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Introduction
Quantum mechanics is a fundamental theory of physics that studies matter on the scale of

atomic and subatomic particles and the motion of physical objects in the microscopic world.

Since the classical mechanics reached its limits in the 1920s.

Quantum theory has made its �rst appearance resolving physical problems such as black

body radiation and the photoelectric e¤ect.

This theory was based on the fundamental principles called postulates [1]

Postulate 1: State of a system

The state of any physical system is speci�ed, at each time t, by a state vector j (t)i in a

Hilbert space H ; j (t)i contains all the information about the quantum state of the system.

Any superposition of state vectors is also a state vector.

Postulate 2: Observables and operators

An observable or dynamical variable in quantum mechanics is a physical quantity A, that

can be measured or observed, it is equivalent a linear Hermitian operator A; whose eigenvectors

form a complete basis.

Postulate 3: Measurements and eigenvalues of operators

The measurement of an observable A may be formally expressed by the action of A on a

state vector j (t)i. The only possible result of the outcome of the measurement will be one of

the eigenvalues an (which are real) of the operator A . If the result of a measurement of A on

a state j (t)i is an.

The state of the system change in a speci�c way depending on the measurement j ni:

A j (t)i = an j ni ; n = 1; 2; 3::: (1)

where an = h n j (t)i.

Postulate 4: Probabilistic outcome of measurements

� Discrete spectra: The possibility of �nding one of the nondegenerate eigenvalues an of

the corresponding operator A; when measuring an observable A of a system in a state j i is

given by

Pn (an) =
jh n j ij

2

h j i =
janj2

h j i ; (2)
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where j ni is the eigenstate of A with eigenvalue an. If the eigenvalue an is m-degenerate,

Pn becomes

Pn (an) =
mX
j=1

��
 jn j i��2
h j i =

mX
j=1

���a(j)n ���2
h j i : (3)

The act of measurement changes the state of the system from j i to j ni. If the system is

already in an eigenstate j ni of A, a measurement of A guarantees to provide the corresponding

eigenvalue an:

A j ni = an j ni ; n = 1; 2; 3:::; (4)

� Continuous spectra: The relation 2, which is valid for discrete spectra, it is possible

to extend to get the probability density that a measurement of A yields a value between a and

a+ da on a system which is initially in a state j i:

dP (a)

da
=
j (a)j2

h j i =
j (a)j2R +1

�1 j (a0)j2 da0
; (5)

for instance, the probability density for �nding a particle between x and x+ dx is given by

dP (x)

dx
=
j (x)j2

h j i : (6)

Postulate 5: Time evolution of a system

The time evolution of the state vector j (t)i of a system is governed by the time-dependent

Schrödinger equation

i~
@

@t
j (t)i = H j (t)i ; (7)

where H is the Hamiltonian operator corresponding to the total energy of the system.

The quantum mechanics theory has been truly one of the most revolutionary theories in

physics in the last century. Its impact has extended beyond the original ideas presented, gen-

erating new and exciting domains such as quantum electrodynamics, quantum computation,

quantum information theory, quantum optics, the theory of quantum open systems and others.

While it is a very e¢ cient model that has greatly facilitated new innovations in science, it

certainly didn�t lack limitations. For instance, it has been limited to the study of self-adjoint

operators (in the sense of Dirac), i.e. Hermitian quantum systems. This constraint was chal-

lenged near the end of the twentieth century, when non-Hermitian quantum mechanics theory
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was developed to study non-Hermitian systems with a real spectrum. All while still ful�lling

the criteria (satisfying all the postulates except 4, which has been adjusted since then for this

theory) of a physically acceptable quantum theory, which are: an energy spectrum (eigenvalues)

that is entirely real and bounded from below, an eigenstates Hilbert space with an orthonormal

basis, and a unitary temporal evolution.

In 1998, Bender and his collaborators introduced the notion of PT -symmetry [2, 3, 4, 5, 6,

7, 8] in non-Hermitian quantum mechanics. The initial results obtained in their study are that

a family of non-Hermitian potentials # (x) = x2 (ix)#, # 2 R has a spectrum that is real for

# � 0 and complex for # � 0. Later, Mostafazadeh has generalized the PT -symmetry to the

notion of the pseudo-Hermiticity [9, 10, 11], which proved that all PT -symmetric Hamiltonians

are pseudo-Hermitian.

Numerous physical systems, particularly those involving dissipative quantum systems have

generally been described by non-Hermitian Hamiltonians. These non-Hermitian Hamiltonians

are utilized to model phenomena where energy is not conserved such as Hamiltonians that do

not satisfy the unitarity condition can indeed pose challenges to the usual probabilistic inter-

pretation of quantum mechanics. In non-Hermitian quantum mechanics. It has been discovered

that a quantum Hamiltonian must have an unbroken PT -symmetry in order to have a real

spectrum [2, 5]. The concept of PT -symmetry has found applications in various areas of phys-

ics. Once the non-Hermitian Hamiltonian H is invariant under the combined action of PT (i.e.

H commutes with PT ) and its eigenvectors are also those of the PT operator, then the energy

eigenvalues E of the system are real and in this case the PT -symmetry is unbroken.

The concept of pseudo-Hermiticity introduced by Mostafazadah [9, 10, 11], also known as

"quasi-Hermiticity" or "PT -symmetry", plays a signi�cant role in understanding the spectral

properties of non-Hermitian Hamiltonians in quantum mechanics. Pseudo-Hermitian operators

are non-Hermitian operators that have a certain symmetry property related to their eigenvalues

and eigenstates. An operator H is said to be pseudo-Hermitian if

H+ = �H��1; (8)

where the metric operator

� = �+�; ��1 = ��1
�
�+
��1

; (9)
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is a linear, invertible and Hermitian operator, the Hamiltonian operator is considered pseudo-

Hermitian, if it satis�es relation (8).

The pseudo-Hermiticity allows us to establish a connection between a pseudo-Hermitian

Hamiltonian H with an equivalent Hermitian Hamiltonian h

h = �H��1; (10)

where the operator � called Dyson operator is linear and invertible. We can also studies the

time-dependent quantum mechanics systems in both cases (Hermitian and non-Hermitian).

Therefore, in the �rst chapter, we introduce the Lewis-Riesenfeld theory in Hermitian

quantum mechanics. As illustrative example, we study the generalized harmonic oscillator.

In the second chapter, we study the time-dependent coupled oscillator of a two dimensional

(2D) by employing the idea of uncoupling the invariant operator to determine the solution of

the time-dependent Schrödinger equation.

In the third chapter, we recall the properties of PT and CPT -symmetry as well as the

pseudo-hermiticity.

In the fourth chapter, we investigate the coherent states of the inverted oscillator, which in

anti-PT -symmetric Hamiltonian. Finally, we close this work with a conclusion that explains

the most important ideas we relied on.



Chapter 1

Time-dependent quantum systems

1.1 Introduction

In quantum mechanics, it is necessary to search for solutions of the time-dependent Schrödinger

equation [12]

i~@t j	(t)i = h(t) j	(t)i ; (1.1)

where h(t) is the time dependent hermitian Hamiltonian operator describing the system and

j	(t)i is the quantum state of the system.

In this situation it is di¢ cult to �nd an exact solution, it is crucial to recourse to the

approximations methods (for example : the sudden approximation, the adiabatic approxima-

tion, the time-dependent perturbation theory and the Lewis-Riesenfeld). The Lewis-Riesenfeld

invariant theory [13] allows us to solve the Schrödinger equation in an exact manner and the

solution is expressed as a function of the eigenstates of the invariant operator multiplied by a

phase.

1.2 The invariant operator in quantum mechanics

An operator Ih(t) is said to be an invariant operator if it satis�es the Von-Neumann equation

dIh(t)

dt
=
@Ih(t)

@t
+
1

i~
[Ih(t); h(t)] = 0: (1.2)
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The time derivative of the expectation value hIh(t)i is writen as

i~
d

dt
hIh(t)i = i~

�
d

dt
h	(t)j

�
Ih(t) j	(t)i+ i~ h	(t)j

dIh(t)

dt
j	(t)i+ i~ h	(t)j Ih(t)

�
d

dt
j	(t)i

�
;

(1.3)

the Schrödinger equation and its adjoint are

i~
@

@t
j	(t)i = h j	(t)i ; (1.4)

�i~ @
@t
h	(t)j = h	(t)jh+; (1.5)

from the above equations, we will have the following expression (since h+ = h)

d

dt
hIh(t)i =

h	(t)j @Ih(t) j	(t)i
@t

+
1

i~
h	(t)j [Ih(t); H(t)] j	(t)i ; (1.6)

the equation (1.2) allows us to deduce that

d

dt
hIh(t)i = 0; (1.7)

i.e., Ih(t) is a constant of movement.

1.3 The invariants theory in quantum mechanics

We shall use the Lewis-Riesenfeld method [13, 14] in order to obtain the quantum solutions

for the time-dependent case. To proceed, it is necessary to �nd an invariant operator Ih(t)

satisfying (1.2).

Clearly, this is equivalent to saying that, if
�� �;�(t)� is an eigenfunction of Ih(t) with a

time-independent eigenvalue �,

Ih(t)
�� �;�(t)� = �

�� �;�(t)� ; (1.8)

we can �nd a solution of the Schrödinger equation in the following form�� �;�(t)�� = exp �i��;�(t)� �� �;�(t)� ; (1.9)

where ��;�(t) is the Lewis-Riesenfeld phase satis�es the following equation

~
d��;�(t)

dt
=


 �;�(t)

�� (i~@t � h(t))
�� �;�(t)� : (1.10)
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The general solution of the Schrödinger equation is written as

j	(t)i =
X
�;�

C�;�(0) exp
�
i��;�(t)

� �� �;�(t)� ; (1.11)

where the C�;�(0) are time-independent.

1.4 Application: The generalized harmonic oscillator

We propose to solve the Schrödinger equation associated with the time-dependent generalized

harmonic oscillator

h(t) =
1

2

�
Z (t) p2 + Y (t) (px+ xp) +X (t)x2

�
; (1.12)

where x and p are the canonical coordinates operators, X (t) ; Y (t) and Z (t) are arbitrary time-

dependent functions. It is well known that an invariant Ih(t), for Eq. (1.12) reads [13, 15, 16]

Ih(t) =
�1(t)

2
p2 +

�2(t)

2
(xp+ px) +

�3(t)

2
x2; (1.13)

while the parameters �1(t); �2(t) and �3(t) are time-dependent functions satisfying the time-

dependent di¤erential equations

_�1 = 2�1Y � 2�2Z , (1.14)

_�2 = �1X � �3Z, (1.15)

_�3 = 2�2X � 2�3Y , (1.16)

by setting �1 = �2 , we can obtain the invariant in the form

Ih(t) =
1

2
�2p2 +

�2Y � � _�

Z
(px+ xp) +

1

�2

"
1 +

�
�2Y � � _�

Z2

�2#
x2, (1.17)

where � satis�es the Milne-Pinney [17, 18]

�� �
_Z

Z
_� +

"�
XZ � Y 2

�
+
_Z

Z
Y � _Y

#
� =

Z2

�3
. (1.18)

To obtain the eigenfunctions of Ih(t), we consider the unitary transformation
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�0n (x; t) = U�n (x; t); (1.19)

where U is de�ned as

U = exp

�
i

2~

�
Y � � _�

Z�

�
x2
�
; (1.20)

the transformations of p and p2 are

UpU+ = p�
�
Y � � _�

Z�

�
x;

Up2U+ = p2 �
�
Y � � _�

Z�

�
(px+ xp) +

�
Y � � _�

Z�

�2
x2: (1.21)

This unitary transformation leads to the following eigenvalue equation of the invariant

operator I 0h(t) is

I 0h(t)�
0
n (x; t) = �n�

0
n (x; t) ; (1.22)

where the transformed invariant I 0h(t) is

I 0h(t) = UIhU
+ =

1

2
�2p2 +

1

2�2
x2: (1.23)

If we introduce the new variable ~� = x
�
, we can write the eigenvalue equation (1.22) as

follows �
�~

2

2

@2

@~�2
+
~�2

2

�
'n (~�) = �n'n (~�) ; (1.24)

with

�0n (x; t) =
1p
�
'n (~�) : (1.25)

The factor
p
� is introduced in the equation (1.25) to guarantee the normalization condition

Z
�0�n (x; t)�

0
n (x; t) dx =

Z
'�n (~�)'n (~�) d~� = 1:

The solution of the equation (1.24) is

'n (~�) =

�
1

n!2n
p
�~

� 1
2

exp

�
� ~�

2

2~

�
Hn

"�
1

~

� 1
2

~�

#
; (1.26)
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where �n = ~
�
n+ 1

2

�
and Hn is the Hermite polynomial of order n: Then

�n(x; t) = U+
1p
�
'n (~�) ; (1.27)

the eigfunctions of Ih (t) are

�n (x; t) =

�
1

n!2n�
p
�~

� 1
2

exp

�
� i

2~

�
Y � � _�

Z�
� i

�2

�
x2
�
Hn

"�
1

~

� 1
2 �x

�

�#
: (1.28)

The Lewis-Riesenfeld phase

~
d�n (t)

dt
= h�nj i~

@

@t
� h j�ni =

1

�
h'n (~�)j i~U

@

@t
U+ � UhU+ j'n (~�)i ; (1.29)

is obtained as

�n (t) = �
�
n+

1

2

�Z t

0

Z

�2
dt0: (1.30)

The general solution of the Schrödinger equation is written as

	 (x; t) =
X

Cn
n

�
1

n!2n�
p
�~

� 1
2

exp

�
� i

2~

�
Y � � _�

Z�
� i

�2

�
x2 � i

�
n+

1

2

�Z t

0

Z

�2
dt0
�

�Hn

"�
1

~

� 1
2 �x

�

�#
: (1.31)



Chapter 2

Time-dependent coupled oscillator

2.1 Introduction

In physics in general and quantummechanics in particular, the study of time-dependent coupled

oscillator is essential [19, 20, 21, 22, 23, 24], since it describes di¤erent real systems [25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35]in addition to trapped atoms [36], nano-optomechanical resonances

[37, 38], electromagnetically induced transparency [39], stimulated Raman e¤ects [40], time-

dependent Josephson phenomena [41], and systems of three isotropically coupled spins 1/2

[42]. The combination of n simple oscillators gives rise to n-coupled oscillators [43, 44, 45].

Lie symmetries of di¤erential equations with damping and driving forces have considered the

resolution of n-coupled harmonic oscillators [46].

