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Abstract

Our objective in this thesis is to study the qualitative behavior and the solvability of some
systems of difference equations. In the first two chapters, we will study a nonautonomous
fourth-order system of difference equations and a general second order system defined by
homogeneous functions. More precisely, we will discuss stability of equilibrium points,
periodicity and oscillatory behavior and we will support and confirm our results with
some examples and applications. In the last chapter, we will establish explicit formulas
of well-defined solutions for a two dimensional system of nonlinear difference equations
in terms of a generalized Fibonacci sequence, as well as the formulas of the well-defined
solutions of its corresponding three-dimensional case and some more general systems.
Keywords : System of difference equations, stability of the equilibrium points, periodic

and oscilatory solutions, homogeneous functions, explicit formulas of the solutions.
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Résumé

Notre objectif dans cette these est d’étudier le comportement et la solvabilité de quelques
systemes d’équations aux différences. Dans les deux premiers chapitres, nous étudierons
un systeme d’équations aux différences non autonome du quatrieme ordre et un systéme
général du second ordre défini par des fonctions homogenes. Plus précisément, nous
discuterons la stabilité des points d’équilibre, la périodicité et le comportement oscillatoire
et nous confirmerons nos résultats avec quelques exemples et applications. Dans le dernier
chapitre, nous établirons des formules explicites de solutions bien définies pour un systeme
d’équations aux différences non linéaire bidimensionnel en termes d’une suite de Fibonacci
généralisée, ainsi que les formules des solutions bien définies de son cas tridimensionnel
correspondant et quelques systemes plus généraux.

Mots-clés: Systeme d’équations aux différences, stabilité des points d’équilibre, solu-

tions périodiques et oscillatoires, fonctions homogénes, formules explicites des solutions.
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GENERAL INTRODUCTION

Ifference equations and their systems is a very fruitful and important field of research.
D Difference equations play a key role for modeling various discrete phenomena in ap-
plied and natural sciences such as biology, probability theory, ecology, physiology, physics,
engineering, economics and so on. This explains the fact that there has been a continuous
interest in this subject since the 19th siecle and a lot of works were published on this field,
one can consult for example [1]- [57] and the references cited therein.

The present thesis is a contribution to this field of research. Firstly we will focus
on the behavior of the solutions of two systems of difference equations, the first one is a
fourth order rational nonautonomous (first chapter) and the second one is a general system
defined by homogeneous difference equations (second chapter). The obtained results on
these systems established conditions for local and global stability of the corresponding
equilibrium points, rate of convergence, existence of oscillatory solutions, existence and
non existence of periodic solutions.

Secondly we solved in closed form some nonlinear systems in both two and three di-
mensions (chapter three). Finding explicit formulas of the solutions of nonlinear difference
equations and systems is generally difficult and often impossible. For this reason a lot
of researchers try to solve such equations and systems. Noting that obtaining explicit
formulas will enable us to understand the behavior of the solutions and so the phenomena
represented by the corresponding equations or systems.

The first chapter of this thesis [34] is devoted to the qualitative behavior of the solutions

of the following system defined by the rational and non-autonomous difference equations

pn+yn qn+zn rn—’_l.n
Tpp1 = ———, UYnp1 = —— Zpr1=—-—7-—, n=0,1,2...,
Pn + Yn—3 dn + Zn—3 Tn + Tp—3

where {p,,},{q.},{rn} are 3-periodic sequences of positive numbers, and the initial values
Ti, Yiy 2yt = —3,—2,—1,0arein [0, 00). To deal with this system, we will first convert it to

an equivalent nine-dimensional system with constant coefficients and then we will establish
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results on boundedness character, local asymptotic and global stability of the unique
equilibrium point (1, 1, 1), non-existence of periodic solutions and the rate of convergence.
To confirm our results, several numerical examples were provided.

In the second chapter, we will study the following general system of difference equations

of second order defined by

Tp4+1 = f(ymyn—l)a Yn+1 = g($nv xn—l)v ne NO’

where the initial values x_1, xg, y_1 and yq are positive real numbers and the two functions
f, g:(0,00)* = (0,00) are continuous and respectively homogeneous of degree zero and
degree s € R. Using the homogeneity of f and g, it is easy to see that our system has
only one equilibrium point. We will establish conditions for local asymptotic stability as
well as for the global attractivity of the equilibrium point, to do this we will prove some
general convergence theorems. Conditions for the existence of periodic and the oscillatory
solutions were also provided. As applications of our obtained results, concrete systems
were presented.

Our aim in the last chapter [32], [33] of our thesis, is to show the solvability of some
(general) systems of difference equations. In the first part of this chapter, we will begin

by solving the following system

ynyn—lx;fz—l y _ -Tnxn—lyg—l
xn(anyg—2 + bnynyn—l>’ o yn(cnxﬁ—2 + dpnTpTp 1)

Tn+1 = y neNOap7q€N

where the parameters (an)neng, (bn)neNos (Cn)nengs (dn)nen, and the initial values
T_i,Y_it = 0,1,2, are non-zero real numbers. After this we will show that the following

more general system

. :f1< 9Wn)9(Yn-1)(f (Tn-1))? )
" F(@n) [an(9(yn—2))7 + bng(yn)g(yn-1)]
g ( P ) (9ln))"

9(yn) [en(f(2n-2))? + dp f(2n) f(2n-1)]

> n € Np,p,q € N, (0.0.1)

where f,g : D — R are one to one continuous functions on D C R, the initial values
x_i,Y_it = 0,1,2, are real numbers in D is also solvable in closed form.

In the second part of this chapter and as an extension of the aforementioned general
two dimensional system, we will give explicit formulas of the solutions of the following

system of difference equations
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_ 1 9(Yn)g(Yn—1)(f(#n_1))?
Tni1 = f (f(rn)[an(g(ynfz))ubng(yn)g(ynfl)]) ’

_ 1 h(zn)h(zn—1)(9(yn—1))*
Ynt1 =9 (g(yn)[Cn(h(zn—2))T+dnh(Zn)h(Zn—1)]) ’

_ ;-1 f(zn) f(@n—1)(h(zn—1))"
Znpr = h (h(zn)[sn(f(xn—z))“rtnf(fﬁn)f(wn—1)]) ’

where n € Ng, p, g, 7 € N, f, g, h : D — R are continuous one to one functions on
D g R) the Coeﬂ:lCieﬂtS (an)n€N07 (bn)n€N07 (Cn>n€N07 (dn)n€N07 (Sn)TLENoa (tn)TLENo are non-
zero real numbers and the initial values z_;,y_;,z_;,7 = 0, 1, 2, are real numbers. As an

application, we will deduce the formulas of solutions of the particular system

p q
YnYn—1Tp_1 - ZnZn-1Yn-1 L TpTn—1%Zp_1
q y In+l — y “n+l — D )
xn(anyn—2 + bnynynfl) Z/n(Canl_z + dnznznfl) Zn(snxn—2 + tnwnxnfl)

Tnt1 =

obtained from the previous general one by taking f(x) = g(z) = h(z) = z.



CHAPTER

ON A THREE DIMENSIONAL
NONAUTONOMOUS SYSTEM OF
DIFFERENCE EQUATIONS

1.1 Introduction

In this chapter, we study the global behavior of the following nonautonomous three di-

mensional rational system of difference equations of fourth-order defined by

n n n Zn Tn Ty
PnF Y T = I 012, (LL)

T, = )
+1 Pn + Yn-3 An + Zn—3 'n + Tn—3

where {p,},{q.},{rn} are 3-periodic sequences of positive numbers, and the initial values

Ti, Ui, 2 € [0,00), for i = =3, -2, —1,0. Let

ay, 1f n=3k b1, if n=3k v, if n=3k
Pn=19 ao, if n=3k+1,¢ =9 P2, if n=3k+1,m=9 %, if n=3k+1,

where ay, as, as, 51, B2, B3, 71, V2, 73 are positive numbers such that

ai%ajv 61‘7&6]" '7i7é’7j7i7éj7 i, =1,2,3.

This system has a unique equilibrium point (z,y, z) = (1,1, 1). In the following, our study
focuses on the stability of this equilibrium points and the convergence of solutions a round

it.
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The first paper motivating us to study this system, is the paper [17] by Dekkar et al.,
in which the authors studied the system

g = 22T = T 01,2, (1.1.2)
pTL + yn72 Qn + Tp—2

where {p,} and {g,} are 2-periodic sequences of positive numbers and the initial values
are nonnegative real numbers. Our system (1.1.1) can be seen as the three dimensional
extension of the system in [17]. Other non autonomous difference equations and systems
that motivated our study, were investigated in the following references [16,35].

Now, we recall some definitions and well known results, one can consult the references

[ ? ? ? ] :

Consider the autonomous system of difference equations

Wn+1 = @(Wn), nec NO. (113)

where Wy € I, Ng = {0}JUN,N=1,2,3,..., and ®: [ — I,I C R¥ k € Nis a continuous
function.

Assume that W € I is an equilibrium point of System (1.1.3), that is a solution of
W — &(W).

Let ||.|| be the usual Euclidean norm or any equivalent norm in R¥.
Definition 1.1.1. The equilibrium point W is said to be:

e Stable (Localy stable): if for every e > 0, there exists § > 0 such that |Wy—W|| < &
implies that |W,, — W|| < e for all n € N,

Unstable: if it is not stable.

Asymptotically stable (Localy asymptotically stable): if it is stable and there exists
n > 0 such that |Wy — W|| < n implies that dim W, = w.

Global attractor: if for evry Wy, we have 7}1_)](210 W, =W.

Globally (asymptotically) stable if it is stable and global attractor.

Now, assume that @ is C! on I, to System (1.1.3), we associate the linear system

Zn+1 = Jgs(W)Zn, n € Ng, (114)
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where Z, = W,, — W and Jg(W) is the Jacobian matrix associated to the function &

evaluated at the equilibrium point W.
The following well known theorem will be very useful for studying the stability of the

equilibrium point W.

Theorem 1.1.1. Assume that W is an equilibrium point. Then we have the following

statements:

(i) If all the eigenvalues of Jo(W) lie in the open unit disk D := {\ € C : |\| < 1},
then the equilibrium point W is asymptotically stable.

(ii) If at least one of the eigenvalues of Jo(W) has absolute value greater than one, then

the equilibrium point W is unstable.

1.2 The equivalent autonomous system and the
boundedness of the solutions

First, we will convert System (1.1.1) into an equivalent nine-dimensional system with
constant coeflicients.

To do this, let us consider the following changes of variables:
1 2 3
Up = T3pn—2, Up = T3n—1, Un = T3n,

1 2 3
Un = Y3n—2, Un = Y3n—1, Un = Y3n,

1 2 3
Wn = Z3n—2, Wp = 23p—1, Wp = 23p, N = 07 17 ERE)

with

Now, with these changes of variables and the periodicity of the sequences {p,}, {¢n},

{r,} we get the following equivalent autonomous system
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1 aq + %n
un—l—l — 737
a1 + Un—1
2 s + 0421321n—1 + 1+ S)n
(o2 + qn)(ﬁl + zgn_1) ) \
3 ag(Bo+w) (1 F Uner1) + Poyi + Botly—1 + 71 F Uy
Un+1 = 2 1 3 )
, (a3 + ) (B2 + wp) (71 + Up—1)
1 61 + W,
UTL+1 - 737
61 + Wp—1
3 3
2 Pt Pate 1+ Un B
Unt1 = i , n=0,1,...,
3
(B2 + wy) (71 + Up—1)
1 3 3 3
5 Ba(v2 Fup)(on + Up1) F Y20r + YaUno1 +ar + Uy
Unt+1 = 2 1 3 ;
5 (53 + wn)(’YQ + un)(al + Un—l)
1 Y1+ Up
Wpp1 = ——5——,
7+ Un—13 s
2 Yoy + YV2Up—1 + @1 + Uy
Wnt+1 = i 3 ’
(y2 + uln)(ozl + v3n_1) ) \
3 (e + ) (B Weo1) + aof + apn 1 + Bi + Wy
Wnt1 = P 1 3 ,
(73 + Up) (2 + v,) (B1 + Wy1)
(1.2.1)
1 2 3 1 2 3 1 2

where uy = T, Uy = T_1, Uy = Tg, Vg = Y2, Vo = Y—1, Vo = Yo, Wo = 22, Wy = 2_1,
Wy = 2.
From here on, we will work on the equivalent autonomous System (1.2.1).

In the following first result, we prove that all positive solutions of System (1.2.1) are

bounded and persists.

. . 1 2 3 1 2 3 1 2 3
Theorem 1.2.1. Every positive solution {(uy,, Uy, Un, Un, Un, Un, Wy, We, Wy) } of System

(1.2.1) is bounded and persists.

Proof. We have for alln > 1

1 3 3 3
3 aa(Bo+wy) (v + Un—1) + Boyr + Balln—1 + 71+ Uy
un+1 - 2 1 3
(O‘3 + Un)(BZ + wn)(’h + unfl)
3
Qs B2 Y1+ Un
= 5t 2 T T 2 1 3
ag + Un (0[3 + Un)(62 + wn) ((13 + Un)(ﬁQ + wn)(’yl + un—l)
«
= . 5t 2 o T T 2 711 3
ag + Un (0[3 + Un)(62 + wn) ((13 + Un)(ﬁQ + wn)(/yl + un—l)
2
+ asg + v,

(o3 + 1) (3 + ) (B2 + Wn) (11 + tn_1)

7
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<14 1 n 1 1
o as  azfBa gl

from which it follows that for all n > 2

3 <14 1 n 1 1
Uy < — .
Qa3 a3 3 asz B2y

From System (1.2.1), we have

3
+ 1 1 1 1 1
'&Jml:%ig,unﬁl-f—*anﬁl-i-*-i- + + 5
Y1+ Up_q gt 1oz asfenn azfai
from which we obtain that for all n > 3
1 1 1 1

1
84! Q371 azBam 04352712

Also, we have

1
) By + s 1, 11 1 1 1
Upp1 =~ <14+ —wp <14+ + + ,
" By + W By B B asfonn asfim asfBiNg
which implies that for all n > 3,
1 1 1 1 1

2
Up <1+ —+ + + + .
B2 Bon asz By 063522’71 0635%’7%

Furthermore, for all n > 3, we have

2
3 a3+ Upg1 > e %! a3

Upt1 = 2 > 1 1 1 1 1
a3 + Uy ag+1+ B2 - B2 + aszfam + azfBav + aszBavi

Q3 + 12)”
a33371
30371 + asf3vi + asfori + asfoyi + foyi + 1 + 17

so, for all n > 4, we obtain

2722
/ISL > 04352")/1
T 0303 + asf30i 4+ asfayi + agfayi + Poi + 1 + 1

then for all n > 3

3
1 Y t+u gi! 71
Wha1 = = > > ) 1

3 = 3 = 1
Y1+ Up—1 Y1+ Un—1 Ml az + asf2 + asf2v1
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_ 04352’7%
asPovi + asfBoyi 4+ Poyi + 1 + 1

which implies that for all n > 4

1 > 04352712
T asfri oo+ Lo+ + 1

and for all n > 3

1

2 ot Wny > B2 > 52

Un+1 = 1 = 1 = I 1
Ba + wy, Bo + 1wy, 524-1—1- + + +

azyr | azBayr | asBay?
0136227%
337 + asfai + asfoy + Pon + 11+ 1

from which it follows that for all n > 4

2 30377
T a3f37F 4+ asfoyi + asfeyi + fon + 1+ 1

Similarly we get

n <14+ L + L + L f Iln > 2
— , or alln > 2,
Bs  Bsye  Bsyecu
'Un > fisoq for alln > 4,
G330t + 3303 + Bsvaad + Byvecn + Yo + i + 17
1 1 1 1
<1—|— —|— + + 5 for allm > 3,
By B3y2001 ﬁS’YQOé
un > 5372041 for alln > 4,
B3y00? + B30y + Yoy + i + 17
2 1 1 1 1 1
wy, <14+ —+ + + s— + 5 for alln > 3,
Yo Ye0q Py f3yian fiyzal
&n Parer for alln > 4,
B37303 + B37203 + B3ya0 + Yoy + ap + 17
1 1 1
Wy < 14—+ + : for alln > 2,
V3 Yz Y3
3 ’730‘251
Wy, 2 , for alln > 4,
V33 0F + 130507 4+ 30237 + Y3021 + iy + 1+ 1
<1+ L + L + 1 + ! i ln >3
Un -~ - 9 or alln el P
Bi Y351 Y3031 73%512
2
zljn > 73201 , for alln > 4

V30287 + 30031 + By + B1 + 1
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and
1 1 1 1 1
5n§1+—+ 5o+ 553 for alln > 3,
ay  wfi ysefr 130sb 305061
222
&> 7505/ for alln > 4.

T 30307 + 30207 + 30001 + o + B+ 17

1.3 Stability of the unique equilibrium point

Since System (1.1.1) has a unique equilibrium point (Z,7,%z) = (1,1, 1), then the equivalent
autonomous System (1.2.1) has the unique equilibrium point £ = (1,1,1,1,1,1,1,1,1).
Now, we will establish conditions for which the equilibrium point E will be globally stable,
that is locally stable and globally attractive.

First, let us write System (1.2.1) in the vectorial form (1.1.3). Let @ : [0, 00)'? — [0, 00)!?
be the function defined by

W) = (L(W), 2(W), fs(W),uz, g1(W), g2(W), gs(W), v3, ha (W), ho (W), his(W), w3),

where

12
W = (ul,UQ,U3,U4,U1,'UQ,’03,U4,wl,UJQ,w;g,U);l) € [0,00) )

ot @B+ avwy + By + w3
fl(W)_Oé1+U4’f2<W>_ (a2+'U1)(51+1U4) )
fs(W) = az(B2 + wi) (1 + us) + o1 + Boug + 1+ us
’ (g + ) (B2 + wr) (71 + uy) ’
Bt ws _ Boni + Pous + 1+ ug
(W) = b1+ wy’ 92(W) = (B2 +wi) (1 + ua)

Bs(2 4+ u1)(aq + vyg) + Yo + Yovs + a1 + v3
(B3 + w2)(72 + w1)(ar + v4)
_m 4‘%37 ho (W) = Vo1 + Y24 + Qv + U3
Y1+ Uy (72 + w) (g + va)
Y3(a + v1)(B1 + wa) + @By + agwy + B + ws
(73 + u2) (g + v1)(B1 + wy) '

g3(W) =

Y

hi(W)

ha(W) =

It follows that System (1.2.1) takes the vector form

Wit = ®(W,), n=0,1,...

where

1 2 3 3 1 2 3 3 1 2 3 3 T
Wn = (un;unaun;unfhvn;'Unalvnyvnfl:wnvwn;wnawnfl> .

10



1.3. Stability of the unique equilibrium point
NGR

The Jacobian matrix of the function @ at the equilibrium point

Ww=(1,1,1,1,1,1,1,1,1,1,1, 1),

will be
1 —1
o 0o 0 0 0 0 5 7 0 0 0 0
0 0 0 0 =1 O 0 0 0 0  as11  azio
0 0 agz aza 0 4 O 0 a9 O 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 —1
0 0 0 0 0 0 0 0 0 0 BT Bl
-1
J¢ (W) _ 0 0 ae.3 ae.4 0 0 0 0 Bat1 0 0 0 ’
az1 0 0 0 0 0 arz arg 0 z4g 0O 0
0 0 0 0 0 0 1 0 0 0 0 0
1 -1
0 0 5 =5 0 o 0 0 0 0 0 0
w2_+11 0 0 0 0 0 a7 awg O 0 0 0
0 V;il 0 0 a11,5 0 0 0 0 0 a11,11  G11,12
0 0 0 0 0 0 0 0 0 0 1 0
where
1 -1 1
211 = ,  A212 = , @33 = )
U (B D(an + 1) (Br+1)(ag + 1) (a3 +1)(B2 + 1) (1 + 1)
-1 -1 1
az 4 = 5 azg = ) Qg3 = )
T s+ DB+ D+ 1) Y T (as+ DB+ 1) T (B + D)+ 1)
-1 -1 1
ag 4 = y  ar1 = y  Qrr = )
(Ba+1)(m +1) (Bs+1)(re+1) (a1 +1)(Bs + 1) (72 + 1)
-1 1 -1
arg = ,  a107 = ,  a108 = )
(a1 +1)(B3+1)(2+ 1) (1 +1)(y2+1) (1 +1)(2+1)
-1 1 -1

M Tt D+ )M T (DB D+ )M T (e DB+ D + 1)

The characteristic polynomial of the Jacobian matrix Jg(W) is
P(X) = Pi(A)P2(A) Ps(),

where

AN +3X2 =3\ +1
(2 +1)(Br 4+ 1) (13 + 1)

XM E3X2—3)2+1

A =X DB D+ D)

Pg()\) :)\4+

11



1.3. Stability of the unique equilibrium point
NGR

and
A 4+3X2-3)2+1

(1 +1)(Bs+1)(r2 +1)

To establish necessary and sufficient conditions for which the roots of P()) lie in the open

Ps(A) = A'+

unit disk D, we will use the following theorem.

Theorem 1.3.1. [13] Let ag, a1, az, and ag are real numbers, we consider the polynomial
P(A) = M 4 as)® + as\® + a1\ + ag. (1.3.1)

Then, all roots of P(X) lie in the open unit disk D if and only if the following conditions

are satisfied
|(11—|—CL3| <1+ ag+ as, |a1—a3|<2(1—a0), as — 3ag < 3

and

ag + as + ag + a% + a%ag + a0a§ < 14 2agas + ayas + agaias + ag’.
Using Theorem 1.3.1, we have the following result.

Theorem 1.3.2. Consider the polynomial

1 1
P\) =\ — EAB + iv _ 35 + =, (1.3.2)

C C

where the parameter ¢ € (1,4+00). Let A;, i = 1,2,3,4 be the roots of P(\), then we have
1) N <1,i=1,2,3,4 < ¢c> 2+ /5.
2) c=2++5< 3N, i0 € {1,2,3,4} : P(\,) =0, |\ = 1.

8) ¢ <2++/5= 3\, 00 € {1,2,3,4} : P(\,) =0, |\i| > 1 and the remaining roots

are with modulus # 1.

1
Proof. 1) Comparing (1.3.2) with (1.3.1), we obtain ay = —, a; = —3ag, az = 3ao,
c

az = —ag, from which it follows that
|CL1+CL3| <14 ayg+ as & 4dag < 1+ 4ay,
which is always satisfied. Also,

la; —as] <2(1 —ag) ©2ap <1< c>2.

12
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As ay — 3ag = 0, it follows that ay — 3ag < 3 is satisfied.

Now, the condition
ag + as + ag + a? + a%aQ + aoag < 14 2apas + ajas + apajas + ag
is equivalent to

4ag + 10a2 + 4a < 1+ 9a2 + 4a3
Sap+4dag—1<0

s —A+4e+1<0.

Consider the polynomial Q(c) = —c? +4c+ 1, ¢ € R. It is clear that Q has the two

roots

01:2—\/5762:24—\/5.

Then, it follows that
— e+ 1<0e ce (00,2 V5)U(2+ V5, +00).
Now, if we choose ¢ > 1, it follows that
~ +4c+1< 0 ce (24 V5, +00).

