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≪ Science does not aim at establishing immutable truths and eternal dogmas:
its aim is to approach the truth by successive approximations,

without claiming that at any stage
final and complete accuracy has been achieved ≫.

Bertrand Arthur William RUSSELL
The ABC of Relativity, 1925.



Abstract

In this thesis, two novel contributions for the enhancement of JPEG-based integer
transforms are introduced. The first contribution consists of the development of
two methods to generate integer Discrete Cosine Transform (DCT) approximations.
The first proposed method is based on 16-points DCT and rounding-off operations
leads to two new low-complexity transforms. The second one consists of an in-
troduction of null elements into a specified integer DCT leads to two other new
low-complexity, faster, and more efficient transforms. Therefore, the capability of
proposed transform matrices is improved in image compression applications.The
second contribution in this thesis consists of the development of a novel method
for enhancement of integer-based DCT and integer-based DTT JPEG by generating
a multiplier-less approximate Joint Photographic Expert Group (JPEG) quantisation
matrix. The two proposed quantisation matrices have been successfully evaluated
against the conventional JPEG quantisation matrix for all different type test images.
Experimental results show that the compression of greyscale images by the JPEG
standard based on the integer Discrete Tchebichev Transform (DTT) and combined
with our proposed quantisation matrix leads to a performance improvement when
compared to the JPEG conventional luminance quantisation matrix while maintain-
ing high visual quality of the reconstructed images.

Keywords:
Image compression, JPEG, DCT , DTT, integer approximations.



Résumé 

Dans cette thèse, deux nouvelles approches pour l’amélioration de standard JPEG 

basées sur les transformées entières sont introduites. La première approche consiste 

à développer deux méthodes pour générer des approximations DCT entières. La 

première méthode proposée est basée sur la DCT de 16-points et les opérations 

d'arrondi. La deuxième méthode proposée consiste à introduire des éléments nuls 

dans une DCT entière spécifiée, ce qui conduit à deux nouvelles transformations peu 

complexes, plus rapides et plus efficaces. Par conséquent, la capacité des matrices de 

transformation proposées est améliorée dans les applications de compression 

d'images. La deuxième approche de cette thèse consiste à développer une nouvelle 

méthode pour générer une matrice de quantification JPEG approximative sans 

multiplication. La matrice de quantification proposée a été évaluée avec succès par 

rapport à la matrice de quantification JPEG conventionnelle pour tous les différents 

types d'images de test. Une nouvelle matrice de quantification efficace a été générée 

aussi par cette approche en utilisant la DTT entière. Les résultats expérimentaux 

montrent que la compression d'images en niveaux de gris par la norme JPEG basée 

sur la TCD entière et combinée avec notre matrice de quantification proposée conduit 

à une amélioration des performances par rapport à la matrice de quantification de 

luminance conventionnelle du JPEG, tout en maintenant une haute qualité visuelle 

des images reconstruites. 

Mots clés : 

Compression d'images, JPEG, DCT, DTT, approximations entières. 

 

 

 



 ملخص

 إلىتم تقديم طريقتين جديدتين لتحسين تحويلات الأعداد الصحيحة المستندة   الأطروحة،في هذه  

JPEG .   لتوليد طريقتين  تطوير  هو  الأول  الاع  DCTللتحويل   تقريباالنهج    اد دباستعمال 

نقطة.    16المكونة من   DCT . تعتمد الطريقة الأولى المقترحة على عمليات التقريبةصحيحال

مقترحة من قبل  ال  DCT  مصفوفة  في  معدومة تتمثل الطريقة الثانية المقترحة في إدخال عناصر  

كفاءة.  م وأكثر  وأسرع  التعقيد  منخفضي  جديدين  تحولين  إلى  يؤدي  قدرة   لذلك،ما  تحسين  يتم 

مصفوفات التحويل المقترحة في تطبيقات ضغط الصور. النهج الثاني لهذه الأطروحة هو تطوير  

. تم تقييم مصفوفة التكميم المقترحة التقريبات  خالية من JPEG طريقة جديدة لتوليد مصفوفة تكميم

إنشاء   كما   ختلفة من صور الاختبار.منواع  لأالتقليدية   JPEG بنجاح مقابل مصفوفة تكميم  تم 

تظهر النتائج التجريبية أن ضغط    . DTTللتحويل  ذا النهج  ه  باستعمالفعالة    تكميم جديدة  مصفوفة

بالكامل ودمجها مع مصفوفة التكميم المقترحة  DTT على ا بناء    JPEG بمعيارالصور الرمادية 

مع الحفاظ على   ،  JPEG   مقارنة  بمصفوفة تكميم التقليدية لـ  تحسين الخواصلدينا يؤدي إلى  

 .لصورلجودة بصرية عالية  

 المفتاحية: الكلمات 

 .حةصحيالد اعدالاتقريب  ، JPEG،  DCT، DTT الصور،ضغط   
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Introduction

Data compression schemes aim to reduce the amount of data required to represent
any digital data, including images and signals [8–10]. Indeed, data compression is
the art of information representation in a compact form [11]. Transform coding is a
well-established and commonly used technique for image compression.

Today, JPEG [12] is a widely accepted format for image compression, largely due
to its simplicity of implementation and its rather trad-off between complexity and
compressed imagequality. ThePeakSignal toNoiseRatio (PSNR) of an JPEG image
is just a few Decibel (dB) less than that of the same JPEG 2000 image, whereas the
compression time of the former image is seven times smaller than that of the latter
image [13]. In comparison, the noise resilience of a JPEG image is, in many cases,
equivalent to that of a JPEG 2000 image [13], and the modern systems specified
by the JPEG 2000 standard (i.e., scalability and region-of-interest) are also defined
by the JPEG standard and its extensions. Although these extensions to the primary
core of JPEGmay be less successful, the low complexity of the JPEG can effectively
offset this lower performance in many applications (especially battery-driven ones)
compared to those of the JPEG 2000.

The standard JPEG is, despite its age andmultiple attempts to replace it bymore
modern technology, still themost prominent still image codec used today [13]. Most
digital cameras export JPEG format, and most image editing software supports
JPEG compression operation. Hence, JPEG images are involved in many forensics
issues, such as authenticity of JPEG compression history [14], image forgery detec-
tion [15, 16] or steganalysis application [17, 18] and the JPEG standard is also appli-
cable to computer generated holography [19]. The JPEG standard uses the DCT-II
as the core of the standard and three standard quantisation tables [20].

However, in image and video compression application, the 2-D DCT transforma-
tion stage is one of themost computationally intensive steps; it possesses themore
significant computational complexity in termsof arithmetic operations. It consumes
alone more than 60% of the total computation requirement of the encoder [21].
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As with the 2-D separability property of 2-D DCT in its matrix form, it can be im-
plemented by the row–column application of the 1-D DCT; therefore, for 8 elements
vectors, the 1-D DCTof order 8 implementation required 64 floating-pointsmultiplica-
tions and 56 additions. This number means rather important, thus, the development
of fast DCT transformation algorithms is, therefore, an essential task for a success-
ful hardware implementation. Thus, during decades, to make the DCT faster, sev-
eral prominent algorithms have been proposed in the scientific literature including
[22, 23].

The more efficient algorithm required 5 multiplications and 29 additions [24].
However, the problem of the floating-point number is still present. For an even faster
realization of DCT transform, without multiplications, the implementation of many
integer approximations has been investigated for more than a decade. The Signed
Discrete Cosine Transform (SDCT) introduced in [25] is among the most recent of
these integer transforms; it is obtained by applying the Signum function on the con-
ventional DCT. Although it requires 24 additions only, it is non-orthogonal and its per-
formance in image compression is still very low. Then, Bouguezel–Ahmad–Swamy
(BAS) introduced a series of algorithms [7, 26, 27, 5, 28], whose they improve the per-
formance of the SDCT approximation by introducing some zeros in it. In 2014, Cintra
et al. introduced in [29] a collection of DCT approximations (12 transforms) based
on applying integer functions to 8-floating-point DCT, the resulting transforms are
orthogonal or quasi-orthogonal with a computational complexity ranging from 18 to
24 additions. Many other researchers have developed the low complexity integer
approximations for the DCT; transforms requiring 14 additions only are introduced
in [30–32] and another approach for reducing the arithmetic complexity of the DCT
aims to compute only a subset of all the DCT coefficients called pruned DCT-like
transformations are proposed in [33, 34] requiring 10 additions only, but a remark-
able degradation in image compression quality has been observed.

Oneof the recentworks of lowcomplexity DCT transforms is proposedbyOliveira
et al. in [35]. Two low complexity 8-point DCT approximations are obtained accord-
ing to greedy heuristic, which minimised the angle between the rows of the approx-
imation and exact DCT matrices, the two resulting transforms are orthogonal in-
volving 24 additions and 6 bit-shift operations. Apart from this, the transform in [6]
(PADCT) results from applying the Signum function operator to the transform in [36],
this transform is quasi-orthogonal, requiring 17 additions. Another transform with
only 10 additions is described in [33], while others transformare equally developed in
[37, 31, 35, 38]. All the approximate transforms mentioned above are characterised

2



TABLE OF CONTENTS

by a reduction in the number of operations required, while their image compression
performance is relatively low.

The JPEG standard uses three standard quantisation tables [20]. For grayscale
images, only one quantisation matrix is used, while in color images, separate quan-
tisation matrices are allowed for two-color components. It has been recognised in
the field of image compression and mentioned in the CCITT recommendation doc-
uments that the JPEG quantisation matrix is strongly linked to image quality and
compression rate. To this end, in recent decades, many researchers in the literature
have carried out different approaches to generate image-dependent/independent
quantisation matrices. Wu in [39], based on Genetic Algorithm (GA), proposed a
quantisation matrix referred to a slight improvement in quality of decoded image
compared with the conventional quantisation matrix of the baseline JPEG. Better
image compression and quality trade-off technique is developed by Lazzerini et al.
[40] utilizing Non-dominated Sorting Genetic Algorithm II (NSGAII). A more efficient
firefly algorithm has been proposed by Tuba and Bacanin in [41] using the Average
Pixel Intensity Distance (APID) between the original and compressed image as an
objective function. Noted that all these algorithms have a parameter-dependent na-
ture, and they are intended for specific types of images. Hence, we show that the
generation of quantisationmatrices for the based integer transforms JPEG baseline
is a necessary task. To our best knowledge, the only approximate JPEG quantisa-
tion matrix required bit-shift operations only is introduced in 2017 by Oliveira et al.
[42]. The reason is to reduce the complexity of the transform-quantisation pair of
JPEG algorithm. The elements of the approximate quantisation matrix are power of
two numbers, and it provided almost the same performances compared it with its
exact counterparts, with arithmetic operation savings of 24.1% in additions.