Indeed, as a result of the remarkable attention shed on the study of time-dependent

Hamiltonian systems, a variety of techniques have been developed: adiabatic approximation,

sudden approximation, the perturbation theory and the Lewis-Reisenfeld invariants theory

[13, 47, 48]. These methods did not only focus on Hermitian Hamiltonian systems [13] but

extended their study to non-Hermitian ones, where the solutions to the system are established

in terms of the eigenstates of a pseudo-Hermitian invariant operator [49, 50, 51].
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2.2 Quantum invariant operator and the auxiliary con-

dition

We consider the time-dependent Hamiltonian

H(t) =
1

2

2X
i=1

�
p2i

mi (t)
+ ci(t)x

2
i

�
+
1

2
c3(t)x1x2; (2.1)

where mi (t) ; ci(t)and c3(t) are time-dependent functions. We propose a quantum invariant

operator as follows

I (t) =
1

2

2X
i=1

�
�i (t) p

2
i + �i (t) (xipi + pixi) + 
i (t)x

2
i

�
+
1

2
� (t)x1x2; (2.2)

where �i (t) ; �i (t) ; 
i (t) (i = 1; 2) and � (t) are the real parameters and di¤erentiable functions

of time. The substitution of (2.1) and (2.2) into the Von-Neumann equation (1.2) allows us to

give the auxiliary equations as follows

_�i (t) =
�2�i(t)
mi (t)

; (2.3)

_�i (t) = ci (t)�i (t)�

i (t)

mi (t)
; (2.4)

_
i (t) = 2ci (t) �i(t); (2.5)

_� (t) = c3 (t) [�1(t) + �2(t)] ; (2.6)

and
� (t)

c3 (t)
= �1 (t)m1 (t) = �2 (t)m2 (t) : (2.7)

Now, noting

�i (t) 
i(t)� �2i (t) = �i; (2.8)

with �i being a real constant, we set

�i (t) = �2i ; (2.9)

using (2.3),(2.4) a simple calculation, lead to

�i(t) = �mi�i _�i; (2.10)
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and


i (t) = ci (t)mi�
2
i +mi _mi�i _�i +m2

i _�
2
i +m2

i �i��i, (2.11)

from the above equations (2.10), (2.11) and (2.8), we obtian the auxiliary equation for �i

��i +
_mi

mi

_�i =
�i

m2
i �
3
i

� ci (t) �i
mi

; (2.12)

and since

�21m1 = �22m2; (2.13)

we can write the following expression for � (t)

� (t) = �
Z t

c3 (t
0)m1�1

�
_�1 + �1

_�2
�2

�
dt0: (2.14)

Consequently, the invariant (2.2) is represented as

I (t) =
1

2

2X
i=1

�
�2i p

2
i �mi�i _�i (xipi + pixi) +

�
�i
�2i
+m2

i _�
2
i

�
x2i

�
� 1
2

�Z t

c3 (t
0)m1�1

�
_�1 + �1

_�2
�2

�
dt0
�
x1x2: (2.15)

By using the Lewis-Riesenfeld theory [13], the invariant operator (2.15) has a time-independent

eigenvalues �n;m

I(t)
��'n1;n2� = �n1;n2

��'n1;n2� ; (2.16)

where its eigenfunctions
��'n1;n2� multiplied by a suitable phases

exp
�
i�n1;n2(t)

�
= exp

24i tZ
0



'n1;n2

�� �i~ @
@t
�H(t)

� ��'n1;n2�
35 ; (2.17)

are solutions of the time-dependent Shrödinger equation (1.1).

2.3 Exact solution and geometric phase

For solving the eigenvalues equation (2.16), we de�ne a unitary transformation U such that

��'0n1;n2� = U
��'n1;n2� = U1U2

��'n1;n2� ; (2.18)
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where

U1 =
2Y
i=1

exp

�
i

2~
(xipi + pixi) ln

p
�i

�
; (2.19)

U2 =
2X
i=1

exp

�
i

2~
�i
�i
x2i

�
; (2.20)

applying of Baker�Campbell�Hausdor¤�s formula

exp[A]B exp[�A] = B + [A;B] +
1

2!
[A; [A;B]] + :::; (2.21)

we obtain the following transformation of xi and pi

U1xiU
+
1 =

p
�ixi, (2.22)

U1piU
+
1 =

1
p
�i
pi,

and

U2xiU
+
2 = xi; (2.23)

U2piU
+
2 = pi �

�i
�i
xi. (2.24)

Finally

UxiU
+ =

p
�ixi, (2.25)

UpiU
+ =

1
p
�i
pi �

�ip
�i
xi, (2.26)

and consequently the invariant (2.2) becomes

I 0 =
1

2

2X
i=1

�
p2i +

�

i�i � �2i

�
x2i
�
+
1

2
�
p
�1�2x1x2: (2.27)

We simplify the invariant operator I 0 by the unitary operator U3

U3 = exp

�
i�

2~
(p2x1 � p1x2)

�
; (2.28)

xi and pi transform into

U3x1U
+
3 = cos

�
�

2

�
x1 � sin

�
�

2

�
x2; U3x2U

+
3 = cos

�
�

2

�
x2 + sin

�
�

2

�
x1;

U3p1U
+
3 = cos

�
�

2

�
p1 � sin

�
�

2

�
p2; U3p2U

+
3 = cos

�
�

2

�
p2 + sin

�
�

2

�
p1. (2.29)
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Therefore, the invariant (2.27) is written as

I 00 = U3I
0U+3 =

p21
2
+
p22
2
+
1

2

�
�1 cos

2

�
�

2

�
+ �2 sin

2

�
�

2

�
+
�
p
�1�2
2

sin �

�
x21

+
1

2

�
�1 sin

2

�
�

2

�
+ �2 cos

2

�
�

2

�
� �

p
�1�2
2

sin �

�
x22

+
1

2
[�
p
�1�2 cos � � (�1 � �2) sin �]x1x2; (2.30)

from Eq. (2.30), the separation of variables is complete for

�
p
�1�2 cos � � [�1 � �2] sin � = 0; (2.31)

the invariant operator I 00 becomes

I 00 =
1

2

2X
i=0

�
p2i +

e
2ix2i� ; (2.32)

where e
21 = �1 cos
2

�
�

2

�
+ �2 sin

2

�
�

2

�
+
�
p
�1�2
2

sin �; (2.33)

e
22 = �1 sin
2

�
�

2

�
+ �2 cos

2

�
�

2

�
� �

p
�1�2
2

sin �: (2.34)

e
21; e
22 are constants. From the Eq.(2.31), we deduce

tan (�) =
�
p
�1�2

[�1 � �2]
; (2.35)

where

� = arctan(�
p
�1�2: [�1 � �2]

�1); (2.36)

is constants. To see order this we calculated the time the derivative of �

@�

@t
=

@

@t

�
arctan

�
�
p
�1�2

�1 � �2

��
; (2.37)

by replacing the Eqs.(2.7) and (2.9) in Eq.(2.37), we �nd

@�

@t
=

@

@t

�
arctan

�
c3�

3
1�2m1

�1 � �2

��
; (2.38)
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therefore
@ [c3�

3
1�2m1]

@t
= _c3�

3
1�2m1 + 3c3 _�1�

2
1�2m1 + c3�

3
1 _�2m1 + c3�

3
1�2 _m1; (2.39)

from Eqs.(2.7), (2.88) and (2.9) that means

�

c3
= m1�

2
1; (2.40)

the derivative of (2.40) is given as

�
_c3
c3
=
_�

c3
� 2 _�1�1m1 � _m1�

2
1; (2.41)

if we replace the expression of _� that is de�ned in Eq.(2.6), and � = c3m1�
2
1, the Eq.(2.41)

becomes as

_c3
c3
=
[�1 + �2]

m1�21
� 2 _�1

�1
� _m1

m1

; (2.42)

we have that �i = �mi _�i�
2
i , then the above equation (2.42) is written as

_c3
c3
= �

�
3 _�1
�1
+
_m1

m1

+
_�2
�2

�
; (2.43)

by using the di¤erential equation(2.43), we deduce that

@ [c3�
3
1�2m1]

@t
= �

�
3 _�1
�1
+
_m1

m1

+
_�2
�2

�
�31�2m1c3 + 3c3 _�1�

2
1�2m1

+ c3�
3
1 _�2m1 + c3�

3
1�2 _m1

= 0: (2.44)

Knowing that �1; �2 are constants, we con�rm that the derivative of � must be equal to zero

i.e @�
@t
= 0. Hence that � and the frenquencies

�e
21; e
22� are time-independent. As recalled
above, the invariant operator I(t) should have time-independent eigenvalues, consequently the

frequencies e
i are time-independent.
After decoupling, the invariant (2.32) is the sum of two invariants representing simple

harmonic oscillators with time-independent frequencies e
i and unit masses, whose eigenstates
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are represented as

��'n1;n2� = 2Y
i=1

0@
qe
i

(�~)1=2 ni!2ni

1A1=2

Hni

0@se
i
~
xi

1A exp"�ie
i
2~

x2i

#
; (2.45)

where Hni are the Hermite polynomials.

Noting that the transformation of the eigenstate
��'n1;n2� is��'n1;n2� = U+n

��'00n1;n2� = U+2 U
+
1 U

+
3

��'00n1;n2� ; (2.46)

by replacing (2.46) in the expression of Lewis-Riesenfeld phase (1.10), we obtian

_�n1;n2(t) =


'00n1;n2

��Un�i~ @
@t
�H(t)

�
U+n

��'00n1;n2� : (2.47)

Using the equation (2.7) and the Baker�Campbell�Hausdor¤�s formula (2.21), we can ob-

tain the expressions

Un

�
i~
@

@t

�
U+n = U3U1U2

�
i~
@

@t

�
U+2 U

+
1 U

+
3

=

��
�1c1
2
� 
1
2m1

+
c3
�
�21

�
cos2

�
�

2

�
+

�
�2c2
2
� 
2
2m2

+
c3
�
�22

�
sin2

�
�

2

��
x21

+

��
�1c1
2
� 
1
m1

+
c3
�
�21

�
sin2

�
�

2

�
+

�
�2c2
2
� 
2
m2

+
c3
�
�22

�
cos2

�
�

2

��
x22

+
sin (�)

2

��
�2c2 �


2
m2

�
�
�
�1c1 �


1
m1

�
+
2c3
�

�
�22 � �21

��
x1x2

� c3
2�

�
�1 cos

2

�
�

2

�
+ �2 sin

2

�
�

2

��
(x1p1 + p1x1)

� c3
2�

�
�1 sin

2

�
�

2

�
+ �2 cos

2

�
�

2

��
(x2p2 + p2x2)

+
c3
2�
(�1 � �2) (x1p2 + x2p1) sin (�) ; (2.48)
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and

Un [H(t)]U
+
n = U3U1U2 [H(t)]U

+
2 U

+
1 U

+
3

=
c3
2�

�
p21 + p22

�
+

��
c3
2�
�21 +

�1c1
2

�
cos2

�
�

2

�
+

�
c3
2�
�22 +

�2c2
2

�
sin2

�
�

2

�
+
c3
p
�1�2
2

sin �

�
x21

+

��
c3
2�
�21 +

�1c1
2

�
sin2

�
�

2

�
+

�
c3
2�
�22 +

�2c2
2

�
cos2

�
�

2

�
� c3

p
�1�2
2

sin �

�
x22

+
1

2

�
c3
�

��
�22 � �21

�
� �1c1 + �2c2

�
sin (�) + c3

p
�1�2 cos �

�
x1x2

� c3
2�

�
�1 cos

2

�
�

2

�
+ �2 sin

2

�
�

2

��
(x1p1 + p1x1)

� c3
2�

�
�1 sin

2

�
�

2

�
+ �2 cos

2

�
�

2

��
(x2p2 + p2x2)

+
c3
2�
(�1 � �2) (x1p2 + x2p1) sin (�) : (2.49)

Then, from the equations (2.88) and (2.31), the expression of _�n1;n2(t) is writen as

_�n1;n2(t) =


'00n1;n2

��Un�i~ @
@t
�H(t)

�
U+n

��'00n1;n2� = �c3� 
'00n1;n2�� I 00 ��'00n1;n2�
= �~c3

�

�e
1�n1 + 1
2

�
+ e
2�n2 + 1

2

��
; (2.50)

the Lewis-Riesenfeld phase (2.47) in this case is

�n1;n2(t) = �~

0@�e
1�n1 + 1
2

�
+ e
2�n2 + 1

2

�� tZ
0

c3
�
dt0

1A ; (2.51)

so, we �nd the general solution of the Schrödinger equation

j (t)i =
X

Cn
n

2Y
i=1

0@
qe
i

(�~)1=2 ni!2ni

1A1=2

Hni

0@se
i
~
xi

1A
exp

24�ie
i
2~

x2i � i~

0@�e
1�n1 + 1
2

�
+ e
2�n2 + 1

2

�� tZ
0

c3
�
dt0

1A35 : (2.52)
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2.4 The generalisation of the 2D to a 3D coupled oscil-

lator by the method of Hassoul et al [52]

In this section, we show that the analysis of Hassoul et al, in Ref [52] su¤ers from basic

errors. Hassoul et al [52] considered the following Hamiltonian H(t) with di¤erent masses

mi (t) (i = 1; 2; 3) and frequencies !i (t) (i = 1; 2; 3)

H(t) =
1

2

3X
i=1

�
p2i

mi (t)
+mi (t)!

2
i (t)x

2
i

�
(2.53)

+
1

2
[k12 (t)x1x2 + k13 (t)x1x3 + k23 (t)x2x3] ;

where xi and pi are the canonical coordinates and momentums, k12 (t) ; k13 (t) and k23 (t)

are coupling parameters respectively.

