X. Then there exists a sequence (yn)n made up of the convex combination of (xk)k≥n

(i.e., yn ∈ co {xk : k ≥ n}) that ’s converges strongly to x on X.

The following Proposition, proved in [64, Proposition 3.2], is a scalar upper semiconti-

nuity property for prox-regular sets.

Proposition 1.5.1. Let C : I = [T0, T ] ⇒ H be an r-prox-regular valued multimapping for

some r ∈]0,+∞]. Assume that there exist a positive measure µ on I and ρ ∈]0,+∞] such that

for all s, t ∈ I with s ≤ t,

excρ(C(s), C(t)) ≤ µ(]s, t]).

Let t̄ ∈ I, x̄ ∈ C(t̄) ∩ ρU, (tn)n∈N be a sequence of [t̄, T ] with µ(]t̄, tn]) → 0 and (xn)n∈N be a

sequence of H with xn → x̄ and xn ∈ C(tn) for all n ∈ N. Then, one has

lim sup
n→+∞

σ(−∂ dC(tn)(xn), h) ≤ σ(−∂ dC(t̄)(x̄), h), for all h ∈ H.

1.6 Control Systems and Differential Inclusions

Differential equations first came into existence with the invention of calculus by Newton and

Leibniz in the 17th century. A differential equation to which we associate an initial condition

(known as the Cauchy problem)

ẋ(t) = f(t, x(t)), x(t0) = x0,

is a relation between a state x and its rate of change ẋ =
dx

dt
dt . It models the evolution of a

system and permits to predict its future evolution without changing its behavior. For instance,

we can exactly predict time and locations of eclipses but we cannot modify them. A control

system is, however, a differential equation involving an external agent, called ‘controller’, who

will affect the evolution of the system. This situation is modeled by the control system below.

Namely,

ẋ = f(t, x, u), u(·) ∈ U , (1.8)

where U is a family of admissible control functions defined as

U := {u : R→ Rm; u(·) measurable, u(t) ∈ U(t) for a.e. t}, (1.9)

for a given nonempty multifunction U(t) such that U(t) ⊂ Rm. In this case, the rate of

change ẋ(t) depends not only on the state x itself, but also on some external parameters, say

u = (u1, u2, ..., um), which can also vary in time or space. The control function u(·), subject
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to some constraints, will be chosen by a controller in order to manage, command or regulate

the behavior of the system and achieve certain predefined goals, for instance steer the system

from one state to another, maximize the terminal value of one of the parameters, minimize or

maximize a certain cost functional, etc. We distinguish two types of controls: the time-variable

control t → u(t) and the space-variable control x → u(x). The first is known as an open loop

control while the second is a closed loop control or feedback. In an open loop control system,

the control action from the controller is independent of the ‘process output’. A good example of

this is a central heating boiler controlled only by a timer, so that heat is applied for a constant

time, regardless of the temperature of the building. (The control action is the switching on/off

of the boiler. The process output is the building temperature). In a closed loop control system,

the control action from the controller depends on the process output. Considering the boiler,

this would include a temperature thermostat to regulate the building temperature, and thereby

feed back a signal to ensure that the controller maintains the temperature set on the thermostat.

An open loop control is easier to implement since the only information needed is provided by a

clock to measure time. In this work, we are interested in control systems involving time-variable

controls.

The dynamics can also be represented as a differential inclusion which is a generalization of the

concept of ordinary differential equation:

ẋ ∈ F (t, x), (1.10)

where the set of velocities is given by

F (t, x) := {y | y = f(t, x, u), for some u ∈ U(t)},

and F is a set-valued map, i.e. F (t, x) is a set rather than a single point in Rn.

It is clear that every trajectory for the control system (1.8) is also a solution for the differential

inclusion (1.10). The converse is also true under some regularity assumptions on f .

Once these two types of dynamics are defined, we are ready to state optimal control

problems which concern the properties of control functions that, when inserted into a differential

equation, give solutions which minimize or maximize a certain ‘cost’ (for the case of control

systems) and the properties of state trajectories and the set of velocities F achieving some

minimum or maximum ‘cost’ (for the case of differential inclusions). Let g : Rn × Rn → R

be real-valued a cost function. We consider the optimal control problem involving a control
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system

(CSP ) :



minimize g(x(S), x(T ))

over arcs x(·) ∈ W 1,1 and measurable functions u(·) satisfying

ẋ(t) = f(t, x(t), u(t)) a.e. t ∈ [S, T ],

(x(S), x(T )) ∈ C,
u(t) ∈ U(t) a.e. t ∈ [S, T ].

The data for problem (CSP ) involve a closed set C, a set-valued map t ⇒ U(t) ⊂ Rm and

functions f : [S, T ] × Rn × Rm → Rn and g : [S, T ] × Rn × Rn → R. We call process a couple

(x(·), u(·)) such that u(·) is a Lebesgue measurable function satisfying u(t) ∈ U(t) a.e. t ∈ [S, T ]

and x(·) is the solution of the ordinary differential equation

ẋ(t) = f(t, x(t), u(t)), a.e. t ∈ [S, T ].

The process (x(·), u(·)) is called feasible if in addition (x(S), x(T )) ∈ C. We say that the

process (x̄(·), ū(·)) is a D-local minimizer for (CSP ) if, for a given ε > 0

g(x̄(S), x̄(T )) ≤ g(x(S), x(T )),

for every feasible trajectory (x(·), u(·)) such that

‖x(·)− x̄(·)‖D ≤ ε.

The process is called strong local minimizer when D = L∞([S, T ],Rn), and weak local minimizer

when D = W 1,1([S, T ],Rn), which corresponds to the set of absolutely continuous functions. In

some circumstances, we shall emphasize the dependence on the minimizer of ” and we would

refer to it as a D local ”ε-minimizer. Since the set of absolutely continuous functions is larger

than the set of L∞ functions, the W 1,1-norm is stronger than the L∞-norm. It follows that the

W 1,1-local minimizers would provide a sharper analysis on the local nature of the optimality

conditions than would be the case with L∞-local minimizers.

An optimal control problem formulated in terms of a differential inclusion is defined as follow

(DIP ) :


minimize g(x(S), x(T ))

over arcs x(·) ∈ W 1,1 satisfying

ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [S, T ],

(x(S), x(T )) ∈ C,

where F : [S, T ]×Rn ⇒ Rn is a set-valued map. A trajectory x(·) which solves the differential

inclusion ẋ ∈ F (t, x) is called an F -trajectory.

The next theorem provides conditions for which an optimal control problem (in terms

of differential inclusion dynamics) has a minimizer.
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Theorem 1.6.1. [84] Consider the problem (DIP ). Assume that

(a) the multifunction F : [0, T ]×Rn ⇒ Rn has closed and nonempty values, F (·, ·) is L×Bn

and the graph of F (t, ·) is closed for a.e. t ∈ [S, T ];

(b) there exist α ∈ L1 and β ∈ L1 such that

F (t, x) ⊂ (α(t)|x|+ β(t))B, for all (t, x);

(c) C is closed and g is a given lower semicontinuous function;

(d) one of these following sets is bounded:

C0 := {x0 ∈ Rn : (x0, x1) ∈ C for some x1 ∈ Rn}.

C1 := {x1 ∈ Rn : (x0, x1) ∈ C for some x0 ∈ Rn}.

(e) the set of feasible F -trajectories {x : ẋ(t) ∈ F (t, x(t)), a.e. t, and (x(S), x(T )) ∈ C}
is nonempty;

(f) F (t, x) is convex for each (t, x).

Then (DIP ) has a minimizer.

Remark 1.6.1. When F has no convex values,

ẋ(t) ∈ F (t, x(t)), a.e. t ∈ [S, T ],

will be replaced with

ẋ(t) ∈ coF (t, x(t)), a.e. t ∈ [S, T ].

We end this section by the following (non-dynamic) problem of mathematical program-

ming (MP ) with operator, inequality, and geometric constraints to which we can reduce our

discrete-time problems of dynamic optimization:

(MP ) :


minimize ϕ0(z) subject to

ϕj(z) ≤ 0, j = 1, ..., s,

f(z) = 0,

z ∈ Ej ⊂ Z, j = 1, ..., l,

(1.11)

where ϕj are real-valued functions on Z, where f : Z → E is a mapping between Banach

spaces, and where Ej ⊂ Z. Note that problem (MP ) is intrinsically nonsmooth, even in the

case of the smooth data f and ϕj in (1.11) and in the generating dynamic problems. Now we

derive the necessary optimality conditions for problem (MP ) with many geometric constraints.
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Proposition 1.6.1. [52, Proposition 6.16] Let z̄ be a local optimal solution to problem (1.11),

where the spaces Z and E are Asplund and where the sets Ej are locally closed around z̄.

Assume also that all ϕi are Lipschitz continuous around z̄, that f is generalized Fredholm at

z̄, and that each Ej is sequential normal compactness (SNC) at this point. Then there are real

numbers {µj ∈ R | j = 0, ..., s} as well as linear functionals e∗ ∈ E∗ and {z∗j ∈ Z∗ | j = 1, ..., l},
not all zero, such that µj ≥ 0 for j = 0, .., s and

µjϕj(z̄) = 0, for j = 1, ..., s,

z∗j ∈ N(z̄, Ej), for j = 1, ..., l,

−
l∑

j=1

z∗j ∈ ∂

(
s∑
j=0

µjϕj

)
(z̄) +D∗Nf(z̄)(e∗).



Chapter 2
Nonconvex Integro-Differential

Sweeping Process with Applications

Abstract. In this chapter, we analyze and discuss the well-posedness of a new variant of

the so-called sweeping process, introduced by J.J. Moreau in the early 70’s with motivation

in plasticity theory. In this variant, the normal cone to the (mildly non-convex) prox-regular

moving set C(t) is supposed to have an absolutely continuous variation, is perturbed by a sum

of a Carathéodory mapping and an integral forcing term. The integrand of the forcing term

depends on two time-variables, that is, we study a general integro-differential sweeping process

of Volterra type. By setting up an appropriate semi-discretization method combined with a new

Gronwall-like inequality (differential inequality), we show that the integro-differential sweeping

process has one and only one absolutely continuous solution. We also establish the continuity

of the solution with respect to the initial value. The results of the chapter are applied to

the study of nonlinear integro-differential complementarity systems which are combination of

Volterra integro-differential equations with nonlinear complementarity constraints. A second

application is concerned with non-regular electrical circuits containing time-varying capacitors

and nonsmooth electronic device like diodes. A circuit with transmission line, diode and induc-

tor is also analyzed. Another application to a frictionless mechanical problem is also provided.

All these applications represent an additional novelty of our work.

2.1 Gronwall-like differential inequality

We start this section with the following continuous Gronwall’s inequality [73, Lemma 4.1, p.

179].

33
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Lemma 2.1.1 (Gronwall’s inequality). Let T > T0 be given reals and a(·), b(·) ∈ L1([T0, T ];R)

with b(t) ≥ 0 for almost all t ∈ [T0, T ]. Let the absolutely continuous function w : [T0, T ] −→ R+

satisfy

(1− α)w′(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [T0, T ],

where 0 ≤ α < 1. Then for all t ∈ [T0, T ], one has

w1−α(t) ≤ w1−α(T0) exp(

t∫
T0

a(τ)dτ) +

t∫
T0

exp(

t∫
s

a(τ)dτ)b(s)ds.

We will need the following lemma which is a straightforward consequence of Gronwall’s

lemma.

Lemma 2.1.2. Let ρ : [T0, T ] −→ R be a nonnegative absolutely continuous function and let

b1, b2, a : [T0, T ] −→ R+ be non-negative Lebesgue integrable functions. Assume that

ρ̇(t) ≤ a(t) + b1(t)ρ(t) + b2(t)

t∫
T0

ρ(s) ds, a.e. t ∈ [T0, T ]. (2.1)

Then for all t ∈ [T0, T ], one has

ρ(t) ≤ ρ(T0) exp

( t∫
T0

(b(τ) + 1) dτ

)
+

t∫
T0

a(s) exp

( t∫
s

(b(τ) + 1) dτ

)
ds,

where b(t) := max{b1(t), b2(t)}, a.e. t ∈ [T0, T ] .

Proof. Put b(t) = max{b1(t), b2(t)}, a.e. t ∈ [T0, T ]. Setting z(t) =

t∫
T0

ρ(s) ds we have

ż(t) = ρ(t) for all t ∈ [T0, T ], and z̈(t) = ρ̇(t) for a.e. t ∈ [T0, T ]. Then from (2.1) we see that

z̈(t) ≤ a(t) + b1(t)ż(t) + b2(t)z(t).

Putting w(t) = ż(t) + z(t) we have for a.e. t ∈ [T0, T ]

ẇ(t) = z̈(t) + ż(t) and ẇ(t) ≤ a(t) + (b(t) + 1)w(t).

Applying the Gronwall Lemma 2.1.1 with w, one obtains for all t ∈ [T0, T ]

w(t) ≤ w(T0) exp
( t∫
T0

(b(τ) + 1) dτ
)

+

t∫
T0

a(s) exp
( t∫
s

(b(τ) + 1) dτ
)
ds,

which gives

ρ(t) ≤ ż(t) + z(t) = w(t) ≤ ρ(T0) exp

( t∫
T0

(b(τ) + 1) dτ

)
+

t∫
T0

a(s) exp

( t∫
s

(b(τ) + 1) dτ

)
ds.

�
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We establish now the following new Gronwall-like lemma. A lemma of this type has

been previously proved by G. Colombo and C. Kozaily [34]. The lemma in [34] is a little

different from Lemma 2.1.3 below. The arguments for the Cauchy property of the sequence of

approximate solutions in Theorem 2.2.1 of the next section require the general form of Lemma

2.1.3 below because of the form of the integral

t∫
T0

f2(t, s, x(s)) ds present in the sweeping process

(Pf1,f2).

Lemma 2.1.3 (Gronwall-like differential inequality). Let ρ : [T0, T ] −→ R be a non-negative

absolutely continuous function and let K1, K2, ε : [T0, T ] −→ R+ be non-negative Lebesgue

integrable functions. Suppose for some ε > 0

ρ̇(t) ≤ ε(t) + ε+K1(t)ρ(t) +K2(t)
√
ρ(t)

t∫
T0

√
ρ(s) ds, a.e. t ∈ [T0, T ]. (2.2)

Then for all t ∈ [T0, T ], one has

√
ρ(t) ≤

√
ρ(T0) + ε exp

( t∫
T0

(K(s) + 1) ds

)
+

√
ε

2

t∫
T0

exp

( t∫
s

(K(τ) + 1) dτ

)
ds

+ 2

(√√√√√ t∫
T0

ε(s) ds+ ε−
√
ε exp

( t∫
T0

(K(τ) + 1) dτ

))

+ 2

t∫
T0

(K(s) + 1) exp

( t∫
s

(K(τ) + 1) dτ

)√√√√√ s∫
T0

ε(τ) dτ + ε ds,

where K(t) := max

{
K1(t)

2
,
K2(t)

2

}
for t ∈ [T0, T ].

Proof. Set λ(t) =

√√√√√ t∫
T0

ε(s) ds+ ε and zε(t) =
√
ρ(t) + λ2(t) for all t ∈ [T0, T ] .

From (2.2) we have for a.e. t ∈ [T0, T ]

ρ̇(t) ≤ ε(t) + ε+K1(t)(ρ(t) + λ2(t)) +K2(t)
√
ρ(t) + λ2(t)

t∫
T0

√
ρ(s) + λ2(s) ds (2.3)

and

żε(t) =
ρ̇(t) + 2λ̇(t)λ(t)

2
√
ρ(t) + λ2(t)

=
ρ̇(t) + ε(t)

2zε(t)
, or equivalently ρ̇(t) = 2zε(t)żε(t)− ε(t),

hence from (2.3)

2zε(t)żε(t) ≤ 2ε(t) + ε+K1(t)zε(t)
2 +K2(t)zε(t)

t∫
T0

zε(s) ds.
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Therefore, for a.e. t ∈ [T0, T ] we have

żε(t) ≤
ε(t)

zε(t)
+

ε

2zε(t)
+
K1(t)

2
zε(t) +

K2(t)

2

t∫
T0

zε(s) ds. (2.4)

We claim that

żε(t) ≤ 2λ̇(t) +

√
ε

2
+

1

2

K1(t)zε(t) +K2(t)

t∫
T0

zε(s) ds

 . (2.5)

To argue the latter inequality we note first that

λ(t) =

√√√√√ t∫
T0

ε(s) ds+ ε ≤

√√√√√ρ(t) +

t∫
T0

ε(s) ds+ ε =
√
ρ(t) + λ2(t) = zε(t),

then

1

zε(t)
≤ 1

λ(t)
, or equivalently

ε(t)

zε(t)
≤ ε(t)

λ(t)
.

Also we have λ̇(t) =
ε(t)

2λ(t)
. Then

ε(t)

zε(t)
≤ 2λ̇(t), and

√
ε ≤

√√√√√ε+

t∫
T0

ε(s) ds = λ(t) ≤ zε(t),

hence
ε

2zε(t)
≤
√
ε

2
. Altogether and (2.4) yield (2.5) as desired.

Letting K(t) := max

{
K1(t)

2
,
K2(t)

2

}
and applying the Gronwall Lemma 2.1.2 with

zε, one obtains for all t ∈ [T0, T ]

zε(t) ≤ zε(T0) exp
( t∫
T0

(K(τ) + 1) dτ
)

+

t∫
T0

exp
( t∫
s

(K(τ) + 1) dτ
)
(2λ̇(s) +

√
ε

2
) ds

=
√
ρ(T0) + ε exp(

t∫
T0

(K(s) + 1) ds) +

t∫
T0

exp
( t∫
s

(K(τ) + 1) dτ
)
(2λ̇(s) +

√
ε

2
) ds,

or equivalently

zε(t) ≤
√
ρ(T0) + ε exp

( t∫
T0

(K(s) + 1) ds
)

+ 2

t∫
T0

exp
( t∫
s

(K(τ) + 1) dτ
)
λ̇(s) ds

+

√
ε

2

t∫
T0

exp
( t∫
s

(K(τ) + 1) dτ
)
ds.
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On the other hand, from integration by parts, we note that

t∫
T0

exp
( t∫
s

(K(τ) + 1) dτ
)
λ̇(s) ds

= [exp
( t∫
s

(K(τ) + 1) dτ
)
λ(s)]tT0 +

t∫
T0

(K(s) + 1) exp
( t∫
s

(K(τ) + 1) dτ
)
λ(s) ds

= λ(t)− exp
( t∫
T0

(K(τ) + 1) dτ
)√

ε+

t∫
T0

(K(s) + 1) exp
( t∫
s

(K(τ) + 1) dτ
)
λ(s) ds,

which combined with what precedes gives

zε(t) ≤
√
ρ(T0) + ε exp

( t∫
T0

(K(s) + 1) ds
)

+

√
ε

2

t∫
T0

exp
( t∫
s

(K(τ) + 1) dτ
)
ds

+ 2λ(t)− 2 exp
( t∫
T0

(K(τ) + 1) dτ
)√

ε+ 2

t∫
T0

(K(s) + 1) exp
( t∫
s

(K(τ) + 1) dτ
)
λ(s) ds.

Consequently, observing that
√
ρ(t) ≤

√
ρ(t) + λ2(t) = zε(t) we obtain

√
ρ(t) ≤

√
ρ(T0) + ε exp

( t∫
T0

(K(s) + 1) ds
)

+

√
ε

2

t∫
T0

exp
( t∫
s

(K(τ) + 1) dτ
)
ds+ 2λ(t)

− 2 exp
( t∫
T0

(K(τ) + 1) dτ
)√

ε+ 2

t∫
T0

(K(s) + 1) exp
( t∫
s

(K(τ) + 1) dτ
)
λ(s) ds,

which completes the proof of the lemma. �

2.2 Existence result for the integro-differential sweeping

process

In this section, we give and prove our main results in the study of the integro-differential

sweeping process

(Pf1,f2) :


−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s))ds, a.e. t ∈ [T0, T ],

x(T0) = x0 ∈ C(T0).

They concern the existence, uniqueness, and continuous dependence of the solution with respect

to the initial data. We will have to use the following assumptions:
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(H1) For each t ∈ I := [T0, T ], C(t) is a nonempty closed subset of H which is r -prox-

regular for some constant r ∈]0,+∞] (see the definition in the next section), and has

an absolutely continuous variation, in the sense that there is some absolutely continuous

function υ : [T0, T ] −→ R such that

C(t) ⊂ C(s) + |υ(t)− υ(s)|BH [0, 1], ∀ t, s ∈ [T0, T ], (2.6)

where BH [0, η] denotes the closed ball of H centered at the origin with radius η.

(H2) f1 : [T0, T ]×H −→ H is Bochner measurable in time (i.e., f(·, x) is Bochner measurable

for each x ∈ H), and such that

(H2,1) there exists a non-negative function β1(·) ∈ L1([T0, T ],R) such that

‖f1(t, x)‖ ≤ β1(t)(1 + ‖x‖), for all t ∈ [T0, T ] and for any x ∈
⋃

t∈[T0,T ]

C(t).

(H2,2) for each real η > 0 there exists a non-negative function Lη1(·) ∈ L1([T0, T ],R) such

that for any t ∈ [T0, T ] and for any (x, y) ∈ BH [0, η]×BH [0, η],

‖f1(t, x)− f1(t, y)‖ ≤ Lη1(t)‖x− y‖.

(H3) f2 : [T0, T ]2×H −→ H is Bochner measurable in (s, t) ∈ [T0, T ]2 (i.e., f2(·, ·, x) is Bochner

measurable on [T0, T ]2 for each x ∈ H) and such that

(H3,1) there exists a non-negative function β2(·, ·) ∈ L1(Q∆,R) such that

‖f2(t, s, x)‖ ≤ β2(t, s)(1 + ‖x‖), for all (t, s) ∈ Q∆ and for any x ∈
⋃

t∈[T0,T ]

C(t).

(H3,2) for each real η > 0 there exists a non-negative function Lη2(·) ∈ L1([T0, T ],R) such

that for all (t, s) ∈ Q∆ and for any (x, y) ∈ B[0, η]×B[0, η],

‖f2(t, s, x)− f2(t, s, y)‖ ≤ Lη2(t)‖x− y‖.

We state first in the next proposition a result which will be utilized in our development. Clearly,

when the sets C(t) are bounded, the hypothesis (H1) is ensured by the usual Hausdorff variation

hypothesis

haus
(
C(s), C(t)

)
≤ |υ(s)− υ(t)|, ∀ t, s ∈ [T0, T ].

According to the known equality haus(S, S ′) = sup
y∈H
|dS(y)− dS′(y)| for bounded sets S and S ′,

the above inequality amounts to requiring for the bounded sets C(s), C(t) that

|dC(s)(y)− dC(t)(y)| ≤ |υ(s)− υ(t)|, ∀ t, s ∈ [T0, T ], ∀y ∈ H. (2.7)



2.2. Existence result for the integro-differential sweeping process 39

The following result is proved in [29, 39] under the hypothesis (2.7). Notice that (2.7) is valid

even for unbounded sets. Adapting constants, it is easily seen that (2.7) can be given in the

more flexible form of hypothesis (H1).

Proposition 2.2.1. Let H be a real Hilbert space, suppose that C(·) satisfies (H1). Let h :

[T0, T ] −→ H be a single-valued mapping in L1([T0, T ] , H). Then for any x0 ∈ C(T0) there

exists a unique absolutely continuous solution x(·) for the following differential inclusion

(Ph) :

 −ẋ(t) ∈ NC(t)(x(t)) + h(t) a.e t ∈ [T0, T ] ,

x(T0) = x0.

Moreover x(·) satisfies the following inequality

‖ẋ(t) + h(t)‖ ≤ ‖h(t)‖+ |υ̇(t)| a.e. t ∈ [T0, T ] . (2.8)

Theorem 2.2.1. Let H be a real Hilbert space and assume that (H1), (H2) and (H3) are

satisfied. Then for any initial point x0 ∈ H, with x0 ∈ C(T0) there exists a unique abso-

lutely continuous solution x : [T0, T ] −→ H of the differential inclusion (Pf1,f2). This solution

satisfies:

1. For a.e. t ∈ [T0, T ]

‖ẋ(t)+f1(t, x(t))+

t∫
T0

f2(t, s, x(s)) ds‖ ≤ |υ̇(t)|+‖f1(t, x(t))‖+
t∫

T0

‖f2(t, s, x(s))‖ ds. (2.9)

2. If

T∫
T0

[
β1(τ) +

τ∫
T0

β2(τ, s) ds

]
dτ <

1

4
, one has

‖f1(t, x(t))‖ ≤ (1 +M)β1(t), for all t ∈ [T0, T ], (2.10)

‖f2(t, s, x(s))‖ ≤ (1 +M)β2(t, s), for all (t, s) ∈ Q∆, (2.11)

and for almost all t ∈ [T0, T ]

∥∥∥∥ẋ(t)+f1(t, x(t))+

t∫
T0

f2(t, s, x(s)) ds

∥∥∥∥ ≤ (1+M)

(
β1(t)+

t∫
T0

β2(t, s) ds

)
+ |υ̇(t)|, (2.12)

where M := 2

(
‖x0‖+

T∫
T0

|υ̇(τ)| dτ +
1

2

)
.
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3. Assume the following strengthened form of assumption (H3,1) on the function f2 holds:

(H′3,1) : there exist non-negative functions α(·) ∈ L1([T0, T ],R) and g(·) ∈ L1(P∆,R) such

that

‖f2(t, s, x)‖ ≤ g(t, s) + α(t)‖x‖, for any (t, s) ∈ Q∆ and any x ∈
⋃

t∈[T0,T ]

C(t).

Then one has

‖x(t)‖ ≤ M̃, (2.13)

‖f1(t, x(t))‖ ≤ (1 + M̃)β1(t), for all t ∈ [T0, T ], (2.14)

‖f2(t, s, x(s))‖ ≤ g(t, s) + α(t)M̃, for a.e. (t, s) ∈ Q∆, (2.15)

and for almost all t ∈ [T0, T ]

‖ẋ(t) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds‖ ≤|υ̇(t)|+ (1 + M̃)β1(t) +

t∫
T0

g(t, s) ds+ Tα(t)M̃,

(2.16)

where

M̃ := ‖x0‖ exp

( T∫
T0

(b(τ) + 1) dτ

)

+ exp

( T∫
T0

(b(τ) + 1) dτ

) T∫
T0

(
|υ̇(s)|+ 2β1(s) + 2

T∫
T0

g(s, τ) dτ

)
ds,

and b(t) := 2 max{β1(t), α(t)} for all t ∈ [T0, T ].

Proof. The proof of existence of solution is divided in several steps.

Step 1. Discretization of the interval I = [T0, T ] .

For each n ∈ N, divide the interval I into n intervals of length h = T−T0
n

and define, for all

i ∈ {0, · · · , n− 1}  tni+1 := tni + h = T0 + ih,

Ini :=
[
tni , t

n
i+1

]
,

so that

T0 = tn0 < tn1 < · · · < tni < tni+1 < · · · < tnn = T.

Step 2. Construction of the sequence xn(·).
We construct a sequence of mappings (xn(·))n∈N in C(I,H) which converges uniformly to a

solution x(·) of (Pf1,f2).

Our method consists in establishing a sequence of discrete solutions (xnk(·))n∈N in each interval
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Ink :=
[
tnk , t

n
k+1

]
(0 ≤ k ≤ n− 1) by using Proposition 2.2.1. Indeed, we proceed as follows.

Consider the following problem

(P0) :


−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x0) +

t∫
T0

f2(t, s, x0) ds a.e. t ∈ [T0, t
n
1 ] ,

x(T0) = x0.

Then (P0) is a perturbed sweeping process with the perturbation depending only on time as in

(Ph).

Let h0 : [T0, t
n
1 ] → H be defined by h0(t) := f1(t, x0) +

t∫
T0

f2(t, s, x0) ds for all t ∈ [T0, t
n
1 ]. We

notice by the measurability assumptions in (H2) and (H3) that h is Bochner measurable (for

[T0, t
n
1 ] endowed with its Borel σ-field) and we see by the integrable linear growth conditions

(H2,1) and (H3,1) that

T∫
T0

‖h0(t)‖dt ≤ (1 + ‖x0‖)
T∫

T0

β1(t)dt+ (1 + ‖x0‖)
T∫

T0

t∫
T0

β2(t, s)ds dt,

and since β1(·) ∈ L1([T0, T ],R+) and β2(·) ∈ L1(Q∆,R+), then h0(·) is Bochner integrable on

[T0, t
n
1 ] with respect to the Lebesgue measure. Therefore, by Proposition 2.2.1 the differential

inclusion (P0) has a unique absolutely continuous solution denoted by

xn0 (·) : [T0, t
n
1 ] −→ H,

satisfying the following inequality∥∥∥∥ẋn0 (t) + f1(t, x0) +

t∫
T0

f2(t, s, x0) ds

∥∥∥∥ ≤ ∥∥∥∥f1(t, x0) +

t∫
T0

f2(t, s, x0) ds

∥∥∥∥+ |υ̇(t)|

for a.e. t ∈ [T0, t
n
1 ] .

Next, let us consider the following problem

(P1) :



−ẋ(t)∈NC(t)(x(t))+f1(t, xn0 (tn1 ))+

tn1∫
T0

f2(t, s, x0) ds

+

t∫
tn1

f2(t, s, xn0 (tn1 )) ds a.e. t∈ [tn1 , t
n
2 ] ,

x(tn1 ) = xn0 (tn1 ).

Let h1 : [tn1 , t
n
2 ]→ H be defined by

h1(t) := f1(t, xn0 (tn1 )) +

tn1∫
T0

f2(t, s, x0) ds+

t∫
tn1

f2(t, s, xn0 (tn1 )) ds for all t ∈ [tn1 , t
n
2 ] .
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As above h1 is Bochner measurable on [tn1 , t
n
2 ] and we can see by integrable linear growth

conditions that

T∫
T0

‖h1(t)‖dt ≤ (1 + ‖xn0 (tn1 )‖)
T∫

T0

β1(t)dt

+ (1 + ‖x0‖)
T∫

T0

tn1∫
T0

β2(t, s)ds dt+ (1 + ‖xn0 (tn1 )‖)
T∫

T0

t∫
tn1

β2(t, s)ds dt

≤ (1 + max{‖xn0 (tn1 )‖, ‖x0‖})
( T∫
T0

β1(t)dt+

T∫
T0

t∫
T0

β2(t, s)ds dt

)
.

We know from the above problem (P0) that the mapping xn0 (·) is absolutely continuous on

[T0, t
n
1 ], then in particular bounded on [T0, t

n
1 ]. Furthermore, since we have β1(·) ∈ L1([T0, T ],R+)

along with β2(·) ∈ L1(Q∆,R+), then h1(·) is Bochner integrable. The same arguments as above

show that (P1) has a unique absolutely continuous solution denoted by

xn1 (·) : [tn1 , t
n
2 ] −→ H,

and this solution satisfies the following inequality

∥∥∥∥ẋn1 (t) + f1(t, xn0 (tn1 )) +

tn1∫
T0

f2(t, s, x0) ds+

t∫
tn1

f2(t, s, xn0 (tn1 )) ds

∥∥∥∥
≤
∥∥∥∥f1(t, xn0 (tn1 )) +

tn1∫
T0

f2(t, s, x0) ds+

t∫
tn1

f2(t, s, xn0 (tn1 )) ds

∥∥∥∥+ |υ̇(t)| a.e. t ∈ [tn1 , t
n
2 ] .

Successively, for each n, we have a finite sequence of absolutely continuous mappings (xnk(·))0≤k≤n−1

with for each k ∈ {0, · · · , n− 1}

xnk(·) :
[
tnk , t

n
k+1

]
−→ H

such that

(Pk) :



−ẋnk(t) ∈ NC(t)(x
n
k(t)) + f1(t, xnk−1(tnk)) +

k−1∑
j=0

tnj+1∫
tnj

f2(t, s, xnj−1(tnj )) ds

+

t∫
tnk

f2(t, s, xnk−1(tnk)) ds a.e. t ∈
[
tnk , t

n
k+1

]
xnk(tnk) = xnk−1(tnk),

(2.17)
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where for k = 0 we put xn−1(T0) := x0. Moreover, for a.e. t ∈
[
tnk , t

n
k+1

]
∥∥∥∥ẋnk(t) + f1(t, xnk−1(tnk)) +

k−1∑
j=0

tnj+1∫
tnj

f2(t, s, xnj−1(tnj )) ds+

t∫
tnk

f2(t, s, xnk−1(tnk)) ds

∥∥∥∥
≤
∥∥∥∥f1(t, xnk−1(tnk)) +

k−1∑
j=0

tnj+1∫
tnj

f2(t, s, xnj−1(tnj )) ds+

t∫
tnk

f2(t, s, xnk−1(tnk)) ds

∥∥∥∥+ |υ̇(t)|.

(2.18)

Defining for each k ∈ {0, 1, · · · , n− 1} the mapping hk : [tnk , t
n
k+1]→ H by

hk(t) := f1(t, xnk−1(tnk)) +
k−1∑
j=0

tnj+1∫
tnj

f2(t, s, xnj−1(tnj )) ds+

t∫
tnk

f2(t, s, xnk−1(tnk)) ds,

for all t ∈
[
tnk , t

n
k+1

]
. Clearly, by integrable linear growth conditions (H2,1) and (H3,1) we have

T∫
T0

‖hk(t)‖dt ≤ (1 + ‖xnk−1(tnk)‖)
T∫

T0

β1(t)dt+
k−1∑
j=0

(1 + ‖xnj−1(tnj )‖)

tnj+1∫
tnj

β2(t, s)ds dt

+ (1 + ‖xnk−1(tnk)‖)
T∫

T0

t∫
tnk

β2(t, s)ds dt

≤ (1 + max
0≤j≤k−1

∥∥xnj−1(tnj )
∥∥)

( T∫
T0

β1(t)dt+

T∫
T0

t∫
T0

β2(t, s)ds dt

)
.

We know from the above problems (Pj)0≤j≤k−1 that the mapping xnk−1(·) is absolutely continuous

on
[
tnk−1, t

n
k

]
, then in particular bounded on

[
tnk−1, t

n
k

]
. Further, since β1(·) ∈ L1([T0, T ],R+)

and β2(·) ∈ L1(P∆,R+), the mapping hk(·) is integrable on [tnk , t
n
k+1].

Now, we define the sequence (xn(·))n from the discrete sequences (xnk(.)) as follows.

For each n ∈ N, let xn(·) : [T0, T ] −→ H be such that

xn(t) := xnk(t), if t ∈
[
tnk , t

n
k+1

]
. (2.19)

It is obvious from this definition that xn(·) is absolutely continuous.

Let θn(·) : [T0, T ] −→ [T0, T ] be defined by θn(T0) := T0,

θn(t) := tnk , if t ∈
]
tnk , t

n
k+1

]
.

(2.20)

We obtain from (2.17), (2.18), (2.19) and (2.20), that
−ẋn(t) ∈ NC(t)(xn(t)) + f1(t, xn(θn(t))) +

t∫
T0

f2(t, s, xn(θn(s))) ds a.e. t ∈ [T0, T ]

xn(T0) = x0,

(2.21)
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and for a.e. t ∈ [T0, T ] we have∥∥∥∥ẋn(t) + f1(t, xn(θn(t))) +

t∫
T0

f2(t, s, xn(θn(s))) ds

∥∥∥∥
≤
∥∥∥∥f1(t, xn(θn(t))) +

t∫
T0

f2(t, s, xn(θn(s))) ds

∥∥∥∥+ |υ̇(t)|.

(2.22)

Step 3. We show that the sequence (ẋn(·)) is uniformly dominated by an integrable

function.

Since β1(·) ∈ L1([T0, T ],R+) and β2(·, ·) ∈ L1(P∆,R+) we suppose without loss of generality

that
T∫

T0

[
β1(τ) +

τ∫
T0

β2(τ, s) ds

]
dτ <

1

4
. (2.23)

By construction we have for each i ∈ {0, · · · , n− 1} and for a.e. t ∈
[
tni , t

n
i+1

]
∥∥∥∥ẋn(t) + f1(t, xn(tni )) +

i−1∑
j=0

tnj+1∫
tnj

f2(t, s, xn(tnj )) ds+

t∫
tni

f2(t, s, xn(tni )) ds

∥∥∥∥
≤
∥∥∥∥f1(t, xn(tni )) +

i−1∑
j=0

tnj+1∫
tnj

f2(t, s, xn(tnj )) ds+

t∫
tni

f2(t, s, xn(tni )) ds

∥∥∥∥+ |υ̇(t)|.

According to (H2,1) and (H3,1) it ensues that for a. e. t ∈ [tni , t
n
i+1]

‖ẋn(t)‖ ≤ 2 ‖f1(t, xn(tni ))‖+ 2
i−1∑
j=0

tnj+1∫
tnj

∥∥f2(t, s, xn(tnj ))
∥∥ ds+ 2

t∫
tni

‖f2(t, s, xn(tni ))‖ ds+ |υ̇(t)|

≤ 2(1 + max
0≤k≤n

‖xn(tnk)‖)β1(t) + 2(1 + max
0≤k≤n

‖xn(tnk)‖)
i−1∑
j=0

tnj+1∫
tnj

β2(t, s) ds

+ 2(1 + max
0≤k≤n

‖xn(tnk)‖)
t∫

tni

β2(t, s) ds+ |υ̇(t)|

= |υ̇(t)|+ 2(1 + max
0≤k≤n

‖xn(tnk)‖)β1(t) + 2(1 + max
0≤k≤n

‖xn(tnk)‖)
t∫

T0

β2(t, s) ds,

and hence

∥∥xn(tni+1)
∥∥ ≤ ‖xn(tni )‖+

tni+1∫
tni

|υ̇(τ)| dτ + 2(1 + max
0≤k≤n

‖xn(tnk)‖)

tni+1∫
tni

β1(τ) dτ

+ 2(1 + max
0≤k≤n

‖xn(tnk)‖)

tni+1∫
tni

τ∫
T0

β2(τ, s) ds dτ.
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Iterating, it follows that

∥∥xn(tni+1)
∥∥ ≤ ‖x0‖+

i∑
k=0

tnk+1∫
tnk

|υ̇(τ)| dτ + 2(1 + max
0≤j≤n

∥∥xn(tnj )
∥∥)

i∑
k=0

tnk+1∫
tnk

β1(τ) dτ

+ 2(1 + max
0≤j≤n

∥∥xn(tnj )
∥∥)

i∑
k=0

tnk+1∫
tnk

τ∫
T0

β2(τ, s) ds dτ.

This yields the inequality

∥∥xn(tni+1)
∥∥ ≤ ‖x0‖+

tni+1∫
T0

|υ̇(τ)| dτ + 2(1 + max
0≤k≤n

‖xn(tnk)‖)

tni+1∫
T0

β1(τ) dτ

+ 2(1 + max
0≤k≤n

‖xn(tnk)‖)

tni+1∫
T0

τ∫
T0

β2(τ, s) ds dτ.

(2.24)

The inequality (2.24) being true for all i ∈ {0, · · · , n− 1}, we have

max
0≤k≤n

‖xn(tnk)‖ ≤ ‖x0‖+

T∫
T0

|υ̇(τ)| dτ + 2(1 + max
0≤k≤n

‖xn(tnk)‖)
T∫

T0

β1(τ) dτ

+ 2(1 + max
0≤k≤n

‖xn(tnk)‖)
T∫

T0

τ∫
T0

β2(τ, s) ds dτ,

which gives by (2.23)

max
0≤k≤n

‖xn(tnk)‖ ≤ ‖x0‖+

T∫
T0

|υ̇(τ)| dτ +
1

2
(1 + max

0≤k≤n
‖xn(tnk)‖).

This can be rewritten as

max
0≤k≤n

‖xn(tnk)‖ ≤M, (2.25)

where M := 2

(
‖x0‖+

T∫
T0

|υ̇(τ)| dτ +
1

2

)
.

On one hand, by the growth conditions (H2,1) and (H3,1) of f1, f2 and (2.25) we have for all n

‖f1(t, xn(θn(t)))‖ ≤ β1(t)(1 + ‖xn(θn(t))‖) ≤ (1 +M)β1(t) for all t ∈ [T0, T ], (2.26)

‖f2(t, s, xn(θn(s)))‖ ≤ β2(t, s)(1 + ‖xn(θn(s))‖) ≤ (1 +M)β2(t, s) for all (t, s) ∈ Q∆. (2.27)

Consequently, (2.22) implies for almost all t and for all n∥∥∥∥ẋn(t) + f1(t, xn(θn(t))) +

t∫
T0

f2(t, s, xn(θn(s))) ds

∥∥∥∥
≤ (1 +M)

(
β1(t) +

t∫
T0

β2(t, s) ds

)
+ |υ̇(t)|,

(2.28)
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and hence

‖ẋn(t)‖ ≤ 2(1 +M)

(
β1(t) +

t∫
T0

β2(t, s) ds

)
+ |υ̇(t)|. (2.29)

Step 4. We show that xn(·) converges.

It suffices to show that xn(·) is a Cauchy sequence in the Banach space (C(I,H), ‖·‖∞).

Let m,n ∈ N. For almost all t ∈ [T0, T ], we have
−ẋn(t)− f1(t, xn(θn(t)))−

t∫
T0

f2(t, s, xn(θn(s))) ds ∈ NC(t)(xn(t)),

−ẋm(t)− f1(t, xm(θm(t)))−
t∫

T0

f2(t, s, xm(θm(s))) ds ∈ NC(t)(xm(t)).

(2.30)

Let us set

ϕ(t) := (1 +M)

(
β1(t) +

t∫
T0

β2(t, s) ds

)
+ |υ̇(t)|, (2.31)

γ(t) := 2(1 +M)

(
β1(t) +

t∫
T0

β2(t, s) ds

)
+ |υ̇(t)|. (2.32)

The absolute continuity of xn(·) gives by (2.29)

‖xn(t)‖ ≤ ‖x0‖+

t∫
T0

‖ẋn(s)‖ ds ≤ η, for all t ∈ [T0, T ] , (2.33)

with

η := ‖x0‖+

T∫
T0

γ(s) ds.

Using (2.28), (2.31) and the hypomonotonicity of the normal cone NC(t)(·) due to Proposition

1.3.2, we get that〈
ẋn(t) + f1(t, xn(θn(t))) +

t∫
T0

f2(t, s, xn(θn(s))) ds− ẋm(t)− f1(t, xm(θm(t)))

−
t∫

T0

f2(t, s, xm(θm(s))) ds, xn(t)− xm(t)

〉
≤ ϕ(t)

r
‖xn(t)− xm(t)‖2 ,

or equivalently

〈ẋn(t)− ẋm(t), xn(t)− xm(t)〉 ≤ ϕ(t)

r
‖xn(t)− xm(t)‖2

+ 〈f1(t, xn(θn(t)))− f1(t, xm(θm(t))), xm(t)− xn(t)〉

+

〈 t∫
T0

f2(t, s, xn(θn(s))) ds−
t∫

T0

f2(t, s, xm(θm(s))) ds, xm(t)− xn(t)

〉
.
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Applying Lemma 1.5.1 and the Lipschitz continuity of f1(t, ·) and f2(t, s, ·) with Lipschitz radius

Lη1(·), Lη2(·) ∈ L1(I,R+) on the bounded subset B[0, η] (see the assumptions (H2,2) and (H3,2)),

it follows that

1

2

d

dt
‖xn(t)− xm(t)‖2 ≤ ϕ(t)

r
‖xn(t)− xm(t)‖2

+ Lη1(t) ‖xn(t)− xm(t)‖
(
‖xn(θn(t))− xn(t)‖+ ‖xn(t)− xm(t)‖+ ‖xm(t)− xm(θm(t))‖

)
+ Lη2(t) ‖xn(t)− xm(t)‖

( t∫
T0

‖xn(θn(s))− xn(s)‖ ds+

t∫
T0

‖xn(s)− xm(s)‖ ds

+

t∫
T0

‖xm(t)− xm(θm(t))‖ ds

)

By (2.29) and (2.32), we also have for each n ∈ N and for all t ∈ [T0, T ]

‖xn(t)− xn(θn(t))‖ =

∥∥∥∥
t∫

θn(t)

ẋn(τ)dτ

∥∥∥∥ ≤
t∫

θn(t)

‖ẋn(τ)‖ dτ ≤
t∫

θn(t)

γ(τ)dτ.