Therefore, by Theorem 1.3.1, it follows that all roots of (1.3.2) lie in the open unit
disk D if and only if ¢ > 2 + /5.

Assume that ¢ = 2 + /5, then we get

S S I B SN S I
2+ 5 2+5 2+v5 245

P(A) =X*

The polynomial P has the following four roots

3 5 1 3 5 1
=SV —S 4241024 =SV —S—24102—4
A 4\/5 LT gV10 6v5, A 4\/3 7~ V10 6v/5
1 1 1 1 11
Agz—z\/ﬁ+1+ix/—10—2\/5, A4:—Z\/5+Z—Z\/—10—2\/5.

13
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From this, we have

ol =l = (5B s Ao =1

Now suppose that 3\, i € {1,2,3,4} : P(\;,) =0, |\;,] = 1, then

PA) = (A= Xi))(A = X ) (A + aX + b)
= A+ (@ — 2Re(N\i)))A* + (b — 2Re(N\y))a + 1) + (a — 2Re( i, )b)A + b.

Comparing with (1.3.2) we obtain

1
a—2Re(\;,) = — (1.3.3)
b—2Re(A)at1=" (1.3.4)

c

3
a—2Re(\;,)b = — (1.3.5)
pol (1.3.6)

= 3.

Subtracting (1.3.3) from (1.3.5) and using (1.3.6), we get

1
e( 0) 1 —c
From (1.3.3) we obtain
3c—1
a= .
(1—c)c
So, from (1.3.4) we get
?—4c—1
—— = 0.
(1—c)?

Hence ¢? — 4¢ — 1 = 0, from which it follows that ¢ = 2 + /5.

3) From the statements 1) and 2) we get
c<24+V5 =3\, 00 € {1,2,3,4} : P(\i,) =0, |\i| > 1

and the remaining roots are with modulus # 1.

]

In the following result, we summarize conditions for local asymptotic stability of the

14
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equilibrium point £ of System (1.2.1).

Theorem 1.3.3. e The unique equilibrium point E of System (1.2.1) is locally asymp-
totically stable if and only if

(s + DB+ D +1) >2+ V5, (aa+D(Bi+1)(s+1)>2+V5

and (a1 +1)(Bs +1) (92 + 1) > 2+ V5.

o Assume that (a3 +1)(Bo+1)(71+1) <245, or (e +1)(Bi+1)(3+1) < 2+/5
or (ay+1)(B3+1)(72+1) < 2++/5. Then the unique equilibrium point E of System
(1.2.1) is unstable.

Proof. 1It’s clear that the polynomials P;(\), P2(A) and Ps()) are in the form (1.3.2), so

by Theorem 1.3.2 we deduce the statements of our result. ]

Now, we will investigate the global attractivity of the unique equilibrium point E of
System (1.2.1).
The following two theorems provides conditions on the parameters «;, 3;, v, ¢ = 1,2,3

that guaranties the global attractivity of the equilibrium point E.
Theorem 1.3.4. Assume that o, B;, v, (1 = 1,2,3) € [1,4+00) such that
e At least one of ay, Ps, 72 € (1,+00).
o At least one of as, f1, 13 € (1,4+00).
o At least one of asz, B2, 11 € (1,+00).
Then, the equilibrium point E of System (1.2.1) is globally attractive.

Proof. We can write System (1.2.1) as three separated systems as follows

1 a1 + 13)71
Un+l = —— 3
Q1+ Up1
3 3
+ n1+ + v,
= LT IZ L TOLT D n=01,.. (137)
(72 + 'Uin)(al + '%n—l) 5 5
3 Bs(v2 + Up) (a1 + Up—1) + Vo1 + Y2Up-1 + a1 + U,
Unt1 = 2 1 3 )
(B3 + W) (y2 + un) (01 + Vp—1)

15
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1 51 + 1?l’)n
'Un+1 - 737
b1+ Wp—1 ; ;
2 a1 + agw,—1 + B + w,
Unp1 = 1 3 n=20,1,...,
(g + Tfn)(ﬁl + gUnfl) , ,
3 Y3(og + vy) (81 + Wno1) + @231 + QoWp—1 + B1 + Wy,
Wn+1 = 2 1 3 g
(73 + ) (2 + U,) (1 + Wp—1)
(1.3.8)
and
1 ’71 + an
Wpy1 = ——5
71 + un—13 3
I o Tl o s B n=0,1,..., (1.3.9)
(B2 + wln)(% + ng—l) \ ;
3 ag(Bo+wy) (i F Uno1) + Poyt + Lottt + 11+ Uy
Unt1 = 2 1 3 )
(a3 + Un)(ﬁ? + wn)(’yl + un—l)

Our goal is to prove that, every solution (%Ln,v?un,%n> of System (1.3.7) converges to

(1,1,1), every solution (én,én,é’;n> of System (1.3.8) converges to (1, 1, 1) and every

solution (in,%n,an) of System (1.3.9) converges to (1, 1, 1).

Let for all n =0,1, ...,

1

1 2 1
Sp = Y2 + Uy, Sp = Q2 + Uy,

L 2 2 2

tn:ﬂi’)_‘_wn; tn:73+una
and for all n = —1,0, ...,

1 3 2 3

dn:a1+vn> dnzﬁl_‘_wna

3 1
Sp = B2+ wp,

3 2
tn = Qa3 + Up,

3 3
dp = Y1 + Up.

Then Systems (1.3.7), (1.3.8) and (1.3.9) will be respectively

=B+ =0+

1 1
72dn—1 + dn

(1.3.10)

Y

Sn Sndnfl

T

16
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2
2 dy,
Sn+l = Qg + 2 )
dn—l
2 Aoy +d
2 Sn+1 Qolp—1 + n
b =t L oy g RO T (1.3.11)
Sn Sndn—l
i 2.d dyy +d
2 2 Spln—1 + Qaln_1 + dp
doi1 = Bi+ 2Jrlzﬁl_'_% 21222 1 7
tn tnsndn—l
d
3
Sny1 = P2+ 3 .,
dnfl
] Byd d
3 Sn, n—1 1 ay
byt =03+ 5 =0+ g (1.3.12)
Sn Sndn—l
3 / 3 d Bodyyy +d
n+1 Q3S8p0n—1 + 2U0Un—1 n
dpt1 =+ —5—=m+ 5 3 3 :
tn tnsndn—l

From which it follows that,

1 1
(uw3) 5 (1,1,1) & (S, tnydn) = (Y241, 85+ 1, ay + 1),

1 2 3 2 2 2
Upy Up, Wy | = (1,1,1) & (8, b0, dn) = (e + 1,93+ 1,81 + 1),

1 2 3 3 3 3
(wn,vn,un) = (1,1,1) & (Sn, tn,dy) = (Bo+ 1,az+ 1,91 + 1).
Note that Systems (1.3.10), (1.3.11) and (1.3.12) are in the same form, so we will prove
only the result for System (1.3.10), and we deduce the results for System (1.3.11) and
System (1.3.12) in a similar way.

11
Let (én, L, dn> be a solution of System (1.3.10), then we get

Bsya01 + a1ye + g + 1

Sn="oF Uy <2+ 1+ . >3,
53'72051
2
én >~y 4 ; B3y20q . n >4,
Bsy20q + Bsye0n + ye0u + o + 1
1 1 o +a1ys +ap + 1
tn:ﬁ3+&n§1+53+7+6372 - 1;/22 : ) 237
V2 Bayiar
1 Byvsad
tn 2 + , n 2 4,
Pa Bsviat + 37203 4 f3yecn + Year + a + 1
1 +a;+1
dn:a1+%n§1+al+w>n227
B3y2011
1 2.2 2
dn Z &3] + 6372041 Z 4.

,n
B37308 + Baviod + f37205 + Bayaan + yoc + a1 + 1

17
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Let
i inf & l"fl 1"fdl
mq ;= liminf s mo ;= liminf¢ ms = limin
1 n—oo 2 n—oo 3 n—oo
. 1 . 1 . 1
M :=limsups,, Ms:=limsupt,, M;j:=Ilimsupd,.
n—oo n—0o0 n—oo
We have

0<my SMl,Z:1,2,3

From (1.3.10), we get

m M.
m1272+ﬁ3’ My <y + —2,
3 ms

m M
m2253—|—ﬁ1, My < Bs + —,
1 my

M.

m32a1+%, Ms < ay + —2,
Mg mo

from which it follows that

my Mz > 2 Mz + ms,
Myms < yamg + Ms,
maMy > B3 My + my,
Mymy < Bzmy + M,
mzMy > a1 Ms + meo,

Msmy < aymg + M.

By multiplying equalities (1.3.16) by My and (1.3.19) by Mj, we get

my Mz My > o MsMy + msMy,  Mamy Mz < Bsmy Mz + My Ms,

then
YoMs My + msMy < Bsmq Ms + My Ms

Multiplying equalities (1.3.17) by M and (1.3.20) by M;, we obtain

MimsMy < yomzMy + M3M,,  mzMoMy > oy Mo My + mo M,

18
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1.3. Stability of the unique equilibrium point
NGR

then
a1M2M1 + mQMl S ’)/ngMg + M3M2. (1323)

Multiplying equalities (1.3.18) by M3 and (1.3.21) by M; we get
meMiMs > B3 MiMs + miMs,  MsmaoMy < aymaMy + MMy
then
ﬂngMg + m1M3 S almng + Mng. (1324)
From (1.3.22), (1.3.23) and (1.3.24), we get

Yo M3 My + msg My + Bs My Ms 4 my Ms + ooy Mo My + mo My < Bsmy Ms + My Ms + ayme M,

+ MoMy + yams My + M3 M,
which implies that
(72 — 1)Mo(Ms — mg3) + (g — 1) My (My — ma) + (B3 — 1) M3s(M; —my) <0 (1.3.25)

o Ifye > 1,09 > land B3 > 1, then from (1.3.25) we get My = my, My = mg and M3z =

mg. So, from (1.3.13)-(1.3.15) it follows that (my, ma, m3) = (72 +1, B3+ 1,1 + 1),
11

that the solution (én, tn, dn> of System (1.3.10) converges to (72 +1, B3+ 1, a1 +1).

o If B3,1 > 1 and 7, = 1, then from (1.3.25) we obtain M; = my, My = my. Clearly,
from (1.3.15) we get

a1+1§m3§M3§041+1.

So, M3 = m3 = a1 + 1. Now, from (1.3.13) and (1.3.14), we obtain also that
11
my1 = v, + 1 and my = B3+ 1). Hence the solution (én, th, dn> of System (1.3.10)

converges to (v + 1,03 + 1, a1 + 1).

o If B3 > 1 and 75 = ay = 1, then from (1.3.25) we get M; = m;. From (1.3.14), we
obtain

Bs+1<mg <My, <ps5+1,

that is My = mo = 3+ 1. Now, from (1.3.15) we get
ap+1<mg < Ms<a +1

19
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So, M3 = m3 = ay + 1. Finally, from (1.3.13), we obtain M; = m; = 7, + 1. Hence

11
the solution (én, th, dn> of System (1.3.10) converges to (72 + 1,83 + 1,4 + 1).

o The proof in the following cases (y2, 85 > 1,1 = 1), (72,00 > 1,83 =1, (B3 =y =

L, > 1), (3 =7 = 1,a; > 1) can be done in a similar way.

2 2
By the same arguments, we can prove that the solution (gn, tn, dn> of System (1.3.11)

converges to (ag + 1,73 + 1,81 + 1) (resp. the solution gn,in,?ln of System (1.3.12)
converges to (B2 +1, a3+ 1,71 +1)) in each of the following cases (73, ag, 1 > 1), (ag, f1 >
Lys = 1), (13,81 > Lag = 1), (3,00 > 1,81 = 1), (13 = e = 1,5 > 1), (13 =
B =1lag > 1), (g = 1 = 1,93 > 1), (resp. (71,0a3,82 > 1), (a3,52 > 1, = 1),
(V.82 > Liag=1), (a3 > 1L, B=1), (m=a3 =10 >1), (n=7>1=1La>1),
(a3 =Py =1,7m >1)).

Consequently, the unique positive equilibrium of System (1.2.1) is a global attractor. []

Theorem 1.3.5. Assume that a1 857, > 8, asf1y3 > 8 and asfsy; > 8. Then the unique
equilibrium point E of System (1.2.1) is globally attractive.

Proof. We will prove that every solution (én,ﬁ)n,%n) of System (1.3.7) converges to
(1,1,1), every solution (111n, én, t?bn) of System (1.3.8) converges to (1,1, 1) and every solu-
tion (&Jn, B, %in) of System (1.3.9) converges to (1,1,1). We will prove the result only for
System (1.3.7), the results for Systems (1.3.8) and (1.3.9) can be done in a similar way.

Consider the functions: f : [as, b3] X [ag, bs] — [a1,b1], ¢ : [a1,b1] X [as, bs] X [ag, bs] —

[ag,bz] and h : [al,bl] X [az,bg] X [CLg, bg] X [ag, bg] — [CL3, bg], where

ap +w Vo1 + Y22 + 1 + w

and
o 53(’)/2 + U)(Ozl + Z) + Yo Or1 + Yoz + o +w
h(u,v,w, z) = )
(B3 +v)(v2 +u)(ar + 2)
with

. L1 11 B 1 1 1
ay := min(A, ug, uy, U, uz), by :=max(1l+ a*vu()’ubu?)’
1

YA 2 2 2 2 a2 +ar+B 2 2 2

g = min(72A+ 1,w0,w1,w3,w4), by = max( a1 ’U’valvw?)’
az := min( Fa124 %_1 13)0 13)1 %2 %3) bz := max(B 131_1 1?30 1?31)
B3y A+ pA+1 T T Y o
A Bsy207 B B3yer + Yoy + g + 1
 B3neadl + Baveon + yeon +ag 4+ 17 . B3vec '
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Then, our System (1.3.7) takes the form

1 3 3 2 1 3 3 3 1 2 3 3

Up+1 = f(vnu vn—l)a Wn4+1 = g(unyvn7vn—1)a Un+1 = h(una wnyv’rwvn—l)a n < I\IO'

(1.3.26)

Clearly the function f(w, z) is increasing in w and decreasing in z, the function g(u,w, z)

is increasing in w and decreasing in both u and z, however the function h(u,v,w, z) is

increasing in w and decreasing in u, v and z.

Let (Ian, i %n) be a solution of System (1.3.26) with (IILO, 5}0,%0,%_1) € [ay,by] x
[CLg, b3]2.
Set

0._ 0._ 0._ 0.__ 0._ 0._
ml - CL1, Ml - bl, m2 - a/2, M2 - b27 m3 . — CL3, M3 - b3’

and for each 1 =0,1,2,...,

f(mi, M3), M
g(M;,mi, M3), Mg+t
h(M;i, M, mi, M%), Mith:

(Mg, m3),

f
mz* g(my, M3, my),
H—l . h

(i, miy, Mg, ms).

Using the monotonicity of f, g and h, we get
my = ay < f(my, Mg) < f(Mg,mg) < by = M,

m2—a2<g(Mf,m3,M0)<g(m1,M§,m3)<b2 MS,
my = ag < h(My, My, mg, Mg) < h(mf,my, My, m3) < by = My,

that is,
0 1 0
1 < m% < My < My,

0 1 1 0
my < my < My < M),
mg < my < My < Mj.

Again, using the monotonicity of f, g and h, we obtain

my = f(mg, Mg) < f(mg, Mg) < f(Mg,mg) < f(Mg,mg) = M;,

my = g(M{, m3, M) < g(M{,m3, Mg) < g(my, Mg, m3) < g(m?, Mg, m3) =

21

[CLQ, bg] X

(1.3.27)
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g’ Mi?) S h(M117 M217 2157 M31) < h(m17m27 M m3) < h(mlam% M

h(MY, My,

1 _
m3_

from which it follows that

ap=mi<mi <. <mi < <M< <M< MY =0y,
ap=mi<mi< - <mi< - <M< <M< M =b,,
ag=m<mi <. <mi < <M< < My < M = b
Now, we have
1 2 3 3
my <wug < MY, my <wg < My, my <y <M, my<v, <M.

The monotonicity of the functions f, g, and h yields to

1 3 3
mi = f<mgvM£?) Sup = f(U07U—1) < f(M;?,mg> - Mllv
o 0 0 0 2 o 1 3 3 o 1
_g(M17 37M3)§w1—g(U07U07 )<g(m17M )_M27
3 1 2 3 3
my = h(M}, MY, m3, My) < 01 = h(ug, Wo, Vo, V1) < h(m{,m3, My, m3) = M,
1 3 3
my = f(m§, M) < f(my, M3) <uy = f(v1,00) < f(Mg,mg) < f(My,m3) = M,
2 1 3 3
my = g(M?, m3, M3) < g(M{,m}, M) < wy = g(ur, 01,%) < g(my, My, m3)
S g(mlaM ) M217

1 2 3 3

mi = h(M}, M3, m§, M3) < h(M}, M}, m}, M) < & =

22

):

h‘(ub w1y, Yy, UO) S h(m%v m%? M317 mg)

my)

1
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1 3 3
mi = f(my, My) < ug = f(vy,01) < f(Mg,mz) = M7,

2 1 3 3
mg = g(Mllvmil’nM?}) Swz = g(u27v27vl) < g(m%’Mi’}amé) - MZQ’

3 1 2 3 3
mj = h(M{, My, m3, M3) < v3 = h(uy, W, V3,01) < h(my, my, M3, m3) = M.
By induction, it follows that for ¢ = 1,2, ..., we have
miy <y < Mj,
mb <, < Mi, fork>2i—1.
my < vy < M,
Let
my = limm?, my:= limm}b, m3:= limm},
1— 00 71— 00 71— 00
My := lim M}, My := lim M}, Mj:= lim M.
71— 00 1— 00 1— 00
Then, we obtain
my < lim inf 1111 < lim sup 11/JZ < My,
1—00 i—00
mo < lim inf I%Z < lim sup 1202 < M,
100 i—00
mg < lim inf %Z < lim sup 1311 < Ms.
1700 i—00
The continuity of the functions f, g, h and (1.3.27) implies that
my = f(ms, Ms), My = f(Ms, ms),
ma :g<M17m37M3>7 M2 :g<m17M37m3)7 (1328>

mg = h(My, My, ms, Ms), Msz = h(my, my, Mz, ms).

System (1.3.28) is equivalent to the system

m (071 +?TL3
1 — Oéli%?,’
a7 3
M = —=
1 O[1+m37
" Yoo + Mz +ar+m3 e+
2 — - )
(’72+M1)(041+M3[%/[ Yo + M 1.3.99
M, = Youy + Yoz + i + 3:72+M1 (1.3.29)
(72 +mq)(aq + mg) Yo +my’
m Bs(y2 + My)(aq + M3) + voay + 7o Mz +ay +ms 3+ my
3 pr - )
(B3 + M) (2 + My)(ay + Ms) B + My
M, B3(y2 + mq)(cq +m3) + e + yamg + o + M; _ Bs 4+ M,
(Bs + ma)(v2 + ma)(cq + ms) Bs + my
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From (1.3.29), we have

M —m _a1+M3_a1+m3 _(a1+M3)2—(a1+m3)2
! Yo bms o+ Mg (a1 +m3)(ay + Ms)

(M3 —mg) (o1 + M3 + aq + mg)
(Oél + mg)(Oél -+ Mg)

1 1
= (Ms—m +
(M3 3)(a1+m3 041—|—M3>

2 2
< (M — mg)——— < = (My — m).

a1 + ms aq

Similarly, we obtain

M, — < (M, — < M, —
2 mz_( 1 m1)72+m1 >~ 72( 1 ml),
M. < (My — ma)—2— < 2 (My — m)
—m —my)—— < — —m
3 3 < 2 Qﬁg—l—mg_ﬁg 2 2),
hence, we get
My —my < My —my),
! b= 0415372( ! 2
from which it follows that
(1 8 ) (M- ) <0
— —-—m )
a1 3372 ! Y=

Since aq 372 > 8, then M; = my, therefore My = my and M3z = m3. Thus

m; = f(mg,mg) =1= ZZ‘,
mo :g(m17m37m3):1:g7
ms = h(ml,mQ,mg,mg) = ]_ = Z.

Then, every solution of System (1.3.26) converges to (1,1,1). Hence every solution

{(’Lan, i 23)”)} of System (1.3.7) tends to (1,1, 1) and similarly we can prove that every so-

lution {(11)n, i, &n)} (resp. {(d}n,%n, an)} of System (1.3.8)(resp (1.3.9)) tends to (1,1,1).

Consequently, the equilibrium point E of System (1.2.1) is globally attractive. m

In the next theorem, we summarize the behavior of the solutions of the system (1.1.1).
Theorem 1.3.6. Consider System (1.1.1). Then, the following statements holds:

(a) Every solution {(zn, Yn, 2n) }n>—3 of System (1.1.1) is bounded and persists.
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(b) The unique equilibrium point of System (1.1.1) is locally asymptotically stable if and

only if (as 4+ 1)(Ba + D)(71 +1) > 2+ V5, (ag + 1)(B1 + 1) (y3 + 1) > 2+ /5 and
(a1 + 1) (B +D)(12 +1) > 2+ V5.

(c) Assume that (az+1)(Ba+ 1) (71 +1) <245 or (e +1)(B1+ 1) (13 +1) < 2++/5
or (ay+1)(Bs+1)(12+1) < 2++/5. Then the unique equilibrium point of System
(1.1.1) is unstable.

(d) Assume that oy f3ye > 8, asf1y3 > 8 and azfey1 > 8. Then the unique equilibrium
point of System (1.1.1) is globally asymptotically stable.

(e) Assume that o, B, vi, (i = 1,2,3) € [1,+00) such that

— At least one of oy, B3, 2 € (1,400).
— At least one of ag, f1, 73 € (1,+00).
— At least one of ag, P, 71 € (1,400).

Then the unique positive equilibrium of System (1.1.1) is globally asymptotically
stable.

Proof. & Statements (a), (b) and (c) are the results of Theorems 1.2.1 and 1.3.3.

¢ Statement (d): The global attractivity derives from Theorem 1.3.5. Concerning the
local asymptotic stability, it follows from the fact that if aq 537, > 8, asfB1v3 > 8 and
asfom > 8, then we get (ag+1)(B2+1) (71 +1) > 24+V5, (e + 1) (B +1)(y3+1) >
2++v6and (a1 + 1)(Bz+ 1)(12 +1) > 2+ /5.

¢ Statement (e): The global attractivity follows from Theorem 1.3.4. Tt is clear that in
each case the conditions (a3 +1)(Bo+1)(71+1) > 2+5, (ap+ 1) (B +1)(13+1) >
2+ /5 and (o +1)(B3 + 1)(y2 + 1) > 2+ /5 are verified, consequently the unique
equilibrium point of the system (1.1.1) is locally asymptotically stable.

1.4 Periodic solutions and rate of convergence

In this part, we will show the non existence of periodic solutions of period three and
six. Also, we will use some known results of Perron to establish a result on the rate of

convergence of the solutions of System (1.1.1).
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1.4.1 Periodic Solutions

Definition 1.4.1. A solution (zy,Yn, 2n)n>—3 of System (1.1.1) is said to be periodic of
period p € N if

Totp = Tny  Ynap = Yns  Zndp = Zn, Jor alln > —3.