This thesis proposes an enhancement of baseline JPEG compression standard
based on integer DCT approximations. Two contributions have been introduced.

The first one consists of:
• Introducing new multiplier-less integer approximations for the floating 8-point

DCT-II which are a solution of DCT-II floating points multiplications problem; nomul-
tiplication operations are required.

• The proposed transforms approximate the conventional DCT-II very well by re-
ducing the arithmetical operations, and it has good performance conservation.

• A fast algorithm is derived for each proposed transform.
• All the new transforms show their ability in image compression applications

compared to existing transforms having the same number of arithmetic operations.
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The second contribution consists of:
• Introduce an appropriate quantisation matrix for integer DCT-based JPEG re-

garding energy distribution of some integer DCT coefficients.
• An enhancement of the baseline JPEG image compression standard based on

DTT approximations according to a suitable proposed quantisation matrix.
Accordingly, this thesis has been organised into the following Chapters:
Chapter 1 starts with an introduction to the basics of image coding and some

essential concepts for this thesis on JPEG image coding standards. The focus is
quickly put on the transform stage and its crucial role in the image coding scheme.

Chapter 2 contains a detailed study of the transforming role inside image coding
applications. As mentioned, the main motivation of this thesis is to improve JPEG
image coding by making use of integer transforms, and a state-of-the-art of integer
DCT and integer DTT transforms.

Chapter 3, two novel approaches to developing low complexity integer 8-points
DCT approximations were discussed in this chapter. Those approaches allow us to
achieve four integers DCT approximations without multiplication operation. A new
multiplier-less JPEG quantisationmatrix based on the energy distribution of existing
8 × 8 integer DCT approximations. This strategy was applied to DTT based JPEG
standard and leads to a new quantisation matrix.

Chapter 4 Comparative study of existing transforms and those proposed in this
study is introduced in this chapter. The discussion of the experimental result is also
introduced in this chapter.
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Chapter 1

Basic concept of image compression

1.1 Preview
In contemporary society, the utilisation of digital images and videos has become an
indispensable requirement. However, these image files often possess a consider-
able storage capacity due to their large sizes. To illustrate this fact, wemay consider
the example of "megapixel quality" in digital cameras. This term denotes a digital
color image with a resolution of 1024 pixels × 1024 pixels × 1024 pixels × 24 bits,
which, without compression, requires a storage capacity of 3 MB. By way of com-
parison, a film roll with thirty-six exposures would occupy 100 MB. While advances
in communication channels such as the 4G network have facilitated the transmis-
sion of color images via mobile devices, limited air bandwidth still presents certain
challenges. Given the mounting demand for high-quality images and the concomi-
tant rise in traffic, efficient data compression algorithms have become indispens-
able for the storage and transmission of digital images. Thus, image compression
techniques have become an imperative task in the field of multimedia computing
and in Internet applications.

1.2 Basic concepts of image compression
Image compression is the process of reducing the byte size of a source image with-
out significantly degrading its quality. This can help to store a greater number of
images in a given amount of disk space or memory, and to facilitate faster image
transmission over the Internet or downloading from web pages. On the other hand,
uncompressed multimedia data, such as images, audio, and video, can require con-
siderable storage capacity and bandwidth. Despite the rapid advancements inmass
storage density, processor speed, and digital communication system performance,

7



1.3 Needs of compression

the demand for data storage capacity and data transmission bandwidth continues
to exceed the capabilities of available technology.

1.3 Needs of compression

The ability to perceive, recognise, and understand the visual information that sur-
rounds us is of extreme importance to humans. In recent years, significant advance-
ments in technology, particularly in Very Large-Scale Integrated (VLSI) circuits and
computing power, have made it possible for video to be used extensively in our daily
lives. Examples of this include video telephony, video conferencing, High-Definition
TV (HDTV) [43], and digital video. With the increasing demand for high-quality video
services, advanced compression techniques for image and video data have become
an essential requirement. Compression serves as a critical enabling technology that
helps to bridge the gap between the massive amount of video data required and the
limited hardware capabilities available [44].

To gain a better understanding of the significance of data compression, let us ex-
amine an example. Digital cinema and HDTV currently employ a 4K system, which
consists of approximately 4096 x 2160 pixels per frame. However, the newly devel-
oped Super Hi-Vision (SHV) format uses 7680 x 4320 pixels per frame, with a frame
rate of 60 frames per second. Consider a three-hour color video file based on SHV
technology, where each pixel has a precision of 48 bits. The size of the resulting
video file would be (7680 x 4320 x 48 x 60 x 3 x 60 x 60) bits, or roughly 120,135.498
GB in size [45]. For non-professional users, storage capacity between 500 GB to 1
TB is typically sufficient for storing movies [45]. According to Seagate, an American
data storage company, the average capacity of Hard Disk Drives (HDDs) worldwide
was 4.1 TB in the third quarter of 2020 [45]. Therefore, data compression plays a vital
role in reducing the size of images and video files, making them more manageable
and allowing for efficient storage and transmission.

1.4 Image compression algorithms

Generally, image compression algorithms are divided into two categories: lossless
and lossy algorithms, as shown in Fig. 1.1. If we eliminate statistical redundancywith
no information loss, this is lossless compression, and it is also called a reversible
process. On the other hand, if it has information loss, it will be called lossy compres-
sion or irreversible process.
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Basic concept of image compression

Fig. 1.1: Classification of image compression algorithms

1.4.1 Lossless image compression algorithms

The principle of lossless image compression is to minimise the number of bits used
to represent the original image without any loss of information. In a lossless image
compression scheme, the reconstructed image after compression is numerically
identical to the original image. This is an important requirement for some applica-
tion domains, e.g. medical imaging where not only high quality is in demand but
unaltered archiving is a legal requirement. The lossless technique can also be used
for the compression of other data types where the loss of information is not accept-
able, e.g. text documents and program executables.
Lossless image compression techniques depend on two-stage procedures [46]:
a) Decorrelation.
b) Entropy coding.

1.4.1.1 Decorrelation

The correlation between samples, which is presented in almost all types of signals,
represents redundant information that does not need to be transmitted if reversible
decorrelation techniques are applied. These techniques are classified into three
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categories: prediction-based techniques, transform-based techniques, and multi-
resolution-based techniques [46].

1.4.1.2 Entropy coding

Once the data has been decorrelated, compression can be achieved by applying
entropy coding. An entropy encoding or reversible compression of a data source
corresponds to a lossless encoding of symbols, the purpose of which is to elimi-
nate the redundancies of information present in the source. Entropy coding is used
with some lossy image compression algorithms, i.e. JPEG Standard. It reduces
the number of bits produced from quantised coefficients output for more compres-
sion. The fundamental concept of entropy coding is to assign the short code words
to symbols that appear most often and the long code words to those that appear
infrequently. Most entropy coders employ Run Length Coding (RLC), statistical cod-
ing (such as Huffman coding or arithmetic coding), or the Lempel-Ziv-Welch (LZW)
coder.

1.4.2 Lossy image compression algorithms

The lossy term is applied to a data compression approach in which some quantity of
the original data is lost during the compression process. Lossy image compression
applications attempt to eliminate redundant or unnecessary information in terms of
what the human eye can perceive. It provides a high compression ratio compared
to lossless ones.

An image reconstructed following lossy compression is usually not the same
as the original, it contains degradation relative to the original image. Lossy image
compression is useful for application to the worldwide image for quicker transfer
across the internet. An image reconstructed following lossy compression contains
degradation relative to the original. Often this is because the compression scheme
discards the redundant information. The lossy image compression techniques are
classified into 2 categories, as shown in Fig. 1.1.

1.4.2.1 Nontransform-based compression techniques

(a) Vector quantisation
As shown fromVectorQuantisation (VQ) the encoding block diagramdescribed
in Fig. 1.2, the image is partitioned into blocks of pixels, and each block is rep-
resented by a vector x. This vector is compared against code words in the
code book on the encoder side, which will get the index of the best codeword
match. Therefore, an index stored in fewer bits will be transmitted instead of
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a code word, which achieves more compression ratio. The performance of VQ
depends on the appropriate codebook, so researchers proposed optimisation
techniques for global codebook generation. The VQ technique performance
is better than scalar quantisation methods such as Pulse Code Modulation
(PCM), Differential PCM (DPCM), Adaptive DPCM. VQ [47, 48] is basically a c-
means clustering method widely used for image compression [49, 50], pattern
recognition [51, 52], speech recognition [53, 54], face detection [55], speech
and image coding because of its excellent rate-distortion performance Tradi-
tional vector quantisation suffers several problems [56]:

• High computational cost: visual codebook generation is computationally ex-
pensive, especially with many features.
• Limited reliability: codebook construction in vector quantisation relies on the
collection of image features and codebook generation methods.
•Update inefficiency: withmany new features collected, the codebook/quantiser
should be updated accordingly. However, the codebook updating needs lots
of effort.

Fig. 1.2: Block diagram of vector quantisation encoder

(b) Fractal compression
Fractal compression is a lossy compression technique based on fractal theory
[57], according to which an image can be described by a set of fractals. The
idea behind this technique is that any image is a finite set of geometric trans-
formations (rotations, enlargements, reductions) that apply to the subsets of
identical patterns and varying sizes that compose it. Fractal compression then
consists of replacing the input image with a series of mathematical formulas
that allow it to be recomposed in its entirety. The efficiency of the compres-
sion operation is therefore proportional to the importance of the geometric
properties of the image. The more these are numerous, the fewer the number
of mathematical formulas will be.

Fractal image compression, as explored by [58], demonstrates notable capabil-
ities for achieving high compression rateswhilemaintaining image reconstruc-

11



1.4 Image compression algorithms

tion quality. Additionally, the decoding process is characterized by its simplic-
ity, offering a straightforward interpretation of fractal codes. However, it is im-
portant to acknowledge a significant drawback associated primarily with the
coding process, namely its extensive computational requirements, and time
consumption. Consequently, the application of fractal compression within the
domain of sensor arrays proves unfavorable due to increased power consump-
tion, potentially leading to a shortened operational lifespan of the array

1.4.2.2 Transform-based compression techniques

Transform coding has been widely used in image and video compression. There are
several characteristics desirable for the purpose of data compression. Transforms
are useful entities that encapsulate the (some/all) following characteristics [59] :

(i) Data decorrelation: The ideal transform completely decorrelates the data in a
sequence/block; i.e., it packs themost amount of energy in the fewest number
of coefficients. In this way, many coefficients can be discarded after quantiza-
tion and prior to encoding. It is important to note that the transform operation
itself does not achieve any compression. It aims at decorrelating the original
data and compacting a large fraction of the signal energy into relatively few
transform coefficients.