They choose an invariant operator of the form

I(t) =
1

2

3X
i=1

�
Ai (t) p

2
i +Bi (t) (xipi + pixi) + Ci (t)x

2
i

�
+
1

2
[D12 (t)x1x2 +D13 (t)x1x3 +D23 (t)x2x3] ; (2.54)

this invariant satis�es the invariance condition (1.2). The derivative of the invariant oper-

ator is

@I (t)

@t
=
1

2

h
_A1 (t) p

2
1 +

_B1 (t)x1p1 + _C1 (t)x
2
1

i
+
1

2

h
_A2 (t) p

2
2 +

_B2 (t)x2p2 + _C2 (t)x
2
2

i
+
1

2

h
_A3 (t) p

2
3 + _B3 (t)x3p3 + _C3 (t)x

2
3

i
+
1

2

h
_D12 (t)x1x2 + _D13 (t)x1x3 + _D23 (t)x2x3

i
; (2.55)

and the expression of the commutation relation between I (t) and H is
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[I (t) ; H] =
B1(t)

2m1 (t)
p21 +

C1 (t)

m1 (t)
x1p1 +

B2(t)

2m2 (t)
p22 +

C2 (t)

m2 (t)
x2p2

+
B3(t)

2m3 (t)
p23 +

C3 (t)

m3 (t)
x3p3 +

(D12 (t)x2p1 +D13 (t)x3p1)

2m1 (t)

+
(D12 (t)x1p2 +D23 (t)x3p2)

2m2 (t)
+
(D13 (t)x1p3 +D23 (t)x2p3)

2m3 (t)

�m1 (t)!
2
1 (t)

�
A1(t)p1x1 +

B1(t)

2
x21

�
� A1(t)

2
[k12 (t) p1x2 + k13 (t) p1x3]

�B1(t)
4

(k12 (t)x1x2 + k13 (t)x1x3)�m2 (t)!
2
2 (t)

�
A2(t)p2x2 +

B2(t)

2
x22

�
�A2(t)

2
[k12 (t) p2x1 + k23 (t) p2x3]�

B2(t)

4
[k12 (t)x2x1 + k23 (t)x2x3]

�m3 (t)!
2
3 (t)

�
A3(t)p3x3 +

B3(t)

2
x23

�
� A3(t)

2
[k13 (t) p3x1 + k23 (t) p3x2]

�B3(t)
4

(k13 (t)x3x1 + k23 (t)x3x2) : (2.56)

By replacing the equations (2.55) and (2.56) in the invariance condition (1.2), we deduce

the following auxiliary conditions

_Ai (t) = �
2Bi(t)

mi (t)
; (2.57)

_Bi (t) = �
Ci (t)

mi (t)
+mi (t)!

2
i (t)Ai(t); (2.58)

_Ci (t) = 2mi (t)!
2
i (t)Bi(t); (2.59)

_D12 (t) =
k12 (t)

2
[B1 (t) +B2 (t)] ; (2.60)

_D13 (t) =
k13 (t)

2
[B1 (t) +B3 (t)] ; (2.61)

_D23 (t) =
k23 (t)

2
[B2 (t) +B3 (t)] ; (2.62)

D13 (t)

D12 (t)
=
k13 (t)

k12 (t)
; (2.63)

D12 (t)

D23 (t)
=
k12 (t)

k23 (t)
; (2.64)

D23 (t)

D13 (t)
=
k23 (t)

k13 (t)
; (2.65)

we note that there are nine auxiliary conditions and the �rst six equations are similar to

the six di¤erential ones given in [52] with a slight di¤erence in the coe¢ cients.
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Hassoul et al [52] found that possible solutions of the di¤erential equations (2.57)-(2.62)

are given by the following forms

Ai(t) =
1

mi(t)
; (2.66)

Bi(t) =
_mi(t)

2mi(t)
; (2.67)

Ci (t) =

Z
_mi (t)!

2
i (t) dt; (2.68)

D12 (t) =

Z
k12 (t)

�
_m1(t)

2m1 (t)
+

_m2(t)

2m2 (t)

�
dt; (2.69)

D13 (t) =

Z
k13 (t)

�
_m1(t)

2m1 (t)
+

_m3(t)

2m3 (t)

�
dt; (2.70)

D23 (t) =

Z
k23 (t)

�
_m2(t)

2m2 (t)
+

_m3(t)

2m3 (t)

�
dt; (2.71)

These solutions impose a constraint on the system but the authors did not take this into

consideration.

From the equation (2.57) and equation (2.66), we �nd

� _mi(t)

m2
i (t)

=
�2Bi(t)
mi(t)

) Bi(t) =
_mi(t)

2mi(t)
: (2.72)

We assume that the coe¢ cients satisfy this following condition

Ai(t)Ci(t)�B2
i (t) = �i; (2.73)

with �i is a real constant. This condition (2.73) is not mentioned in [52].

It is clear that

Ci(t) =
�i +B2

i (t)

Ai(t)
; (2.74)

substituting the Eq (2.66) and (2.67), the expression of Ci(t) is

Ci(t) = �i:mi(t) +
_m2
i (t)

4mi(t)
: (2.75)

Now, deriving the equation (2.67), we obtain

_Bi(t) =
�mi(t)

2mi(t)
� _m2

i (t)

2m2
i (t)

; (2.76)
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replacing the equations (2.66) and (2.75) in the equation (2.58), we �nd

_Bi(t) = !2i (t)� �i �
_m2
i (t)

4m2
i (t)

: (2.77)

From the two equations (2.76) and (2.77), we get

�mi(t)�
1

2

_m2
i (t)

mi(t)
+ 2

�
�i � !2i (t)

�
mi(t) = 0; (2.78)

when considering mi(t) = 1=Ai(t); the last equation is the constraint equation which is

di¢ cult to solve. The system can not be resolved for any given mass. From here we can deduce

that Hassoul et al [52] incorrectly generalized the 2D coupled oscillator to a 3D.

For diagonalizing invariant operator I (t) ; authors of [52] diagonalize the matrix | as

| =

0BBB@
$2
1

1
2
K12

1
2
K13

1
2
K12 $2

2
1
2
K23

1
2
K13

1
2
K23 $2

3

1CCCA ; (2.79)

where the expression of $2
i is

$2
i =

R t
0
!2i (t) _mi(t)dt

mi(t)
�
�
_mi(t)

4mi(t)

�2
; (2.80)

and the expressions of K12; K13 and K23 are de�ned as

K12 =

R t
0
k12 ( _m1(t)=m1(t) + _m2(t)=m2(t)) dtp

m1(t)m2(t)
; (2.81)

K13 =

R t
0
k13 ( _m1(t)=m1(t) + _m3(t)=m3(t)) dtp

m1(t)m3(t)
; (2.82)

K23 =

R t
0
k23 ( _m2(t)=m2(t) + _m3(t)=m3(t)) dtp

m2(t)m3(t)
: (2.83)

By using this formula [52]

R =

0BBB@
1p
3

�+
�
1
2
(K12 �K23)� 
2

�
��
�
1
2
(K12 �K23) + 


2
�

1p
3

�+
�
1
2
(K23 �K12) + 


2
�
��
�
1
2
(K23 �K12)� 
2

�
1p
3

�+
�
1
2
(K23 �K13)

�
��
�
1
2
(K23 �K13)

�
1CCCA ; (2.84)
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where

�� =
1

(K23 �K13)

�
2

3
� K12 � (K23 +K13) =2

3
2

�
; (2.85)

and


2 =
1

2

�
K2
12 +K2

13 +K2
23 � (K12K13 +K12K23 +K13K23)

�
; (2.86)

we obtain

R�1|R =

0BBB@
M11 M12 M13

M21 M22 M23

M31 M32 M33

1CCCA : (2.87)

A straightforward evaluation of the product R�1|R leads to the following elements

M11 =
1

2

�
$2
1 +$2

2

�
+
1

4
(K13 +K23) +

1

2
K12; (2.88)

M12 =

p
3

2

�
�+ ($

2
1 �$2

2)

2

�
K12 �K23 � 2
2

�
+
�+
4

�
K2
23 �K2

13

��
; (2.89)

M13 =

p
3

2

�
�� ($

2
1 �$2

2)

2

�
K12 �K23 + 2


2
�
+
��
4

�
K2
23 �K2

13

��
; (2.90)

M21 =
1

4
p
3�+
2

�
K23 �K12 � 2
2

K23 �K13

��
$2
1 +$2

2 � 2$2
3 +K12 �

K13 +K23

2

�
+

1

4
p
3�+
2

�
$2
2 �$2

1 +
K23 �K13

2

�
; (2.91)

M22 =
1

4
2

"
(K23 �K12)

2 � 4
4
K23 �K13

#�
$2
2 �$2

1

2

�

+
1

4
2

"
($2

1 +$2
2)�K12

2

�
K23 �K12 + 2


2
�
+
(K23 �K13)

2

4

#

� (K23 �K12 � 2
2)
4
2

�
K23 �K12 + 2


2

2
+$2

3 �
K23 +K13

4

�
; (2.92)

M23 =
��

4�+
2

"
(K23 �K12 � 2
2)2

K23 �K13

#�
$2
2 �$2

1

2

�

+
��

4�+
2

"
($2

1 +$2
2 �K12)

2

�
K23 �K12 � 2
2

�
+
(K23 �K13)

2

4

#

� �� (K23 �K12 � 2
2)
4�+
2

�
K23 �K12 � 2
2

2
+$2

3 �
K23 +K13

4

�
; (2.93)
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M31 =
1

4
p
3�+
2

�
K12 �K23 � 2
2

K23 �K13

��
$2
1 +$2

2 � 2$2
3 +K12 �

K13 +K23

2

�
+

1

4
p
3�+
2

�
$2
1 �$2

2 +
K13 �K23

2

�
; (2.94)

M32 =
�+

4��
2

"
(K12 �K23 � 2
2)2

K23 �K13

#�
$2
1 �$2

2

2

�

+
�+

4��
2

"
(K2

1 +K2
2 �K12)

2

�
K12 �K23 � 2
2

�
� (K23 �K13)

2

4

#

� �+ (K12 �K23 � 2
2)
4
2��

�
K23 �K12 + 2


2

2
+$2

3 �
K13 +K23

4

�
; (2.95)

M33 =
�+

4��
2

"
(K12 �K23)

2 � 4
4
K23 �K13

#�
$2
1 �$2

2

2

�

+
�+

4��
2

"
($2

1 +$2
2)�K12

2

�
K12 �K23 + 2


2
�
� (K23 �K13)

2

4

#

� �+ (K12 �K23 � 2
2)
4��
2

�
K23 �K12 � 2
2

2
+$2

3 �
K23 +K13

4

�
; (2.96)

So, we didn�t �nd the same result in [52] unless the parameters of | obey

K12 = K13 = K23 and $2
1 = $2

2 = $2
3 ; (2.97)

which implies that 
2 = 0 and the eigenvalues 
2i read


21 = $2
1 +K12; (2.98)


22 = $2
1 �

K12

2
; (2.99)


23 = $2
1 �

K12

2
: (2.100)

As stated above, the invariant operator has time-independent eigenvalues [13] contrary to

what is found in [52] where the eigenvalues 
2i are time-dependent.

Neverthemore, the derivative of 
2i with respect to time gives

d
21
dt

=
d

dt

�
D12p
m1m2

�
+
d

dt

�
D13p
m1m3

�
; (2.101)

d
22
dt

= � d

dt

�
D23p
m2m3

�
+
d
2

dt
; (2.102)



2.5 Discussion of Hassoul et al method [53] by pointing out the inconsistencies24

d
23
dt

= � d

dt

�
D23p
m2m3

�
� d
2

dt
; (2.103)

one can see that even if 
2 = 0; the parameters D12; D13; D23 and the masses mi are de�ned

as time-dependent but the eigenvalues 
2i are not time-independent in [52] this contradicts the

Lewis-Riesenfeld theory.

The formula of the phases in [53, 52] have seemed to be found using the invariant operator

rather than the Hamiltonian operator leading to the omission of the term x1x2. It should be

emphasized that the Hamiltonian operator generates the dynamics of the system and not the

invariant operator. It appears as if the authors have taken results of [13, 54, 55, 15] setting
1
�2
= mi(t) as if the invariant operator is the generator of the dynamics. They claimed to

demonstrate that the solution to the time-dependent Schrödinger equation with the coupled

terms x1x2 in the Hamiltonian can be reduced to the solution of a time-independent Schrödinger

equation that includes the quantum invariant due to the mixed term x1x2 in the Hamiltonian

make a contribution and not be omitted, we think these results are incorrect.

2.5 Discussion of Hassoul et al method [53] by pointing

out the inconsistencies

This section summarizes the basic errors made in [53]. The authors of Ref [53] examined the

system (2.1) by choosing the time-dependent invariant operator I (t) (2.2). According to them,

they introduce two pairs of creation and annihilation operators uncouples the invariant operator

(2.2), so that it becomes the one that describes two independent systems. Hassoul et al [53]

found the solution of the equations (2.3-2.6), which they not mention that �i (t) = 1=mi (t)

must satisfy the following constraint equation

�mi(t)�
1

2

_m2
i (t)

mi(t)
+ 2 (�imi(t)� ci (t)) = 0; (2.104)

which is di¢ cult to solve. Also, the authors of Ref [53] not mention condition (2.7) and

decoupled invariant operator by using the canonical transformations. But these results are not

valid without both condition m1(t) = m2(t) and !21(t) = !22(t).

Additionally, to our understanding, in the Lewis and Riesenfeld theory [13], the invariant

operator possesses time-independent eigenvalues, but the frequencies !2i are time-dependent
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which contradicts the claims of Ref [53] that the eigenvalues of invariant operator are time-

dependent. As a result, it di¢ cult to calculate the phases. The frequencies mentioned in

Ref.[53] are dependent of time.

The expression of !21 is given by [53]

!21 =

0@R
h
c1

_m1

m1

i
dt

m1

� _m2
1

4m2
1

1A cos2 �
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0@R
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dt
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2

4m2
2

1A sin2 �
2

+

R
c3

h
_m1

2m1
+ _m2

2m2

i
dt

2
p
m1m2

sin �; (2.105)

By using(2.105), we calculate time-dependent derivative of !21

d!21(t)

dt
=

24
h
c1

_m1

m1
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1A _�; (2.106)

from the Eq (2.73), we notice that

c1(t) ( _m1=m1)

m1

� _m1

m2
1

Z t

0

c1(t) _m1(t)dt�
�m1m1 � _m2

1

m2
1

�
_m1

2m1

�
= �1(t) _
1(t)+ _�1(t)
1(t)�2�1(t) _�1(t) = 0;

(2.107)

and

c2 ( _m2=m2)

m2

� _m2

m2
2

Z t

0

c2(t) _m2dt�
�m2m2 � _m2

2

m2
2

�
_m2

2m2

�
= �2(t) _
2(t)+ _�2(t)
2(t)�2�2(t) _�2(t) = 0;

(2.108)

the equation (2.106), becomes
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d!21
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they have[53]
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from Eq(2.107),(2.108) and equation (2.110), the derivative of �(t) is
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which show that �(t) is time-dependent.

Insering (2.111) in equation (2.109), we get
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(2.112)

if the conditions ( c1 = c2; c3 = 0 and m1 = m2) are satis�ed then the equation (2.112)

vanishes.