Theorem 1.4.1. System (1.1.1) has neither prime period-three nor prime period-siz so-

lutions.

Proof. Assume that System (1.1.1) has a prime period-three solution of the form

e (661, 51701), (Gzab2,02)7 (a3>b3,03)7 e

then it follows that

pn+b3 qn+03 Tn—i—ag
alz :1’[)1: :1701: :1’

pn+b3 Qn+c3 rn+a3

n+0 n+c T+ a
a2:p 1:1ab2:q 1:1762: 1:17

pn+b1 Qn+cl Tn—i_al

n b n n
agzp+2:1,b3:q+62:1,03:7ﬂ+a2:1.

pn+62 Qn+c2 Tn+a2

So, System (1.1.1) has no prime period-three solutions.

Now, to prove that System (1.1.1) has no prime period-six solutions it is sufficient to
show that systems (1.3.7), (1.3.8) and (1.3.9) has no prime period-two solutions. For the
sake of contradiction, assume that System (1.3.7) has a prime period-two solution of the

form

sy (a,b,0), (A, B,C),(a,b,c), ...,
then, we get

. C_Bs—i‘B
ap+c’ ap +C’ vo+ A’ Yot a’ B3+ B’ Bs+0b

A
Oél—FC A—a1+c b_’)/g—i-a B:’}/Q—i- _ﬁg—i-b (1‘4‘1)

From (1.4.1), we obtain that

(a—A)2v+a+A)2B5+b+ B)(2a1 +c+ C)
(72 + @) (72 + A)(Bs + ) (83 + B) (a1 + ¢)(ar + C)’

A—a=
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which implies

(2’}/2 +a+ A)(Qﬁg + b+ B)(QOél +c+ C)
(v +a)(v2 + A) (B3 + b) (B3 + B) (a1 + ¢)(aq + C)

(A—=a)(1+ ) =0.

Hence, A = a. So, again from (1.4.1), we get B=b=C =c=1and A =a = 1. This
completes the proof. O

1.4.2 Rate of convergence

Consider the system of difference equations

Uns1 = (A+Bn)U,, n=0,1,.., (1.4.2)

where U, is an m-dimensional vector, A € C"™*™ is a constant matrix and B : ZT — C"™*™

is a matrix function satisfying

|B(n)|| — 0, n — oo (1.4.3)

where ||.|| denotes any matrix norm. The following theorem help to determine the rate of

convergence of the solutions of System (1.4.2).

Theorem 1.4.2. (Perron’s Theorem [”/]]) Consider System (1.4.2) where the condition
(1.4.3) is verified, and let (U,)n>0 be a solution of (1.4.2), then either U, = 0 for all n or
R

o |[Un

(= Jim (101"

exists and is equal to the modulus of one of the eigenvalues of matriz A.

Now, we will establish a result on the rate of convergence of a solution of System
(1.1.1) that converges to the unique equilibrium point. We will work on the equivalent
System (1.2.1). Assume that {(&n,%n,ﬁn,%}n, 12)“, %n,zlvn, IQUn,'i%Jn)} is a solution of System
(1.2.1) that converges to the unique equilibrium point F = (1,1,1,1,1,1,1,1,1).

For n > 0, let
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We have
3 3
1 Vy, — Upe 1 3 1 3
Upiy — 1 = i (U, — 1) — (Uny — 1),
Q1+ Up1 Q1+ Up Q1+ Up1
S0,
1 1 6 1 6
€nt+1 = 3 €En €n—1
a1+ Up_q oy + Up_q
Also
3 1 3 3 3 1 3
QQL 1 _Bl + Wp — vn(ﬁl + wn—l) o Wy — Wp—1 — (Un - 1)(61 + wn—l)
n+l — L — 1 3 - 1 3
(a2 4+ vy)(B1 + Wp—1) (g 4+ vy)(B1 + Wp—1)
1 3 1 3
- 1 3 (wn - 1) - 1 3 (U)n,1 — 1)
(g + vy)(Br + Wn—1) (g + V) (B + Wn—1)
1
(0, — 1),
(g + vy)
S0,
2 1 4 1 9 1 9
Qo + Uy (g +v,,)(B1 + Wp—1) (g 4+ vy)(B1 + Wp—1)
We have
3 3 2 1 3
3 1 _52(% + Up—1) + 71+ Un — Vn (B2 + W) (71 + Up—1)
n+1 = - 2 1 3
(g + ) (B2 + wp) (71 + Up—1)
1 3 1 3 3 2 1 3
- (62 + wn)(’Yl + un—l) - wn(71 + Un—l) + i + Up — Un(BQ + wn)<71 + un—l)
- 2 1 3
(Oég + vn)(ﬁ? + wn)(r}ﬁ + un—l)
1 3 3 3 2 1 3
__(wn - 1)(’}/1 + un71> — Up-1 + Uy — (vn - 1)(62 + wn)(71 + unfl)
- 2 1 3
(a3 + ) (B2 + wp) (71 + Up—1)
1 1 1 3
- 2 1 (wp —1) = 2 1 3 (thp—1 — 1)
(a3 4 0p) (B2 + wy,) (a3 + 5) (B + wy) (1 + Un1)
1 1
+ 2 1 3 (52”—1)— 2 (%n_U,
(a3 + 0) (B2 + W) (71 + Up—1) as + Up
then,
3 1 3 1 3 1
€ntl = 2 1 3 €n — 2 1 3 €n—1 2
(g + ) (B2 + wp) (71 + Un—1) (g + vp,) (B2 + Wy ) (71 + Un—1) a3 + vy
1 7
— -

(3 + 0 ) (Ba + thy)
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Similarly, we get
1 1 3 1 3
Upy1 — 1= (W, — 1) — s (Wp1 — 1),
B1+ Wp—1 B1 4+ Wp—1
thus,
4 1 9 1 9
€ntl = 35  €n— 3 Cn_1
Bl + Wp—1 Bl + Wn—-1
Also,
2 1 3 1 3 1 1
Upp1—1 = - (U, —1)— : 7 (tUp-1—1)————(w,—1),
(B2 4 W) (71 + Up—1) (B2 + wp) (71 + tn—1) B2 4 wy,
therefore,
5 1 3 1 3 1 7
€nt1 = T 3 €n — T 3 €n-1— 7 €En
(B2 4wy ) (71 + tn-1) (B2 + wn) (1 + Up—1) By + wy,
We have
3 1 1 1 3
Up+1 — 1=-— 5 1 (Un — 1) — 3 1 3 ('Un—l — 1)
(63 + wn)(’72 + Un) (63 + wn)(’YQ + un)(al + Un—l)
1 1
T . : (g = 1) = (W, — 1),
(63 + wn>(72 + un)<a1 + 'Unfl) 63 + Wn,
then,
- ! Lo+ ! :
n+l — 7 2 1 n 2 1 3 n
(63 + wn)(’YQ + un) (63 + wn)(/y2 + un)<a1 + Un—l)
1 6 1 8
- 2 1 3 €n-1— —— 5 En
(ﬁ?) + wn)(’72 + Un)(al + Un—l) ﬁ?) + W,
In a similar way, we have
1 1 3 1 3
Wpip — 1 = 73(1% —1)— 73(%1,1 - 1),
Y1+ Up—1 Y1+ Up—1
which implies that
7 1 3 1 3
€nt1 = 3 €n — 3 €n—1
Y1+ Up—1 Y1+ Up—1
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Furthermore,
2 1 3 1 3
Wpe1 — 1= - 3 (o, — 1) — - (Up—1 — 1)
(v2 + upn) (g + Vy1) (v2 + un) (g + Vy1)
1 1
- —(un — 1),
Y2 + Unp,
thus,
1 1 1
Yo + Up (v2 + un) (a1 + Vp—1) (72 + upn) (a1 + Vp1)
Finally,
3 1 1 1 3
Wpp1 — 1= — 5 —(vp — 1) = 5 - 3 (Wp_1 — 1)
(73 + Un) (2 + p) (v3 4 Un) (2 + 0,) (B1 + Wn—1)
1 1
+ 2 1 3 (3}”_1)_ 2 (an_1)>
(’73 + un)(a2 + Un)(ﬁl + wn—l) Y3 + Unp,
which yields
9 1 2 1 4 1
Cntl = — 5 En — 2 T tn Tt 2 1 3
V3 + Un, (73 + Un) (2 + p) (73 + Un) (o2 4+ v) (B1 + Wi—1)
1 9
- 2 1 3 €n—1-
(73 + ) (2 + V) (1 + Wi—1)
Note that
lim 4, = lim @, = lim i, = 1,
n—oo n—oo n—oo
lim 0, = lim 4, = lim 0, = 1,
n—oo n—oo n—oo

.1 .2 .3
lim w,, = lim w,, = lim w, = 1.

n—oo n—oo n—oo
So, we can write
1 1 1 1
3 - + bl(n)v T + bg(n),
a1+ Uy a;+1 oo + Uy, as +1
1 1
= -+ b3<n),
(2t 5)(Brt ) (a2t DB+ 1)
1 1
= + b4(n),
(s + 1) (Ba + W) (1 + thpy) (@3 + DB+ 1)(n+1)
1 1 1 1
= + b5(n)’ = + bﬁ(n)7

az+ o, sl (a5 + 50)(Bo + 1) (a3 +1)(B2+1)
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1 1 NFE :
i AR S G nm D T
1 1 1 ]
PR ot tn)oa t t) Bt D02+ 1) buafe),
1 1
(Bs + ﬁ’n)(% + én)(al + %n,l) B (Bs+ 1)(v2+ 1)(ag + 1) +bu(n),
1 1 1 1
B3 +12Un - ps+1 + bia(n), o _I_z?ln_l = P + bi3(n),
1 1 1
ol mrl ) (ot (o + Byy) Dzt D@+ 1) bra(m),
1 1 1 ]
R ol (ot B)(an £ ,) (st Dzt D) burl),
1 1

(73 + i) (g + 03) (By + 1)

(vs + D(az + 1)(F1 + 1)

+ blg (n),

such that lim b;(n) =0, i = 1,2,...,18. Then, we get the system

n—oo

Ewi1=(A+B(n)E,, n=01,...,
where FE, = (én,(zan,gn,gn_l,én,2n,2n,gn_1,gn,2n,gn,gn_1)ip, the constant matrix A is
given by
0 0 0 0 0 0 a7 ag O 0 0 0
0 0 0 0 ays O 0 0 0 0  az11  asio
0 0 asz3z aza 0 aze O 0 azg O 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0  as11 as12
4 0 0 as3 asa O 0 0 0 a9 O 0 0
a1 0 0 0 0 0 a7 arg 0 arqo 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 ags ags O 0 0 0 0 0 0 0
a1 0 0 0 0 0 a7 aps O 0 0 0
0 a11,2 0 0 ai15 0 0 0 0 0 a11,11 A11,12
0 0 0 0 0 0 0 0 0 0 1 0
Where
1 —1 —1 1
B T L N A DA D
—1 1 —1
FE T )BT DB D) T (s DG+ Do+ D)
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—1 —1 1 —1
asg = , Qa3g = , a =—,  a = —)
3,6 as+ 1 3,9 (ag I 1)(ﬁ2 T 1) 5,11 B+1 5,12 Bt
1 —1 1 —1
g3 = a4 = Jae9 = ————, A7 = ,
T B )+ D) Bt )+ 1) Ba+1"70 T (B3 + 1) (72 + 1)
1 —1 —1
A7 = ,  arg = . ario = ,
o (Bs +1)(v2 + 1)(a; + 1) s (Bs+1)(v2+1)(a1 + 1) O B 1
1 —1 —1 1
9.3 = - R a9 4 = o 1 10,1 = m, Q10,7 = (72 T 1)(a1 i 1),
—1 —1 —1
10,8 = (72 i 1)(a1 i 1)7 11,2 = ﬁ’ ai1,5 = (73 i 1)(&2 i 1)>
1 —1
T G Dl DB D) T et Dlag + DB+ )
and
0 0 0 0 0 0 by —b; 0 0 0 0
0 0 0 0 —by 0 0 0 0 0 bs —b3
0 0 bas  —bs 0 —bs O 0 —bg 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 by —by
B( ) 0 0 bg —bg 0 0 0 0 —bg 0 0 0
n) = ,
—b1o 0 0 0 0 0 by =by 0 =b 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 bizs —bi3 0 0 0 0 0 0 0 0
—b14 0 0 0 0 0 b —=bs O 0 0 0
0 —big O 0 —bi; O 0 0 0 0 bis —big
0 0 0 0 0 0 0 0 0 0 0 0

where b; = b;(n), @ = 1,2,...18, with ||B(n)|| — 0 for n — +o0. Using Perron’s

Theorem (Theorem 1.4.2), we get the following result.

1 2 3 1 2 3 1 2 3 . .
Theorem 1.4.3. Assume that {(wy, Uy, Un, U, U, Uy Wy, Wy, Wy) } 1S a solution of the

System (1.2.1) that converges to the unique equilibrium point E. Then, the error vector

1 2 3 3 4 5 6 6 7 8 9 9
En = (€n7 €ny €ny, €n—1,€n, €n, €n, €n—1,€n, €n, €n, enfl)

of every solution of System (1.2.1) satisfies both of the asymptotic relations

e Xl o 1/n
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w%ﬁ\o
1 1 2 2 3 3 4 1 5 2 6 3
where €, =u, — 1, ¢, =u, — 1, e, =u,— 1, ¢, =v,—1, e, =v,—1, e, =v, — 1,

én = tlun -1, gn = 5}” -1, gn = 13’)” — 1 and p is equal to the modulus of one of the

eigenvalues of the Jacobian matriz A.

1.5 Numerical examples

Here, we provide numerical examples that illustrate our obtained results.

Example 1.5.1. Consider System (1.1.1) with initial conditions x_3 = 12, x_o = 4,
r_1 = 1]_, Ty = 15, Y3 = 2, Yo = 5, Y1 = 02, Yo = 08, Z_3 = 5, Z_9 = 2, 21 = 06,
20 = 3.8, and let be the parameters a; =1, ap =12, az =4, 1 =6, B =1, 3= 1.7,

1 =10, 2 =1, and v3 =2, 1.e.,

1, if n=3k 6, if n=3k
Pn=19 12, if n=3k+1,¢%=51, if n=3k+1
4, if n=3k+2 1.7, of n=3k+2
and
10, if n =3k

=941, if n=3k+1
2, if n=3k+?2
In this case, we have oy = Py = 9 = 1 and as, asz, B, B3, Y1, 73 > 1. Thus, from

Theorem 1.3.6 the unique equilibrium point of System (1.1.1) is globally asymptotically
stable. The plots of z,, y, and z, are shown in Figure 1.1, Figure 1.2 and Figure 1.3

respectively.
1.4 1.5
1.44
1.2 13
1.2+
1.0
1.1
x(n) 0.8 y(n) 1.0
0.9
0.6 0.8
0.7
0.4
0.6

1‘() 2‘() Bb 4‘0 5‘() (;() 7‘() 8‘0 Qb 1(‘)0 1‘0 2‘0 3b 4‘0 56 60 7‘0 8‘0 Qb 160
n n

Figure 1.1 — Plot of x,: Example 1.5.1 Figure 1.2 — Plot of y,: Example 1.5.1
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z(n) 2]

0 20 40 60 80 100
n

Figure 1.3 — Plot of z,: Example 1.5.1

Example 1.5.2. Consider System (1.1.1) with initial conditions r_3 = 1.6, x_5 = 0.8,
x1 =43, vg =14, y3 =08, yo =3, y_1 =02, yo = 2.5, 2.3 =04, 25 =4,
z_1=2.5, and zg = 0.8 with ay; = 20, s = 0.8, ag =11, /1 =3, B =8, B3 = 15,

Y1 =4, v =23, and v3 = 4.3, i.e.,

20, if n=3k 3, if n=3k
Pn=19 08, of n=3k+1,q%m=48, if n=3k+1
11, if n=3k+2 15, if n=3k+2
and
4, if n=3k

Tn =19 23, if n=3k+1
4.3, if n=3k+2
In this case, we have asB17y3 > 8, 18372 > 8 and a3y > 8. Hence, from Theorem 1.5.6

the unique equilibrium point of System (1.1.1) is globally asymptotically stable. The plots

of pn, Yn and z, are shown in Figure 1.4, Figure 1.5 and Figure 1.6 respectively.
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1.3

1.2
1.1+
1.8
1.0
x(n) O
0.94
0.84

1.2
0.74

1.0
0.6

0.8

0 20 40 60 80 100 0 20 40 60 80 100
n n

Figure 1.4 — Plot of x,: Example 1.5.2 Figure 1.5 — Plot of y,: Example 1.5.2

1.2

0.9
z(n)

0.8

0.7

0.6

0 20 40 60 80 100
n

Figure 1.6 — Plot of z,: Example 1.5.2

Example 1.5.3. Consider System (1.1.1) with initial conditions x_3 = 12, x_9 = 4,

1 =11,20 =15, y3=2,y =95,y 1=02, y9=08, 2.3=95, 2z 9=2, 21 =0.6,
20=38, and oy =2, ap = 0.2, ag =17, f1 =04, By =3, B3=24, 71 =6, 75 =38,
and v3 = 0.6, i.e.,

2, iof n=3k 0.4, if n=3k
Pn=29 02, if n=3k+1,q=93, if n=3k+1
1.7, if n=3k+2 24, if n=3k+2
and
6, if n=3k

rn=1 8, if n=3k+1
0.6, if n=3k+2

In this case, we have (ag + 1)(B1 + 1)(73 + 1) = 2.688 < 2 + /5. Thus, from Theorem
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NFE
1.3.0 the unique equilibrium point of System (1.1.1) is unstable. The plots of z,, y, and

z, are shown in Figure 1.7, Figure 1.8 and Figure 1.9 respectively.

:wa ” www j Ll

0 20 40 60 80 100 0 20 40 60 80 100

n n

Figure 1.7 — Plot of x,: Example 1.5.3 Figure 1.8 — Plot of y,: Example 1.5.3

z(n)
8

ALl

0 20 40 60 80 100
n

Figure 1.9 — Plot of z,: Example 1.5.3
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CHAPTER

A GENERAL SECOND-ORDER SYSTEM
OF NONLINEAR DIFFERENCE
EQUATIONS

2.1 Introduction

Recent developments in difference equations, which have been studied with great interest
since the 90s, continue with the generalization of some results in the literature. A typical
situation is seen in difference equations defined by homogeneous functions of degree zero.
The reason for this is that due to their homogeneous function structures of degree zero,
results such as stability, periodicity, etc. can be easily obtained on such equations. Also,
their equilibrium points, if any, are unique. This advantage can also be used to generalize
such equations. For some difference equations constructed with homogeneous functions,
see [8,18,20,22,31]. In [17], the authors considered the general second-order difference
equation

Tnt1 = f(Tn, Tp-1), n € Ny, (2.1.1)

where the function f : (0,00)? — (0,00) is continuous and homogeneous of degree zero
and obtained very applicable general results. Developments on the subject continued with

the system of general difference equations

Tpt1 = f(ynvynfl)a Yn+1 = g(xna xnfl)a n € N, (2-1~2)
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where the functions f, g : (0,00)* — (0,00) are continuous and homogeneous of degree
zero, studied by Touafek in [50], thus yielding more general results, in particular the
results of [50] provide conditions for global stability of the equilibrium point of equation
(2.1.1), not done in [17]. Further progress in this direction can be found in [11, 12, 55].
Another difference equation type is those constructed with homogeneous functions of
order 7 € R. To obtain more general results on such equations, Moaaz considered the

higher-order general difference equation

Tnt41 = f(xn—lvxn—k>7 n e N07 (213)

where the function f : (0,00)> — (0,00) is continuous and homogeneous of degree
in [46].

The studies mentioned above motivate researchers to further develop the results on
the subject. In this context, the aims of this part is to study the following general systems

of second order defined by homogeneous functions

Tpt1 = f(y'ru yn—l)a Yn+1 = g<xn7 aTn—l); nc NOJ (2]—4)

where the initial values z_1,z¢,y_1 and yy are positive real numbers, the function f :
(0,00)* — (0, 00) is continuous and homogeneous of degree zero and g : (0,00)? — (0, c0)
is continuous and homogeneous of degree s € R. More precisely, in parallel with the
paper [50], we obtain sufficient conditions for the stability of the unique equilibrium point
of System (2.1.4) and also study the periodicity and oscillation of the solutions. By
studying the system in this way, we considerably generalize the results of Touafek [50]. In
addition, we demonstrate the consistency of our claims with appropriate concrete examples
and simulate them with numerical values.

If s=1 is taken, it is easily seen that the results of this study are reduced to the results
of the paper [50]. Now, we present some definitions and results that are preliminary to
our study. For more detailed results on the subject, refer to [24,41,43]. The following

definition and theorem are extracted from [15].

Definition 2.1.1. A function ¢ : (0,00)> — (0, 00) is said to be homogeneous of degree

s € R if for all (o, 8) € (0,00)? and for all X > 0 we have,

(A, AB) = N (e, ).
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Theorem 2.1.1. Let ¢ : (0,00)*> — (0,00) be a C' function on (0,00)%.

e Then ¢ is homogeneous of degree s if and only if

3625
004

¢

B( 6) = S¢(O‘7ﬁ)= (OQB) S (07 00)2‘

% (,8) + 822

(This statement, is usually called Euler’s Theorem).

o If ¢ is homogeneous of degree s on (0,00)%, then @ and gg are homogeneous of

degree s — 1 on (0,00)%.

2.2 Local Stability

In this section, we conduct our study on the local stability of the unique equilibrium point
of System (2.1.4).
Using the assumption that f and g are homogeneous functions of degree zero and s,

respectively, one can easily see that

(z,y) = (f(1,1), (f(1, 1)) g(1, 1))

is the unique equilibrium point of System (2.1.4) in (0, 00)?.
To generate the corresponding linearized form of System (2.1.4) about the unique

equilibrium point, let us consider the function F : (0,00)* — (0, 00)* defined by

F(X) = (fi(X), f2(X), 01(X), 92(X)), X = (u,v,w,1),

with
f1<X):f(w7t)a fQ( ) u, gl(X):g(U,U), gg(X):’LU

Then, System (2.1.4) can be expressed as
Xni1 = F(X2), Xo= (T, T 1,Yn,Yn1)", n € Ny. (2.2.1)

Hence we can say that if (z,y) = (f(1,1),(f(1,1))°g(1,1)) is an equilibrium point of
System (2.1.4), then the point

X =(z.2,5.9) = (f(1,1), f(1,1),(f(1,1))°g(1,1), (f(1,1))°g(1, 1))
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is an equilibrium point of System (2.2.1).
We assume that the functions f and g are C' on (0,00)%. The linearized system of

(2.1.4) about the equilibrium X is

Zp1=JrZ,, neNy

and so the Jacobian matrix Jr associated to F evaluated at X is given by

0
0 o Yan Zaw
1 0 0 0
dg .. _. Og
5;( ) 55( ) 0 0
0 0 1 0

which implies that

Similarly, since g is homogeneous of degree s, from Theorem 2.1.1-(1), we obtain

_Jg dg
720 (7,7) + 72 (7, 7) = s9(F, ),

or after some operations

dg
81)( ,2) = s(£(1,1))" " g(1,1) — 8u( , ).