Therefore, we get

1

2

d

dt
‖xn(t)− xm(t)‖2 ≤ ϕ(t)

r
‖xn(t)− xm(t)‖2 + Lη1(t) ‖xn(t)− xm(t)‖2

+ Lη1(t) ‖xn(t)− xm(t)‖
( t∫
θn(t)

γ(τ)dτ +

t∫
θm(t)

γ(τ)dτ
)

+ Lη2(t) ‖xn(t)− xm(t)‖
( t∫
T0

s∫
θn(s)

γ(τ)dτ ds+

t∫
T0

s∫
θm(s)

γ(τ)dτ ds
)

+ Lη2(t) ‖xn(t)− xm(t)‖
t∫

T0

‖xn(s)− xm(s)‖ ds.

Moreover, noting by (2.33) that

‖xn(t)− xm(t)‖ ≤ ‖xn(t)‖+ ‖xm(t)‖ ≤ 2η,

we deduce that

1

2

d

dt
‖xn(t)− xm(t)‖2 ≤ ϕ(t)

r
‖xn(t)− xm(t)‖2 + Lη1(t) ‖xn(t)− xm(t)‖2

+ 2ηLη1(t)
( t∫
θn(t)

γ(τ)dτ +

t∫
θm(t)

γ(τ)dτ
)

+ 2ηLη2(t)
( t∫
T0

[ s∫
θn(s)

γ(τ)dτ +

s∫
θm(s)

γ(τ)dτ

]
ds
)

+ Lη2(t) ‖xn(t)− xm(t)‖
t∫

T0

‖xn(s)− xm(s)‖ ds.

(2.34)
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Let us put

Gn,m(t) := 2ηLη1(t)
( t∫
θn(t)

γ(τ)dτ +

t∫
θm(t)

γ(τ)dτ
)
,

G̃n,m(s) :=

s∫
θn(s)

γ(τ)dτ +

s∫
θm(s)

γ(τ)dτ.

Since γ(·) ∈ L1(I,R+) and for each t ∈ I, we have θn(t), θm(t) −→ t, then

lim
n,m→+∞

Gn,m(t) = 0 and lim
n,m→+∞

G̃n,m(t) = 0. (2.35)

On the other hand, for each n ∈ N writing

t∫
θn(t)

γ(s)ds ≤
T∫

T0

γ(s)ds,

we see that

|Gn,m(t)| ≤ 4ηLη1(t)

T∫
T0

γ(s)ds and
∣∣∣G̃n,m(s)

∣∣∣ ≤ 2

T∫
T0

γ(s)ds.

Therefore, for all t ∈ [T0, T ] by (2.35) and the dominated convergence theorem, we obtain

lim
n,m→+∞

T∫
T0

Gn,m(t)dt = 0, (2.36)

lim
n,m→+∞

T∫
T0

G̃n,m(s)ds = 0. (2.37)

Note also by (2.34) that

1

2

d

dt
‖xn(t)− xm(t)‖2

≤
(
ϕ(t)

r
+ Lη1(t)

)
‖xn(t)− xm(t)‖2 +Gn,m(t) + 2ηLη2(t)

T∫
T0

G̃n,m(s) ds

+ Lη2(t) ‖xn(t)− xm(t)‖
t∫

T0

‖xn(s)− xm(s)‖ ds.

Applying Lemma 2.1.3 with

ρ(t) = ‖xn(t)− xm(t)‖2, K1(t) = 2

(
ϕ(t)

r
+ Lη1(t)

)
, K2(t) = 2Lη2(t)

ε(t) := εn,m(t) = 2Gn,m(t) + 4ηLη2(t)

T∫
T0

G̃n,m(s) ds and ε > 0,
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we then see that

‖xn(t)− xm(t)‖ ≤
√
‖xn(T0)− xm(T0)‖2 + ε exp

( t∫
0

(K(s) + 1) ds

)

+

√
ε

2

t∫
T0

exp

( t∫
s

(K(τ) + 1) dτ

)
ds

+ 2

(√√√√√ t∫
T0

εn,m(s) ds+ ε− exp

( t∫
T0

(K(τ) + 1) dτ

)√
ε

)

+ 2

t∫
T0

(K(s) + 1) exp

( t∫
s

(K(τ) + 1) dτ

)√√√√√ s∫
T0

εn,m(τ) dτ + ε ds,

where K(t) := max

{
ϕ(t)

r
+ Lη1(t), Lη2(t)

}
for all t ∈ [T0, T ].

This, along with the fact that lim
n,m→+∞

εn,m(t) = 0 (by (2.35) and (2.37)), ‖xn(T0)−xm(T0)‖ = 0

and taking ε→ 0, we get

lim
n,m→+∞

‖xn(·)− xm(·)‖∞ = 0.

Therefore, the sequence (xn(·)) is a Cauchy sequence in (C([T0, T ] , H), ‖·‖∞) and then con-

verges uniformly on [T0, T ] to a mapping x(·) ∈ C([T0, T ] , H). Furthermore, using this and the

inclusion xn(t) ∈ C(t) we see that x(t) ∈ C(t) for all t ∈ [T0, T ].

Step 5. We show that x(·) is absolutely continuous.

We have for almost all t ∈ I and for all n,

‖ẋn(t)‖ ≤ γ(t).

So, by Dunford-Pettis-theorem (Theorem 1.5.1), we can extract a subsequence of (ẋn(·)) (that,

without loss of generality, we do not relabel) which converges weakly in L1 (I,H) to a mapping

g(·) ∈ L1 (I,H) . This means that∫ T

T0

〈ẋn(s), h(s)〉 ds −→
∫ T

T0

〈g(s), h(s)〉 ds,∀ h ∈ L∞(I,H).

Now fix any t ∈ [T0, t]. We observe that for all z ∈ H∫ T

T0

〈
ẋn(s), z · 1[T0,t](s)

〉
ds =

∫ t

T0

〈ẋn(s), z〉 ds = 〈z,
∫ t

T0

ẋn(s)ds〉,

and ∫ T

T0

〈
g(s), z · 1[T0,t](s)

〉
ds =

∫ t

T0

〈g(s), z〉 ds = 〈z,
∫ t

T0

g(s)ds〉.

So from the weak convergence we deduce that∫ t

T0

ẋn(s)ds −→
∫ t

T0

g(s) ds weakly in H.
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This implies that

xn(T0) +

∫ t

T0

ẋn(s)ds −→ x(T0) +

∫ t

T0

g(s) ds weakly in H.

Since xn(·) is absolutely continuous, we obtain

xn(t) = xn(T0) +

∫ t

T0

ẋn(s)ds −→ x(T0) +

∫ t

T0

g(s) ds weakly in H.

On the other hand, we have

xn(t) −→ x(t) strongly in H,

hence we get

x(t) = x(T0) +

∫ t

T0

g(s) ds.

Therefore, x(·) is absolutely continuous and ẋ(t) = g(t) for a.e. t ∈ [T0, T ], so in particular

‖x(t)‖ ≤ η̃ for all t ∈ [T0, T ] , (2.38)

with

η̃ := ‖x0‖+

T∫
T0

‖g(s)‖ ds.

Step 6. We show that x(·) is a solution of (Pf1,f2) .

For each t ∈ I, since θn(t) −→ t and xn(·) converges uniformly to x(·), we have xn(θn(t)) −→
x(t). For each t ∈ [T0, T ] we also note by (H2) and (H3) that the mappings s 7→ f2(t, s, xn(θn(s))

and s 7→ f2(t, s, x(s)) are Bochner integrable on I, so we can set

yn(t) :=

t∫
T0

f2(t, s, xn(θn(s))) ds, and y(t) :=

t∫
T0

f2(t, s, x(s)) ds.

We have shown in the above Step 5 that (ẋn(·))n converges weakly to ẋ(·) in L1(I,H). More-

over, by (2.33) and (2.38) we can choose some real constant c > 0 such that, for each n, we

have ‖xn(θn(t))‖ ≤ c and ‖x(t)‖ ≤ c for all t ∈ [T0, T ]. Therefore, by the assumptions (H2,2)

and (H3,2) there exist Lc1(·) and Lc2(·) in L1([T0, T ],R+) such that f1(t, ·) and f2(t, s, ·) are

Lc1(t)-Lipschitz and Lc2(t)-Lipschitz respectively on B[0, c]. It follows that

T∫
T0

‖f1(t, xn(θn(t)))− f1(t, x(t))‖ dt ≤
T∫

T0

Lc1(t) ‖xn(θn(t))− x(t)‖ dt, (2.39)

T∫
T0

‖yn(t)− y(t)‖ dt ≤
T∫

T0

Lc2(t)

t∫
T0

‖xn(θn(s))− x(s)‖ ds dt. (2.40)
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Note that for every (t, s) ∈ Q∆

Lc1(t) ‖xn(θn(t))− x(t)‖ ≤ 2cLc1(t),

Lc2(t)

t∫
T0

‖xn(θn(s))− x(s)‖ ds ≤ 2c(T − T0)Lc2(t).

Then by (2.39), (2.40) and by the Lebesgue dominated convergence theorem

f1(·, xn(θn(·))) −→ f1(·, x(·)) strongly in L1(I,H),

yn(·) −→ y(·) strongly in L1(I,H).

This implies that

ζn(·) := ẋn(·) + f1(·, xn(θn(·))) + yn(·) −→ ζ(·) := ẋ(·) + f1(·, x(·)) + y(·)

weakly in L1(I,H). By Mazur’s lemma (Lemma 1.5.2) we can find a convex combination
r(n)∑
k=n

Sk,nζk(·), with
r(n)∑
k=n

Sk,n = 1 and Sk,n ∈ [0, 1] for all k, n, which converges strongly in L1(I,H)

to ζ(·). Extracting a subsequence, we may suppose that
r(n)∑
k=n

Sk,nζk(·) converges almost every-

where on I to the mapping ζ(·). Then there is a Borel set N ⊂ I with null Lebesgue measure

such that for each t ∈ I \N we have
r(n)∑
k=n

Sk,nζk(t)→ ζ(t) and such that for all n ∈ N

−ζn(t) := −ẋn(t)− f1(t, xn(θn(t)))−
t∫

T0

f2(t, s, xn(θn(s))) ds ∈ NC(t)(xn(t)).

Fix any t ∈ I \N and any n ∈ N. Since C(t) is r-prox-regular we have that for every z ∈ C(t)

(see (1.4))

〈−ζn(t), z − xn(t)〉 ≤ ϕ(t)

2r
‖z − xn(t)‖2, for all z ∈ C(t),

hence

〈−ζn(t), z − xn(t)〉 ≤ ϕ(t)

2r
(‖z − x(t)‖+ ‖x(t)− xn(t)‖)2 := λn(t), (2.41)

with lim
n−→∞

λn(t) =
ϕ(t)

2r
‖z − x(t)‖2. Let us fix any z ∈ C(t) and let us write

〈−ζ(t), z − x(t)〉 = 〈−ζ(t) +

r(n)∑
k=n

Sk,nζk(t), z − x(t)〉+

r(n)∑
k=n

Sk,n〈−ζk(t), z − xk(t)〉

+

r(n)∑
k=n

Sk,n〈−ζk(t),−x(t) + xk(t)〉.

The first expression of the second member of the latter equality tends to zero by what precedes,

and keeping in mind that |ζk(t)| ≤ ϕ(t), we also see that the third expression tends to zero.
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Concerning the second expression, thanks to (2.41), it satisfies the estimate

r(n)∑
k=n

Sk,n〈−ζk(t), z − xk(t)〉 ≤
r(n)∑
k=n

Sk,nλk(t).

Thus, passing to the limit we obtain

〈−ζ(t), z − x(t)〉 ≤ ϕ(t)

2r
‖z − x(t)‖2, ∀ z ∈ C(t).

This shows by (1.1) and (1.5) that

−ẋ(t)− f1(t, x(t))−
t∫

T0

f2(t, s, x(s))ds ∈ NC(t)(x(t)), a.e. t ∈ [T0, T ],

and thus

−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s))ds, a.e. t ∈ [T0, T ].

Now consider the situation when

T∫
T0

[
β1(τ) +

τ∫
T0

β2(τ, s) ds

]
dτ ≥ 1

4
.

We fix a subdivision of [T0, T ] given by T0, T1, ..., Tk = T such that, for any

0 ≤ i ≤ k − 1,
Ti+1∫
Ti

[
β1(τ) +

τ∫
T0

β2(τ, s) ds

]
dτ <

1

4
.

Then, by what precedes, there exists an absolutely continuous mapping x0 : [T0, T1] −→ H such

that x0(T0) = x0, x0(t) ∈ C(t) for all t ∈ [T0, T1], and

−ẋ0(t) ∈ NC(t)(x0(t)) + f1(t, x0(t)) +

t∫
T0

f2(t, s, x0(s)) ds, a.e. t ∈ [T0, T1].

Similarly, there is an absolutely continuous mapping x1 : [T1, T2] −→ H such that x1(T1) =

x0(T1), x1(t) ∈ C(t) for all t ∈ [T1, T2], and

−ẋ1(t) ∈ NC(t)(x1(t)) + f1(t, x1(t)) +

t∫
T0

f2(t, s, x1(s)) ds, a.e. t ∈ [T1, T2].

By induction, we obtain for each 0 ≤ i ≤ k − 1 a finite sequence of absolutely continuous

mappings xi : [Ti, Ti+1] −→ H such that for each 0 ≤ i ≤ k − 1, xi(Ti) = xi−1(Ti) and

xi(t) ∈ C(t) for all t ∈ [Ti, Ti+1], and

−ẋi(t) ∈ NC(t)(xi(t)) + f1(t, xi(t)) +

t∫
T0

f2(t, s, xi(s)) ds, a.e. t ∈ [Ti, Ti+1].
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We set x−1(0) = x0 and define the mapping x : [T0, T ] −→ H given by

x(t) = xi(t), if t ∈ [Ti, Ti+1], 0 ≤ i ≤ k − 1.

Obviously, x(·) is an absolutely continuous mapping satisfying x(T0) = x0, x(t) ∈ C(t) for all

t ∈ [T0, T ] and

−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds, a.e. t ∈ [T0, T ], (2.42)

which means that x(·) is a solution of (Pf1,f2).

Step 7. We prove the estimations.

Let x(·) be a solution of (Pf1,f2). Take a Borel set N ⊂ [T0, T ] with null Lebesgue measure such

that the inclusion (2.42) holds for every t ∈ [T0, T ] \N . Fix any t ∈ [T0, T ] \N . By (1.1) and

(1.5) there is some real a0 > 0 such that for any a ∈]0, a0]

x(t) ∈ ProjC(t)

(
x(t)− aẋ(t)− af1(t, x(t))− a

t∫
T0

f2(t, s, x(s)) ds
)
.

We derive from the latter inclusion that

a
∥∥∥ẋ(t)+f1(t, x(t))+

t∫
T0

f2(t, s, x(s)) ds
∥∥∥

=dC(t)

(
x(t)−aẋ(t)−aεf1(t, x(t))−a

t∫
T0

f2(t, s, x(s)) ds
)

≤ |υ(t)− υ(τ)|+
∥∥∥x(t)− x(τ)− aẋ(t)− af1(t, x(t))− a

t∫
T0

f2(t, s, x(s)) ds
∥∥∥,

since x(τ) ∈ C(τ) for all τ ∈ [T0, T ]. For any τ ∈]T0, t[ with t − a0 < τ < t, taking a = t − τ
one obtains∥∥∥ẋ(t) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds
∥∥∥

≤ |υ(t)− υ(τ)|
t− τ

+
∥∥∥x(t)− x(τ)

t− τ
− ẋ(t)− f1(t, x(t))−

t∫
T0

f2(t, s, x(s)) ds
∥∥∥.

Making τ ↑ t yields

∥∥∥ẋ(t) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds
∥∥∥ ≤ |υ̇(t)|+

∥∥∥− f1(t, x(t))−
t∫

T0

f2(t, s, x(s)) ds
∥∥∥

≤ |υ̇(t)|+ ‖f1(t, x(t))‖+

t∫
T0

‖f2(t, s, x(s))‖ ds.

(2.43)
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This justifies (2.9).

Now assume
t∫

T0

[
β1(τ) +

τ∫
T0

β2(τ, s) ds

]
dτ <

1

4
.

We have from (2.26), (2.27) and (2.28) that the estimates (2.10), (2.11) and (2.12) are obviously

fulfilled.

If in addition if

‖f2(t, s, x)‖ ≤ g(t, s) + α(t)‖x‖,

we have from (2.43) that

‖ẋ(t)‖ ≤|υ̇(t)|+ 2‖f1(t, x(t))‖+ 2

t∫
T0

‖f2(t, s, x(s))‖ ds

≤|υ̇(t)|+ 2β1(t)(1 + ‖x(t)‖) + 2

t∫
T0

g(t, s) ds+ 2α(t)

t∫
T0

‖x(s)‖ ds

=|υ̇(t)|+ 2β1(t) + 2

t∫
T0

g(t, s) ds+ 2β1(t)‖x(t)‖+ 2α(t)

t∫
T0

‖x(s)‖ ds.

(2.44)

Putting ρ(t) := ‖x0‖ +

t∫
T0

‖ẋ(s)‖ ds and noting that for a.e. t ∈ [T0, T ], ‖x(t)‖ ≤ ρ(t), the

inequality (2.44) ensures that

ρ̇(t) ≤|υ̇(t)|+ 2β1(t) + 2

t∫
T0

g(t, s) ds+ 2β1(t)ρ(t) + 2α(t)

t∫
T0

ρ(s) ds.

Applying Gronwall Lemma 2.1.2 with ρ(·), one obtains

‖x(t)‖ ≤ ρ(t) ≤ ‖x0‖ exp

( t∫
T0

(b(τ) + 1) dτ

)

+

t∫
T0

(
|υ̇(s)|+ 2β1(s) + 2

s∫
T0

g(s, τ) dτ

)
exp

( t∫
s

(b(τ) + 1) dτ

)
ds,

where b(τ) := 2 max{β1(τ), α(τ)} for almost all τ ∈ [T0, T ]. This yields the validity of (2.13),

(2.14), (2.15) and (2.16).

Step 8. Uniqueness.

Now, we turn to the uniqueness. If x1(·), x2(·) are two solutions, the hypo-monotonicity property
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of the normal cone in Proposition 1.3.2 yields for almost all t ∈ [T0, T ]

〈−ẋ1(t)− f1(t, x1(t))−
t∫

T0

f2(t, s, x1(s)) ds+ ẋ2(t) + f1(t, x2(t)) +

t∫
T0

f2(t, s, x2(s)) ds,

x2(t)− x1(t)〉 ≤ 1

2r
‖x2(t)− x1(t)‖2

2∑
i=1

(
‖ẋi(t)‖+ ‖f1(t, xi(t))‖+

t∫
T0

‖f2(s, xi(s))‖ ds
)
,

from which we obtain

〈ẋ2(t)− ẋ1(t), x2(t)− x1(t)〉

≤ 1

2r
‖x2(t)− x1(t)‖2

2∑
i=1

(
‖ẋi(t)‖+ ‖f1(t, xi(t))‖+

t∫
T0

‖f2(t, s, xi(s))‖ ds
)

+ 〈f1(t, x1(t))− f1(t, x2(t)), x2(t)− x1(t)〉

+ 〈
t∫

T0

f2(t, s, x1(s)) ds−
t∫

T0

f2(t, s, x2(s)) ds, x2(t)− x1(t)〉.

Since the absolutely continuous mappings x1(·) and x2(·) are in particular bounded on [T0, T ],

we can choose some real η > 0 such that, for each i = 1, 2, ‖xi(t)‖ ≤ η for all t ∈ [T0, T ]. The

latter inequality assures us that

d

dt

1

2
‖x2(t)− x1(t)‖2 ≤ Lη2(t)‖x2(t)− x1(t)‖

t∫
T0

‖x2(s)− x1(s)‖ ds

+

(
Lη1(t) +

1

2r

2∑
i=1

(
‖ẋi(t)‖+ ‖f1(t, xi(t))‖+

t∫
T0

‖f2(t, s, xi(s))‖ ds
))
‖x2(t)− x1(t)‖2.

Finally, setting ρ(t) := ‖x2(t)− x1(t)‖2 we get

ρ̇(t) ≤
(

2Lη1(t) +
1

r

2∑
i=1

(
‖ẋi(t)‖+ ‖f1(t, xi(t))‖+

t∫
T0

‖f2(t, s, xi(s))‖ ds
))

ρ(t)

+ 2Lη2(t)
√
ρ(t)

t∫
T0

√
ρ(s) ds,

hence it suffices to invoke Lemma 2.1.3 with ε(·), ε > 0 arbitrary. Then the proof of the theorem

is complete . �

Now, we give the following stability result, if the initial data of the prolem x0 change

slightly, then the corrosponding solutions would not differ much. Mor precisely we have the

following proposition.



2.2. Existence result for the integro-differential sweeping process 56

Proposition 2.2.2. Assume that the assumptions of Theorem 2.2.1 (in case 3) holds. For each

a ∈ C(T0), denote by xa(·) the unique solution of the integro-differential sweeping process
−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds a.e in [T0, T ],

x(T0) = a ∈ C(T0).

Then, the map ψ : a −→ xa(·) from C(T0) to the space C([T0, T ], H) endowed with the supremum

norm (of uniform convergence) is Lipschitz on any bounded subset of C(T0).

Proof. Let M be any fixed positive real number. We are going to prove that ψ is Lipschitz on

C(T0)∩B[0,M ]. According to Theorem 2.2.1 (case 3), there exists a real number M1 depending

only on M such that, for all z ∈ C(T0) ∩B[0,M ] and for almost all (t, s) ∈ Q∆

‖ẋz(t) + f1(t, xz(t)) +

t∫
T0

f2(t, s, xz(s)) ds‖

≤ ϕ(t) :=|υ̇(t)|+ (1 +M1)β1(t) +

t∫
T0

g(t, s) ds+ Tα(t)M1.

Thanks to this last inequality, for some η > 0 depending only on M , for all z ∈ C(T0)∩B[0,M ]

and for all t ∈ [T0, T ], we have

xz(t) ∈ B[0, η]. (2.45)

Fix any a, b ∈ C(T0) ∩MB . By the hypomonotonicity property of the normal cone in Propo-

sition 1.3.2 we have for almost all (t, s) ∈ Q∆

〈
−ẋa(t)−f1(t, xa(t))−

t∫
T0

f2(t, s, xa(s)) ds+ẋb(t)+f1(t, xb(t))+

t∫
T0

f2(t, s, xb(s)) ds, x2(t)−x1(t)
〉

≤ ϕ(t)

r
‖xb(t)− xa(t)‖2,

from which we obtain

〈ẋb(t)− ẋa(t), xb(t)− xa(t)〉

≤ ϕ(t)

r
‖xb(t)− xa(t)‖2 + 〈f1(t, xa(t))− f1(t, xb(t)), xb(t)− xa(t)〉

+

〈 t∫
T0

f2(t, s, xa(s)) ds−
t∫

T0

f2(t, s, xb(s)) ds, xb(t)− xa(t)
〉
.

Since, by the assumptions (H2,2) and (H3,2), there are non-negative functions Lη1(·) and Lη2(·) in

L1([T0, T ],R) such that f1(t, ·) and f2(t, s, ·) are Lη1(t)-Lipschitz and Lη2(t)-Lipschitz respectively
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on B[0, η], the above inequality along with (2.45), entails that for almost all t ∈ [T0, T ],

d

dt
‖xb(t)−xa(t)‖2 ≤ 2

(
Lη1(t)+

ϕ(t)

r

)
‖xb(t)−xa(t)‖2

+2Lη2(t)‖xb(t)−xa(t)‖
t∫

T0

‖xb(s)− xa(s)‖ ds.

Applying the Gronwall-like differential inequality in Lemma 2.1.3 , it results that

sup
t∈[0,T ]

‖xb(t)− xa(t)‖ ≤ ‖b− a‖ exp

( t∫
T0

(K(s) + 1) ds

)
,

where K(t) := max

{
Lη1(t) +

ϕ(t)

r
, Lη2(t)

}
for all t ∈ [T0, T ]. The proof is then complete. �

2.3 Nonlinear integro-differential complementarity sys-

tems

In the present section, as a consequence of Theorem 2.2.1, we obtain the existence and unique-

ness of solutions for nonlinear integro-differential complementarity systems. Our results gener-

alize those from [3].

Let T > T0 be real numbers, I = [T0, T ], n,m ∈ N, f1 : I×Rn −→ Rn, f2 : I2×Rn −→
Rn and g : I × Rn −→ Rm be given mappings. For u1, u2 ∈ Rm we will write 0 ≤ u1 ⊥ u2 ≤ 0

to mean that u1 ∈ Rm
+ , u2 ∈ −Rm

+ and 〈u1, u2〉 = 0, where 〈·, ·〉 is the canonic scalar product in

Rm. Assuming that g(t, ·) is differentiable for each t ∈ I and denoting ∇2g(t, y) the gradient

of g(t, ·) at y, the NIDCS (associated with f1, f2 and g) can be described as

( NIDCS ) :


−ẋ(t) = f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds+∇2 g(t, x(t))T z(t)

0 ≤ z(t) ⊥ g(t, x) ≤ 0,

where z : I −→ Rm is unknown mapping. The term ∇2 g(t, x(t))T z(t) can be seen as the

generalized reactions due to the constraints in mechanics.

For a mapping z : [T0, T ]→ Rm we note that

z(t) ∈ R+
m and 〈z(t), g(t, x)〉 = 0 ⇐⇒ z(t) ∈ NRm+ (g(t, x)).
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So, proceeding as, for example, in [3, Section 9.2] with 9.2− 9.3 therein, (NIDCS) is equivalent

to

−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds, (2.46)

where

C(t) := {x ∈ Rn : g1(t, x) ≤ 0, g2(t, x) ≤ 0, ..., gm(t, x) ≤ 0}, (2.47)

and where we set g(t, ·) = (g1(t, ·), g2(t, ·), ..., gm(t, ·)) for each t ∈ I.

Theorem 2.3.1. [3] Let C(t) be defined as in (2.47) and assume that, there exists an extended

real ρ ∈]0,∞] such that

1. for all t ∈ I, for all k ∈ {1, ...,m}, gk(t, ·) is continuously differentiable on Uρ(C(t)) where

Uρ(C(t)) := {y ∈ Rn : dC(t)(y) < ρ}.

2. there exists a real γ > 0 such that, for all t ∈ I, for all k ∈ {1, ...,m}, and for all

x, y ∈ Uρ(C(t))

〈∇2 gk(t, x)−∇2 gk(t, y), x− y〉 ≥ −γ|x− y|2,

that is, ∇2 gk(t, ·) is γ-hypomonotone on Uρ(C(t)).

3. there is a real δ > 0 such that for all (t, x) ∈ I × Rn with x ∈ bdry (C(t)), there exists

ῡ ∈ B[0, 1] satisfying, for all k ∈ {1, ...,m}

〈∇2 g(t, x), ῡ〉 ≤ −δ. (2.48)

Then for all t ∈ I, the set C(t) is r-prox-regular with r = min{ρ, δ
γ
} .

The nonlinear differential complementarity system (NDCS) (i.e., (NIDCS) with f2 ≡ 0

) was studied in [3], where the authors transform the (NDCS) involving inequality constraints

C(t) to a perturbed sweeping process . We extend this approach by employing the above

transformation of (NIDCS) into an integro-differential sweeping process of the form (Pf1,f2).

Also, in contrast to [3], we do not assume that the moving set C(t) described by a finite

number of inequalities is absolutely continuous with respect to the Hausdorff distance. Rather,

we provide sufficient verifiable conditions ensuring this type of regularity needed on C(·).

Proposition 2.3.1. Let C(t) be defined as in (2.47). Assume that there exist an absolutely

continuous function w, a real δ > 0 and a vector y ∈ Rn with ‖y‖ = 1 such that for any

i = 1, ...,m and any s, t ∈ I

gi(t, x) ≤ gi(s, x) + |w(t)− w(s)|, for all x ∈ Ur(C(s)), (2.49)
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〈∇2gi(t, x), y〉 ≤ −δ, for all t ∈ I, x ∈ Ur(C(t)), (2.50)

where r denotes the prox-regularity constant of all sets C(t). Then C(·) is absolutely continuous

on I in the sense of (2.6) with υ(·) := δ−1w(·).

Proof. Let δ, y and w(·) be as given in the statement. Let s, t ∈ I, let x ∈ C(s) and choose a

subdivision T0 < T1 < ... < Tp = T such that

Tk∫
Tk−1

|υ̇(τ)| dτ < r for every k = 1, ..., p. Fix any

k = 1, ..., p and s, t ∈ [Tk−1, Tk]. Take any i = 1, ...,m and note that

gi(t, x+ |υ(t)− υ(s)|y) = (gi(t, x+ |υ(t)− υ(s)|y)− gi(s, x+ |υ(t)− υ(s)|y))

+ gi(s, x+ |υ(t)− υ(s)|y)

≤ |w(t)− w(s)|+ gi(s, x+ |υ(t)− υ(s)|y)

= |w(t)− w(s)|+ gi(s, x)

+

1∫
0

〈∇2gi(s, x+ θy|υ(t)− υ(s)|), y|υ(t)− υ(s)|〉d θ.

According to (2.50) and to the inclusion x ∈ C(s) it ensues that

gi(t, x+ |υ(t)− υ(s)|y) ≤ |w(t)− w(s)| − δ|υ(t)− υ(s)| ≤ 0.

This being true for every i = 1, ...,m, it follows that x+ |υ(t)−υ(s)|y belongs to C(t), otherwise

stated, x ∈ C(t) + |υ(t) − υ(s)|(−y). It results that C(s) ⊂ C(t) + |υ(t) − υ(s)|B[0, 1]. Since

the variables s and t play symmetric roles, the set-valued mapping C(·) has an absolutely

continuous variation on [Tk−1, Tk] in the sense of (2.6). From this we clearly derive that C(·)
has an absolutely continuous variation on I. �

Exemple 2.3.1. Let m = 1, n = 2, T0 = 0, T = 1, g(t, x) = t
1
3 − x1 − x2

2, and define

C(t) = {x ∈ R2 : g(t, x) ≤ 0}.

Clearly, C(t) is r-prox-regular, since g(t, ·) satisfies all assumptions of Theorem 2.3.1 for all

t ∈ I. Now we check (2.49) and (2.50). Let x ∈ R2, t, s ∈ I. Fix any δ ∈ (0, 1] and put

y = (1, 0). Then for w(t) := t1/3 we have

g(t, x)− g(s, x) = t
1
3 − s

1
3 ≤ |t

1
3 − s

1
3 | = |w(t)− w(s)|,

〈∇2g(t, x), y〉 = −1 ≤ −δ.

We see that w(t) = t1/3 is not Lipschitz on I but it is absolutely continuous there. Then C(·)
has an absolutely continuous variation υ on I in the sense of (2.6), with υ(t) = t1/3/δ.
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Theorem 2.3.2. Assume that the assumptions in Theorem 2.3.1, Proposition 2.3.1 and con-

ditions (H2), (H3) are satisfied. Then, for every initial data x0 with g(0, x0) ≤ 0, problem

(NIDCS) has one and only one solution x(·).

Proof. Like, for example, in [3, Section 9.2], the result follows from the above equivalence

between the problem (NIDCS) and the integro-differential sweeping process (2.46) since all

assumptions of Theorem 2.2.1 are satisfied according to Theorem 2.3.1 and Proposition 2.3.1.

�

2.4 Applications to non-regular electrical circuits

The aim of this section is to illustrate the integro-differential sweeping process in the theory of

non-regular electrical circuits. Electrical devices like diodes are described in terms of Ampere-

Volt characteristic which is (possibly) a multifunction expressing the difference of potential vD

across the device as a function of current iD going through the device [15].

2.4.1 Non-regular electrical circuits with time-varying capacitors

Time-varying capacitors are known to be important for the study of diverse electrical circuits

as can be seen in [13, 31, 37, 45]. A time-varying linear capacitor is presented in pages 49-51 of

[31]. Moreover, in page 50 of the same book [31] it is emphasized how time-varying capacitors

are useful for the study of parametric amplifiers and of diverse physical and biological systems.

The usefulness of time-varying resistors and time-varying inductors is also discussed in [31].

Consider the electrical system shown in Fig.2.1 that is composed of three resistors R1 ≥
0, R2 ≥ 0 with voltage/current laws VRk = Rkxk (k = 1, 2), two inductors L1 ≥ 0, L2 ≥ 0 with

voltage/current laws VLk = Lkẋk (k = 1, 2), three capacitors with time-varying capacitances

C1(t) 6= 0, C2(t) 6= 0 and C3(t) 6= 0 with voltage/current laws VCk(t) = 1
Ck(t)

t∫
0

xk(τ) dτ ,

k = 1, 2, 3, two ideal diodes with characteristics 0 ≤ −VDk ⊥ ik ≥ 0 and an absolutely

continuous current source i : [0, T ]→ R.
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Figure 2.1: Electrical circuit with resistors, inductances, time-varying capacitors and ideal

diodes.

We refer to [13, 31, 37, 45] for diverse systems with time-varying capacitors. For the

system in Fig.2.1 using Kirchhoff’s laws, we have VR1 + VR2 + VL1 + VC1 + VC3 = −VD1 ∈ −NR+(x1 − i)
VR1 − VR2 + VL2 + VC2 − VC3 = −VD2 ∈ −NR+(x2).

Therefore the dynamics of this circuit is given by

−ẋ(t)︷ ︸︸ ︷−ẋ1(t)

−ẋ2(t)

 ∈ N[i(t),+∞[×[0,+∞[(x(t)) +

A1︷ ︸︸ ︷R1+R2

L1
−R2

L1

−R2

L2

R1+R2

L2


x(t)︷ ︸︸ ︷x1(t)

x2(t)



+

t∫
0

[ A2︷ ︸︸ ︷ 1
L1C1(t)

+ 1
L1C3(t)

− 1
L1C3(t)

− 1
L2C3(t)

1
L2C2(t)

+ 1
L2C3(t)


x(s)︷ ︸︸ ︷x1(s)

x2(s)

+

 1
L1C1(t)

i(s)

0

]ds.
(2.51)

Proposition 2.4.1. Assume that i : [0, T ] −→ R is an absolutely continuous function and

Ck : [0, T ] −→ R \ {0}, k = 1, 2, 3 are continuous functions. Then for any initial condition

x(0) = x0 ∈ C(0), problem (2.51) has one and only one absolutely continuous solution x(·).

Proof. Put w(t) = (i(t), 0)T , C(t) := w(t) + [0,+∞[×[0,+∞[, f1(t, x) = A1x, f2(t, s, x) =

A2(t)x +
1

L1C1(t)
w(s). With this (2.51) can be rewritten in the frame of our problem (Pf1,f2)

as 
−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
0

f2(t, s, x(s))ds a.e. in [0, T ],

x(0) = x0 ∈ C(0).
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Then the above data satisfy all the assumptions of Theorem 2.2.1 (precisely case 3), with

υ(t) =

t∫
0

‖ẇ(s)‖ ds, β1(t) = ‖A1‖, g(t, s) =
1

L1C1(t)
‖w(s)‖, α(t) = ‖A2(t)‖.

This finishes the proof. �

This example is another illustration of the applicability of the above developments. It

is worth noticing that the above integrand perturbation f2(·, ·) is not uniformly bounded, then

the existence result of [34] is not applicable here, since it is assumed in (f1) in [34, p. 232] that

‖f0,2(s, x)‖ ≤ M . However, according to (Pϕ) (with ϕ ≡ 1) the above example can be treated

by reduction to a classical perturbed sweeping process (PSP ). So, we provide next another

example of circuit for which such a reduction is no longer applicable.

2.4.2 Non-regular electrical circuit with tranmission line, diode and

inductor

We pass now to diode and inductor models which are connected to transmission lines. Consider

first a transmission line as presented in Figure 1.9 of D.E. Stewart’s book [76, p. 12] with an

inductor with inductance L0, a resistor with resistance R0, a capacitor with capacitance C0

and a leakage conductor with leakage conductance G0 per unit length of the transmission line.

Using Laplace transform, Stewart [76, p 13] obtained

V (t, 0) = (k ∗ I(·, 0))(t) + q(t),

k(t) = L0

C0
δ(t) + k1(t),

(2.52)

where ∗ denotes the convolution product, k1 is bounded on [0, T ] and δ is the Dirac function.
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Figure 2.2: Circuit with diode, inductor and transmission line

Consider now the circuit in Fig.2.2 with the above transmission line, an ideal diode D

and an inductor with inductance L. The dynamic of this circuit is then
Lİ(t, 0) + VD(t) = V (t, 0) +RDI(t, 0) = (k ∗ I(·, 0))(t) +RDI(t, 0)

ID(t) = I(t, 0),

VD(t) ∈ N[0,+∞[(ID(t)),

(2.53)

or equivalently (noting as in [76, p.142] that (δ ∗ I(·, 0))(t) = I(t, 0))

Lİ(t, 0) + VD(t) =

t∫
0

k1(t− s)I(s, 0)ds+
L0

C0

I(t, 0) + q(t) +RDI(t, 0),

ID(t) = I(t, 0),

VD(t) ∈ N[0,+∞[(ID(t)).

(2.54)

Put x(t) := ID(t), C(t) := [0,+∞[, f1(t, x) := 1
L
q(t) +

(
L0

C0L
+ RD

L

)
x, f2(t, s, x) := 1

L
k1(t− s)x.

Then (2.54) can be rewritten in the frame of our problem (Pf1,f2) as
ẋ(t) ∈ −NC(t)(x(t)) + f1(t, x(t)) +

t∫
0

f2(t, s, x(s))ds a.e. in [0, T ],

x(0) = x0 ∈ C(0).

All the conditions in Theorem 2.2.1 are satisfied, so the following proposition is directly derived.

Proposition 2.4.2. The above problem (2.54) has one and only one absolutely continuous

solution x(·).
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It is clear that the foregoing time-dependent variational inequality (2.52) does not

involve the derivative of the unknown function, so it does not cover the integro-differential

model (2.54). In Subsection 4.6.1 of Stewart’s monograph [76] the system (2.52) is solved

by means of an iteration technique and fixed point argument. We mention that no solution

of model (2.54) is provided either in [76] or (to the best of our knowledge) in the literature.

Further, from the form
∫ t

0
f2(t, s, x(s)) ds =

∫ t
0
k1(t − s)x(s) ds in (2.54) we clearly see that

(2.54) is an inclusion relating to the general integro-differential sweeping process developed in

Section 2.2.

We emphasize that due to the above form f2(t, s, x(s)) = k1(t − s)x(s) neither the

result nor the approach in [34] is capable to deal with (2.53)-(2.54) (we remind that the integral

perturbation in [34] is of the form
∫ t

0
f0,2(s, x(s)) ds not suitable here).

To end the section, it must be said that constraints coming from electric circuit are

generally convex. However, nonconvex prox-regular constraint cases after certain transforma-

tions of equations for electric circuits was efficiently utilized in the analysis of such problems,

e.g., in [16, Section 4].

2.5 An integro-differential sweeping process approach to

a frictionless contact problem

This section provides another application of our results. We consider a quasistatic problem

which models the contact between a deformable body and an obstacle, the so-called foundation.

The material is assumed to have a viscoelastic behavior which is modeled by a constitutive law

with long-term memory, thus, at each moment of time, the stress tensor depends not only

on the present strain tensor, but also on its whole history. The contact is frictionless and is

modeled by the well-known Signorini conditions. We refer to [44, 48, 72, 75] for the modeling

details of this kind of problem. For our purpose of motivation, the main concern is to derive a

formulation of the problem, expressed in terms of integro-differential sweeping process, and to

prove its unique solvability under appropriate regularity hypotheses.

Functions spaces.

First we introduce notation which will be employed in the description of the contact problem.

Let d ∈ {1, 2, 3} and let Sd denote the space of second-order symmetric tensors on Rd, or

equivalently, the space of symmetric matrices of order d. As usual for mechanical contact

problems, generic vectors and tensors in Rd and Sd will be denoted by boldface characters, and
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index notation will be utilized for their components, so ζ ∈ Rd and α ∈ Sd can be written as

ζ = (ζi) and α = (αij). The zero elements of the spaces Rd and Sd will be denoted 0Rd and 0Sd

respectively. The inner product and norm on Rd and Sd are canonically defined by

ζ · ξ =
∑
i

ζi · ξi, ‖ζ‖ = (ζ · ζ)
1
2 for all ζ = (ζi), ξ = (ξi) ∈ Rd,

α · β =
∑
i,j

αij · βij, ‖α‖ = (α ·α)
1
2 for all α = (αij), β = (βij) ∈ Sd,

where the indices i, j in the above sums run from 1 to d. Here it is convenient to denote ζ · ξ
the inner product instead of 〈ζ, ξ〉.
We consider a viscoelastic body which occupies a domain Ω ⊂ Rd with Lipschitz boundary Γ.

We denote by Ω = Ω∪Γ the closure of Ω in Rd. The boundary Γ is decomposed into three parts

Γ1, Γ2 and Γ3 with Γ1, Γ2 and Γ3 being relatively open and mutually disjoint and, moreover,

the (area/surface) measure meas(Γ1) relative to Γ is positive, i.e., meas(Γ1) > 0.

As usual, H1(Ω) is the Sobolev space of real-valued functions in L2(Ω) with first order distri-

butional derivatives in L2(Ω) as well. Denoting H1(Ω)d the space of mappings v : Ω→ Rd with

vi ∈ H1(Ω), i = 1, · · · , d, we will use the spaces

V = {v ∈ H1(Ω)d : v = 0 on Γ1},

Q = {θ = (θij) : θij = θji ∈ L2(Ω)}.

The spaces Q and V are endowed with the canonical inner products given by

(θ, τ )Q =

∫
Ω

θ · τ dx, (u,v)E =

∫
Ω

ε(u) · ε(v) dx = (ε(u), ε(v))Q.

Here ε represents the deformation operator, that is,

ε(u) = (εij(u)), εij(u) =
1

2

(∂ ui
∂ xj

+
∂ uj
∂ xi

)
, i, j = 1, . . . , d,

and the index ”E” is utilized to emphasize that the inner product (u,v)E is constructed by

means of the function ε(·). Put ‖τ‖ = (τ , τ )
1/2
Q and ‖v‖E = (v,v)

1/2
E . The space Q endowed

with the inner product (·, ·)Q and the associated norm ‖·‖Q is clearly a Hilbert space. Regarding

V , by the assumption meas(Γ1) > 0 Korn’s inequality (see, e.g., [46, Lemma 6.2, p 115]) tells

us that for some constant κ > 0 we have κ‖v‖H1(Ω)d ≤ ‖v‖E for all v ∈ V , and from this and

the definition of ‖ · ‖E we see that ‖ · ‖E is a norm on V which is equivalent to ‖ · ‖H1(Ω)d on V .