Chapter 3

PT -symmetry and pseudo-Hermitian

quantum mechanics

PT -symmetry and pseudo-Hermiticity are two fundamental concepts in quantum mechanics,

which show that non-Hermitian systems can have real energy spectra. The PT -symmetry

quantum theory was principally developed by Bender and his collaborators [2, 3, 4, 5, 6, 7, 8],

who showed that the spectrum of a one-dimensional non-Hermitian Hamiltonian is real, positive

and discrete. The reality of this spectrum is a consequence of the PT -symmetry of the

Hamiltonian.

In 2002, Mostafazadeh introduced the concept of pseudo-Hermiticity [9, 10, 11], in order to

construct a mathematical relation with the notion of PT -symmetry. He demonstrated that all

PT -symmetric Hamiltonians are pseudo-Hermitian and also showed that any diagonalizable

operator is said to be pseudo-Hermitian if its eigenvalues are real.

3.1 PT -symmetry quantum mechanics

As we mentioned previously, PT -symmetry was �rst introduced by Bander et al [2, 3, 4, 5, 6,

7, 8]. Let us now brie�y present the de�nitions and the properties of PT -symmetry.

De�nitions and properties

A Hamiltonian H is said to be PT -symmetry if it only satis�es the following relation

H = HPT ) H = (PT )H(PT )�1; (3.1)
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where T is the time reversal operator and P is the parity operator. The parity operator P is

linear whereas the time reversal operator T is antilinear. Furthermore, the square of P and

T is the identity operator (PT )2 = 1, P2 = T 2 = 1 but the two operators are not equal

(P 6= T ). The operators P and T e¤ect the position operator x, the momentum operator p

and the imaginary number i respectively as

P fx! �x , p! �p , i! ig ; (3.2)

T fx! x , p! �p , i! �ig ; (3.3)

also the operators P and T commute

[P ; T ] = 0: (3.4)

If the eigenfunctions of the PT -symmetric Hamiltonian H are also eigenfunctions of the

PT operator, the PT -symmetry is unbroken. The PT -symmetry is broken if the eigenfunctions

of the PT -symmetric Hamiltonian are not eigenfunctions of the PT operator.

Therefore to construct a physical quantum theory from the PT -symmetric Hamiltonians,

it is necessary that the symmetry is unbroken. With this condition, we can prove the reality of

the eigenvalues of a PT -symmetric Hamiltonian.

We can write the eigenvalue equation of the Hamiltonian

H j ni = En j ni ; (3.5)

and the eigenvalue equation of the PT operator

PT j ni = �n j ni ; (3.6)

where En and �n are the eigenvalues of H and PT . We have

(PT )2 = 1; (3.7)

so

j�nj2 = 1; (3.8)

and �n is a phase which can be absorbed in the eigenfunction j ni.
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The equation (3.4) allows writing

PT HPT j ni = j�nj
2E�n j ni = En j ni ; (3.9)

and therefore the eigenvalues En of the system are real and in this case the PT -symmetry is

unbroken.

Bender [5] introduced an inner product called "PT -inner product" associated with the

PT -symmetry of the Hamiltonian, the PT -inner product is de�ned as

h m j niPT =
Z
c

dx [PT  m(x)] n(x) =
Z
c

dx [ �m(�x)] n(x) = (�1)n�mn; (3.10)

the norm of a state is not always positive, which does not verify the postulates of quantum

mechanics, and there is a problem that must be solved. To solve this problem, Bender et al.

[5] noticed that a PT -symmetric Hamiltonian with unbroken PT -symmetry possesses a hidden

symmetry because there are an equal number of states of positive norm and negative norm.

Therefore, it is necessary to construct a new inner product where the norm is positive.

3.2 The operator C and the CPT -inner product

In quantum mechanics, the norm of a state must be positive. To solve the problem of the

negative norm. Bender et al [5] introduced a new lineair operator C, called a charge conjugation

operator with the eigenvalues �1 and C2 = 1. This operator C commutes with the operator

PT and the Hamiltonian H

[C;PT ] = 0; [C; H] = 0; (3.11)

but not with P or T separately

[C;P ] 6= 0 ; [C; T ] 6= 0: (3.12)

The CPT -inner product is de�ned as follows

h'n; 'mi =
Z
c

dx [CPT 'n(x)]'m(x); (3.13)

where

CPT 'n(x) =
Z
dyC(x; y)'�n(�y); (3.14)
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so this CPT -inner product is positive, and the eigenfunctions of H are orthonormal.

h'n; 'miCPT =
Z
c

dx [CPT 'n(x)]'m(x) = �mn: (3.15)

3.3 Pseudo-Hermitian Quantum Mechanics

The notion of pseudo-Hermiticity was �rst introduced by Dirac and Pauli [56, 57, 58, 59], later

by Lee and Sudarshan [60, 61], who wanted to solve various problems in several �elds of physics,

arising from the quantization electrodynamics and other quantum �eld theories.

Later in 2002, Mostafazadah [9, 10, 11] re-introduced the pseudo-hermiticity, when he

showed that all PT -symmetric Hamiltonians are pseudo-Hermitian and also demonstrated that

any Hamiltonian with a real spectrum is pseudo-Hermitian. Therefore, the pseudo-Hermitian

quantum mechanics is a more general theory than PT -symmetry quantum mechanics. As

mentionned in the introduction, an operator H is said to be pseudo-Hermitian if

H+ = �H��1; (3.16)

where H+ is the adjoint Hamiltonian of H and the metric � is operator that is linear, invertible

and Hermitian

� = �+�; ��1 = ��1
�
�+
��1

; (3.17)

The Hamiltonian operator H and its adjoint H+ verify the following eigenvalue equations

H j ni = En j ni ; (3.18)

H+ j�ni = En j�ni ; (3.19)

where En is real energy of H and H+, the eigenvectors fj ni ; j�nig form a bi-orthonormal basis

[10, 62, 63]

h�m j ni = �mn ; (3.20)

and veri�es the closure relationX
n

j ni h�nj =
X
n

j�ni h nj = 1; (3.21)
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so that H and H+ can be writen in the following spectral representation

H =
X
n

En j ni h�nj , H+ =
X
n

En j�ni h nj : (3.22)

In the case of non-degenerate eigenvalues, the pseudo-metric operator � and its inverse ��1

take the form

� =
X
n

j�ni h�nj , ��1 =
X
n

j ni h nj : (3.23)

The eigenvalues of the hermitian Hamiltonian h

h j�ni = En j�ni : (3.24)

From equation (2.88), we can determine the eigenfunctions of h and the eigenfunctions of

H that are related to each other as

j�ni = � j ni ; (3.25)

knowing that the eigenvectors j�ni form an orthonormal basis, i.e. preserve the inner-product

de�nition

h�m j�ni = �mn; (3.26)

and substituing the equation (3.25) in (3.26), we obtain

h mj �+� j ni = h mj � j ni = h mj  ni� = �mn; (3.27)

is called pseudo-inner product or �-inner product.



Chapter 4

Coherent states for the harmonic

oscillator and for the inverted oscillator

Coherent states have a signi�cant role in numerous areas of physics including quantum optics,

nuclear, atomic physics, and solid state. In 1926 Schrödinger introduced the coherent states

for the Harmonic oscillator[12], which demonstrated that quantum expectation values of the

position xc(t) and momentum pc(t) operators of a harmonic oscillator evolve over time in

the same way as their classical analogues. Later in the early 1960s the coherent states were

discovered by Glauber, Klauder and Sudarshan [69, 70, 71].

4.1 Coherent states of the harmonic oscillator j�ios

The coherent states of the harmonic oscillator was introduced by Glauber and de�ned in three

equivalent approaches [12, 54, 69, 70, 72, 73, 74]

First approach

Coherent states j�ios are eigenstates of the annihilation operator a

a j�ios = � j�ios ; (4.1)

where � is a complexe number, the expression for the normalized coherent state in Fock

space is given explicitly by

j�ios = e
�j�j2

2

1X
n=0

�np
n!
jnios : (4.2)
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Second approach

Coherent states j�ios are de�ned by the action of the displacement operator Dos (�) on the

vacuum state j0ios

Dos (�) j0ios = j�ios ; (4.3)

where the displacement operator Dos (�) is given by the following expression

Dos (�) = exp
�
� a+ � ��a

�
: (4.4)

The operator Dos (�) is unitary

D+os (�) = Dos (��) = [Dos (�)]�1 ; (4.5)

D+os (�)Dos (�) = Dos (�)D+os (�) = 1: (4.6)

Therefore, the action of the operator Dos (�) on a and a+ leads to

D+os (�) aDos (�) = a+ �; (4.7)

D+os (�) a+Dos (�) = a+ + ��; (4.8)

we can also show that

Dos (�+ �) = Dos (�)Dos (�) ei Im��: (4.9)

Using the Baker-Hausdor¤ formula,

eA+B = e[A;B]=2eBeA; (4.10)

where the both operators A and B commute with [A;B], the operator Dos (�) can be expressed

in the following two forms

Dos (�) = e
�j�j2

2 e� a
+

e��
�a; (4.11)

and

Dos (�) = e
j�j2

2 e��
�ae� a

+

: (4.12)

Third approach

The coherent states are de�ned as states that minimize the Heisenberg uncertainty principle

�x�p � ~
2
, where the expressions of �x and �p are give by

�x =
p
hx2i � hxi2; (4.13)
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�p =
p
hp2i � hpi2; (4.14)

the expection values of x and p can be evaluated from

hxi = h�jx j�i =
r

~
2m!

Re�; (4.15)

hpi = h�j p j�i =
r
~m!
2

Im�; (4.16)

therefore, �x and �p are expressed as

�x =

r
~
2m!

; (4.17)

�p =

r
~m!
2

; (4.18)

which shows that these states minimize the Heisenberg uncertainty principle

�x�p =
~
2
: (4.19)

4.2 Properties and time evolution of the harmonic oscil-

lator coherent states

Let us brie�y introduce the properties of the coherent states j�ios

1. Coherent states are not orthogonal between them

os h�j�ios = h0jD+os (�)Dos (�) j0ios ; (4.20)

using the equation (4.2), we obtain

os h�j�ios = e
�j�j

2

2
�
j�j2

2
+���; (4.21)

which means the squared modulus os h� j�ios represents the measurement of the distance

between the two coherent states.

2. The coherent state j�ios is normalized when � = � i.e.

os h�j�ios = I: (4.22)
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3. The coherent states form an over-complet set of states. The identity operator I is written

in terms of coherent states as

1

�

Z
j�ios os h�j d2� = I; (4.23)

to prove this identity, we put

� = rei� and d2� = rdrd�; (4.24)

and using the formula (4.2), we obtain

1

�

Z
j�ios os h�j d2� =

1X
n=0

1X
m=0

Z 1

0

rdr

Z 2�

0

dr

�

rn+mp
n!m!

ei(n�m)re�r
2 jnios os hmj ; (4.25)

a change of variable r2 = �u, using
R 2�
0
drei(n�m)r = 2��nm and

R1
0
d�ue��u�un = n!; the

integral takes the form

1

�

Z
j�ios os h�j d2� =

1X
n=0

jnios os hnj
n!

Z 1

0

d�ue��u�un = I: (4.26)

4. The expectation values hxi ; hpi and hHosi in the states j�ios remain equal to their cor-

rosponding classical quantities.

The evolution of an initial state (j (0)ios = jnios) is given by

j (t)ios = U os(t) j (0)ios = U os(t) jnios = e�i(n+
1
2
)!t jnios ; (4.27)

where U os(t) is the operator of evolution.

The evolution of a coherent state will be given as

j�(t); tios = U os(t) j�(0)ios = e�
i
2
!te

�j�(0)j2

2

1X
n=0

[�(0)e�i!t]
n

p
n!

jnios

= e�
i
2
!t j�(t)ios ; (4.28)

with �(t) = �(0)e�i!t; we multiply the obtained ket by e�
i
2
!t and change �! �(0)e�i!t to go

from the state j�ios to its evolved state j�(t); tios [75].
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4.3 The standard harmonic and the inverted oscillators

Consider the ladder operator of the harmonic oscillator

Hos =
1

2m
p2 +

1

2
m!2x2 =

~!
2

�
a+a+ aa+

�
; (4.29)

where

a =

r
m!

2~
x+ i

pp
2m~!

, a+ =

r
m!

2~
x� i

pp
2m~!

; (4.30)

the operators a and a+ satisfying �
a; a+

�
= 1; (4.31)

eigenstates of (4.29) in Fock space are the Fock (or number) states jnios and the eigenvalues

En = ! (n+ 1=2)) ; whith a jnios =
p
n jn� 1ios ; a+ jnios =

p
n+ 1 jn+ 1ios and n 2 N.

We know that the representation of x and p are

x =

r
~
2!m

�
a+ + a

�
, p = i

r
~!m
2

�
a+ � a

�
; (4.32)

by understanding the e¤ects of the annihilation and creation operators on the eigenstates of

the Hamiltonian, we can compute any expectation values that depend on these quantities.

It is easy to evaluate the energy eigenvalues

Hos osn (x) = En 
os
n (x) = ~!

�
n+

1

2

�
 osn (x); n 2 N; (4.33)

and the normalized condition are

h osm j osn i = �mn: (4.34)

The vacuum state of harmonic oscillator is

 os0 (x) =
1p
2nn!

�!m
�~

� 1
4
exp

h
�!m
2~

x2
i
; (4.35)

is a very important physics result since it shows us that the energy of a system cannot have

zero when it is described by a harmonic oscillator potential.

The inverted oscillator is given by

Hr =
1

2m
p2 � 1

2
m!2x2 = �~!

2

�
a+2 + a2

�
; (4.36)
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which is formally obtainable from (4.29) by the replacement

! ! i!; (4.37)

in a similar manner, the case (�i!) would be useful.

Replacing (4.37) in Eq (4.30) , it gives

a! A = ei
�
4 (

r
m!

2~
x+

pp
2m!~

); (4.38)

a+ ! �A = ei
�
4 (

r
m!

2~
x� pp

2m!~
); (4.39)

where
�
A; �A

�
are the pseudo-annihilation and creation operators respectively.

Consequently, the Hamiltonian (4.36) takes the following form

Hr =
i~!
2
( �AA+ A �A); (4.40)

where the non-Hermitian pseudo-ladder operators
�
A; �A

�
satisfy the commutation relation�

A; �A
�
= 1.

Alike the harmonic oscillator, does the inverted oscillator have normalized eigenfunctions

as well?. Clearly h rm j rni 6= �mn which is easily seen when replacing ! to i! in the expression

from Eq. (4.35)

 r0(x) =
1p
2nn!

�
i!m

�~

� 1
4

exp
h
�i!m
2~

x2
i
: (4.41)

It can be easily veri�ed that the normalization for the pseudo-ground state  r0(x) diverges

as follows

h r0 j r0i =

Z +1

�1
 �r0 (x) 

r
0(x)dx

=
1

2nn!