Therefore, the matrix Jr takes the form

0 0
0 0 L) -5Lwy)
1 0 0 0
g ,_ _ s ag ,_ _
D@a) s - @) o 0
0 0 1 0

40



2.2. Local Stability
NGR

In this case, the characteristic polynomial of the matrix Jg is given by

POy = = e 5 5.9 = S (50,07t - 200 ) )
+ o (00,070 - Pwo). 222

Theorem 2.2.1. Assume that the functions f(u,v) and g(u,v) are C' on (0,00)%. The
equilibrium point (f(1,1),(f(1,1))°g(1,1)) of System (2.1.4) is locally asymptotically sta-
ble if

o
a2, 1)\

ot

sg(1,1) — 22 (1, 1)’ ' (1,1)—213(1,1)

) < f(1,1)g(1,1).
Proof. We have

g( 6f ))\2_67]0

PO =3 = 205 .00 - G (st 000.0) - 25 0)) o

3f - dg . _
ol (s 0y e - )

Let us consider the functions

P(N) = \*
and
¥O) =~ 205 5.0 - L) (s 0y - 25w
8f _ dg,_ _
+2 ) (a0 - )
We have
vl <[5 w0+ (00 e - 2 50 Jw) o
B a0 0360 - S n )
| Se@a L)+ s 0r a0 05 ) - 25 J )
L0 LG - L Zen|, p=1
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Using Theorem 2.1.1-(2) and the fact that f and g are homogeneous functions of degree
0 0
zero and s, respectively, we get that 8f is homogeneous of degree —1 and a—g is homoge-
u u

neous of degree s — 1. This yields the following identities between partial derivatives

B af( 1) B
f ou - 1 f
9 = T T G D e D o Y
ag _ =s—1 89 _ s—1 ag
0, m) =2 21,0 = (1,0 L ),
and
dg _ _Of 1 of

Hence, we arrive at the following inequality

1 of s of L oy
O < 135011 e Ve 00 7 0 Y~ 2 g1 e Ve 041
+‘J@g(l’1>‘mg£< ’1>au(171)‘
_; af of ) ) 87 _@
a0 au- V-] [0 (o0 =250 0] o 0 = G0}

<1=|®(A\)|, forallAeC: |\ =1

Consequently, from Rouché’s Theorem, it follows that if the above inequality is satisfied,
then all roots of the characteristic polynomial P lie inside the unit disk. This means that
the equilibrium point (f(1,1), (f(1,1))%g(1,1)) is locally asymptotically stable according
to Theorem 1.1.1. Thus, the proof is completed. O

2.3 Global attractivity

In this section, we investigate the global attractivity of the unique equilibrium point of
System (2.1.4). The next eight theorems are on general convergence results. Theorem
2.3.3-Theorem 2.3.4, Theorem 2.3.7-Theorem 2.3.8, among others, are slight modifications

of the theorems proved in [50].

Theorem 2.3.1. Let [ay,b] and [ag, by be intervals of real numbers and assume that the
function f : [as, bs]* — [ay,b1] is continuous and homogeneous of degree zero and the
function g : a1, 0] — [ag, by] is continuous and homogeneous of degree s € R. Also

assume that f and g satisfy the following conditions:
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Hy : f(u,v) is increasing in u and decreasing in v, however g(w, z) is increasing in each

of its arguments.

Hy : If (m, M,r,R) € [a1,b1]* X [az, bs]? is a solution of the system

m:f(r,R), M:f(R7T)7 r:g(m,m), R:g(M,M),

then

Then every solution of System (2.1.4) converges to the unique equilibrium point

(‘i g) = (f(l’ 1)7 (f(lv 1))59(1’ 1))

Proof. Let (x,,y,) be a solution of System (2.1.4). Set

mo ‘= aq, M() = bl, To ‘= a9, RO = bg,

and for each 1 =0,1,2,...,

Miy1 = f(m Ri), My = f(Rz‘, 7’1;)7
Ti41 ‘= g(miami)7 Rit1 = Q(MuMi)-

(2.3.1)

It follows from the assumptions of f and g that

mo = a1 < f(ro, Ro) < f(Ro,10) < by = My,

and

ro = as < g(mo, mo) < g(Mo, Mo) < by = Ry,

that is,

mo <m; < My < My and 719 <7r; <R < Ry

Then, we have

my = f(ro, Ro) < f(r1, R1) = my < f(Ry,m1) = Ma < f(Ro,m0) = My,

r1 = g(mo, mo) < g(ma,my) =1y < g(My, My) = Ry < g(My, My) = Ry,
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so we see that

mo < my < mg < My < M; < M,

and

ro <r <ry < Ry < Ry < Ry.

By induction, we can see that for each i = 0,1, ...,

ap=my<m; < <m < <M< <My < My = by,

a2:r0§r1§...<rf‘

— 1

<. <R

Now, we have

mgzalgxngbleo, TOZGQSyHSbQZRo, ’I’L:]_,Q,...

From the monotonicity of f and g, it follows that

my = f(?”(),Ro) < Tpg1 = f(ymyn—1> < f(Ro,Tg) = M;,
and
= g(m07m0) S Yn+1 = g(xn,xn_l) S g(M07 MO) = Rh

for all n > 2 and so

my <z, <M and r <y, <Ry,

for all n > 3. We have

mo = f(r1, R1) < Tpy1 = f(Yn, Y1) < f(R1,71) = My,

and

Ty = g(r1,71) < Ynt1 = 9(2n, Tn1) < g(My, My) = R,

for n > 4 and so

my < xp, < My and 7y <y, < Ry,

for all n > 5. By applying an induction procedure, for i = 1,2, ..., we have

m; <x, <M; and 1 <y, <R,
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for all n > 2i 4+ 1. Let

m = limm;, r:= limr;,, M := lim M;,
1—00 1—00 1—00

Then we obtain

m<x, <M, r<y,<R.

By the continuity of the functions f, g and (2.3.1), we get

m:f<T7R)7 M:f(R,T),

r=g(m,m), R=g(M,M),

hence from assumption H,, we have

m=M, r=R.

Then

limz, =m lim vy, = r.
n—oo " ’ n—>ooyn

Thus, from (2.1.4) and using the fact that f is homogeneous of degree zero and g is

homogeneous of degree s, we get that

m = f(T, R) = f(la 1)7 r= Q(Ma M) = MSQ(L 1) = (f(lv 1))59(17 1)'

R := lim R;.

1—00

Consequently, the equilibrium point of System (2.1.4) is globally attractive.

Theorem 2.3.2. Let [ay,b] and [ag, by be intervals of real numbers and assume that the
function f : [as,bs]* — [ay,b1] is continuous and homogeneous of degree zero and the

function g : [a1,b1]> — [ag, bs] is continuous and homogeneous of degree s € R. Also

assume that f and g satisfy the following conditions:

Hy : f(u,v) is increasing in u and decreasing in v, however g(w, z) is decreasing in each

of its arguments.

Hy : If (m, M,r,R) € [a1,b1]* X [az, bs]? is a solution of the system

m:f(T,R), M:f<R7T)7 T:g(M,M),
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then

Then every solution of System (2.1.4) converges to the unique equilibrium point

(‘7?7 g) = (f(17 1)7 (f(L 1))59(17 1))

Proof. Let (x,,y,) be a solution of System (2.1.4). Set

mo (= aq, MO = bl, To ‘= a9, RO = bg,

and for each 1 =0,1,2, ...,

Mmit1 = f(% Ri)? M = f(Rz', 7”1')7
Tiv1 = 9(M7;7Mz‘)7 Rit1 = g(miumi)'

It follows from the assumptions of f and ¢ that

mo = a1 < f(ro, Ro) < f(Ro,70) < by = Mo,

and

ro = as < g(My, M) < g(mg, mo) < ba = Ry,

that is,

mo <my < My <My and 719 <71 < R < Rp.

Then, we have

my = f(r07 RO) S f(rla Rl) S f(Rbrl) S f(R(),?”o) = M17

r1 = g(Mo, My) < g(My, My) < g(my,mq) < g(mo,mg) = Ry,

so we see that

mo < my < mg < My < M; < M,

and

ro <1 <ry < Ry <Ry < Ry.
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By induction, we observe that for each + = 0,1, ...,

ap=my<my < <m < <M < <My < My = by,

ag =191 < Sy

— 1

<. <R

Now, we have
mozalgxnébleo, TOZCLQSyTLSbQ:RO’ n:1,2,...
The monotonicity of the functions f and g yields to, for all n > 2

my = f<T07R0) < Tpy1 = f(ynayn—1> < f(RO,T()) = Ml;
and
r1 = g(Mo, Mo) < Yni1 = 9(Tn, Tn-1) < g(mo, mo) = Ry,

SO

my <z, <M and 7 <y, <Ry, forall n>3.

For n > 4, we have

mo = f(rlle) < Tnt1 = f(ymyn—1> < f(R17T1> - M27

and

ro = g(My, M1) < Ynit1 = g(xpn, 2p—1) < g(ma,m1) = Ro,

SO

me <z, <My and 79 <y, <Ry, forall n>5.

By induction, it follows that for ¢ = 1,2, ..., we have
m; <x, <M, and r; <y, <R;, forall n>2i+1.

Let

m = limm;,r := limr;,, M := lim M;, R := lim R;.
1—r 00 1—00 1— 00 1—r 00
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Then, we obtain

m<x, <M, r<y,<R

From the continuity of the functions f, g and (2.3.2), we get

m:f<T7R)7 M:f(R,T),
T‘:g(M,M), R:g(m=m>’

hence from the assumption H,, we have

m=M, r=R.

Then

limz, =m lim vy, = r.
n—oo " ’ n—>ooyn

Thus, from (2.1.4) and using the fact that f is homogeneous of degree zero and g is

homogeneous of degree s, we get that

m = f(T, R) = f(la 1)7 r= Q(Ma M) = MSQ(L 1) = (f(L 1))59(17 1)'

Consequently, the equilibrium point of System (2.1.4) is globally attractive. m
The next six theorems can be proved in the same way.

Theorem 2.3.3. Let [ay,b1] and [ay, by be intervals of real numbers and assume that the
function f : [as,ba]* — [ay,b1] is continuous and homogeneous of degree zero and the
function g : [a1,b1]> — [as, bs] is continuous and homogeneous of degree s € R. Also

assume that f and g satisfy the following conditions:

Hi : f(u,v) is increasing in u and decreasing in v, however g(w,z) is decreasing in w

and increasing in z.

Hy: If (m, M,r, R) € [ay,b1]® X [az, bs]? is a solution of the system

m:f(T,R), M:f(R,T), T’:g(M,TTL), R:g(m,M),

then
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Then every solution of System (2.1.4) converges to the unique equilibrium point

(i‘7 g) = (f(17 1)7 (f(la 1)>59(1’ 1))

Theorem 2.3.4. Let [ay,b1] and [ag, by] be intervals of real numbers and assume that the
function f : [as,bs]* — [ay,b1] is continuous and homogeneous of degree zero and the
function g : [a1,b01]> — [as, bs] is continuous and homogeneous of degree s € R. Also

assume that f and g satisfy the following conditions:

Hy : f(u,v) is increasing in u and decreasing in v, however g(w, z) is increasing in w

and decreasing in z.

Hy: If (m, M,r, R) € [ay,b1]® X [az, bs]? is a solution of the system

m:f(T>R)7 M:f(R7T>7 r:g(m,M), R:g(M,m),

then

Then every solution of System (2.1.4) converges to the unique equilibrium point

(z,9) = (f(1,1), (f(1,1))°g(1, 1)).

Theorem 2.3.5. Let [ay,b1] and [ag, by] be intervals of real numbers and assume that the
function f : [as, bs]* — [ay,b1] is continuous and homogeneous of degree zero and the
function g : [ay,b1]> — [ag,bs] is continuous and homogeneous of degree s € R. Also

assume that f and g satisfy the following conditions:

Hy : f(u,v) is decreasing in u and increasing in v, however g(w, z) is increasing in each

of its arguments.

Hy: If (m, M,r, R) € [a1,b1]* X [a, bs]? is a solution of the system

m:f(R,T), M:f(TaR)> r:g(m,m), R:g(M7M)a

then
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Then every solution of System (2.1.4) converges to the unique equilibrium point

(i‘7 g) = (f(17 1)7 (f(la 1)>59(1’ 1))

Theorem 2.3.6. Let [ay,b1] and [ag, by be intervals of real numbers and assume that the
function f : [as,bs]* — [ay,b1] is continuous and homogeneous of degree zero and the
function g : [a1,b01]> — [as, bs] is continuous and homogeneous of degree s € R. Also

assume that f and g satisfy the following conditions:

Hy : f(u,v) is decreasing in u and increasing in v, however g(w, z) is decreasing in each

of its arguments.

Hy: If (m, M,r, R) € [ay,b1]® X [az, bs]? is a solution of the system

m:f(R7T>v M:f(’f’,R), T:g(M,M), R:g(m,m),

then

Then every solution of System (2.1.4) converges to the unique equilibrium point

(z,9) = (f(1,1), (f(1,1))°g(1, 1)).

Theorem 2.3.7. Let [ay,b1] and [ay, by] be intervals of real numbers and assume that the
function f : [as, bs]* — [ay,b1] is continuous and homogeneous of degree zero and the
function g : [ay,b1]> — [ag,bs] is continuous and homogeneous of degree s € R. Also

assume that f and g satisfy the following conditions:

Hy: f(u,v) is decreasing in u and increasing in v, however g(w, z) is increasing in w

and decreasing in z.

Hy: If (m, M,r, R) € [a1,b1]* X [a, bs]? is a solution of the system

m:f<R,T), M:f(TaR)> r:g(va)a R:g(M,m),

then
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Then every solution of System (2.1.4) converges to the unique equilibrium point

(f7 g) = (f(17 1)7 (f(la 1)>59(1’ 1))

Theorem 2.3.8. Let [ay,b1] and [ag, by be intervals of real numbers and assume that the
function f : [as,bs]* — [ay,b1] is continuous and homogeneous of degree zero and the
function g : [a1,b01]> — [as, bs] is continuous and homogeneous of degree s € R. Also

assume that f and g satisfy the following conditions:

Hy : f(u,v) is decreasing in u and increasing in v, however g(w,z) is decreasing in w

and increasing in z.

Hy: If (m, M,r, R) € [ay,b1]® X [az, bs]? is a solution of the system
m=f(R,r), M=f(r,R), r=g(Mm), R=g(m,M),

then

Then every solution of System (2.1.4) converges to the unique equilibrium point

(z,9) = (f(1,1), (f(1,1))°g(1, 1)).

As a consequence of the results of this section, we have the following theorem.

Theorem 2.3.9. The equilibrium point (z,y) = (f(1,1), (f(1,1))%g(1, 1)) is globally stable
if the assumptions of Theorem 2.2.1 and the assumptions of Theorem 2.3.1 or Theorem
2.3.2 or Theorem 2.3.3 or Theorem 2.3.4 or Theorem 2.3.5 or Theorem 2.3.6 or Theorem
2.3.7 or Theorem 2.3.8 are verified.

2.4 Existence of periodic solutions

In this section, we obtain necessary and sufficient conditions for System (2.1.4) to have a
periodic solution with prime period two and prime period three. We recall that a solution

(T, Yn )n>—1 of System (2.1.4) is said to be periodic of period p € N if

Tpnt+p = Tny  Yntp = Yn, for all n > —1.
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Theorem 2.4.1. Assume that v, € (0,1) U (1,00). Then, System (2.1.4) has a prime

period two solution

(9, A9), (p, @), (v, AQ), (P @), - - -

if and only if
FAA) =7f(A 1), g(1,7) = Ag(v, 1),

where
p=f\1), q=(f(A\1)°g(,1).
Proof. Assume that

(9, A9), (p, @), (v, AQ), (P ), - - -

is a solution of System (2.1.4). Then, we can write the equalities

p = f(g,Aq) = f(1, ), (24.1)
p=[(Ag,q) = f(\1), (24.2)
Aq = g(p,7p) = p°9(1,7), (2.4.3)
¢ = g(yp,p) = p°g(7,1). (2.4.4)

From (2.4.1) and (2.4.2), it follows that

f(17 )‘> = ’YfO‘? 1)'

From (2.4.3) and (2.4.4), it follows that

9(1,7) = Ag(7, 1).

Now, assume that

FLA) =~vf(A 1), g(1,7) = Ag(v, 1)

and

To = f(17 )‘)7 r_1 = f()‘v 1)7 Yo = (f()‘v 1))89(177)7 Yy-1= (f()‘v 1))89(77 1)'

Then, we have

1= f(yo,y-1) = f(9(1,7),9(7, 1)) = f(Ag(7,1),9(7, 1)) = fF(A\, 1) = vy,
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= g(zo,2-1) = g(f(1,A), f(A 1) = g(vf (A, 1), F(N 1) = (F(A, 1)°g(7, 1) =y,
fyiy0) = FI(FA1)9(7, 1), (F (A 1))°9(1, 7)) = f((9(v,1),9(1,7))
fl9(7,1), Ag(7, 1)) = f(1,A) = o,

= g(z1,20) = g(f(A\, 1), f(L,A) = g(f (A 1),7f (A 1)) = f(A 1)°g(1,7) = vo.

By induction, it follows that

Top—1 = T_1, Topn = To, Yom—1 =Y—1, Yo = Yo, n € Np.

So, the proof is completed. n

Theorem 2.4.2. Assume that o, B,v, A € (0,1) U (1,00). Then, System (2.1.4) has a

prime period three solution

- (ap, Bq), (vp, A9), (p, 9), (ap, B9), (Y0, AQ), (P, @) - - -

if and only if
JAN) =af(XB), f(B.1) =~f(A5),

9(1,7) = Bg(v,a), gla,1) = Ag(v, a).

where

Proof. Assume that

- (ap, Bq), (vp, A9), (p, 9), (ap, B9), (Y0, AQ), (P, @) 5 - - -

is a solution for System (2.1.4). Then, we have

ap = f(q,Aq) = f(1,A), (2.4.5)
v = f(Ba.q) = f(B,1), (2.4.6)
p=f(Ag, Bq) = f(A B), (2.4.7)
Bq = g(p,vp) =p°9(1,7), (2.4.8)
Ag = g(ap,p) = p g(a, 1), (2.4.9)

= g(vp, ap) = p*g(7, a). (2.4.10)
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From (2.4.5), (2.4.6) and (2.4.7), it follows that

FLA) =af(AB),  f(B,1) =1f(AB).

From (2.4.8), (2.4.9) and (2.4.10), it follows that

9(1,7) = Bg(v,a), gla,1) = Ag(v, a),

as claimed. Now, let

LA =af(\B), f(B,1)=~f(\8), g(1,7)=Bg(v,a), gla,1)=Ag(7y,),

and also

Ty = f(ﬂa 1)7 T_1 = f(lv)‘)> Yo = (f(AaB))Sg(av 1)’ Yy-1= (f()\,ﬁ))sg(l,’}/)

Then, we have
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Ys = 9(332,:101) =49 f(lv )‘)a f(/\aﬂ)) = g(af(/\aﬁ)v f()‘76)) = (f(/\vﬁ))sg(aa 1) = Yo,
ys,y2) = F((F (A, 58))°g(a, 1), (f (A, 8))°9(L, 7)) = flg(a; 1), 9(1, 7))

ya = g(x3,22) = g(f(5,1), fF(1,A)) = g(vf (A, B), f (A, )
f()"ﬁ))sg(’% CY) =Y
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By induction, it follows that

Tan—1 = T_1, T3p =7T0, T3nt1 =T1, Y3n—1 ="Y—-1, Y3n ="Y0, Ysn+1 ="Y1, N € Np.

So, the proof is completed. O

2.5 Oscillation of positive solutions

In this section, we establish sufficient conditions that the solutions of System (2.1.4) are

oscillatory about the equilibrium point (f(1,1), (f(1,1))%g(1,1)).

Definition 2.5.1. (Oscillation). Let (p,Yn)n>—1 be a solution of System (2.1.4). The
sequence (Tn)n>—1 (resp. (Yn)n>—1) is called non-oscillatory about T (resp. y)if there exists

[l > —1 such that either
Tp,>T or x, <z, foralln>1, (resp.y,>y or y,<y, foralln>1I,)

and it is called oscillatory if it is not nonoscillatory.

Theorem 2.5.1. Assume that (x,, Yn)n>—1 is a solution of System (2.1.4) and that f(x,y)
and g(x,y) are decreasing in x for all y and are increasing in y for all x. Then, the

following statements are true.

. If

rT4>%, <T, Y1>Y, Y <Y,

then we get
Top—1 > T, T2 <T, You-1>Y, You<Y, n€EN

That is, the sequence (Ty)n>—1(resp. (Yn)n>—1) oscillates about T (resp. ).

o[f

T 1<z, To>T, Y1<Y, Yo>Y,

then we get
Top—1 < ja Top > f? Yon—1 < g) Yon > g? n e I\]0-

)
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That is, the sequence (z,)n>—1(resp. (Yn)n>—1) oscillates about T (resp. ).

Proof. o Assume that
T >T, To<T, Y1>Y, Yo <Y,

then, we obtain

= [(Wo,y-1) > [(@,y1) > f(y,9) = f(1,1) = 7,
g(zo,v1) > g(T,21) > g(7,7) = (f(1,1))°g(1,1) = 7,
fyi,m) < fW,vo) < fw,y) = f(1,1) =2

9($1,$0) < g<577330) < g(:f‘,:f‘) = (f(lv 1))59(1’ 1) =Y.

By induction, we get

Top < T, Top—1>T, Yo <Y, Y1 >Y, n €Ny

e Assume that

x4 <z, T0>T, Y1<Y, Yo>UY,

then, we obtain

= [(Wo,y-1) < f(W,y-1) < f(y,9) = f(1,1) =z,
g(&?o,l’ 1) (:z;,x,l) < g(a_:,i’) = (f(17 1))sg<1> 1) = Zj,
fyi,m) > fW,v0) > fw,y) = f(1,1) =2

9($1,$0) > g(j,xo) > g(j’,f) = (f(lv 1))59(1’ 1) =Y.

By induction, we get

Top < T, Top—1>T, Yo <Y, Yom—1>Y, n €Ny
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2.6 Applications

In this section, to verify our theoretical results, we give some concrete examples. Also,

we consider these examples with numerical values.

Example 2.6.1. Consider the system

Yn—_1 ey + dr,
n - A -, o~ n - - 5 ntn—1, E N 5 26].
Tn+1 + By + Cyns Yn+1 ((mn —l—bxn_l) TpTp—1, N 0 ( )

where x_;, y_;, (i =0,1) and A, B,C,a,b,c,d are positive real numbers. System (2.6.1)

can be written as

Tp4+1 = f(y’ruyn—l)v Yn+1 = g(xm mn—l)v ne NO’

where f and g are the functions given by

v cw +dz
flu,v) = A+ But Co’ g(w, z) = (aw n bz) wz. (2.6.2)

It is easy to see that f and g are continuous, and homogeneous of degree zero and degree

2, respectively. Also

RN e e e

is the unique equilibrium point of System (2.6.1)
Theorem 2.6.1. Every positive solution of System (2.6.1) is bounded and persists.