Therefore, the space V endowed with the inner product (·, ·)E and the associated norm ‖ · ‖E is

also a Hilbert space.

For a vector v ∈ V , its normal and tangential components are vν = v · ν and vτ =

v− vνν, respectively, where ν denotes the outward unit normal vector to the boundary Γ. The
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normal and tangential components of the stress tensor σ on the boundary Γ are denoted by

σν = (σν) · ν and στ = σν − σνν, respectively. In addition, we recall that the Sobolev trace

theorem yields

‖v‖L2(Γ3)d ≤ c‖v‖E for all v ∈ V, (2.55)

c being a positive constant which depends on Ω, Γ1 and Γ3.

Next, we recall that the following Green’s formula holds:∫
Ω

σ · ε(v) dx+

∫
Ω

Divσ · v dx =

∫
Γ

σν · v da for all v ∈ H1(Ω)d, (2.56)

where Div denotes the divergence operator given by Divσ = (
∑
j

∂σij
∂xj

), that is, the sum
∑
j

∂σij
∂xj

is the i-th component of Divσ.

Let Q∞ be the space of fourth order tensor fields given by

Q∞ = {e = (eijkh) : eijkh = ejikh = ekhij ∈ L∞(Ω), 1 ≤ i, j, k, h ≤ d}.

It is easy to see that Q∞ is a real Banach space with the norm

‖e‖Q∞ = max
1≤i,j,k,h≤d

‖eijkh‖L∞(Ω),

and, moreover,

‖eτ‖Q ≤ d‖e‖Q∞‖τ‖Q for all e ∈ Q∞, τ ∈ Q, (2.57)

where eτ is the tensor function in Q given by its i, j components as eτ = (
∑
k,h

eijkhτkh). More

on actions of tensors on vectors and matrices can be found, e.g., in [38].

Classically, for u : Ω × [0, T ] → Rd and σ : Ω × [0, T ] → Sd it can be convenient (as

below) to denote by u(t) and σ(t) the mappings u(·, t) and σ(·, t).

The formulation of the problem is as follows.

Problem 1. Find u : Ω× [0, T ]→ Rd and σ : Ω× [0, T ]→ Sd with ui(·, t) and σij(·, t) in H1(Ω)

such that for a.e. t ∈]0, T [

σ(t) = Aε(u̇(t)) + B(t, ε(u(t))) +

t∫
0

R(t− s)ε(u(s)) ds in Ω, (2.58)

Divσ(t) + f 0(t) = 0 in Ω, (2.59)

σ(t)ν = fN(t) on Γ2, (2.60)

uν(t) ≤ 0, σν(t) ≤ 0, σν(t)uν(t) = 0, στ (t) = 0 on Γ3, (2.61)

and

u(t) = 0 on Γ1×]0, T [, (2.62)

u(0) = u0 in Ω. (2.63)
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Here, A : Ω× Sd → Sd, R : [0, T ]→ Q∞, B : [0, T ]×Q→ Q are prescribed mappings,

and B is defined in the form B(t,θ)(x) = B0(x, t,θ(x)) for all x ∈ Ω, where B0 : Ω×]0, T [×Sd →
Sd.

Now, we present a short description of the conditions in Problem 1. Equation (2.58)

represents the viscoelastic constitutive law with long memory in which A, B and R denote the

viscosity, elasticity and relaxation operators, respectively. Equations of type (2.58) are related

to the Kelvin-Voigt law, so when R vanishes, (2.58) reduces to the well known Kelvin-Voigt

constitutive law extensively studied in the literature, see Shillor, Sofonea and Telega [72, Chap-

ter 8], and the references therein. Equation (2.59) is the equilibrium equation, while conditions

(2.62) and (2.60) are the displacement and traction boundary conditions, respectively. Con-

ditions (2.61) represent the frictionless Signorini contact conditions in which uν denotes the

normal displacement, σν represents the normal stress, and στ is the tangential stress on the

potential contact surface. Finally, (2.63) represents the initial condition in which u0 is the

initial displacement field.

We consider the following usual hypotheses (see, e.g., [74]):

(
H(A)

)
: We assume that the viscosity tensor A = (aijkh) : Ω× Sd → Sd satisfies the natural

properties of symmetry and ellipticity :

(a) aijkh ∈ L∞(Ω).

(b) Aσ · τ = σ · Aτ for all σ, τ ∈ Sd, a.e. in Ω.

(c) ∃mA > 0 : Aτ · τ ≥ mA‖τ‖2
Sd for all τ ∈ Sd, a.e. in Ω.

We recall that the i, j component of the tensor function Aτ is
∑
kh

aijkhτkh.

(
H(B)

)
: B0 : Ω×]0, T [×Sd → Sd is such that

(a) There is LB ≥ 0 such that

‖B0(x, t,α1)− B0(x, t,α2)‖Sd ≤ LB‖α1 −α2‖Sd ,

for all α1,α2 ∈ Sd and a.e. (x, t) ∈ Ω×]0, T [.

(b) B0(·, ·, ε) is Borel measurable on Ω×]0, T [ for all ε ∈ Sd.

(c) B0(·, t,0Sd) belongs to Q for all t ∈]0, T [.
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(
H(R,f 0,fN)

)
: The prescribed relaxation tensorR and densities of body forces f 0 and surface

tractions fN are such that

(a) R ∈ C([0, T ],Q∞).

(b) f 0 ∈ C([0, T ], L2(Ω)d).

(c) fN ∈ C([0, T ], L2(Γ2)d).

Now, we turn to an analysis of any eventual solution of Problem 1 (if any).

To this end we assume in what follows that the viscosity and elasticity operators satisfy as-

sumptions
(
H(A)

)
and

(
H(B)

)
, respectively. The relaxation operator, the densities of body

forces and the surface tractions satisfy the assumption
(
H(R,f 0,fN)

)
.

We also introduce the set of admissible displacements fields, defined by

U = {v ∈ V : vν ≤ 0 a.e. on Γ3}, (2.64)

and we note that U is a closed convex subset of V such that 0V ∈ U . And, finally, the initial

displacement satisfies u0 ∈ U . For u,v ∈ V let

(u,v)V = (Aε(u), ε(v))Q, ‖u‖V = (u,u)
1
2
V . (2.65)

Using the assumption
(
H(A)

)
we obtain that (·, ·)V is an inner product on V and ‖ · ‖V and

‖ · ‖E are equivalent norms on V . Therefore, (V, ‖ · ‖V ) is a real Hilbert space.

Next, with the volume measure dx and the area/surface measure da on Γ, we notice that

v 7→
∫
Ω

f 0(t) · v dx+

∫
Γ2

fN(t) · v da ∀v ∈ V, t ∈ [0, T ],

is a continuous linear functional on the space V . Therefore, we may apply the Riesz represen-

tation theorem to define the element f(t) ∈ V by the equality

(f(t),v)V =

∫
Ω

f 0(t) · v dx+

∫
Γ2

fN(t) · v da ∀v ∈ V, t ∈ [0, T ]. (2.66)

Let (u,σ) be a pair of feasible functions, satisfying (2.58)-(2.63). Fix any t in a suitable (full

Lebesgue measure) subset of ]0, T [ over which (2.58)-(2.61) hold. Let v ∈ U . Using the Green

formula (2.56) and using (2.59) we have∫
Ω

σ(t) · (ε(v)− ε(u(t))) dx =

∫
Γ

σ(t)ν · (v − u(t)) da+

∫
Ω

f 0(t) · (v − u(t)) dx.
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From the boundary conditions (2.62), (2.60) and the following decomposition formula σ(t)ν ·
(v − u(t)) = σν(t)(vν − uν(t)) + στ (t) · (vτ − uτ (t)) on Γ3, it ensues that∫

Ω

σ(t) · (ε(v)− ε(u(t))) dx =

∫
Γ2

fN(t) · (v − u(t)) da+

∫
Γ3

σν(t)(vν − uν(t)) da

+

∫
Γ3

στ (t) · (vτ − uτ (t)) da+

∫
Ω

f 0(t) · (v − u(t)) dx.

(2.67)

Using (2.64) and putting (2.61) into (2.67) we obtain∫
Ω

σ(t) · (ε(v)− ε(u(t))) dx ≥
∫
Γ2

fN(t) · (v − u(t)) da+

∫
Ω

f 0(t) · (v − u(t)) dx. (2.68)

The inequality (2.68), the constitutive law (2.58) and the initial conditions (2.63) yield that

any solution of Probem 1 is a solution of the following Problem 2.

Problem 2. Find the displacement field u : [0, T ]→ V , such that

(
Aε(u̇(t)), ε(v)− ε(u(t))

)
Q

+
(
B(t, ε(u(t))), ε(v)− ε(u(t))

)
Q

+

( t∫
0

R(t− s)ε(u(s)) ds, ε(v)− ε(u(t))

)
Q

≥ (f(t),v − u(t))V ∀v ∈ U,

u(0) = u0, u(t) ∈ U for t ∈ [0, T ].

(2.69)

We will see below that Problem 2 has one and only one solution. Thus, consider the

unique solution u of Problem 2. Let D := D(Ω;Rd) = C∞0 (Ω;Rd) denote the space of all

mappings defined on Ω with values in Rd which are infinitely differentiable and have compact

support in Ω. Consider any ϕ ∈ D and take v := u(t)+ϕ. Clearly, v ∈ U since D(Ω;Rd) ⊂ U .

Then by the inequality in (2.69), by (2.58) and (2.66) we have in the sense of distribution that

〈σ(t), ε(ϕ)〉D′×D ≥ 〈f 0(t),ϕ〉D′×D for all ϕ ∈ D(Ω;Rd) a.e. t ∈ [0, T ].

We perform integrations by parts to obtain that

〈−Divσ(t),ϕ〉D′×D ≥ 〈f 0(t),ϕ〉D′×D for all ϕ ∈ D(Ω;Rd).

Similarly, taking v := u(t)−ϕ and using the same arguments we also have that

〈−Divσ(t),ϕ〉D′×D ≤ 〈f 0(t),ϕ〉D′×D for all ϕ ∈ D(Ω;Rd).

So, it follows that

Divσ(t) + f 0(t) = 0.

On the other hand, it is clear by definition of the spaces V and U that

u(t) = 0 on Γ1 × [0, T ],
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and for a.e. t ∈]0, T [

uν(t) ≤ 0, on Γ3.

Notice also that u(0) = u0 in Ω.

Suppose in addition that the mapping u is smooth, in the sense that u(·, t) ∈ C2(Ω),

and that Γ2 and Γ3 are C∞-smooth for example. Then Theorem 6.3 in the book [46] of Kikuchi

and Oden along with the comments subsequent to that theorem in that book, ensue that for

a.e. t ∈]0, T [

σ(t)ν = fN(t) on Γ2,

σν(t) ≤ 0, σν(t)uν(t) = 0, στ (t) = 0 on Γ3.

So, under the above smoothness conditions, u is solution of Problem 1.

To summarize, Problem 2 admits one and only one solution (as we will see below), and

any solution of Problem 1 (if any) coincides with the solution of Problem 2. Furthermore, under

the above regularity of Γ2 and Γ3, if the unique solution u of Problem 2 possesses the regularity

u(·, t) ∈ C2(Ω), then it is a solution of Problem 1. The conclusion is that the unique solution

u of Problem 2 (furnished by the next theorem) is a right weak solution for the concerned

Problem 1.

After the preceding analysis, we present our existence and uniqueness result for Problem 2.

Theorem 2.5.1. Under the above assumptions, for each u0 ∈ U , Problem 2 has a unique

absolutely continuous solution u.

Proof. The proof consists of two parts in which we rewrite Problem 2 in an equivalent form

of integro-differential sweeping process and apply the result of Theorem 2.2.1. To this end,

denoting by L(V ) the space of continuous linear operators from V into itself, we apply the

Riesz representation theorem to define the operators B : [0, T ]× V → V and R : [0, T ]→ L(V )

by

(B(t,v),w)V =
(
B(t, ε(v)), ε(w)

)
Q

(R(t)v,w)V = (R(t)ε(v), ε(w))Q, (2.70)

for all v,w ∈ V, t ∈ [0, T ]. Moreover, using (2.65) and inequality (2.69), we derive the following

variational inequality for a.e. t ∈]0, T [
(
u̇(t),v − u(t)

)
V

+
(
B(t,u(t)),v − u(t)

)
V

+

( t∫
0

R(t− s)u(s) ds,v − u(t)

)
V

≥ (f(t),v − u(t))V for all v ∈ U,
(2.71)
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along with u(0) = u0 and u(t) ∈ U . Then, the variational inequality (2.71) subject to the

latter conditions is equivalent to the following integro-differential inclusion
−u̇(t) ∈ NU(u(t)) +B(t,u(t))− f(t) +

t∫
0

R(t− s)u(s) ds a.e. t ∈ [0, T ],

u(0) = u0 ∈ U.

(2.72)

Now, we prove the existence and uniqueness result for problem (2.72), by applying Theorem

2.2.1. In what follows, we will verify that the data of problem (2.72) satisfy hypotheses of

Theorem 2.2.1 on the space H = V .

(I). Clearly, C(·) = U satisfy (H1) since U is a fixed nonempty closed convex subset of V .

(II). The function f1 defined by f1(t,v) = B(t,v)−f(t) for all t ∈ [0, T ] and all v ∈ V satisfies

for some real constant k > 0 the hypothesis (H2) with β1(t) = max (k2LB, k‖B(t,0Sd)‖Q +

‖f(t)‖V ) and L1(t) = k2LB for all t ∈ [0, T ].

Indeed, by definition of operator B in (2.70) we see for all v ∈ V that

‖B(t,v)‖2
V =

(
B(t,v), B(t,v)

)
V

=
(
B(t, ε(v)), ε(B(t,v))

)
Q

≤ ‖B(t, ε(v))‖Q · ‖ε(B(t,v))‖Q = ‖B(t, ε(v))‖Q · ‖B(t,v)‖E

≤ k‖B(t, ε(v))‖Q · ‖B(t,v)‖V , for some constant k > 0,

recall that ‖ · ‖V and ‖ · ‖E are equivalent norms on V . On the other hand, using
(
H(B)

)
yields

‖B(t,v)‖V ≤ k‖B(t, ε(v))‖Q ≤ k(‖B(t, ε(v))− B(t,0Sd)‖Q + ‖B(t,0Sd)‖Q)

≤ k(LB‖ε(v)‖Q + ‖B(t,0Sd)‖Q) = k(LB‖v‖E + ‖B(t,0Sd)‖Q)

≤ k(kLB‖v‖V + ‖B(t,0Sd‖Q).

We conclude that

‖f1(t,v)‖V ≤ ‖B(t,v)‖V + ‖f(t)‖V ≤ k(kLB‖v‖V + ‖B(t,0Sd‖Q) + ‖f(t)‖V

≤ max (k2LB, k‖B(t,0Sd)‖Q + ‖f(t)‖V )(1 + ‖v‖V ).

Similarly, given v1,v2 ∈ V we have by the way that B(t,v) has been defined

‖B(t,v1)−B(t,v2)‖V = sup
‖w‖V ≤1

(B(t, ε(v1))− B(t, ε(v2)), ε(v))Q

≤ sup
‖w‖V ≤1

‖B(t, ε(v1))− B(t, ε(v2))‖Q‖ε(w)‖Q

≤ k‖B(t, ε(v1))− B(t, ε(v2))‖Q.

From this and
(
(H)(B)

)
we obtain for all v1,v2 ∈ V

‖B(t,v1)−B(t,v2)‖V ≤ kLB‖ε(v1)− ε(v2)‖Q = kLB‖v1 − v2‖E

≤ k2LB‖v1 − v2‖V .
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(III). The function f2(t, s,v) = R(t − s)v for all (t, s) ∈ Q∆ and v ∈ V satisfies, for some

real constant k > 0, the hypothesis (H3) with β2(t, s) = k2d‖R(t − s)‖Q∞ and L2(t) =

k2d sup
t∈[0,T ]

‖R(t)‖Q∞ for all (t, s) ∈ Q∆.

Indeed, by definition of operator R in (2.70) we have for all v ∈ V and all (t, s) ∈ Q∆ that

‖R(t− s)v‖2
V = (R(t− s)v, R(t− s)v)V = (R(t− s)ε(v), ε(R(t− s)v))Q

≤ ‖R(t− s)ε(v)‖Q · ‖ε(R(t− s)v)‖Q = ‖R(t− s)ε(v)‖Q · ‖R(t− s)v‖E

≤ k‖R(t− s)ε(v)‖Q · ‖R(t− s)v‖V .

Next, using assumptions
(
H(R,f 0,fN)

)
-(a) and the inequality (2.57), we obtain

‖f2(t, s,v)‖V = ‖R(t− s)v‖V ≤ kd‖R(t− s)‖Q∞ · ‖ε(v)‖Q = kd‖R(t− s)‖Q∞ · ‖v‖E

≤ k2d‖R(t− s)‖Q∞ · ‖v‖V

≤ k2d‖R(t− s)‖Q∞ · (1 + ‖v‖V ).

Further, by (2.73) we have for any v1,v2 ∈ V and (t, s) ∈ Q∆ that

‖f2(t, s,v1)− f2(t, s,v2)‖V = ‖R(t− s)v1 −R(t− s)v2‖V = ‖R(t− s)(v1 − v2)‖V

≤ k2d‖R(t− s)‖Q∞ · ‖v1 − v2‖V

≤ k2d sup
t∈[0,T ]

‖R(t)‖Q∞ · ‖v1 − v2‖V .

We have verified that all hypotheses of Theorem 2.2.1 are satisfied. Hence, we deduce that

problem (2.72) has a unique absolutely continuous solution u, so Problem 2 has a unique

solution. The proof of the Theorem is then complete. �



Chapter 3
On the Discretization of Truncated

Integro-Differential Sweeping Process

and Optimal Control

Abstract. We consider the Volterra integro-differential equation with a time-dependent prox-

regular constraint that changes in an absolutely continuous way in time (a Volterra absolutely

continuous time-dependent sweeping process). The aim of our chapter is twofold. The first one

is to show the solvability of the initial value problem by setting up an appropriate catching-up

algorithm (full discretization). This part is a continuation of Chapter 2 where we used a semi-

discretization method. Obviously, strong solutions and convergence of full discretization scheme

are desirable properties, especially for numerical simulations. Applications to non-regular elec-

trical circuits are provided. The second aim is to establish the existence of optimal solution to

an optimal control problem involving the Volterra integro-differential sweeping process.

3.1 A full discretization for the integro-differential sweep-

ing process

Given in all the sequel, for each t ∈ [T0, T ], a nonempty closed subset C(t) of H which is

r-prox-regular for some extended real r ∈]0,+∞] and given x0 ∈ C(T0), our main results, in

this section, are stated under the following assumptions:

(H1) There are an absolutely continuous function υ : [T0, T ] −→ R and an extended real

73
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ρ ∈]0,+∞] with ρ ≥ 2

(
‖x0‖+

T∫
T0

υ̇(s) ds+
1

2

)
such that

hausρ(C(t), C(s)) ≤ |υ(t)− υ(s)|, ∀ s, t ∈ [T0, T ],

where hausρ(·, ·) denotes the Hausdorff-Pompeiu ρ-pseudo distance, see (1.6) for the def-

inition.

(H2) The mapping f1 : [T0, T ] × H −→ H is (Bochner) measurable in time (i.e., f(·, x) is

(Bochner) measurable for each x ∈ H), and uniformly continuous in the state on bounded

sets (i.e., f(t, ·) is uniformly continuous on bounded sets), and such that

(H2,1) there exists a non-negative function β1(·) ∈ L1([T0, T ],R) such that

‖f1(t, x)‖ ≤ β1(t)(1 + ‖x‖), for any t ∈ [T0, T ] and any x ∈
⋃

t∈[T0,T ]

C(t),

(H2,2) for each real η > 0 there exists a non-negative function Lη1(·) ∈ L1([T0, T ],R) such

that for any t ∈ [T0, T ] and for any (x, y) ∈ B[0, η]×B[0, η],

〈f1(t, x)− f1(t, y), x− y〉 ≥ −Lη1(t)‖x− y‖2.

(H3) For Q∆ := {(t, s) ∈ [T0, T ]× [T0, T ] : s ≤ t} the mapping f2 : Q∆×H −→ H is (Bochner)

measurable in (t, s) (i.e., f(·, ·, x) is (Bochner) measurable for any x ∈ H) and such that

(H3,1) there exists a non-negative function β2(·, ·) ∈ L1(Q∆,R) such that

‖f2(t, s, x)‖ ≤ β2(t, s)(1 + ‖x‖), for any (t, s) ∈ Q∆ and any x ∈
⋃

t∈[T0,T ]

C(t),

(H3,2) for each real η > 0 there exists a non-negative function Lη2(·) ∈ L1([T0, T ],R) such

that for any (t, s) ∈ Q∆ and for any (x, y) ∈ B[0, η]×B[0, η],

‖f2(t, s, x)− f2(t, s, y)‖ ≤ Lη2(t)‖x− y‖.

Now, we are ready to state the main result.

Theorem 3.1.1. Let H be a real Hilbert space, let C(t) be an r-prox-regular set in H for

each t ∈ [T0, T ] and let x0 ∈ C(T0). Assume that (H1), (H2) and (H3) are satisfied. Then

there exists a unique absolutely continuous solution x : [T0, T ] −→ H of the Volterra integro-

differential inclusion:

(Pf1,f2) :


−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds, a.e. t ∈ [T0, T ],

x(T0) = x0 ∈ C(T0).

(3.1)

Furthermore, this solution satisfies:
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(a) For a.e. t ∈ [T0, T ]

‖ẋ(t)+f1(t, x(t))+

t∫
T0

f2(t, s, x(s)) ds‖ ≤ |υ̇(t)|+‖f1(t, x(t))‖+
t∫

T0

‖f2(t, s, x(s))‖ ds. (3.2)

(b) If

T∫
T0

[
β1(τ) +

τ∫
T0

β2(τ, s) ds

]
dτ <

1

4
, one has

‖f1(t, x(t))‖ ≤ lβ1(t), for all t ∈ [T0, T ], (3.3)

‖f2(t, s, x(s))‖ ≤ lβ2(t, s), for all (t, s) ∈ Q∆, (3.4)

and for almost all t ∈ [T0, T ]∥∥∥∥∥∥ẋ(t) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds

∥∥∥∥∥∥ ≤ (l + 1)

(
β1(t) +

t∫
T0

β2(t, s) ds

)
+ |υ̇(t)|, (3.5)

where l = 2

(
‖x0‖+

T∫
T0

|υ̇(τ)| dτ + 1

)
.

(c) Assume the following strengthened form of assumption (H3,1) on the function f2 holds:

(H′3,1) : there exist non-negative functions α(·) ∈ L1([T0, T ],R) and g(·) ∈ L1(Q∆,R)

such that

‖f2(t, s, x)‖ ≤ g(t, s) + α(t)‖x‖, for any (t, s) ∈ Q∆ and any x ∈
⋃

t∈[T0,T ]

C(t).

Then we have

‖f1(t, x(t))‖ ≤ (l̃ + 1)β1(t), for all t ∈ [T0, T ], (3.6)

‖f2(t, s, x(s))‖ ≤ g(t, s) + α(t)l̃, a.e. (t, s) ∈ Q∆, (3.7)

and for almost all t ∈ [T0, T ]

‖ẋ(t)+f1(t, x(t))+

t∫
T0

f2(t, s, x(s)) ds‖ ≤|υ̇(t)|+(l̃+1)β1(t)+

t∫
T0

g(t, s) ds+Tα(t)l̃, (3.8)

where

l̃ =

‖x0‖+

T∫
T0

(
|υ̇(s)|+ 2β1(s) + 2

T∫
T0

g(s, τ) dτ

)
ds

 exp

( T∫
T0

(b(τ) + 1) dτ

)
,

and

b(t) = 2 max{β1(t), α(t)} for all t ∈ [T0, T ].
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Proof. We are going to construct a sequence of maps xn(·) ∈ C([T0, T ], H) which has a subse-

quence converging to a solution of (Pf1,f2). Note by (H1) that, replacing υ̇(t) by |υ̇(t)|, we may

suppose (without loss of generality) that υ̇(t) ≥ 0 for all t ∈ [T0, T ].

Case 1 : First, let us suppose that

T∫
T0

[
β1(τ) +

τ∫
T0

β2(τ, s) ds

]
dτ <

1

4
. (3.9)

We develop that case through 6 steps.

Step 1. Discretization of the interval I = [T0, T ] .

First, we divide I in two intervals with the same length (T − T0)/2, then we divide each of the

21 obtained intervals in two intervals with the same length (T − T0)/22, etc. Otherwise stated,

for each integer n ≥ 1 we consider the partition of the time interval [T0, T ] associated with

tni = T0 + ihn, 0 ≤ i ≤ 2n, hn =
T − T0

2n
.

Then, for any t ∈]T0, T ] and any integers m > n ≥ 1 there is one and only one pair (i, j) with

0 ≤ i ≤ 2n − 1 and 0 ≤ j ≤ 2m − 1 such that

t ∈]tmj , t
m
j+1] ⊂]tni , t

n
i+1]. (3.10)

Let us also set for each n ∈ N and each 0 ≤ i ≤ 2n − 1

kni =

tni+1∫
tni

υ̇(s) ds, µni =

tni+1∫
tni

β1(s) ds, αni =

tni+1∫
tni

τ∫
T0

β2(τ, s)ds dτ,

and

εn = max
0≤i≤n−1

{hn + µni + kni + αni }.

Note that εn −→ 0, since hn −→ 0 and the functions υ̇, β1, β2 are integrable. Then we can

choose an integer n0 ≥ 1 satisfying for every n ≥ n0

εn ≤
r

3(l + 1)
, where l := 2

(
‖x0‖+

T∫
T0

υ̇(s) ds+ 1

)
.

Step 2. Construction of finite sequences (xni )0≤i≤2n.

Fix any n ≥ n0. Put xn0 = x0. By induction, let us construct a sequence (xni )1≤i≤2n and a

sequence (yni )1≤i≤2n such that for each i ∈ {1, ..., 2n}

yni = xni−1 −
tni∫

tni−1

f1(s, xni−1) ds−
tni∫

tni−1

{ i−1∑
j=1

tnj∫
tnj−1

f2(τ, s, xnj−1)ds+

τ∫
tni−1

f2(τ, s, xni−1)ds

}
dτ (3.11)

xni = ProjC(tni )(y
n
i ), (3.12)
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max
0≤j≤i

‖xnj ‖ ≤ 2

(
‖x0‖+

T∫
T0

υ̇(s) ds+
1

2

)
= l − 1 (3.13)

and

‖xni − yni ‖ ≤ (l + 1)(kni−1 + µni−1 + αni−1), (3.14)

along with for each i ∈ {0, · · · , 2n − 1}

‖xni+1‖ ≤ ‖xni ‖+ kni + 2(1 + max
0≤j≤i

‖xnj ‖)
( tni+1∫

tni

β1(s) ds+

tni+1∫
tni

τ∫
T0

β2(τ, s)ds dτ

)
. (3.15)

Using the inequality ‖xn0‖ ≤ ρ and the fact that xn(T0) ∈ C(T0), one has

dC(tn1 )

(
xn0 −

tn1∫
tn0

f1(s, xn0 ) ds−
tn1∫
tn0

τ∫
tn0

f2(τ, s, xn0 )ds dτ

)

≤ dC(tn1 )(x
n
0 ) +

tn1∫
tn0

‖f1(s, xn0 )‖ ds+

tn1∫
tn0

τ∫
tn0

‖f2(τ, s, xn0 )‖ds dτ

≤ sup
x∈C(T0)∩ρB

dC(tn1 )(x) +

tn1∫
tn0

‖f1(s, xn0 )‖ ds+

tn1∫
tn0

τ∫
tn0

‖f2(τ, s, xn0 )‖ds dτ,

hence by (H1)

dC(tn1 )

(
xn0 −

tn1∫
tn0

f1(s, xn0 ) ds−
tn1∫
tn0

τ∫
tn0

f2(τ, s, xn0 )ds dτ

)

≤ hausρ(C(T0), C(tn1 )) +

tn1∫
tn0

‖f1(s, xn0 )‖ ds+

tn1∫
tn0

τ∫
tn0

‖f2(τ, s, xn0 )‖ds dτ

≤ |υ(tn1 )− υ(T0)|+
tn1∫
tn0

‖f1(s, xn0 )‖ ds+

tn1∫
tn0

τ∫
tn0

‖f2(τ, s, xn0 )‖ds dτ

= kn0 +

tn1∫
tn0

‖f1(s, xn0 )‖ ds+

tn1∫
tn0

τ∫
tn0

‖f2(τ, s, xn0 )‖ds dτ.

(3.16)

On the other hand, one has by (H2)

tn1∫
tn0

‖f1(s, xn0 )‖ ds ≤ (1 + ‖xn0‖)
tn1∫
tn0

β1(s) ds ≤ lµn0 , (3.17)

and
tn1∫
tn0

τ∫
tn0

‖f2(τ, s, xn0 )‖ds dτ ≤ (1 + ‖xn0‖)
tn1∫
tn0

τ∫
tn0

β2(τ, s)ds dτ ≤ lαn0 . (3.18)
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We deduce with

yn1 := xn0 −
tn1∫
tn0

f1(s, xn0 ) ds−
tn1∫
tn0

τ∫
tn0

f2(τ, s, xn0 )ds dτ

that

dC(tn1 )(y
n
1 ) ≤ (l + 1)(kn0 + µn0 + αn0 ) ≤ (l + 1)εn ≤

r

3
< r. (3.19)

The r-prox-regularity of the set C(tn1 ) and Proposition 1.3.3 ensure the existence and the

uniqueness of the projection ProjC(tn1 )(y
n
1 ) and then we can define

xn1 = ProjC(tn1 )(y
n
1 ).

Then, coming back to (3.19), we obtain that

‖xn1 − yn1 ‖ ≤ (l + 1)(kn0 + µn0 + αn0 ).

According to the estimates (3.16), (3.17) and (3.18), we have

‖xn1‖ ≤ ‖xn0‖+ kn0 + 2

tn1∫
tn0

‖f1(s, xn0 )‖ ds+ 2

tn1∫
tn0

τ∫
tn0

‖f2(τ, s, xn0 )‖ds dτ

≤ ‖xn0‖+ kn0 + 2(1 + ‖xn0‖)
( tn1∫
tn0

β1(s) ds+

tn1∫
tn0

τ∫
tn0

β2(τ, s)ds dτ

)
,

thus

‖xn1‖ ≤ ‖xn0‖+

T∫
T0

υ̇(s) ds+ 2(1 + ‖xn0‖)
( T∫
T0

β1(s) ds+

T∫
T0

τ∫
T0

β2(τ, s)ds dτ

)
.

It results, thanks to (3.9), that

‖xn1‖ ≤ ‖xn0‖+

T∫
T0

υ̇(s) ds+
1

2
(1 + ‖xn0‖),

thus

max{‖xn1‖, ‖xn0‖} ≤ 2

(
‖xn0‖+

T∫
T0

υ̇(s) ds+
1

2

)
= l − 1,

where the constant l is as defined in the statement of the theorem. Now, fix any i ∈ {1, ..., n−1}
and suppose that we have constructed xn1 , ..., x

n
i and yn1 , · · · , yni such that for each q ∈ {1, ..., i}

ynq = xnq−1 −

tnq∫
tnq−1

f1(s, xnq−1) ds−

tnq∫
tnq−1

{ q−1∑
j=1

tnj∫
tnj−1

f2(τ, s, xnj−1)ds+

τ∫
tnq−1

f2(τ, s, xnq−1)ds

}
dτ,

and

xnq = ProjC(tnq )(y
n
q ), (3.20)
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along with

max
0≤j≤q

‖xnj ‖ ≤ 2

(
‖x0‖+

T∫
T0

υ̇(s) ds+
1

2

)
= l − 1, (3.21)

‖xnq − ynq ‖ ≤ (l + 1)(knq−1 + µnq−1 + αnq−1),

and

‖xnq ‖ ≤ ‖xnq−1‖+ knq−1 + 2(1 + max
0≤j≤q−1

‖xnj ‖)
( tnq∫
tnq−1

β1(s) ds+

tnq∫
tnq−1

τ∫
T0

β2(τ, s)ds dτ

)
.

We will define xni+1 and yni+1 as follows. From (3.20) and (3.21) and from the assumption on ρ

we note that ‖xnj ‖ ≤ ρ and xnj ∈ C(tnj ) for each j ∈ {0, ..., i}, so according to the assumption

(H1) one obtains

dC(tni+1)

(
xni −

tni+1∫
tni

f1(s, xni ) ds−

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

f2(τ, s, xnj )ds+

τ∫
tni

f2(τ, s, xni )ds

}
dτ

)

≤ dC(tni+1)(x
n
i ) +

tni+1∫
tni

‖f1(s, xni )‖ds+

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

‖f2(τ, s, xnj )‖ds+

τ∫
tni

‖f2(τ, s, xni )‖ds
}

dτ

≤ hausρ(C(tni ), C(tni+1)) +

tni+1∫
tni

‖f1(s, xni )‖ds

+

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

‖f2(τ, s, xnj )‖ds+

τ∫
tni

‖f2(τ, s, xni )‖ds
}

dτ,

hence

dC(tni+1)

(
xni −

tni+1∫
tni

f1(s, xni ) ds−

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

f2(τ, s, xnj )ds+

τ∫
tni

f2(τ, s, xni )ds

}
dτ

)

≤ |υ(tni+1)− υ(tni )|+

tni+1∫
tni

‖f1(s, xni )‖ds

+

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

‖f2(τ, s, xnj )‖ds+

τ∫
tni

‖f2(τ, s, xni )‖ds
}

dτ

= kni +

tni+1∫
tni

‖f1(s, xni )‖ds+

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

‖f2(τ, s, xnj )‖ds+

τ∫
tni

‖f2(τ, s, xni )‖ds
}

dτ.

(3.22)
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On the other hand,

tni+1∫
tni

‖f1(s, xni )‖ ds ≤ (1 + max
0≤j≤i

‖xnj ‖)

tni+1∫
tni

β1(s) ds ≤ l

tni+1∫
tni

β1(s) ds = lµni ,

and
tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

‖f2(τ, s, xnj )‖ds+

τ∫
tni

‖f2(τ, s, xni )‖ds
}

dτ

≤ (1 + max
0≤j≤i

‖xnj ‖)

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

‖β2(τ, s)‖ds+

τ∫
tni

‖β2(τ, s)‖ds
}

dτ

≤ l

tni+1∫
tni

τ∫
T0

‖β2(τ, s)‖ds dτ = lαni .

Therefore, defining

yni+1 = xni −

tni+1∫
tni

f1(s, xni ) ds−

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

f2(τ, s, xnj )ds+

τ∫
tni

f2(τ, s, xni )ds

}
dτ,

we obtain

dC(tni+1)(y
n
i+1) ≤ kni + lµni + lαni ≤ (l + 1)(kni + µni + αni ) ≤ (l + 1)εn ≤

r

3
< r, (3.23)

which implies by the prox-regularity of the set C(tni+1) and Proposition 1.3.3 the existence and

the uniqueness of the projection ProjC(tni+1)(y
n
i+1) and hence we can define

xni+1 = ProjC(tni+1)(y
n
i+1). (3.24)

Note that by (3.23) and (3.24) we have

‖xni+1 − yni+1‖ ≤ (l + 1)(kni + µni + αni ). (3.25)

Further, by (3.22) and (3.24)

‖xni+1‖ ≤ ‖xni ‖+ kni

+ 2

( tni+1∫
tni

‖f1(s, xni )‖ds+

tnq∫
tnq−1

{ i−1∑
j=0

tnj+1∫
tnj

‖f2(τ, s, xnj )‖ds+

τ∫
tni

‖f2(τ, s, xni )‖ds
}

dτ

)

≤ ‖xni ‖+ kni + 2(1 + max
0≤j≤i

‖xnj ‖)
( tni+1∫

tni

β1(s) ds+

tni+1∫
tni

τ∫
T0

‖β2(τ, s)‖ds dτ

)
.
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Now, by the induction assumption, we get

‖xni+1‖ ≤ ‖x0‖+
i∑

p=0

knp + 2(1 + max
0≤j≤i

‖xnj ‖)
( i∑

p=0

tnp+1∫
tnp

β1(s) ds+
i∑

p=0

tnp+1∫
tnp

τ∫
T0

‖β2(τ, s)‖ds dτ

)

≤ ‖x0‖+

tni+1∫
T0

υ̇(s) ds+ 2(1 + max
0≤j≤i

‖xnj ‖)
( tni+1∫

T0

β1(s) ds+

tni+1∫
T0

τ∫
T0

‖β2(τ, s)‖ds dτ

)
,

thus

‖xni+1‖ ≤ ‖x0‖+

T∫
T0

υ̇(s) ds+ 2(1 + max
0≤j≤i+1

‖xnj ‖)
( T∫
T0

β1(s) ds+

T∫
T0

τ∫
T0

‖β2(τ, s)‖ds dτ

)
.

It results, thanks to (3.9), that

max
0≤j≤i+1

‖xnj ‖ ≤ ‖x0‖+

T∫
T0

υ̇(s) ds+
1

2
(1 + max

0≤j≤i+1
‖xnj ‖),

or equivalently

max
0≤j≤i+1

‖xnj ‖ ≤ 2

(
‖x0‖+

T∫
T0

υ̇(s) ds+
1

2

)
= l − 1. (3.26)

The induction is then complete.

Step 3. Boundedness of the approximate solutions.

Fix any integer n ≥ n0. Let us define the mapping xn(·) : [T0, T ] −→ H as follows.

Put xn(0) := x0, for t ∈]tni , t
n
i+1], i ∈ {0, ..., n− 1}, set

xn(t) = xni +
a(t)− a(tni )

kni + µni + αni

(
xni+1 − xni +

tni+1∫
tni

f1(s, xni ) ds

+

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

f2(τ, s, xnj )ds+

τ∫
tni

f2(τ, s, xni )ds

}
dτ

)

−
t∫

tni

f1(s, xni ) ds−
t∫

tni

{ i−1∑
j=0

tnj+1∫
tnj

f2(τ, s, xnj )ds+

τ∫
tni

f2(τ, s, xni )ds

}
dτ,

(3.27)

where a(t) = υ(t) +

t∫
T0

β1(s) ds+

t∫
T0

τ∫
T0

β2(τ, s)ds dτ.

Notice that limt↓tni xn(t) = xni . Using the equality

a(tni+1)− a(tni ) =

tni+1∫
tni

υ̇(s) ds+

tni+1∫
tni

β1(s) ds+

tni+1∫
tni

τ∫
T0

β2(τ, s) dsdτ = kni + µni + αni ,
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we also notice that xn(tni+1) = xni+1, hence xn(tni ) = xni . Altogether, we obtain that xn(·) is

absolutely continuous on each interval [tni , t
n
i+1] as well as on the whole interval [T0, T ]. Moreover,

(3.27) yields for any i ∈ {0, ..., n− 1} and a.e. t ∈]tni , t
n
i+1[

ẋn(t) =
ȧ(t)

kni + µni + αni

(
xni+1 − xni +

tni+1∫
tni

f1(s, xni ) ds

+

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

f2(τ, s, xnj )ds+

τ∫
tni

f2(τ, s, xni )ds

}
dτ

)

− f1(t, xni )−
i−1∑
j=0

tnj+1∫
tnj

f2(t, s, xnj )ds−
t∫

tni

f2(t, s, xni )ds.

(3.28)

Furthermore, from (3.25) and (3.28), we get

∥∥∥∥ẋn(t) + f1(t, xni ) +
i−1∑
j=0

tnj+1∫
tnj

f2(t, s, xnj )ds+

t∫
tni

f2(t, s, xni )ds

∥∥∥∥
=

ȧ(t)

kni + µni + αni

∥∥∥∥xni+1 − yni+1

∥∥∥∥ ≤ (l + 1)ȧ(t).

(3.29)

Then, since

‖f1(t, xni )‖ ≤ β1(t)(1 + ‖xni ‖) ≤ lβ1(t), (3.30)

‖f2(t, s, xni )‖ ≤ β2(t, s)(1 + ‖xni ‖) ≤ lβ2(t, s), (3.31)

and ∥∥∥∥ i−1∑
j=0

tnj+1∫
tnj

f2(t, s, xnj )ds+

t∫
tni

f2(t, s, xni )ds

∥∥∥∥
≤ l

{ i−1∑
j=0

tnj+1∫
tnj

β2(t, s) ds+

t∫
tni

β2(t, s)ds

}
= l

t∫
T0

β2(t, s)ds,

we have for a.e. t ∈ [T0, T ]

‖ẋn(t)‖ ≤ (l + 1)ȧ(t) + lβ1(t) + l

t∫
T0

β2(t, s)ds ≤ (l + 1)ȧ(t) + lȧ(t) = (2l + 1)ȧ(t). (3.32)

From this it follows that

‖xn(t)‖ ≤ ‖x0‖+ (2l + 1)

T∫
T0

ȧ(s)ds = M, ∀ t ∈ [T0, T ]. (3.33)

Step 4. Convergence of the approximate solutions.

In this step we show for each t ∈ [T0, T ] that (xn(t))n≥n0 is a Cauchy sequence in the Hilbert
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space H.

Let us define the functions θn, ηn : [T0, T ] −→ [T0, T ] by θn(T0) = T0, ηn(T0) = T0, and

θn(t) = tni+1, ηn(t) = tni , if t ∈]tni , t
n
i+1] (0 ≤ i ≤ n− 1).

Observe that, for all t ∈ [T0, T ],

lim
n−→∞

|θn(t)− t| = lim
n−→∞

|ηn(t)− t| = 0.

On one hand, the construction of ηn(·) and (3.29), (3.30), (3.31) assure us that, for almost all

t and for all n,∥∥∥∥∥∥ẋn(t) + f1

(
t, xn(ηn(t))

)
+

t∫
T0

f2

(
t, s, xn(ηn(s))

)
ds

∥∥∥∥∥∥ ≤ (l + 1)ȧ(t), (3.34)

∥∥f1(t, xn
(
ηn(t))

)∥∥ ≤ β1(t)(1 + ‖xn(ηn(t))‖) ≤ lβ1(t), (3.35)

∥∥f2

(
t, s, xn(ηn(s))

)∥∥ ≤ β2(t, s)(1 + ‖xn(ηn(s))‖) ≤ lβ2(t, s). (3.36)

Let us fix m,n ∈ N such that m > n ≥ n0. Then, by (3.24), the construction of xn(·),
θn(·), ηn(·) and the properties of normal cones to subsets (see Remark 1.1.1), we have for any

i ∈ {0, ..., n− 1} and a.e. t ∈]tni , t
n
i+1[ we have that the vector

−ẋn(t)− f1

(
t, xn(ηn(t))

)
−

i−1∑
j=0

tnj+1∫
tnj

f2

(
t, s, xn(ηn(s))

)
ds−

t∫
tni

f2

(
t, s, xn(ηn(s))

)
ds

belongs to the normal cone NC(θn(t))

(
xn(θn(t))

)
, otherwise stated

−ẋn(t) ∈ NC(θn(t))

(
xn(θn(t))

)
+ f1

(
t, xn(ηn(t))

)
+

t∫
T0

f2

(
t, s, xn(ηn(s))

)
ds.