(ii) Data-independent basis functions: Owing to the large statistical variations among
data, the optimum transform usually depends on the data, and finding the ba-
sis functions of such transformation is a computationally intensive task. This
is particularly a problem if the data blocks are highly non-stationary, which ne-
cessitates the use of more than one set of basis functions to achieve high
decorrelation. Therefore, it is desirable to trade optimum performance for a
transform whose basis functions are data-independent.

(iii) Fast implementation: The number of operations required for an N-point trans-
form is generally of the order O(n2). Some transforms have fast implementa-
tions, which reduce the number of operations to O(n.log2n). For a separable
n × n 2D transform, performing the row and column 1D transforms succes-
sively reduces the number of operations from O(n4) to O(2n2.log2n).

Transform-based compression algorithmsare generally required in three basic steps,
see Fig. 1.3.

(i) The first step is the transformation of the image data to eliminate the spatial
redundancy or correlation between neighboring pixels.
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(ii) The second step is quantisation or thresholding, which reduces the space in
which the data is represented. It is in this step that the loss of information
occurs because quantisation involves dividing and rounding the result into an
integer.

(iii) The last step is the encoding of the quantised data. It helps organise the binary
train by compressing the quantised values without altering the information for
the purpose of transmission or archiving.

Fig. 1.3: The encoding process based on transform encoder

Fig. 1.4: The decoding process based on transform encoder

In the phase of decompression or reconstruction of the image, three steps are
necessary:
•The transmitted or archived data is decoded.
•Inverse quantisation is applied to the decoding result.
•Then the inverse transformation is applied to the dequantised data as presented in
Fig. 1.4.

(i) Transformation: The objective of the transformation is the decorrelation of in-
formation. It eliminates the redundancy between neighboring pixels and con-
centrates the relevant information of the image on a few significant coeffi-
cients, which makes it possible to optimise the subsequent quantisation and
coding steps. This processing step is reversible and lossless. The choice of
the transformation method must allow a reduction of the correlation of the in-
put data. Transform selection is an important factor in data compression. The
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1.5 Lossy image compression standards

best-known transforms in the field of compression are:
• Discrete Fourier Transform (DFT) [60],
• Discrete Cosine Transform (DCT) [61],
• Discrete Hadamard Transform (DHT),
• Karhunen Loève Transform (KLT) [62],
• Generalized Walsh Transform (WGT),
• Discrete Wavelet Transform (DWT) [63].
DCT and DWT are the most used in data compression, and in particular in im-
age compression.

(ii) Quantisation: In the compression scheme, the quantisation step is primarily
responsible for image degradation. During this step, the image will be really
compressed. Quantisation is used in practice, and it is based on the principle
that low-frequency coefficients make the greatest contribution to the quality
of the reconstructed block. Only the coefficients, whose magnitudes exceed
a threshold, are important, and all those that remain can be excluded from the
reconstruction of the image.
By quantisation and thresholding, a degradation of quality and a reduction of
precision are introduced. This degradation is based on the choice of the quan-
tisation factor and the threshold value [46, 50]. If the threshold value is high,
the degradation will be considerable but if the threshold value is low, then the
degradation value is negligible or low with such a low compression ratio.

(iii) Encoding: After quantisation or thresholding, the matrix obtained is available
for coding. For transmission or archiving, it is very advantageous to minimise
the number of signal bits. The methods used are the reversible compression
methods. Examples include Huffman coding, EZW coding, etc. Among the
most famous entropy coders, we can cite Huffman coding, arithmetic coding,
or even Golomb coding.

1.5 Lossy image compression standards

1.5.1 Standard JPEG

JPEG, proposed as a compression standard by the International Organization for
Standardization (ISO) and the Consultative Committee for International Telegraphy
and Telephony (CCITT), serves as a widely adopted method for compressing dig-
ital images color, monochrome, multiple greyscale, and continuous-tone formats.
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Among the severalmodes availablewithin the JPEG framework, the sequentialmode,
based on the DCT, emerges as the most commonly employed approach. The JPEG
compression algorithm can be conceptually divided into distinct steps, as detailed
by Yuan in [64], to facilitate its operation procedure and comprehension. These
steps encompass the following:

1.5.1.1 Color change

JPEG employs the Y CbCr color space, requiring a color space transformation from
RGB. The RGB information from the original bitmap is converted into the luminance
component (Y ), representing brightness, and the chrominance components (Cb and
Cr), representing chroma. This transformation enables subsequent processing steps
to be performed efficiently.

1.5.1.2 Minimum Coded Unit (MCU), Data Unit (DU) and image sampling

The luminance component (Y ) carries significant data, whereas the chrominance
components (Cb and Cr) hold relatively less important information. To enhance
compression efficiency, it is possible to selectively consider only a portion of the
chrominance data (CbCr). Modern software supporting the JPEG format commonly
offers two sampling methods, namely × and Y CbCr422, as described by [65], which
correspond to the data sampling ratios of the three components within the Y CbCr

color space. Considering image quality factors, the JPEG standard specifies the
minimum coding unit, known as the Minimum Coding Unit (MCU).
In the encoding and decoding processes of JPEG images, the smallest data block
processed is an 8× s data block, referred to as a DU.

1.5.1.3 Discrete Cosine Transform

The JPEG (Joint Photographic Experts Group) algorithm is a widely adopted two-
dimensional discrete cosine transform (DCT) technique that operates on 8 × 8 sub-
blocks. In the initial step, the algorithm sequentially partitions the original image
into multiple 8×8 sub-blocks. Within an 8×8 image block, the pixel values exhibit a
relatively smooth transition, resulting in lower spatial frequencies within the image.
Subsequently, the DCT is applied to each image block, enabling the concentration
of energy in a few coefficients located in the upper left corner, with these coeffi-
cients typically exhibiting significantly reduced absolute values. This characteristic
facilitates the subsequent compression process by facilitating the removal of high-
frequency components and preserving only the essential image information.
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1.5 Lossy image compression standards

Considering the primary focus of this thesis on transforms for image coding,
Chapter 2 will provide a comprehensive explanation of the transform stage.

1.5.1.4 Quantisation

After the DCT transform, the low-frequency components are concentrated in the up-
per left corner, and the high-frequency components in the lower right corner. Quan-
tification is to discard the information that has little effect on the visual effect under
the premise of maintaining a certain quality. The linear uniform quantizer is used
in the JPEG standard. The quantification process is to divide 64 DCT coefficients
by quantification step size and rounding. The frequency component is kept, and the
high-frequency component is suppressed by quantification processing. That is to
say, the compression ratio can be further improved by using fine quantification for Y
and coarse quantification for CbCr. In decoding, inverse quantification is used, that
is, the value to be processed is multiplied by the corresponding position value of the
corresponding quantification table.

1.5.1.5 Zigzag scan

In order to ensure that low-frequency components appear first, high-frequency com-
ponents appear afterward to increase the number of continuous “0” in the run length,
and the Alternating Current (AC) coefficient of the other 63 elements of 8×8 except
the DC coefficient F (0,0), the “Zigzag” arrangement method is used, and then run-
length encoding is performed.

1.5.1.6 Run-length coding

The principle of run-length coding: The neighboring pixels with the same color value
in a row are replaced with a count value and the color value. When the data is quan-
tized, many generated “0” can describe their length with only one data.

1.5.1.7 Differential coding in the intermediate format

Since the DC coefficients of the two adjacent 8x8 blocks are very small, differential
coding Differential Predictive Coding Modulation (DCPM) is used to increase the
compression ratio.

1.5.1.8 Huffman coding

After getting the middle format, the number of parentheses in the example above is
encoded by Huffman.
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1.5 Lossy image compression standards

1.5.2 JPEG 2000
In the JPEG2000 standard, the block-based DCT of JPEG has been replaced by the
full-frame Discrete Wavelet Transform (DWT). The DWT inherently provides a mul-
tiresolution image representation, and it also improves compression efficiency be-
cause of good energy compaction and the ability to decorrelate the image across a
larger scale [66].

Fig. 1.6 illustrates the core elements of a JPEG 2000 encoder, which include pre-
processing, discrete wavelet transform, quantisation, encoding. The subsequent
sections of the JPEG 2000 book provide a thorough examination of each of these
components, delving into their intricate details and functionalities [67].

Fig. 1.6: JPEG2000 encoder algorithm

1.5.2.1 The preprocessing stage

The preprocessing stage in JPEG 2000 involves:

(i) Dividing the input image into non-overlapping tiles of equal size, which allows
for independent compression of each tile using specific compression param-
eters.

(ii) Next, unsigned sample values in each component are level-shifted (DC offset)
by subtracting a fixed value of 2B−1 from each sample to make its value sym-
metric around zero.

(iii) Finally, the level-shifted values can be subjected to a forward transformation
to decorrelate the color data. One restriction on applying the intercomponent
transformation is that the components must have identical bit-depths and di-
mensions. One transform is the Irreversible Color Transform (ICT), which is
identical to the traditional RGB to Y CbCr color transformation and can only be
used for lossy coding. The other transform is the reversible color transform
reversible color transform (RCT), which is a reversible integer-to-integer trans-
form that approximates the ICT for color decorrelation and can be used for
both lossless and lossy coding.
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During the decoding process, the decompressed image is subjected to the in-
verse color transform, if required, to restore the original color representation. Sub-
sequently, the DC level shift, applied during encoding, is removed from the image,
ensuring its fidelity to the original data.

1.5.2.2 The Discrete Wavelet Transform

In JPEG 2000, the full-frame discrete wavelet transform (DWT) replaces the block
discrete cosine transform (DCT) transformation used in baseline JPEG.

The discrete wavelet transform (DWT) possesses several characteristics that
align with the requirements established by the JPEG 2000 committee. One key
attribute is its inherent ability to provide a multiresolution representation of an im-
age. Additionally, the full-frame nature of the DWT allows for decorrelation across
a broader scale, effectively eliminating blocking artefacts, particularly at high com-
pression ratios. Another advantage lies in the use of integer DWT filters, enabling
the integration of both lossless and lossy compression within a single compressed
bitstream.

1.5.2.3 Quantisation

In the JPEG 2000 standard, the quantization step is performed on each subband
individually. The user selects a quantizer step size, for each subband, and this step
size is applied to quantize all the coefficients within that subband. The determina-
tion of the quantizer step size can be guided by the perceptual importance of each
subband, taking into account information derived from the Human Visual System
(HVS).