Proof. Let {(x,,y,)} be a solution of System (2.6.1). Then, for alln > 0, We have

Yn—1 1
A<z =A4+ —F—— < A4 —,
= ByutCyur — ' C
from which it follows that
1
A<z, <A+ =,
<z, < —l—C

for all n > 1. On the other hand, since
min E, g < Cn 4 CTn1 dn 1 < max E,g ,
a b ar, + bxr, 1 a b
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for all n > 2, we have
(e d cTy + dr,— c d 1\?2
min {aa b} A? < Yng1 = (W) TpTp_1 < Max {aa b} <A+ C) .
This implies that

) c d 9 c d 1\?
mm{ ,b}A Yn mcwc{ ,b}<A—|—C> ,

for all n > 3, as claimed. O

Theorem 2.6.2. The equilibrium point

1 1 2c+d
7,y) = A+ ———, A
.9 ( * B+C”( - B+C> a+b>
of System (2.6.1) is locally asymptotically stable if

(B—C—AB+C)*)(c+d)(a+b)+2B|da— cb| < 0.

Proof. We know from Theorem 2.2.1 that the equilibrium point (z,y) is asymptotically

stable if
of 9g of 9g 9g
a2, 1>‘+|8u<1, 1>| (|2g<1, 22, 1)] " |2g<1, -2, 1>|> < FLDg(L 1),
Also, we obtain
- 1 of, . -B
_c+d Oy _ca+db+2ch
g(1,1) = PR %(1; )= Tt

By using these in the above inequality, we get
(2

After some arrangements, one can find the following inequality

—-B ca + db + 2cb
(B+C)2  (a+0b)?

-B

‘ c+d ca+db+ 2cb
(B+C)2

a+b  (a+b)2

c+d ca+db+ 2cb
a+b (a +b)2

1 c+d
<A .
) ( +B+C’>a+b

(B—C —A(B+C)*)(c+d)(a+b)+2B|da— cb| < 0.
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The next theorem is devoted to the global stability of the equilibrium point. For this

purpose, we choose the initial values such that

1
. A A }
xl,xoe{, +C

and

c d c d 1\?
. n O\ ¢ (A ) .
Y-1, Yo, 3/173/276 [mln{aab} ’max{a’b} +C ‘|

Theorem 2.6.3. Assume that
(B—C—A(B+0)*)(c+d)(a+b)+2B|da—cb| <0

and

4(c+d) (A + é) < (a+b)Cmin {2, Z} A2,

Then, the equilibrium point of System (2.6.1) is globally asymptotically stable.

Proof. We know from Theorem 2.6.2 that the equilibrium point (Z, %) of System (2.6.1)
is locally asymptotically stable, and so it suffices to show that (z,y) is a global attractor.
To prove that we will use Theorem 2.3.5.

Let f and g be as defined in (2.6.2) and define the following parameters:

1
a; := A, by ::A—I—6,

e d) o cd 1\?
ay = mm{a,b}A , by = max{a,b} (A—i—c) :

Thus, we have
ay < f(u,v) < by, ay < g(w, 2) < by, for all (w, z,u,v) € [ay, b1]? X [as, by]*.

That is to say, f and g are bounded. Also, since

af —Bv af Bu

90" = Bur cop < 0

%(u,v) - (Bu+ Cv)

_ acw® + 2adzw? + bdz*w

bdz3 + 2bcwz? + acw?z
= ("LU, Z) =
(aw + bz)?

w7 T (aw + bz)?

0z

> 0, > 0,

the condition H; of Theorem 2.3.5 is satisfied. It remains to check condition Hs.
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To this end, let (m, M, r, R) € [ay,b1]? X [as, bs]* be a solution of the system

r R
" M=A4_
BRY COr B CR’

r= ctd m?, R= ﬂ M2
a+b a+b

Suppose that m < M and r < R. Then, we have

m=A+

B(R—r)(R+T)

M= m = e R (BR + O (263)
and
c+d
R—r= a+b(M—m)(M—|—m). (2.6.4)

From (2.6.3) and (2.6.4), it follows that

B(c+d) (M +m)(R+r)(M —m)
(a+0b)(Br+ CR)(BR+Cr)
B(c+d)(M —m)(M +m)(R+r)
= (a+b)CBR?

AMRB(c+ d)(M —m)
= (a+b)CBR
AM(c+d)(M —m)
(a+b)CR

M—m =

Since (M, R) € [a1, b1] X [ag, bs], we have

4by(c + d)(M — m)

M—m<
= (a+b)Cay

thus
0= (1= &)

By using the fact that
4b1<C + d) < (a + b)CCLQ,

we get

So, M =m and from (2.6.4) we get R =r.
Consequently, condition Hs is satisfied and the equilibrium point (Z,y) of System (2.6.1)
is globally attractive. O]
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Theorem 2.6.4. Assume that y,\ € (0,1) U (1,00). Then, System (2.6.1) have a prime

period two solution

(9, A9), (p, @), (v, AQ), (P @), - - -

if and only if
(1 =B+ CHAN+ (1 + N)ABC + CN + (\* —4)B =0,

and

(1 = N)(ac+bd)y + (1 — M?)be + (v* — Nad = 0, (2.6.5)

where

p:f(>‘> 1)7 q = (f()‘vl))sg(771>‘

Proof. By Theorem 2.4.1, System (2.6.1) have a prime period two solution if and only if

FLN) =vf(N 1), g(1,7) = Ag(v, 1), (2.6.6)
where
B A B cy + dvy?
2
cy” + dy
H=A =

The first equality of condition (2.6.6) is equivalent to

"o (4 o)
B+Cx ! Br+C)’

A+
and it yields the result
(1 —=N[B*+ CHAXN+ (1 +N)ABC + CA + (V> —~)B =0,

after some elementary operations. Similarly, the second equality of condition (2.6.6) is

equivalent to
cy+dy e +dy
a+by T ay+b’

from which it follows that

(1 — N)(ac +bd)y + (1 — MyH)be + (v2 — Nad = 0.
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Which complete the proof. O

Now we check the results by assigning numerical values to the parameters of System
(2.6.1).
Let A = 3,7 =2. Then we obtain

7B — [(B* + C?)3A + 10ABC + 3C] = 0

and

ad — 4(ac + bd) — 11bc = 0,

which are conditions for the periodicity of the solutions. If we choose that the parameters
A=1/4,B=1,C=1,a=5,b=1,c=1, d= 31, then the conditions are satisfied and

we have

Ton1 =21 = f(A1) = ;a Yon-1 = y-1 = (fF(A, 1)g(7,1) = 27

9

Top = To = /yf()" 1) =1, Yon = Yo = )‘(f(A’ 1))29(’% 1) = 5

Hence the solution is obtained in the form

(09696969

The plots of x,, and y, are given by Figure 2.1.

5+
451

4]
3.5

3

2.51

Figure 2.1 — Plots of x,, and y,,.
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Example 2.6.2. Consider the system

:A—|— ayn"’ﬂyn—l Tn—1

T
i By + Cyn1

bx,, + cr,_1

y o Ynt1 = ((l + ) Tpn-1, N E Np. (267)

where the initial values x_;,y_;,1 = 0,1 and the parameters A, a, B,b,C,c, a, B are positive

real numbers. System (2.6.7) can be written as

Tl = F(UnsUn—1)s  Ynt+1 = 9(Tn, Tn_1), n € Ny,

where f and g are the functions defined by

au ~+ Pu
Bu+ Cv’

flu,v) = A+ g(w, z) = (a T ) z. (2.6.8)

bw + cz

It is clear that f is continuous and homogeneous of degree zero, g is continuous and

homogeneous of degree 1. Also

(5,9) = (F(1L1), (F(L D)’g(1,1) = (A+ o= (A+ ;1@) (a+ zﬁ))

is the unique equilibrium point of System (2.6.7).

Theorem 2.6.5. Every positive solution {(x,,y,)} of System (2.6.7) is bounded and

persists.

Proof. Let {(x,,yn)} be a solution of (2.6.7). Then, for all n > 0, we have

b

ayn + BYn—1

Qlw

A§$n+1:A—|—

?

W[ e

§A—|—max{
from which it follows that
a B
A< n<A >~ (0
<z, < —i—maX{B C’}

for all n > 1. On the other hand, for all n > 2, we have

Ty 1
aTp-1 < Ynt1 = (a + 1) Ty < (a + ) Tp—1,
bx, + cx,_1

1 a [
< < _ _ =
aA <y, < (CL+ c) (A—l—maX{B,C}),

63



2.6. Applications

which implies that

for all n > 3. O

Theorem 2.6.6. The equilibrium point

o a+ 3 a+ 3 1
(#,9) = <A+B+C’<A+B+C) <a+b+c>>

of System (2.6.7) is locally asymptotically stable if

2|aC — BB (a(b+c)* +c+3b) < (A(B+C)+a+ B)(ad+c)+ 1)(B+C)(b+c).

Proof. We know from Theorem 2.2.1 that (Z,¥y) is asymptotically stable if

gi(l 1)a (1, 1)‘+|gf(1 1)’ (’g(l,l) - 235}(1, 1)‘ + ‘g(l,l) - gi(l,l)‘) < f(1,1)g(1,1).

Also, we obtain

B a—+f af _aC - B
B dg —b
g(l,l)—a+b+c, 5 —(1,1) = 0o

By using these in the above inequality, we get

(st~ 2 )< (44 322) (o o).

After some arrangements, one can find the following inequality

1 —b
S

aC—pBB —b
(B4+C)? (b+c)?

+’ BT0)?

2|aC — BB (a(b+c)* +c+3b) < (A(B+C)+a+ B)(a+c)+ 1)(B+C)(b+c).

]

In the next theorem, we established conditions for the global attractivity of the equilib-

rium point. To this end, let choose the initial values such that

T_1,%9 € [A A—i—max{B gH

1
Y-1, Yo, Y1, Y2 € [aA, (a ) <A+max{
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Theorem 2.6.7. The equilibrium point of System (2.6.7) is globally attractor if one of

the following statements holds:
1) aC > BB and 2(aC — BB)(ac® + 3¢+ b) < BCc*aA.
2) aC < B and 2(BB — aC)(ac® + 3¢+ b) < BCc*aA.

Proof. To prove that the equilibrium point

o a+f3 a+f 1
(@9) = <A+B+O’<A+B+O> <a+b+c>>

is a global attractor, we will use Theorem 2.3.3 and Theorem 2.3.8.

Let f and g be as defined in (2.6.8) and define the following parameters:
a B
=A, b =A —, =
a1 s U1 +maX{BaC}a

as := aA, by := <a+ i) (A—I— max {;, g}) )

Then it follows that
ay < f(u,v) < by, ag < g(w,z) < by, for all (w,z,u,v) € [ay,b1]?* X [ay, bo]?.

We have

g(u v) = (aC — BB)v g(u v) = (BB — aC)u

ou' ' (Bu+Cv)2’ v (Bu+Cv)?’
dg b2 dg B 2bzw + cz?
%(w’ ?) = (bw + ¢z)?’ %(w, =at (bw + cz)?

1) Assume that aC > B, (in this case by := A + % and by := <a + i) (A + g))
Then f(u,v) is increasing in v and decreasing in v, however g(w, z) is decreasing in
w and increasing in z.
So, it follows that the condition H; of Theorem 2.3.3 is satisfied. It remains to check
condition Hy. To this end, let (m, M,r, R) € [a1,b1]* X [as, bo]? be a solution of the

system

ar + R aR + pr
P oA
Br 1+ CR’ T BR+COr

m M
"= <a+bM+cm>m’ f= <a+bm+cM)M’

m=A-+
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such that m < M and r < R. Then, from the system considered above, we obtain

that

_ (aC = BB)(R+71)(R—T)

M= m = B R+ ) (Br + CR)
< (aC = BB)(R+7r)(R—T)
- BCR?
< 2R(aC — B)(R — )
- BCR?
_ 2(aC — B)(R—)
BCR '

Since R € [ag, by, we get

< 2(aC — BB)(R — r)‘

(2.6.9)

Similarly, we obtain

o s o) O~

(o G ) 01
< (oo WAL R) O

< <a+izﬂj‘£+b;c> (M — m)

2 b+c
a+—+—
c

R—r= <a+

) (M —m). (2.6.10)

C

Furthermore, from (2.6.9) and (2.6.10), we obtain

(M —m) <1_W<Hi+b;c>> <0,

under the condition 2(aC — B)(ac® + 3¢ + b) < BCc?asy, we see that

2(aC — BB)(ac® + 3¢+ b)

< 1.
BCc2a,

Hence, M = m and from (2.6.10) we get R = r.
Consequently, the condition Hy is satisfied and so the equilibrium point (Z,%) is

globally attractor.
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2) Assume that aC' < B, (in this case by := A + g and by := (a + i) (A + g))
Then f(u,v) is decreasing in u and increasing in v, however g(w, z) is decreasing in
w and increasing in z.
So, it follows that the condition H; of Theorem 2.3.8 is satisfied. It remains to check
condition Hy. To this end, let (m, M,r, R) € [a1,b1]* X [ag, ba]? be a solution of the

system

aR+ Br ar + R
R - VR i eaid
M=t BRyCr T B CR

m M
"= <a+b]V[%—cm)m7 = (a+bm+cM)M’

such that m < M and r < R. Then, from the system considered above, we obtain

that

(BB —aC)(R+71)(R—T)

M = m = R T oY (Br + OR)
< (BB —aC)(R+7r)(R—T)
- BCR?
< 2R(B — aC)(R —)
- BCR?
_ 2(B —aC)(R—r)
BCR '

Since R € [ag, bo], we get

2(pB — aC)(R — T).

M —m < 2.6.11
- BCGQ ( 0 )
Similarly, we obtain
2
R—r§<a+c+bzgc> (M —m). (2.6.12)

Furthermore, from (2.6.11) and (2.6.12), we obtain

(M —m) <1_2(5§C_a:“0)<a+2+b+c>> <0,

under the condition 2(8B — aC')(ac* + 3¢ + b) < BCc%ay, we see that

2(8B — aC)(ac® + 3¢ + b)

< 1.
BCc2a,

67



2.6. Applications

NGR
Hence, M = m and from (2.6.12) we get R = r.

Consequently, the condition H, is satisfied and so the equilibrium point (Z,%) is

globally attractor.

Theorem 2.6.8. The equilibrium point

o a+ 3 a+ 3 1
(#,9) = <A+B+C’<A+B+C> <a+b+c>>

of System (2.6.7) is globally asymptotically stable if one of the following statements holds:

(1) aC > BB, 2(aC — BB)(ac® + 3c+b) < BCc*aA and

2(aC — BB)(a(b+c)* +c+3b) < (A(B+O)+a+B)ad+c)+1)(B+C)(b+c).

(2) aC < BB, 2(8B—aC)(ac* +3c+b) < BC*aA and

2(BB — aC)(a(b+c)* +c+3b) < (A(B+O)+a+B)ad+c)+1)(B+C)(b+c).

Proof. Since the equilibrium point is both locally asymptotically stable and a global at-
tractor, the proof follows from the results of Theorem 2.6.6 and Theorem 2.6.7. O

Theorem 2.6.9. Assume that v, \ € (0,1) U (1,00). Then, System (2.6.7) have a prime

period two solution

(9, A9), (p, @), (v, AQ), (P ), - - -

if and only if
(1= (((B*+C*HA+ Ba+CBA+ (1 4+ X)BCA) + (1 - Ny)Ca+ (AN —~)BB =0

and
(v = N (((1* +a + )y + (1 +~H)cba) + b(y* — \) =0,
where
p=fA1), q=(f(A\1))°g(v,1).
Proof. From Theorem 2.4.1, it follows that System (2.6.7) have a prime period two solution

if and only if
FA) =vf(A 1), g(L,7) = Ag(r,1). (2.6.13)
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In the case of System (2.6.7), the functions f and g are

B au + Pu B
f(u’v)_A+Bu+Cv’ 9(w,2) = <a+bw+cz> =
and therefore we have
B a—+ BA B a\+

g(1,7)=<a+7>% g(%l)z(a+ ! )

b+ cy by +c

In this case, the first equality in (2.6.13) become

a+pBA A al+
B+Cx ! BA+C)’

and after some operations
(1 —=((B?*+C*A+ Ba+CBA+ (1 +A)BCA) + (1 — \v)Ca+ (A —~)BS = 0.

Similarly, the second equality in (2.6.13) become

ol B 1
<a+b+6’y>7_)\<a+bfy+c>’

and after some operations
(7 = MO + *)a+c)y + (L +9%)cba) + b(r* = A) = 0,

as desired. ]

A Numerical Simulation on Theorem 2.6.9: If we assume that A = 5 and

v = 2, then the conditions for periodicity with prime period two become
238B — (5((B* + C*)A + aB + C) + 26 BCA) — 49Ca = 0 (2.6.14)

and

3b — 3(2((b* + ¢*)a + ¢) + 5cba) = 0. (2.6.15)

4 1
If we choose the parameters as A=1,B=3,C=1,a=1,0=3,a = £,b:3,c: T
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Then the conditions (2.6.14) and (2.6.15) are satisfied, from which it follows immediately

that

3 72
Ton-1 =21 = f(A1) = 3 Y1 =Y = fNDg(y, 1) = T
72

That s, we obtain the periodic solution as

(- Gm) (05) ) (45) )
TU\27 175/ 7\ 735/ 7\27175) 7\ 77 35) 7

The plots of x,, and y, are given by Figure 2.2.

357
31

254

Figure 2.2 — Plots of x,, and y,,.

Theorem 2.6.10. Assume that 0,0,~v,\ € (0,1) U (1,00). Then, System (2.6.7) have a

prime period three solution

-5 (6p, 0q), (vp, Aq), (p, @), (p, 0q), (vp, Aq), (P, @), , - - -

if and only if

(1= 8)(B+ CNA+a+ BN(BA+CO) — §(aX+ B0)(B+CN) =0, (2.6.16)
[(1 =) (BO+ C)A+ af + B](BX + C8) — y(aX + 56)(B + C) = 0, (2.6.17)
[a(y — 00)(b+ cy) +7*](by + cd) — 05%(b+ ¢y) =0 (2.6.18)
and
[(1 = A8)(b3 + c)a + 1](by + c8) — (b6 + c)A6* = 0. (2.6.19)
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where p = f()" 0)’ q= (f()‘7 0))89(77 5)

Proof. From Theorem 2.4.2, it follows that System (2.6.7) have a prime period three

solution if and only if

f(l,)\):5f(/\,9), f(@,l):’yf()\,g),

g(1,7) =0g(v,0), ¢(6,1) = Ag(v,9). (2.6.20)
We have
B a4+ B B ab + pBu B a\ + (6
1 1)
g(1,7) = (a+ b+cv) v, g(0,1) = (a+ b(5+c>’ g(7,9) = <a+ b’y+c5> 0.

In this case, the first and the second equality in (2.6.20) become

a4+ BA —5<A+ a)ﬂ—ﬁ@)’

B+CX\ B\ +C6
ad + 38 al+ 36
BH+C_7<A+B)\+CG>’

and after some operations, we get

[(1 = 0)(B+CMNA+ a+ BN(BX+ CO) — () + 88)(B + CX) =0,
[(1 =) (BO + C)A+ af + B](BX + CO) — y(aX + £0)(BO + C) = 0.

Similarly, the third and the fourth equality in (2.6.20) become

v )
T = 0o
<0l+b+cv>7 (a—'—bv%—cé) ’

1 )
<a+b(5+c> B <a+bv+cd) A

from which it follows that

[a(y — 00)(b+ cy) + 7*](by + ¢d) — 05%(b + ¢y) = 0,
[(1 = A0)(bS + c)a + 1](by + cd) — (b + c)A§* = 0.
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A Numerical Simulation on Theorem 2.6.10: If we assume that § = 2,0 =

1
T\ = 5 and v = 4, then the conditions (2.6.16), (2.6.17), (2.6.18) for periodicity with

prime period three become

[a + ;ﬁ - <B + ;c> A} (;B 4 70) _9 (;a 4 75) (B + ;0) —0, (2621
(Ta+ B — 3(TB + C)A) (;B + 70) 4 <;oz 4 75) (TB+C) =0, (2.6.22)
(16 — 10a(b + 4¢)) (4h + 2¢) — 28(b + 4¢) = 0 (2.6.23)

and the condition (2.6.19) is verified.

If we choose the parameters as

2611 16 1
405 Y 37370 7a 7/6 37a

A —
357

b=3,c=1,

then the conditions (2.6.21), (2.6.22), (2.6.23) are satisfied, and the solution take the forme

16412 32824 8206
Tan—1 =1 = —oe™y Tan = 0= —oems Tangl = T an
32824 16412 32824

Yan1 = Y1 = Ysn = Yo = Gz Usnil = U1 = oo

675

That is, we obtain the three periodic solution as

{ (16412 32824) (32824 16412) (8206 32824) (16412 32824> }
7N 405 7 675 7\ 405 7 4725 )7\ 4057 4725 )7\ 405 T 675 )7

The plots of x, and y, are given by Figure 2.5.

—_—X

y

—r 1t Tt 1 r T 1t t 1 1 T 1t T+ 1 1 T T 1T 1T 1
22 <10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2.3 — Plots of x,, and y,,.
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Theorem 2.6.11. Let (2, Yn)n>—1 be a solution of System (2.6.7). Assume that aC <

BB, then the following statements holds :

1. Let

T >, To<T, Ya1>Y Yo<Y
Then the sequence (Ty)n>—1 (Tesp. (Yn)n>—1) oscillates about T (resp. ).

2. Let

T <%, To>T, Y-1<Y, Y >Y.

<
—

Then the sequence (xy)n>—1 (T€sp. (Yn)n>—1) oscillates about T (resp. y

Proof. 1. Let

To <T <1, Yo <Y<Y

Then, from System (2.6.7), for n = 1, we have

xl_x:Aﬂwﬁy—l_(M a+ﬂ>

Byo + Cy_1 B + C

~ (ayo + By-1)(B+C) — (a + B)(Byo + Cy-1)

N (Byo + Cy_1)(B + ()

ayoB + ayoC + By 1B + By 1C — aByy — BBy — aCy 1 — Cy 4
(Byo + Cy_1)(B + C)

_ayC + py-1B — BByy — aCy_,

B (Byo + Cy_1)(B+ C)

(yo —y-1)aC + (y—1 — y)BB
(Byo + Cy_1)(B+ ()
o (Yo — y-1)(aC — BB)
- (Byo+Cy1)(B+C)’

By the inequalities y9 < y_; and aC' < 8B, it is easy to see that
T > T.

Also, since g < T < x_1, we get
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g (a+bic> <A+gig>

Similarly, by following the same steps for n = 2, from System (2.6.7), we have that

Y.

IQ_.ZE:A_’_

By, + Cyo B+C
(a1 + Byo)(B + C) — (a + B)(By: + Cyo)
(Byr + Cyo)(B + C)
ay1 B + ay1C + ByoB + ByoC — aBy, — BBy1 — aCyo — fCyo
(By1 + Cyo)(B + C)
ay1C + ByoB — BBy — aClyg
(Byr + Cyo)(B + C)
(y1 — yo)aC' + (yo — y1)BB
(Byy + Cyo)(B + C)
(1 —yo)(aC — BB)
~ (Byi + Cyo)(B+C)’

ay1 + Byo —(A—i— a—l—ﬁ)

By the inequalities y; > yg and aC' < B, it is easy to see that
To < T.