According to (1.2), the latter inclusion and relation (3.34) entail for a.e. t ∈ [T0, T ]

−ẋn(t)− f1

(
t, xn(ηn(t))

)
−

t∫
T0

f2

(
t, s, xn(ηn(s))

)
ds ∈ (l + 1)ȧ(t)∂dC(θn(t))

(
xn(θn(t))

)
. (3.37)

Now, take any t ∈ [T0, T ] and by (3.10) choose i ∈ {0, ..., n − 1} and j ∈ {0, ...,m − 1} such

that

t ∈]tmj , t
m
j+1] ⊂]tni , t

n
i+1]. (3.38)
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Then

‖xn(θn(t))− xn(t)‖ ≤
θn(t)∫
t

‖ẋn(τ)‖ dτ ≤ (2l + 1)

θn(t)∫
t

ȧ(τ) dτ

= (2l + 1)

tni+1∫
t

(
υ̇(τ) + β1(τ) +

τ∫
T0

β2(τ, s)ds

)
dτ

≤ (2l + 1)

tni+1∫
tni

(
υ̇(τ) + β1(τ) +

τ∫
T0

β2(τ, s)ds

)
dτ,

hence

‖xn(θn(t))− xn(t)‖ ≤ (2l + 1)(kni + µni + αni ) ≤ (2l + 1)εn, (3.39)

and this inequality allows us to deduce that

‖xn(θn(t))− xm(θm(t))‖

≤ ‖xn(θn(t))− xn(t)‖+ ‖xn(t)− xm(t)‖+ ‖xm(t)− xm(θm(t))‖

≤ (2l + 1)(εn + εm) + ‖xn(t)− xm(t)‖.

(3.40)

Similarly, we get

‖xn(ηn(t))− xn(t)‖ ≤ (2l + 1)εn, (3.41)

and

‖xn(ηn(t))− xm(ηm(t))‖ ≤ (2l + 1)(εn + εm) + ‖xn(t)− xm(t)‖. (3.42)

Observe from (3.24) and (3.26) that

xm(θm(t)) ∈ C(θm(t)) ∩ ρB for all m ≥ n0, t ∈ [T0, T ], (3.43)

which implies that (see (1.7)), for all t ∈ [T0, T ]

dC(θn(t))(xm(t)) ≤ ‖xm(t)− xm(θm(t))‖+ hausρ(C(θn(t)), C(θm(t)))

≤ ‖xm(t)− xm(θm(t))‖+ |
θn(t)∫

θm(t)

υ̇(s) ds|.

According to (3.38) and (3.39) we obtain

dC(θn(t))(xm(t)) ≤ (2l + 1)εm + |

tni+1∫
tmj+1

υ̇(s) ds|

≤ (2l + 1)εm +

tni+1∫
tni

υ̇(s) ds

≤ (2l + 1)εm + εm + εn = (2l + 2)εm + εn.

(3.44)
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Thus, for m, n large enough, say m > n ≥ n1 with n1 ≥ n0 we have 2(l + 1)εm + εn < r, thus

dC(θn(t))(xm(t)) < r, for all t ∈ [T0, T ]. Setting δ(t) = (l + 1)ȧ(t), a.e. t ∈ [T0, T ], and using

(3.37) and Proposition 1.3.4 we obtain〈
ẋn(t) + f1(t, xn(ηn(t))) +

t∫
T0

f2(t, s, xn(ηn(s)))ds, xn(θn(t))− xm(t)

〉

≤ 2δ(t)

r
‖xn(θn(t))− xm(t)‖2 + δ(t)dC(θn(t))(xm(t))

≤ 2δ(t)

r

(
‖xn(θn(t))− xn(t)‖+ ‖xn(t)− xm(t)‖

)2
+ δ(t)dC(θn(t))(xm(t)),

and hence by (3.39) and (3.44)

≤ 2δ(t)

r

(
(2l + 1)εn + ‖xn(t)− xm(t)‖

)2
+ δ(t)

(
(2l + 2)εm + εn

)
≤ 4δ(t)

r
‖xn(t)− xm(t)‖2 +

4δ(t)

r
(2l + 1)2ε2

n + δ(t)((2l + 2)εm + εn).

(3.45)

Then writing 〈
ẋn(t) + f1(t, xn(ηn(t))) +

t∫
T0

f2(t, s, xn(ηn(s)))ds, xn(t)− xm(t)

〉

=

〈
ẋn(t) + f1(t, xn(ηn(t))) +

t∫
T0

f2(t, s, xn(ηn(s)))ds, xn(t)− xn(θn(t))

〉

+

〈
ẋn(t) + f1(t, xn(ηn(t))) +

t∫
T0

f2(t, s, xn(ηn(s)))ds, xn(θn(t))− xm(t)

〉
,

we see by (3.39) and (3.45)〈
ẋn(t) + f1(t, xn(ηn(t))) +

t∫
T0

f2(t, s, xn(ηn(s)))ds, xn(t)− xm(t)

〉

≤ δ(t)(2l + 1)εn +
4δ(t)

r
‖xn(t)− xm(t)‖2 +

4δ(t)

r
(2l + 1)2ε2

n + δ(t)((2l + 2)εm + εn)

≤ %n,m(t) +
4δ(t)

r
‖xn(t)− xm(t)‖2,

where

%n,m(t) = δ(t)(2l + 1)(εn + εm) +
4δ(t)

r
(2l + 1)2(εn + εm)2 + 2δ(t)(l + 1)(εm + εn).

In the same way, we also have〈
ẋm(t) + f1(t, xm(ηm(t))) +

t∫
T0

f2(t, s, xm(ηm(s)))ds, xm(t)− xn(t)

〉

≤ %n,m(t) +
4δ(t)

r
‖xn(t)− xm(t)‖2.
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It then follows from both last inequalities that

〈ẋm(t)− ẋn(t), xm(t)− xn(t)〉

≤ 〈f1(t, xn(ηn(t)))− f1(t, xm(ηm(t))), xm(t)− xn(t)〉

+

〈 t∫
T0

f2(t, s, xn(ηn(s)))ds−
t∫

T0

f2(t, s, xm(ηm(s)))ds, xm(t)− xn(t)

〉

+ 2%n,m(t) +
8δ(t)

r
‖xn(t)− xm(t)‖2,

hence

〈ẋm(t)− ẋn(t), xm(t)− xn(t)〉

≤ 〈f1(t, xn(ηn(t)))− f1(t, xm(ηm(t))), xm(t)− xn(t)〉

+

∥∥∥∥
t∫

T0

f2(t, s, xn(ηn(s)))ds−
t∫

T0

f2(t, s, xm(ηm(s)))ds

∥∥∥∥.‖xm(t)− xn(t)‖

+ 2%n,m(t) +
8δ(t)

r
‖xn(t)− xm(t)‖2.

Now, for all t ∈ [T0, T ], all n,m ∈ N with n,m ≥ n1 set

ϕn,m(t) = ‖f1(t, xn(ηn(t)))− f1(t, xn(t))‖.‖xm(t)− xn(t)‖. (3.46)

Writing for all t ∈ [T0, T ]

〈f1(t, xn(ηn(t)))− f1(t, xm(ηm(t))), xm(t)− xn(t)〉

= 〈f1(t, xn(t))− f1(t, xm(t)), xm(t)− xn(t)〉

+ 〈f1(t, xn(ηn(t)))− f1(t, xn(t)), xm(t)− xn(t)〉

+ 〈f1(t, xm(t))− f1(t, xm(ηm(t))), xm(t)− xn(t)〉 ,

we can apply assumption (H2,2) with η = M (see (3.33)) to get

〈f1(t, xn(ηn(t)))− f1(t, xm(ηm(t))), xm(t)− xn(t)〉 ≤ ϕm,n(t) +ϕn,m(t) +Lη1(t)‖xm(t)− xn(t)‖2.

(3.47)

Further, from the Lipschitz property of f2 with respect to x and (3.42), we have

∥∥∥∥
t∫

T0

f2(t, s, xn(ηn(s)))ds−
t∫

T0

f2(t, s, xm(ηm(s)))ds

∥∥∥∥
≤ Lη2(t)

t∫
T0

‖xn(ηn(s))− xm(ηm(s))‖ ds

≤ Lη2(t)T (2l + 1)(εn + εm) + Lη2(t)

t∫
T0

‖xn(s)− xm(s)‖ ds.

(3.48)
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Thanks to (3.47), (3.48) we have, for almost all t ∈ [T0, T ]

〈ẋm(t)− ẋn(t), xm(t)− xn(t)〉

≤ ϕm,n(t) + ϕn,m(t) + Lη1(t)‖xm(t)− xn(t)‖2

+

{
Lη2(t)T (2l + 1)(εn + εm) + Lη2(t)

t∫
T0

‖xn(s)− xm(s)‖ ds

}
‖xm(t)− xn(t)‖

+ 2%n,m(t) +
8δ(t)

r
‖xn(t)− xm(t)‖2,

or equivalently

〈ẋm(t)− ẋn(t), xm(t)− xn(t)〉

≤ 2%n,m(t) +
8δ(t)

r
‖xn(t)− xm(t)‖2

+ ϕm,n(t) + ϕn,m(t) + Lη2(t)T (2l + 1)(εn + εm)‖xm(t)− xn(t)‖+ Lη1(t)‖xm(t)− xn(t)‖2

+ Lη2(t)‖xm(t)− xn(t)‖
t∫

T0

‖xm(s)− xn(s)‖ ds.

By (3.33), we get

〈ẋm(t)− ẋn(t), xm(t)− xn(t)〉

≤ ϕm,n(t) + ϕn,m(t) +

(
2δ(t)(2l + 1) +

8δ(t)

r
(2l + 1)2(εn + εm) + 4δ(t)(l + 1)

+ 2MLη2(t)T (2l + 1)

)
(εn + εm)

+

(
Lη1(t) +

8δ(t)

r

)
‖xm(t)− xn(t)‖2 + Lη2(t)‖xm(t)− xn(t)‖

t∫
T0

‖xm(s)− xn(s)‖ ds,

Lemma 1.5.1 and the latter inequality ensures that

d

dt
‖xn(t)− xm(t)‖2 = 2 〈ẋm(t)− ẋn(t), xm(t)− xn(t)〉

≤ 2εn,m(t) + 2

(
Lη1(t) +

8δ(t)

r

)
‖xn(t)− xm(t)‖2

+ 2Lη2(t)‖xn(t)− xm(t)‖
t∫

T0

‖xn(s)− xm(s)‖ ds,

(3.49)

where

εn,m(t) = ϕm,n(t) + ϕn,m(t)

+

(
2δ(t)(2l + 1) +

8δ(t)

r
(2l + 1)2(εn + εm) + 4δ(t)(l + 1) + 2MLη2(t)T (2l + 1)

)
(εn + εm).

Now, note by (3.41) that xn(ηn(t))− xn(t) −→ 0. It follows f1(t, xn(ηn(t)))− f1(t, xn(t)) −→ 0

according to the uniform continuity of f1(t, ·) over B[0, η]. From the definition in (3.46) of ϕn,m
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we also have ϕn,m(t) −→ 0 as n,m −→ 0 since the sequence (xn(·))n∈N is uniformly bounded

by (3.33).

Further εn,m(·) is integrable since δ(·) and Lη2(·) are integrable, which again confirms that, for

almost all t ∈ [T0, T ]

lim
n,m−→∞

εn,m(t) = 0,

since εn −→ 0 and εm −→ 0 as n,m −→∞ .

Applying Lemma 2.1.3 and using estimate (3.49), we then see for any ε > 0 that

‖xn(t)− xm(t)‖

≤
√
‖xn(T0)− xm(T0)‖2 + ε exp

( t∫
T0

(K(s) + 1) ds

)
+

√
ε

2

t∫
T0

exp

( t∫
s

(K(τ) + 1) dτ

)
ds

+ 2

(√√√√√ t∫
T0

εn,m(s) ds+ ε− exp

( t∫
T0

(K(τ) + 1) dτ

)√
ε

)

+ 2

t∫
T0

(K(s) + 1) exp

( t∫
s

(K(τ) + 1) dτ

)√√√√√ t∫
T0

εn,m(τ) dτ + ε ds,

(3.50)

where K(t) = max{Lη1(t) +
8δ(t)

r
, Lη2(t)}, for almost all t ∈ [T0, T ].

Since εn,m(·) is Lebesgue integrable and lim
n,m−→∞

εn,m(t) = 0 a.e. t ∈ [T0, T ], it follows from the

dominated convergence theorem that

lim
n,m−→∞

t∫
T0

εn,m(s) ds = 0.

From (3.50) and taking ε→ 0 one obtains that lim
n,m−→∞

‖xn(t)−xm(t)‖ = 0. For each t ∈ [T0, T ]

the sequence (xn(t))n∈N is a Cauchy sequence in H, then (xn(·))n∈N converges to a mapping

x(·) from [T0, T ] into H.

Step 5. We show that x(·) is absolutely continuous.

By (3.32) we have for almost all t ∈ I and for any n,

‖ẋn(t)‖ ≤ (2l + 1)ȧ(t) = γ(t).

So we can extract a subsequence of (ẋn(·)) (that, without loss of generality, we do not relabel)

which converges weakly in L1 (I,H) to a function g(·) ∈ L1 (I,H) . This means that

T∫
T0

〈ẋn(s), h(s)〉 ds −→
T∫

T0

〈g(s), h(s)〉 ds,∀ h ∈ L∞(I,H).
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Then for every z ∈ H

lim
n→∞

〈
z,

t∫
T0

ẋn(s) ds

〉
= lim

n→∞

T∫
T0

〈
ẋn(s), z · 1[T0,t](s)

〉
ds,

and 〈
z,

t∫
T0

g(s) ds

〉
=

T∫
T0

〈
g(s), z · 1[T0,t](s)

〉
ds.

So, from the weak convergence we deduce that

t∫
T0

ẋn(s)ds −→
t∫

T0

g(s) ds weakly in H as n→∞.

This and the absolute continuity of xn(·) imply that

xn(t) = xn(T0) +

t∫
T0

ẋn(s) ds −→ x(T0) +

t∫
T0

g(s) ds weakly in H as n→∞.

On the other hand, we have for all t ∈ [T0, T ]

xn(t) −→ x(t) strongly in H,

hence we get

x(t) = x(T0) +

t∫
T0

g(s)ds.

Therefore, x(·) is absolutely continuous and ẋ(t) = g(t) a.e. t ∈ [T0, T ], so in particular

‖x(t)‖ ≤ M̃ for all t ∈ [T0, T ] , (3.51)

with

M̃ = ‖x0‖+

T∫
T0

g(s) ds.

Step 6. We show that x(·) is a solution of (Pf1,f2).

First, it is obvious that x(0) = x0, and that, for all t ∈ I,

‖xn(θn(t))− x(t)‖ ≤ ‖xn(θn(t))− xn(t)‖+ ‖xn(t)− x(t)‖

≤
θn(t)∫
t

‖ẋn(s)‖ ds+ ‖xn(t)− x(t)‖

≤
θn(t)∫
t

γ(s) ds+ ‖xn(t)− x(t)‖,



3.1. A full discretization for the integro-differential sweeping process 90

so that, for all t ∈ I,

lim
n→∞
‖xn(θn(t))− x(t)‖ = 0, (3.52)

and similarly

lim
n→∞
‖xn(ηn(t))− x(t)‖ = 0. (3.53)

Let us prove that x(t) ∈ C(t) for all t ∈ I. From (1.7) and (3.43), we have

dC(t)(xm(θm(t))) ≤ hausρ(C(t), C(θm(t)) ≤ |
θm(t)∫
t

υ̇(s) ds|.

Using (3.52), and passing to the limit, in the preceding inequality, we get, thanks to the

closedness of C(t) and the convergence |
θm(t)∫
t

υ̇(s) ds| → 0 as m→∞

x(t) ∈ C(t), for all t ∈ [T0, T ].

Now it remains to prove that

−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds, a.e t ∈ I.

Let us set for each t ∈ I

yn(t) =

t∫
T0

f2(t, s, xn(ηn(s))) ds and y(t) =

t∫
T0

f2(t, s, x(s)) ds.

It is not difficult to check from the continuity of f1(t, ·), f2(t, s, ·) and the convergence of xn(·),
that

T∫
T0

〈f1(t, xn(ηn(t))), ϕ(t)〉 dt −→
T∫

T0

〈f1(t, x(t)), ϕ(t)〉 dt ∀ϕ ∈ L∞(I,H),

T∫
T0

〈yn(t), ϕ(t)〉 dt −→
T∫

T0

〈y(t), ϕ(t)〉 dt ∀ϕ ∈ L∞(I,H).

This implies that

ζn(·) := ẋn(·) + f1(·, xn(ηn(·))) + yn(·) −→ ζ(·) := ẋ(·) + f1(·, x(·)) + y(·)

weakly in L1(I,H).

Due to Mazur lemma, there is a sequence (ξn(·))n converging strongly in L1(I,H) to ζ(·) with

ξn(·) ∈ co{ζk(·), k ≥ n}. (3.54)
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Extracting a subsequence, we may suppose that

ξn(t) −→ ζ(t) a.e. t ∈ I.

Combining the inclusion (3.54) with the latter convergence, we obtain

ζ(t) ∈
⋂
n∈N

co{ζk(t), k ≥ n} a.e. t ∈ I. (3.55)

Coming back to (3.37) and recalling that δ(·) = (l + 1)ȧ(·), it follows that, for almost every

t ∈ I,

〈z, ζn(t)〉 ≤ δ(t)σ(−∂dC(θn(t))(xn(θn(t)), z), for all z ∈ H, (3.56)

where σ(−∂dC(θn(t))(xn(θn(t)), ·) is the support function of −∂dC(θn(t))(xn(θn(t)). On the other

hand, by (3.54) and (3.56), for almost all t ∈ I we have for all n ∈ N

〈z, ζn(t)〉 ≤ sup
k≥n
〈z, ζk(t)〉 ≤ δ(t) sup

k≥n
σ(−∂dC(θk(t))(xk(θk(t)), z), for all z ∈ H.

From (3.55) it ensues that for almost all t ∈ I

〈z, ζ(t)〉 ≤ δ(t)lim sup
n→+∞

σ(−∂dC(θn(t))(xn(θn(t)), z), for all z ∈ H,

by using Proposition 1.5.1 and the latter inequality entails for almost every t ∈ I

〈z, ζ(t)〉 ≤ δ(t)σ(−∂dC(t)(x(t)), z), for all z ∈ H.

This implies by the closedness and convexity of ∂dC(t)(x(t)) and by properties of support func-

tion that for almost all t ∈ I

ζ(t) ∈ −δ(t)∂dC(t)(x(t)), hence − ζ(t) ∈ δ(t)∂dC(t)(x(t)) ⊂ NC(t)(x(t)).

Consequently, as desired it follows that

−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s))ds a.e. t ∈ [T0, T ].

Case 2 : Assume that
T∫

T0

[
β1(τ) +

τ∫
T0

β2(τ, s) ds

]
dτ ≥ 1

4
.

We fix a subdivision of [T0, T ] given by T0, T1, ..., Tk = T such that, for any

0 ≤ i ≤ k − 1,
Ti+1∫
Ti

[
β1(τ) +

τ∫
T0

β2(τ, s) ds

]
dτ <

1

4
.
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Then, by what precedes, there exists an absolutely continuous map x0 : [T0, T1] −→ H such

that x0(T0) = x0, x0(t) ∈ C(t) for all t ∈ [T0, T1], and

−ẋ0(t) ∈ NC(t)(x0(t)) + f1(t, x0(t)) +

t∫
T0

f2(t, s, x0(s)) ds, a.e. t ∈ [T0, T1].

Similarly, there is an absolutely continuous map x1 : [T1, T2] −→ H such that

x1(T1) = x0(T1), x1(t) ∈ C(t) for all t ∈ [T1, T2], and

−ẋ1(t) ∈ NC(t)(x1(t)) + f1(t, x1(t)) +

t∫
T0

f2(t, s, x1(s)) ds, a.e. t ∈ [T1, T2].

By induction, we obtain for each 0 ≤ i ≤ k − 1 an absolutely continuous mapping

xi : [Ti, Ti+1] −→ H such that xi(Ti) = xi−1(Ti) for each 1 ≤ i ≤ k − 1 and such that for each

for each 0 ≤ i ≤ k − 1 one has xi(t) ∈ C(t) for all t ∈ [Ti, Ti+1], and

−ẋi(t) ∈ NC(t)(xi(t)) + f1(t, xi(t)) +

t∫
T0

f2(t, s, xi(s)) ds, a.e. t ∈ [Ti, Ti+1].

We define the mapping x : [T0, T ] −→ H by

x(t) = xi(t), if t ∈ [Ti, Ti+1], 0 ≤ i ≤ k − 1.

Obviously, x(·) is an absolutely continuous mapping satisfying x(T0) = x0, x(t) ∈ C(t) for all

t ∈ [T0, T ] and

−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds, a.e. t ∈ [T0, T ]. (3.57)

Step 7. Estimations. The arguments for the estimations in the statement are similar to

those in Step 7 of Theorem 2.2.1 in section 2.2.

Step 8. Uniqueness.

Now, we turn to the uniqueness. If x1(·), x2(·) are two solutions, the hypo-monotonicity property

of the normal cone in Proposition 1.3.2 yields for almost all t ∈ [T0, T ]

〈
− ẋ1(t)− f1(t, x1(t))−

t∫
T0

f2(t, s, x1(s)) ds+ ẋ2(t)

+ f1(t, x2(t)) +

t∫
T0

f2(t, s, x2(s)) ds, x2(t)− x1(t)

〉

≤ 1

2r
‖x2(t)− x1(t)‖2

2∑
i=1

(
‖ẋi(t)‖+ ‖f1(t, xi(t))‖+

t∫
T0

‖f2(t, s, xi(s))‖ ds

)
,
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from which we obtain

〈ẋ2(t)− ẋ1(t), x2(t)− x1(t)〉

≤ 1

2r
‖x2(t)− x1(t)‖2

2∑
i=1

(
‖ẋi(t)‖+ ‖f1(t, xi(t))‖+

t∫
T0

‖f2(t, s, xi(s))‖ ds

)
+ 〈f1(t, x1(t))− f1(t, x2(t)), x2(t)− x1(t)〉

+

〈 t∫
T0

f2(t, s, x1(s)) ds−
t∫

T0

f2(t, s, x2(s)) ds, x2(t)− x1(t)

〉
.

Since the absolutely continuous mappings x1(·) and x2(·) are in particular bounded on [T0, T ],

we can choose some real η > 0 such that, for each i = 1, 2, ‖xi(t)‖ ≤ η for all t ∈ [T0, T ].

Moreover, applying the Lipschitz continuity of f2(t, s, ·) and the hypo-monotonicity of f1(t, ·)
we get from the latter inequality that

d

dt

1

2
‖x2(t)− x1(t)‖2 ≤ Lη2(t)‖x2(t)− x1(t)‖

t∫
T0

‖x2(s)− x1(s)‖ ds

+

(
Lη1(t) +

1

2r

2∑
i=1

(
‖ẋi(t)‖+ ‖f1(t, xi(t))‖+

t∫
T0

‖f2(t, s, xi(s))‖ ds
))
‖x2(t)− x1(t)‖2.

Finally, setting Θ(t) := ‖x2(t)− x1(t)‖2 we get

Θ̇(t) ≤
(

2Lη1(t) +
1

r

2∑
i=1

(
‖ẋi(t)‖+ ‖f1(t, xi(t))‖+

t∫
T0

‖f2(t, s, xi(s))‖ ds

))
Θ(t)

+ 2Lη2(t)
√

Θ(t)

t∫
T0

√
Θ(s) ds,

hence it suffices to invoke Lemma 2.1.3 with ε(·), ε > 0 arbitrary. Then the proof of the theorem

is complete . �

Consider now the hypothesis

[(H′1)] For each t ∈ [T0, T ] the nonempty closed C(t) of H is r-prox-regular for some extended

real r ∈]0,+∞] and there is some absolutely continuous function υ : [T0, T ] −→ R such that

haus(C(t), C(s)) ≤ |υ(t)− υ(s)|, ∀ s, t ∈ [T0, T ].

Taking the hypothesis (H′1) in place of (H1), the theorem with ρ = +∞ furnishes the following

corollary.

Corollary 3.1.1. Let H be a real Hilbert space. Assume that (H′1), (H2) and (H3) are satisfied.

Then for any initial point x0 ∈ H with x0 ∈ C(T0) there exists a unique absolutely continuous

solution x : [T0, T ] −→ H of the Volterra integro-differential inclusion (Pf1,f2).
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The final result of this section extends a topological property in [9] concerning the map

a 7→ xa(·) which associates with each a ∈ C(T0) the unique solution of the foregoing perturbed

sweeping process with the initial condition a. For completeness of the paper we sketch the

proof.

Proposition 3.1.1. Assume that the assumptions with ρ = +∞ of Theorem 3.1.1 (in case

(c)) holds. For each a ∈ C(T0), denote by xa(·) the unique solution of the Volterra integro-

differential sweeping process
−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
T0

f2(t, s, x(s)) ds a.e in [T0, T ],

x(T0) = a ∈ C(T0).

Then, the map Ψ : a −→ xa(·) from C(T0) to the space C([T0, T ], H) endowed with the uniform

convergence norm is Lipschitz on any bounded subset of C(T0).

Proof. Let M be any fixed positive real number. We are going to prove that Ψ is Lipschitz

on C(T0) ∩ B[0,M ]. According to Theorem 3.1.1 (case (c)), there exists a real number M1

depending only on M such that, for all z ∈ C(T0) ∩B[0,M ] and for almost all (t, s) ∈ Q∆

‖ẋz(t) + f1(t, xz(t)) +

t∫
T0

f2(t, s, xz(s)) ds‖

≤ ϕ(t) :=|υ̇(t)|+ (1 +M1)β1(t) +

t∫
T0

g(t, s) ds+ Tα(t)M1.

Thanks to this last inequality, for some η > 0 depending only on M , for all z ∈ C(T0)∩B[0,M ]

and for all t ∈ [T0, T ], we have

xz(t) ∈ B[0, η]. (3.58)

Fix any a, b ∈ C(T0)∩MB. By the hypomonotonicity property of the normal cone in Proposition

1.3.2 we have for almost all (t, s) ∈ Q∆

〈
−ẋa(t)−f1(t, xa(t))−

t∫
T0

f2(t, s, xa(s)) ds+ẋb(t)

+f1(t, xb(t))+

t∫
T0

f2(t, s, xb(s)) ds, x2(t)−x1(t)

〉
≤ ϕ(t)

r
‖xb(t)− xa(t)‖2,
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from which we obtain

〈ẋb(t)− ẋa(t), xb(t)− xa(t)〉

≤ ϕ(t)

r
‖xb(t)− xa(t)‖2 + 〈f1(t, xa(t))− f1(t, xb(t)), xb(t)− xa(t)〉

+

〈 t∫
T0

f2(t, s, xa(s)) ds−
t∫

T0

f2(t, s, xb(s)) ds, xb(t)− xa(t)

〉
.

Since, by the assumptions (H2,2) and (H3,2), there are non-negative functions Lη1(·) and Lη2(·) in

L1([T0, T ],R) such that f1(t, ·) (resp., f2(t, s, ·)) is Lη1(t)-hypomonotone (resp., Lη2(t)-Lipschitz)

on B[0, η], the above inequality along with (3.58), entails that for almost all t ∈ [T0, T ],

d

dt
‖xb(t)−xa(t)‖2 ≤ 2

(
Lη1(t)+

ϕ(t)

r

)
‖xb(t)−xa(t)‖2

+2Lη2(t)‖xb(t)−xa(t)‖
t∫

T0

‖xb(s)− xa(s)‖ ds.

Applying the Gronwall-like differential inequality in Lemma 2.1.3, it results that

sup
t∈[0,T ]

‖xb(t)− xa(t)‖ ≤ ‖b− a‖ exp

( t∫
T0

(K(s) + 1) ds

)
,

where K(t) = max

{
Lη1(t) +

ϕ(t)

r
, Lη2(t)

}
for all t ∈ [T0, T ]. The proof is then complete. �

3.2 Applications to non-regular electrical circuits

The aim of this section is to illustrate the integro-differential sweeping process in the theory of

non-regular electrical circuits. Electrical devices like diodes are described in terms of Ampere-

Volt characteristic which is (possibly) a multifunction expressing the difference of potential vD

across the device as a function of current iD going through the device, see [12, 4]. Table 3.1

and Fig.3.1 illustrate the ampere-volt characteristic of an ideal diode model. Let us consider

the electrical system shown in Fig.3.2 that is composed of two resistors R1 ≥ 0, R2 ≥ 0

with voltage/current laws VRk = ϕk(xk) (k = 1, 2), two inductors L1 ≥ 0, L2 ≥ 0 with

voltage/current laws VLk = Lkẋk (k = 1, 2), three capacitors with a time-varying capacitances

C1(t) 6= 0, C2(t) 6= 0 and C3(t) 6= 0 with voltage/current laws VC1 = 1
C1(t)

∫ t
0

(
x1(s) − i(s)

)
ds,

VC2 = 1
C2(t)

∫ t
0
x2(t) dt and VC3 = 1

C3(t)

∫ t
0

(
x1(s)−x2(s)

)
ds, two ideal diodes with characteristics

0 ≤ −VD1 ⊥ (x1 − i) ≥ 0, 0 ≤ −VD2 ⊥ x2 ≥ 0 and an absolutely continuous current source

i : [0, T ]→ R.
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Operation Mode On (Forward biased) Off (Reverse biased)

Current Through Voltage / Across iD > 0, vD = 0 iD = 0, vD < 0

Diode looks like Short circuit Open circuit

Table 3.1: Ideal Diode Characteristics.

Figure 3.1: Ideal Diode Model.

Figure 3.2: Electrical circuit with resistors, inductances, time-varying capacitors and ideal

diodes.

Using Kirchhoff’s laws, we have VR1 + VL1 + VC1 + VC3 = −VD1 ∈ −N(R+;x1 − i)
VR2 + VL2 + VC2 − VC3 = −VD2 ∈ −N(R+;x2).
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Therefore the dynamics of this circuit is given by

−ẋ(t)︷ ︸︸ ︷−ẋ1(t)

−ẋ2(t)

 ∈ N[i(t),+∞[×[0,+∞[(x(t)) +

 1

L1

ϕ1(x1(t))

1

L2

ϕ2(x2(t))



+

t∫
0

[ A2(t)︷ ︸︸ ︷ 1
L1C1(t)

+ 1
L1C3(t)

− 1
L1C3(t)

− 1
L2C3(t)

1
L2C2(t)

+ 1
L2C3(t)


x(s)︷ ︸︸ ︷x1(s)

x2(s)

+

 1
L1C1(t)

i(s)

0

]ds.
(3.59)

Proposition 3.2.1. Assume that i : [0, T ] −→ R is an absolutely continuous function,

Ck : [0, T ] −→ R \ {0}, k = 1, 2, 3, are continuous functions and f1 := ( 1
L1
ϕ1,

1
L2
ϕ2)t satisfies

(H2). Then for any initial condition x(0) = x0 with x0
1 ≥ i(0) and x0

2 ≥ 0, problem (4.165) has

one and only one absolutely continuous solution x(·).

Proof. Put w(t) = (i(t), 0)t, C(t) := w(t)+[0,+∞[×[0,+∞[, f2(t, s, x) = A2(t)x+
1

L1C1(t)
w(s).

So (4.165) can be rewritten in the framework of our problem (Pf1,f2) as
−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
0

f2(t, s, x(s))ds a.e. in [0, T ],

x(0) = x0 ∈ C(0).

Then the above data satisfy all the assumptions of Theorem 3.1.1 (precisely case (c)), with

ρ = +∞, υ(t) =

t∫
0

‖ẇ(s)‖ ds, g(t, s) =
1

L1C1(t)
‖w(s)‖, α2(t) = ‖A2(t)‖.

This finishes the proof. �

3.3 Some numerical experiments

In this section, we will give some numerical simulations to illustrate the theoretical results

discussed in Section 3.1. In order to solve numerically problem (Pf1,f2), we will use the following

algorithm discussed in the proof of Theorem 3.1.1. Let us suppose that the dimension of H is

finite. For n ∈ N, let

T0 = tn0 < tn1 < ... < tnn = T, hn =
T − T0

2n
, tni = T0 + ihn, 0 ≤ i ≤ 2n,

be a finite partition of the interval [0, T ].

We see that (3.12) is equivalent to solve the following optimization problem :

argmin
x∈C(tni+1)

1

2

∥∥∥∥x−xni +

tni+1∫
tni

f1(s, xni ) ds+

tni+1∫
tni

{ i−1∑
j=0

tnj+1∫
tnj

f2(τ, s, xnj )ds+

τ∫
tni

f2(τ, s, xni )ds

}
dτ

∥∥∥∥2

. (3.60)
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For solving the optimization problem (3.60), we use the trapezoidal rule to calculate the integrals

and we can use any nonlinear programming solver (e.g., fmincon : Find minimum of constrained

nonlinear multivariable function, in Matlab).

Exemple 3.3.1. Let H = R2, T = 1, T0 = 0, x = (x1, x2), x0 = (x0
1, x

0
2) = (1, 1), B = 1 −1

−1 1

, A =

−1 0

0 −1

, f1(t, x) = Ax+ (1, 0), f2(t, s, x) = Bx− (2se−t, 0) .

Put C(t) := [et, e]× [0, e], ∀ t ∈ [0, 1]. Here the set-valued mapping C(·) is absolutely continuous

on [0, 1] with respect to the Hausdorff distance where υ(t) := et. Therefore x(t) = (et, et) is the

unique solution of
−ẋ(t) ∈ NC(t)(x(t)) + f1(t, x(t)) +

t∫
0

f2(t, s, x(s))ds a.e. t ∈ [0, 1]

x(0) = x0 ∈ C(0)

(3.61)

since one has

N([et, e]× [0, e]; (et, et)) =



]−∞, 0]× {0}, if t ∈]0, 1[

]−∞, 0]× R, if t = 0

R× [0,+∞[, if t = 1.

Using the previous algorithm with n = 30 for solving (3.61), we clearly see the conver-

gence of the algorithm in Fig.3.3.
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Figure 3.3: Comparison of the exact and the approximate solution of Example 3.3.
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Exemple 3.3.2. Let H = R, T = 1, T0 = 0, x0 = a, f1(t, x) = −t+ x,

f2(t, s, x) = −t(1 + 2t)es(t−s)x . Put C(t) := [et
2
, e], ∀ t ∈ [0, 1]. Here the set-valued mapping

C(·) is absolutely continuous on [0, 1] with respect to the Hausdorff distance where υ(t) = et
2
.

Fig.3.4 presents the approximate solution of problem (Pf1,f2) when the input initial data a varies

in C(0), it shows the variation of the approximate solution with respect to the input initial data

a stated in Proposition 3.1.1.

Figure 3.4: Dependence of the solution with respect to the initial data.

We end this section with the following simulation of the non-regular electrical circuit

presented in Section 3.2.

Exemple 3.3.3. We consider the RLC circuit (with L1 = R1 = 1, L2 = R2 = 2, C1(t) =

C2(t) = C3(t) = t + 1, i(t) = sin(2t) and ϕi(xi) = Ri
√
xi if x1, x2 ≥ 0 and ϕi(x) = 0 if either

x1 < 0 or x2 < 0, i = 1, 2) coupled to two ideal diodes as shown in Fig.3.2. The network is

described by (3.59), where x1 and x2 are the current through the inductors L1 and L2 respectively

and VD1 and VD2 are the voltage across diode 1 and 2 respectively.

Depending on whether the diodes are blocking (off) or conducting (on), the system has 22 = 4

modes:

• Mode 1: Both diodes are off, i.e., x1 = i and x2 = 0.

• Mode 2: The first diode is off while the second one is on, i.e., x1 = i and x2 > 0 (VD2 = 0).

• Mode 3: The first diode is on and the second one is off, i.e., x1 > i (VD1 = 0) and x2 = 0.

• Mode 4: Both diodes are conducting, i.e., x1 > i (VD1 = 0) and x2 > 0 (VD2 = 0).

Fig.3.5 shows that the mode will vary during the time evolution of the system (3.59) (diodes go

from conducting to blocking or vice versa).
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Figure 3.5: Simulation of the circuit Fig.3.2 with the initial conditions x1(0) = 0, x2(0) = 0 and

L1 = R1 = 1, L2 = R2 = 2, C1(t) = C2(t) = C3(t) = t + 1, T = 4. The input current source

i(t) = sin(2t).

3.4 Optimal Control Problem

The aim of this section is to prove the existence of optimal solutions of the optimal control

problem (OC) described by a cost function and a nonlinear integro-differential sweeping process

of Volterra type

(OC) :



Minimize φ(x(T,w))

over processes (x,w) = (x, (u, υ)) such that

−ẋ(t) ∈ NC(t)(x(t)) + g1

(
t, x(t), u(t)

)
+

t∫
T0

f2

(
t, s, x(s), υ(s)

)
ds, a.e t ∈ I, (Du,υ)

u(·) and υ(·) are measurable mappings

(u(t), υ(t)) ∈ U × V = W, a.e t ∈ I,

x(T0) = x0 ∈ C(T0),

where I = [T0, T ] (T > T0 > 0), φ : Rn −→ R, g1 : I × Rn+m −→ Rn, U ⊂ Rm, V ⊂ Rd.

Suppose that f2 has the following representation:

f2(t, s, x, υ) = γ(t, s) g2(s, x, υ) for all (t, s) ∈ Q∆ and (x, v) ∈ Rn × Rd,
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where γ : Q∆ −→ R, g2 : I × Rn+d −→ Rn.

Assume that, the data for the problem (OC) satisfy the following assumptions:

(A1) For each t ∈ I, C(t) is a nonempty closed subset of Rn which is r-prox-regular for

some constant r ∈ (0,+∞], and there is a nonnegative and nondecreasing function υ ∈

W 1,2(I,R) and an extended real ρ ≥ 2

(
‖x0‖+

T∫
T0

υ̇(s) ds+
1

2

)
such that

hausρ(C(t), C(s)) ≤ |υ(t)− υ(s)|, ∀ s, t ∈ I.

(A2) The functions g1 : I × Rn+m −→ Rn with g1(t, x, u) and g2 : I × Rn+d −→ Rn with

g2(t, x, v) are (Lebesgue) measurable with respect to t and continuous with respect to u

on U and υ on V respectively, and such that

(A2,1) there exist real constants β1, β2 > 0, such that

‖g1(t, x, u)‖ ≤ β1(1 + ‖x‖), ‖g2(t, x, υ)‖ ≤ β2(1 + ‖x‖),

for all t ∈ I, x ∈ Rn and (u, υ) ∈ Rm × Rd.

(A2,2) there exists real constants L1, L2 > 0 such that for any t ∈ I, any x, y ∈ Rn and any

(u, υ) ∈ Rm × Rd

‖g1(t, x, u)− g1(t, y, u)‖ ≤ L1‖x− y‖, ‖g2(t, x, υ)− g2(t, y, υ)‖ ≤ L2‖x− y‖.

(A2,3) for each (t, x) ∈ I × Rn, the sets

g1(t, x, U) := {g1(t, x, u) : u ∈ U}, g2(t, x, V ) := {g2(t, x, υ) : υ ∈ V },

are convex.

(A3) γ : Q∆ → R is a continuous function such that γ0 : I → R+, defined by

γ0(t) = sup
s∈[0,t]

|γ(t, s)|, is bounded on I.

(A4) The sets U and V are compact.

(A5) The cost function φ is lower semicontinuous.

Theorem 3.4.1. Assume that assumptions (A1)-(A5) hold. If there exists at least one admis-

sible solution of (OC), then (OC) admits an optimal solution x̂(·) = x(·, ŵ), where ŵ = (û, υ̂).
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Proof. Notice first by Theorem 3.1.1 that for each measurable mapping w(·) = (u(·), υ(·))
with w(t) ∈ U × V , the differential inclusion (Du,υ) has a unique solution x(·, w). Consider

any minimizing sequence (wk)k≥1 of feasible controls of (OC), where wk = (uk, υk). Denote

xk(·) := x(·, wk) the solution of
(
Duk,υk

)
. By the proof of Theorem 3.1.1 and assumptions (A1)

and (A2,1), xk(·) satisfies the following estimates, ‖ẋk(t)‖ ≤ κ(t) a.e. and ‖xk(t)‖ ≤ c, for

some nonnegative real function κ ∈ L2(I,R) and some real constant c > 0. Therefore, by the

Arzelá-Ascoli theorem (Theorem 1.5.2), (xk(·))k≥1 is relatively compact in C(I,Rn), and we can

extract from this sequence a subsequence, that we do not relabel, which converges uniformly

to some mapping x̂(·) ∈ C(I,Rn). Consider the sequence (ẋk), (zk1 ), (zk2 ), (z̃k1 ), (z̃k2 ) where

zk1 (t) = g1

(
t, x̂(t), uk(t)

)
, zk2 (t) = g2

(
t, x̂(t), υk(t)

)
,

z̃k1 (t) = g1

(
t, xk(t), uk(t)

)
, z̃k2 (t) = g2

(
t, xk(t), υk(t)

)
.

Under our assumptions, it is easy to see that

T∫
T0

‖ẋk(t)‖2 dt ≤ ‖κ‖2
L2(I,Rn), max


T∫

T0

‖zk1 (t)‖2 dt,

T∫
T0

‖z̃k1 (t)‖2 dt

 ≤ Tβ2
1(1 + c)2,

max


T∫

T0

‖zk2 (t)‖2 dt,

T∫
T0

‖z̃k2 (t)‖2 dt

 ≤ T 2β2
2(1 + c)2.

Then, from the sequential weak compactness of the dual ball in L2(I,R5n) the sequence

(ẋk, zk1 , z̃
k
1 , z

k
2 , z̃

k
2 ) admits a (non-relabeled) subsequence converging weakly to some

(ξ, ρ1, ρ̃1, ρ2, ρ̃2) in L2(I,R5n).

Mazur’s theorem (Theorem 1.5.2) asserts the existence of a sequence (ξn, ρn1 , ρ̃
n
1 , ρ

n
2 , ρ̃

n
2 ) con-

verging to (ξ, ρ1, ρ̃1, ρ2, ρ̃2) with respect to the (usual) norm of L2(I,R5n), where

ξn(t) =

r(n)∑
k=n

Sk,nẋ
k(t),

ρn1 (t) =

r(n)∑
k=n

Sk,nz
k
1 (t) =

r(n)∑
k=n

Sk,ng1

(
t, x̂(t), uk(t)

)
,

ρ̃n1 (t) =

r(n)∑
k=n

Sk,nz̃
k
1 (t) =

r(n)∑
k=n

Sk,ng1

(
t, xk(t), uk(t)

)
,

ρn2 (t) =

r(n)∑
k=n

Sk,nz
k
2 (t) =

r(n)∑
k=n

Sk,ng2

(
t, x̂(t), υk(t)

)
,

ρ̃n2 (t) =

r(n)∑
k=n

Sk,nz̃
k
2 (t) =

r(n)∑
k=n

Sk,ng2

(
t, xk(t), υk(t)

)
,
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with
r(n)∑
k=n

Sk,n = 1 and Sk,n ∈ [0, 1] for all k, n. Then there exists a subsequence of

(ξn, ρn1 , ρ̃
n
1 , ρ

n
2 , ρ̃

n
2 ) (again, we do not relabel) converging to (ξ, ρ1, ρ̃1, ρ2, ρ̃2) almost everywhere.