1.5.2.4 Entropy Coding

In the JPEG 2000 standard, the quantizer indices that correspond to the quantized
wavelet coefficients in each subband undergo entropy encoding to generate the
compressed bit-stream. The selection of the entropy encoder is influenced by mul-
tiple factors, one of which is the need to create an embedded bit-stream. This is
achieved through the bit-plane encoding of the quantiser indices. The technique
of bit-plane encoding, which involves encoding the wavelet coefficients in succes-
sive bit-planes, has been employed by established embedded wavelet encoders like
EZW.

Despite its superior coding performance and a range of novel features, JPEG
2000 has long been regarded as less suitable for consumer market applications
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due to its significantly higher algorithmic complexity compared to its predecessor,
JPEG.

1.6 The performance assessment

The quality evaluation measures the amount of distortion brought by an image com-
pression algorithm. An image compression standard can be considered better than
another one if it gives reconstructed images of better quality for the same compres-
sion rate, or conversely a lower rate for the same quality of image reconstruction.
The most obvious way of evaluating the quality of image reconstruction is to use
subjective experiments, as defined in [68]. In these approaches, a panel of human
observers assesses the quality of reconstructed images. Then, the results are aver-
aged as a mean opinion score. This way, an estimation of the perceived distortion
is obtained. These methods remain the most reliable, yet are generally impractical
as a significant number of viewers are needed over a long time. In practice, objec-
tive metrics enable to evaluate quickly an image compression algorithm with many
different parameters on large sets of images. Below are presented three objective
metrics widely used in image compression: PSNR, Structural SIMilarity (SSIM), and
Percentage Energy Error Norm (PEEN)

1.6.1 Peak Signal-to-Noise Ratio

The PSNR is amathematical measure of image quality based on the pixel difference
between two images. PSNR is defined as:

PSNR = 10.log10.
MAX2

MSE
(1.1)

For 8-bit depth images, which are the main format considered in this thesis, the
maximum pixel values write MAX = 28 −1 = 255.

Mean Square Error (MSE) is computed by averaging the squared intensity of the
original imageX(m,n) and the resultant image pixels Y (m,n).Themeasure between
two windows of size N ×N is:

MSE = 1
N.N

Σn
n=1Σn

m=1(X(m,n)−Y (m,n))2 (1.2)
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1.6.2 Structural Similarity Index Measure

The Structural Similarity Index SSIM is a full reference metric, in other words, the
measuring of image quality based on an initial uncompressed or distortion-free im-
age as a reference:

SSIM(X,Y ) = (2µX .µY + c1)(2covXY + c2)
(µ2

X +µ2
Y + c1)(σ2

X +σ2
Y + c2) (1.3)

where µX is the average of X ; µY is the average of Y ; σX the variance of X ; σY

the variance of Y ; covXY the covariance between X and Y ; c1 = (k1L)2, c2 = (k2L)2

two variables to stabilise the division with weak denominator; L the dynamic range
of the pixel values.; k1 = 0.01 and k2 = 0.03, these values are used in [69], and the
performance of the SSIM index algorithm is fairly insensitive to variations of these
values [69]. The SSIM is in the range between 0 and +1. The closer the result is to
+1, the higher the similarity.

1.6.3 Percentage Energy Error Norm

Percentage Energy Error Norm,PEEN, is a measure of the distortion (or relative dis-
tance) between the original image and the reconstructed image after the decom-
pression process [25].

PEEN =

√√√√ΣN
m=1ΣN

n=1(X(m,n)−Y (m,n))2

ΣN
m=1ΣN

n=1(X(m,n)2)
(1.4)

1.6.4 Absolute Percentage Error

An extra measure is considered for a more idea of the resulting quality, i.e., the
Absolute percentage error (APE) relative to the DCT. This last one represents rel-
ative errors in percentage for each metric cited above. For example, the APE for
PSNR is calculated according to the following formula:

APE(PSNR) = (PSNRe −PSNRT )
PSNRe

(1.5)

PSNRe and PSNRT are the values of PSNR considering the exact DCT and a given
approximation T , respectively. The values of APE (SSIM) and APE (PEEN) are calcu-
lated similarly.
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1.6.5 Transform efficiency
The efficiency for an approximate transform C is given by the following formula [70]
:

η(C) = σ8
i=1|ri,j |

σ8
i=1σ8

j=1|ri,j |
.100 (1.6)

where ri,j is the (i, j) the entry of Ry . Ry = C.Rx.Ct, Rx is the covariance if x whose
elements are given by ρ|i− j| , i, j = 1,2, ...,8.

1.6.6 Total error energy
The spectral similarity between the conventional DCT and one of its approximations
is measured by Total Error Energy ϵtotal. For a considered DCT approximation matrix
Ca , it is given by [71]:

ϵtotal = π||Ce −Ca||2F (1.7)

Note that ||.||F is the Frobenius norm, and Ce is the exact DCT matrix.

1.6.7 Calculation time
The time constraint is an essential factor in evaluating the performance of any com-
pression method, it comes down to calculating the time taken by the compression
and decompression of images. This constraint is imposed depending on the appli-
cation targeted by the compression (transmission or archiving). Indeed, it would be
unfortunate, in a transmission application, if the time saved by reducing the size of
the data to be transmitted were less than the time spent on compression/ decom-
pression, however, this quality (time constraint) will be less crucial in applications
aimed at archiving data.

1.7 Conclusion
In this chapter, we have explained the basic concept of image compression, dis-
cussing the two categories of image compression algorithms: lossless and lossy.
we have also explained the process of transformation, quantization, and encoding
in transform-based compression algorithms.The popular transforms used in image
compression, such as Discrete Fourier Transform (DFT), Discrete Cosine Transform
(DCT), and Discrete Wavelet Transform (DWT) have been also introduced. Our work
is devoted to JPEG encoders and to their enhancement based on the integer approx-
imations of DCT (detailed in Chapter 3).
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Chapter 2

Integer transforms and fast algorithms

2.1 Introduction

In the previous Chapter, transforms were identified as an important part of current
coding standards. This chapter studies the design and properties that make trans-
forms useful in signal coding. A transform is a mathematical transfer function of
a signal from one representation domain to another. The high energy compaction
offered by the transformation process has led this technique to be part of all the
international signal coding standards [72]. Transforms allow reducing existing sig-
nal correlations in the spatial domain, leading to a more decorrelated signal in the
transform domain and ensuring a more compact representation. This is of great
importance for the upcoming stages of scanning and entropy coding. Transforms
can be very abstract since they tend to work in N-dimensional spaces, where N rep-
resents the number of residual samples processed by the transform. Typical values
vary from N = 4 × 4 to N = 32 × 32 using powers of two in modern video codecs,
such as HEVC.
Among the discrete transforms: the Karhunen–Loève transform (KLT) is considered
as the optimum transformation for data decorrelation [73]. However, the KLT trans-
formation kernel depends on the input data statistical properties, which implies that
a fast algorithm cannot be easily attainable [74], Discrete Fourier Transform (DFT)
[60], DCT emerged as an alternative to the KLT computation [73], Discrete Sine Trans-
form (DST) and the DWT [75].
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2.2 Block transforms

2.2 Block transforms
Block-based coding is widely adopted in image/video systems, such as JPEG [76]
H.264/MPEG-4 AVC [77, 78] and HEVC [79]. In these systems, the image to be trans-
formed is split into non-overlapping blocks, and each one is treated and transformed
independently [80]. This provides the advantage of being less expensive in terms
of computing than other kinds of transforms, such as wavelet transforms used in
JPEG-2000 [81]. Since JPEG [76] uses DCT block transform only, they will be used
in this thesis to build up new systems.

2.3 Orthogonal transforms
Transforms used in image processing and video coding systems are orthogonal.
Orthogonal matrices are square matrices whose rows and columns are orthogonal
unit vectors, also known as orthonormal vectors, with [72]:

AtA = AAt = I (2.1)

As a consequence, the inverse matrix of an orthogonal matrix is its transposed ver-
sion:

At = A−1 (2.2)

where A is a square matrix, At is the transpose of matrix A and A−1 is its inverse.
This property offers some benefits:

(i) Fast computation of inverse transform with no need to store it separately.

(ii) Re-use of fast algorithms for both direct and inverse transform applications.

(iii) Energy preservation.

2.4 Separability
Image and video coding deal with image blocks, which are two-dimensional signals,
and, consequently, use transforms able to process those signals. The straightfor-
ward approach toworkwith those signals is to use non-separable transforms. These
transforms take the residual samples from a block previously reshaped into a single-
dimensional signal. For instance, a block 4 × 4 becomes a 16×1 vector. Afterward,
the transform is applied normally [72]:

X = A.x (2.3)
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where X is a N ×N block, reshaped into a N2 ×1 vector and A is a N2 ×N2 matrix.
The main disadvantage of this approach is the number of calculations required to
obtain the transformed signal: for a N ×N block, the number of operations required
to transform it in a non-separable way is N4 multiplications and N2(N21) additions.

Due to the high number of operations needed to transform a block using non-
separable transforms, separable transforms arewidely used in image and video cod-
ing. A block is transformed separately using horizontal and vertical transforms Ah

and Av for its rows and columns, respectively, as:

Y = Av.(Ah.Xt)t = Av.X.At
h (2.4)

The operation inside the parenthesis transforms the rows of x, and the outer
part, the columns of the result. By performing the horizontal and vertical transforms
separately, the number of operations required is reduced to 2N3 multiplications and
2N2(N −1) additions.

In the context of signal processing, the discrete cosine transform (DCT) serves
as a method to convert a signal into its constituent frequency components. This
technique finds extensive application in the field of image compression. In the next
section, we present a set of straightforward functions designed to calculate the DCT
and facilitate image compression.