Also, since x1 > T > xq, for n = 2, we get

[0+ forrem)
=la+———)x
& bxy + cxq 0
i _
(ot
bz + cxg
<la+ 20 I
a+——|7
(b+C)ZCO

1 a+p)
= (a+b+c> <A+B+C> — Y

Consequently, by induction, one can easily see that

Top—1 > T, Topn < T, Yon—1>Y, Yoo <Y, n € Np.

That is to say, the sequence (z,,)n>—1 (resp. (Yn)n>—1) oscillates about Z (resp. ¥).

2. Let

To>T>T1, Yo>Y> Y-
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Then, from System (2.6.7), for n = 1, we have

Iﬁ—f:A+

ayo + By a+
Byo+Cy_1 <A+ B+C>
~ (ayo + By-1)(B+C) — (a+ B)(Byo + Cy-1)
N (Byo + Cy_1)(B + C)
ayoB + ayoC + By-1B + By_1C — aByy — BBy — aCy_1 — fCy_4
(Byo + Cy-1)(B + C)
_ayoC + By_1B — BBys — aCy_,
- (Byo + Cy_1)(B+ C)
(W —y-1)aC+ (y-1 — yo)BB
n (Byo + Cy_1)(B + ()
- (Yo — y-1)(aC — BB)
- (Byo+Cy_1)(B+C)

By the inequalities y9 > y_1 and aC' < 8B, it is easy to see that
T < T.

Also, since xg > T > x_1, for n = 1, we get

bxo + cx_ 1) T

n= (o
<a+bx0—|—cx 1>f
[

A\

< la+

b+C$1>x
a+pB\
(a+b+c> <A+B+C> —v

Similarly, by following the same steps for n = 2, from System (2.6.7), we have that

_7—A
S +By1+C’yg B+C

(ay1 4+ Byo) (B + C) — (e + B)(By1 + Cyo)
(Byr + Cyo)(B + O)
ay B + ayC + ByoB + ByoC — aBy, — BBy — aCyy — BCy
(Byr + Cyo)(B+C)
ay1C + ByoB — BBy — aClyo
(Byr + Cyo)(B + C)

~ (1 —yo)al + (yo — y1)BB
(B +Cyo)(B+C)
_ (y1 — yo)(aC — BB)
- (Byr+Cyo)(B+C)’

ay1 + Pyo —(A—i— Oé‘i‘ﬁ)
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By the inequalities y; < yg and aC' < B, it is easy to see that

To > T.
Also, since x1 < xg and T < xg, for n = 2, we get
()
=la+—— )z
& bxy + cxq
(4 i)
>la+——|
bz + cxg
>(a+ —2— )z
a+-——1|x
(b+C)ZCO

1 a+pY)
~ (a+b+c> <A+B+C> —Y

Consequently, by induction, one can easily see that

Ton—1 < T, Topn > T, Yon-1 <Y, Yoo >Y, n €Ny

That is to say, the sequence (z,,)n>—1 (resp. (Yn)n>-1) oscillates about Z (resp. y).

]

A Numerical Simulation on Theorem 2.6.11 : Consider System (2.6.7). Let

4 1
us choose the parameters as A=1,B=3,C=1,a=1,=3,a=-,b=3,c=

3 4
Then system(2.6.7) becomes
n + 3 n— 4 Tp—
Tntl1l = 1+ %7 Yn+1 = g + —11 Tp—1, n e No. (2624)
Yn + Yn—1 an + —Tn—1
4
If we choose the initial values such that
1<‘—2< 3 —1<‘—128 3.28 < =95
350—2 T = T—1 =9, y0—4 y—39_. Y-1 =09,

then the corresponding solution of System 2.6.24 oscillates about the equilibrium point.

The plots of x, and y, are given by Figure 2.J.
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4 i
v
Vn

Figure 2.4 — Plots of x,, and y,,.

If we choose the initial values such that

<x=2<x0=3, Y 1=

N | —

r_1 =

then the corresponding solution of System 2.6.24 again oscillates about the equilibrium

point. The plots of x,, and y, are given by Figure 2.5.

Figure 2.5 — Plots of x,, and y,,.
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CHAPTER

SOLVABILITY OF A THIRD-ORDER
SYSTEMS OF NONLINEAR DIFFERENCE
EQUATIONS VIA A GENERALIZED
FIBONACCI SEQUENCE

3.1 Introduction

There has been a noticeable development in the study of solvable systems of difference
equations. Although solving explicitly these systems is generally difficult, however in
some concrete models and via some convenient transformations this situation can be
surmounted. Finding closed-form formulas of the solutions of some systems of difference
equations is the subject of this chapter.

As a generalization of the system

Tn-1Yn Yn—1Tn
ntl = Y1 = T € Np. 3.1.1
et Yn + Yn—2 Yntd Tn + Tn—2 " ° ( )
studied in [53], the authors of [28] considered the following system of difference equations
n-+ ayz_k + byn’ n+ AT i + Bl_na 0y vy ) .1

where the coefficients a,b,a, 8 and the initial values z_;,y_;,i € {0,1,...,k} are real
numbers.

Motivating by [28], our goal in this chapter is to find the solution form of some systems
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of difference equations with powers. The first will be the system

ynyn—lxﬁ—l y _ xnmn—lyg—l
In(anyng + bnynyn—l) o yn(Cnl’th + dnxnl‘n—l) ’

n €Ny, p, g €N
(3.1.3)

Tp41 =

where the parameters (an)nengs (bn)neNgs (Cn)neNg, (dn)nen, and the initial values
r_;,y_ii = 0,1,2, are non-zero real numbers. Motiviting by [I] and [19], We will also
determine the form of the solutions of the following system, which is a generalization of

System (3.1.3), defined by

a1 9Wn)9Wn—1)(f (@n-1))"
Tnit = f (f(xn)[ n2(9(Yn—2))7 + bng(Yn)g(Yn- 1)])

-1 f(@n) f(@n-1)(9(Yn-1))? )
Yni1 =G n € Ng,p,q € N, 3.14
= (T e ) € 10
where f,g : D — R are one to one continuous functions on D C R, the
initial wvalues x_;,y_;,7 = 0,1,2, are real numbers in D and the parameters

(@n)nengs (bn)neNgs (Cn)neNgs (dn)nen, are non-zero real numbers. In the same philosophy,

we will solve also in closed form the following system of difference equations

_ -1 9Wn)g(Wn—1)(f(®n—1))"
Tnt1 = f (f(xn)[an(g(yn—z))q+bng(yn)g(yn—1)]) ’

_ 1 h(zn)h(zn—1)(g(¥n-1))?
Ynt1 =49 <g(yn)[Cn(h(Zn72))"l"f‘dnh(zjb)h(znfl)]) , M€ No, p, g, 7 € N (315>

_ 5—1 f(@n) f(@n—1)(h(zn—1))"
Znt1 = (h(zn)[Sn(f(»’l»‘n—2))p+tnf(xn)f(xn—1)}) ’

where f, g, h : D — R are continuous one to one functions on D C R, the coefficients
(@n)nengs (bn)neNg, (Cn)neNgs (dn)nenos (Sn)neNg, (tn)nen, are non-zero real numbers and the
initial values xz_;,y_;, z_;,7 = 0, 1, 2, are real numbers in D. As an example, we will apply

the obtained results, on the particular system of difference equations

p q r
ynynflxn—l annflyn—l xnxn—lzn_l

ot = xn(anyg—Q + bnynynfl)’ Yni1 = Z/n(CnZZ;_g + annanly e =
(3.1.6)

which is obtained from the general System (3.1.5) by taking f(x) = g(x) = h(z) =

The following very well known lemma will be used in the resolution of the corresponding

linear system.

Lemma 3.1.1. Let (pn)nen, and (Gn)nen, be two sequences of real numbers and consider
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the linear difference equation

Zntk = PnZn t Qn, k= 2,3, mneN,.

Then for n € Ny we have

n—1 n—1 n—1
Zkn+ti = H Dkj+i| 2i + Z H Prjri| Qervis  fori=0,1,--- k—1.
7=0 r=0 [j=r+1

Moreover, if (pn)nen, and (qn)nen, are constants (i.e. p, = p,q, = q), then

zi + qn, a=1,

"—1
pnzri‘(p
p—1

Zknti = fori=0,1,--- Jk—1, n €Ny

) q, otherwise,

k k
where, I] Aj =1 and 3 A; =0, for all k <.
j=t j=t

We will see in the sequel that the formulas of well-defined solutions of Systems (3.1.3)-

(3.1.6) are presented via a generalized Fibonacci sequence, namely {Fj,}>°, defined by
Fenio = Feni1 + kFrn, Fro=Fe1 =1, neNy, keR—{0}. (3.1.7)
Here are some of its terms:
Fro =1,
Frpi=1,
Fro=1+k,
Frs =1+ 2k,
Fry=1+3k+k,
Fls =1+ 4k + 3k%,
Fro =1+ 5k +6k* + k°,
Fyr =1+ 6k + 10k + 4K°,
Frg =1+ Tk + 15k* + 10k* + k*,
Flo =14 8k + 21k* + 20k* + 5k*,
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Fli0 =1+ 9k + 28k* + 35k + 15k* + K°,

F11 = 1+ 10k + 36k% + 56k> + 35k* + 6K,

Frio = 14 11k + 45k + 84k® + 70k + 21k° + £°.

3.2 The solutions of System (3.1.3)

In this part, we show the solvability of our System (3.1.3). In fact we will give the closed

form of the well-defined solutions of our system.

Definition 3.2.1. A solution {x, Yn}tn>—2 of System (3.1.3) is said to be well-defined if

T (@l o 4 bnYnYn-1) Yn (Cn®h_o + dpxnzn_1) # 0, n € N.

Now, we will start the resolution of our system. Let {z,,yn}n>_2 be a well-defined

solution of System (3.1.3). We have

T _ Ynln-1Ty_1 y _ TnTn_1Yp_1
1 — 1 — )
n+ xn<anyg—2 + bnynyn—l) ’ n+ yn<cnxz—2 + dn'rnxn—l)
Lp+1Tn _ YnYn—1 Yn+1Yn _ TpLn-—1
xﬁq anygf2 + bnYnYn—1 ’ yghl CanT)L72 + dpnTpTp_1 7
xZ—l _ anygL—Z + OnYnYn-1 yg—l _ Can—z + dpxn T
Ln41Tn YnUYn—1 ’ Yn+1Yn Tpdn—1 ’
Ty Yn—2 Y1 Ty
- :ani—i_b’m :Cni—i_dn?
Lp+1Tn YnYn—1 Yn+1Yn TpTn—1
Taking the change of variables
b z
u, = —n=2_ gy = Y2 (3.2.1)
TpTn-1 YnYn—1
System (3.1.3) can be written as
Upy1 = ApUp + by, Vpy1 = Cuuy, +dy,,  n € Np. (3.2.2)

Hence, we have

Up+2 = Ap4+1Un+1 + bn-{—l = Qp+1 [Cnun + dn] + bn+1

= An4+1CpUp + (anJrldn + bn+1)7
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Un+2 = Cp4+1Un+1 + dnJrl = Cn+1[anvn + bn] + dnJrl

= Cp+10nUp + (Cn—i-lbn + dn—i—l)-

From this, we get, for all n € Ny, the following linear second order nonhomogeneous

difference equations,

Up+2 = Ap+1CpUnp + (an—l-ldn + bn—l—l);

(3.2.3)
Unt2 = Cp+1GnUpn + (Cn—i-lbn + dn—l—l)-

From Lemma 3.1.1, we have for all n € Ny and for ¢ = 0, 1, the solutions of equations in

(3.2.3) are
(n—1 1 n—1 [ n-1 T
Ugnti = H A2j4i+1C2j44 | Ui + Z H a9j+it102j4i | (Q2rtit1darti + boryiv1), (3.2.4)
| j=0 | r=0 |j=r+1 |
[n—1 1 n—1 [ n—1 i
Vongi = | [ cojrirrajri| vi+ D | T] cojriv1aojti| (Corpiziborsi + dorrita) . (3.2.5)
| j=0 | r=0 | j=r+1 |

From (3.2.1) and Equations (3.2.4) and (3.2.5), it follows that for all n € Nj

n—1 Ip ) n—1 n—1
Ugp = H A2j+1C2; — + Z H agjy1Coj | (agry1dor + bory1), (3.2.6)
§=0 LoL-1 ;20 |j=r+1

n—1
ll_[o a2j+2C2j+1] [%3/32 + boyoy-—1] n—1

n—1
Ui = —— +Z H gj42C2j41 | (Q2rq2dory1 + borya)
YoY-1 r=0 |j=r+1
(3.2.7)
n—1
ll:[o C2j+1a2j] AP
Vo = ! + Z H Cojy102; | (Cor1bar + dari1) (3.2.8)
YoYy—1 r=0 |j=r+1
and
n—1 p
l:[o Cojy2azj11 | [Coxly + domor ] i [ g
Vong1 = 2 + Z H Cojr202j41 | (Corpabori1 + dorya) .
Lo -1 r=0 |j=r+1
(3.2.9)

Now we give the solution form of Equations (3.2.3) when all the coefficients in System

(3.1.3) are constant. To do this, we suppose that a,, = a,b, = b, ¢, = ¢ and d,, = d, for
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every n € Ny. Then Equations (3.2.3) becomes

Upio = acuy, + ad + b,
(3.2.10)

Upto = cav, + cb +d.

From Lemma 3.1.1, we have for all n € Ny and for ¢ = 0, 1, the solutions of equations in

(3.2.10) are

u; + (ad + b)n, ac =1,
. - (3.2.11)
(ac)"u; + ((ac)) (ad + ), otherwise,
ac —
and
v; + (csb + ct + d)n, ac =1,
b — ) (3.2.12)
(ca)™v; + <(Ca)> (cb+d),  otherwise,
ca—1
From (3.2.1) and Equations (3.2.11) and (3.2.12), it follows that for all n € Ny
1}12
+ (ad + b)”? ac = 1’
Lol -1
- (3.2.13)
n ,.P n_1
(ac)"x?, i ((ac) > (ad + b), otherwise,
ToT_1 ac—1
q
Woa YY1 L it by, ac=1,
YoY-1
P (3.2.14)
n q b » "—1
(ac)™(ayly + byoy_1) n ((ac) ) (ad + D), otherwise,
YoY-1 ac—1
yl
2 4 (cb+ d)n, ac =1,
YoY-1
- (3.2.15)
n, 4 n_1
(ca)*y?, n <(Ca) ) (cb+d), otherwise,
YolY-1 ca—1
Py +d
U= ¥ EXT (o 4 gy, ac =1,
Lol 1
b — o - (3.2.16)
(ca nCT_g + AT 1 ((Ca) > (cb+d), otherwise,
ToT_1 ca—1
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Now, from (3.2.1) it follows that
P q
xn—2 yn—2
an - ) n — 9
UpTp—1 UnYn—1
So we have,
Q?p_g
Ty = )
Ul -1
hence .
PLp.o
Ty = 2
0 Foo Fpq1-
Uop’ol’, )1
Moreover,
1
T_q U()I_lflflil U()IZ:J{
T = P = P
U1To ULT_o ULT_o
SO .
uy” T’
1= 7+ 1 =
F F
ulp,()l.l’iiv,l
and , ,
b 2’ ouy2? w5
L2 = = T = T _2p+i>
sy ubr” ugur”t ugul P
thus . .
p,1,.Pl'p,2
- U Ty
2= "Fo,o Fpa Fp3°
u2p,0u0p,2x_p,3
Similarly, we obtain
2p+1 p2+3p+1 Fp,l Fp,3 Fp,4
T o UQU/O ‘,L‘fl o UQ UO ZE?l
3 — 1 292 - F F, F;
U3u’1’+ x7p2 +p usp,oulpaxlizp,s
2p+1 _ p3+3p? F, F, F,
o u3u1p+ lji;r p°+p B u3p,1u1p,3x212p,4
4= 1 p243p+1 3p2+4p+1 —  Fpo Fpa Fpa Fps’
u4u127+ ug +3p+ x7p1+ p+ u4p,0u2p,2u0p,4x71,5
2p+1 3p2+4p+1_ p3+6p2+5p+1 F,1 F,3 F,
u4u2p+ Uop +4p+ xzi;r p?+5p+ u4p’1u2p’3u0p’5x_1
1‘5 g =
p+1 p243p+1 3p3+4p24p Fpo Fpo Fpa pFps?
Usuz Uy ) Us Uz Uy T
2p+1 3p?+4p+1 _ p*+6p3+5p2 F,1 F,3 Fyo5
U5U3p+ ulp +4p+ SE{; p°+5p°+p u5p,1u3p,3u1 ,5
p+1, p?+3p+1, p+6p2+5p+1  4p3410p%+6p+1 Foo, Fp2 Fpa, Fpe Fp1’
Uy Uy Uy T Ug™ Uy 9 0 _
3 F
203—i)+1_ Fps
Fp1, Fp3 Fps Fpr Fps Hu2'p T
g = Mo Ua Uy U Ty 0 !
T "F,o Fpa Foi F F,7 3 )
p,0, I'p2  Lpa, L'p6 DPlp7 F ) F
U U U U P p.2(3—4) , PFp,7
o WM 2 IT uiy™ "y
1=0
Fo1 Fpy F,5 F F, ]§[ qu,2<4,¢)71$pr,g
p,1, r'p3, L'p5, £p7 Pl'p,38 2i+1 -2
T = Ug  Us Uz U T_o _i=0
T Fpo, Fpo Fpa Fpe Fps Fpo 4 g )
L P TP VR T P TP p.2(4—i)  Fpo
8 6 4 2 0 1 ,HOUQZ' T_q
1=
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4 F .
2(4—i)+1 _ Fp,
[T wp/ " a2

Fpo1 Fp3 Fps Fpr Fpo Fpio
ugpv u6P7 u4pvdu2pv UOP’ x,l‘ ZZO 7

Tg = =
Fpo Fpa Fpa Fpe Fps pFpo
2(4—
/U/9 /U/7 /U/5 U3 ul Q}_Q |I u27i0+1( 1)x72 9

Fpa1 Fps Fps Fpr Fpo pFpio
2

2i+1
Ug” ur" us" us” uy P vt

4 F .
H U p,2(5—1)—1 T

pFp 10
-2

=0
T10 = “Fo0 Foa Fpa Fpo Fos Fpio Fpai 5
uy g ug P ug " uy T ug P ug M H ” p2(5 0y

=0

By induction, it follows that

p,?(n i)—1 prygn
H Uit T_2

Top =
" p 2(n—1) Fp,2n+1
H Ug; T_1

n—i F n
H p2( )+1$ 1712( +1)

Ton+1 =
nt p 2(n—1t) pr,2n+1
H Ugiyr  Tg

Similarly we have,

Yo = )
VoY-1

hence -
qr'q,0
Yo = Y_2
0— "F. o F
q,0 q,1
'UO y_

Moreover,
q q q+1
Y_1 VoY-1Y—1  VoY_1

Yy = - q - q
V1Yo D1Y_9 V1Y_9

SO . .
q,1 q,2

g = Yo Y-1

1— 7F F,
q,0 Qg1

U1 Yo

and ,
q q q ®>+q
Yy = Yo — YoW1Yy—o V1Y _o
g = — —
q,..q q+1 q+1 2q+1>
U2Y1 VoY1 V200Y 1 v Y,

thus
(] q,2
Yo = —y_
27 TF.o Foo Fo3®
q,0 2 q,3
Uy Vg Y

Similarly, we obtain

2¢+1, q*+3q+1 Fo1, Fos, Fga
V2V~ Y_g Uy Uy Y

Y3 = - ;
q+1, 2q%+q Fao, Fo2, aFq3
U3V Y2 Vg™ U1 Yo

2q+1 3q¢? F,1 F F,4
UU‘H‘ yQ+Q+q vy q,1 q,3yg q,4

Ya = q+1, ¢*+3q+1, 3¢2+4q+1 - Fgo Fg2 Fga Fys?

V4V Uy Y Uy Vg " Uy Y1
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@ﬁ'%’f\o
2¢+1, 3¢2+4q+1 ¢3+6¢>+5q+1 Fga, Fgs3 Fq,s Fy6
y V4Us™ Vg Y_q Uy Uy Y1
5 — PE 31442 - !
gt+1, ¢*+3¢+1, 3¢°+49%+q Fqo, Fg2 Fq,4 qFq 5
U5V3 1 Yo Vs Uz Uy Y_o
2¢+1, 3¢>+4q+1, q*+6¢3+5¢%+q Fga Fas Fq,s aFq6
Vs = UsUs™ U Yo U5 U3 Yo
6 — 2 3 2 3 2 -
q+1, ¢2+3q+1, ¢3+6¢%+5q+1, 4q34+10¢%+6¢+1 Fao, Fg2 Fq,4 Foe, Fq7
VeUy  Ug Vo Y Vg Vg Uy Uy Y_q
2(3—i)+1_ Fy8
Fou1, Fe3_ Fgs Fq,7 Fq8 H /021, ' y—ql
Yy = Vg~ Uy Uy Y1 _ =0
7 Foo Fo,o F F For )
q,0, F'q2 Ll'qa I'qe6 Plq7
[ T V) - Fy a3 qu,7
7 Us U3 U1 Yo H v Ty,
2(4—i)—1_qFys
Fou1, Fe3_ Fgs Fq, pFye.8 H U2q 1 Y_o
s — v s g Y_o ot
8 = "Foo Foa Foa Fo6 F - )
q,0 q,2 q,4 q,6 q,8 q,9
Ve " 0s Y0, o _ 2(4—1) Fq,9
8 Vs Uy Uy Vg Y H 1;21 y 4
F. ota_i F,
q,2(4—i)+1_ Fq,10
Fy1 Fy3 Fo5 F,7 F,9 F, Vo, _
yo — qu’lvﬁq’dv4q’5z}2q’7v0q’9y_q’w B H 23 Y_1
9 = "F,o Fo2 Foa F,¢ F F,o )
q,0, Y'q,2 L'qa4 I'q6, I'q8 4rq9
Vo "0, 0 o - Fo 24— qu,s
9 U7 Us Uz Ur Yo H Vo Ty,
Fy1 Fys Fys For Foo qF, H e 1quq,10
q,1 q,3 a,5 a,7,,1q,9 q,10 2i+1 —2
V1o — Vg™ U7 U5 U3 U Y B !
10 = "F, o Foo Fya Fo6 Fos I F, - 5
L P L Dt Ve Tk 1 U;qz(m)yfql,n

1=0

By induction, it follows that

Foatm—i-1, aFg2n
H V911 Y_o

Yon =
Fyom—i), Fg2nt1
'H Vg Y1
n F ; F,
g,2(n—1)+1 q,2(n+1)
AH Vg Y-
Yon+1 =

q2n ) qu,2n+1
H Ugit1  Y—2

From the above calculations, we summarize in the following theorem the form of the

solutions of System (3.1.3).