From this or the weak convergence in L2(I,Rn) of (ẋk(·))k to ξ(·), from the uniform convergence

of (xk(·))k to x̂(·) and from the above equality xk(t) = xk(T0) +

t∫
T0

ẋk(s) ds, it follows that

x̂(t) = x0 +

t∫
T0

ξ(s) ds for all t ∈ I, and ˙̂x(t) = ξ(t) a.e. t ∈ I. From the convexity of

g1

(
t, x̂(t), U

)
(by (A2,3)) we also have

ρn1 (t) =

r(n)∑
k=n

Sk,ng1

(
t, x̂(t), uk(t)

)
∈ g1

(
t, x̂(t), U

)
, a.e. t ∈ I.

Using the almost everywhere convergence of (ρn1 ) to ρ1, we get, thanks to the closedness of

g1

(
t, x̂(t), U

)
ρ1(t) ∈ g1

(
t, x̂(t), U

)
, a.e. t ∈ I.

By measurable selection theorems (see Theorem III.38 in [28]) we also assert the existence of a

measurable mapping û : I → Rm such that û(t) ∈ U a.e. t ∈ I and

ρ1(t) = g1

(
t, x̂(t), û(t)

)
, a.e. t ∈ I.

Observing that

‖ρ̃n1 (t)− ρ1(t)‖

=

∥∥∥∥ r(n)∑
k=n

Sk,n

(
g1

(
t, xk(t), uk(t)

)
− g1

(
t, x̂(t), uk(t)

)
+ g1

(
t, x̂(t), uk(t)

)
− ρ1(t)

)∥∥∥∥
≤
∥∥∥∥ r(n)∑
k=n

Sk,n

(
g1

(
t, xk(t), uk(t)

)
− g1

(
t, x̂(t), uk(t)

))∥∥∥∥
+

∥∥∥∥ r(n)∑
k=n

Sk,n

(
g1

(
t, x̂(t), uk(t)

)
− ρ1(t)

)∥∥∥∥,
and applying (A2,2) one obtains

‖ρ̃n1 (t)− ρ1(t)‖ ≤ L1

r(n)∑
k=n

Sk,n‖xk(t)− x̂(t)‖+

∥∥∥∥ r(n)∑
k=n

Sk,n

(
g1

(
t, x̂(t), uk(t)

)
− ρ1(t)

)∥∥∥∥.
Using the uniform convergence of xk(·) to x̂ and the almost everywhere convergence of ρn1 (·) to

ρ1(·) we obtain that for almost every t ∈ I

lim
n→+∞

‖ρ̃n1 (t)− ρ1(t)‖ = 0.
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So, by the almost everywhere convergence of ρ̃n1 (·) to ρ̃1(·) and by uniqueness of the limit we

deduce that

ρ̃1(t) = ρ1(t) = g1

(
t, x̂(t), û(t)

)
, a.e. t ∈ I.

In the same way, we also assert the existence of a measurable mapping υ̂ : I → Rd such that

υ̂(t) ∈ V a.e. t ∈ I and

lim
n→+∞

‖ρ̃n2 (t)− ρ2(t)‖ = 0,

ρ̃2(t) = ρ2(t) = g2

(
t, x̂(t), υ̂(t)

)
, a.e. t ∈ I. (3.62)

Let us set for each t ∈ I

yn(t) =

r(n)∑
k=n

Sk,n

t∫
T0

γ(t, s)g2

(
s, xk(s), υk(s)

)
ds and y(t) =

t∫
T0

γ(t, s)g2

(
s, x̂(s), υ̂(s)

)
ds.

It follows that

‖yn(t)− y(t)‖ =

∥∥∥∥ r(n)∑
k=n

Sk,n

t∫
T0

γ(t, s)
(
g2

(
s, xk(s), υk(s)

)
− g2

(
s, x̂(s), υ̂(s)

))
ds

∥∥∥∥
≤

t∫
T0

|γ(t, s)|
∥∥∥∥ r(n)∑
k=n

Sk,ng2

(
s, xk(s), υk(s)

)
− g2

(
s, x̂(s), υ̂(s)

)∥∥∥∥ds

=

t∫
T0

|γ(t, s)|.‖ρ̃n2 (s)− ρ̃2(s)‖ds

≤ γ0(t)

t∫
T0

‖ρ̃n2 (s)− ρ̃2(s)‖ds.

Then, since ‖xk(·)‖ ≤ c, by the almost everywhere convergence of ρn2 to ρ2, (3.62), the assump-

tion (A3) on γ(·, ·) and the Lebesgue dominated convergence theorem, we have

yn(t)
n→+∞−−−−→ y(t), a.e. t ∈ I.

Note also that
r(n)∑
k=n

Sk,nζ
k(t)

n→+∞−−−−→ ζ(t), a.e. t ∈ I,

where

ζk(t) = ẋk(t) + g1

(
t, xk(t), uk(t)

)
+

t∫
T0

γ(t, s)g2

(
s, xk(s), υk(s)

)
ds, a.e. t ∈ I,

and

ζ(t) = ˙̂x(t) + g1

(
t, x̂(t), û(t)

)
+

t∫
T0

γ(t, s)g2

(
s, x̂(s), υ̂(s)

)
ds, a.e. t ∈ I.
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Observe that since, for each k, (xk, wk) is a feasible solution of (OC), there is a negligible set

N ⊂ I such that for each t ∈ I \N one has

yn(t)
n→+∞−−−−→ y(t) and

r(n)∑
k=n

Sk,nζ
k(t)

n→+∞−−−−→ ζ(t)

along with for all k ∈ N

−ζk(t) ∈ NC(t)(x
k(t)) for all k ∈ IN.

Fix any t ∈ I \N and any k ∈ N. Take any z ∈ C(t). From Proposition 1.3.1 one has〈
−ζk(t), z − xk(t)

〉
≤ δ(t)

2r
‖z − xk(t)‖2

for some nonnegative real function δ ∈ L2(I,R). Hence〈
−ζk(t), z − xk(t)

〉
≤ δ(t)

2r
(‖z − x̂(t)‖+ ‖x̂(t)− xk(t)‖)2 := λk(t), (3.63)

with lim
k−→∞

λk(t) =
δ(t)

2r
‖z − x̂(t)‖2. Write

〈−ζ(t), z − x̂(t)〉 =

〈
−ζ(t) +

r(n)∑
k=n

Sk,nζ
k(t), z − x̂(t)

〉
+

r(n)∑
k=n

Sk,n
〈
−ζk(t), z − xk(t)

〉
+

r(n)∑
k=n

Sk,n
〈
−ζk(t),−x̂(t) + xk(t)

〉
.

The first expression of the second member of the latter equality tends to zero by what precedes,

and keeping in mind that ‖ζk(t)‖ ≤ δ(t), we also see that the third expression tends to zero.

Concerning the second expression, thanks to (3.63), it satisfies the estimate〈
−

r(n)∑
k=n

Sk,nζ
k(t), z −

r(n)∑
k=n

Sk,nx
k(t)

〉
≤

r(n)∑
k=n

Sk,nλ
k(t).

Thus, passing to the limit we obtain

〈−ζ(t), z − x̂(t)〉 ≤ δ(t)

2r
‖z − x̂(t)‖2, ∀ z ∈ C(t).

This proves that

− ˙̂x(t)− g1

(
t, x̂(t), û(t)

)
−

t∫
T0

γ(t, s)g2

(
s, x̂(s), υ̂(s)

)
ds ∈ NC(t)(x̂(t)), a.e. t ∈ I,

and thus

− ˙̂x(t) ∈ NC(t)(x̂(t)) + g1

(
t, x̂(t), û(t)

)
+

t∫
T0

γ(t, s)g2

(
s, x̂(s), υ̂(s)

)
ds, a.e. t ∈ I.

Further, x̂(T0) = x0 by the convergence xk(T0)→ x̂(T0). Since

φ(x̂(T )) ≤ lim inf
k→+∞

φ(xk(T )) = inf
(x,w)

φ(x(T )),

we conclude that (x̂, ŵ) = (x̂, (û, υ̂)) is an optimal solution to (OC), proving the Theorem. �



Chapter 4
Optimal Control of Nonconvex

Integro-Differential Sweeping Processes

Abstract. This chapter is devoted to the study, for the first time in the literature, of opti-

mal control problems for sweeping processes governed by integro-differential inclusions of the

Volterra type with different classes of control functions acting in nonconvex moving sets, ex-

ternal dynamic perturbations, and integral parts of the sweeping dynamics. We establish the

existence of optimal solutions and then obtain necessary optimality conditions for a broad class

of local minimizers in such problems. Our approach to deriving necessary optimality conditions

is based on the method of discrete approximations married to basic constructions and calculus

rules of first-order and second-order variational analysis and generalized differentiation. The

obtained necessary optimality conditions are expressed entirely in terms of the problem data

and are illustrated by nontrivial examples that include applications to optimal control models

of non-regular electrical circuits.
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We are interested in the existence of solution and the derivation of necessary conditions

for the following Bolza problem

(P ) : Minimize J0[x, u, a, b] := ϕ(x(T )) +

T∫
0

l0
(
t, x(t), u(t), a(t), b(t), ẋ(t), u̇(t)

)
dt, (4.1)

over (u, a, b) such that

−ẋ(t) ∈ NC(u(t))(x(t)) + f1(a(t), x(t)) +

t∫
0

f2

(
b(s), x(s)

)
ds, a.e. [0, T ],

(
u(·), a(·), b(·)

)
∈ W 1,2([0, T ],Rn)× L2([0, T ],Rm+d),

(a(t), b(t)) ∈ A×B ⊂ Rm × Rd a.e. t ∈ [0, T ],

x(0) = x0 ∈ C(0),

(4.2)

where ϕ : Rn → R := (−∞,∞], l0 : [0, T ] × R4n+m+d → R and the controlled moving sets are

given in the form

C(t) := C(u(t)) = C + u(t), C :=
{
x ∈ Rn

∣∣ gi(x) ≥ 0, i = 1, . . . , s
}
. (4.3)

As follows from the sweeping inclusion (4.2) and the structure of the controlled moving sets

(4.3), problem (P ) automatically involves the pointwise mixed state-control constraints

gi(x(t)− u(t)) ≥ 0 for all t ∈ [0, T ] and i = 1, . . . , s, (4.4)

Denoting now the corresponding running cost l : [0, T ]× R6n+m+d → R by

l(t, x, y, u, a, b, ẋ, ẏ, u̇) := l0(t, x, u, a, b, ẋ, u̇), (4.5)

we see that problem (P ) can be equivalently reformulated in the form:

Minimize J [x, y, u, a, b] := ϕ(x(T )) +

T∫
0

l
(
t, x(t), y(t), u(t), a(t), b(t), ẋ(t), ẏ(t), u̇(t)

)
dt (4.6)

over (u, a, b) such that

−ẋ(t) ∈ NC(u(t))(x(t)) + f1

(
a(t), x(t)

)
+ y(t) a.e. t ∈ [0, T ],

ẏ(t) = f2

(
b(t), x(t)

)
a.e. t ∈ [0, T ],(

u(·), a(·), b(·)
)
∈ W 1,2([0, T ],Rn)× L2([0, T ],Rm+d),

(a(t), b(t)) ∈ A×B ⊂ Rm × Rd a.e. t ∈ [0, T ],

x(0) = x0 ∈ C(0), y(0) = 0.

(4.7)

Let us start this chapter with listing the standing assumptions imposed throughout the chapter

unless otherwise stated. On the other hand, in some statements we specify those assumptions

from the standing ones, which are actually used in the proof of this particular result
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4.1 Standing Assumptions

(H1) There are constants c > 0 and Mj > 0, j = 1, 2, 3, and open sets Ai ⊂ Vi such that

haus(Ai,Rn \ Vi) > c and the functions gi(·) as i = 1, . . . , s are twice continuously differ-

entiable satisfying the inequalities

M1 ≤ ‖∇gi(x)‖ ≤M2, ‖∇2gi(x)‖ ≤M3 for all x ∈ Vi, (4.8)

where ”haus” signifies the standard Hausdorff distance between two sets. Furthermore,

there are positive numbers β and ρ for which we have the estimate∑
i∈Iρ(x)

λi‖∇gi(x)‖ ≤ β‖
∑
i∈Iρ(x)

λi∇gi(x)‖ whenever x ∈ C and λi ≥ 0 (4.9)

with the index set for the perturbed constraints defined by

Iρ(x) :=
{
i ∈ {1, . . . , s}

∣∣ gi(x) ≤ ρ
}
. (4.10)

(H2) Let f1 : Rm+n → Rn, f2 : Rd+n → Rn be continuous mappings satisfying the following

properties:

(H2,1) There exist nonnegative constants αi, i = 1, 2, for which we have

‖f1(a(t), x)‖ ≤ ‖a(t)‖+ α1‖x‖ whenever t ∈ [0, T ], x ∈
⋃

t∈[0,T ]

C(t), (4.11)

‖f2(b(t), x)‖ ≤ ‖b(t)‖+ α2‖x‖ whenever t ∈ [0, T ], x ∈
⋃

t∈[0,T ]

C(t). (4.12)

(H2,2) For any real numbers ri > 0 and functions a(·), b(·) ∈ L2([0, T ],Rm+d) there exist

nonnegative constants L and Li as i = 1, 2 such that we have the estimates

‖f1(a, x1)− f1(a, x2)‖ ≤ L‖x1 − x2‖ for all x1, x2 ∈ r1B, (4.13)

‖f2(b, x1)− f2(b, x2)‖ ≤ L1‖x1 − x2‖ for all x1, x2 ∈ r1B, (4.14)

‖f2(b1, x)− f2(b2, x)‖ ≤ L2‖b1 − b2‖ for all b1, b2 ∈ Rn, x ∈ r1B. (4.15)

(H3) The terminal cost ϕ : Rn → R is lower semicontinuous (l.s.c.), while and the running cost

l0 : [0, T ]×R4n+2m+2d → R̄ is l.s.c. with respect to all but time variable being continuous

with respect to t and being majorized by a summable function on [0, T ] along reference

curves. Furthermore, we assume that l0(t, ·) is bounded from below on bounded sets for

a.e. t ∈ [0, T ].

(H4) The control sets A and B are closed and bounded in Rm and Rd, respectively.
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It is not hard to verify that if both conditions (4.8) and (4.9) are satisfied, then we have the

positive linear independence (PLICQ) of the gradients∇gi(x) of the active inequality constraints

on C, and that the latter condition is equivalent in our setting to the Mangasarian-Fromovitz

constraint qualification, which is the basic qualification condition in nonlinear programming.

Putting aside the case of concavity of all the functions gi in (4.3), it can be seen that

the sets C and C(t) therein are nonconvex, and hence we need to clarify in which sense the

normal cone in (4.2) is understood.

The next result is taken from [83, Proposition 2.9]; see also [6] for more discussions

and developments.

Proposition 4.1.1 (prox-regularity of moving sets). Let assumption (H1) be satisfied.

Then for each t ∈ [0, T ] we have that the set C(t) is η-prox-regular with η =
M1

M3β
.

Indeed, this statement was justified in [83, Proposition 2.9] for the set C in (4.3), and

hence it holds for the moving set C(t) = C + u(t) as a translation of C.

We close this section with the following well-known discrete version of Gronwall’s in-

equality; see, e.g., [24] for a short proof and discussions.

Proposition 4.1.2 (discrete Gronwall’s inequality). Let ei, ρj, γj, aj be nonnegative numbers

with

ej+1 ≤ σj + ρj

j−1∑
k=0

ek + (1 + γj)ej for all j ∈ IN.

Then whenever i ∈ N we have the estimate

ei ≤ (e0 +
i−1∑
k=0

σk) exp
( i−1∑
k=0

(kρk + γk)
)
.

4.2 Existence of optimal solutions and local minimizers

In this section we establish the existence of optimal solutions to (P ) and describe the type

of local minimizers of (P ) used below for deriving necessary optimality conditions. But first

we present the following well-posedness results for the controlled sweeping dynamics (4.2) that

ensure, in particular the existence of feasible solutions (x(·), u(·), a(·), b(·)) in the corresponding

W 1,2 spaces.

Proposition 4.2.1 (well-posedness of integro-differential sweeping processes). Fix a

triple (u(·), a(·), b(·)) ∈ W 1,2([0, T ],Rn)× L2([0, T ],Rm+d) and consider the integro-differential

sweeping process (4.2) under the assumptions in (H1) and (H2). Then this control triple gen-

erates a unique trajectory x(·) ∈ W 1,2([0, T ],Rn) of system (4.2). Denoting further

β1(t) := max
{
‖a(t)‖, α1

}
, b̃(t) := 2 max

{
β1(t), α2

}
for all t ∈ [0, T ],
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l̃ := ‖x(0)‖ exp
( T∫

0

(̃b(τ) + 1) dτ
)

+ exp
( T∫

0

(̃b(τ) + 1) dτ
) T∫

0

(
‖u̇(s)‖+ 2β1(s) + 2

T∫
0

‖b(τ)‖ dτ
)
ds,

and taking the corresponding arc y(·) from (4.7), we have the estimates

‖ẋ(t) + f1(t, x(t)) + y(t)‖ ≤ ‖u̇(t)‖+ (1 + l̃)β1(t) +

t∫
0

‖b(s)‖ ds+ Tα2l̃, a.e. t ∈ [0, T ],

and ‖x(t)‖ ≤ l̃.

(4.16)

‖ẋ(t)‖ ≤ ‖u̇(t)‖+ 2(1 + l̃)β1(t) + 2

t∫
0

‖b̃(s)‖ ds+ 2Tα2l̃ a.e. t ∈ [0, T ], (4.17)

‖ẏ(t)‖ ≤ ‖b(t)‖+ α2l̃ for all t ∈ [0, T ]. (4.18)

Proof. It is not hard to observe from the construction of C(t) in (4.3) that

C(u(t)) ⊂ C(u(s)) + |υ(t)− υ(s)|B, for all t, s ∈ [0, T ] and u(t) ∈ Rn, (4.19)

where υ(t) :=

t∫
0

‖u̇(s)‖ ds. This implies that

C(t) ⊂ C(s) + |υ(t)− υ(s)|B on [0, T ].

Furthermore, by the imposed condition (H1) and Proposition 4.1.1 we have that C(t) is η-prox-

regular for each t ∈ [0, T ]. If in addition (H2,1) holds, then this ensures that

‖f1(a(t), x)‖ ≤ ‖a(t)‖+ α1‖x‖ ≤ max
{
‖a(t)‖, α1

}
(1 + ‖x‖) = β1(t)(1 + ‖x‖).

Hence all the assumptions of [9, Theorem 4.2] are satisfied, which thus yields the fulfillment of es-

timates (4.16)–(4.18). Observe finally that ẋ(·), ẏ(·) ∈ L2([0, T ],Rn) since β1(·) ∈ L2([0, T ],Rn)

by the construction of β1(·). This therefore completes the proof of the proposition. �

Consider now the set-valued mapping F1 : R3n+m ⇒ Rn given by

F1(x, y, u, a) := NC(u)(x) + f1(x, a) + y. (4.20)

It is easy to deduce from the representation of the set C in (4.3) that

F1(x, y, u, a) :=
{
−

∑
i∈I(x−u)

ηi∇gi(x− u)
∣∣∣ 0 ≤ ηi

}
+ f1(x, a) + y, (4.21)
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(cf. [83, Proposition 2.8]), where the set of active constraint indices is

I(y) :=
{
i ∈ {1, . . . , s}

∣∣ gi(y) = 0
}

(4.22)

Define further the mapping F : R3n+m+d ⇒ Rn and f̃2 : R3n+m+d → Rn by

F (z) := F (x, y, u, a, b) = F1(x, y, u, a) = NC(u)(x) + f1(x, a) + y,

f̃2(z) := f̃2(x, y, u, a, b) = −f2(b, x).

We can clearly rewrite the problem for the evolution system in (4.7) in terms of z ∈ R3n+m+d

as (
− ẋ(t),−ẏ(t),−u̇(t)

)
∈ F

(
z(t)

)
× f̃2(z(t))× Rn := G(z(t)) a.e. t ∈ [0, T ] (4.23)

with the initial conditions

x(0) = x0, y0 = 0 and gi(x0 − u0) ≥ 0 as i = 1, . . . , s. (4.24)

Before establishing the existence of optimal solutions to (P ) in the aforementioned

class of feasible solutions, let us reformulate the sweeping differential inclusion (4.2) in a more

convenient way. Consider the images of the control sets A and B under the perturbation

mappings f1 : Rn×Rm → Rn and f2 : Rn×Rd → Rn, respectively, and denote them by f1(x,A)

and f2(x,B). Then the sweeping inclusion (4.2) with the moving set (4.3) is equivalently

represented as

−ẋ(t) ∈ NC(t)(x(t)) + f1(x(t), A) +

t∫
0

f2(x(s), B) ds a.e. [0, T ], x0 ∈ C(0). (4.25)

To elaborate more rigorously this statement, we need to use standard facts of the theory

of measurable multifunctions; see, e.g., [71, Chapter 14]. Recall that the measurability of

a closed-valued multifunction S : [0, T ] ⇒ Rm × Rd can be described as follows (see [71,

Theorem 14.10(b)]: For every ε > 0 there is a closed set Tε ⊂ [0, T ] with mes([0, T ] \ Tε) < ε

such that S : Tε ⇒ Rm×Rd is of closed graph. Fix any x(·) ∈ W 1,2([0, T ];Rn) satisfying (4.25)

with some u(·) from (4.3) and define the closed-valued mapping S : [0, T ]⇒ Rm × Rd by

S(t) :=

{
(a, b) ∈ A×B | − ẋ(t) ∈ NC(t)(x(t)) + f1(x(t), a) +

t∫
0

f2(x(s), b) ds, a.e. t ∈ [0, T ]

}
.

(4.26)

Applying to −ẋ(·) the classical Luzin property of measurable functions from real analysis, for

any ε > 0 we find a closed set Tε ⊂ [0, T ] with mes([0, T ] \ Tε) < ε for its Lebesgue measure

such that −ẋ(·) is continuous on Tε. Using the assumed continuity of f1(x, a) and f2(x, b)
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together with the closed-graph property of the normal cone mapping in (4.26), where C(t) is

taken from (4.3), shows that the graph of the mapping S : Tε ⇒ Rm×Rd from (4.26) is closed.

It tells us that the full mapping S(·) defined in (4.26) for a.e. t ∈ [0, T ] is measurable on [0, T ].

Employing the measurable selection theorem from [71, Corollary 14.6] ensures the existence of

a measurable control (a(t), b(t)) ∈ A× B such that the pair (x(·), a(·), b(·)), together with the

corresponding u(·) generated the moving set C(t) in (4.3), is feasible to (4.2). The converse

implication from (4.2) to (4.25) is obvious, and hence we verify the claimed equivalence.

Now we are ready to obtain the existence theorem for optimal solutions to (P ) under

certain convexity assumptions with respect to velocities. For simplicity, suppose here that the

integrand l does not depend on the control variable a and b. If it does, we have to impose the

convexity of an extended velocity set that includes the integrand component.

Theorem 4.2.1 (existence of sweeping optimal solutions). In addition to the standing

assumptions (H1) − (H3), suppose that the integrand l0 from (4.5) does not depend on the

(a, b)-variable while being convex with respect of velocity variables ẋ, u̇, and that there is a

minimizing sequence {(xk(·), yk(·), uk(·), ak(·), bk(·))} in (P ) such that {(xk(·), uk(·))} is bounded

in W 1,2([0, T ],R2n) and that the sets f1(xk(t), A) and f2(xk(t), B) are convex for all t ∈ [0, T ],

along which the integrand l0(t, ·) is majorized by a summable function on [0, T ]. Then problem

(P ) admits an optimal solution belonging to the space W 1,2([0, T ],R3n)× L2([0, T ],Rm+d).

Proof. Proposition 4.2.1 tells us that the set of feasible solutions to problem (P ) is nonempty.

Let us fix a minimizing sequence of feasible solutions

zk(·) = (xk(·), yk(·), uk(·), ak(·), bk(·)) for (P ). It follows from the boundedness of {uk(·)} in

W 1,2([0, T ],Rn) that there exists u0 ∈ Rn such that uk(0)→ u0 in this space as k →∞, while

the triple (x0, y0, u0) satisfies (4.24). We have that the sequence {(ẋk(·), u̇k(·)} is bounded in

L2([0, T ],R2n). Remembering that in reflexive spaces bounded sets are weakly compact gives

us a pair (υx(·), υu(·)) ∈ L2([0, T ],R2n) such that (ẋk(·), u̇k(·))→ (υx(·), υu(·)) ∈ L2([0, T ],R2n)

in the weak topology of this space along a subsequence (without relabeling). Define now the

functions

(x̄(t), ū(t)) = (x0, u0) +

t∫
0

(υx(s), υu(s)) ds for all t ∈ [0, T ]

and observe that ( ˙̄x(t), ˙̄u(t)) = (υx(t), υu(t)) for a.e. t ∈ [0, T ], and thus

(x̄(·), ū(·)) ∈ W 1,2([0, T ],R2n).

The next step is to verify that the limiting quintuple z̄(·) = (x̄(·), ȳ(·), ū(·), ā(·), b̄(·)) satisfies

the combination of the differential inclusion and equation in (4.23), which is equivalent to the

original integro-differential inclusion in (4.2). Furthermore, it follows from the closedness and

convexity of the normal cone to the moving set C(t) in (4.3) and the assumed convexity of
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the compact sets f1(xk(t), A) and f2(xk(t), B) on [0, T ] that the right-hand site velocity set in

(4.21) (with y(t) =

t∫
0

f2(x(s), b(s)) ds) is convex along the selected minimizing sequence, and

we have the inclusion

− ˙̄x(t) ∈ NC̄(t)(x̄(t)) + f1(x̄(t), A) +

t∫
0

f2

(
x̄(s), B

)
ds a.e. [0, T ], x0 ∈ C̄(0),

with x̄(t) ∈ C̄(t) := C + ū(t) on [0, T ], where C taken the form in (4.30). Employing now the

aforementioned measurable selection allows us to find a measurable control ā(·) and b̄(·) such

that ā(t) ∈ A and b̄(t) ∈ B and

− ˙̄x(t) ∈ NC̄(t)

(
x̄(t)) + f1(x̄(t), ā(t)

)
+

t∫
0

f2

(
x̄(s), b̄(s)

)
ds a.e. t ∈ [0, T ]

To justify further the optimality of z̄(·) = (x̄(·), ȳ(·), ū(·), ā(·), b̄(·)) in (P ), it is sufficient to

show that

J [x̄, ȳ, ū, ā, b̄] = J0[x̄, ū, ā, b̄] ≤ lim inf
k→∞

J0[xk, uk, ak, bk] = lim inf
k→∞

J [xk, yk, uk, ak, bk] (4.27)

for the Bolza functionals in (4.1) and (4.6). The latter follows from the assumptions in (H3)

on the cost functions ϕ and l0 due to the Mazur weak closure theorem and the Lebesgue

dominated convergence theorem. Indeed, Mazur’s theorem ensures that the weak convergence

of the {(ẋk(·), u̇k(·))} to ( ˙̄x(·), ˙̄u(·)) in L2([0, T ],R2n) yields the L2-strong convergence of convex

combinations of (ẋk(·), u̇k(·)) to ( ˙̄x(·), ˙̄u(·)), and hence the a.e. convergence of a subsequence of

these convex combination on [0, T ] to the limiting quadruple. Employing finally the assumed

convexity of the running cost l0 with respect to the velocity variables verifies (4.27). Observe

that there is no need to care about the convergence with respect to (a, b)-controls in our setting

due to the independence of the integrand l0 on the (a, b)-components. Thus we complete the

proof. �

As seen, besides our standing fairly nonrestrictive assumptions, the existence of global

minimizers in Theorem 4.2.1 requires the convexity of the running cost with respect to velocity

variables. The obtained results is new, while this convexity phenomenon has been well recog-

nized in the calculus of variations and optimal control of various types of dynamical systems.

On the other hand, it has been also well understood in variational theory for continuous-type

systems (including sweeping processes) that such problems allows a certain relaxation proce-

dure involving the velocity convexification, which brings us to relaxed problems, where optimal

solutions exist automatically and can be constructively approximated by feasible solutions to

the original problems with keeping the same optimal values of the cost functionals. The reader
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is referred to [22, 33, 26, 36, 39, 51, 49, 79, 84] for various results, discussions, and bibliographies

in these directions. Following this line, we construct now the relaxed version of the optimal

control problem (P ) for the integro-differential sweeping process under consideration.

Taking the integrand l from (4.6) and the velocity mapping G from (4.23), define the

extended running cost

lG(t, x, y, u, a, b, υ) := l(t, x, y, u, a, b, υ) + ψG(υ) with G = G(x, y, u, a, b),

where the indicator function ψG of the set G is given by ψG(υ) := 0 if υ ∈ G and ψG(υ) :=∞
otherwise. Denote further by l̂G(t, x, y, u, a, b, υ) the biconjugate function to lG(t, x, y, u, a, b, υ)

with respect to the velocity variable υ = (ẋ, u̇, ẏ), i.e., given by

l̂G(t, x, y, u, a, b, υ) := (lG)∗∗(t, x, y, u, a, b, υ).

Observe that l̂G(t, x, y, u, a, b, υ) is the largest proper, convex, and l.s.c. function with respect

to υ, which is majorized by lG. We clearly have that l̂G = lG if and only if lG is proper, convex,

and l.s.c. with respect to υ.

Now we are ready to define the relaxed problem (R) associated with the original optimal

control problem (P ) for sweeping integro-differential inclusion as follows: minimize

Ĵ [x, y, u, a, b] := ϕ
(
x(T )

)
+

T∫
0

l̂G
(
t, x(t), y(t), u(t), a(t), b(t), ẋ(t), ẏ(t), u̇(t)

)
dt (4.28)

with x(0) = x0 ∈ C(0) and y(0) = 0. Theorem 4.2.1 ensures the existence of optimal solutions

to (R) under the standing assumptions made. We see furthermore that there is no difference

between problems (P ) and (R) if the original running cost l0 is convex with respect to the

velocity variables. In fact, there exists a deeper connection between (P ) and (R) without any

convexity requirements, which has been well recognized for particular cases of the controlled

sweeping processes in [39, 79] by showing that an optimal relaxed solution can be constructively

approximated by feasible original ones, and that the optimal cost values for (P ) and (R)

coincide. Our goal is to investigate this issue for more general cases of integro-differential

sweeping control systems in the future research.

We conclude this section by formulating the concept of local minimizers in (P ) for

which we derive necessary optimality conditions without any convexity assumptions.

Definition 4.2.1 (intermediate local minimizers). Consider problem (P ) with represen-

tation (4.23) of the integro-differential inclusion, and let (4.28) is the relaxed problem of (P ).

Then we say that:

(i) A feasible solution z̄(·) to (P ) is an intermediate local minimizer (i.l.m.) of this prob-

lem if z̄(·) = (x̄(·), ȳ(·), ū(·), ā(·), b̄(·)) ∈ W 1,2([0, T ];Rn)×W 1,2([0, T ];Rn)×W 1,2([0, T ];Rn)×
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L2([0, T ];Rm) × L2([0, T ];Rd) and there exists ε > 0 such that J [z̄] ≤ J [z] for any feasible

solution z(·) to (P ) satisfying

‖(x̄(·), ȳ(·), ū(·))− (x(·), y(·), u(·))‖W 1,2 + ‖(ā(·), b̄(·))− (a(·), b(·))‖L2 < ε. (4.29)

(ii) A feasible solution z̄(·) to (P ) is a relaxed intermediate local minimizer (r.i.l.m.)

of this problem if J [z̄] = Ĵ [z̄] and there exists ε > 0 such that J [z̄] ≤ J [z] for any feasible

solution z(·) to (P ) satisfying (4.29).

Both notions in Definition 4.2.1 were introduced in [51] for Lipschitzian differential

inclusions (see also [49, 84] for subsequent studies in the Lipschitzian case), and then they were

investigated and developed in [20, 21, 22, 26, 27, 81, 54] for various differential inclusions of

the sweeping type. The introduced notions include their strong counterpart in which only the

first condition from (4.29) is required. In general, the defined “intermediate” notions occupy

an intermediate position between strong and weak local minimizers in variational problems.

As seen, the only difference between i.l.m. and r.i.l.m. lies in the additional requirement on

the local relaxation stability J [z̄] = Ĵ [z̄], which is often the case (always for the Lipschitzian

dynamics [49] and more as in [36, 39, 79]) of nonconvex integro-differential systems, particularly

for strong minimizers.

4.3 Discrete approximations of integro-differential dy-

namics

In this section we start developing the method of discrete approximations to study controlled

integro-differential sweeping processes of type (4.2). The major result obtained here deals, for

the fist time in the literature, with the discontinuous integro-differential sweeping dynamics

independently of its optimization as in problem (P ). We’ll later apply it to deriving necessary

optimality conditions for intermediate local minimizers of (P ), but so far our goal is to con-

struct a well-posed sequence of discrete-time sweeping dynamical systems, which W 1,2-strongly

approximates any feasible solution to (P ). We can do this under the standing assumptions in

(H1) and (H2) with the quite natural additional requirement that the velocities ˙̄x(·) and ˙̄u(·)
of the given feasible solution to (P ) are of bounded variation on [0, T ]. The developed approach

allows us to improve the corresponding results of [22] for controlled sweeping processes gov-

erned by differential inclusions and extend them to the case of integro-differential dynamics.

The obtained results are fully constructive and can be treated from both qualitative and numer-

ical viewpoints as the justification of finite-dimensional approximations of infinite-dimensional
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integro-differential discontinuous systems.

For each k ∈ IN , consider the discrete mesh on [0, T ] given by

∆k :=
{

0 = tk0 < tk1 < . . . < tkk = T
}

with hkj := tkj+1 − tkj and max
j=0,...,k−1

hkj ≤ hk :=
T

k
.

(4.30)

Theorem 4.3.1 (strong discrete approximation of feasible sweeping solutions). Under the

fulfillment of the assumptions in (H1) and (H2), fix any feasible solution

(x̄(·), ȳ(·), ū(·), ā(·), b̄(·)) to (P ) such that the functions ˙̄x(·), ˙̄u(·), ā(·), and b̄(·) are of bounded

variation on [0, T ], i.e., there is a number µ > 0 for which

max
{

var( ˙̄x(·), [0, T ]), var( ˙̄u(·), [0, T ]), var(ā(·), [0, T ]), var(b̄(·), [0, T ])
}
≤ µ. (4.31)

Then given a discrete mesh ∆k in (4.30), there exist sequences of piecewise linear functions

(xk(·), yk(·), uk(·)) and piecewise constant functions (ak(·), bk(·)) on [0, T ] such that

(xk(0), yk(0), uk(0)) = (x0, 0, ū(0)) for all k ∈ N, and it holds

xk(t) = xk(tkj ) + (t− tkj )υkj , yk(t) = yk(tkj ) + (t− tkj )wkj for t ∈ [tkj , t
k
j+1], j = 0, . . . , k − 1,

where the discrete velocities υkj and wkj satisfy the conditions

−υkj ∈ F1(xk(tkj ), y
k(tkj+1), uk(tkj ), a

k(tkj )), wkj = f2(bk(tkj ), x
k(tkj )), j = 0, . . . , k − 1,

with F1 taken from (4.20). Moreover, we have the convergence (xk(·), yk(·), uk(·)) to

(x̄(·), ȳ(·), ū(·)) in the W 1,2-norm topology on [0, T ], and (ak(·), bk(·)) → (ā(·), b̄(·)) in the L2-

norm topology on [0, T ] as k →∞.

Furthermore, there exists a constant µ̃ > 0 depending by T , L1, L2, µ, and M̃ , where the

numbers µ and M̃ are taken from (4.31) and (4.40), respectively, such that for every k ∈ N we

have the estimates

var(u̇k(·), [0, T ]) ≤ µ̃ and

∥∥∥∥uk(t1)− uk(t0)

t1 − t0

∥∥∥∥ ≤ µ̃. (4.32)

Proof. Since step functions are dense in L2([0, T ];Rm × Rd), there are sequences {ak(·)} and

{bk(·)} with

T∫
0

‖ak(t)− ā(t)‖2 dt→ 0 and

T∫
0

‖bk(t)− b̄(t)‖2 dt→ 0 as k →∞. (4.33)

Furthermore, for each k ∈ N there exists a partition ∆k of the interval [0, T ] from (4.30) for

which the step functions {ak(·)} and {bk(·)} are constant on [tj; tj+1) for j = 0...k − 1.
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For simplicity, we use the notation tj := tkj for the mesh points as j = 0, . . . , k for each fixed k.

Using the recurrent procedure, suppose that xk(tj) is given and then define

uk(tj) := xk(tj)− x̄(tj) + ū(tj), j = 0, . . . , k. (4.34)

Remembering that the sets F1(z) in (4.20) are closed and convex, take the unique projections

−υkj := ΠF1jk
(− ˙̄x(tj)) where F1jk := F1(xk(tj), y

k(tj+1), uk(tj), a
k(tj)), (4.35)

and deduce from (4.34) with taking into account the constructions of ak(·) and bk(·) that

F1(xk(tj), y
k(tj+1), uk(tj), a

k(tj)) = NC(uk(tj))(x
k(tj)) + f1(ak(tj), x

k(tj)) + yk(tj+1)

= F1(x̄(tj), ȳ(tj), ū(tj), ā(tj)) + f1(ā(tj), x
k(tj))− f1(ā(tj), x̄(tj)) + yk(tj+1)− ȳ(tj).

For all j = 0, . . . , k − 1 and t ∈ [tj, tj+1], define the vectors and functions

wkj := f2(b̄(tj), x
k(tj)), xk(t) := xk(tj) + (t− tj)vkj , yk(t) = yk(tj) + (t− tj)wkj , (4.36)

and then use below the notation

fxj (s) := ‖ ˙̄x(tj)− ˙̄x(s)‖, fuj (s) = ‖ ˙̄u(tj)− ˙̄u(s)‖,

faj (s) := ‖ā(tj)− ā(s)‖, f bj (s) := ‖b̄(tj)− b̄(s), ‖,

for all s ∈ [tj, tj+1). Select sxj , s
u
j , s

a
j and sbj from the subintervals [tj, tj+1) so that



sup
s∈[tj ,tj+1]

fxj (s) ≤ ‖ ˙̄x(tj)− ˙̄x(sxj )‖+ 2−k,

sup
s∈[tj ,tj+1]

fuj (s) ≤ ‖ ˙̄u(tj)− ˙̄u(suj )‖+ 2−k,

sup
s∈[tj ,tj+1]

faj (s) ≤ ‖ā(tj)− ā(saj )‖+ 2−k,

sup
s∈[tj ,tj+1]

f bj (s) ≤ ‖b̄(tj)− b̄(sbj)‖+ 2−k.

(4.37)

It clearly follows from (4.35), (4.36), and (4.37) that

‖υkj − ˙̄x(s)‖ ≤ ‖υkj − ˙̄x(tj)‖+ ‖ ˙̄x(tj)− ˙̄x(s)‖

= dist(− ˙̄x(tj);F1(xk(tj), y
k(tj), u

k(tj), a
k(tj))) + fxj (s)

≤ ‖f1(ā(tj), x
k(tj))− f1(ā(tj), x̄(tj))‖+ ‖yk(tj+1)− ȳ(tj)‖+ fxj (s).
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Employing the above constructions leads us to the estimates

‖yk(tj+1)− ȳ(tj+1)‖

=
∥∥∥yk(tj) + hjf2(b̄(tj), x

k(tj))− ȳ(tj)−
tj+1∫
tj

˙̄y(s) ds
∥∥∥

≤ ‖yk(tj)− ȳ(tj)‖+

tj+1∫
tj

‖f2(b̄(tj), x
k(tj))− f2(b̄(s), x̄(s))‖ ds

≤ ‖yk(tj)− ȳ(tj)‖+

tj+1∫
tj

‖f2(b̄(tj), x
k(tj))− f2(b̄(tj), x̄(tj))‖ ds

+

tj+1∫
tj

‖f2(b̄(tj), x̄(tj))− f2(b̄(tj), x̄(s))‖ ds+

tj+1∫
tj

‖f2(b̄(tj), x̄(s))− f2(b̄(s), x̄(s))‖ ds.

The imposed assumptions (H2,2) readily implies that

‖yk(tj+1)− ȳ(tj+1)‖

≤ ‖yk(tj)− ȳ(tj)‖+ L1hj‖xk(tj)− x̄(tj)‖+ L1

tj+1∫
tj

‖x̄(tj)− x̄(s)‖ ds+ L2

tj+1∫
tj

‖b̄(tj)− b̄(s)‖ ds

≤ ‖yk(tj)− ȳ(tj)‖+ L1hj‖xk(tj)− x̄(tj)‖+ L1

tj+1∫
tj

‖x̄(tj)− x̄(s)‖ ds+ L2

tj+1∫
tj

f bj (s) ds.

Proceeding further by induction, we obtain for all j = 0, . . . , k − 1 that

‖yk(tj+1)− ȳ(tj+1)‖

≤ L1

j∑
i=0

hi‖xk(ti)− x̄(ti)‖+ L1

j∑
i=0

ti+1∫
ti

‖x̄(ti)− x̄(s)‖ ds+ L2

j∑
i=0

ti+1∫
ti

f bi (s) ds.
(4.38)

We deduce from (4.37) that

j∑
i=0

ti+1∫
ti

f bi (s) ds ≤ hk

j∑
i=0

(
‖b̄(ti)− b̄(sbi)‖+ ‖b̄(sbi)− b̄(ti+1)‖+ 2−k

)
≤ hkvar(b̄(·), [0, T ]) + hkk2−k ≤ hkµ+ T2−k.

On the other hand, it follows that

j∑
i=0

ti+1∫
ti

‖x̄(ti)− x̄(s)‖ ds ≤ hk

j∑
i=0

sup
s∈[ti,ti+1]

‖x̄(ti)− x̄(s)‖.

Thus we can select a sxi from the subintervals [ti, ti+1) such that

j∑
i=0

ti+1∫
ti

‖x̄(ti)− x̄(s)‖ ds ≤ hk

j∑
i=0

(
‖x̄(ti)− x̄(sxi )‖+ 2−k

)
.
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Since x̄(·) ∈ W 1,2([0, T ];Rn), we get

j∑
i=0

ti+1∫
ti

‖x̄(ti)− x̄(s)‖ ds ≤ hk

j∑
i=0

sxi∫
ti

‖ ˙̄x(τ)‖ dτ + hkk2−k ≤ hk

j∑
i=0

ti+1∫
ti

‖ ˙̄x(τ)‖ dτ + T2−k

= hk

tj+1∫
0

‖ ˙̄x(τ)‖ dτ + T2−k ≤ hk

T∫
0

‖ ˙̄x(τ)‖ dτ + T2−k

≤ hk
√
T‖ ˙̄x‖L2([0,T ],Rn) + T2−k.