2.5 Discrete Cosine Transform

The Discrete Cosine Transform was first introduced in 1974 by Ahmed and al. [82].
It is an orthogonal transformation, which has a fixed set of basis functions, an ef-
ficient algorithm for its computation, and good energy compaction and correlation
reduction properties. Like other transformations, the DCT attempts to de-correlate
data from a signal. There are several variants of DCT with slightly modified defini-
tions and properties, such as DCT type I, II, III, IV, V-VIII [59]. Among the different
versions of DCT, type II and type III (inverse DCT) have received a lot of attention in
digital signal processing. In the following sections, we review the DCT transform for
both cases: one-dimensional and two-dimensional.
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2.5 Discrete Cosine Transform

2.5.1 One-dimentional DCT

The formal definition of the one-dimensional (1-D) N-point DCT of N input samples:
x(n) = x(0), . . . ,x(N −1) is given by:

y(u) =
√

2
N

α(u)
N∑

n=0
x(n)cos

π(2n+1)u
2N

(2.5)

with u = 0,1, . . . ,N −1, and α(u) is defined as follows:

α(u) =


1√
2 if u = 0

1 otherwise
(2.6)

Thus, the first transform coefficient is the average value of the sample sequence.
In literature, this value is referred to as the DC coefficient. All other transform coef-
ficients are called the AC coefficient.

y(u = 0) = 1
N

N∑
n=0

x(n) (2.7)

The inverse one-dimensional DCT (IDCT 1-D) is defined as given in the following
equation:

x(n) =
√

2
N

N∑
n=0

α(u)y(n)cos
π(2n+1)u

2N
(2.8)

The one-dimensional N-point DCT presented in equation 2.5 can be expressed in
matrix form as:

y = C.x (2.9)

where x = [x0,x1, . . . ,xN−1]t is an input vector of size N × 1, y = [y0,y1, . . . ,yN−1]t

is the transformed (output) vector of size N ×1, and C is a N × N matrix called the
kernelmatrix of the transformation, whose basis vectors are cosines sampled, given
by:

Ci,j =
√

2
N

α(i).cos
π(2j +1)i

2N
(2.10)

C =


C0,0 C0,1 ... C0,N−1
C1,0 C1,1 ... C1,N−1
... ... ... ...

CN−1,0 CN−1,1 ... CN−1,N−1

 (2.11)
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The inverse one-dimensional N-point DCT presented in equation 2.8, can also be
formulated as a matrix multiplication according to:

x = Ct.y (2.12)

By referring to the equation 2.8, it is possible to deduce therefrom a N × N matrix
of the transformwhich, multiplied by a signal, provides the coefficients of this same
signal in the domain of the transform. If this matrix is applied to the two dimensions
of an image, i.e. once in the direction of the rows and once in the direction of the
columns, the two-dimensional version of this transform is obtained. Equation 2.13
illustrates the DCT-II matrix for N = 8.

C = 1
2



1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

cos π
16 cos3π

16 sin3π
16 sin π

16 −sin π
16 −sin3π

16 −cos3π
16 −cos π

16
cosπ

8 sinπ
8 −sinπ

8 −cosπ
8 −cosπ

8 −sinπ
8 sinπ

8 cosπ
8

cos3π
16 −sin π

16 −cos π
16 −sin3π

16 sin3π
16 cos π

16 sin π
16 −cos3π

16
1√
2 − 1√

2 − 1√
2

1√
2

1√
2 − 1√

2 − 1√
2

1√
2

sin3π
16 −cos π

16 sin π
16 cos3π

16 −cos3π
16 −sin π

16 cos π
16 −sin3π

16
sinπ

8 −cosπ
8 cosπ

8 −sinπ
8 −sinπ

8 cosπ
8 −cosπ

8 sinπ
8

sin π
16 −sin3π

16 cos3π
16 −cos π

16 cos π
16 −cos3π

16 sin3π
16 −sin π

16


(2.13)

Each row of C can be seen as a basis function Cu(n),n = (0,1, ...,7), and the figures
of these functions are shown in Fig. 2.1.
As we can see, the top-left waveform (u = 0) is simply a constant, whereas other

waveforms (n = 1,2, ...,7) show the behavior at progressively higher frequencies [83].
These waveforms are called cosine basis functions, which are orthogonal and inde-
pendent [84]. In accordance with our previous description, the DC coefficient C(0)
is the average value of x(n).

2.5.2 Bidimentional DCT

The DCT can be extended to the transformation of 2-D signals or images. This can
be achieved in two steps: by computing the 1-D DCT of each of the individual rows
of the two-dimensional image, and then computing the 1-D DCT of each column of
the image. Let X(n,m] an input block of size N ×N . The 2-D DCT of X(n,m] defined
as the output matrix of transformation domain of size N ×N given by the following
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Fig. 2.1: Basis functions of 1-D DCT(N = 8)

equation:

Y (u,v) = 2
N

α(u)α(v)
N−1∑
n=0

N−1∑
m=0

X(n,m)cos
(2n+1)uπ

2N
cos

(2m+1)vπ

2N
(2.14)

where the scale factors α(u) and α(v) equal to:

α(u),α(v) =


1√
2 if u,v = 0

1 otherwise
(2.15)

Similarly, the two-dimensional inverse DCT (2-D IDCT) of Y (u,v) is defined as :

X(n,m) = 2
N

N−1∑
n=0

N−1∑
m=0

α(u)α(v)Y (n,m)cos
(2n+1)uπ

2N
cos

(2m+1)vπ

2N
(2.16)

for n,m = 0,1, . . . ,N −1.
Applying the DCT to a 8 × 8 block gives 64 coefficients. The first DCT coefficient,
Y (0,0), is the DC coefficient. This coefficient corresponds to the average value of
the input sequence and represents the roughest details of the block (lowest spatial
frequency). The remaining coefficients are called AC coefficients. The AC coeffi-
cients represent the finer details of the block (higher spatial frequencies). We can
represent the frequency distribution of the DCT of a 8×8 block as shown in Fig. 2.2.
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All the information in the image is in the low frequencies. On the other hand, the
details of the image are localised in high frequencies.

Fig. 2.2: Frequency distribution of 1-D DCT(N = 8)

In equation 2.16:

C(u,v) = α(u)α(v)cos((2n+1)uπ

2N
cos

(2m+1)vπ

2N
(2.17)

C(u,v) are the basis functions of 2-D DCT. These basis functions can be generated
by multiplying the horizontally oriented set of cosine basis functions with the verti-
cally oriented set of cosine basis functions:

C(u,v) = CuCt
v (2.18)

Y (u,v) =
N−1∑
n=0

N−1∑
m=0

X(n,m))C(u,v) (2.19)

In the case of N = 8, these functions are shown in Fig. 2.3. The functions located
at the top left represent the low frequencies of the transform, the spatial frequencies
increase as one moves towards the lower right corner of the block.

The DCT matrix in equation 2.13 cannot be applied optimally in its native form.
In addition to the precision required to perform the calculations, a DCT-II matrix of
dimensionN requiresN2 multiplications andN(N −1) additions for a total of 2N2 el-
ementary arithmetic operations. It is therefore necessary to perform simplifications,
rounding and optimisations to consider a more efficient hardware implementation
of the DCT.
Section 2.5.3 presents some alternatives with a view to simplifying the calculation
of the DCT.
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Fig. 2.3: Basis functions of 2-D DCT (N = 8)

2.5.3 Fast algorithms of DCT
The process of computing the DCT can be intricate and requires significant time and
resources within image and video compression standards. Nevertheless, this step
holds immense importance as it serves to distinguish between the low and high
frequencies present in the image. Thus, despite its complexity, the DCT plays a cru-
cial role in effectively compressing images and videos by separating their frequency
components.

As a result, the calculation of the traditional 8-point DCT required 64 multiplica-
tions and 56 additions, thus these numbers are very great. The development of fast
DCT algorithms is therefore an essential task for a successful hardware implemen-
tation.

The literature is very rich in fast DCT algorithms, a review of these algorithms is
presentedwith citations. Chen et al. [23] is the first publishedwith 16multiplications
and 26 additions. Later, several algorithms were published [22, 85, 86, 24], most of
which resulted in 12 multiplications and 29 additions. Wahid et al. [24] minimize
this number into 5 multiplications and 29 additions. All the fast algorithms still re-
quire floating-point multiplications, which are slow in both hardware and software
implementations.

2.6 Discrete Tchebichef Transform
Despite being adopted for image compression, DCT is not the only option for trans-
form encodingmethod [87]. JPEG-like compression schemes based on the Discrete
Tchebichef Transform (DTT) [88] have been demonstrated to be realistic alternatives
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[89, 90]. Discrete Tchebichef Transform (DTT) is an integer orthogonal transform
that has been derived from the Discrete Tchebichef Polynomials (DTP) [91].

2.6.1 One-dimentional DTT

Discrete Tchebichef Transform is increasingly used in the literature because of its
high coding gain, transform efficiency, and low computational complexity. The DTT
of an input signal x(n) = [x0,x1, . . . ,xN−1]t is the output transform domain signal
y(n) = [y0,y1, . . . ,yN−1]t given by:

y = CT .x (2.20)

where CT is the Tchebichef transformation matrix, whose entries are given by [89].

CT = t̃k(n) (2.21)

n,k = 0,1,2, . . . ,N −1 and t̃k(n) is the normalized kth order discrete Tchebichef poly-
nomial. Because such polynomial class represents a set of orthogonal polynomials
[? ], we have that C−

T 1 = Ct
T The 8-point DTT matrix is given as:

CT = DT .



1 1 1 1 1 1 1 1
−7 −5 −3 −1 1 3 5 7
7 1 −3 −5 −5 −3 1 7

−7 5 7 3 −3 −7 −5 7
7 −13 −3 9 9 −3 −13 7

−7 23 −17 −15 15 17 −23 7
1 −5 9 −5 −5 9 −5 1

−1 7 −21 35 −35 21 −7 1



(2.22)

CT = DT .TT (2.23)

where,

DT = 1/2.diag(1/
√

2,1/
√

42,1/
√

42,1/
√

66,1/
√

142,1/
√

546,1/
√

66,1/
√

858) (2.24)

Then, the inverse transformation is given by:

x = CT .y (2.25)
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thus, the matrix DT does not add any computational overhead. Hence, the only
source of computational complexity is the matrix TT .

2.6.2 Two-dimentional DTT

The two-dimensional DTT (2-D DTT) of an input matrix X is the output matrix, Y ,
given by:

Y = CT .X.CT (2.26)

The inverse 2-D DTT is furnished by :

X = CT .Y.CT (2.27)

Many researchers have developed DTT-based image compression and enhanced
DTT-based image compression techniques. In image compression, the DTT is ap-
plied to the forward and inverse transforms. As a result, most studies focus on im-
proving DTT’s performance in image compression by modifying the size of image
blocks processed by DTT or simplifying DTT operation.

2.6.3 Fast algorithms of DTT

However, the exact DTT has a high arithmetic complexity because of the number
of additions and float-point multiplications that it involves. It is well known that
such multiplications need more computational power than additions or fixed-point
multiplications, both in terms of software and hardware. As a result, the DTT’s high
computation complexity prevents it from being used in systemswith low power con-
sumption [92, 93], or in real-time processing, such streaming media [94, 95]. Thus,
the DTT’s computational efficiency might be increased by using quick algorithms.

Although these rapid methods have reduced arithmetic difficulties as compared
to direct DTT calculations, they nevertheless have a high arithmetic complexity, ne-
cessitating a substantial number of additions and bit-shifting operations.