Theorem 3.2.1. Let {zy, Yn}n>—2 be a well-defined solution of System (3.1.3). Then, for

all n € Ny, we have

p,2(n i)—1
H Ugitq P Ep2n
Loy = —
2n Fypom-iy | pfp2nt1’
H Ug; -1
1=0
" Fpo(m—i)+1
[T usy; Fpa(nt1)
. _ | i=0 T_1
2n+1 nF (ni) prp72n+1 )
Ho Ugit1 —2
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n—1 p )
q,2(n—1)—1
H V11 qFq,2n
Yon = =0 Y_o
o =
n T Fyon—i) y a,2n41"’
IT vy -1
=0
and
Fyotm—i)+1
Vg; o Fo ot
y | =0 —1
2n+1 n Fq,2(n—z‘) quq72n+1
H Vit1 -2
=0

where the terms of the sequences (up)nen, and (Vn)nen, are given by formulas (2.6)-(2.9)

in the case of variables coefficients and (2.138)-(2.16) in the case of constant coefficients.

Remark 3.2.1. If we take ¢, = ap, d, = b, n € Ngg=pandy_;, = x_;, i = 0,1,2,

then, we obtain the one dimensional version of System (3.1.3), that is the equation

p+1

nl ., peN,neN,. (3.2.18)

iz
pTh_o + bpTpT,_1

T

Tptl =

As a consequence the solutions of Equations (3.2.18) can be obtained from Theorem 3.2.1,

and their formulas are given in the following result.

Corollary 3.2.1. Let {z,}n>_2 be a well-defined solution of Equation (3.2.18), then for

n € Nog we have

n—1

H qu,Q(n—i)—l

1L Ui xpgp,%
i= —
Top =
n 7 Fp,Q(n—i) :L.FP72n+1 )
,H Ug; -1
=0
n F .
p,2(n—i)+1
‘HO U, prl,Q(n+1)
i= —
X =
2n+1 n Fp a(n—i) pranJrl )
H Uit -2
=0

the terms of the sequence (up)nen, are given by formulas (2.6), (2.7) in the case of variables

coefficients and (2.13), (2.14) in the case of constant coefficients.

3.3 The form of the solutions of a more general sys-
tem defined by one to one functions

In this part, we will show the solvability of the following system

Tpi1=f"" ( 9Wn)g(Yn—1)(f (2n-1))" )
n+ f(@0) [an(9(Yn—2))9 + b,9(Yn)9(Yn_1)] )’
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Yni1 = g—l < f($n).f(xn—1)(g(yn—l))q

n+l —
9(Yn) [en(f(2n—2))P + dnf(20) f(T0-1)]

> ,n € Ng,p,g €N, (3.3.1)

where f,g : D — R are one to one continuous functions on D C R, the initial values
T_;,Y—i,i = 0,1,2) are real numbers in D and the parameters (a,)neny, (On)neNgs (Cn)nengs

(dp)nen, are non-zero real numbers.

Definition 3.3.1. A solution {x,, yn}n>—2 of System (3.1.4) is said to be well-defined if

for all n € Ny, we have

f(@n) [an(9(Yn—2))" + bng(Yn)9(yn-1)] # 0,

9(Wn) [en(f(Tn—2))" + dnf(20) f(Tn1)] # O,

9(Yn)9(Yn-1)(f (2—1))"
f(@n) [an(9(yn—2))? + 009 (yn)g(Yn-1)]

€ fol

and

f(@n) f(@n-1)(9(Yn-1))?
9(Wn) [en(f(@n-2))P + dnf(2n) f(2n-1)]

Since f and g are one to one continuous functions, then we get

€ Dg—1.

g(yn)g<yn,1)(f($n,1))p
f(20)(n(9(Yn—2))1 + bng(Yn)g(Yn-1))’

f(@ng1) =

9(Ynt1) = f(@n) f(2n_1)(g(yn_1))? |
) ) el @) + dof () o)

Taking the change of variables

Xn = f(zn), Yo=9(y,), neN; (3.3.2)

it follows that System (3.1.4) can be transformed to the following system

Y, Y, 1 XP_,
X (@Y, + 0, Yo Y )’

X, X, Y2

Xn - 5
+ Yo (cnX? o+ dp X Xn1)

which is in the form (3.1.3). So, using (3.3.2), the fact that

o= (Xn), =g "'(Ya), neNg

and Theorem (3.2.1), we get the following result which describes the form of the solutions

of System (3.1.4).
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3.3. The form of the solutions of a more general system defined by one to one functions
NGR
Theorem 3.3.1. Let {x,,, Yo tn>—2 be a well-defined solution of System (3.1.4). Then, for

all n € Ny, we have

”ﬁl Foam—i—1

To = 1 P U441 (f(x_Q))men
2 pr—
n ﬁ u;}ﬂ(n—i) (f(q;il))Fp,Qmrl >
=0
n Fp72(n_i)+1
v - f_l il;lo i (f(xfl))FPﬂ(nﬂ)
2n+1 =
n+ ﬁ U;pfl(nfi) (f($,2))pr,2n+1 ;
=0
n—1 Fyo(n—i)—1
_ -1 l-l;lo U2i41 (g(y_a)) Faen
Yon = ¢ ‘ Ovim(n—i) (g(y_1))Fq72n+1 )
1=

and

q,2(n—i)+1
[T vy

—~

=0 g(y—1))Fe2men

T Fazn—i (g(y_Q))quﬂnJrl
Vo
il;[O 2i+1

Yoni1 =g '

where the terms of the sequences (Un)nen, and (Vn)nen, are given by the following formulas

n—1

H a21+102j] (a2r+1d2r + b?r+1) s (333)

Jj=r+1

= n—1
N N T

n—1

jljo a2j+202j+1] [ao(9(y—2))? + bog(y0)9(y-1)]

Uznt1 = 9(Y0)9(y-1)

n—1

H a2j+202j+1] (a2r+2d2r+1 + b2r+2) ) (3-3-4)
j=r+1

n—1
+2

r=0

n—1

N ] (G) o

Von = U= + Z

9(¥0)9(y-1) =0

n—1

11 02j+1a2j] (cor1b2r + dori1) (3.3.5)

Jj=r+1

n—1

i ] ol fla—a))? + dof (o) fla_r)

j=0

fanl = F(wo) f(xy)
n—1 n—1
+

11 C2j+2a2j+1] (Cory2bori1 + dorya) - (3.3.6)
r=0

Jj=r+1
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If the coefficients are variables and by the following formulas

(f(z_2))P -
o) flay) T ladTom ac =1,
e (3.3.7)
(ac)"(f(z—2))" (ac)™ —1 .
(z0)f(2_1) < ac — 1 ) (ad + ), otherwise,
a(g(y—2))? + bg(yo)g(y—1) )
9(¥0)g(y-1) +(ad+b)n, ac =1,
(aC>n(a(g<y72))q + bg(yo)g(yil)) (CLC)” -1 .
9(¥0)g(y-1) T < ac — 1 ) (ad +b), otherwise,
(3.3.8)
(9(y—2))? -
9(v0)9(y_1) + (cb + d)n, ac =1,
o (3.3.9)
(ca)"(g9(y—2))* (ca)” —1 .
7W0)9(y1) + ( p— ) (cb+d), otherwise,
e(f(z=2))’ +df(xo)f(emr) ) o
Vant1 =\ (eq)n( {}fO)f)(;;’i)df( )f:—( I;; 9) (’ - 1,
fxo)f(x_q) + (ca—l) (cb+d), otherwise,

(3.3.10)
if the coefficients are constants.

Remark 3.3.1. Clearly if we take the functions f and g such that f(z) = g(x) = x, then
System (3.1.4) will be nothing other than System (3.1.3).

3.4 Explicit formulas for the well-defined solutions of
System (3.1.5)

Definition 3.4.1. A solution {x,, Yn, 2nn>—2 of System (3.1.5) is said to be well-defined

if for all n € Ny, we have

f(@n) [an(9(Yn—2))" + bng(Yn)9(yn-1)] # 0,

g(yn) [Cn<h(zn—2))r + dnh(zn)h(zn—l)] # 0,
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3.4. Explicit formulas for the well-defined solutions of System (3.1.5)
NGR

h(zn) [n(f(Tn-2))" + tuf(2n) f(T01)] # 0,

9(Yn)9(Yn—1)(f(Tn-1))"
f(@n) [an(9(yn—2))" + 029(yn)g(Yn-1)]

h(z0) P (z0-1) (9 (Yn—1))*
900) [en(h(zn-2))" + duhh(za)h(zr)] © P

- Df,17

and

f(@n) f(@n-1)(M(2n-1))"
h(zn) [sn(f($n—2))p + tnf(xn)f(mn—l)]

€ Dp-1.

Let {Zn, Yn, 2n fn>—2 be a well-defined solution to System (3.1.5). Since f, g and h are

assumed to be one to one, then it follows from (3.1.5) that

f(Zng1) = IWYn)g(Yn—1)(f (Tn-1))?
n+ F (@) (n(gWYn—2))7 + bng(¥n)g(Yn-1))’

h(zn)P(zn-1)(g(Yn-1))*

90n1) = e (on))7 + dh () (o))
h(z 1) . f(xn)f(xn 1)( ( -1 )T
) = ) ol En))P + b f @) Fan))

From which, we get

(f(wn1))? —a (9(Yn-2))
P @)~ " gmglm)
(9yn-1))® _ . (Alza2))"
Tngln) k()
(M) _ (o))
M )h() ") fa)
Consider the following change of variables
L U@ ) ()
S e fn) T g T A B4

then, System (3.1.5) is transformed to the following linear system

Upi1 = AnUp + by, Upy1 = Cuwy + dp, Wpi1 = Sptly + by, 1 € Ny. (3.4.2)

From (3.4.2), we have

Un4+3 = Ap+4+2Un+2 + bn+2 = Qp42 [Cn+1wn+1 + dn+1] + bn+2
= [a'n+2cn+1wn+l + CLn-‘r2dn-‘r1] + bn+2

= Qp+2Cn+1 [Snun + tn] + an+2dn+1 + bn+2

91
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= Op42Cn15nUn + Ani2Caiiln + Anyadnir + bugo.
Un43 = Cni2Wni2 + dyga = Cnga[Snt1Unt1 + tog1] + dnto

= Cpro[Sni1(anvn + by) + tnia] + doao

= Cpi2[Snt1anVn + Spi1bp + taaa] + dugo
= Cn425n410nUn + Cng2Sn 10y + Cugolngr + dngo.
Wits = Spi2Unt2 + tnto = Spi2[Ani1Vns1 + bpi1] + togo

= Sppolni1(cowy, + dn) + byga] + oo

= Sntotnr1CaWn + apyp1dy + bpyr] + taae

= Sn420n4+1Cn Wy + Sn+2an+1dn + $n+2bn+1 + tn+2-

That is, we have obtained the following three linear third order linear difference equations

defined for all n € Ny by

Up+3 = Ap+4+2Cn4+1SnUn + an+20n+1tn + an+2dn+1 + bn+27
Un+4+3 = Cp425n+1anUn + Cn+23n+1bn + Cn+2tn+1 + dn+2> (343)

Wpt3 = Spy20n41CnWy + 3n+2an+1dn + Sn+2bn+1 + tn+2-

Using Lemma(3.1.1), we get for all n € Ny and for i = 0, 1, 2 that

n—1
Usn+i = H 35 4+i4+2C35+i+1535+i | Ui
Jj=0
n—1 n—1
+ Z H A3j4i+2C3)+i+153j+i | (3r+i+2C3rtit1l3r4i T A3rqiradaryiz1 + Darpita)
r=0 [j=r+1
(3.4.4)
n—1
U3n+i = H C3j4+i+253j+i+1A35+i | Vs
=0
n—1 n—1
+ > | II csjrivossiriviasisi| (CsrvivoSsrpitibsrsi + Carvivatsrpits + daryiva),
r=0 |j=r+1
(3.4.5)
n—1
Wan+i = H 53j+i42A35+i+1C3544 | Wi
Jj=0
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n—1

H 53j+i+2a3j+i+lc3j+i] (33r+i+2a3r+i+1d3r+i + S3r4it2b3rtit1 + Yf3r+i+2) .
Jj=r+1

n—1
+2

r=0

(3.4.6)

Now, from (3.4.1), (3.4.4), (3.4.5) and (3.4.6), it follows that for all n € Ny

H A354+2C35+153; —f(xo)f(x_l)

j=0

= ] (f(r-2))"

n—1

n—1
+ Z H a3j+203j+183j] (a3r12C3r41tsr + asriodsi1 + baria), (3.4.7)
=0 |j=r+1

n—1

II 03g+3033+283j+1] [ao(g(y—2))? + bog(y0)9(y—-1)]

]7

UBn+1 = 9(40)9(y-1)

n—1
H a3(j+1)03j+253j+1] (a3r+303r+2t3r+1 + a3(7‘+1)d3r+2 + b3(r+1)> ) (3-4~8)
j=r+1

n—1
+2

r=0

n—1

1T a3]'+403(j+1)53j+2] [arco(h(2-2))" + ardoh(z0)h(z-1) + bih(z0)h(z-1)]

J]=

Ugnt2 = h(zp)h(z-1)

n—1
+2

r=0

n—1

11 a3j+4c3(j+1)53j+2] (a3r+4c3(r+l)t3r+2 + agpryadsri1) + b37’+4> , (3.4.9)
j=r+1

rnl C3J+2S3J+1GBJ] (9(y—2))7

]_

fon = 9(40)9(y-1)

n—1

H C3j+233j+1a3j] (Car4283r41b3r + Carpataryr + dsrga) (3.4.10)
j=r+1

n—1
+2

r=0

n—1

H C3(j+1)33j+2a3j+1] [co(h(z_2))" + doh(z0)h(2-1)]

v = =0
3In+1l — h(Zo)h(Z_l)
n—1
+ Z

H C3(j+1) 83]+2a3]+1] (CS(T+1)SST+2b37‘+1 + C3r+1)lart2 + d3(r+1)> )
r=0 |[j=r+1

(3.4.11)

n—1

ll_[ C3j+453(j+1)a3j+2] lerso(f(z-2))P + citof (o) f(2-1) + dif(20) f(2-1)]

v _ =0
e (o) f(z-1)
n—1| n-1
+2

11 C3j+483(j+1)a3j+2] (C3r+453(r+1)b3r+2 + C3r4al3(r1) T d3r+4) (3.4.12)
r=0 |j=r+1
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and

D:[l S3J+2a3j+1c3]‘| (h(z-2))"
h(z0)h(z-1)

W3n =

n—1

H 33j+2a3j+103j] (83r42a3r41dsr + S3ri2b3ri1 + L3rg2) (3.4.13)
j=r+1

n—1
+2

r=0

n—1

[n 0 >] (50(f (-2))P + tof (zo) (1)

]_

Hani1 = f(xo)f(z_1)
+ Z

r=0

H S3(j+1) G3J+203J+1] (53(r+1)a37’+2d3r+1 + 83(r41)b3r 12 + t3(r+1)) )
Jj=r+1

(3.4.14)

n—1

j];[o $3j+4(13(j+1)03j+2] [sa(g(y_2))? + sbg(yo)g(y—_1) + tg(yo)g(y_1)]

W3n+2 = g(yo)g(y—l)

n—1

H 53j+4a3(j+1)03j+2] (S3r+4a3(r+1)d3r+2 + 53r+4b3(r+1) + t3r+4) .
j=r+1

n—1
+2

r=0

(3.4.15)

If the coefficients are constant, that is a, = a, b, = b, ¢, = ¢, d, =d, s, = s, t, = t, then

the linear equations in (3.4.3) becomes

Upi3 = acsu, + act + ad + b,
Upag = csav, + csb+ ct + d, (3.4.16)

Wyy3 = sacw, + sad + sb +t.

Again, from Lemma 3.1.1, we get for all n € Ny and for ¢ =0, 1, 2

u; + (act + ad + b)n, acs =1,
Usn+i = n_ 1 (3417)
(acs)™u; + <<GCS) . ) (act + ad +b), otherwise,
acs —
v; + (esb+ ct + d)n, acs =1,
Van+i = n_1 (3418)
(csa)™v; + (csa) (csb+ ct + d), otherwise,
csa — 1
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and
+ (sad + sb+ t)n, acs =1,
(sac)"w; + ((Sac) ) (sad + sb+t), otherwise.
sac —1
Using, (3.4.1), (3.4.17), (3.4.18) and (3.4.19), it follows that for all n € Ny
(f(z_2))”
———— + (act + ad + b)n, acs =1,
Fleol i) )
Uy = (3.4.20)
(acs)" ([ (2_))? ((acs)” - 1) |
+ act +ad + b), otherwise,
Fleafar) '\ aes—1 )¢ )
q
alg(y-2))" + bg(yo)g(y-1) + (act + ad + b)n, acs =1,

9(Y0)g(y-1)

U3n+1 =

(acs)"(alg(y—2))" +bg(yo)g(y-1)) ((GCS)" -

1
9(Y0)9(y-1) acs — 1 ) (act +ad +b), otherwise,
0 -1 _

(3.4.21)
ac(h(z_s)" + adh(Z())h(Z_1) + bh(ZO)h(Z—l) + (act + ad + b)n, acs =1,

U3n+2 = h(zo)h(z 1)
(acs)™(ac(h(z—2))" + adh(zo)h(z_1) + bh(z0)h(2_1)) n <(acs)”—

h(z0)h(z-1)

1
> (act + ad + b), otherwise,
acs —

(3.4.22)
92Dt am s —
7(50)9(y_1) + (csb+ ct + d)n, 1,
Ugp = (3.4.23)
(aa)"(g(y-2))" | ((acs)” —1 .
9 + ( pr— > (csb+ ct + d), otherwise,
c(h(z—2)" + dh(zo)h(2-1) ©(esh+ et + d)n, acs = 1,

S h(zo)h(z-1)
sntl (esa)™(c(h(z—2))" + dh(zo)h(z-1)) N ((csa)" -

1
) (csb+ ct + d), otherwise,

h(zo)h(z_1) csa — 1
(3.4.24)
cs(f(x_2))? + ctf((;ﬁo)) ((x 1)) + df (z0) f(z - ) + (esb+ ¢t + d)n, acs = 1,
Udn42 = n Py ctf(xg)f(z_ x csa)"” —
+ (csa)™(es(f(z—2)) ;(tf)(f(())f() 1) +df (z0) f(z_1)) I ((csa)_ 11> (csb+ ct+d), otherwise,

(3.4.25)
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(h(Z_Q)T _
" h(zo)h(z_1) ¥ (sad+ s+ )n, et (3.4.26)
n (sac)™(h(z_s))" N ((Sac)n — 1) (sad + sb+ 1) otherwise
h(zo)h(z_1) sac — 1 ’ ’
s(f(z_g))? +tf(xo)f(x_1) + (sad + sb+ t)n acs =1

= )
W3n+1 = n .
(sac)(s(f(x_2))P +tf(xo)f(x_1)) (sac)™ —1 .
fxo) f(z-1) t ( sae — 1 ) (sad + sb+ 1), Zhj;l;}ise,
sa(g(y—2))? + sbg(yo)g(y—1) + tg(yo)g(y—1) ot st 1 A. .

9(Y0)9(y-1)
(sac)"(sa(g(y—2))? + sbg(yo)g(y-1) +tg(y0)g(y-1)) n ((Sac)n —1

9(v0)g(y-1) sac —

W3n+2 =
) (sad + sb+1t), otherwise.

(3.4.28)

Now, using the fact that the functions f, g and h are one to one, it follows from (3.4.1)

that

() s () o (B2

From which we obtain,

e () )

Moreover,

ner () = ey )
- ()

Similarly, we obtain

u(F(z_s p2+p . ufp,l T_o))PFr2
@:f1< 1(f(r-2)) ):f (@0”< ) ),

ugug (f(z-1))?*! " g™ (f (1)) Frs

gt (f (2-2))2" P s uy? (f (o) PFes

u2u3p+1 T, p2+3p+1 . ugﬂlu?@ T, Fpa
%:f1< (f(z-1)) >:f ( (f(x-1)) )7
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:z:4=f_1< ustld? L (f (o) ):f‘l( s (1 ()PP )

ugu ™! 82+3”“(f(x_1))3p2+4p+1 wy " uy g (f ) e

5= 1" (uu (f())) _ (uf“uipsu?“(f(x_l))% )
- - )

usth Tl T f (2 _y))3t e us " uy " uy P (f (w_g) JPPes

_ ( ug " gy (f (o) P )
3:6*]0 )
Uu

o ) o

(e ()
T7 = f )

ur gy uy O (f (o) P

o (e
Tg = f 9

u§p0u5p2ufp4u§pbu5p8(f(x 1)) .9

P e A A A G
SCg—f

T (o)

[ e g gy (f (wop) e
z10 = [ 7

u% ougp Qng 4qu 6qu 8ugp 10 (f(mil))Fp,u

o (R )

uf{’ Ougp 2u$p 4u5Fp 6u§p sufp 10 (f($,2))pr’11

Foo, Fpa Fpa Fpe Fps Fpio Fp12(f'(x71))Fp,13

Fps, Fps, Fpr Fpo Fpii pFp 12

. I= U11 Mg P g P g ug ™ un T (f (2—g) PR

12 = .
Upp Upp U™ Ug Uy U™ U

By induction, it follows that

p6(n i)—1 p,ﬁ(n i)—3 F ,6(n—1)—>5
(lHO Us2i)+1 U3(2i+1) u3(21+1)+2 ) (f (_y))PEron

H lp n—i H p,6(n—1 lp n—i)—4 ) — p,6n+t1
<i u3( 6( )> < u3(2;))(+2 - 2u3(2§)+( 1)+) 1 ) ( (x 1>>

= f!
7 Fp6(n—i)+1 n-l Fp6tn—iy—1, Fp.6(n—i)—3

<i1;10“3(2i) z‘l;lo Us(2i)+2  U3(2i+1)+1 (f(2_y))Fron+2
ﬁqu,s(n—w nﬁlqu»6<n_i>—2qu,6<n—i)—4 (f(z_a))PFponsr |7
A Us@ b Us(@i+) 3(2i+1)+2

( (3.4.31)
P Fp6(n—i)+1 nl 6(n—i)—1_ Fpem—i)-3
11 “3(1)2%“ " > (H u3(p2i+1) U3(2i4+1)+2 PFp,6n+2

Ten+1 = fil

—1
Ten42 =

" Fp,ﬁ(n—i)+2 p,6(n—1) p 6(n—i)—2 (f({L‘_l))Fp,Gn-‘rS ’
<iH Us (2;) Us(25)42 H Us(2i41)+1

=0
n p ) F )
p,6(n—i)+3_  L'p,6(n—i)+1 Fp6(n—iy—1
(A i) (T BE0) (oo
— )
ﬁ ylpsn—it2, Fpom—i n]_[lu om—i—2) (f(z_g))PFron+s
b U(2i) 41 3(2i+1) Ak Us(2it1)42

Ten+3 = fil (3433)
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3.4. Explicit formulas for the well-defined solutions of System (3.1.5)