�!m
�~

� 1
2

Z +1

�1
dx!1, (4.42)

replacing ! by i! is unsuitable, which explains the divergence. We will address this problem

in what follows.

4.4 Pseudo-ladder operators in the inverted oscillator

The di¢ culty lies in establishing a consistent relation between the inverted oscillator Hr and

the non-Hermitian Hamiltonian (iHos) in a quantum mechanical framework. Replacing of !
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by i! allowed the connection of the the non-Hermitian Hamiltonian (iHos) with the Hermitian

Hamiltonian Hr, which is given by

��1(iHos)� = Hr: (4.43)

To link the inverted oscillator Hr with the non-Hermitian Hamiltonian (iHos), we use a

Dyson operator � [76]

� = exp

�
�2
�
�

2

�
a+a+

1

2

�
+ ��

a2

2
+ �+

a+

2

��
;

= exp

�
�#�

a2

2

�
exp

�
� ln#0

2

�
a+a+

1

2

��
exp

�
�#+

a+

2

�
; (4.44)

where

#+ =
2�+ sinh �

� cosh � � � sinh �
;

#0 =
�
cosh � � �

�
sinh �

��2
= �+�� � �;

#� =
2�� sinh �

� cosh � � � sinh �
; (4.45)

� = �
cosh � + �

�
sinh �

cosh � � �
�
sinh �

, � =
q
�2 � 4�+��;

and � is a real but �+ and �� are parameter complex.

Using (2.21), we can easily �nd the following transformations8<: exp
h
#�

a2

2

i �
a+a+ 1

2

�
exp

h
�#� a

2

2

i
=
�
a+a+ 1

2

�
+ #�a

2

exp
h
#+

a+

2

i �
a+a+ 1

2

�
exp

h
�#+ a

+

2

i
=
�
a+a+ 1

2

�
� #+a

+
; (4.46)

8<: exp
�
ln#0
2

�
a+a+ 1

2

��
a2 exp

�
� ln#0

2

�
a+a+ 1

2

��
= a2

#0

exp
h
#+

a+

2

i
a2 exp

h
�#+ a

+

2

i
= a2 � 2#+

�
a+a+ 1

2

�
+ #2+a

+
; (4.47)

8<: exp
�
ln#0
2

�
a+a+ 1

2

��
a+ exp

�
� ln#0

2

�
a+a+ 1

2

��
= #0a

+

exp
h
#�

a2

2

i
a+ exp

h
�#� a

2

2

i
= a+ + 2#�

�
a+a+ 1

2

�
+ #2�a

2
; (4.48)

by applying the operator � to the harmonic oscillator Hos, we �nd

��1Hos� = ~!��1
�
a+a+

1

2

�
�

=
~!
#0

�
[#0 � 2#+#�]

�
a+a+

1

2

�
+
�
#�#

2
+ � #0#+

�
a+ + #�a

2

�
: (4.49)
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If we propose the parameters (#+; #�; #0) as

#+ = �i; #� =
i

2
, #0 = 1; (4.50)

the Eq.(4.49) and Eq.(4.36) have the same relation.

Then, the simpli�ed form of the Dyson operator Eq.(4.44) is

� = exp[� i
4
a2] exp[

i

2
a+];

��1 = exp[� i
2
a+] exp[

i

4
a2]; (4.51)

the two Hamiltonians Hos and Hr are connected to each other as

��1Hos� = exp[� i
2
a+] exp[

i

4
a2] (Hos) exp[� i

4
a2] exp[

i

2
a+]

=
i~!
2

�
a+ + a2

�
=

i~!
2
( �AA+ A �A) = �iHr; (4.52)

and the pseudo-ladder operators
�
A; �A

�
are linked to the ladder operators (4.30).

The transformation of a and a+ are given by

A = ��1a�

= exp[� i
2
a+] exp[

i

4
a2]a exp[� i

4
a2] exp[

i

2
a+]

=
1

2

�
a+ ia+

�
; (4.53)

and

�A = ��1a+�

= exp[� i
2
a+] exp[

i

4
a2]a+ exp[� i

4
a2] exp[

i

2
a+]

=
1

2

�
a+ + ia

�
; (4.54)

in Fock space, we know that

a jnios =
p
n jn� 1ios ; (4.55)

a+ jnios =
p
n+ 1 jn+ 1ios : (4.56)
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By multiplying the above equations from the left by ��1; noting that ���1 = 1; we �nd

��1a
�
���1

�
jnios =

p
n��1 jn� 1ios ; (4.57)

��1a+
�
���1

�
jnios =

p
n+ 1��1 jn+ 1ios ; (4.58)

thus, we can write the following expressions

A jnir =
p
n jn� 1ir ; (4.59)

�A jnir =
p
n+ 1 jn+ 1ir ; (4.60)

we can conclude that the eigenstates jnir are linked to jnios by the operator � as

jnir = ��1 jnios : (4.61)

The momentum operators (x; p) are related to the ladder operators of the pseudo-Hermitian

quadratures (X;P ) as follows

X = ��1x� =

r
~
2!m

��1
�
a+ + a

�
�

=

r
~
2!m

�
A+ �A

�
; (4.62)

and

P = ��1p� = i

r
~!m
2

��1
�
a+ � a

�
�

= i

r
~!m
2

�
�A� A

�
: (4.63)

Every observable o in the Hermitian system has an equivalent O in the pseudo-Hermitian

system provided by

O = ��1o�; (4.64)

the expressions of
�
A; �A

�
are

A =

r
m!

2~
X + i

1p
2m~!

P; (4.65)

�A =

r
m!

2~
X � i

1p
2m~!

P: (4.66)
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We can write the Hamiltonian (4.40) in terms of X and P by

Hr =
i

2
(
P 2

m
+m!2X2): (4.67)

Using the commutation relation [X;P ] = i~, and the Heisenberg equations of motion, we

get

dX

dt
=

1

i~

�
X;

i

2
(
P 2

m
+m!2X2)

�
= i

P

m
;

dP

dt
=

1

i~

�
P;

i

2
(
P 2

m
+m!2X2)

�
= �im!2X; (4.68)

with the help of the second derivative, we obtain the equation of motion for the inverted

oscillator
d2X

dt2
� !2X = 0: (4.69)

4.5 Coherent states and time evolution for the inverted

oscillator

We use the pseudo-annihilation A = ��1a�, pseudo-creation operators �A = ��1a+� and the

metric operator � = �+� such as (iHos)+ = � (iHos) ��1, i.e. (iHos) is �-pseudo-Hermitian with

respect to a positive-de�nite inner product de�ned by h:; :i� = h:j�j:i

r hnj � jmir = os hn jmios = �mn; (4.70)

the Fock states of the harmonic oscillator jnios are connected to the states of the inverted

oscillator jnir by invertible Dyson operator (Eq4.61).

In addition, the ground state of the inverted oscillator j0ir (A j0ir = 0).

The vacuum state of the harmonic oscillator j0ios are related to each other as

j0ir = ��1 j0ios :

Now, we introduce the coherent states for the inverted oscillator form the coherent states

of the harmonic oscillator, by using equation (4.1) and multiplying it from the left by ��1; we

�nd
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��1a
�
���1

�
j�ios = ���1 j�ios ; � 2 C; (4.71)

the coherent states for the inverted harmonic oscillator in this case is

A j�ir = � j�ir ; � 2 C; (4.72)

where

j�ir = ��1 j�ios : (4.73)

Then, the coherent states for the inverted harmonic oscillator are de�ned as eigenstates of

the pseudo-annihilation operator A:

The normalization condition
os h� j�ios = 1; (4.74)

leads to
r h�j � j�ir = 1; (4.75)

and then the integral
1

�

Z
C
� j�ir r h�j �+d��d� = I; (4.76)

is the identity operator.

From the coherent states of the oscillator harmonic, we can express the inverted coherent

states j�ir in terms of the pseudo-displacement operator Dr (�), by multiplying the equation

(4.3) on the left by ��1, we obtain

��1 j0ios = ��1Dos (�)
�
���1

�
j0ios

=
�
��1 exp

�
�a+ � ��a

�
�
�
��1 j0ios ; (4.77)

in this case, we deduce that the coherent states of the oscillator inverted j�ir can also be

generated from by applying a pseudo-displacement Dr(�) to the ground states j0ir as follows

j�ir = Dr (�) j0ir = exp
�
�A� ��A

�
j0ir ; (4.78)
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noting Dr (�) is related to Dos (�) as

Dr (�) = ��1Dos (�) �

= ��1 exp
�
�a+ � ��a

�
�

= exp
�
�A� ��A

�
: (4.79)

The time evolution of an initial inverted coherent state is given by the action of the evolution

operator on the coherent state j�ir

j�; tir = U r (t) j�ir

= e�
i
~H

rt j�ir ; (4.80)

where U r (t) is the evolution operator.

By the Hamiltonian (4.40), we conclude the evolution for inverted coherent state is

j�; tir = e�
i
~H

rt j�ir

= e�
j�j2
2 e

!t

2 e!
�AAt
P
n

(�)np
n!
jnir : (4.81)

So, the coherent state is written as

j�; tir = e�
j�e!tj2

2
P
n

(�e!t)np
n!

jnir

= e
!t
2

���e!t�r : (4.82)

In order to calculate the product �X�P; let�s �rst �nd the quantities hXi� ; hP i� ; hX2i� ;

hP 2i� using (4.64) in the non-Hermitian system. The mean values of the canonical operator O

can be calculated as

hOi� = r h�; tj �O j�; tir

= r h�; tj �+o� j�; tir

= e�
j�e!tj2

2
P
n

P
m

(��e!t)mp
m!

(�e!t)np
n!

os hmj o jnios ; (4.83)

where O = X;X2; P and P 2:
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Using (4.83), the mean value of X in the state j�; tir is

hXi� = e�j�e!tj
2P
n

P
m

(��e!t)mp
m!

(�e!t)np
n!

r
~
2!m

os hmj
�
a+ + a

�
jnios

=

r
~
2m!

[�+ ��] e!t; (4.84)

and the mean value of P in the state j�; tir is easily evaluated

hP i� = e�j�e!tj
2P
n

P
m

(��e!t)mp
m!

(�e!t)np
n!

i

r
~!m
2

os hmj
�
a+ � a

�
jnios

= �i
r
m!~
2

[�� ��] e!t; (4.85)

and follow classical physics; i.e.

hXi� = xc; hP i� = pc; (4.86)

where the letter c stands for classical. We refer to these inverted coherent states as "quasi-

classical states" because of this.

Let us now calculate the mean value of X2 in the state j�; tir is

X2
�
�
= h�; tj �X2 j�; tir

=
~
2m!

�
�2e2!t + ��2e2!t + 2(j�j2 e2!t + 1

2
)

�
; (4.87)

and the mean value of P 2 in the state j�; tir is

P 2
�
�
= h�; tj �P 2 j�; tir

=
�im!~
2

�
�2e2!t + ��2e2!t � 2(j�j2 e2!t + 1

2
)

�
: (4.88)

From Eqs. (4.13), (4.84) and (4.87), we �nd

�X =

r
~
2m!

; (4.89)

by using Eqs.(4.13), (4.85) and (4.88), we obtain

�P =

r
m!~
2

; (4.90)

therefore

�X�P =
~
2
: (4.91)
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The original inverted coherent state are a minimum uncertainty states, the time evolution

of an initially inverted coherent state can be thought of as the quantum equivalent of a classical

trajectory.



Conclusion
This thesis is centered on the following points :

� We have introduced the time-dependent invariant theory for the Hermition systems.

� We used the invariant theory to resolve the time-dependent coupled oscillator of a two

dimensional (2D), by appling a unitaty tronformation that allowed us to obtain the eigenfunc-

tions of the invariant operator, hence the exact solutions of the time-dependent Shrödinger

equation. FinalIy, we have generalized the 2D system to a 3D coupled oscillator, where we have

detected that the method of Hassoul et al [52, 53] contains many errors.

� We have recalled the concepts of PT -symmetry, the pseudo-hermiticity, the PT and

CPT inner-products with mention of the properties of each one of them.

� We have given the de�nitions of coherent states for a harmonic oscillator and presented

their time evolution.

� We have introduced a method for relating a regular harmonic oscillator to an inverted

oscillator, with the help of a time-independent Dyson metric that allowed us to present the

pseudo-annihilation operators A = ��1a� and pseudo-creation �A = ��1a+� and constructed

coherent states for the inverted oscillator.
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    Abstract  

  In this thesis, we presented the definition of the invariant theory in quantum mechanics 

that allows us to treat the problems of time-dependent systems and find the solution of the 

Schrödinger equation. Then, we studied the time-dependent coupled oscillator of a two 

dimensional (2D), pointing out the errors made by the method of Hassoul et al. Next, we 

introduced the concepts of PT-symmetry, the pseudo-hermiticity and CPT. Finally, we have 

constructed  the coherent states  for the inverted oscillator that minimize the quantum 

mechanical uncertainty between the position and the momentum. 

    Key words: PT-symmetry, the pseudo-hermiticity, the time dependent coupled oscillator, 

the inverted oscillator. 

    Résumé 

    Dans cette thèse, nous avons présenté la définition de la théorie des invariants en 

mécanique quantique qui nous permet de traiter les problèmes des systèmes dépendant du 

temps et de trouver la solution de l'équation de Schrödinger. Ensuite, nous avons étudié 

l'oscillateur couplé dépendant du temps d'un bidimensionnel (2D), en soulignant les erreurs 

commises par la méthode de Hassoul et al. Ensuite, nous avons introduit les notions de PT-

symétrique, de pseudo-herméticité et de CPT. Enfin, nous avons construit les états cohérents 

pour l'oscillateur inversé qui minimisent l'incertitude mécanique quantique entre la position 

et la quantité de mouvement. 

    Mots clés : PT-symétrique, la pseudo-herméticité, l'oscillateur couplé dépendant du 

temps, l'oscillateur inversé. 