(4.39)

Substituting the latter estimates into (4.38) gives us

‖yk(tj+1)− ȳ(tj)‖ ≤ ‖yk(tj+1)− ȳ(tj+1)‖+ ‖ȳ(tj+1)− ȳ(tj)‖

≤ L1

j∑
i=0

hi‖xk(ti)− x̄(ti)‖+ hk

(
L1

√
T‖ ˙̄x‖L2([0,T ],Rn) + L2µ

)

+ (L1 + L2)T2−k +

tj+1∫
tj

‖ ˙̄y(s)‖ ds

= L1

j∑
i=0

hi‖xk(ti)− x̄(ti)‖+ hk

(
L1

√
T‖ ˙̄x‖L2([0,T ],Rn) + L2µ

)

+ (L1 + L2)T2−k +

tj+1∫
tj

‖f2(b̄(s), x̄(s))‖ ds.

From the boundedness of the set B we can select a M > 0 such that ‖b̄(t)‖ ≤M a.e. t ∈ [0, T ],

which implies in turn by using the imposed assumptions on f2 and by the first estimate in

(4.16) that

‖yk(tj+1)− ȳ(tj)‖ ≤ L1

j∑
i=0

hi‖xk(ti)− x̄(ti)‖+ hk

(
L1

√
T‖ ˙̄x‖L2([0,T ],Rn) + L2µ

)
+ (L1 + L2)T2−k + hk(M + α2l̃)

= L1

j∑
i=0

hi‖xk(ti)− x̄(ti)‖+ hkM̃ + (L1 + L2)T2−k,

where M̃ = L1

√
T‖ ˙̄x‖L2([0,T ],Rn) +M + α2l̃. (4.40)

Substituting the latter into the previous estimate of ‖yk(tj+1)− ȳ(tj+1)‖ and employing (H2,2)

bring us to

‖υkj − ˙̄x(s)‖ ≤ L1‖xk(tj)− x̄(tj)‖+ L1

j∑
i=0

hi‖xk(ti)− x̄(ti)‖

+ hkM̃ + (L1 + L2)T2−k + fxj (s).

(4.41)
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We get from the above relationships the following estimates:

‖xk(tj+1)− x̄(tj+1)‖ = ‖xk(tj) + hkv
k
j − x̄(tj)−

tj+1∫
tj

˙̄x(s) ds‖

≤ ‖xk(tj)− x̄(tj)‖+

tj+1∫
tj

‖vkj − ˙̄x(s)‖ ds

≤ ‖xk(tj)− x̄(tj)‖+ L1hk‖xk(tj)− x̄(tj)‖+ L1hk

j∑
i=0

hi‖xk(ti)− x̄(ti)‖

+ h2
kM̃ + hk(L1 + L2)T2−k +

tj+1∫
tj

fxj (s) ds

≤ (1 + L1hk)‖xk(tj)− x̄(tj)‖+ L1h
2
k

j−1∑
i=0

‖xk(ti)− x̄(ti)‖

+ h2
kM̃ + hk(L1 + L2)T2−k +

tj+1∫
tj

fxj (s) ds.

Apply now the discrete Gronwall’s lemma from Proposition 4.1.2 with the given parameters

ej = ‖xk(tj)− x̄(tj)‖, ρj = L1h
2
k, γj = L1hk, and

σj = h2
kM̃ + hk(L1 + L2)T2−k +

tj+1∫
tj

fxj (s) ds.

This ensures the fulfillment of the relationships

j−1∑
i=0

σi = jhk

(
hkM̃ + (L1 + L2)T2−k

)
+

j−1∑
i=0

ti+1∫
ti

fxi (s) ds

≤ T
(
hkM̃ + (L1 + L2)T2−k

)
+

j−1∑
i=0

ti+1∫
ti

fxi (s) ds.

We deduce from (4.37) that

j−1∑
i=0

ti+1∫
ti

fxi (s) ds ≤ hk

j∑
i=0

(
‖ ˙̄x(ti)− ˙̄x(sxi )‖+ ‖ ˙̄x(sxi )− ˙̄x(ti+1)‖+ 2−k

)
≤ hkvar( ˙̄x(·), [0, T ]) + hkk2−k ≤ hkµ+ T2−k,

and therefore arrive at the estimate

j−1∑
i=0

σi ≤ T
(
hkM̃ + (L1 + L2)T2−k

)
+ T2−k + hkµ

= hk(TM̃ + µ) + 2−k((L1 + L2)T 2 + T ) := ck.

(4.42)
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Having further lim
k→∞

ck = 0 gives us the conditions

j−1∑
i=0

(iρk + γk) = L1

j−1∑
i=0

(ih2
k + hk) = L1

(
h2
k

j(j − 1)

2
+ jhk

)
≤ L1T

(T
2

+ 1
)
,

which imply that for all j = 0, . . . , k − 1 we get

‖xk(tj)− x̄(tj)‖ ≤ ck exp

(
L1T

(
T

2
+ 1

))
, (4.43)

and hence from (4.38), (4.39) and (4.41) we get

‖yk(tj)− ȳ(tj)‖ ≤ L1Tck exp

(
L1T

(
T

2
+ 1

))
+ L1(hk

√
T‖ ˙̄x‖L2([0,T ],Rn) + T2−k)

+L2

j∑
i=0

tj+1∫
tj

f bj (s) ds,
(4.44)

‖υkj − ˙̄x(s)‖ ≤ ck exp

(
L1T

(
T

2
+ 1

))
(L1 + L1T ) + hkM̃ + (L1 + L2)T2−k + fxj (s). (4.45)

Employing the obtained conditions together with (4.43) and (4.44) tells us that

‖xk(t)− x̄(t)‖

= ‖xk(tj) + (t− tj)υkj − x̄(tj)−
t∫

tj

˙̄x(s) ds‖ ≤ ‖xk(tj)− x̄(tj)‖+

tj+1∫
tj

‖vkj − ˙̄x(s)‖ ds

≤ ck exp

(
L1T

(
T

2
+ 1

))
+ hkck exp

(
L1T

(
T

2
+ 1

))
(L1 + L1T )

+ h2
kM̃ + hk(L1 + L2)T2−k +

tj+1∫
tj

fxj (s) ds,

which readily verifies the uniform convergence of the sequence {xk(·)} to x̄(·) as k →∞.

To proceed further, deduce from (4.45) for j = 0, . . . , k − 1 that

T∫
0

‖ẋk(t)− ˙̄x(t)‖2 dt

=
k−1∑
j=0

tj+1∫
tj

‖υkj − ˙̄x(t)‖2 dt ≤ 3hk

k−1∑
j=0

c2
k exp

(
2L1T

(
T

2
+ 1

))
(L1 + L1T )2

+ 3hk

k−1∑
j=0

(
hkM̃ + (L1 + L2)T2−k

)2

+ 3
k−1∑
j=0

tj+1∫
tj

(fxj (s))2 ds.

(4.46)
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Observe in addition by the constructions and assumptions above that

k−1∑
j=0

tj+1∫
tj

(fxj (s))2 ds ≤ hk

k−1∑
j=0

(
‖ ˙̄x(tj)− ˙̄x(sxj )‖+ ‖ ˙̄x(sxj )− ˙̄x(tj+1)‖+ 2−k

)2

≤ 2hk

k−1∑
j=0

(
‖ ˙̄x(tj)− ˙̄x(sxj )‖+ ‖ ˙̄x(sxj )− ˙̄x(tj+1)‖

)2
+ 2T4−k

≤ 2hk

( k−1∑
j=0

(
‖ ˙̄x(tj)− ˙̄x(sxj )‖+ ‖ ˙̄x(sxj )− ˙̄x(tj+1)‖

))2

+ 2T4−k

≤ 2hkµ
2 + 2T4−k.

(4.47)

Combining (4.46) and (4.47) gives us the estimates

T∫
0

‖ẋk(t)− ˙̄x(t)‖2 dt ≤ 3Tc2
k exp

(
2L1T

(
T

2
+ 1

))
(L1 + L1T )2

+ 3T
(
hkM̃ + (L1 + L2)T2−k

)2

+ 6hkµ
2 + 6T4−k.

Note to this end that the terms

c2
k exp

(
2L1T

(
T

2
+ 1

))
(L1 + L1T )2 and

(
hkM̃ + (L1 + L2)T2−k

)2

in (4.46) are independent of j, and so we have khk = T . Remembering that ck → 0, this verifies

the strong convergence of the sequence {ẋk(·)} to ˙̄x(·) in the norm topology of L2([0, T ],Rn) as

k →∞.

Our next step is to justify the W 1,2-strong convergence of the sequence {yk(·)} to ȳ(·).
As follows from the above construction, for all j = 0, . . . , k − 1 and t ∈ [tj, tj+1] we have

‖ẏk(t)− ˙̄y(t)‖

= ‖wkj − ˙̄y(t)‖ = ‖f2(b̄(tj), x
k(tj))− f2(b̄(t), x̄(t))‖

≤ ‖f2(b̄(tj), x
k(tj))− f2(b̄(tj), x̄(tj))‖

+ ‖f2(b̄(tj), x̄(tj))− f2(b̄(tj), x̄(t))‖+ ‖f2(b̄(tj), x̄(t))− f2(b̄(t), x̄(t))‖

≤ L1ck exp

(
L1T

(
T

2
+ 1

))
+
√
hkL1‖ ˙̄x‖L2([0,T ],Rn) + L2f

b
j (t).

Combining the latter with (4.44) gives us the estimates

‖yk(t)− ȳ(t)‖

= ‖yk(tj) + (t− tj)wkj − ȳ(tj)−
t∫
tj

˙̄y(s) ds‖ ≤ ‖yk(tj)− ȳ(tj)‖+
tj+1∫
tj

‖wkj − ˙̄y(s)‖ ds

≤ L1Tck exp

(
L1T

(
T

2
+ 1

))
+ L1(hk

√
T‖ ˙̄x‖L2([0,T ],Rn) + T2−k) + L2

j∑
i=0

tj+1∫
tj

f bj (s) ds

+L1hkck exp

(
L1T

(
T

2
+ 1

))
+ hk
√
hkL1‖ ˙̄x‖L2([0,T ],Rn) + L2

tj+1∫
tj

f bj (s) ds,
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T∫
0

‖ẏk(t)− ˙̄y(t)‖2 dt =
k−1∑
j=0

tj+1∫
tj

‖ẏk(t)− ˙̄y(t)‖2 dt

≤ 2T

(
L1ck exp

(
L1T

(
T

2
+ 1

))
+
√
hkL1‖ ˙̄x‖L2([0,T ],Rn)

)2

+ 2L2
2

k−1∑
j=0

tj+1∫
tj

(f bj (s))
2 ds.

Deduce furthermore from the constructions and assumptions above that

j−1∑
i=0

tj+1∫
tj

(f bj (s))
2 ds ≤ hk

j∑
i=0

(
‖b̄(tj)− b̄(sbj)‖+ ‖b̄(sbj)− b̄(tj+1)‖+ 2−k

)2

≤ 2hk

j∑
i=0

(
‖b̄(tj)− b̄(sbj)‖+ ‖b̄(sbj)− b̄(tj+1)‖

)2
+ 2T4−k

≤ 2hk

( j∑
i=0

(
‖b̄(tj)− b̄(sbj)‖+ ‖b̄(sbj)− b̄(tj+1)‖

))2

+ 2T4−k

≤ 2hkµ
2 + 2T4−k,

which brings us to the velocity estimate

T∫
0

‖ẏk(t)− ˙̄y(t)‖2 dt

≤ 2T
(
L1ck exp

(
L1T (

T

2
+ 1)

)
+
√
hkL1‖ ˙̄x‖L2([0,T ],Rn)

)2

+ 4L2
2(hkµ

2 + T4−k)

and ensures therefore the strong convergence of yk(·) to ȳ(·) in W 1,2([0, T ],Rn).

To complete the proof of the theorem, it remains to verify the W 1,2-strong convergence

of the control sequence {uk(·)} to ū(·). To this end, observe first that

T∫
0

‖u̇k(t)− ˙̄u(t)‖2 dt ≤ 2

T∫
0

∥∥∥u̇k(t)− ū(tj+1)− ū(tj)

hk

∥∥∥2

dt+ 2

T∫
0

∥∥∥ ū(tj+1)− ū(tj)

hk
− ˙̄u(t)

∥∥∥2

dt

(4.48)

for all j = 0, . . . , k − 1 and t ∈ [tj, tj+1). On the other hand, it follows from (4.34) that

T∫
0

∥∥∥u̇k(t)− ū(tj+1)− ū(tj)

hk

∥∥∥2

dt

=

T∫
0

∥∥∥uk(tj+1)− uk(tj)
hk

− ū(tj+1)− ū(tj)

hk

∥∥∥2

dt =

T∫
0

∥∥∥uk(tj+1)− ū(tj+1)

hk
− uk(tj)− ū(tj)

hk

∥∥∥2

dt

=

T∫
0

∥∥∥xk(tj+1)− x̄(tj+1)

hk
− xk(tj)− x̄(tj)

hk

∥∥∥2

dt =

T∫
0

∥∥∥xk(tj+1)− xk(tj)
hk

− x̄(tj+1)− x̄(tj)

hk

∥∥∥2

dt

≤ 2

T∫
0

∥∥∥xk(tj+1)− xk(tj)
hk

− ˙̄x(t)
∥∥∥2

dt+ 2

T∫
0

∥∥∥ ˙̄x(t)− x̄(tj+1)− x̄(tj)

hk

∥∥∥2

dt

= 2

T∫
0

‖ẋk(t)− ˙̄x(t)‖2 dt+ 2

T∫
0

∥∥∥ ˙̄x(t)− x̄(tj+1)− x̄(tj)

hk

∥∥∥2

dt,
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and∥∥∥ ˙̄x(t)− x̄(tj+1)− x̄(tj)

hk

∥∥∥ ≤ ‖ ˙̄x(t)− ˙̄x(tj)‖+
∥∥∥ ˙̄x(tj)−

x̄(tj+1)− x̄(tj)

hk

∥∥∥
≤ ‖ ˙̄x(t)− ˙̄x(tj)‖+

1

hk

tj+1∫
tj

‖ ˙̄x(tj)− ˙̄x(t)‖ dt ≤ ‖ ˙̄x(tj)− ˙̄x(sxj )‖+
1

hk

tj+1∫
tj

‖ ˙̄x(tj)− ˙̄x(sxj )‖ dt+ 2−k

≤ ‖ ˙̄x(tj)− ˙̄x(sxj )‖+ ‖ ˙̄x(sxj )− ˙̄x(tj+1)‖+ 2−k.

(4.49)

Hence we arrive at the relationships

T∫
0

∥∥∥ ˙̄x(t)− x̄(tj+1)− x̄(tj)

hk

∥∥∥2

dt

≤
T∫

0

(
‖ ˙̄x(tj)− ˙̄x(sxj )‖+ ‖ ˙̄x(sxj )− ˙̄x(tj+1)‖+ 2−k

)2

dt

≤ 2

T∫
0

(
‖ ˙̄x(tj)− ˙̄x(sxj )‖+ ‖ ˙̄x(sxj )− ˙̄x(tj+1)‖

)2

dt+ T4−k

= 2
k−1∑
j=0

tj+1∫
tj

(
‖ ˙̄x(tj)− ˙̄x(sxj )‖+ ‖ ˙̄x(sxj )− ˙̄x(tj+1)‖

)2

dt+ T4−k+1

≤ 2hk

( k−1∑
j=0

(
‖ ˙̄x(tj)− ˙̄x(sxj )‖+ ‖ ˙̄x(sxj )− ˙̄x(tj+1)‖

))2

+ T4−k+1 ≤ 2hkµ
2 + T4−k+1,

which clearly yield the estimate

T∫
0

∥∥∥u̇k(t)− ū(tj+1)− ū(tj)

hk

∥∥∥2

dt ≤ 2

T∫
0

‖ẋk(t)− ˙̄x(t)‖2 dt+ 8hkµ
2 + 2T4−k+1. (4.50)

In the same way we obtain the condition

T∫
0

∥∥∥ ˙̄u(t)− ū(tj+1)− ū(tj)

hk

∥∥∥2

dt ≤ 2hkµ
2 + T4−k+1. (4.51)

Substituting (4.50) and (4.51) into (4.48) gives us

T∫
0

‖u̇k(t)− ˙̄u(t)‖2 dt ≤ 4

T∫
0

‖ẋk(t)− ˙̄x(t)‖2 dt+ 16hkµ
2 + 4T4−k+1 + 4hkµ

2 + 2T4−k+1,

which verifies the strong convergence of the sequence {u̇k(·)} to ˙̄u(·) in the norm topology of

L2([0, T ],Rn) with uk(0) = ū(0) + xk(0)− x0 = ū(0). Finally, for all t ∈ [0, T ] we get

‖uk(t)− ū(t)‖ ≤
t∫

0

‖u̇k(s)− ˙̄u(s)‖ ds ≤
√
T
( T∫

0

‖u̇k(t)− ˙̄u(t)‖2 ds
)1/2

→ 0 as k →∞,
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and thus the sequence {uk(·)} converges to the feasible control ū(·) strongly in

W 1,2([0, T ],Rn) as k →∞.

Our next goal is to verify the claimed representation (4.32). From (4.34) We have

k−2∑
j=0

∥∥∥∥uk(tj+2)− uk(tj+1)

hk
− uk(tj+1)− uk(tj)

hk

∥∥∥∥
≤

k−2∑
j=0

∥∥∥∥ ū(tj+2)− ū(tj+1)

hk
− ū(tj+1)− ū(tj)

hk

∥∥∥∥+ 2
k−1∑
j=0

∥∥∥∥xk(tj+1)− xk(tj)
hk

− x̄(tj+1)− x̄(tj)

hk

∥∥∥∥
≤

k−2∑
j=0

∥∥∥∥ ū(tj+2)− ū(tj+1)

hk
− ˙̄u(tj)

∥∥∥∥+
k−2∑
j=0

∥∥∥∥ ˙̄u(tj)−
ū(tj+1)− ū(tj)

hk

∥∥∥∥
+ 2

k−1∑
j=0

∥∥∥∥vkj − x̄(tj+1)− x̄(tj)

hk

∥∥∥∥
≤ 1

hk

k−2∑
j=0

tj+2∫
tj+1

‖ ˙̄u(s)− ˙̄u(tj)‖ ds+
1

hk

k−2∑
j=0

tj+1∫
tj

‖ ˙̄u(s)− ˙̄u(tj)‖ ds+ 2
k−1∑
j=0

∥∥vkj − ˙̄x(t)
∥∥

+ 2
k−1∑
j=0

∥∥∥∥ ˙̄x(t)− x̄(tj+1)− x̄(tj)

hk

∥∥∥∥
=

1

hk

k−2∑
j=0

tj+2∫
tj

fuj (s) ds+ 2
k−1∑
j=0

∥∥vkj − ˙̄x(t)
∥∥+ 2

k−1∑
j=0

∥∥∥∥ ˙̄x(t)− x̄(tj+1)− x̄(tj)

hk

∥∥∥∥ .
It follows from (4.38) and (4.49) that

k−2∑
j=0

∥∥∥∥uk(tj+2)− uk(tj+1)

hk
− uk(tj+1)− uk(tj)

hk

∥∥∥∥
≤ 1

hk

k−2∑
j=0

tj+2∫
tj

fuj (s) ds+ 2
k−1∑
j=0

(
‖ ˙̄x(tj)− ˙̄x(sxj )‖+ ‖ ˙̄x(sxj )− ˙̄x(tj+1)‖+ 2−k

)

+ 2
k−1∑
j=0

(
ck exp

(
L1T

(
T

2
+ 1

))
(L1 + L1T ) + hkM̃ + (L1 + L2)T2−k + fxj (t)

)
.

We deduce from (4.37) that

k−2∑
j=0

tj+2∫
tj

fuj (s) ds ≤ 2hk

k−1∑
j=0

(
‖ ˙̄u(tj)− ˙̄u(suj )‖+ ‖ ˙̄u(suj )− ˙̄u(tj+1)‖+ 2−k

)
≤ 2hkvar( ˙̄u(·), [0, T ]) + 2hkk2−k ≤ 2hkµ+ 2T2−k.

Using the same arguments leads us to the inequalities

k−1∑
j=0

fxj (t) ≤ µ+ k2−k and
k−1∑
j=0

(
‖ ˙̄x(tj)− ˙̄x(sxj )‖+ ‖ ˙̄x(sxj )− ˙̄x(tj+1)‖

)
≤ µ+ k2−k,
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and therefore we arrive at the estimate

k−2∑
j=0

∥∥∥∥uk(tj+2)− uk(tj+1)

hk
− uk(tj+1)− uk(tj)

hk

∥∥∥∥
≤ 6µ+ (8 + 2(L1 + L2)T )k2−k + 2kck exp

(
L1T

(
T

2
+ 1

))
(L1 + L1T ) + 2TM̃ := µ̃k.

Remembering the definition of ck in (4.42) and lim
k→+∞

k2−k = 0 shows that µ̃k ≤ µ̃ for some

constant µ̃ > 0, which justifies the first estimate in (4.32).

To verify the second estimate therein, we deduce from (4.34) and (4.43) that∥∥∥∥uk(t1)− uk(t0)

t1 − t0

∥∥∥∥ ≤ ∥∥∥∥uk(t1)− ū(t1)

t1 − t0

∥∥∥∥+

∥∥∥∥uk(t0)− ū(t0)

t1 − t0

∥∥∥∥+

∥∥∥∥ ū(t1)− ū(t0)

t1 − t0

∥∥∥∥
≤
∥∥∥∥xk(t1)− x̄(t1)

t1 − t0

∥∥∥∥+

∥∥∥∥xk(t0)− x̄(t0)

t1 − t0

∥∥∥∥+
1

hk

t1∫
t0

‖u̇(s)‖ ds

≤ 2

hk
ck exp

(
L1T

(
T

2
+ 1

))
+

1

hk

t1∫
t0

sup
s∈[t0;t1]

‖u̇(s)‖ ds

≤ 2k

T
ck exp

(
L1T

(
T

2
+ 1

))
+ sup

s∈[t0;t1]

‖u̇(s)‖ ≤ µ̃,

which readily gives us the claimed result in (4.32). This completes the proof of the theorem. �

4.4 Discrete approximations of local optimal solutions

In this section we continue developing the method of discrete approximations for controlled

integro-differential sweeping processes while in a different framework. Our goal is to (strongly

in W 1,2) approximate a prescribed relaxed intermediate local minimizer of the optimal control

problem (P ) by optimal solutions to discretized sweeping control systems. Given an r.i.l.m.

z̄(·) = (x̄(·), ȳ(·), ū(·), ā(·), b̄(·)) of (P ) with the number ε > 0 from Definition 4.2.1 (ii), consider

the mesh ∆k defined in (4.30) and construct the sequence of discrete-time sweeping optimal

control problems (Pk), k ∈ IN , as follows:

minimize Jk(z
k) := ϕ(xkk) + hk

k−1∑
j=0

l
(
tkj , x

k
j , y

k
j , u

k
j , a

k
j , b

k
j ,
xkj+1 − xkj

hk
,
ykj+1 − ykj

hk
,
ukj+1 − ukj

hk

)

+
1

2

k−1∑
j=0

tkj+1∫
tkj

(∥∥∥xkj+1 − xkj
hk

− ˙̄x(t)
∥∥∥2

+
∥∥∥ykj+1 − ykj

hk
− ˙̄y(t)

∥∥∥2

+
∥∥∥ukj+1 − ukj

hk
− ˙̄u(t)

∥∥∥2)
dt,

+
1

2

k−1∑
j=0

tkj+1∫
tkj

‖(akj , bkj )− (ā(t), b̄(t))‖2 dt,
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over the collections zk = (xk0, . . . , x
k
k, y

k
0 , . . . , y

k
k , u

k
0, . . . , u

k
k, a

k
0, . . . , a

k
k, b

k
0, . . . , b

k
k) subject to the

constraints:

xkj+1 ∈ xkj − hkFh(xkj , ykj , ukj , akj , bkj ), j = 0, . . . , k − 1, (4.52)

where the discrete velocity mapping Fh is given in the form

Fh(x
k
j , y

k
j , u

k
j , a

k
j , b

k
j ) := F1(xkj , y

k
j+1, u

k
j , a

k
j ) = NC(ukj )(x

k
j ) + f1(xkj , a

k
j ) + ykj+1 (4.53)

due to the definition of F1 in (4.20), and where (xk0, u
k
0, a

k
0) = (x0, u0, ā(0)),

ykj+1 = ykj + hkf2(bkj , x
k
j ) with (yk0 , b

k
0) = (0, b̄(0)), (4.54)

gi(x
k
k − ukk) ≥ 0, i = 1, . . . , s, (4.55)

‖(xkj , ykj , ukj , akj , bkj )− (x̄(tkj ), ȳ(tkj ), ū(tkj ), ā(tkj ), b̄(t
k
j ))‖ ≤

ε

2
, j = 0, . . . , k − 1, (4.56)

k−1∑
j=0

tkj+1∫
tkj

(∥∥∥xkj+1 − xkj
hk

− ˙̄x(t)
∥∥∥2

+
∥∥∥ykj+1 − ykj

hk
− ˙̄y(t)

∥∥∥2

+
∥∥∥ukj+1 − ukj

hk
− ˙̄u(t)

∥∥∥2

+ ‖(akj , bkj )− (ā(t), b̄(t))‖2
)
dt ≤ ε

2
.

(4.57)

akj ∈ A, and bkj ∈ B, j = 0, ..., k − 1. (4.58)

To proceed further, we first have to make sure that problems (Pk) admit optimal

solution.

Proposition 4.4.1 (existence of optimal solutions to discrete approximations). Sup-

pose that the standing assumptions (H1)−(H3) are satisfied around the given r.i.l.m. z̄(·). Then

each problem (Pk) has an optimal solution provided that k ∈ IN is sufficiently large.

Proof. Observe that theW 1,2-strong convergence results of Theorem 4.3.1 and the construction

of problems (Pk) allow us to conclude that the sets of feasible solutions to (Pk) are nonempty

whenever k is sufficiently large. Now we fix k ∈ IN and show that set of feasible solutions to

(Pk) is bounded. Indeed, pick a sequence

zν = (xν0, . . . , x
ν
k, y

ν
0 , . . . , y

ν
k , u

ν
0, . . . , u

ν
k, a

ν
0, . . . , a

ν
k, b

ν
0, . . . , b

ν
k) of feasible solutions to (Pk) that

converges to some z = (x0, . . . , x
k, y0, . . . , y

k, u0, . . . , u
k, a0, . . . , a

k, b0, . . . , b
k) as ν → 0 and

show that z is feasible to (Pk) as well. Observe that gi(xj − uj) = lim
ν→∞

gi(x
ν
j − uνj ) ≥ 0 for

all i = 1, . . . , s and j = 0, . . . , k − 1, which ensures that xj ∈ C(uj). It follows from the

closed graph property of the normal cone mapping in (4.52) with F1 taken from (4.20) and the

continuity of the functions f1 and f2 that

−xj+1 − xj
hk

− f1(aj, xj)− yj+1 ∈ NC(xj − uj), yj+1 = yj + hkf2(bj, xj),
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or equivalently, that xj+1 ∈ xj + hkF1(xj, yj, uj, aj) for all j = 0, . . . , k − 1, which verifies the

claimed closedness of the feasible solution set. To conclude the proof of the proposition, we

notice that the latter set is bounded due to the constraints in (4.56). Thus the existence of

optimal solutions in (Pk) is ensured by the classical Weierstrass theorem in finite-dimensional

spaces. �

Now we are ready to establish the desired strong convergence of extended discrete

optimal solutions of (Pk) to the prescribed r.i.l.m. of the original problem (P ).

Theorem 4.4.1 (strong convergence of extended discrete optimal solutions). Let

z̄(·) = (x̄(·), ȳ(·), ū(·), ā(·), b̄(·)) be an r.i.l.m. for problem (P ). In addition to the standing

assumptions (H1) − (H3) imposed along z̄(·), suppose that the cost functions ϕ and l0 ≡ l

are continuous at x̄(T ) and at (t, x̄(·), ȳ(·), ū(·), ā(·), b̄(·), ˙̄x(·), ˙̄y(·), ˙̄u(·)) for a.e. t ∈ [0, T ], re-

spectively. Then any sequence of optimal solutions z̄k(·) = (x̄k(·), ȳk(·), ūk(·), āk(·), b̄k(·)) to

(Pk), piecewise linearly extended to [0, T ] for (x̄k(·), ȳk(·), ūk(·)) and piecewise constantly for

(āk(·), b̄k(·)). Is such that the extended sequence of (x̄k(·), ȳk(·), ūk(·), āk(·), b̄k(·)) converges to

(x̄(·), ȳ(·), ū(·), ā(·), b̄(·)) strongly in W 1,2([0, T ],R3n)× L2([0, T ],Rm+d) as k →∞.

Proof. We know from Proposition 4.4.1 that each problem (Pk) admits optimal solutions z̄k(·)
for large k ∈ IN . Extend any z̄k(·) piecewise linearly to the continuous-time interval [0, T ]. We

aim at verifying that

lim
k→∞

T∫
0

∥∥( ˙̄xk(t), ˙̄yk(t), ˙̄uk(t), āk(t), b̄k(t)
)
−
(

˙̄x(t), ˙̄y(t), ˙̄u(t), ā(t), b̄(t)
)∥∥2

dt = 0, (4.59)

which clearly yields the convergence of the quintuple (x̄k(·), ȳk(·), ūk(·), āk(·), b̄k(·)) to

(x̄(·), ȳ(·), ū(·), ā(·), b̄(·)) in the norm topology of W 1,2([0, T ],R3n)×L2([0, T ],Rm+d) as k →∞.

To justify (4.59), suppose on the contrary that it fails, i.e., the limit in (4.59), along

a subsequence (without relabeling) equals to some ξ > 0. The weak compactness of the unit

ball in L2([0, T ],R3n+m+d) allows us to find (υx(·), υy(·), υu(·), ã(·), b̃(·)) such that the quintuple

( ˙̄xk(·), ˙̄yk(·), ˙̄uk(·), āk(·), b̄k(·)) converges weakly to

(υx(·), υy(·), υu(·), ã(·), b̃(·)) ∈ L2([0, T ],R3n+m+d) as k →∞. Defining (x̃(·), ỹ(·), ũ(·)) by

(x̃(t), ỹ(t), ũ(t)) := (x0, 0, ū(0)) +

t∫
0

(υx(s), υy(s), υu(s)) ds, t ∈ [0, T ],

we get that ( ˙̃x(t), ˙̃y(t), ˙̃u(t)) = (υx(t), υy(t), υu(t)) for a.e. t ∈ [0, T ]. Arguing now as in the

proof of Theorem 4.2.1 shows that the arc z̃(·) is feasible to the original problem (P ) and hence
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to the relaxed one (R).

Next we check that (x̃(·), ỹ(·), ũ(·), ã(·), b̃(·)) satisfies the localization conditions in

(4.29) relative to (x̄(·), ȳ(·), ū(·), ā(·), b̄(·)). Indeed, the first condition in (4.29) follows di-

rectly from the passage to the limit in (4.56) as k → ∞. To justify the second condition in

(4.29), we pass to the limit in (4.57) due to the established weak convergence of the derivatives

( ˙̄xk(·), ˙̄yk(·), ˙̄uk(·))→ ( ˙̃x(·), ˙̃y(·), ˙̃u(·)) and the lower semicontinuity of the norm function in L2.

This tells us that

T∫
0

∥∥( ˙̃x(t), ˙̃y(t), ˙̃u(t)
)
−
(

˙̄x(t), ˙̄y(t), ˙̄u(t)
)∥∥

≤ lim inf
k→∞

k−1∑
j=0

tkj+1∫
tkj

(∥∥∥xkj+1 − xkj
hk

− ˙̄x(t)
∥∥∥2

+
∥∥∥ykj+1 − ykj

hk
− ˙̄y(t)

∥∥∥2

+
∥∥∥ukj+1 − ukj

hk
− ˙̄u(t)

∥∥∥2)
dt

≤ ε

2
,

and thus we are done with (4.29). Furthermore, it follows from the construction of the relaxed

problem (R) in (4.28) due to the convexity of l̂G in the velocity variables, the established weak

convergence of the extended discrete derivatives, and applications of the Mazur theorem as in

the proof of Theorem 4.3.1 that

T∫
0

l̂G
(
t, x̃(t), ỹ(t), ũ(t), ã(t), b̃(t), ˙̃x(t), ˙̃y(t), ˙̃u(t)

)
dt

≤ lim inf
k→∞

hk

k−1∑
j=0

l
(
tkj , x̄

k
j , ȳ

k
j , ū

k
j , ā

k
j , b̄

k
j ,
x̄kj+1 − x̄kj

hk
,
ȳkj+1 − ȳkj

hk
,
ūkj+1 − ūkj

hk

)
.

We also observe in this way, with taking into account the above definition of ξ, that

Ĵ [z̃] +
ξ

2
= ϕ(x̃(T )) +

T∫
0

l̂G
(
t, x̃(t), ỹ(t), ũ(t), ã(t), b̃(t), ˙̃x(t), ˙̃y(t), ˙̃u(t)

)
dt+

ξ

2

≤ lim inf
k→∞

Jk(z̄
k).

(4.60)

Employing Theorem 4.3.1 gives us a sequence {(xk(·), yk(·), uk(·))} and {(ak(·), bk(·))} of feasible

solutions to (Pk) that strongly approximate (x̄(·), ȳ(·), ū(·)) and (ā(·), b̄(·)) inW 1,2 and L2, which

is a feasible solution to (P ). The imposed continuity assumptions on ϕ and l yield

lim
k→∞

Jk[x
k, yk, uk, ak, bk] = J [x̄, ȳ, ū, ā, b̄]. (4.61)

On the other hand, it follows from the optimality of z̄k(·) := (x̄k(·), ȳk(·), ūk(·), āk(·), b̄k(·)) in

(Pk) that

Jk[z̄
k] ≤ Jk[x

k, yk, uk, ak, bk] for each k ∈ N. (4.62)
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Combining finally the relationships in (4.60)–(4.62), we conclude that

J̃ [x̃, ỹ, ũ, ã, b̃] < J̃ [x̃, ỹ, ũ, ã, b̃] +
ξ

2
≤ J [z̄] = Ĵ [z̄].

Due to the choice of ξ > 0 above, the latter clearly contradicts the fact that z̄(·) is an r.i.l.m.

for problem (P ) and thus verifies the limiting condition (4.59). This completes the proof of the

theorem. �

4.5 Generalized differentiation and second-order calcu-

lations

This section briefly recalls some tools of first-order and second-order generalized differentiation

in variational analysis, which are instrumental in deriving necessary optimality conditions for

the discrete-time and continuous-time sweeping control problems formulated above. The reader

can find more details and references in the books [49, 52, 71] for the first-order and in [49, 52] for

the second-order issues. Observe that, although the initial data of problem (P ) and its discrete

approximations are smooth and/or convex, the intrinsic source of nonsmoothness comes from

the sweeping dynamics and its discretization, which lead us to nonconvex graphical sets and

require the usage of robust generalized differentiation with adequate properties. It occurs

that the most appropriate constructions for these purposes are the robust nonconvex notions

introduced by the third author, while their convexification fails the needed results, particularly

of the second-order.

Given a nonempty set Ω ⊂ Rn locally closed around x̄ ∈ Ω, consider the associated

projection operator (1.3.3) and recall that the (basic/limiting/Mordukhovich) normal cone to

Ω at x̄ is defined by

NΩ(x̄) :=
{
v ∈ Rn

∣∣ ∃xk → x̄, wk ∈ ProjΩ(xk), αk ≥ 0 s.t. αk(xk − wk)→ v as k →∞
}
(4.63)

with NΩ(x̄) := ∅ for x̄ /∈ Ω. If Ω is prox-regular, the normal cone (4.63) agrees with the

proximal normal cone (1.3), and they both reduce to the normal cone of convex analysis when

Ω is convex. Furthermore, the convex closure of (4.63) gives us the Clarke normal cone [33].

Note that, despite the nonconvexity of (4.63), this normal cone and the associated subdiffer-

ential and coderivative constructions for functions and multifunctions are robust and enjoy full

calculi based on variational/extremal principles of variational analysis. This is not the case

for the proximal constructions and may also fail for Clarke’s ones without imposing additional

interiority-type assumptions.
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Considering a set-valued mapping/multifunction F : Rn ⇒ Rq with domF := {x ∈
Rn | F (x) 6= ∅} and taking a point (x̄, ȳ) from the graph

gph F :=
{

(x, y) ∈ Rn × Rq
∣∣ y ∈ F (x)

}
,

the coderivative D∗F (x̄, ȳ) : Rq ⇒ Rn of F at (x̄, ȳ) is defined by

D∗F (x̄, ȳ)(u) :=
{
υ ∈ Rn

∣∣ (υ,−u) ∈ NgphF (x̄, ȳ)} for all u ∈ Rq, (4.64)

where we skip ȳ if F is single-valued. If in the latter case F is continuously differentiable around

x̄, then

D∗F (x̄)(u) :=
{
∇F (x̄)∗u

}
for all u ∈ Rq.

Given further an extended-real-valued function ϕ : Rn → R̄ finite at x̄, the (first-order) subdif-

ferential of ϕ at x̄ is defined geometrically by

∂ϕ(x̄) :=
{
υ ∈ Rn

∣∣ (υ,−1) ∈ Nepiϕ(x̄, ϕ(ȳ))
}

(4.65)

while admitting various analytic representations given in [52, 71]. Following [50], the second-

order subdifferential (generalized Hessian) of ϕ at x̄ relative to ȳ ∈ ϕ(x̄) is defined by

∂2ϕ(x̄, ȳ)(u) :=
(
D∗∂ϕ

)
(x̄, ȳ)(u) for all u ∈ Rq. (4.66)

If ϕ is twice continuously differentiable around x̄, then we get

∂2ϕ(x̄)(u) :=
{
∇2ϕ(x̄)(u)

}
for all u ∈ Rq

via the classical (symmetric) Hessian of ϕ at x̄. Note that replacing the limiting normal cone

in (4.64) and (4.66) by its convexification (and hence by Clarke’s normal cone) to graphical

sets dramatically enlarges the corresponding constructions and makes them unusable for further

analysis and applications. In particular, it follows from [82, Theorem 3.5] that Clarke’s normal

cone is a linear subspace of the maximal dimension if the graph of F is a “Lipschitzian manifold,”

which is the case of, e.g., subgradient mappings F = ∂ϕ in (4.65) generated by prox-regular

functions; see [49, 52, 71] for more discussions. In contrast, the second-order subdifferential

(4.66) provides an adequate machinery of second-order variational analysis in applications to

controlled sweeping processes. We largely use below the following theorem, which gives us a

precise computation of the velocity mapping associated with the integro-differential sweeping

dynamics of our study entirely in terms of the given data of (P ). Due to the very structure

of the sweeping dynamics, the obtained result contains the computation of the second-order

subdifferential of the indicator function in (4.66).
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Theorem 4.5.1 (second-order calculation for integro-differential sweeping dynam-

ics). Define the set-valued mapping Fh : R3n+m+d ⇒ Rn by

Fh(x, y, u, a, b) := F1(x, y, u, a) + hf2(b, x) = NC(x− u) + f1(a, x) + y + hf2(b, x), (4.67)

where F1 is given in (4.20) with f1, f2, and C taken from (4.2) and (4.3), respectively, and

h > 0. Pick any u ∈ Rn with x − u ∈ C, take w ∈ NC(x − u) + f1(a, x) + y + hf2(b, x), and

suppose that f1, f2 ∈ C1, g := (g1, . . . , gs) ∈ C2 around the corresponding points with full rank of

the Jacobian matrix ∇g(x− u). Let λ := (λ1, . . . , λs) ∈ Rs be a unique vector with nonnegative

components satisfying the equation

−∇g(x− u)∗λ = w − f1(a, x)− y − hf2(b, x). (4.68)

Then the coderivative of Fh is calculated by the formula

D∗Fh(x, y, u, a, b, w)(z)

=
{
∇xf1(a, x)∗z + h∇xf2(b, x)∗z −

( s∑
i=1

λi∇2
xgi(x− u)

)
z −∇xg(x− u)∗σ,

( s∑
i=1

λi∇2
ugi(y − u)

)
z +∇ug(y − u)∗σ,∇af1(a, x)∗z, h∇bf2(b, x)∗z

} (4.69)

for all z ∈ domD∗NC(x − u,w − f1(a, x) − y − hf2(b, x)), where the coderivative domain is

represented as

domD∗NC(x− u,w − f1(a, x)− y − hf2(b, x))

=
{
z ∈ Rn

∣∣ ∃λ ∈ Rs
+ such that −∇g(x− u)λ = w − f1(a, x)− y − hf2(b, x),

λi〈∇ gi(x− u), z〉 = 0 for all i = 1, . . . , s
}
,

(4.70)

and where we have in (4.69) that σi = 0 if either gi(x− u) > 0 or λi = 0 with

〈∇ gi(x− u), z〉 > 0, and that σi ≥ 0 if gi(x− u) = 0, λi = 0 with 〈∇ gi(x− u), z〉 < 0.

Proof. It follows the lines in the proof of [22, Theorem 6.2] but applying now to the different

form of the velocity mapping (4.67) employed in this paper. We skip the details for brevity

while mentioning that the coderivative sum and chain rules taken from [49, Theorems 1.62

and 1.66] allow us to derive the claimed equalities in (4.69) and (4.70) to the second-order

calculations developed in [80, Theorem 3.3]. �

4.6 Necessary optimality conditions for discrete prob-

lems

In this section we obtain necessary optimality conditions for (global) optimal solutions to the

discrete approximation problems (Pk) constructed in Section 4.4 for each k ∈ IN . Due to the
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W 1,2-strong convergence result established in Theorem 4.4.1, the obtained optimality conditions

for problems (Pk) with sufficiently large approximation indices k can be viewed as necessary

suboptimality conditions for the original continuous-time optimal control problem (P ) with

the integro-differential sweeping dynamics (4.2). In practice, such conditions for (Pk) provide

sufficient information for designing numerical algorithms to solve the original problem (P ).

Nevertheless, in Section 4.7 we furnish the rigorous procedure to derive precise necessary op-

timality conditions for relaxed intermediate local minimizers in (P ) by passing to the limit as

k →∞ from the necessary optimality conditions for (Pk) obtained below.

In what follows we present two sets of necessary optimality conditions in problems

(Pk) for each fixed k ∈ IN . The first theorem concerns a class of more general problems given

in form (Pk) with an arbitrary closed-graph velocity mapping Fh. The obtained results can

be treated as extended discrete-time Euler-Lagrange conditions for discrete approximations of

integro-differential sweeping control problems with the adjoint systems described via the basic

normal cone (4.63) to graphs of velocity mappings.

Theorem 4.6.1 (extended Euler-Lagrange conditions for discrete optimal solutions).