NGR

) n—1 p
p,6(n77,)+1
Ug(2i+1) > (,H u
7

p6(n i)+3
(H Us(24)+1

p,6(n—

i)—

1
3(2i+1)4+2 ) <f(x_2))pr,6n+4

Len+4 = f_l

(i

0 3(26)+2

3(2i+1)+1

Fp6(n—i)+1
3(2i+1)+1

Fp6(n—i)+3
3(20)+2

p,6(n—1)+5
<H Us(2) u
7

(n—i)+4 Fp 6(n—i)+2 Fp 6(n—1) >

(Pl ) |

> (f (z_y))oesn

-1 =0
Ton+s —
n+ f ﬁ Fpe(n—iy+a, Fp6n—i)+2, Fp6(n—i)
L@+ Ysit)  Us(ai+n)+2
1/:

Similarly, by following the same steps we obtain

Fye(n—i)—3,_ Fq6(n—i)—

H v q6(n i)— 1,0
3(24)+1 3(2i+1)

) (f(z_g))Plronts

5

-1
Yen = g )
H v qG(n %) H v q6(n i)— ZU q,6(n7i)74 (g(y 1 ) ¢,6n+1
44U 3(20)+2 3(2i+1)+1
n g n—1 p . F . . )
q, G(n i)+1 q,6(n—i)—1 q,6(n—1)—3
[lv [T vy Uss; Fy6n
1 (Z 0 3(2i ) (i:() 3(2i)+2 3(2i+1)+1 (g(yfl)) q,6n+2
Yen+1 = g

q,6(n—1)—2

n r . n—1 @
q,G(n—l)> (
1T vafs IT v
(i:O 3(21)+1 0 3

(2i+1)
n Fastment ) (M
(HU322+1 )(HU
=0 =0

Foem—iy-1, Fg,6(n—
3(2i+1)

U3(2i+1)+2

Fq,G(n—i)—4) (g(y72))qu,6n+1 )
Y3(2i+1)42

i)—3

) (g(y—z))aFacn+2

Yoniz =9
(z =0

(11

q,6(n—1)+3
3(2i)

1 -y ’
ﬁ v Fy6(n— Z)-«-2UFQ 6(n—1i) nH UFtLG(n—i)—? <g<y71)>Fq’6 +3
3(2i) 3(2i)+2 AL Ui+

q,6(n—1i)+1 n-1 Fq 6(n—i)—
U3(21)+2 ) <i1:[0 U3(2i+1)+1

i)—1

) (g(y—1)) oot

Yonis =9

1 s )
ﬁ v Fo6(n—i)+2 Fq 6(n—i) "H UFqﬁ(n—i)—z (g(y—g))tFasn+s
o 3(20)+1 3(2i+1) 14 U32it1)+2
Z 1=

(ﬁ UFq,é(n—i)+3UFq,§(n—i)+1) ("ﬁl UFq,é(n—i)—l) -
e 4:9_1 =0 3(21)+1 3(2i+1) 0 3(2i+1)+2 <g(y72))q q,6n+4
nt ﬁ q G(n i)+4 q,6(n—i)+2 Fq,S(n—i) (g(yil))FQ»G”Hﬁ ’
Z_OU U3(2i)+2 3(2i+1)+1
ﬁ UFq 6(n D45, q,6<n—i>+3qu,6(n—i)+1
i 82 3(24)+2 3(2i4+1)+1 (g(y_l))Fq,amm
Yén+s = g = ’
ﬁ UFq 6(n— z)+4v q,f‘3(n7i)+2 Fq,ﬁ?(nfi) (g(y72))qu,6n+5
A VB4 3(2i+1) 3(2i+1)+2
and
H w 'r6(n ) wFTG(n i)— 3wFr,6(n7i)75
) 3(2i)+1 3(2i+1) 3(2i4+1)+2 (h(z_g))rEron
Z6n h " )
Fr,G(nfi) r (n— 7,) 2 F’r,6(n7i)74 (h(Z 1 ) r6n+1
[T w H w w
L U3(2i) 3(20)+ 3(2i+1)+1
1=
noF, 6(ni)+1) (nl From-iy-1_ Fr G(ni)B)
1T wa/s 1T wap, Wars Foon
s 1 :h_l (z‘:o 3(24) o 3(2i)+2 3(2i+1)+1 (h(zil)) 6n+2
ont ﬁ 'r6(n ) nﬁl Fr,ﬁ(n—i)—2 Fr,G(n—i)—4 (h(Z_Q))TFT’Gn+1 ’
o Dws (20)+1 L Ws2i+1)  W3(2i+1)+2
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(3.4.34)

(3.4.35)

(3.4.36)

(3.4.37)

(3.4.38)

(3.4.39)

(3.4.40)

(3.4.41)

(3.4.42)

(3.4.43)



3.5. Formulas of the solutions of System (3.1.6)

{00
B Frg(n—i)+1 n_l Fre(n—i)-1_ Frem-i)-3
. ('Ho W3 (2i)+1 HO Ws2i+1) W3(2i+1)+2 (h(z_y)) Front2
— — 1= 1= —
Z6n+2 — h 7 . n—1 p ‘ h Fronts (3444)
H w 'r (n— 7,)+2w 7,6(n—1) H w r,6(n—i)—2 ( Z—l)) g
3(29) 3(20)+2 4 Wit 41
r Fr 6(n—i)+3 F’r,G(nfz)+l n- F’r,G(nfi)fl
- <ZH0 W3 (9) W3(24)+2 z‘ljo W3(2i4+1)+1 (h(z_y))Fronta ( )
Zon+3 = — — 3.4.45
ﬁ F’r 6(n—1i)+2 F’I‘,6<’VL*7;) nnl Fr,6(n7i)72 (h(Z_Q)>TF’"v6"+3
Ao Wseotr Wsity )\ L Ws@itn)+2
ﬁ F’r,6(n7i)+3 F, ,6(n—1)+1 1—[ F, ,6(n—1)—1
) 2 Ws2i)+1  W3(2i+1) W3 (2i41)+2 (h(z_y)) Fronta
Zonya = h™ | ——7 - (3.4.46)
H wFr,G(nfi)vLﬁler,G(n ) 7‘6(n ) (h(z_l)) r,6n+5
e (C0) 3(2i)+2 3(2i+1)+1
1=
L Fr,6(n7i)+5 F,. ,6(n— z)+3 ’V‘ 6(n—1i)+1
1T wys)) W3(24)42 81+ ) (h(z_y))Frem+
Zonys = W[ S22 = (3.4.47)
H F'r,G(n—'L)+4 F,. ,6(n— z)+2 7‘ 6(n—1) h T 7,6n+5
L W3 (2i)+1 3(2i+1) 3(2i+1)+2

In summary we have the following result.

Theorem 3.4.1. Let {x,, Yn, 2ntn>—2 be a well-defined solution of System (3.1.5). Then,
for all n € Ny, the x,-component (resp. the y, component and the z,-component )
are given by equations (3.4.50)-(3.4.35) for x, (resp. equations (3.4.56)-(3.4.41) for y,
and equations (3.4.42)-(3.4.47) for the z,), where the sequences {un}neng, {Vntnen, and
{wn}nen, are defined by the formulas (3.4.7)-(3.4.15) in the case of variables coefficients

and by formulas (3.4.20)-(3.4.28) in the case of constant coefficients.

3.5 Formulas of the solutions of System (3.1.6)

If in System (3.1.5), we let f(x) = g(x) = h(z) = x, D = R — {0}, then we get the

following particular system

p q r
YnYn—1Tp 1 Znfn—1Yn—1 TnTn—-12,_1

Tp4+1 = ), Yn+1 = fn+l =

Zn(SnIL'fL,Q + tn$n$n—1) '
(3.5.1)

$n(anyg—2 + by YnYn—1 Yn(Cnzy_o + dn2n2n_1) ’

Clearly, we have

In this case a solution {z,, Yn, 2y fn>—2 of System (3.5.1) is said to be well-defined if for

all n € Ny, we have
TnYnin (anygf2 + bnynyn—l) (anrrl,—2 + dnznzn—1> (Snxz—Z + tnTnTn-1) # 0.
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3.5. Formulas of the solutions of System (3.1.6)
NGR
As a result of Theorem (3.4.1), we have

Corollary 3.5.1. Let {y, Yn, 2n n>—2 be a well-defined solution of System (3.5.1). Then,

forn=20,1,..., we have

—1
nH Fp6(n— L)flqu,(S(nfi)fSqu,G(nfi)fS .
o Us3(24)+1 3(2i+1) 3(2i+1)+2 x{;ﬁn

Ton = F )
ﬁ qu 6(n—1) H u p 6(n—i)— Q,U/Fp,ﬁ(nfi)fél l’_zi’en+1
=0 3(24) 3(2i)+2 3(2i+1)+1

P Fp6(n—i)+1 n_1 Fp6(n—i)-1 Fpen—i)-3
( Ho Us (5 .H Us(2i)+2  U3(2i+1)+1 ngpl,an
2 7/7 —

Tent+1 = F, )
ﬁ U pﬁ(n ) H U p,6(n i)— 2qu,6(n77,')74 xp_Qp,Gn-l»l
14 U3(2i)+1 3(2i+1) 3(2i+1)+2
1=

n F . n—I1 F . F .
p,6(n—1i)+1 p,6(n—i)—1 p,6(n—1i)—3
(Ho Us3(24)+1 ) <'H0 Us(2ir1)  U3(2i+1)+2 mpgp,ﬁnﬁ
= —

Len+2 = — ,
ﬁ Fp6(n—iy+2, Fp6(n—i) nnl Fy6(n—i)—2 xfpl’(i”*g
11 Us (g Us(25)+2 11 Us(9i41)41
1=0 =0
L Fp6
pG(n i)+3 (n—i)+1 pG(n i)—1
<.HO Us(2i) Ua(3i) 2 ) (H Us3(9i+1)+1 ) G
1= _
Ten+3 = ,
ﬁ P76(n i)+2 PG(n ) H p,6(n i)—2 inFQp,Gn+3
0“3 @i)+1 U3(2i+1) Uz (2i4+1)42
n F . n—1 F .
p 6(n—1)+3 p,6(n—1i)+1 p,6(n—i)—1
(ZHO Uz2)41  U3(2i41) ) (iHO Uz (2i11)+2 ) xlil“;p,GnH
Tent4 =
n+ ﬁ p,s(n 4 Fpem—i+2 Fpe(n—i) pr1,6n+5 ’
U (o 3(20)+2  U3(2i+1)+1 -
ﬁ Fyp6(n—i)+5 Fpemn—iy+3  Fpen—i)+1 r
0“3 2i) 320+2  Y32it1)+1 ) o BG4
1= —
Tents5 =
n+ ﬁ P,G(n i)+4 Fp,6(n7i)+2 FP,G(nfi) xpgp,6n+5 )
ou @i)+1  Y32i+1)  UY32i+1)+2 ) T

n—1 g ) F ) F,
q,6(n—i)—1 q,6(n—1i)—3 ,6(n—1i)—5
(‘Ho Us2iy+1 Usir1) U (21+1)+2 > ng 6n
7=

yﬁn = n n—1 Y
q,6(n—1 Fq,G(nfi)72 F ,6(n—i)—4 _q,6n+1
(ZHO U3(25) ) <iHO Us2i)+2 U3 (2z+1)+1 > y

n g . n—1 p . F . >
q,6(nz)+l>( q,6(n—1i)—1 q,6(n—1i)—3
Va(o; Varo; Varo, Fy6n+2
(iIIO 3(2i) iI:IO 3@i+2 Us@itl)+1 | o

Yen+1 = ’
ﬁ v q 6(n—1) 1—[ v q 6(n—i)— 2/UFq 6(n—i)—4 yq_ 2,6n+1
L U3(20)+1 32i+1)  U3(2i+1)+2
1=

L ; n=l p y_1 F ;
q,6(n—1)+1 q,6(n—1i)—1 q,6(n—1i)—3
(iHO Us(2i)+1 > (iHO Us2i+1)  Us(2i+1)+2 > yqf;qﬁﬁnﬁ

Yen+2 =
ﬁ q 6(n i)+2 Fq,6(n7i) H q 6(n—i)—2 yf‘qlﬁ"-'—g 7
0“3 U3(2i)+2 U3(2i+1)+1

" Fe F ) n—1 p )
(n—1i)+3 q,6(n—1)+1 q,6(n—1)—1
(H Vg5 U3(2i)+2 ) (‘Ho Us(2i+1)+1 ) yFmomes
7 1= —

0
Yon+3 = _ 5
ﬁ Fo6tn—i+2, Fq,6(n—i) nnl Fa6(n—i)—2 yq_zq’MH
Ov3(21 1 Us(2i+1) U3(2i+1)+2
Z
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3.5. Formulas of the solutions of System (3.1.6)
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F, F, ; n=1 g .
q,6(n—1)+3 q,6(n—1)+1 q,6(n—1)—1

(H 'U3(2Z +1 Vg 3(2i+1) > (HO ,U3(2i+1)+2 > yq}; ,6n+4

i= _

6n+4 —

Yonrt ﬁ qG(n i+a, Foom—iy+2, Fo6(n—i) yF‘1176”+5 ’

0“3 Us2i)+2  Us(2i+1)+1 -

n F ) F .
Fo6(n—i+5 Fa6(n—i)+3 Fa.6(n—i)+1
H 03(2z Us2iy+2  Vs(2i+1)+1 ) qul,6<n+1)
Yen+s5 =
i 11 Fyon-iy+a, Faen—iy+2, Fa6(n—i) yqf;q 6n+5
o 0”3(21 1 Y32i+1) Y3(2i+1)+2

3

2

Z6n — — 7
Fr6(n—i) nH1 Fre(n—iy—2  From—i)—4a ZFTI 6n+1
i—0 w3(21 =0 w3(2i)+2 w3(2i+1)+1

nﬁ Fr6n—i)—1_ Frem-iy-3 Frem—i)—5 .
i=0 w3(2z)+1 W32i+1)  Ws(2i+1)+2 2 oron
n

n n—1 P _ " _
T G(n i)+1 r,6(n—i)—1 r,6(n—i)—3
zI—Io (w3 ) iHO (w3(2i)+2 W3(2i+1)+1 ) zfrl,enm
Z6n+1 — — __ - ,
ﬁ By 6(n—i) Hl Fr6(n—iy—2_ Fre(n—i)—4 zig’“’(’"“'l
1 W3 (24)+1 1 W3(2i41) " W3(2i41)+2
n n—1 " _
F. ,6(n—1i)+1 r,6(n—i)—1 r,6(n—i)—3
HO ( 3(2i)+1 ) 'Ho (w3(21+1) W3 (2i+1)+2 ) Tf;rﬁnﬂ
1= 1=
Z6n+2 = — ,
* F, ,6(n—1i)+2 FT',G(nfi) n=1 F. ,6(n—i)—2 ZFT 6n+3
11 w 1T (w 1
W3 (24) 3(2i)+2 ) 3(2i+1)+1
1=0 1=0
n ) F ) n—1 P )
r,6(n—1i)+3 r,6(n—1i)+1 r,6(n—i)—1
zHo (w3(21) Wa(2i)+2 ) z‘I—Io <w3(2i+1)+1 ) zi‘G"“
Z6n+3 = —
Y Frgmiyts. From-i\ "= [ From_iy—a) g Lron+s’
IT (w w I1 -2
3(2i)+1 3(2i+1) ) . W3(2i4+1)+2
=0 =0
L F ) n—1
F, ,6(n—1)+3 r,6(n—1i)+1 r,6(n—i)—1
ZI:IO( 3(2i)+1 w3(2z‘+1) ) z‘I:IO <w3(2,+1)+2 ) Tf;r,anﬂ
Z 4 = — —
ont ¥ rﬁ(n i)+4 Fr,G(nfi)+2 Fr6(n—i) ZF'" 6n+5 ’
a Ws32i)+2  W3(2i4+1)+1 1
ﬁ Fr6(n—i)+s  Froem-i+3  Frem—i)+1 F
=0 Ws(2i) 3(20)+2 8(2i+1)+1 ) 00D
Z6n+5 =

" Fron-iy+a, Frem-i+2,  Fr6m—i) ZTFT,6n+5 ’
[] Warsy T 9
LA\ Ws20+1 3(2i+1) 3(2i+1)+2

.

where the sequences {un fneng, {Untnen, and {vy }nen, are defined by the formulas

n—1
p
.H0a3j+203j+133j T2 p-1[ n-1
j:
U3y = +Z H a3j4+2C3j4+153; | (A3r42C3ri1tar + Agryodari1 + barya)
Lol -1 r=0 |j=r+1
~1
L asgnesieassis | [aoy"s + boyoy—1]
.0a3(]+1)c3j+283j+1 aolY_o 0YoY-1
j:
UZn+1 = Yoy
0Y—1
n—1
+Z H A3(j+1)C3j+2535+1 (a3(r+1)c3r+2t3r+1+a3(r+1)d37’+2+b3(r+1)>7
r=0 |j=r+1
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3.5. Formulas of the solutions of System (3.1.6)
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n—1
Ho asj+4C3(j+1)S3542 | [a1co2l o + ardozoz—1 + b12021]
j:

U3n+2 =
Z02—1
n—1 n—1
+ Z H A3j+4C3(j+1)53j+2 (a3r+4c3(r+1)t3r+2 + agpryadsri1) + b3r+4) ;
r=0 |j=r+t1

n—1
q
[H C3j+253j+1a3j] Y=2 n-1[ n—1

7=0
Ugp = +Z H C3j4+253j41035 | (C3r4253r41b3r + C3pq2t3,41 + dsri2)
YoY-1 r=0 |j=r+1
n—1
.
'Ho C3(j+1)53j4+203j+1 | [Co2"g + dozo2—1]
‘]:
Usn+1 =
Z20R2—1
n—1 n—1
+ Z H C3(j+1)53j+203;5+1 (03(r+1)53r+2b3r+1 + C3r+1)lart2 + d3(r+1)) )
r=0 [j=r+1
n—1 »
[T c3j+a83(j+1)a3542]| (1502”9 + citoxor_1 + dizox_1]
=0
VU3n+2 =
Lol -1
n—1 n—1
+ Z H C3j+453(j+1)A3j+2 (63r+453(r+1)b37‘+2 + C3rqalaeri1) T d3r+4)
r=0 [j=r+1
and
n—1
.,
HO $3j4+203j+1C35 | 2o 1 [ ne1
J:
W3y, = +> | TI ssjr2asjrics;| (s3r2a3r11dsy + S3r42b3r41 + targ2)
2071 r=0 |j=r+1
n—1

D
'Ho S3(j4+1)03j+2C35+1 | [S0x” o + toTor_1]
j:

Wap+1 = ToT 1
n—1 n—1
> 1 T ssg+nasj+acsja (33(r+1)a3r+2d3r+1 + 83(r41)b3r 12 + t3(r+1)) :
r=0 |j=r+1
n—1 q
l:[o S3j+43(j+1)Caj+2 | [sayLy + sbyoy-1 + tyoy—1]
Hant2 = J YolY-1
n—1 n—1
+ Z H 83j4+4A3(j+1)C35+2 (S3r+4a3(r+1)d3r+2 + S3p44b3(r41) + t3'r+4) ;
r=0 |j=r+1
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in the case of variables coefficients, and formulas

I}ig

Lol 1

+ (act + ad + b)n,

U3zn =

ol -1 acs —

ayy + byoy—1
YolY—-1

+ (act + ad + b)n,

U3n+1 =

1

YoY—1

acz” o + adzpz_1 + bzpz_1

207—1

U3n+2 =

(acs)™(ayly + byoy_1) N (acs)™ —
acs — 1

+ (act + ad + b)n,

acs
(acs) o

yq—2

YoY-1

+ (csb+ ct + d)n,

Usn =

YoY—1 acs — 1

"o+ dzoz_
Ca TERL L (esb + ot + d)n,
Z02—1

U3n+1 =

Laczl o+ adzoz_q 4 bzoz_y n (acs) —1
acs — 1

1

(csa)

Z20R2—1

csxt o + ctxor_q + dror_4 N

Tol -1

Usn4+2 =

L2l dzozy N (csa)™ —
csa—1

(esb+ ct + d)n,

(csa)™

Tol -1

and
.
29

+ (sad + sb + t)n,
207-1

W3n =

sac — 1

103

csa — 1

csal o + ctror_q + dror_4 N ((csa)" -1

acs =1,

n ,.P n_1
(acs)"x?, N ((acs) ) (act + ad + b), otherwise,

acs =1,

) (act + ad + b), otherwise,

acs =1,

) (act + ad + b), otherwise,

acs =1,

n,,d n_1
(aa)™y?, n ((acs) ) (csb+ ct + d), otherwise,

acs =1,

) (csb+ ct 4+ d), otherwise,

acs =1,

) (csb+ct+d), otherwise,

acs =1,

r n_1
) <2 + <(3ac) ) (sad + sb+t), otherwise,



3.5. Formulas of the solutions of System (3.1.6)
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W3n4+1 =

sa? 5 + twor_4 N

(sad 4 sb+ t)n, acs =1,
Tol -1

sz + twox sac)” — 1
(sac)" =2 Ll << ) ) (sad + sb+t), otherwise,
ToT_1 sac — 1

W3n+2 =

say?y + sbyoy_1 + tyoy_1 o

(sac)

sad + sb+ t)n, acs = 1,
YoY-1

W 5ayty + sbyoy—1 + tyoy—1 N ((sac)" -1

) (sad + sb+1), otherwise,
YoY-1

sac — 1

in the case of constant coefficients.
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CONCLUSION AND PERSPECTIVES

In this thesis, we have successfully studied the behavior of the solutions of some systems
of difference equations. Results on the stability of the equilibrium points via some con-
vergence theorems, existence (or non-existence) of periodic and oscillatory solutions were
been the object of two systems, one was a non-autonomous and the other was defined by
homogeneous functions. Others nonlinear systems with powers where some of them are
defined with one to one functions were been explicitly solved in the last chapter.

As perspectives, we suggest to investigate the behavior of the following systems of dif-
ference equations, which are respectively generalizations of System(1.1.1) , System (2.1.4)
and System (3.1.4):

The first system

Do+ Y2 Gn + 22 T+ 2

Qv Yny1 = y Zpy1 = ————, n=€Nyabc=23, ...,
Dn + yg—k Tn + I%—k

I‘n+1 = =
In + ZZ—k

where the initial values and {p, }, {¢.}, {rn} are 3-periodic sequences of positive numbers.

The second syetem

Tpi1 = ffl ( 9 Yn) 9 Yn—te+1) (f (Tn—k41))? )
" F (@) [an(9(yn—1))7 + bng(Yn) g (Yn—k11)] )’

Yoar = g1 ( S (@) f(@n-r11) (9(Yn—k11))*

g(yn) [Cn(f<xn—lc))p + dnf(xn)f(xn—k-i-l)]

),nENg,p,qEN,k:3,4,...,

where f,g : D — R are one to one continuous functions on D C R, the
initial wvalues x_;,y_;,7 = 0,1,2, are real numbers in D and the parameters
(@n)nengs (Bn)neNos (Cn)nengs (dn)nen, are non-zero real numbers.

The third system

Tnt1 = fUns Un—1s- s Un—k)s  Ynt1 = §(Tns Tp—1,- .., Tnog), N € Np,
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where the initial values x_; and y_;, « = —k,...,—1,0, are positive real numbers, the

function f : (0,00)k*1 — (0,00) is continuous and homogeneous of degree zero and

g: (0,00)*1 — (0, 00) is continuous and homogeneous of degree s € R.
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