Nakagaki et al.[96] suggested a 4 × 4 forward DTT method that is fast, required
only 32 multiplications and 66 additions compared to previous methods took full
the two advantages of DTT’s properties: separability and symmetry, requiring 64
multiplication operation and 96 additions.

The procedure described in [97] requires just 32multiplications and 66 additions.
It significantly decreases the algorithm’s complexity and, as a result, the transfor-
mation time for images of varied resolution. For processing the 44-picture block,
Senapati et al. [36] suggested a novel image compression technique. To simplify
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processing, the multiplication terms in its algorithm are replaced with shift and ad-
dition operations. As a result, the non-multiplicative operation is realized, and the
forward and inverse DTT transformation speeds are increased. However, in his pa-
per [36], he mentioned and used a novel rearrangement approach, zigzag prune, to
replace the standard block prune. In terms of reconstructed image quality, the re-
sults show that the zigzag prune outperforms the classical block prune.

Ishawar described DTT’s non-multiplicative operation in even more detail in [98].
A fast algorithm for the exact DTT matrix was derived in [88], requiring 44 additions
and 29 bit-shifting operations. Such arithmetic complexity is considered excessive,
when compared to state-of-the-art discrete transform approximations, which gener-
ally require less than 24 additions [3, 38].

2.7 Integer DCT approximations
Image, video, and audio digital signals are represented by integer values. The floating-
point DCT converts these integer values to real coefficients. Although the fast algo-
rithms of the DCT such as [22, 24, 23, 99, 100], significantly reduce the number of
their arithmetical operations and required floating-point operations. They still make
hardware and software implementations very slow, require a lot of memory space
and consume too much electrical energy. To remedy these problems, the DCT coef-
ficients are approximated by integers, so the floating-pointmultiplication is replaced
by integer multiplication [38, 101, 102, 29, 28, 31, 35].

A scheme of approximation of an integer transform should have the following
features [103]:

(i) It should have low computational complexity.

(ii) It should have low error energy to provide compression performance close to
the exact transform, and preferably should be orthogonal.

(iii) It should work for higher lengths of transform to support modern video coding
standards, and other applications like tracking, surveillance, and simultaneous
compression and encryption.

The main objective of DCT approximations is to eliminate the floating-point mul-
tiplication operations, which consumed many times for its computation and a lot
of materials for their implementations. To analyse the image compression based
on DCT approximations, an overview of DCT approximations methods is mainly pre-
sented in this section.

33



2.7 Integer DCT approximations

2.7.1 Signed DCT

The approach in [25] is simple, it involves the application of the “sign” function op-
erator to the forward DCT matrix. The resulting matrix transform, termed as SDCT,
has good energy compaction and decorrelation properties, 24 additions required for
its computation, with the inputs {0,1,−1}. Applying the Signum function to the DCT
matrix gives this simple matrix:

T SDCT
N (i, j) = 1√

N
sign{TN (i, j)} (2.28)

where “sign” means the Signum function, defined by:

sign{x} =


+1 if x > 0

0 if x = 0

−1 if x < 0

(2.29)

The application of the signum function to the DCTmatrix gives the simplematrix, T1,
in 2.30. It can be verified that the transformmatrix T1 is not orthogonal, i.e. the num-
ber of non-zero off-diagonal elements of T1 ×T t

1 is 12%. So different fast algorithms
are used to calculate the forward and inverse SDCT.

T1 =



+1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 −1 +1 +1 +1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 −1 +1 +1 −1 −1 +1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 −1 +1 −1 +1 −1 +1 −1



(2.30)

2.7.2 Bouguezel et al. DCT Approximation series

2.7.2.1 BAS-2008-a

Bouguezel et al. introduce in [7] a low complexity transform for image com-
pression, by properly replacing some elements of SDCT transform proposed
in [25] by zeros. It is the most recent version of 8-point DCT-II. It is orthogonal,
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i.e.T −1
2 = T t

2 , required 18 additions and 2 bit-shifts. It is given by :

T2 =



1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1/2 −1/2 −1 −1 −1/2 1/2 1
0 0 1 0 0 −1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1

1/2 −1 1 −1/2 −1/2 1 −1 1/2
0 0 0 −1 1 0 0 0



(2.31)

2.7.2.2 BAS-2008-b

With the same approach introduced in [7], Bouguezel et al. proposed a new
version in [104], the resulting transform is not-orthogonal, thus the same fast
algorithm is not used for its computational. The matrix of this transform re-
quired 21 additions and 3-bit shifts. It is given by:

T3 =



1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 0 −1 0 0 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 1 0 0 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1



(2.32)

2.7.2.3 BAS-2009

Bouguezel et al. implement the same idea as their previous work cited above.
A transform with 18 additions is carried out [26]. This transform is less signifi-
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cant at low compression ratio. It is defined as :

T4 =



1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1 −1 −1 −1 −1 1 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1
1 −1 1 −1 −1 1 −1 1
0 0 0 −1 1 0 0 0



(2.33)

2.7.2.4 BAS-2010

A new multiplication-free transform is proposed by the authors in [27], by an
extension of the 4-order integer DCT. The transform matrix is orthogonal, re-
quiring 24 additions and 4-bit shifts.

T5 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
2 1 −1 −2 −2 −1 1 2
2 1 −1 −2 2 1 −1 −2
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −2 2 −1 −1 2 −2 1
1 −2 2 −1 1 −2 2 −1



(2.34)

2.7.3 Parametric DCT transform

Bouguezel et al. proposed a new approximate DCT transform in [105] who they
called parametric transform. It consists of introducing an arbitrary parameter a, in
the transform reported in [104], and performing some row permutation. Its orthogo-
nality is verified in [105].
A fast algorithm is developed in [105] to reduce the number of arithmetical opera-
tions from 36 additions and 8 multiplications to a few additions and bit shift opera-
tions. For example:
• a = 0, T6 required 16 additions.
• a = 1, T6 required 18 additions.
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• a = 2, T6 required 18 additions and 2 bit-shift.

T6 =



1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 a −a −1 −1 −a a 1
0 0 1 0 0 −1 0 0
1 −1 −1 1 1 −1 −1 1
0 0 0 1 −1 0 0 0
1 −1 0 0 0 0 1 −1
a −1 1 −a −a 1 −1 a



(2.35)

2.7.4 Binary Discrete Cosine Transform

The authors of [28] developed a binary version of DCT called Binary Discrete Cosine
Transform (BDCT) using Walsh Hadamard Transform (WHT). This transform differs
from that of the SDCT by only four entries. It required 24 additions. The BDCTmatrix
is given by:

T7 =



+1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 +1 −1 −1 −1 −1 +1 +1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 −1 −1 +1 −1 +1 +1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 −1 +1 −1 +1 −1 +1 −1



(2.36)

2.7.5 DCT approximations based on integer functions

The authors in the paper [29] propose a collection of DCT approximations (twelve
transforms). Their idea involves applying a series of integer functions to the for-
ward floating points DCT matrix. These functions include floor, ceiling, truncation,
and rounding-off. The resulting matrices are orthogonal or quasi-orthogonal, with
a computational complexity ranging from 18 to 24 additions. The two important or-
thogonal DCT approximations of this collection are given:
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T4_cintra =



1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
1 −1 1 −1 −1 1 −1 1
0 −1 1 −1 1 −1 1 0



(2.37)

T6_cintra =



1 1 1 1 1 1 1 1
2 1 1 0 0 −1 −1 −2
2 1 −1 −2 −2 −1 1 2
1 0 −2 −1 1 2 0 −1
1 −1 −1 1 1 −1 −1 1
1 −2 0 1 −1 0 2 −1
1 −2 2 −1 −1 2 −2 1
0 −1 1 −2 2 −1 1 0



(2.38)

2.7.6 DCT approximations based on angle similarity

In their study, Oliveira et al. [35] put forth a novel approach involving two transforma-
tions aimed at reducing the angle between the rows of Discrete Cosine Transforms
(DCTs) and the corresponding rows of the matrix approximations.

T8 =



1 1 1 1 1 1 1 1
2 2 1 0 0 −1 −2 −2
2 1 −1 −2 −2 −1 1 2
1 0 −2 −2 2 2 0 −1
1 −1 −1 1 1 −1 −1 1
2 −2 0 1 −1 0 2 −2
1 −2 2 −1 −1 2 −2 1
0 −1 2 −2 2 −2 1 0



(2.39)
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T9 =



1 1 1 1 1 1 1 1
2 1 2 0 0 −2 −1 −2
2 1 −1 −2 −2 −1 1 2
2 0 −2 −1 1 2 0 −2
1 −1 −1 1 1 −1 −1 1
1 −2 0 2 −2 0 2 −1
1 −2 2 −1 −1 2 −2 1
0 −2 1 −2 2 −1 2 0



(2.40)

2.7.7 DCT approximations based on 16-point DCT

In their research, Ezhilarasi et al. ([38]) introduce a pair of transforms derived from
the 16-point DiscreteCosine Transform (DCT)matrix, utilizing fundamental elements
consisting of 0,±1,±2. The two proposed transforms are as follows:

T10 =



1 1 1 1 1 1 1 1
2 2 2 1 −1 −2 −2 −2
2 1 −1 −2 −2 −1 1 2
2 1 −2 −2 2 2 −1 −2
1 −1 −1 1 1 −1 −1 1
2 −2 −1 2 −2 1 2 −2
1 −2 2 −1 −1 2 −2 1
1 −2 2 −2 2 −2 2 −1



(2.41)

T11 =



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
2 1 −1 −2 −2 −1 1 2
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −2 2 −1 −1 2 −2 1
1 −1 1 −1 1 −1 1 −1



(2.42)

2.7.8 PADCT transform

The transform presented in [6] is based on an approach introduced in [25]. It con-
sists of introduce the Signum function in a matrix transform. In the case of PADCT
[6] the matrix is that reported in [36]. Then the resulting transform, PADCT, is quasi-
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orthogonal as its original transform. The complexity of this transform is 17 additions
only, but its performances in image compression application remains limited. It is
given by:

T12 =



1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 1 −1 −1 −1 −1 1 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1
1 0 0 −1 −1 0 0 1
0 0 0 −1 1 0 0 0



(2.43)

2.7.9 Transform with 14 addition only

Bayer and Cintra in [32] proposed DCT approximation with 14 additions only, here-
after referred to as T13. This method consists of replacing judiciously elements of
transform matrix reported in [2] with zero.
They obtained the following matrix:

T13 =



1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 −1
1 0 0 −1 −1 0 0 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
0 −1 0 0 0 0 1 0
1 −1 1 0 0 1 −1 0
0 0 0 −1 1 0 0 0



(2.44)

2.7.10 A Multiparametric Class of Low-complexity Transforms

Based on a series of research published by Bouguezel, Ahmed, and Swamy, the au-
thors of [106] offer a new class of low-complexity 8-point DCT approximations. A
multiparametric fast technique that includes both known and new transformations
is also developed. After solving a multicriteria optimization task, they choose the
best-performing DCT approximations and subject them to a scaling approach to get
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larger size transforms.