Fix k ∈ IN to be sufficiently large and pick any optimal solution

z̄k := (x0, . . . , x̄
k
k, y0, . . . , ȳ

k
k , ū

k
0, . . . , ū

k
k, a0, . . . , ā

k
k, b0, . . . , b̄

k
k) to problem (Pk) governed by an

arbitrary closed-graph multifunction in (4.52), while not taken from (4.53). Suppose that the

cost functions ϕ and l0 from (4.1) are locally Lipschitzian around the corresponding components

of the optimal solution for all t ∈ ∆k (with the index t dropped below), and that the mappings

f1, f2, gi are continuously differentiable around the optimal points. For j = 0, . . . , k − 1 denote

by

θxkj :=

tkj+1∫
tkj

( x̄kj+1 − x̄kj
hk

− ˙̄x(t)
)
dt, θukj :=

tkj+1∫
tkj

( ūkj+1 − ūkj
hk

− ˙̄u(t)
)
dt,

θykj :=

tkj+1∫
tkj

( ȳkj+1 − ȳkj
hk

− ˙̄y(t)
)
dt,

(4.71)

θakj :=

tkj+1∫
tkj

(ākj − ā(t)) dt, θbkj :=

tkj+1∫
tkj

(b̄kj − b̄(t)) dt. (4.72)

Then there are λk ≥ 0, αk = (αk1, . . . , α
k
s) ∈ Rs

+, pkj = (pxkj , p
yk
j , p

dk
j , p

uk
j ) ∈ R4n,

ψkj = (ψakj , ψ
bk
j ), j = 0, . . . , k,

(wxkj , w
uk
j , w

ak
j , w

bk
j , v

xk
j , v

uk
j ) ∈ ∂l0

(
x̄kj , ū

k
j , ā

k
j , b̄

k
j ,
x̄kj+1 − x̄kj

hk
,
ūkj+1 − ūkj

hk

)
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such that the following conditions are satisfied:

λk + ‖αk‖+
k−1∑
j=0

‖pkxj ‖+
k∑
j=0

‖pkdj ‖+ ‖pky0 ‖+ ‖pku0 ‖+
k−1∑
j=0

‖ψkj ‖ 6= 0, (4.73)

αki gi(x̄
k
k − ūkk) = 0, i = 1, . . . , s, (4.74)

−pxk ∈ λk∂ϕ(x̄kk)−
s∑
i=1

αki∇xgi(x̄
k − ūk), −pukk =

s∑
i=1

αki∇gi(x̄kk − ūkk), (4.75)

pykk = 0, (4.76)

pyj+1 = λkh−1
k θyj + h−1

k pdj+1, puj+1 = λk(vuj + h−1
k θuj ), j = 0, . . . , k − 1, (4.77)

Furthermore, for all j = 0, . . . , k − 1 we have the extended discrete-time Euler-Lagrange inclu-

sions:(pxj+1 − pxj
hk

− λkwxj + h−1
k ξxj p

d
j+1,

pyj+1 − p
y
j

hk
−
pdj+1

hk
,
puj+1 − puj

hk
− λkwuj ,−

1

hk
λkθaj − λkwaj ,

− 1

hk
λkθbj − λkwbj + ξbj

pdj+1

hk
, pxj+1 − λk(vxj + h−1

k θxj )
)

∈ (0, 0, 0,
1

hk
ψkaj ,

1

hk
ψkbj ) +NgphFh

(
x̄kj , ȳ

k
j , ū

k
j , ā

k
j , b̄

k
j ,
x̄kj+1 − x̄kj
−hk

)
,

(4.78)

ψakj ∈ NA(ākj ) and ψbkj ∈ NB(b̄kj ), (4.79)

where the vectors ξxj and ξbj are defined by

ξxj := ∇xf2(b̄kj , x̄
k
j ) and ξbj := ∇bf2(b̄kj , x̄

k
j ), j = 0, . . . , k − 1. (4.80)

Proof. Denote z := (x0, . . . , x
k, y0, . . . , y

k, u0, . . . , u
k, a0, . . . , a

k, b0, . . . , b
k, Xk

0 , . . . , X
k
k−1,

Y0, Y1, . . . , Y
k, U0, . . . , Uk−1), where x0 is fixed, and consider the problem of mathematical pro-

gramming (MP): minimize

ϕ0(z) := ϕ(xkk) + hk

k−1∑
j=0

l(xj, yj, uj, aj, bj, Xj, Yj, Uj)

+
1

2

k−1∑
j=0

tj+1∫
tj

‖(Xj, Yj, Uj, a
k
j , b

k
j )− ( ˙̄x(t), ˙̄y(t), ˙̄u(t), ā(t), b̄(t))‖2 dt

subject to the equality, inequality, and many geometric constraints of the graphical type defined

by

exj (z) := xj+1 − xj − hkXj = 0, eyj (z) := yj+1 − yj − hkYj = 0, j = 0, . . . , k − 1,

euj (z) := uj+1 − uj − hkUj = 0, dj(z) := Yj − f2(bj, xj) = 0, j = 0, . . . , k − 1,
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ci(z) := −gi(xk − uk) ≤ 0, i = 1, . . . , s,

φj(z) := ‖(xj, yj, uj, aj, bj)− z̄(tj)‖ −
ε

2
≤ 0, j = 0, . . . , k − 1,

φk(z) :=
k−1∑
j=0

tj+1∫
tj

‖(Xj, Yj, Uj, a
k
j , b

k
j )− ( ˙̄x(t), ˙̄y(t), ˙̄u(t), ā(t), b̄(t))‖2 dt− ε

2
≤ 0,

z ∈ Ξj :=
{
z
∣∣ −Xj ∈ Fh(xj, yj, uj, aj, bj)

}
, j = 0, . . . , k − 1, (4.81)

z ∈ Ξk =
{
z
∣∣ x0 is fixed , y0 = 0, (u0, a0, b0) = (ū(0), ā(0), b̄(0))

}
. (4.82)

z ∈ Ωa
j :=

{
z
∣∣ akj ∈ A}, j = 0, . . . , k − 1, (4.83)

z ∈ Ωb
j :=

{
z
∣∣ bkj ∈ B}, j = 0, . . . , k − 1, (4.84)

Applying now the necessary optimality conditions from Proposition 1.6.1 together with the

intersection rule for basic normals taken from [52, Corollary 2.17] to the chosen solution z̄k of

problem (MP ), observe first that the inequality constraints in (MP ) defined by the functions

φj for j = 0, . . . , k are inactive for sufficiently large k ∈ IN due to the W 1,2 × L2-strong

convergence z̄k(·) → z̄(·) established above in Theorem 4.4.1. All of this allows us to find

λk ≥ 0, αk = (αk1, . . . , α
k
s) ∈ Rs

+, pj = (pxj , p
y
j , p

u
j , p

d
j ) ∈ R4n as j = 1, . . . , k, and

z∗j =
(
x∗0j, . . . , x

∗
kj, y

∗
0j, . . . , y

∗
kj, u

∗
0j, . . . , u

∗
kj, a

∗
0j, . . . , a

∗
kj, b

∗
0j, . . . , b

∗
kj, X

∗
0j, . . . , X

∗
(k−1)j,

Y ∗0j, . . . , Y
∗

(k−1)j, U
∗
0j, . . . , U

∗
(k−1)j

)
, j = 0, . . . , k − 1,

which are not zero simultaneously, such that the following conditions are satisfied:

z∗j ∈ N(z̄k,Ξj ∩Θj), where Θj := Ωa
j ∩ Ωb

j j = 0, . . . , k − 1, (4.85)

αki ci(z̄
k) = 0, i = 1, . . . , s, (4.86)

−
k∑
j=0

z∗j ∈ λk∂ϕ0(z̄k) +
s∑
i=1

αki∇ci(z̄k) +∇e(z̄k)∗p, (4.87)

where e(z) := (ex0(z), . . . , exk−1(z), ey0(z), . . . , eyk−1(z), eu0(z), . . . , euk−1(z), d0(z), . . . , dk−1(z))

∈ R4kn and p = (p1, . . . , pk) ∈ R4kn. The intersection rule from [52, Theorem 2.16] tells us that

N(z̄k,Ξj ∩Θj) ⊂ N(z̄k,Ξj) +N(z̄k,Θj) if N(z̄k,Ξj) ∩ (−N(z̄k,Θj)) = {0}. (4.88)

We have to check the fulfillment of the qualification condition in (4.88). To proceed, pick any

z̃∗j ∈ N(z̄k,Ξj) ∩ (−N(z̄k,Θj)) and observe by (4.81) that its diagonal components satisfy

(
x̃∗jj, ũ

∗
jj, ã

∗
jj, b̃

∗
jj,−X̃∗jj, Ũ∗jj

)
∈ NgphFh

(
x̄j, ȳj, ūj, āj, b̄j,

x̄j+1 − x̄j
−hk

)
× {0}, (4.89)

−
(
x̃∗jj, ũ

∗
jj, X̃

∗
jj, Ũ

∗
jj, ã

∗
jj, b̃

∗
jj

)
∈ {0} × {0} × {0} × {0} ×N

(
āj, b̄j, A×B

)
, (4.90)
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for all j = 0, ..., k− 1 with its other components equal zero. We get from (4.89) and (4.90) that

x̃∗jj = 0, ũ∗jj = 0, X̃∗jj = 0, Ũ∗jj = 0. Substituting this into (4.89) and using the coderivative

definition (4.64) give us

(0, 0, ã∗jj, b̃
∗
jj) ∈ D∗ Fh

(
x̄j, ȳj, ūj, āj, b̄j,

x̄j+1 − x̄j
−hk

)
(0), j = 0, ..., k − 1, (4.91)

Then we deduce directly from the coderivative estimate (4.69) for the velocity mapping Fh in

(4.67) under the imposed PLICQ that ã∗jj = 0 and b̃∗jj = 0 for all j = 0, ..., k − 1. It shows

that z̃∗j = 0 for such indices j, and therefore the qualification condition (4.88) is verified. This

allows us to use the intersection formula in (4.88) and then, applying it to (4.85) with taking

into account the structures of the sets Ωa
j and Ωb

j from (4.83) and (4.84), respectively, arrive at

the inclusions

z∗j ∈ N(z̄k,Ξj) +
[
N(z̄k,Ωa

j ) +N(z̄k,Ωb
j)
]
, j = 0, . . . , k − 1. (4.92)

Furthermore, by the structures of the sets in (4.81)–(4.84), we find ψakj and ψbkj satisfying the

normal cone inclusions in (4.79) and such that the obtained inclusions in (4.92) are equivalent

to (
x∗jj, y

∗
jj, u

∗
jj, a

∗
jj − ψakj , b∗jj − ψbkj ,−X∗jj

)
∈ NgphFh

(
x̄j, ȳj, ūj, āj, b̄j,

x̄j+1 − x̄j
−hk

)
, (4.93)

j = 0, . . . , k − 1, while the other components of z∗j are zero. Similarly we have that the

vectors (x∗0k, y
∗
0k, u

∗
0k, a

∗
0k, b

∗
0k) determined by the normal cone to Ξk might be the only nonzero

components of z∗k. This gives us the representation

−
k∑
j=0

z∗j =(−x∗00 − x∗0k,−x∗11, . . . ,−x∗(k−1)(k−1), 0,−y∗00 − y∗0k,−y∗11, . . . ,−y∗(k−1)(k−1), 0,

− u∗00 − u∗0k,−u∗11, . . . ,−u∗(k−1)(k−1), 0,−a∗00 − a∗0k,−a∗11, . . . ,−a∗(k−1)(k−1), 0,

− b∗00 − b∗0k,−b∗11, . . . ,−b∗(k−1)(k−1), 0,−X∗00, . . . ,−X∗(k−1)(k−1), 0, . . . , 0).

For the other terms in (4.87) we get

s∑
i=1

αki∇ci(z̄k)

= (0, . . . ,−
d∑
i=1

αi∇xgi(x̄
k − ūk), 0, . . . , 0, 0, . . . ,

d∑
i=1

αi∇ugi(x̄
k − ūkk), 0, . . . , 0, 0 . . . , 0),

∇e(z̄k)∗p =
(
− px1 − ξx0pd1, px1 − px2 − ξx1pd2, . . . , pxk−1 − pxk − ξxk−1p

d
k, p

x
k,

− py1, p
y
1 − p

y
2, . . . , p

y
k−1 − p

y
k, p

y
k,−p

u
1 , p

u
1 − pu2 , . . . , puk−1 − puk , puk ,

− ξb0pd1,−ξb1pd2, . . . ,−ξbk−1p
d
k, 0,−hkpx1 , . . . ,−hkpxk,−hkp

y
1 + pd1, . . . ,−hkp

y
k + pdk,

− hkpu1 , . . . ,−hkpuk
)
.
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Using the summation structure of the function ϕ0 and applying there the subdifferential sum

rule from [52, Theorem 2.19] lead us the subdifferential inclusion

∂ϕ0(z̄k) ⊂ ∂ϕ(x̄kk) + hk

k−1∑
j=0

∂l
(
x̄j, ȳj, ūj, āj, b̄j, X̄j, Ȳj, Ūj

)
+

k−1∑
j=0

∇ρj(z̄k),

where ρj(y) :=
1

2

tj+1∫
tj

‖(Xj, Yj, Uj, a
k
j , b

k
j )− ( ˙̄x(t), ˙̄y(t), ˙̄u(t), ā(t), b̄(t))‖2 dt. It is easy to see that

∇ρj(z̄k) = (0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, θaj , 0 . . . , 0, 0, . . . , 0, θ
b
j , 0 . . . , 0, 0,

θxj , 0, . . . , 0, 0 . . . , 0, θ
y
j , 0, . . . , 0, 0, . . . , 0, θ

u
j , 0, . . . , 0),

∂l(x̄j, ȳj, ūj, āj, b̄j, X̄j, Ȳj, Ūj)

= (0, . . . , 0, wxj , 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, w
u
j , 0, . . . , 0, 0, . . . , 0, w

a
j , 0, . . . , 0, 0, . . . ,

0, wbj , 0, . . . , 0, 0, . . . , 0, v
x
j , 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, v

u
j , 0, . . . , 0).

Since ∂ϕ(x̄kk) can be written in the form (0, . . . , 0, υk, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0, 0, . . . , 0), we

arrive at the representation of the term λk∂ϕ0(z̄k) in (4.87) as

λk(hkw
x
0 , . . . , hkw

x
k−1, υ

k, 0, . . . , 0, hkw
u
0 , . . . , hkw

u
k−1, 0, θ

a
0 + hkw

a
0 , . . . , θ

a
k−1 + hkw

a
k−1, 0,

θb0 + hkw
b
0, . . . , θ

b
k−1 + hkw

b
k−1, 0, θ

x
0 + hkv

x
0 , . . . , θ

x
k−1 + hkv

x
k−1, θ

y
0 , . . . , θ

y
k−1,

θu0 + hkv
u
0 , . . . , θ

u
k−1 + hkv

u
k−1).

Combining all the above decomposes the inclusion in (4.87) into the following equalities:

−x∗00 − x∗0k = λkhkw
x
0 − px1 − ξx0pd1,

−x∗jj = λkhkw
x
j + pxj − pxj+1 − ξxj pdj+1, j = 1, . . . , k − 1, (4.94)

0 = λvk −
s∑
i=1

αki∇xgi(x̄
k − ūk) + pxk, (4.95)

−y∗00 = −py1 + pd1, −y∗jj = pyj − p
y
j+1 + pdj+1, j = 1, . . . , k − 1, pyk = 0, (4.96)

−u∗00 − u∗0k = λkhkw
u
0 − pu1 , (4.97)

−u∗jj = λkhkw
u
j + puj − puj+1, j = 1, . . . , k − 1, (4.98)

0 =
s∑
i=1

αki∇ugi(x̄
k − ūk) + puk , (4.99)

−a∗00 = λkθa0 + λkhkw
a
0 , (4.100)

−a∗jj = λkθaj + λkhkw
a
j , j = 1, . . . , k − 1, (4.101)

−b∗00 = λkθb0 + λkhkw
b
0 − ξbjpd1,
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−b∗jj = λkθbj + λkhkw
b
j − ξbjpdj+1, j = 1, . . . , k − 1, 0 = pbk, (4.102)

−X∗jj = λk(hkv
x
j + θxj )− hkpxj+1, j = 0, . . . , k − 1, (4.103)

0 = λkθyj − hkp
y
j+1 + pdj+1, j = 0, . . . , k − 1, (4.104)

0 = λk(hkv
u
j + θuj )− hkpuj+1, j = 0, . . . , k − 1, (4.105)

We deduce from (4.94), (4.96), (4.98), (4.101), (4.102), and (4.103) that(pxj+1 − pxj
hk

− λkwxj + h−1
k ξxj p

d
j+1,

pyj+1 − p
y
j

hk
−
pdj+1

hk
,
puj+1 − puj

hk
− λkwuj ,−

1

hk
λkθaj − λkwaj ,

− 1

hk
λkθbj − λkwbj + ξbj

pdj+1

hk
, pxj+1 − λk(vxj + h−1

k θxj )
)

= h−1
k (x∗jj, y

∗
jj, u

k∗
jj , a

∗
jj, b

∗
jj,−X∗jj).

Then the conditions in (4.78) follow from (4.93), and the conditions in (4.74), (4.75),(4.76)

(4.77) follow from (4.86), (4.95),(4.96), (4.99), (4.104), (4.105) respectively.

To verify finally the nontriviality condition (4.73) of the theorem, denote

p0 := (x∗0k, y
∗
0k, u

∗
0k, a

∗
0k, b

∗
0k) and suppose by contraposition that λk = 0, αk = 0, py0 = 0, pu0 = 0,

pa0 = 0, pb0 = 0, pxj = 0, ψkj = 0 for j = 0, . . . , k − 1, and pdj = 0 for j = 0, . . . , k. Then we get

the implications

(4.95) =⇒ pxk = 0, i.e., pxj = 0, j = 0, . . . , k,

(4.94) =⇒ x∗jj = 0 and (4.103) =⇒ X∗jj = 0, j = 0, . . . , k − 1,

(4.105), (4.104) =⇒ puj = 0, paj = 0, pbj = 0, pyj = 0, j = 0, . . . , k,

(4.96), (4.98), (4.101), (4.102) =⇒ y∗jj = 0, u∗jj = 0, a∗jj = 0, b∗jj = 0, j = 0, . . . , k − 1.

We know that all the components of z∗j , which different from (x∗jj, y
∗
jj, u

∗
jj, a

∗
jj, b

∗
jj, X

∗
jj), are zero

for j = 0, . . . , k − 1. Hence z∗j = 0 for j = 0, . . . , k − 1. Conclude similarly that z∗k = 0 due to

(x∗0k, y
∗
0k, u

∗
0k, a

∗
0k, b

∗
0k) = (px0 , p

y
0, p

u
0 , p

a
0, p

b
0, p

d
0) = (0, 0, 0, 0, 0, 0),

and thus z∗j = 0 for all j = 0, . . . , k. This contradicts the nontriviality condition in the

mathematical program (MP), and therefore verifies the claimed nontriviality (4.73), which

completes the proof of the theorem. �

The next theorem is the main result of this section. It provides necessary optimality

conditions for problems (Pk) as formulated in Section 4.3 expressed entirely in terms of the

given data. We derive this result by combining necessary optimal conditions of Theorem 4.6.1

with the coderivative calculations of Theorem 4.5.1 addressing the specific form of the velocity

mapping Fh in (Pk). In this way we obtain a novel discrete-time Volterra condition as a part of

primal-dual dynamic relationships for discrete approximations of controlled integro-differential

sweeping processes.
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Theorem 4.6.2 (necessary conditions for discretized integro-differential sweeping control sys-

tems). Let z̄k = (x̄k, ȳk, ūk, āk, b̄k) be an optimal solution to the discrete-time problem (Pk),

where k ∈ IN is sufficiently large. In addition to the assumptions of Theorem 4.6.1, sup-

pose that the functions gi, i = 1, . . . , s, are twice continuously differentiable around x̄kj − ūkj ,

j = 0, . . . , k − 1, with the Jacobian matrix of full rank therein. Then there exist dual elements

(λk, pk) as in Theorem 4.6.1 together with vectors ηkj ∈ Rs
+ as j = 0, . . . , k and σkj ∈ Rs as

j = 0, . . . , k − 1 satisfying following conditions:

Primal-Dual Dynamic Relationships: for all j = 0, . . . , k − 1 we have

x̄kj+1 − x̄kj
hk

+ f1(ākj , x̄
k
j ) + ȳkj + hkf2(b̄kj , x̄

k
j ) =

∑
i∈I(x̄kj−ūkj )

ηkji∇gi(x̄kj − ūkj ), (4.106)

pxj+1 − pxj
hk

− λkwxj + h−1
k ξxj p

d
j+1 = ∇xf1(ākj , x̄

k
j )
∗(λk(vxj + h−1

k θxj )− pxj+1)

+hk∇xf2(b̄kj , x̄
k
j )
∗(λk(vxj + h−1

k θxj )− pxj+1)

−
( d∑
i=1

ηkji∇2gi(x̄
k
j − ūkj )

)
(λk(vxj + h−1

k θxj )− pxj+1)

−
d∑
i=1

σkji∇gi(x̄kj − ūkj )), where ξxj := ∇xf2(b̄kj , x̄
k
j ),

(4.107)

pyj+1 − p
y
j

hk
−
pdj+1

hk
= (λk(vxj + h−1

k θxj )− pxj+1), (4.108)

puj+1 − puj
hk

− λkwuj =
( d∑
i=1

ηkji∇2gi(x̄
k
j − ūkj )

)
(λk(vxj + h−1

k θxj )− pxj+1) +
d∑
i=1

σkji∇gi(x̄kj − ūkj )),

(4.109)

− 1

hk
λkθaj − λkwaj −

1

hk
ψakj = ∇af1(ākj , x̄

k
j )
∗(λk(vxj + h−1

k θxj )− pxj+1), (4.110)

− 1

hk
λkθbj − λkwbj + h−1

k ξbjp
d
j+1 −

1

hk
ψbkj = hk∇bf2(b̄kj , x̄

k
j )
∗(λk(vxj + h−1

k θxj )− pxj+1),

where ξbj := ∇bf2(b̄kj , x̄
k
j ),

(4.111)

ψakj ∈ NA(ākj ) and ψbkj ∈ NB(b̄kj ). (4.112)

Transversality Conditions:

−pxk ∈ λk∂ϕ(x̄kk)−
s∑
i=1

ηkki∇xgi(x̄
k − ūk), (4.113)

−pukk =
s∑
i=1

ηkki∇ugi(x̄
k
k − ūkk), p

yk
k = 0. (4.114)
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Complementary Slackness: for all j = 0, . . . , k−1 and i = 1, . . . , s we have the implications

gi(x̄
k
j − ūkj ) > 0 =⇒ ηkji = 0, (4.115)[

gi(x̄
k
j − ūkj ) > 0, or ηkji = 0 and 〈∇ gi(x̄kj − ūkj ), λk(vxj + h−1

k θxj )− pxj+1〉 > 0
]

=⇒ σkji = 0,

(4.116)[
gi(x̄

k
j − ūkj ) = 0, ηkji = 0, 〈∇ gi(x̄kj − ūkj ), λk(vxj + h−1

k θxj )− pxj+1〉 < 0
]

=⇒ σkji ≥ 0, (4.117)

gi(x̄
k
k − ūkk) > 0 =⇒ ηkki = 0, (4.118)

ηkji > 0 =⇒ 〈∇ gi(x̄kj − ūkj ), λk(vxj + h−1
k θxj )− pxj+1〉 = 0. (4.119)

Nontriviality Condition: with ψk = (ψak, ψbk) we have

λk +
k∑
j=0

‖pkdj ‖+ ‖pku0 ‖+
k−1∑
j=0

‖ψkj ‖ 6= 0, (4.120)

Proof. Using the coderivative construction (4.64), for all j = 0, . . . , k−1 we rewrite the discrete

Euler-Lagrange inclusions (4.78) of Theorem 4.6.1 in the form(pxj+1 − pxj
hk

− λkwxj + h−1
k ξxj p

d
j+1,

pyj+1 − p
y
j

hk
−
pdj+1

hk
,
puj+1 − puj

hk
− λkwuj ,

− 1

hk
λkθaj − λkwaj −

1

hk
ψkaj ,−

1

hk
λkθbj − λkwbj + h−1

k ξbjp
d
j+1 −

1

hk
ψkbj , p

x
j+1 − λk(vxj + h−1

k θxj )
)

∈ D∗Fh
(
x̄kj , ȳ

k
j , ū

k
j , ā

k
j , b̄

k
j ,
x̄kj+1 − x̄kj
−hk

)
(λk(vxj + h−1

k θxj )− pxj+1).

(4.121)

It follows from the discrete dynamics (4.52), representation (4.20) of the velocity mapping, and

the structure of the moving set in (4.3) that there exist vectors ηkj ∈ Rm
+ as j = 0, . . . , k − 1

such that the conditions in (4.106) and (4.115) are satisfied. Employing further the coderivative

calculation in (4.69) and (4.70) of Theorem 4.5.1 with x := x̄kj , y := ȳkj , u := ūkj , a := ākj , b := b̄kj ,

w :=
x̄kj+1 − x̄kj
−hk

, and z = (λk(vxj + h−1
k θxj ) − pxj+1) allows us to find σkj , j = 0, . . . , k − 1, for

which conditions (4.107), (4.108), (4.109), (4.110), (4.111), (4.116), and (4.117) hold. Define

ηkk := αk and observe that ηkj ∈ Rm
+ for all j = 0, . . . , k. In this way we deduce the transversality

conditions (4.113) and (4.114) from (4.75) and (4.76), while (4.118) follows from (4.86) and the

definition of ηkk . Note also that (4.119) follows directly from (4.70).

It remains to verify the fulfillment of the nontriviality condition (4.120). To this end,

deduce first from (4.73) and the constructions above that

λk + ‖ηkk‖+
k−1∑
j=0

‖pkxj ‖+
k∑
j=0

‖pkdj ‖+ ‖pky0 ‖+ ‖pku0 ‖+
k−1∑
j=0

‖ψkj ‖ 6= 0. (4.122)

Assume now that (4.87) is violated, i.e., λk = 0, pkdj = 0 for all j = 0, . . . , k, ψkj = 0 for all

j = 0, . . . , k − 1, and pku0 = 0. Then it follows from (4.77) that pukj = 0 for all j = 0, . . . , k
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and pykj = 0 for all j = 1, . . . , k. Furthermore, (4.75) yields
s∑
i=1

ηkki∇ugi(x̄
k
k − ūkk) = 0, and hence

pxkk = 0. Employing (4.109) tells us that

( d∑
i=1

ηkji∇2
ugi(x̄

k
j − ūkj )

)
(λk(vxj + h−1

k θxj )− pxj+1) +
d∑
i=1

σkji∇ugi(x̄
k
j − ūkj )) = 0, j = 0, . . . , k− 1.

Combining the latter with (4.107) and pxkk = 0 ensures that pxkj = 0 whenever j = 0, . . . , k− 1.

To complete the proof of the theorem, we deduce from (4.108) that pyk0 = 0. This contradicts

the fulfillment of (4.122) and hence verifies the nontriviality condition (4.120). �

We conclude this section with presenting maximization conditions for optimal solutions

that are direct consequences of the normal cone inclusions for adjoint functions under certain

additional assumptions.

Corollary 4.6.1 (discrete maximization conditions). In addition to the assumptions of Theo-

rem 4.6.2, suppose that the normal cones NA(ākj ) and NB(b̄kj ) in (4.112) are tangentially gen-

erated, i.e., they are dual/polar to some tangent sets as NA(ākj ) = TA(ākj )
∗ and NB(b̄kj , B) =

TB(b̄kj )
∗ for all j = 0, . . . , k− 1. Then for such indices j the following maximization conditions

are satisfied:

Local Maximization Conditions:

〈ψkaj , ākj 〉 = max
v∈TA(ākj )

〈ψkaj , v〉, 〈ψkbj , b̄kj 〉 = max
v∈TB(b̄kj )

〈ψkbj , v〉. (4.123)

Moreover, the convexity of A and B ensures the fulfillment of the Global Maximization

Conditions:

〈ψkaj , ākj 〉 = max
v∈A
〈ψkaj , v〉, 〈ψkbj , b̄kj 〉 = max

v∈B
〈ψkbj , v〉. (4.124)

Proof. The local maximization conditions in (4.124) follow from (4.112) due to the assumed

normal-tangent duality. The convexity of the sets A and B yields the global maximization in

(4.123), since the limiting normal cone (4.63) reduces to the classical normal cone of convex

analysis. �

4.7 Necessary conditions for integro-differential processes

This section establishes the main result of the paper providing—for the first time in the

literature—efficient necessary optimality conditions, expressed entirely via the given data, for

local minimizers (in the sense of Definition 4.2.1 (ii)), of the original optimal control problem

(P ) governed by the sweeping integro-differential inclusions (4.2) with the pointwise mixed
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state-control constraints (4.4). The derivation of these conditions presented below is based on

the results obtained in the previous sections as well as on the appropriate properties of the

generalized differential constructions of variational analysis reviewed in Section 4.5 that allow

us furnishing the passage to the limit as k → ∞ from the necessary optimality conditions for

discrete approximations. For simplicity, we suppose below that the running cost in (4.6) does

not depend on t.

Theorem 4.7.1 (optimality conditions for integro-differential sweeping processes).

Consider a relaxed intermediate local minimizer z̄(·) = (x̄(·), ȳ(·), ū(·), ā(·), b̄(·)) of problem (P )

and suppose in addition to the assumptions of Theorem 4.6.2 that the running cost in (4.6) is

represented as

l0(x̄, ū, ā, b̄, ˙̄x, ˙̄u) = l1(x̄, ū, ā, b̄, ẋ) + l2(u̇), (4.125)

where l2 is differentiable on Rn with the estimates

‖∇u̇l2(u̇)‖ ≤ L‖u̇‖ and ‖∇u̇l2(u̇1)−∇u̇l2(u̇2)‖ ≤ L‖u̇1 − u̇2‖.

Then there exist a multiplier λ ≥ 0 and functions p(·) = (px(·), py(·), pu(·)) ∈ W 1,2([0, T ],R3n),

w(·) = (wx(·), 0, wu(·), wa(·), wb(·)) ∈ L2([0, T ],R3n+m+d), and

v(·) = (vx(·), 0, vu(·)) ∈ L2([0, T ],R3n) satisfying the subdifferential inclusion

(w(t), v(t)) ∈ co ∂l(x̄(t), ȳ(t), ū(t), ā(t), b̄(t), ˙̄x(t), ˙̄y(t), ˙̄u(t)) a.e. t ∈ [0, T ], (4.126)

as well as measure γ = (γ1, . . . , γn) ∈ C([0, T ],Rn)∗ for which the following conditions hold:

Primal-Dual Dynamic Relationships:

˙̄x(t) + f1(ā(t), x̄(t)) + ȳ(t) =
s∑
i=1

ηi(t)∇gi(x̄(t)− ū(t)) a.e. t ∈ [0, T ]; (4.127)

gi(x̄(t)− ū(t)) > 0 =⇒ ηi(t) = 0 a.e. t ∈ [0, T ]; (4.128)

ηi(t) > 0 =⇒ 〈∇ gi(x̄(t)− ū(t)), λvx(t)− qx(t)〉 = 0 a.e. t ∈ [0, T ], (4.129)

where the functions ηi(·) ∈ L2([0, T ],R+) are uniquely determined by representation (4.127) for

a.e. t ∈ [0, T ] while being well-defined at t = T ;

ṗ(t) = λ(wx(·), 0, wu(·)) +
(
∇xf1(ā(t), x̄(t))∗(λvx(t)− qx(t)), λvx(t)− qx(t), 0

)
, (4.130)

qu(t) = λ∇u̇l2( ˙̄u(t)), (4.131)

where q(·) = (qx(·), qy(·), qu(·)) : [0, T ]→ R3n is of bounded variation on [0, T ], with qy(·) being

absolutely continuous on [0, T ], such that left-continuous representative of q(·) satisfies, for all

t ∈ [0, T ] except at most a countable subset, the integral equation

q(t) = p(t)−
∫

[t,T ]

(
− dγ(s)−∇xf2(b̄(s), x̄(s))qy(s) ds, qy(s) ds, dγ(s)

)
. (4.132)
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Extended Volterra Condition:

q̇y(t) = λvx(t)−px(t)−
∫

[t,T ]

dγ(s)−
∫

[t,T ]

∇xf2(b̄(s), x̄(s))qy(s) ds+qy(t) a.e. t ∈ [0, T ]. (4.133)

The Normal Cone Adjoint Inclusions For Control Components: for a.e. t ∈ [0, T ]

we have
ψa(t) = −λwa(t)−∇af1(ā(t), x̄(t))∗(λvx(t)− qx(t)) ∈ coNA(ā(t)),

ψb(t) = −λwb(t) +∇bf2(b̄(s), x̄(s))qy(s) ∈ coNB(b̄(t)).

(4.134)

Local Maximization Conditions: assuming that the normal cones in (4.134) are tan-

gentially generated, i.e., they are dual/polar to some tangent sets NA(ā(t)) = TA(ā(t))∗ and

NB(b̄(t)) = TB(b̄(t))∗, yields

〈ψa(t), ā(t)〉 = max
v∈TA(ā(t))

〈ψa(t), v〉, 〈ψb(t), b̄(t)〉 = max
v∈TB(b̄(t))

〈ψb(t), v〉. (4.135)

If furthermore the sets A and B are convex, then we have the

Global Maximization Conditions :

〈ψa(t), ā(t)〉 = max
v∈A
〈ψa(t), v〉, 〈ψb(t), b̄(t)〉 = max

v∈B
〈ψb(t), v〉. (4.136)

Right Endpoint Conditions:

−px(T ) +
∑

i∈I(x̄(T )−ū(T ))

ηi(T )∇gi(x̄(T )− ū(T )) ∈ λ∂ϕ(x̄(T )), py(T ) = 0, (4.137)

−pu(T ) =
∑

i∈I(x̄(T )−ū(T ))

ηi(T )∇gi(x̄(T )− ū(T )), pa(T ) = 0, pb(T ) = 0, (4.138)

−
∑

i∈I(x̄(T )−ū(T ))

ηi(T )∇gi(x̄(T )− ū(T )) ∈ NC(x̄(T )− ū(T )). (4.139)

General Nontriviality Condition:

λ+ ‖qu(0)‖+ ‖p(T )‖+

T∫
0

‖qy(t)‖ dt > 0. (4.140)

Furthermore, the following implications hold while ensuring the Enhanced nontriviality:

[
gi(x0 − ū(0)) > 0, i = 1, . . . , s

]
=⇒

[
λ+ ‖p(T )‖+

T∫
0

‖qy(t)‖dt > 0
]
, (4.141)

[
gi(x̄(T )− ū(T )) > 0, i = 1, . . . , s

]
=⇒

[
λ+ ‖qu(0)‖+

T∫
0

‖qy(t)‖dt > 0
]
. (4.142)
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Proof. We proceed by passing to the limit as k → ∞ in the necessary optimality conditions

for discrete approximation problems obtained in Theorem 4.6.2 with taking into account the

strong convergence of discrete optimal solutions established in Theorem 4.4.1. Since some

arguments in this procedure are rather similar to those used in [22, Theorem 8.1] and [20,

Theorem 4.1] in a more special setting, we skip them for brevity while focusing on signifi-

cantly new developments. Note, in particular, that the existence of the subgradient functions

(wx(·), 0, wu(·), wa(·), wb(·), vx(·), 0, vu(·)) satisfying (4.126) can be checked as in [22].

Invoking now the vectors ηkj ∈ Rm
+ from Theorem 4.6.2, define the piecewise constant

functions ηk(·) on [0, T ] by ηk(t) := ηkj as t ∈ [tkj , t
k
j+1) with ηk(T ) := ηkk and deduce from

(4.106) for each k ∈ IN we have

˙̄xk(t) + f1

(
āk(t), x̄k(t)

)
+ ȳk(t) + hkf2

(
b̄k(t), x̄k(t)

)
=

s∑
i=1

ηki (t)∇gi
(
x̄k(t)− ūk(t)

)
, (4.143)

if t ∈ (tkj , t
k
j+1). The feasibility of z̄(·) in (P ) tells us that − ˙̄x(t) ∈ NC(x̄(t) − ū(t)) +

f1(x̄(t), ā(t)) + ȳ(t) for a.e. t ∈ [0, T ], where the closed-valued normal cone mapping NC(·)
is measurable by [71, Theorem 14.26]. The classical measurable selection result (see, e.g., [71,

Corollary 14.6]) gives us nonnegative measurable functions ηi(·) on [0, T ] as i = 1, . . . , s for

which the differential equation (4.127) is satisfied.

Let us further verify the dynamic complementarity slackness conditions in (4.128) while

remembering that the our stranding assumptions yield the PLICQ; see Section 2. Using (4.143)

and (4.127) gives us

˙̄x(t)− ˙̄xk(t) + ȳ(t)− ȳk(t)− hkf2

(
b̄k(t), x̄k(t)

)
=

s∑
i=1

[
ηi(t)∇gi

(
x̄(t)− ū(t)

)
− ηki (t)∇gi

(
x̄k(t)− ūk(t)

)]
+ f1

(
x̄k(t), āk(t)

)
− f1

(
x̄(t), ā(t)

)
whenever t ∈ (tkj , t

k
j+1) and j = 0, . . . , k − 1, which implies the estimate∥∥∥ s∑

i=1

[
ηi(t)∇gi

(
x̄(t)− ū(t)

)
− ηki (t)∇gi

(
x̄k(t)− ūk(t)

)]∥∥∥
L2

≤
∥∥ ˙̄x(t)− ˙̄xk(t)

∥∥
L2 +

∥∥ȳ(t)− ȳk(t)
∥∥
L2 +

∥∥f1

(
x̄(t), ā(t)

)
− f1

(
x̄k(t), āk(t)

)∥∥
L2

+ hk
∥∥f2

(
b̄k(t), x̄k(t)

)∥∥
L2

on (tkj , t
k
j+1). Employing the strong convergence of (x̄k(·), ȳk(·), ūk(·), āk(·), b̄k(·)) to

(x̄(·), ȳ(·), ū(·), ā(·), b̄(·)), the smoothness of f1 and f2 and taking into account that

I(x̄k(·)− ūk(·)) ⊂ I(x̄(·)− ū(·)) for k ∈ IN sufficiently large, we get the strong convergence of

the sequence ∑
i∈I(x̄(t)−ū(t))

[
ηi(t)∇gi

(
x̄(t)− ū(t)

)
− ηki (t)∇gi

(
x̄k(t)− ūk(t)

)]
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to zero in L2 and thus its a.e. convergence on [0, T ] along some subsequence. On the other

hand, it follows from (4.8) and (4.9) that

ηki (t) ≤ 1

M1

ηki (t)
∥∥∇gi(x̄k(t)− ūk(t))∥∥

≤ 1

M1

∑
i∈I(x̄k(t)−ūk(t))

ηki (t)
∥∥∇gi(x̄k(t)− ūk(t))∥∥

≤ β

M1

∥∥∥ ∑
i∈I(x̄k(t)−ū(t))

ηki (t)∇gi
(
x̄k(t)− ūk(t)

)∥∥∥
≤ β

M1

‖ ˙̄xk(t)‖+
β

M1

‖ȳk(t)‖+
β

M1

∥∥f1

(
x̄k(t), āk(t)

)∥∥+ hk
β

M1

∥∥f2

(
x̄k(t), b̄k(t)

)∥∥,
and so

∫ T

0

[
ηki (t)

]2
dt ≤ M for some constant M > 0, which justifies in turn the boundedness

of ηki (·) in L2 due to the strong convergence of (x̄k(·), ȳk(·), ūk(·), āk(·), b̄k(·)) to

(x̄(·), ȳ(·), ū(·), ā(·), b̄(·)). It follows from the weak compactness of bounded sets in L2 that

there exists a function η̃(·) such that a subsequence of
{
ηki (·)

}
weakly converges to η̃(·).

Employing again the aforementioned Mazur theorem gives us a sequence of convex combi-

nations of the functions from
{
ηki (·)

}
, which converges to η̃(·) strongly in L2, and hence point-

wise for a.e t ∈ [0, T ) along a subsequence. Combining this with the a.e. convergence of∑
i∈I(x̄(t)−ū(t))

ηki (t)∇gi
(
x̄k(t) − ūk(t)

)
to

∑
i∈I(x̄(t)−ū(t))

ηi(t)∇gi
(
x̄(t) − ū(t)

)
, and using the positive

linear independence of the gradients ∇gi(x) on C, which is a consequence of the standing as-

sumptions in Section 2, ensure that η̃(t) = η(t), and that ηk(t) → η(t) for a.e. t ∈ [0, T ).

Invoking finally the strong convergence results from Theorem 4.4.1 and the complementary

slackness condition (4.116) for the discrete problems (P k), we arrive at the claimed comple-

mentary slackness condition in (4.128).

To proceed further, for each t ∈ [tkj , t
k
j+1) with j = 0, . . . , k− 1 consider the quintuples

θk(t) =
(
θkx(t), θky(t), θku(t), θka(t), θkb(t)

)
:=
(θkxj
hk
,
θkyj
hk
,
θkuj
hk
,
θkaj
hk
,
θkbj
hk

)
, (4.144)

where the components in (4.144) are defined in (4.71) and (4.72). It easy follows from these

constructions and the convergence result of Theorem 4.4.1 that the sequence {θk(·)} converges

to 0 strongly in L2([0, T ],R3n+m+d), and hence we have that θk(t) → 0 as k → ∞ for a.e.

t ∈ [0, T ) along a subsequence (without relabeling).

Having pkj with j = 0, . . . , k from Theorem 4.6.2, construct qk(·) = (qkx(·), qky(·), qku(·)) by

setting qk(tkj ) := pkj and then extending the quintuples piecewise linearly to [0, T ] for all j =

0, . . . , k. Define further σk(t), ψk(·) = (ψak(·), ψbk(·)) and ςk(t) on [0, T ] by

σk(t) := σkj for t ∈ [tkj , t
k
j+1), j = 0, . . . , k − 1, with σk(tkk) := 0, (4.145)

ψk(t) :=
1

hkj
ψkj for t ∈ [tkj , t

k
j+1), j = 0, . . . , k − 1, with ψk(tkk) := 0, (4.146)
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ςk(t) :=
pkdj+1

hk
for t ∈ [tkj , t

k
j+1), j = 0, . . . , k − 1, with ςk(tkk) := 0. (4.147)

Considering the auxiliary functions

ϑk(t) := max
{
tkj
∣∣ tkj ≤ t, 0 ≤ j ≤ k

}
for all t ∈ [0, T ], k ∈ N, (4.148)

it is obvious to see that ϑk(t) converge to t uniformly in [0, T ] as k → ∞. It follows from

(4.107)–(4.111) and the constructions above that for all t ∈ (tkj , t
k
j+1) and j = 0, . . . , k − 1 we

get

q̇kx(t)− λkwkx(t)

= −ξx(ϑk(t))ςk(t) +∇xf1

(
āk(ϑk(t)), x̄k(ϑk(t))

)∗(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
+ hk∇xf2

(
b̄k(ϑk(t)), x̄k(ϑk(t))

)∗(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
−

s∑
i=1

ηki (t)∇2
xgi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
−

s∑
i=1

σki (t)∇xgi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)
.

q̇ky(t) = ςk(t) + λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk).

q̇ku(t)− λkwku(t)

=
s∑
i=1

ηki (t)∇2
ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
+

s∑
i=1

σki (t)∇ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)
.

− λkθka(t)− λkwka(t)− ψka(t)

= ∇af1

(
āk(ϑk(t)), x̄k(ϑk(t))

)∗(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
.

− λkθkb(t)− λkwkb(t)− ψkb(t)

= −ξb(ϑk(t))ςk(t) + hk∇bf2

(
āk(ϑk(t)), x̄k(ϑk(t))

)∗(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
.