                                                                                                                  ملخص                               

                

 المعتمدة مشاكل الأنظمة بمعالجة لنا تسمح التي الكم ميكانيكا في الثابتة نظرية تعريف, الأطروحة هذه في قدمنا

 للجسم ثنائي على الزمن المعتمد المزدوج المذبذب بدراسة قمنا ثم. شرودنغر معادلة حل وإيجاد الزمن على

تناظر شبه : مفاهيم قدمنا ذلك، . بعدوآخرين بطريقة حسول وقعت التي الأخطاء إلى الإشارة مع ،(2D)الأبعاد

عدم  من قللي يالذ المقلوب للمذبذبالمتماسكة  الحالات ببناء قمنا . أخيرًا،  CPT و , الشبه الهرميتيكيةالتكافؤ

  .والزخم الموضع بين الكم ميكانيكا في اليقين

 المذبذب الزمن، على المعتمد المزدوج المذبذب : تناظر شبه التكافؤ, الشبه الهرميتيكية,المفتاحية الكلمات

المقلوب.                                                                                                                   
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It is known that the standard and the inverted harmonic oscillator are different. Replacing thus ω by±iω in the regular oscillator is necessary
going to give the inverted oscillator Hr . This replacement would lead to anti- PT -symmetric harmonic oscillator Hamiltonian (∓iHos).
The pseudo-hermiticity relation has been used here to relate the anti-PT -symmetric harmonic Hamiltonian to the inverted oscillator. By
using a simple algebra, we introduce the ladder operators describing the inverted harmonic oscillator to reproduce the analytical solutions.We
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1. Introduction

The inverted oscillator, equipped with a potential exerting a
repulsive force on a particle, has been widely studied [1-18].
Such system can be completely solved as the standard har-
monic oscillator whose properties are well known.

However, the physics of the inverted harmonic oscilla-
tor is different, because its energy spectrum is continuous
and its eigenstates are no longer square integrable.The in-
verted oscillator can be applied to various physical systems
such as [1,19-21], the tunneling effects, the mechanism of
matter-wave bright solitons, the cosmological model, and the
quantum theory of measurement.

In fact, the predominant idea in the literature is that the
inverted oscillator is obtainable from the harmonic oscilla-
tor by the replacement ω → ±iω. Of course, in spite of
many useful analogies, it is important to know that the two
oscillators (harmonic and inverted) reveal different charac-
teristics. In other words, the inverted oscillator generates a
wave packet which are not square integrable and there is no
zero-point energy. In comparison with the harmonic oscilla-
tor, the physical applications of the inverted harmonic oscil-
lators are limited, since their Hamiltonian is parabolic and the
eigenstates are scattering states. The analytic continuation of
angular velocity ω → ±iω performs a transformation of a
non-Hermitian harmonic oscillator (∓iHos) to inverted one
Hr.

In general, non-Hermitian Hamiltonians have been used
to describe several physical dissipative systems. Such Hamil-
tonians do not cause a legitimate probabilistic interpreta-
tion due to the shortage of the unitarity condition in their
corresponding quantum description. In non-Hermitian quan-
tum mechanics it, was found that the criteria for a quantum
Hamiltonian to have a real spectrum is that it possesses an
unbrokenPT symmetry (P is the space-reflectio operator or

parity operator, and T is the time-reversal operator) [22, 23].
The concept of PT -symmetry has found applications in sev-
eral areas of physics. Once the non-Hermitian Hamiltonian
H is invariant under the combined action of PT (i.e. H com-
mutes withPT ) and its eigenvectors are also those of thePT
operator, then the energy eigenvaluesE of the system are real
and in this case the PT -symmetry is unbroken.

An alternative approach to explore the basic structure re-
sponsible for the reality of the spectrum of a non- Hermi-
tian Hamiltonian is by the notion of the pseudo-hermiticity
introduced in Ref. [24]. An operator H is said to be pseudo-
Hermitian if

H† = ηHη−1, (1)

where the metric operator

η = ρ†ρ, η−1 =
(
ρ†ρ

)−1
, (2)

is a linear, invertible and Hermitian operator, we say that the
Hamiltonian is pseudo-Hermitian or quasi-Hermitian if it sat-
isfie the relation (1).

The pseudo-Hermiticity allows to link the pseudo-
Hermitian Hamiltonian H with an equivalent Hermitian
Hamiltonian h

h = ρHρ−1, (3)

where the operator ρ called Dyson operator is linear and
invertible. Due to the energy spectrum of (±iHos) being
completely imaginary, we notice that (∓iHos) is anti-PT -
symmetric i.e.

PT (±iHos)PT = (∓iHos). (4)

We recall that a PT -symmetric system can be trans-
formed to an anti-PT -symmetric one by replacing Hos →
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(±iHos) [25-28], which changes the physical structure of
the system. In other words, a Hamiltonian H is said to be
anti-PT -symmetric if it anticommutes with the PT opera-
tor {PT ,H} = 0. In analogy with the PT -symmetric case,
we call the anti-PT -symmetry of Hamiltonian H unbroken
if all of the eigenfunctions of H are eigenfunctions of PT ,
i.e. when the energy spectrum of H is entirely imaginary E
= iE∗ [29].

In this paper, we generate from the anti-PT -symmetric
Hamiltonian (±iHos) an inverted Hermitian harmonic
oscillator-type Hr and also its solution. In Sec. 2, we re-
call briefl some properties of the standard harmonic and in-
verted oscillators In Sec. 3, introducing an appropriate quan-
tum metric, we link the anti-PT -symmetric Hamiltonian
(±iHos) to the inverted oscillator Hamiltonian Hr.This pro-
cedure allows us to obtain the pseudo-ladder operators, the
set of solutions and also to defin the full orthonormaliza-
tion relation of the eigenstates for inverted harmonic oscil-
lator Hr. In Sec. 4, using the pseudo-ladder operators, we
will address the problem constructing of coherent states as-
sociated to inverted oscillatorHr. We obtain the mean values
of the position and momentum operators in the evolved co-
herent states and furthermore we calculate the corresponding
Heisenberg uncertainty. An outlook over the main results is
given in the conclusion.

2. Summary of standard harmonic and the in-
verted oscillators

Let us recall briefl the ladder operator approach of the usual
harmonic oscillator:

Hos =
1

2m
p2 +

1
2
mω2x2 =

~ω
2

(
a+a + aa+

)
, (5)

where

a =
√

mω

2~
x + i

p√
2m~ω

,

a† =
√

mω

2~
x− i

p√
2m~ω

, (6)

The operators a and a+ satisfying the commutation relation
[
a, a†

]
= 1. (7)

Were introduced to facilitate the solution of the eigen-
value problem. Eigenstates of (5) in Fock space are
the Fock or number states |n〉os with the eigenvalues
ω (n + 1/2)) , where a |n〉os =

√
n |n− 1〉os

, a† |n〉os =√
n + 1 |n + 1〉os and n is a non-negative integer.
We then have a nice mechanism for computing the eigen-

states of the Hamiltonian, but we can also express expectation
values using the raising and lowering operators. This leads to
the useful representation of x and p:

x =

√
~

2ωm

(
a† + a

)
, p = i

√
~ωm

2
(
a† − a

)
, (8)

such that, we can compute any arbitrary expectation values
that depend upon these quantities, merely by knowing the ef-
fects of the raising and lowering operators upon the eigen-
states of the Hamiltonian.

From this, we can evaluate that the energy eigenvalues

Hosψos
n (x) = Enψos

n (x)

= ~ω
(

n +
1
2

)
ψos

n (x); n ∈ N, (9)

and the normalized condition for the eigenfunctions is veri-
fie

〈ψos
m |ψos

n 〉 = δmn. (10)

We see that the energy eigenvaluesE0 = ~ω/2 of the ground
state

ψos
0 (x) =

1√
2nn!

(ωm

π~

) 1
4

exp
[
−ωm

2~
x2

]
, (11)

is a very significan physical result because it tells us that the
energy of a system described by a harmonic oscillator poten-
tial cannot have zero energy.

In contrast with the harmonic oscillator, the inverted os-
cillator has a Hamiltonian with the following form:

Hr =
1

2m
p2 − 1

2
mω2x2 = −~ω

2
(
a†2 + a2

)
. (12)

The Hamiltonian (12) is formally obtainable from (5) by
the replacement

ω → iω, (13)

similarly, the case (−iω) would serve equally well.
On the other hand, for an imaginary frequency, i.e. for

the inverted harmonic oscillator, we get

a → A = ei π
4

(√
mω

2~
x +

p√
2mω~

)
, (14)

a+ → Ā = ei π
4

(√
mω

2~
x− p√

2mω~

)
, (15)

thus, the Hamiltonian (12) can take the following form

Hr =
i~ω
2

(ĀA + AĀ), (16)

where the non-Hermitian pseudo-ladder operators
(
A, Ā

)
are

characterized by
[
A, Ā

]
= 1 in an analogous way to the lad-

der operator
(
a, a†

)
for the harmonic oscillator.

Knowing that the eigenfunctions of the harmonic oscil-
lator are normalized, we ask the question if the inverted os-
cillator eigenfunctions are also normalized? Clearly, they are
not 〈ψr

m |ψr
n〉 6= δmn. This can be seen when calculating the

normalization condition for the pseudo-ground state ψr
0(x) of

the obtained inverted oscillator: from Eq. (11) by changing ω
to iω

ψr
0(x) =

1√
2nn!

(
iωm

π~

) 1
4

exp
[
−i

ωm

2~
x2

]
. (17)
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One can easily verify that the normalization for this state diverges as follows:

〈ψr
0 |ψr

0〉 =

+∞∫

−∞
ψ∗r0 (x)ψr

0(x)dx =
1

2nn!

(ωm

π~

) 1
2

+∞∫

−∞
dx →∞, (18)

the reason for this divergence is that the substitution ω by iω is unsuitable. we will remedy this inconsistency in what follows.

3. Pseudo-ladder operators in the inverted harmonic oscillator

The Hermitian Hamiltonian Hr and the non-Hermitian Hamiltonian (iHos) are related by a formal replacement ω → iω. The
challenge is to establish a consistent relation between the quantummechanical formalism for the Hermitian HamiltonianHrand
the non-Hermitian one (iHos), we propose that instead of considering this formal transformation, we use the relation that it
is valid for any self-adjoint operator, i.e. observable, in the Hermitian system to possess a counterpart in the non-Hermitian
system given by

ρ−1(iHos)ρ = Hr. (19)

In order to connect the non-Hermitian harmonic oscillator Hamiltonian (iHos) to the Hermitian inverted oscillator Hr, we
perform a Dyson type transformation ρ such that [30]

ρ = exp
{
−2

[
ε

2

(
a†a +

1
2

)
+ µ−

a2

2
+ µ+

a†2

2

]}
= exp

[
−ϑ−

a2

2

]
exp

[
− ln ϑ0

2

(
a†a +

1
2

)]
exp

[
−ϑ+

a†2

2

]
, (20)

and

ϑ+ =
2µ+ sinh θ

θ cosh θ − ε sinh θ
, ϑ0 =

(
cosh θ − ε

θ
sinh θ

)−2

= µ+µ− − χ,

ϑ− =
2µ− sinh θ

θ cosh θ − ε sinh θ
, χ = −cosh θ + ε

θ sinh θ

cosh θ − ε
θ sinh θ

, θ =
√

ε2 − 4µ+µ−, (21)

where ε is a real parameter whereas µ+ and µ− are complex ones.
With the help of the following relations




exp
[
ϑ− a2

2

] (
a†a + 1

2

)
exp

[
−ϑ− a2

2

]
=

(
a†a + 1

2

)
+ ϑ−a2

exp
[
ϑ+

a†2
2

] (
a†a + 1

2

)
exp

[
−ϑ+

a†2
2

]
=

(
a†a + 1

2

)− ϑ+a†2
, (22)





exp
[
ln ϑ0

2

(
a†a + 1

2

)]
a2 exp

[− ln ϑ0
2

(
a†a + 1

2

)]
= a2

ϑ0

exp
[
ϑ+

a†2
2

]
a2 exp

[
−ϑ+

a†2
2

]
= a2 − 2ϑ+

(
a†a + 1

2

)
+ ϑ2

+a†2
, (23)





exp
[
ln ϑ0

2

(
a†a + 1

2

)]
a†2 exp

[− ln ϑ0
2

(
a†a + 1

2

)]
= ϑ0a

†2

exp
[
ϑ− a2

2

]
a†2 exp

[
−ϑ− a2

2

]
= a†2 + 2ϑ−

(
a†a + 1

2

)
+ ϑ2

−a2
, (24)

we deduce, under the action of the operator ρ, the transformed Hamiltonian of the harmonic oscillator :

ρ−1Hosρ = ~ωρ−1

(
a†a +

1
2

)
ρ =

~ω
ϑ0

{
[ϑ0 − 2ϑ+ϑ−]

(
a†a +

1
2

)
+

[
ϑ−ϑ2

+ − ϑ0ϑ+

]
a†2 + ϑ−a2

}
. (25)

We notice that Eq. (25) and Eq. (12) have the same structure in their operator content provided that we impose on the
parameters (ϑ+, ϑ−, ϑ0) the following conditions

ϑ+ = −i, ϑ− =
i

2
, ϑ0 = 1, (26)

from these constraints, the Dyson operator Eq. (20) takes now the simplifie formi

ρ = exp
[
− i

4
a2

]
exp

[
i

2
a†2

]
, ρ−1 = exp

[
− i

2
a†2

]
exp

[
i

4
a2

]
, (27)

it follows that the two Hamiltonians Hos and Hr are allied to each other as

ρ−1Hosρ = i
~ω
2

(
a†2 + a2

)
= −iHr. (28)
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One can verify that in the case of the inverted oscillator,
the form of Hamiltonian in the last equation looks like

Hr =
i~ω
2

(ĀA + AĀ), (29)

where the pseudo-ladder operators
(
A, Ā

)
are linked to the

ladder operators (6) through the transformation

A = ρ−1aρ = a + ia†, (30)

Ā = ρ−1a†ρ =
1
2

(
a† + ia

)
, (31)

and satisfy the following commutation relation
[
A, Ā

]
=

1.Then, we can deduce that their Fock eigenstates |nr〉 are
related to |nos〉 by the invertible operator ρ as

|nr〉 = ρ−1 |nos〉 . (32)

For instance, the pseudo-Hermitian quadratures (X, P )
corresponding in the Hermitian system to the coordinate and
momentum operators (x, p) (see Eqs. (8)) respectively, are
now

X = ρ−1xρ =

√
~

2ωm
ρ−1

(
a† + a

)
ρ

=

√
~

2ωm

(
A + Ā

)
, (33)

P = ρ−1pρ = i

√
~ωm

2
ρ−1

(
a† − a

)
ρ

= i

√
~ωm

2
(
Ā−A

)
. (34)

Knowing that any observable o in the Hermitian system
possesses a counterpart O in the pseudo-Hermitian system
given by

O = ρ−1oρ, (35)

one can deduce the useful representation of
(
A, Ā

)
in terms

of (X, P ) as

A =
√

mω

2~
X + i

1√
2m~ω

P, (36)

Ā =
√

mω

2~
X − i

1√
2m~ω

P. (37)

Thereby, the Hamiltonian (29) can be written in terms of
X and P as

Hr =
i

2

(
P 2

m
+ mω2X2

)
. (38)

This leads to the equations of motion of the inverted os-
cillator. Indeed, using the Heisenberg equations of motion
and [X, P ] = i~, we have for X and P :

dX

dt
=

1
i~

[
X,

i

2

(
P 2

m
+ mω2X2

)]
= i

P

m
.

dP

dt
=

1
i~

[
P,

i

2

(
P 2

m
+ mω2X2

)]
= −imω2X. (39)

Taking another time derivative of dX/dt, we get the usual
equation of motion for the inverted oscillator

d2X

dt2
− ω2X = 0, (40)

4. Coherent states for the inverted oscillator

The best way to present the inverted coherent states is by
translating their definition into the language of the coher-
ent states of the harmonic oscillator which are summarized
in what follows. Coherent states, or semi-classic states, are
remarkable quantum states that were originally introduced in
1926 by Schrödinger for the Harmonic oscillator [31] where
the mean values of the position and momentum operators in
these states have properties close to the classical values of the
position xc(t) and the momentum pc(t). In particular, the co-
herent states of the harmonic oscillator|αos〉 [32]- [34] may
be obtained in different but equivalent ways:

(i) as eigenstates of the annihilation operator;

a |α〉os = α |α〉os
, (41)

with eigenvalues α ∈ C.