T14 =



1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 0 0 −1 −1 0 0 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
0 −1 0 1 −1 0 1 −1
1 −1 1 0 0 1 −1 0
1 −1 0 −1 1 0 1 −1



(2.45)

The low-complexity matrices Ti, cited above, can be modified to provide orthogonal
transformationsCi by the procedure of orthogonalisation based on the polar decom-
position as described in a good deal of research paper [28, 104, 7, 105]. Thus, the
orthogonal DCT approximations associated to a low-complexity matrix Ti, are given
by:

Ci = Di.Ti (2.46)

Di = (
√

Ti.T t
i )−1, i = 1,2,3, . . . ,12. (2.47)

2.8 Integer DTT approximations
The use of approximate transforms presents an alternative to exact transform com-
putations. This approach has been effectively employed in approximating the dis-
crete cosine transform (DCT), resulting in the development of several approximation
techniques [27, 107].

Recently, the discrete Tchebichef transform (DTT) has attracted significant at-
tention because of its efficient signal decorrelation properties, and at the same time
straightforward hardware implementation.Prominent examples of approximate DTT
transforms include: [3], [4] and [108] respectively.

2.8.1 Near-orthogonal DTT approximation

Oliveira et al. [3] suggested a low-complexity near-orthogonal 8-point DTT approx-
imation suitable for image and video coding. A quick technique for the suggested
DTT approximation that involves just 24 additions and 6 bit-shifting operations was
also provided. The suggested approximation has an additive arithmetic cost that
is 45.5% and 2.05% less than the conventional DTT fast technique and DTT approx-
imation in [109], respectively. In terms of video coding, the suggested technique
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produced results that were almost identical to the approximation in [109]. The sug-
gested design might excel in ensuring superior operation frequency and very low
power consumption, as well as low computational complexity while keeping good
coding performance, therefore it could be employed in an expanding wide range of
low power hand-held devices.

TT 1 =



2 2 2 2 2 2 2 2
−2 −1 −1 0 0 1 1 2
2 0 −1 −1 −1 −1 0 2

−2 1 2 1 −1 −2 −1 2
1 −2 0 1 1 0 −2 1

−1 2 −1 −1 1 1 −2 1
0 −1 2 −1 −1 2 −1 0
0 0 −1 2 −2 1 0 0



(2.48)

CT 1 = DT 1.TT 1 (2.49)

centeringDT 1 = diag(1/
√

32,1/
√

12,1/
√

12,1/
√

20,1/
√

12,1/
√

14,1/
√

12,1/
√

10)
(2.50)

2.8.2 Orthogonal DTT Approximation

In [4], Farsiani et al. introduce a novel compression strategy based on the discrete
Tchebichef transform. When compared to the original transform, a new integer
transformation matrix reduces hardware complexity by up to 74. The transform in
[4]:

TT 2 =



1 1 1 1 1 1 1 1
−2 −2 −1 0 0 1 2 2
3 0 −1 −2 −2 −1 0 3

−2 1 2 0 0 −2 −1 2
1 −2 −1 2 2 −1 −2 1

−1 2 −2 −1 1 2 −2 1
0 −1 2 −1 −1 2 −1 0
0 1 −2 0 0 2 −1 0



(2.51)

CT 2 = DT 2.TT 2 (2.52)

DT 2 = diag(1/
√

8,1/
√

12,1/
√

28,1/
√

18,1/
√

20,1/
√

20,1/
√

12,1/
√

10) (2.53)
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2.9 Conclusion
This chapter is dedicated to the exploration of block transforms, specifically focus-
ing on the DCT (Discrete Cosine Transform) and DTT (Discrete Tchebichef Trans-
form) as the two investigated transform design methodologies. We shed light on
the key characteristics that render these transforms suitable for various image and
video compression standards. Additionally, we delve into the presentation of integer
approximations, which further enhance the applicability of these transforms.
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Chapter 3

Proposed enhanced JPEG encoding
standard

3.1 Introduction
The primary focus of this chapter revolves around the development of novel inte-
ger DCTs (Discrete Cosine Transforms) aimed at enhancing the compression perfor-
mance of the integer DCT-based JPEG standard. The objective is to strike a balance
between computation complexity and performance. To achieve this, two distinct ap-
proaches are employed, leading to the creation of four integer DCT approximations.
Additionally, an appropriate quantisation matrix is proposed for these approxima-
tions.

The approximations presented in this chapter frequently utilise transform matri-
ces with entries defined within the set {0,±1,±2}. Consequently, these transforms
possess zero multiplicative complexity, as the necessary arithmetic operations can
be exclusively implemented through additions and bit-shifting operations.

The resulting transforms have been subjected to a comprehensive objective as-
sessment, wherein they were meticulously compared to the existing integer DCT
approximations.

To ensure efficient hardware implementation of each proposed transform, a fast
algorithm has been proposed. Those algorithms are specifically designed to opti-
mise execution speed and resource utilisation in hardware architectures for each
transform.

Through a detailed analysis of the performance of our transforms, it has been
demonstrated that they strike a desirable balance between performance and arith-
metic complexity. This means that they achieve competitive compression perfor-
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mance while minimising the computational burden imposed by complex arithmetic
operations. Such a compromise is essential in real-world applications where both
speed and efficiency are critical factors.

It is known that a good approximation of the DCT transform must satisfy the fol-
lowing conditions:

(i) To have low computational complexity, the most important requirement;

(ii) The error energy of the approximationmust be small in order to provide a com-
pression performance close to the exact DCT;

(iii) It is preferred that the approximation be orthogonal;

(iv) Approximation must be able to be expanded to larger sizes to support modern
video encoding standards.

The proposed transform provides a compromise between the first three require-
ments above, the latter can be obtained by using the scalable recursive algorithm
proposed in [103]. This algorithm has resulted in more dimensional versions of the
proposed matrix that are suitable for video experiments. Note that this algorithm is
already used in a more recent work published in [27].

3.2 Proposed transforms based on 16-point DCT trans-
form

In this section, a novel approach for developing integer approximation of the two-
dimension 8points conventional DCT-II is introduced. The proposedmethod is based
on 16 pointsDCT-II and rounding off operations. As a result, we obtained amultiplication-
free 8-point approximation of conventional DCT-II, noted Tpa, with the parameter
a = {1,2}, and its basic elements are S = {0,1,2}; no multiplication operations are
required. These two transforms are the more efficient DCT approximations with a
reduction in the term of complexity computation, requiring 24 additions and 2-bit
shifts for a = 1 or 24 additions and 6-bit shifts for a = 2; no multiplication is required.

3.2.1 Proposed algorithm
Our proposed approach, based on 16-floating point DCT-II, consists of the following
steps:

1. Generate the forward two-dimension 16-floating points DCT matrix.
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2. Construct the 8 × 8 DCT matrix, while the elements of the base vectors with
even symmetry constitute the even part of the 16-floating points DCT trans-
form matrix.

3. Multiply the resulting matrix by the scaling factor 4.

4. For the odd rows of the resultingmatrix: replace thematrix elementmagnitude
superior to 1 by the factor a, the element’s magnitude between 1 and 0.5 by the
value ‘1’, and by ‘0’ the rest of the matrix elements.

5. For the even rows, if the element of thematrix is superior to 0.75 replace it with
‘2’, otherwise with ‘1’. We found the following parametric 8-point DCT approxi-
mation.

Tpa =



1 1 1 1 1 1 1 1
a a 1 0 0 −1 −a −a

2 1 −1 −2 −2 −1 1 2
a 0 −a −1 1 a 0 −a

1 −1 −1 1 1 −1 −1 1
1 −a 0 a −a 0 a −1
1 −2 2 −1 −1 2 −2 1
0 −1 a −a a −a 1 0



(3.1)

6. For a = 1, we get the orthogonal transform matrix Tp1:

Tp1 =



1 1 1 1 1 1 1 1
1 1 1 0 0 −1 −1 −1
2 1 −1 −2 −2 −1 1 2
1 0 −1 −1 1 1 0 −1
1 −1 −1 1 1 −1 −1 1
1 −1 0 1 −1 0 1 −1
1 −2 2 −1 −1 2 −2 1
0 −1 1 −1 1 −1 1 0



(3.2)
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7. For a = 2, we get the following non-orthogonal transform matrix, noted T̂p2.

T̂p2 =



1 1 1 1 1 1 1 1
2 2 1 0 0 −1 −2 −2
2 1 −1 −2 −2 −1 1 2
2 0 −2 −1 1 2 0 −2
1 −1 −1 1 1 −1 −1 1
1 −2 0 2 −2 0 2 −1
1 −2 2 −1 −1 2 −2 1
0 −1 2 −2 2 −2 1 0



(3.3)

3.2.2 Proposed fast algorithms

The direct computation of the proposed approximate DCT required 48 additions and
8-bit shift for the first proposed transform Tp1 or 48 additions and 28 bit-shift opera-
tions for the second one, T̂p2. However, these numbers are very large, and therefore
a fast algorithm is required. Consequently, we factorised the proposedmatrices into
a product of sparse matrices of very low complexity. The proposed transforms can
be obtained by multiplying 3 simple matrices as follows:

Tp1 = P1 ×A3 ×A2 ×A1 (3.4)

T̂p2 = P2 ×A4 ×A2 ×A1 (3.5)

P1 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1



,P2 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
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A1 =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0

−1 0 0 0 0 0 0 1



,A2 =



1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 −1 1 0 0 0 0 0

−1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



,

A3 =



1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 −1 −2 0 0 0 0
0 0 2 −1 0 0 0 0
0 0 0 0 0 −1 −1 −1
0 0 0 0 −1 0 1 −1
0 0 0 0 1 1 0 −1
0 0 0 0 1 −1 1 0



,A4 =



1 1 0 0 0 0 0 0
2 1 0 0 0 0 0 0
0 0 −1 1 0 0 0 0
0 0 2 −1 0 0 0 0
0 0 0 0 0 −1 −2 −2
0 0 0 0 1 2 0 −2
0 0 0 0 −2 0 2 −1
0 0 0 0 2 −2 1 0



The bold block can be decomposed as described in [38]:


0 −1 −2 −2
1 2 0 −2

−2 0 2 −1
2 −2 1 0

 =


x0 −x7

x1 −x6

x2 −x5

x3 −x4




0 0 −1 −1
0 1 0 −1

−1 0 1 0
1 −1 0 0

21 +


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0




x0 −x7

x1 −x6

x2 −x5

x3 −x4

20

(3.6)

• The matrices P1 and P2 do not include any arithmetic operation;

• The matrix A1 presents eight rows with two ’1’s including 8 additions;

• The matrix A2 presents 4 rows with two ’1’s, including only 4 additions;

• The matrix A3 presents two rows with two ’1’s, including 2 additions; two rows
with ‘1’ and ‘2’, including 2 additions and two-bit shift and 4 rows with three ‘1’,
including 8 additions.
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• The matrix A4 presents two rows with two ’1’s, including 2 additions; two rows
with ‘1’ and ‘2’, including 2 additions 2-bit shift operations, and the four last
rows including 4 additions and 4 bit-shift operations

The Signal Flow Graphs (SFG) appropriate to the above factorisations are shown in
Fig. 3.2 for Tp1 and T̂p2 respectively using the basic structure shown in Fig. 3.1.