The next adjoint triple is pk(·) = (pkx(·), pky(·), pku(·)) defined by

pk(t) = qk(t)

+

T∫
t

(
−

s∑
i=1

ηki (τ)∇2
xgi
(
x̄k(ϑk(τ))− ūk(ϑk(τ))

)(
λk(vkx(τ) + θkx(τ))− qkx(ϑk(τ) + hk)

)
−

s∑
i=1

σki (τ)∇xgi
(
x̄k(ϑk(τ))− ūk(ϑk(τ))

)
− ξx(ϑk(τ))ςk(τ), ςk(τ),

s∑
i=1

ηki (τ)∇2
ugi
(
x̄k(ϑk(τ))− ūk(ϑk(τ))

)(
λk(vkx(τ) + θkx(τ))− qkx(ϑk(τ) + hk)

)
+

s∑
i=1

σki (τ)∇ugi
(
x̄k(ϑk(τ))− ūk(ϑk(τ))

))
dτ

(4.149)
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for all t ∈ [0, T ]. This gives us pk(T ) = qk(T ) with the pointwise derivative relationship

ṗk(t) = q̇k(t)

−
(
−

s∑
i=1

ηki (t)∇2
xgi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
−

s∑
i=1

σki (t)∇xgi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)
− ξx(ϑk(t))ςk(t), ςk(t),

s∑
i=1

ηki (t)∇2
ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
+

s∑
i=1

σki (t)∇ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

))
a.e. t ∈ [0, T ].

(4.150)

Furthermore, we deduce from the above that the componentwise equalities

ṗkx(t)− λkwkx(t) = ∇xf1

(
āk(ϑk(t)), x̄k(ϑk(t))

)∗(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
+ hk∇xf2

(
b̄k(ϑk(t)), x̄k(ϑk(t))

)∗(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
,

(4.151)

ṗky(t) = λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk), (4.152)

ṗku(t)− λkwku(t) = 0, (4.153)

hold for every t ∈ (tkj , t
k
j+1), j = 0, . . . , k − 1, and i = 1, . . . , s.

For each k ∈ IN define the vector measure γk on [0, T ] by∫
B

d γk :=

∫
B

( s∑
i=1

ηki (t)∇2gi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
dt

+

∫
B

( s∑
i=1

σki (t)∇gi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)
dt

(4.154)

for any Borel subset B ⊂ [0, T ], where the vector function σk(t) = (σk1(t), . . . , σks (t)) is taken

from (4.145). Normalizing the nontriviality condition (4.120), we get that

λk + ‖pk(T )‖+ ‖qku(0)‖+
k∑
j=0

‖pkdj ‖ = 1, k ∈ N, (4.155)

which tells us that all the sequential terms in (4.155) are uniformly bounded. Thus we have

without loss of generality that there exists λ ≥ 0 with λk → λ as k → ∞. It follows from

(4.147) that

T∫
0

‖ςk(t)‖ dt =
k−1∑
j=0

tkj+1∫
tkj

‖ςk(t)‖ dt =
k−1∑
j=0

tkj+1∫
tkj

‖pkdj+1‖
hk

dt =
k−1∑
j=0

‖pkdj+1‖ =
k∑
j=1

‖pkdj ‖ ≤ 1, k ∈ IN.

(4.156)
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Arguing further as in the proof of [22, Theorem 8.1] gives us the following:

• The boundedness and the uniform bounded variations of {qk(·)}. Hence the Helly theorem

ensures the existence of a function q(·) with bounded variation on [0, T ] such that qk(t)→ q(t)

as k →∞ for all t ∈ [0, T ].

• The boundedness of the sequence {pk(·)} in W 1,2([0, T ],R3n), and hence its weak compactness

in this space. It follows therefore from the aforementioned Mazur theorem and basic real

analysis that there exists p(·) ∈ W 1,2([0, T ],R3n) such that a sequence of convex combinations

of ṗk(t) converges to ṗ(t) for a.e. t ∈ [0, T ]. Then we arrive at (4.130) by passing to the limit

in (4.151)–(4.153) as k →∞.

Our next goal is to show that the sequence {γk(·)} is bounded in C([0, T ],Rn)∗. To

proceed, take any Borel subset D ⊂ [0, T ] and deduce from (4.109) that

∥∥∥∫
D

( s∑
i=1

ηki (t)∇2
ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
dt

+

∫
D

( s∑
i=1

σki (t)∇ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)
dt
∥∥∥

≤
∥∥∥ T∫

0

( s∑
i=1

ηki (t)∇2
ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
dt

+

T∫
0

( s∑
i=1

σki (t)∇ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)
dt
∥∥∥

=
∥∥∥ k−1∑
j=0

tj+1∫
tj

( s∑
i=1

ηki (t)∇2
ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
dt

+
k−1∑
j=0

tj+1∫
tj

( s∑
i=1

σki (t)∇ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)
dt
∥∥∥ =

∥∥∥ k−1∑
j=0

tj+1∫
tj

(puj+1 − puj
hk

− λkwuj
)
dt
∥∥∥

=
∥∥∥ k−1∑
j=0

(puj+1 − puj − hkλkwuj )
∥∥∥ ≤ k−1∑

j=0

‖puj+1 − puj ‖+ λk
k−1∑
j=0

‖hkwuj ‖

=
k−1∑
j=0

‖qu(tj+1)− qu(tj)‖+ λk
k−1∑
j=0

‖hkwuj ‖.

Then from (4.155), the imposed structure of the running cost (4.125) with the Lipschitzian

functions therein, and the uniform bounded variations of {qu(·)} we deduce that the sequence
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of ∫
D

( s∑
i=1

ηki (t)∇2
ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
dt

+

∫
D

( s∑
i=1

σki (t)∇ugi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)
dt

is uniformly bounded on [0, T ]. In the same way it follows from (4.107), (4.155), and the

uniform bounded variations of {qx(·)} that the sequence of∫
D

( s∑
i=1

ηki (t)∇2
xgi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
dt

+

∫
D

( s∑
i=1

σki (t)∇xgi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)
dt

is also uniformly bounded on [0, T ]. This verifies the boundedness in C([0, T ],Rn)∗ of the

sequence {γk}.

Thus we get from the weak∗ sequential compactness of the unit ball in C([0, T ],Rn)∗

that there exists a measure γ ∈ C([0, T ],Rn)∗ such that {γk} weak∗ converges to γ along a

subsequence (without relabeling). This allows us to derive from (4.154) and the construction

of the measures γk in (4.154) that for all t ∈ [0, T ] the following convergence holds:∫
[t,T ]

( s∑
i=1

ηki (t)∇2
xgi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)(
λk(vkx(t) + θkx(t))− qkx(ϑk(t) + hk)

)
dt

+

∫
[t,T ]

( s∑
i=1

σki (t)∇xgi
(
x̄k(ϑk(t))− ūk(ϑk(t))

)
dt→

∫
[t,T ]

dγ(s) as k →∞.

Employing now (4.104), the definition of ςk(·) in (4.147), as well as the convergence

qky(t)→ qy(t) and θky(t)→ 0 for a.e. t ∈ [0, T ] as k →∞ implies that

ςk(t)→ qy(t) a.e. t ∈ [0, T ] as k →∞.

Observe by (4.54) and (4.72) that
θkyj
hk

=
1

hk

tkj+1∫
tkj

(f2(b̄kj , x̄
k
j )− f2(b̄(t), x̄(t))) dt, which leads us to

the estimates

‖ςk(t)‖ ≤ ‖qky(ϑk(t) + hk)‖+
λk

hk

tkj+1∫
tkj

‖f2(b̄kj , x̄
k
j )− f2(b̄(t), x̄(t))‖ dt

≤ ‖qky(ϑk(t) + hk)‖+ L1
λk

hk

tkj+1∫
tkj

‖x̄kj − x̄(t)‖ dt+ L2
λk

hk

tkj+1∫
tkj

‖b̄kj − b̄(t)‖ dt.
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By the optimality of z̄k in (Pk) and the constraints in (4.56) we get

‖ςk(t)‖ ≤ ‖qky(ϑk(t) + hk)‖+ λk(L1 + L2)
ε

2
.

The boundedness of {qk(·)} and the normalization condition (4.155) yield the boundedness of

{ςk(·)}. Then it follows from the Lebesgue dominate convergence theorem that∫
[t,T ]

ςk(s) ds→
∫

[t,T ]

qy(s) ds as k →∞ for all t ∈ [0, T ], (4.157)

and that the function qy(·) belongs to L1([0, T ],Rn). Furthermore, for all t ∈ [0, T ] we have∥∥∥ ∫
[t,T ]

ξx(ϑk(s))ςk(s) ds−
∫

[t,T ]

∇xf2(b̄(s), x̄(s))qy(s) ds
∥∥∥

=
∥∥∥ ∫

[t,T ]

∇xf2(b̄k(ϑk(s)), x̄k(ϑk(s)))ςk(s) ds−
∫

[t,T ]

∇xf2(b̄(s), x̄(s))qy(s) ds
∥∥∥

≤
∥∥∥ ∫

[t,T ]

∇xf2(b̄k(ϑk(s)), x̄k(ϑk(s)))ςk(s) ds−
∫

[t,T ]

∇xf2(b̄(s), x̄(s))ςk(s) ds
∥∥∥

+
∥∥∥ ∫

[t,T ]

∇xf2(b̄(s), x̄(s))ςk(s) ds−
∫

[t,T ]

∇xf2(b̄(s), x̄(s))qy(s) ds
∥∥∥.

Note first that
∥∥∥ ∫

[t,T ]

∇xf2(b̄k(ϑk(s)), x̄k(ϑk(s)))ςk(s) ds −
∫

[t,T ]

∇xf2(b̄(s), x̄(s))ςk(s) ds
∥∥∥ → 0 as

k →∞.

Indeed, the boundedness of {ςk(·)} shows that
∥∥ςk(t)∥∥ ≤ Lς with some constant Lς > 0 and

yields in turn∥∥∥ ∫
[t,T ]

∇xf2(b̄k(ϑk(s)), x̄k(ϑk(s)))ςk(s) ds−
∫

[t,T ]

∇xf2(b̄(s), x̄(s))ςk(s) ds
∥∥∥

≤ Lς

∫
[t,T ]

∥∥∇xf2(b̄k(ϑk(s)), x̄k(ϑk(s)))−∇xf2(b̄(s), x̄(s))
∥∥ ds (4.158)

To apply the dominated convergence theorem for the second term of the latter inequal-

ity, we need to prove the almost everywhere convergence on [0, T ] of b̄k(ϑk(·)) to b̄(·). Fixing

any ε > 0 and using the convergence of b̄k(·) to b̄(·) in L2([0, T ];Rd) and the classical Egorov’s

theorem, find Eε ⊂ [0, T ] such that mes(Eε) < ε for its Lebesgue measure. Hence we can extract

a subsequence of {b̄k(·)}, which uniformly converges (without relabeling) to b̄(·) in [0, T ] \ Eε.
Applying to b̄(·) the classical Luzin property of measurable functions from real analysis, we find

a closed set Fε ⊂ [0, T ] with mes([0, T ] \ Fε) < ε such that b̄(·) is continuous on Fε. Denoting

Dε := Eε ∪ ([0, T ] \ Fε) ⊂ [0, T ], and employing (4.58) together with the boundedness of the
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set B allow us to select M > 0 such that ‖b̄k(ϑk(t))‖, ‖b̄(t)‖ ≤M a.e. t ∈ [0, T ]. This gives us

the relationships∥∥b̄k(ϑk)− b̄∥∥2

L2([0,T ];Rd)
=

∫
[0,T ]

‖b̄k(ϑk(t))− b̄(t)‖2 dt =

∫
Dε

‖b̄k(ϑk(t))− b̄(t)‖2 dt

+

∫
[0,T ]\Dε

‖b̄k(ϑk(t))− b̄(t)‖2 dt ≤ 4M2(mes(Eε) + mes([0, T ] \ Fε))

+

∫
[0,T ]\Dε

‖b̄k(ϑk(t))− b̄(ϑk(t)) + b̄(ϑk(t))− b̄(t)‖2 dt

≤ 8M2ε+ 2

∫
[0,T ]\Dε

‖b̄k(ϑk(t))− b̄(ϑk(t))‖2 dt+ 2

∫
[0,T ]\Dε

‖b̄(ϑk(t))− b̄(t)‖2 dt

= 8M2ε+ 2

∫
([0,T ]\Eε)∩Fε

‖b̄k(ϑk(t))− b̄(ϑk(t))‖2 dt+ 2

∫
([0,T ]\Eε)∩Fε

‖b̄(ϑk(t))− b̄(t)‖2 dt.

(4.159)

Furthermore, the uniform convergence of b̄k(·) to b̄(·) in [0, T ] \ Eε tells us that∫
([0,T ]\Eε)∩Fε

‖b̄k(ϑk(t))− b̄(ϑk(t))‖2 dt ≤
∫

([0,T ]\Eε)∩Fε

ε2 dt ≤ Tε2

for all k ∈ N sufficiently large. We also have by the continuity of b̄(·) in Fε and the convergence

ϑk(t)→ t as k →∞ that∫
([0,T ]\Eε)∩Fε

‖b̄(ϑk(t))− b̄(t)‖2 dt ≤
∫

([0,T ]\Eε)∩Fε

ε2 dt ≤ Tε2

for all large k ∈ N. It follows from the above arguments with the usage of (4.159) that∥∥b̄k(ϑk)− b̄∥∥2

L2([0,T ];Rd)
≤ 8Mε2 + 2Tε2, for any ε > 0,

which justifies the convergence of b̄k(ϑk(·)) to b̄(·) in the norm topology of L2([0, T ];Rd).

Then there exists a subsequence of (b̄k(ϑk(·))) (again, we do not relabel) converging to b̄(·)
almost everywhere. Invoking then The imposed assumptions on f2 give us the boundedness

of
{∥∥∇xf2(b̄k(ϑk(s)), x̄k(ϑk(s)))−∇xf2(b̄(s), x̄(s))

∥∥} and therefore it follows from the domi-

nated convergence theorem, the uniform convergence x̄k(·)→ x̄(·) on [0, T ] as k →∞ and the

continuous differentiability of f2(·, ·) with the usage of (4.158) that∥∥∥ ∫
[t,T ]

∇xf2(b̄k(ϑk(s)), x̄k(ϑk(s)))ςk(s) ds−
∫

[t,T ]

∇xf2(b̄(s), x̄(s))ςk(s) ds
∥∥∥→ 0 as k →∞.

For the second term in the above estimate we get∥∥∥ ∫
[t,T ]

∇xf2(b̄(s), x̄(s))ςk(s) ds−
∫

[t,T ]

∇xf2(b̄(s), x̄(s))qy(s) ds
∥∥∥→ 0 as k →∞ by the convergence

of ςk(·)→ qy(·) as k →∞ in L1([0, T ],Rn). Combining this yields∫
[t,T ]

ξx(ϑk(s))ςk(s) ds→
∫

[t,T ]

∇xf2(b̄(s), x̄(s))qy(s) ds as k →∞.
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In the same way we also verify that∫
[t,T ]

ξb(ϑk(s))ςk(s) ds→
∫

[t,T ]

∇bf2(b̄(s), x̄(s))qy(s) ds as k →∞

and hence arrive at the adjoint relationships (4.132) by passing to the limit in (4.149) as k →∞,

where the justification of the “except a countable subset” can be done similarly to [84, p. 325].

The passage to the limit in (4.138) as k →∞ brings us to the integral equation

qy(t) = py(t)−
∫

[t,T ]

qy(s) ds a.e. t ∈ [0, T ],

which tells us that qy(·) is an absolutely continuous function satisfying

q̇y(t) = ṗy(t) + qy(t) a.e. t ∈ [0, T ]. (4.160)

It follows from (4.130) and (4.132) that

ṗy(t) = λvx(t)− qx(t) a.e. t ∈ [0, T ], and (4.161)

qx(t) = px(t) +

∫
[t,T ]

d γ(s) +

∫
[t,T ]

∇xf2(b̄(s), x̄(s))qy(s) ds a.e. t ∈ [0, T ]. (4.162)

Substituting (4.162) into (4.161) and then (4.161) into (4.160), we obtain the extended Volterra

condition (4.133).

Let us now show that the triple ψ(·) = (ψa(·), ψb(·)) defined in (4.134) on [0, T ] satisfies the

normal cone inclusions claimed in those conditions. Indeed, it follows from the construction

of ψk(·) in (4.146), from the necessary optimality conditions in (4.110)–(4.112) for the discrete

problems (Pk), and from the convergence of all the extended functions defining ψk(·) in (4.110)

and (4.110), which was established in the proof above, that a subsequence {ψk(·)} weakly

converges in L2([0, T ],Rm+d). This clearly implies, by using again Mazur’s weak closure theorem

and passing to the limit in (4.146) for the convexified sequences in both sides therein, that the

limiting function ψ(·) satisfies the equations in (4.134). Furthermore, we have the inclusions

ψak(ϑk(t)) ∈ NA

(
āk(ϑk(t))

)
and ψbk(ϑk(t)) ∈ NB

(
b̄k(ϑk(t))

)
. (4.163)

Passing to the limit in (4.163) as k →∞ with the usage of Mazur’s theorem and the robustness

of the limiting normal cone tells us that the limiting function ψ(t) satisfies the convexified in-

clusions in (4.134) for a.e. t ∈ [0, T ]. The local and global maximization conditions (4.135) and

(4.136) are derived, under the imposed additional assumptions, from the normal cone inclu-

sions in (4.134) similarly to the case of discrete-time systems in Corollary 4.6.1. Furthermore,

it follows from (4.105) and the definition of ϑk(t) in (4.148) that

qku(ϑk(t) + hk) = λk(θku(t) + vku(t)), k ∈ N. (4.164)
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Involving now (4.126), the assumptions on l2, and the Lebesgue dominated convergence the-

orem gives us both conditions in (4.131) by passing to the limit in (4.164). The proof of the

complementarity slackness conditions (4.128), (4.129) and the endpoint conditions in (4.137)–

(4.139) is similar to the one in [22, Theorem 6.1], and we skip it for brevity. Taking into account

the convergence in (4.157) and the relationship

T∫
0

‖ςk(t)‖ dt =
k−1∑
j=0

‖pkdj+1‖,

we arrive at the nontriviality condition (4.140) by passing to the limit in (4.155) as k →∞. The

verification of the enhanced nontriviality conditions in (4.141) and (4.142) under the imposed

additional assumptions can be easily proved while arguing by contraposition. This therefore

completes the proof of the theorem. �

4.8 Applications to control of non-regular electrical cir-

cuits

This section is entirely devoted to applications of the necessary optimality conditions for integro-

differential sweeping control problems obtained in Theorem 4.7.1 to controlled models that

appear in non-regular electrical circuits with ideal diodes. However, the dynamics in such

models has been described via (uncontrolled) integro-differential sweeping processes (see, e.g.,

[12, ?]), we are not familiar with formulations of any optimization and/or control problems for

such systems. This is done in the first two examples below in different frameworks. The third

example of its own interest provides a complete solution of a two-dimensional optimal control

problem of the type modeled above by using the obtained necessary optimality conditions.

Exemple 4.8.1 (optimal control of non-regular electrical circuits with controlled

current source). Consider the electrical system depicted in Figure 4.1 that is composed of two

resistors R1 ≥ 0 and R2 ≥ 0 with voltage/current laws VRj = Rjxj, j = 1, 2, two inductors

L1 ≥ 0 and L2 ≥ 0 with voltage/current laws VLj = Ljẋj (j = 1, 2), two capacitors C1 > 0

and C2 > 0 with voltage/current laws VCk = 1
Cj

∫
xj(t) dt, j = 1, 2, two ideal diodes with

characteristics 0 ≤ −VDj ⊥ ij ≥ 0, and an absolutely continuous current source i : [0, T ]→ R.

Using Kirchhoff’s laws, we have VR1 + VR2 + VL1 + VC1 = −VD1 ∈ −NR+(x1 − i),
VR1 − VR2 + VL2 + VC2 = −VD2 ∈ −NR+(x2).
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Figure 4.1: Electrical circuit with resistors,Inductances, capacitors and ideal diodes (RLCD).

Figure 4.2: (RLCD) circuit with controlled voltage source.

Therefore, the dynamics of this circuit is given by

−ẋ(t)︷ ︸︸ ︷−ẋ1(t)

−ẋ2(t)

 ∈ NC(t)(x(t)) +

A1︷ ︸︸ ︷R1+R2

L1
−R2

L1

−R2

L2

R1+R2

L2


x(t)︷ ︸︸ ︷x1(t)

x2(t)



+

t∫
0

[ A2︷ ︸︸ ︷ 1
L1C1

0

0 1
L2C2


x(s)︷ ︸︸ ︷x1(s)

x2(s)

+

b(s)︷ ︸︸ ︷ 1
L1C1

i(s)

0

] ds.
(4.165)

Put u(t) := (i(t), 0)∗, b(t) = ( 1
L1C1

i(t), 0)∗ indicating vector columns and denote C(t) =

C(u(t)) := u(t) + [0,∞) × [0,∞), f1(x) := A1x, f2(b, x) := A2x + b, and x(0) := (i(0), 0)∗.

Thus (4.165) can be rewritten in the form of the controlled sweeping dynamics (4.2) as

−ẋ(t) ∈ NC(u(t))(x(t)) + f1(x(t)) +

t∫
0

f2(b(s), x(s)) ds a.e. t ∈ [0, T ], x(0) = x0 ∈ C(0)
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with control functions acting in the moving set and the integral part of the dynamics. The cost

functional in this problem is naturally formulated by: minimize

J [x, u, b] :=
λT
2

(x1(T )− i(0))2 +
λP
2

T∫
0

(x1(t)− i(0))2 dt+
λI
2

T∫
0

b2
1(t) dt,

where λT , λQ, and λI are nonnegative constants not equal to zero simultaneously. The necessary

optimality conditions obtained in Theorem 4.7.1 can be readily applied to this class of optimal

control problems.

The next model describes a class of dynamic processes for non-regular electric circuits

with an input controlled voltage source, which is dual of the current source considered in

Example 4.8.1. In this model we have control actions entering the dynamic perturbation term

of the sweeping process.

Exemple 4.8.2 (optimal control of non-regular electrical circuit with controlled

voltage source). Consider the electrical system shown in Figure 4.2 that is composed of a

resistor R ≥ 0 with voltage/current law VR = R(x3 − x2), two inductors L1 ≥ 0, L2 ≥ 0

with voltage/current laws VLj = Ljẋj (j = 1, 2), a capacitor C > 0 with voltage/current law

VC =
1

C

∫
(x2(t)− x1(t)) dt, two ideal diodes with characteristics 0 ≤ −VDj ⊥ xj ≥ 0, and two

controlled voltage sources vj(t), j = 1, 2, which have to obey the constraints

{vj ∈ L2([0, T ]) | vj ≤ vj(t) ≤ vj, a.e., t ∈ [0, T ]},

where vj < vj are fixed real numbers. Employing Kirchhoff’s laws tells us that
VL1 − VC − v1(t) = −VD1 ∈ −NR+(x1),

VL2 + VC − VR = −VD2 ∈ −NR+(x2),

VR − v2(t) = 0.

In the system above, we substitute the third equation into the second one and get

−

ẋ1(t)

ẋ2(t)

 ∈ NR2
+

x1(t)

x2(t)

+

A1︷ ︸︸ ︷− 1
L1

0

0 − 1
L2

v1(t)

v2(t)

+

t∫
0

A2︷ ︸︸ ︷ 1
L1C

− 1
L1C

− 1
L2C

1
L2C

x1(s)

x2(s)

 ds.

The goal is to start from a given state (x1(0), x2(0)) and to get the other state (x1(T ), x2(T )) as

close as possible with minimizing the input energy. Denoting C := {x = (x1, x2) ∈ R2 | g1(x) =

x1 ≥ 0, g2(x) = x2 ≥ 0}, u(t) = (0, 0), x0 ∈ C, a(t) = (a1(t), a2(t)) with (a1(t), a2(t)) :=

(v1(t), v2(t)), f1(a, x) := A1a, and f2(b, x) := A2x, the formulated problem can be written in the

form of our basic problem (P ) as follows:

minimize J [x, a] :=
x2

2(T )

2
+

1

2

T∫
0

[a2
1(t) + a2

2(t)] dt (4.166)
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subject to the controlled integro-differential sweeping process

−ẋ(t) ∈ NC(x(t)) + f1(a(t), x(t)) +

t∫
0

f2(x(s)) ds a.e. [0, T ], x(0) = x0 ∈ C. (4.167)

It follows from the existence result of Theorem 4.2.1 that the optimal control problem formulated

in (4.166) and (4.167) admits an optimal solution. Furthermore, the structure of the cost

functional in (4.166) together with Proposition 4.2.1 yields the uniqueness of the optimal pair

(x̄(·), ā(·)) in problem (4.166), (4.167). This allows us to find the optimal solution to the

formulated optimal control problems by using the necessary optimality conditions Theorem 4.7.1,

provided that a feasible solution determined by these conditions is unique.

Finally, we present a numerical example that demonstrates how to use the necessary

optimality conditions of Theorem 4.7.1 to solve a particular case of the optimal control problem

formulated in Example 4.8.2 with the given data of controlled integro-differential sweeping

inclusion. The corresponding example for the first model described in this section can be

constructed similarly, while we skip it for brevity.

Exemple 4.8.3 (calculating optimal solutions of two-dimensional sweeping control

model). Consider the optimal control problem defined in (4.166) and (4.167) with the following

data:

T = 1, x0 = (1, 1), g(x) = (g1(x), g2(x)) := (x1, x2), l0(x, a) :=
a2

1 + a2
2

2
. ϕ(x) =

x2
2

2
,

A1 :=

−1 0

0 −1

 , and A2 =

 1 −1

−1 1

 , where |a1|, |a2| ≤ 2.

(4.168)

We seek for solutions to problem (4.168) such that

x̄(t) > 0 for all t ∈ [0, 1) and x̄(1) ∈ bdC. (4.169)

Depending on whether the diodes are blocking (off) or conducting (on), condition (4.169) pro-

vides the following three possibilities that are listed below as modes:

• Mode 1: For all t ∈ [0, 1) both diodes are on, i.e., x1 > 0 (VD1 = 0) and x2 > 0 (VD2 = 0).

Furthermore, at the ending time T = 1 the first diode is off while the second one is on, i.e.,

x1(1) = 0 and x2(1) > 0 (VD2 = 0).

• Mode 2: For all t ∈ [0, 1) both diodes are on, i.e., x1 > 0 (VD1 = 0) and x2 > 0 (VD2 = 0),

while at the ending time T = 1 the first diode is on and the second one is off, i.e., x1(1) > 0

(VD1 = 0) and x2(1) = 0.
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• Mode 3: For all t ∈ [0, 1) both diodes are on, i.e., x1 > 0 (VD1 = 0) and x2 > 0 (VD2 = 0),

while at the ending time T = 1 both diodes are off, i.e., x1(1) = 0 and x2(1) = 0.

Applying the necessary optimality conditions of Theorem 4.7.1 gives us a number λ ≥ 0,

functions ηi(·) ∈ L2([0, 1],R+) as i = 1, 2 well-defined at t = 1, pairs p(·) = (px(·), py(·)) ∈
W 1,2([0, T ];R4) and q(·) = (qx(·), qy(·)) with values in R4 and of bounded variations on [0, T ],

as well as pairs w(·) = (wx(·), wa(·)) ∈ L2([0, T ],R4) and v(·) = (vx(·), vu(·)) ∈ L2([0, T ],R4)

such that

1. w(t) = (0, ā(t)), v(t) = (0, 0) a.e. t ∈ [0, 1].

2.


˙̄x1(t)− ā1(t) +

t∫
0

(x̄1(s)− x̄2(s)) ds = η1(t) a.e. t ∈ [0, 1],

˙̄x2(t)− ā2(t)−
t∫

0

(x̄1(s)− x̄2(s)) ds = η2(t) a.e. t ∈ [0, 1].

3. x̄i(t) > 0 =⇒ ηi(t) = 0 a.e. t ∈ [0, 1], i = 1, 2.

4. ηi(t) > 0 =⇒ qxi (t) = 0 a.e. t ∈ [0, 1), i = 1, 2.

5. (ṗx(t), ṗy(t)) = ((0, 0),−qx(t)) a.e. t ∈ [0, 1].

6. qa(t) = (0, 0) a.e. t ∈ [0, 1].

7. (qx(t), qy(t)) = (px(t), py(t))−
∫

[t,1]

(−dγ(s)− A2q
y(s) ds, qy(s) ds) a.e. t ∈ [0, 1].

8.


q̇y1(t) = −px1(t)−

∫
[t,1]

dγ1(s)−
∫

[t,1]

(qy1(s)− qy2(s)) ds+ qy1(t) a.e. t ∈ [0, 1],

q̇y2(t) = −px2(t)−
∫

[t,1]

dγ2(s) +

∫
[t,1]

(qy1(s)− qy2(s)) ds+ qy2(t) a.e. t ∈ [0, 1].

9. ψa(t) = −λ(ā1(t), ā2(t)) + A1q
x(t) a.e. t ∈ [0, 1].

10. ψa(t) ∈ N[−2;2]2(ā(t)) a.e. t ∈ [0, 1].

11. ψa1(t) ā1(t) + ψa2(t) ā2(t) = max
(a1,a2)∈[−2;2]×[−2;2]

{ψa1(t) a1 + ψa2(t) a2} a.e. t ∈ [0, 1].

12. −px1(1) + η1(1) = 0, −px2(1) + η2(1) = λx̄2(1).

13. −η(1) ∈ NC(x̄(1)).

14. py(1) = pa(1) = (0, 0).
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15. λ+ |η1(1)|+ |η2(1)|+
1∫

0

‖qy(t)‖ dt > 0.

It follows directly from items 5–7 that

px(t) ≡ px(1) for all t ∈ [0, 1],

and proceeding similarly to [21, Example 1] gives us

∫
[t,1]

d γ(s) = γ({1}). Then

qx(t) = px(1) + γ({1}) +

∫
[t,1]

A2q
y(s) ds, t ∈ [0, 1]. (4.170)

Solving the integro-differential system in item 8 with qy(1) = (0, 0), we get on [0, 1] that

∫
[t,1]

qy1(s) ds =
px1(1) + γ1({1}) + px2(1) + γ2({1})

2
et−1

+
px1(1) + γ1({1})− px2(1)− γ2({1})

6
e−(t−1)

+
px1(1) + γ1({1})− px2(1)− γ2({1})

12
e2t−2 − px1(1) + γ1({1})− px2(1)− γ2({1})

4

−p
x
1(1) + γ1({1}) + px2(1) + γ2({1})

2
t,∫

[t,1]

qy2(s) ds =
px1(1) + γ1({1}) + px2(1) + γ2({1})

2
et−1

−p
x
1(1) + γ1({1})− px2(1)− γ2({1})

6
e−(t−1)

−p
x
1(1) + γ1({1})− px2(1)− γ2({1})

12
e2t−2 +

px1(1) + γ1({1})− px2(1)− γ2({1})
4

−p
x
1(1) + γ1({1}) + px2(1) + γ2({1})

2
t.

Then it follows from the above relationships, equation (4.170), and the definition of A2 that

qx1 (t) = px1(1) + γ1({1}) +
px1(1) + γ1({1})− px2(1)− γ2({1})

3
e−(t−1)

+
px1(1) + γ1({1})− px2(1)− γ2({1})

6
e2t−2 − px1(1) + γ1({1})− px2(1)− γ2({1})

2

qx2 (t) = px2(1) + γ2({1})− px1(1) + γ1({1})− px2(1)− γ2({1})
3

e−(t−1)

−p
x
1(1) + γ1({1})− px2(1)− γ2({1})

6
e2t−2 +

px1(1) + γ1({1})− px2(1)− γ2({1})
2

.

Item 9 readily implies that

ψa1(t) = −λā1(t)− qx1 (t) and ψa2(t) = −λā2(t)− qx2 (t) for all t ∈ [0, 1].
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Thus the maximization condition in item 11 tells us that

− λ(ā2
1(t) + ā2

2(t))− (qx1 (t)ā1(t) + qx2 (t)ā2(t))

= max
|a1|≤1 , |a2|≤1

{
− λ(ā1(t)a1 + ā2a2(t))− (qx1 (t)a1(t) + qx2 (t)a2(t))

}
for all t ∈ [0, 1]. In order to maximize the function

φ(a1, a2) := a1(−λā1(t)− qx1 (t)) + a2(−λā2(t)− qx2 (t)

with respect to (a1, a2) ∈ [−2, 2]2, we observe that if the optimal value for a1, i.e., ā1(t) is in the

interior of [−1; 1], then
∂ φ

∂ a1

(ā1(t)) = 0, and the same holds for a2. In other words, we have

• if |ā1(t)| < 2, then λā1(t) = −qx1 (t),

• if |ā2(t)| < 2, then λā2(t) = −qx2 (t),

while if both above cases take place, then

λā1(t) = −qx1 (t) = −px1(1)− γ1({1})− px1(1) + γ1({1})− px2(1)− γ2({1})
3

e−(t−1)

−p
x
1(1) + γ1({1})− px2(1)− γ2({1})

6
e2t−2 +

px1(1) + γ1({1})− px2(1)− γ2({1})
2

,

λā2(t) = −qx2 (t) = −px2(1)− γ2({1}) +
px1(1) + γ1({1})− px2(1)− γ2({1})

3
e−(t−1)

+
px1(1) + γ1({1})− px2(1)− γ2({1})

6
e2t−2 − px1(1) + γ1({1})− px2(1)− γ2({1})

2

for all t ∈ [0, 1]. Suppose now for simplicity that λ > 0 and denote v1 :=
px1(1) + γ1({1})

λ
,

v2 :=
px2(1) + γ2({1})

λ
. Then the nontriviality condition in item 12 holds automatically, and we

have 
ā1(t) = −v1 −

v1 − v2

3
e−(t−1) − v1 − v2

6
e2t−2 +

v1 − v2

2
,

ā2(t) = −v2 +
v1 − v2

3
e−(t−1) +

v1 − v2

6
e2t−2 − v1 − v2

2
.

(4.171)

Substituting these expressions into item 2 and then using item 3 yield

˙̄x1(t) + v1 +
v1 − v2

3
e−(t−1) +

v1 − v2

6
e2t−2 − v1 − v2

2
+

t∫
0

(x̄1(s)− x̄2(s)) ds = 0,

˙̄x2(t) + v2 −
v1 − v2

3
e−(t−1) − v1 − v2

6
e2t−2 +

v1 − v2

2
−

t∫
0

(x̄1(s)− x̄2(s)) ds = 0.
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Solving the obtained integro-differential system with x̄(0) = (1, 1) gives us



x̄1(t) = 1− v1 + v2

2
t− v1 − v2

18
e2t−2 +

v1 − v2

9
e1−t +

1

3
cos(
√

2t)
(v1 − v2

6
e−2 − v1 − v2

3
e
)

− 1√
2

sin(
√

2t)
(v1 − v2

18
e−2 +

2(v1 − v2)

9
e
)
,

x̄2(t) = 1− v1 + v2

2
t+

v1 − v2

18
e2t−2 − v1 − v2

9
e1−t − 1

3
cos(
√

2t)
(v1 − v2

6
e−2 − v1 − v2

3
e
)

+
1√
2

sin(
√

2t)
(v1 − v2

18
e−2 +

2(v1 − v2)

9
e
)
,

x̄3(t) = ā2(t) + x̄2(t).

(4.172)

By the second condition in (4.169) we have the following three possibilities:

(i) If x̄1(1) = 0, then v1 = v2 −
v2 − 1

c
, where

c :=
4

9
− cos(

√
2)

9

(e−2

2
− e
)

+
sin(
√

2)

9
√

2

(e−2

2
+ 2e

)
. It is easy to deduce from (4.171) and

(4.172) that


ā1(t) = −v2 +

v2 − 1

3c
e−(t−1) +

v2 − 1

6c
e2t−2 +

v2 − 1

2c
,

ā2(t) = −v2 −
v2 − 1

3c
e−(t−1) − v2 − 1

6c
e2t−2 +

v2 − 1

2c
.



x̄1(t) = 1− v2t+
v2 − 1

c

[ t
2

+
e2t−2

18
− e1−t

9
− 1

9
cos(
√

2t)
(e−2

2
− e
)

+
1

9
√

2
sin(
√

2t)
(e−2

2
+ 2e

)]
,

x̄2(t) = 1− v2t+
v2 − 1

c

[ t
2
− e2t−2

18
+
e1−t

9
+

1

9
cos(
√

2t)
(e−2

2
− e
)

− 1

9
√

2
sin(
√

2t)
(e−2

2
+ 2e

)]
,

x̄3(t) = ā2(t) + x̄2(t).

Observe further that x̄2(t) + x̄1(t) = 2− 2v2t+
v2 − 1

c
t. Then we have that
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x̄2(1) = 2− 2v2 +
v2 − 1

c
, and that the cost functional in (4.166) reduces to

J [x̄, ā] =
1

2

(
2− 2v2 +

v2 − 1

c

)2

+
1

2

1∫
0

[
− v2 +

v2 − 1

c

(1

2
+
e−(t−1)

3
+
e2t−2

6

)]2

dt

+
1

2

1∫
0

[
− v2 +

v2 − 1

c

(1

2
− e−(t−1)

3
− e2t−2

6

)]2

dt

= v2
2 + 2(1− v2)2 +

v2 − 1

c

[
(3 + 4I)(v2 − 1)

4c
− 3v2 + 2

]
,

where I =
e−4

144
(8e6 − 16e3 + 9e4 − 1). Our goal is to minimize the function J under the

additional assumptions that |ā1(t)| < 2 and |ā2(t)| < 2 on [0, 1]. Taking into account the

convexity of the function J allows us to find its global minimum from J ′(v2) = 0 and thus

get v2 = 0.5988481275. Hence


ā1(t) = −0.5988481275− 0.4011518725

3c
e−(t−1) − 0.4011518725

6c
e2t−2 − 0.4011518725

2c
,

ā2(t) = −0.5988481275 +
0.4011518725

3c
e−(t−1) +

0.4011518725

6c

2t−2

− 0.4011518725

2c
,

and we can directly check that the constraints |ā1(t)| < 2 and |ā2(t)| < 2 for all t ∈ [0, 1]

are satisfied for v2 = 0.5988481275. Furthermore, it follows that



x̄1(t) = 1− 0.5988481275.t− 0.4011518725

c

[ t
2

+
e2t−2

18
− e1−t

9
− 1

9
cos(
√

2t)
(e−2

2
− e
)

+
1

9
√

2
sin(
√

2t)
(e−2

2
+ 2e

)]
,

x̄2(t) = 1− 0.5988481275.t− 0.4011518725

c

[ t
2
− e2t−2

18
+
e1−t

9
+

1

9
cos(
√

2t)
(e−2

2
− e
)

− 1

9
√

2
sin(
√

2t)
(e−2

2
+ 2e

)]
,

x̄3(t) = ā2(t) + x̄2(t) for all t ∈ [0, 1].
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Figure 4.3: Comparison of the exact optimal solution and the numerical solution corresponding

to the optimal control.

Fig. 4.3 shows the exact optimal solution computed from the necessary optimality condi-

tions of Theorem 4.7.1 ( in red) and the approximate solution corresponding to the optimal

control (ā1, ā2) for the integro-differential sweeping process (4.167) (in blue). To compute

the approximate solution, we use the program developed in chapter 3 (section 3.1).

(ii) If x̄2(1) = 0, then v1 = v2 +
v2 − 1

c
,

where c := −5

9
− cos(

√
2)

9

(e−2

2
− e
)

+
sin(
√

2)

9
√

2

(e−2

2
+ 2e

)
. Arguing similar to the above

Case (i), we get that
ā1(t) = −1.056787399− 0.056787399

3c
e−(t−1) − 0.056787399

6c
e2t−2 − 0.056787399

2c
,

ā2(t) = −1.056787399 +
0.056787399

3c
e−(t−1) +

0.056787399

6c
e2t−2 − 0.056787399

2c
,

x̄1(t) = 1− 1.056787399.t+
0.056787399

c

[
− t

2
− e2t−2

18
+
e1−t

9
+

1

9
cos(
√

2t)
(e−2

2
− e
)

− 1

9
√

2
sin(
√

2t)
(e−2

2
+ 2e

)]
,

x̄2(t) = 1− 1.056787399.t+
0.056787399

c

[
− t

2
+
e2t−2

18
− e1−t

9
− 1

9
cos(
√

2t)
(e−2

2
− e
)

+
1

9
√

2
sin(
√

2t)
(e−2

2
+ 2e

)]
,

x̄3(t) = ā2(t) + x̄2(t) for all t ∈ [0, 1].
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(iii) Let x̄1(1) = 0 and x̄2(1) = 0. Then it follows from Case (i) that v1 = v2 −
v2 − 1

c
and

0 = 2 − 2v2 +
v2 − 1

c
, where c :=

4

9
− cos(

√
2)

9

(e−2

2
− e
)

+
sin(
√

2)

9
√

2

(e−2

2
+ 2e

)
. Hence

v1 = v2 = 1.

Furthermore, we deduce from (4.171) and (4.172) the following expressions valid for all

t ∈ [0, 1]: 

ā1(t) = ā2(t) = −1,

x̄1(t) = x̄2(t) = 1− t,

x̄3(t) = ā2(t) + x̄2(t) = −t.

Thus the obtained necessary optimality conditions from Theorem 4.7.1 with λ 6= 0 allows us to

fully compute the unique optimal solution of the integro-differential sweeping control problem

formulated in (4.166) and (4.167) with the initial data given in (4.168) such that condition

(4.169) is satisfied.



Conclusion

In this thesis, by using tools from nonsmooth and variational analysis, we have studied Volterra

integro-differential inclusions involving normal cones of nonregular sets in Hilbert spaces. Al-

though the main focus of this thesis has been the sweeping process, the developed methods

have allowed us to address several differential inclusions involving normal cones.

• In Chapter 2 we showed the well-posedness of the Volterra-type integro-differential per-

turbed sweeping process (Pf1,f2) under the absolute continuity in time t of the closed sets C(t)

and under their (uniform) prox-regularity.

• In Chapter 3 we have studied the well-posedness and the optimal control for a Volterra

absolutely continuous time-dependent sweeping process where the integral perturbation de-

pends on two time-variables. The main tool is an appropriate catching-up algorithm, which is

an advantage for implementation in numerical simulations. Applications to non-regular elec-

trical circuits are provided.

• In Chapter 4 we have studied a new class of optimal control problems for sweeping

processes governed by integro-differential inclusions of the Volterra type. We establish the

necessary optimality conditions by using the method of discrete approximations married with

appropriate generalized differential tools of modern variational analysis to overcome principal

difficulties in passing to the limit from optimality conditions for finite-difference systems. On

the other hand, we establish a novel necessary optimality condition of the Volterra type, which

is characteristic for integro-differential sweeping control systems while being particularly useful

for calculations of optimal solutions. Besides illustrative examples, we apply the obtained re-

sults to an optimal control problem associated with of the non-regular electrical circuits, which

is formulated in this chapter.
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Future Directions

Of course, as it is customary with any topic of research, this study stimulates other questions.

• An existence result with a Lipschitz multimapping F (t, ·) in place of the single-valued

Lipschitz mapping f1(t, ·) would deserve to be studied as well as the case of subsmooth sets

C(t).

• The situation where the prox-regular sets C(t) move in a BV way, i.e., with a bounded

variation, would also have a great interest.

• Thus, it would be interesting to get the necessary optimality conditions for a general

integro-differential sweeping process of Volterra type. (i.e., depends on two time-variables) as

(OC) in section 3.4.
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