(ii) as a displacement of the vacuum |0〉os

, where the dis-
placement operator

Dos (α) = exp[α∗a† − αa], (42)

can be used to generate the coherent state

|α〉os = Dos (α) |0〉os
, (43)

(iii) as states that minimize the Heisenberg uncertainty
principle

∆x∆p =
~
2
. (44)

Coherent states form an over-complete set of states. The
identity operator I is written in terms of coherent states as

1
π

∫
|α〉os os 〈α| d2α = I. (45)

The solution for the harmonic oscillator Hamiltonian for an
initial coherent state is given in the following simple form

|α, t〉os = e−i ωt
2

∣∣αe−iωt
〉os

, (46)

i.e., a coherent state that rotates with the harmonic oscillator
frequency.
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In analogy with the usual coherent states, we use the
pseudo-annihilation A = ρ−1aρ and pseudo-creation Ā =
ρ−1a†ρ operators which are very convenient to study the in-
verted coherent states. We emphasize the use of the met-
ric η = ρ†ρ operator such as (iHos)† = η (iHos) η−1,
i.e. (iHos) is η-pseudo-Hermitian with respect to a positive-
definit inner product define by 〈., .〉η = 〈.|η|.〉 :

r 〈n| η |m〉r = os 〈n |m〉os = δmn, (47)

which indicates that the Fock states are linked to each other
as

|n〉r = ρ−1 |n〉os
, (48)

additionally, the vacuum state of the inverted oscillator |0〉r
(A |0〉r = 0) and the vacuum state of the harmonic oscillator
|0〉os are related as |0〉r = ρ−1 |0〉os

.
The coherent states for the inverted harmonic oscilla-

tor are define as eigenstates of the corresponding pseudo-
annihilation operator A

A |α〉r = α |α〉r , α ∈ C. (49)

with

|α〉r = ρ−1 |α〉os
. (50)

Particularly, the normalization condition
os 〈α |α〉os = 1, (51)

leads to
r 〈α| η |α〉r = 1, (52)

and then the integral

1
π

∫

C

ρ |α〉r r 〈α| ρ+dα∗dα = I, (53)

is an identity operator.
These inverted coherent states |α〉r can also be gener-

ated respectively from the vacuum states |0〉r by the action
of pseudo-displacement operator Dr(α),

|α〉r = Dr (α) |0〉r = exp
[
αA− α∗A

] |0〉r , (54)

we note that Dr (α) is related to Dos (α) as

Dr (α) = ρ−1Dos (α) ρ. (55)

Using the Hamiltonian (29), we deduce the evolution of
an initial inverted coherent state in the following simple form

|α, t〉r = e−i/~Hrt |α〉r

= e−|α|
2/2eωt/2eωĀAt

∑
n

(α)n

√
n!
|n〉r . (56)

Introducing eωĀAt into the sum, and using the fact that
the states |n〉r are eigenstates of the number operatorĀA, we
have

|α, t〉r=e−|αeωt|2/2
∑

n

(αeωt)n

√
n!

|n〉r

=eωt/2
∣∣αeωt

〉r
. (57)

Since our aim is to compute the Heisenberg uncertainty relations in the position and the momentum, it is required to
calculate the expectation values of the canonical variables and their squares in the inverted coherent states. Then, by using
the relation (35) in the non-Hermitian system, the expectation value of an arbitrary operator O = X, X2, P and P 2 can be
evaluated from

〈O〉η = r 〈α, t| ηO |α, t〉r = r 〈α, t| ρ+oρ |α, t〉r = e−
|αeωt|2

2

∑
n

∑
m

(α∗eωt)m

√
m!

(αeωt)n

√
n!

os 〈m| o |n〉os
. (58)

Using the above equation, the expectation values of X and P in the state |α, t〉r are easily evaluated:

〈X〉η = e−|αeωt|2 ∑
n

∑
m

(α∗eωt)m

√
m!

(αeωt)n

√
n!

√
~

2ωm
os 〈m| (a† + a

) |n〉os =

√
~

2mω
[α + α∗] eωt, (59)

〈P 〉η = e−|αeωt|2 ∑
n

∑
m

(α∗eωt)m

√
m!

(αeωt)n

√
n!

i

√
~ωm

2
os 〈m| (a† − a

) |n〉os = −i

√
mω~

2
[α− α∗] eωt, (60)

and follow classical physics; i.e.

〈X〉η = xc, 〈P 〉η = pc, (61)

where the subscript c indicate classical. This is why we call these inverted coherent states ”quasi-classical states”.
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Let us now evaluate the uncertainty in the position and the momentum.

〈
X2

〉
η

= 〈α, t| ηX2 |α, t〉r =
~

2mω

[
α2e2ωt + α∗2e2ωt + 2

(
|α|2 e2ωt +

1
2

)]
, (62)

〈
P 2

〉
η

= 〈α, t| ηP 2 |α, t〉r =
−imω~

2

[
α2e2ωt + α∗2e2ωt − 2

(
|α|2 e2ωt +

1
2

)]
. (63)

It is well known that the position uncertainty can be de-
rived from ∆X =

√
〈X2〉η − 〈X〉2η . Then using (59) and

(62), we have

∆X =

√
~

2mω
.

Similarly, from Eqs. (60) and (63), we also have the mo-
mentum uncertainty such that

∆P =

√
mω~

2
.

Thus, the uncertainty product for canonical variables X
and P is given by

∆X∆P =
~
2
.

Therefore, the inverted coherent states are a minimum-
uncertainty states and the time evolution of an initially in-
verted coherent state can be regarded as the quantum analog
of a classical trajectory.

5. Conclusion

We have briefl summarized in Sec. 2, some properties of the
standard harmonic and inverted oscillators.

We have proposed a scheme that permits relating a reg-
ular harmonic oscillator to an inverted oscillator by using
a time-independent Dyson metric which allowed us to in-
troduce the pseudo-annihilation A = ρ−1aρ and pseudo-
creation Ā = ρ−1a†ρ operators associated to the inverted

harmonic oscillator. These operators are the basis of the
definitio of coherent states for inverted oscillator and their
corresponding eigenstates and eigenvalues. Once the Dyson
operator has been introduced, and therefore the metric oper-
ators, it is straightforward to extend these considerations to
the associated eigenstates and inner product structures on the
physical Hilbert space. Some of the finding are treated by
the Gaussian wave packet (in the x-representation) associated
to the generalized coherent state in Ref. [35].

Coherent states of the inverted harmonic oscillator are
constructed in different forms:

(1) as eigenstates of the pseudo-annihilation operator A;

(2) as a pseudo-displacement of the inverted vacuum
exp

[
αA− α∗A

] |0〉r,

(3) as states whose averages follow the classical trajecto-
ries of X , P and Hr.

However, the coherent states for the inverted oscillator
constitute ”minimum uncertainty” wave packets. Therefore,
the time evolution of an initially coherent state can be re-
garded as the quantum analog of a classical trajectory.
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By using the Lewis–Riesenfeld invariants theory, we investigate the quantum dynamics
of a two-dimensional (2D) time-dependent coupled oscillator. We introduce a unitary

transformation and show the conditions under which the invariant operator is uncoupled

to describe two simple harmonic oscillators with time-independent frequencies and unit
masses. The decouplement allows us to easily obtain the corresponding eigenstates. The

generalization to three-dimensional (3D) time-dependent coupled oscillator is briefly dis-

cussed where a diagonalized invariant, which is exactly the sum of three simple harmonic
oscillators, is obtained under specific conditions on the parameters.

Keywords: Time-dependent quantum system; invariant theory; coupled oscillator; canon-

ical and unitary transformation.

1. Introduction

The harmonic oscillator is one of the most important models in quantum mechan-

ics, and one of the few ones that has an exact analytical solution that made it

applicable in the study of the dynamical properties of different physical systems:

natural systems and technological devices. The two- and the three-dimensional har-

monic oscillators are particularly among the most representative and important

‡Corresponding author.

2250222-1

http://dx.doi.org/10.1142/S0217984922502220
mailto:na3ima_mn@hotmail.fr


February 24, 2023 15:51 147-mplb S0217984922502220 page 2

FA

R. Zerimeche et al.

harmonic oscillator models in quantum mechanics and therefore establishing the

dynamical properties of coupled oscillatory systems is extremely demanded though

their complex motion especially when the parameters are time-dependent and/or

the dimension of the system is more than two.

The time-dependent coupled oscillator that has been a point of interest in the

research field for a few years now,1–6 model various physical systems7–17 and helped

in explaining numerous physical interacting systems including trapped atoms,18

nanooptomechanical resonances,19,20 electromagnetically induced transparency,21

stimulated Raman effects,22 time-dependent Josephson phenomena,23 and systems

of three isotropically coupled spins 1/2.24 Coupled oscillators are fundamental for

quantum technologies such as quantum computing and quantum cryptography.25–27

The problem of a system of n-coupled harmonic oscillators with damping and

driving forces was considered in the framework of Lie symmetries of differential

equations.28

However, the study of time-dependent Hamiltonian systems has attracted much

attention over the years leading to the development of variety of techniques, to cite

but a few: adiabatic approximation,29,30 sudden approximation, the perturbation

theory and the Lewis–Reisenfeld invariants theory.31 These cited techniques are

devoted to Hermitian Hamiltonian systems and for the non-Hermitian ones an

extension of the invariants theory31 has been developed to treat explicitly time-

dependent pseudo-Hermitian Hamiltonians which made the establishment of the

solutions to the considered system in terms of the eigenstates of a pseudo-Hermitian

invariant operator possible.32–34

In this paper, we investigate quantum dynamical properties of a two-dimensional

(2D) time-dependent coupled oscillator. Our study is based on the theory of a two-

dimensional (2D) coupled dynamical invariant. We show the conditions under which

the invariant operator is uncoupled.

In Sec. 2, we evaluate the study of the time-dependent 2D coupled system and

approach the whole subject in a scientifically coherent manner to show that the

invariant operator of the system can be uncoupled under specific conditions. Then,

we recapitulate the basic errors made in Ref. 35 while studying the same system.

Hassoul et al.35 claim that introducing two pairs of annihilation and creation oper-

ators uncouples the original invariant operator so that it becomes the one that

describes two independent subsystems. We show also that the linear canonical trans-

formation defined in Ref. 35 cannot be adapted to the considered problem without

a constraint on the mass and to solve the problem in question (see Appendix A).

In order to solve the problem in a clearer way we adopt, in the quantum mechanics

framework the method used in classical case in Ref. 36; that the quantum mechan-

ical unitary transformations are used instead of the classical canonical transforma-

tions, we introduce more adequate canonical transformations. Later, we highlight,

with some simple mathematical calculation, all the flawed results found in Ref. 37

where a generalization to the 3D case of the investigation introduced in Ref. 35

using the same layout is considered.
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2. Discussion

2.1. Background on the subject

Let us recall the method used to solve the quantum dynamics of a general time-

dependent coupled oscillator, mainly the one adopted in Ref. 35. We should point

out that the notations used in this paper are slightly different from those of Ref. 35.

For instance, we used αi = ρ2i while in Ref. 35, αi = 1
mi
. The Hamiltonian of the

time-dependent coupled oscillator that we consider is of the form

H(t) =
1

2

2∑
i=1

[
P 2
i

mi(t)
+ ci(t)X

2
i

]
+

1

2
c3(t)X1X2, (1)

where mi(t), ci(t) and c3(t) are arbitrary functions of time. We choose a quantum

invariant operator of the system of the form

I(t) =
1

2

2∑
i=1

[αi(t)P
2
i + βi(t)(XiPi + PiXi) + γi(t)X

2
i ] +

1

2
η(t)X1X2, (2)

the parameters αi(t), βi(t), γi(t) (i = 1, 2) and η(t) are real and differentiable

functions of time. The substitution of (1) and (2) into the invariance condition

dI

dt
=
∂I

∂t
+

1

i~
[I,H] = 0, (3)

implies the auxiliary equations given as

α̇i(t) =
−2βi(t)

mi(t)
, (4)

β̇i(t) = ci(t)αi(t)−
γi(t)

mi(t)
, (5)

γ̇i(t) = 2ci(t)βi(t), (6)

η̇(t) = c3(t)[β1(t) + β2(t)], (7)

in addition to the following important condition:

η(t)

c3(t)
= α1(t)m1(t) = α2(t)m2(t). (8)

Now, by noting that

αi(t)γi(t)− β2
i (t) = δi, (9)

with δi being a real constant, we set

αi(t) = ρ2i , (10)

to get after simple calculation

βi(t) = −miρiρ̇i, (11)

γi(t) = ci(t)miρ
2
i +miṁiρiρ̇i +m2

i ρ̇
2
i +m2

i ρiρ̈i, (12)
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and the auxiliary equation for ρi

ρ̈i +
ṁi

mi
ρ̇i =

δi
m2
i ρ

3
i

− ci(t)ρi
mi

, (13)

and since

ρ21m1 = ρ22m2, (14)

one can write

η(t) = −
∫ t

c3(t′)m1ρ1(ρ̇1 + ρ1
ρ̇2
ρ2

)dt′, (15)

thus, the invariant (2) is written as

I(t) =
1

2

2∑
i=1

[
ρ2iP

2
i −miρiρ̇i (XiPi + PiXi) +

(
δi
ρ2i

+m2
i ρ̇

2
i

)
X2
i

]

− 1

2

[∫ t

c3(t′)m1ρ1

(
ρ̇1 + ρ1

ρ̇2
ρ2

)
dt′
]
X1X2. (16)

According to the Lewis–Riesenfeld theory,31 the invariant operator I(t) has

time-independent eigenvalues λn,m

I(t)|ϕn1,n2〉 = λn1,n2 |ϕn1,n2〉, (17)

and his eigenfunctions |ϕn1,n2
〉 are time-dependent whose multiplication by suitable

phases exp[iµn1,n2
(t)], with µn1,n2

(t) verifying

µ̇n,m(t) =

〈
ϕn1,n2

∣∣∣∣(i~ ∂∂t −H(t)

)∣∣∣∣ϕn1,n2

〉
, (18)

is a solution of the time-dependent Schrödinger equation

i~
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉. (19)

2.2. Unitary transformations: Results and discussion

In order to solve the eigenvalues equation (17), we introduce the unitary transfor-

mation U such that

|ϕ′n1,n2
〉 = U |ϕn1,n2〉 = U1U2|ϕn1,n2〉, (20)

where

U1 =

2∏
i=1

exp

[
i

2~
(XiPi + PiXi) ln

√
αi

]
, (21)

U2 =

2∑
i=1

exp

[
i

2~
βi
αi
X2
i

]
. (22)
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under which Xi and Pi transform into

U1XiU
+
1 =

√
αiXi,

U1PiU
+
1 =

1
√
αi
Pi,

(23)

and

U2XiU
+
2 = Xi, (24)

U2PiU
+
2 = Pi −

βi
αi
Xi. (25)

Finally, we get

UXiU
+ =

√
αiXi, (26)

UPiU
+ =

1
√
αi
, Pi −

βi√
αi
Xi (27)

and consequently the invariant (2) becomes

I ′ =
1

2

2∑
i=1

[P 2
i + (γiαi − β2

i )X2
i ] +

1

2
η
√
α1α2X1X2. (28)

We can further simplify the invariant operator I ′ by introducing the unitary oper-

ator U3

U3 = exp

[
i

~
θ

2
(P2X1 − P1X2)

]
, (29)

under which Xi and Pi transform into

U3X1U
+
3 = cos

(
θ

2

)
X1 − sin

(
θ

2

)
X2, U3X2U

+
3 = cos

(
θ

2

)
X2 + sin

(
θ

2

)
X1,

U3P1U
+
3 = cos

(
θ

2

)
P1 − sin

(
θ

2

)
P2, U3P2U

+
3 = cos

(
θ

2

)
P2 + sin

(
θ

2

)
P1,

(30)

the above Eqs. (30) are similar to the canonical classical variables (12–15) in Ref. 36.

Therefore, the invariant (28) is written as

I ′′ = U3I
′U+

3

=
P 2
1

2
+
P 2
2

2
+

1

2

[
δ1 cos2

(
θ

2

)
+ δ2 sin2

(
θ

2

)
+
η
√
α1α2

2
sin θ

]
X2

1

+
1

2

[
δ1 sin2

(
θ

2

)
+ δ2 cos2

(
θ

2

)
−
η
√
α1α2

2
sin θ

]
X2

2

+
1

2
[η
√
α1α2 cos θ − (δ1 − δ2) sin θ]X1X2, (31)
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We observe from Eq. (31) that the separation of variables is complete for

η
√
α1α2 cos θ − [δ1 − δ2] sin θ = 0, (32)

and this leads to the following transformed invariant:

I ′′ =
1

2

2∑
i=0

(P 2
i + Ω̃2

iX
2
i ), (33)

where

Ω̃2
1 = δ1 cos2

(
θ

2

)
+ δ2 sin2

(
θ

2

)
+
η
√
α1α2

2
sin θ, (34)

Ω̃2
2 = δ1 sin2

(
θ

2

)
+ δ2 cos2

(
θ

2

)
−
η
√
α1α2

2
sin θ, (35)

are constants. From Eq. (32), we deduce

tan(θ) =
η
√
α1α2

[δ1 − δ2]
, (36)

where

θ = arctan(η
√
α1α2.[δ1 − δ2]−1), (37)

is time-independent, to be convinced it is enough to follow the calculation method of
∂θ
∂t developed in Ref. 38. We confirm that the frequencies Ω̃i are time-independent.

After decouplement, the invariant (33) becomes the sum of two invariants

describing simple harmonic oscillators with time-independent frequencies Ω̃i and

unit masses whose eigenstates are well known and expressed as

|ϕn1,n2〉 =

2∏
i=1


√

Ω̃i

(π~)1/2ni!2ni

1/2

Hni

√ Ω̃i
~
Xi

 exp

[
− iΩ̃i

2~
X2
i

]
, (38)

where Hni
are the Hermite polynomials. Finally, let us note that it is easy to

express the invariant operator in terms of the well known annihilation and creation

operators associated to the usual harmonic oscillator.

3. Short Discussion on the Generalization to 3D Coupled Oscillator

A generalization of the 2D coupled oscillator to a 3D one has been incorrectly made

by Hassoul et al. in Ref. 37 where the authors study general time-dependent three

coupled nanooptomechanical oscillators. They start to obtain the formulae of time-

dependent parameters of the time-dependent invariant operator by deriving six

differential equations (Eqs. (8)–(13) in37) with their possible solutions (Eqs. (14)–

(19). In fact, they failed again in mentioning other conditions just like before, since

the invariance condition implies nine equations given as

Ȧi(t) = −2Bi(t)

mi(t)
, (39)

2250222-6
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Ḃi(t) = −Ci(t)
mi(t)

+mi(t)ω
2
i (t)Ai(t), (40)

Ċi(t) = 2mi(t)ω
2
i (t)Bi(t), (41)

Ḋ12(t) =
k12(t)

2
[B1(t) +B2(t)], (42)

Ḋ13(t) =
k13(t)

2
[B1(t) +B3(t)], (43)

Ḋ23(t) =
k23(t)

2
[B2(t) +B3(t)], (44)

D13(t)

D12(t)
=
k13(t)

k12(t)
, (45)

D12(t)

D23(t)
=
k12(t)

k23(t)
, (46)

D23(t)

D13(t)
=
k23(t)

k13(t)
. (47)

Similarly to the 2D case, the authors of Ref. 37 pretend to obtain the solution

of Eqs. (39)–(44), omitting to mention an important detail: the following constraint

equation that the mass must obey when considering mi(t) = 1/αi(t)

m̈i(t)−
1

2

ṁ2
i (t)

mi(t)
+ 2(δi − ω2

i (t))mi(t) = 0, (48)

which is difficult to solve. This last Eq. (48) is obtained from the auxiliary Eqs. (39)–

(44) by noting that

Ai(t)Ci(t)−B2
i (t) = δi, (49)

with δi being a real constant. Condition (49) is not mentioned in Ref. 37. Note that

putting 1
ρ2i

= mi(t) gives the famous auxiliary equation of ρi.
31,39–41

Thus, the given solutions (Eq. (14)–(19) in Ref. 37) impose a constraint on the

system that the authors did not pay attention to. The system cannot be resolved

for any given mass.

The authors proceed, with the aim to have a diagonalized invariant operator

O(t), to diagonalize the matrix k (formula (30) in Ref. 37) using the invertible

matrix R (formula (46) in Ref. 37). Note that substituting the expressions (49–51)

of xi
37 in the diagonalized invariant operator (48) O(t) does not lead to expression

(28) and the formula (35) of Ref. 37 cannot be obtained unless the parameters of

k obey

K12 = K13 = K23 and $2
1 = $2

2 = $2
3, (50)

which implies that Ω2 = 0 and the eigenvalues Ω2
i read

Ω2
1 = $2

1 +K12, (51)
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Ω2
2 = $2

1 −
K12

2
, (52)

Ω2
3 = $2

1 −
K12

2
. (53)

Furthermore, as mentioned before, it is crucial in the Lewis and Riesenfeld

theory31 for the invariant operator to have time-independent eigenvalues whereas

in Ref. 37 the eigenvalues Ω2
i are time-dependent. To see this, we calculate the time

derivative of Ω2
i as

dΩ2
1

dt
=

d

dt

(
D12√
m1m2

)
+
d

dt

(
D13√
m1m3

)
, (54)

dΩ2
2

dt
= − d

dt

(
D23√
m2m3

)
+
dΩ2

dt
, (55)

dΩ2
3

dt
= − d

dt

(
D23√
m2m3

)
− dΩ2

dt
, (56)

one can see that even if Ω2 = 0, the parameters D12, D13, D23 and the masses mi are

defined as time-dependent. Therefore, the eigenvalues Ω2
i are not time-independent

as they are supposed to be. This is once again a fundamental error that contradicts

with the Lewis–Riesenfeld theory.

Finally, we suspect that the authors have calculated the phases (56) in Ref. 35

((76) in Ref. 37) by taking the invariant operator instead of the Hamiltonian oper-

ator in which the term X1X2 has been omitted knowing that the dynamics of the

system is ruled by the Hamiltonian operator and not by the invariant operator.

It seems that the authors take the results of Refs. 31 and 39–41 and simply set
1
ρ2 = m(t) as if the invariant operator is the generator of the dynamics. Appar-

ently, they present a study of coupled systems from a quantum point of view (this

has an analog in the classical theory) and claim to prove that the solution to the

time-dependent Schrödinger equation with the mixed term X1X2 in the Hamilto-

nian can be reduced to the solution of a time-independent Schrödinger equation

involving the quantum invariant. We believe that is incorrect because the coupled

terms X1X2 in the Hamiltonian have a contribution and cannot be omitted.

4. Conclusion

This paper is an opportunity to draw the reader’s attention to the Refs. 14 and 15

cited in Ref. 35 which contain errors in dealing with time-dependent systems with-

out taking into account the generating function of the canonical transformation.42,43

It is clear from the analysis above that Hassoul et al.’s analytical expressions

(23), (26)–(32), (41) and (42) and (56) in Ref. 35 and expressions (28), (38)–(45) and

(76)–(80) in Ref. 37 cannot be correct. Consequently, all the physical conclusions

derived from such equations, are based on a wrong analytical layout.
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Appendix A. Reminder on the Method of Ref. 35 by Pointing Out

the Inconsistencies

Recently, Hassoul et al.35 have studied the same system (1) considering the time-

dependent invariant operator I(t) (2). They claim that introducing two pairs of

annihilation and creation operators uncouples the original invariant operator (2)

so that it becomes the one that describes two independent subsystems. In fact,

the authors of Ref. 35 pretend to obtain the solution of the Eqs. (4)–(7), omitting

to mention that the so-called solution αi(t) = 1/mi(t) must obey the following

constraint equation:

m̈i(t)−
1

2

ṁ2
i (t)

mi(t)
+ 2(δimi(t)− ci(t)) = 0, (A.1)

which is difficult to solve. They omit to mention condition (8) as well. Later, they

claim that the invariant operator (23) in Ref. 35 can be decoupled into (35) simply

using the canonical transformations (41) and (42) which cannot be valid if and only

if m1(t) = m2(t) and ω2
1(t) = ω2

2(t).

Moreover, to our knowledge, the invariant operator in the Lewis and Riesenfeld

theory31 has time-independent eigenvalues whereas the frequencies ω2
i are time-

dependent which does not imply time-independent eigenvalues of the invariant as

claimed in Ref. 35 and consequently it is not easy to obtain the phases.We show

that the frequencies (30) and (31) presented in Ref. 35 are time-dependent.

From the expression of ω2
1 Eq. (30) in Ref. 35, the time-dependent derivative

of ω2
1 is

dω2
1

dt
=

sin θ

2

([∫ t
0
[c2

ṁ2

2m2
]dt

m2
−
∫ t
0
[c1

ṁ1

2m1
]dt

m1

]
−
[
ṁ2

1

4m2
1

− ṁ2
2

4m2
2

])
θ̇

+ cos(θ)

(∫ t
0
c3[ ṁ1

2m1
+ ṁ2

2m2
]dt

2
√
m1m2

)
θ̇

+ sin(θ)

[
c3[ ṁ1

2m1
+ ṁ2

2m2
]

2
√
m1m2

− 1

4 3
√
m1m2

(
ṁ1

m1
+
ṁ2

m2

)

×
∫ t

0

c3

[
ṁ1

2m1
+

ṁ2

2m2

]
dt

]
. (A.2)

A short calculation of θ̇(t) is

θ̇ = cos2
(
θ(t)

2

)[
−1

2
√
m1m2

(
ṁ1

m1
+
ṁ2

m2

)∫ t

0

c3

[
ṁ1

2m1
+

ṁ2

2m2

]
dt

+

∫ t
0
c3[ ṁ1

2m1
+ ṁ2

2m2
]

√
m1m2

]
×
[(

1

m1

∫ t

0

[
c1
ṁ1

m1

]
dt

− ṁ2
1

4m2
1

)
−
(

1

m2

∫ t

0

[
c2
ṁ2

m2

]
dt− ṁ2

2

4m2
2

)]
6= 0, (A.3)
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which shows that θ(t) is time-dependent. When this last expression is inserted in

Eq. (A.2), we obtain the following result:

dω2
1

dt
= cos2

(
θ

2

)[(
1

m1

∫ t

0

[
c1
ṁ1

m1

]
dt− ṁ2

1

4m2
1

−
(

1

m2

∫ t

0

[
c2
ṁ2

m2

]
dt− ṁ2

2

4m2
2

)]

×
[

−1

2
√
m1m2

(
ṁ1

m1
+
ṁ2

m2

)∫ t

0

c3

[
ṁ1

2m1
+

ṁ2

2m2

]
dt

+

∫ t
0
c3[ ṁ1

2m1
+ ṁ2

2m2
]

√
m1m2

]

×

[
sin θ

2

([∫ t
0
[c2

ṁ2

m2
]dt

m2
−
∫ t
0
[c1

ṁ1

m1
]dt

m1

]
−
[
ṁ2

1

4m2
1

− ṁ2
2

4m2
2

])

+ cos(θ)

(∫ t
0
c3[ ṁ1

2m1
+ ṁ2

2m2
]dt

2
√
m1m2

)]
+ sin(θ)

[
c3[ ṁ1

2m1
+ ṁ2

2m2
]

2
√
m1m2

− 1

4 3
√
m1m2

(
ṁ1

m1
+
ṁ2

m2

)∫ t

0

c3

[
ṁ1

2m1
+

ṁ2

2m2

]
dt

]
6= 0. (A.4)

The above equation vanishes only if the conditions (c1 = c2, c3 = 0 and m1 =

m2) are satisfied.
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