Fig. 3.1: The basic symbol used in the graph

The first and second stages are the same for the two proposed transforms. The
difference emerges in the third stage. The permutation matrices P1 and P2 do not
contain any operation. The computational cost is only 24 additions and two bits
shifting for Tp1, 24 additions and 6 bits shifting for the proposed second one. There-
fore, the proposed fast algorithm requires 50% fewer additions and 75% less bit-
shifting operations

3.2.3 Computational complexity

Table 3.1 provides a comparison of the number of additions, multiplications, and
shifts required between the existing and proposed transforms. All elements of ap-
proximate transform matrices are {0,±1,±2}, so no multiplication operations are
required. The computational cost of different transforms varies between 16 addi-
tions and 24 additions with 6 bit-shifting. We focused our research on increasing
the PSNR while maintaining the number of operations required in recent research
[38] and [35].
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(a)

(b)

Fig. 3.2: The signal flow graphs (SFG): (a) forward Tp1, (b) forward T̂p2
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Table 3.1: Number of arithmetic operations required by our proposed
transformsTp1, Tp2 and other DCT approximations

Transforms Multiplications Additions Bit-shifts Total
Scaled DCT [24] (2007) 05 29 00 34

Proposed Tp1 00 24 02 26
Proposed T̂p2 00 24 06 30
T1 [25] (2001) 00 24 00 24
T2 [7] (2008) 00 18 02 20

T3 [104] (2008) 00 21 03 24
T4 [26] (2009) 00 18 00 18
T5 [27] (2010) 00 24 04 28
T6 [5] (2011)

a = 0 00 16 00 16
a = 1 00 18 00 18
a = 2 00 18 02 20

T7 [28](2012) 00 24 00 24
T8 [35] (2019) 00 24 06 30
T9 [35] (2019) 00 24 06 30
T10 [38] (2018) 00 28 06 34
T11 [38](2018) 00 24 02 26
T12 [6](2016) 00 17 00 17

T4−cintra [29] (2014) 00 24 00 24
T6−cintra [29] (2014) 00 24 06 30

3.3 Proposed transformbasedon introducing of element
nul

3.3.1 First obtained transform

Indeed, the bit-shift operations cause computational problems on the hardware im-
plementation [6]. To remedy these problems, a new approximation has been pro-
posed in [6] resulting from the application of the signum function to the transform
given in [36]. It only requires additions; however, it is quasi-orthogonal and its image
compression performance is quite low. The transform in [7] is a variant of SDCT [25],
which consists of introducing some 0 and 1/2 elements. The resulting transform re-
quires 18 additions, and 2 bits shift operations. To avoid such problems, we propose
a different variant of [7] completely free of bit shift and multiplication operations by
replacing the elements equal to 1/2 of the matrix transform in [7] with 0.

53



3.3 Proposed transform based on introducing of element nul

The associated proposed transform, referred to as Tp3, with its diagonal, Dp3, are
given by:

Tp3 =



1 1 1 1 1 1 1 1
1 1 0 0 0 0 −1 −1
1 0 0 −1 −1 0 0 1
0 0 −1 0 0 1 0 0
1 −1 −1 1 1 −1 −1 1
1 −1 0 0 0 0 1 −1
0 −1 1 0 0 1 −1 0
0 0 0 −1 1 0 0 0



(3.7)

centeringDp3 = diag(1/
√

8,1/2,1/2,1/
√

2,1/
√

8,1/2,1/2,1/
√

2) (3.8)

Cp3 = Dp3 ×Tp3 (3.9)

All elements of our matrix are 0 or ±1, so multiplication and bit-shift operations
are entirely absent. It is easy also to verify that our new transform is orthogonal, i.e.
C−1

p3 = Ct
P 3 = T t

p3 × Dp3 where t denotes the matrix transpose operation, unlike the
one proposed in [25]. Hence, the same number of operations is required to compute
both the forward and inverse transforms.

3.3.1.1 Proposed fast algorithm

It is clear from equation 3.7, the proposed transform Tp3 requires 27 additions. To
make our transform more obvious, we propose a fast algorithm for its calculation.
This algorithm, based on sparsematrix factorisation, consists of factorising thema-
trix Tp3 into three simple matrix products. Accordingly, the number of required oper-
ations is reduced to 16 additions only.
The three matrices are given as follows:

Tp3 = A5 ×A6 ×A7 (3.10)
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A5 =



1 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 −1
0 0 0 −1 0 0 0 0
0 0 0 0 0 1 0 0
1 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 −1
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0



,A6 =



1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 −1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



A7 =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0

−1 0 0 0 0 0 0 1



The structure corresponding to our fast algorithm is illustrated in Fig. 3.3.
As Fig. 3.3 clearly illustrates, our transform requires only 16 additions. The structure
can be divided into 3 independent stages. from left to right, the first stage requires
8 additions, the second one 4 additions, and finally the third 4 additions.

Fig. 3.3: Signal flow graph for forward Tp3

3.3.1.2 Computational complexity evaluation

To highlight our transform, we compared it with other existing transforms in the lit-
erature in terms of complexity, and the results are summurised in Table 3.2. The
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Scaled DCT is the fastest algorithm for calculating the DCT transform, and it is used
only as a reference for performance assessment.

Table 3.2: Number of arithmetic operations required by our proposed transform Tp3
and other transforms

Transforms Multiplications Additions Bit-shifts Total
Scaled DCT [24] (2007) 05 29 00 34
Proposed transform Tp3 00 16 00 16

T2 [7] (2008) 00 18 02 20
T3 [104] (2008) 00 21 03 24
T13 [32] (2012) 00 14 00 14
T6 [5] (2011)

a = 0 00 16 00 16
a = 1 00 18 00 18
a = 2 00 18 02 20

T12 [6](2016) 00 17 00 17

From Table 3.2 we can show a reduction of 4 arithmetic operations of our pro-
posed transform compared to its original transform in [7]. Indeed, the transform we
propose, with only 16 additions, also allows a significant reduction in the number of
operations required compared to other transforms; it has 33.34 %, 20%, 11.11%, and
5.9% lower arithmetic costs than the SDCT [25], T6(a = 2),T6(a = 1) [5], and T12 [6],
respectively. The transform T13 with 14 additions in [32] remains the best in terms
of complexity; however, it shows a significant degradation in terms of performance.

3.3.2 Second obtained transform

The T9 transform has not been implemented in the paper [35], its performance in
image compression is limited despite its high complexity cost. To obtain a perfor-
mance improvement of the transform T9 reported in [35] with less complexity in
terms of computation costs, the coefficients of the even rows have been kept while
some coefficients of the odd rows have been set to zero, taking into consideration
the following conditions:
- The proposed matrix Tp4 must possess its elements from {0,±1,±2};
- Only addition and bit-shift operations are needed to implement the forward and in-
verse transform;
- Tp4 × T t

p4 must be a diagonal matrix, therefore the inverse transform T −1
p4 guaran-

teed to have low computational complexity.
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The resulting transform requires only 18 additions and 6 bit-shift operations. A reduc-
tion of 25% in the computational cost complexity, compared to its original transform,
is successfully achieved. The associated resulting transform Tp4 is given by:

Tp4 =



1 1 1 1 1 1 1 1
2 1 0 0 0 0 −1 −2
2 1 −1 −2 −2 −1 1 2
0 0 −2 0 0 2 0 0
1 −1 −1 1 1 −1 −1 1
1 −2 0 0 0 0 2 −1
1 −2 2 −1 −1 2 −2 1
0 0 0 −2 2 0 0 0



(3.11)

Tp4 can be modified to provide an orthogonal transform Cp4. where (.)t denotes the
matrix transpose operation and considering: Cp4 = Dp4 ×Tp4 and Cp4 ×Ct

p4 = I.

Dp4 =
√

(Tp4 ×T t
p4)−1 (3.12)

Dp4 = diag(1/
√

8,1/
√

10,1/
√

20,1/
√

8,1/
√

10,1/
√

10,1/
√

20,1/
√

8) (3.13)

All elements of our matrix are {0,±1,±2}. Hence, no multiplication is required be-
cause the required arithmetic operations can be implemented exclusively through
addition and bit-shifting operations. This means that without using multiplication, a
reduction in computational complexity and an increase in speed are achieved.

It should be noted that the proposed matrix Cp4 is orthogonal. Accordingly, the
inverse transform is as follows:

Ct
p4 = C−1

p4 = Tp4 ×Dp4 (3.14)

Therefore, the forward and inverse transforms require the same number of opera-
tions for their computation. The multiplication with the diagonal matrix Dp4 can be
eliminated from the transform step by integrating its entries into the quantisation
matrix.

3.3.2.1 Proposed fast algorithm

The computational complexity of direct implementation of the proposed DCT trans-
form consists of 36 additions and 16 bit-shifting. However, to make our transform
more evident, such cost can be significantly reduced through sparse matrix factori-
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sation [110]. For this, we propose a fast algorithm for its computation. This algorithm
is based on factorising the matrix Tp4 into three simple matrices product. Accord-
ingly, the number of operations required is reduced to 18 additions only and 6 bits
shifts. The three resultant matrices are given as follows:

Tp4 = A8 ×A9 ×A10 (3.15)

A8 =



1 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 −2
0 0 −1 −2 0 0 0 0
0 0 0 0 0 2 0 0
1 −1 0 0 0 0 0 0
0 0 0 0 0 0 2 −1
0 0 2 −1 0 0 0 0
0 0 0 0 2 0 0 0



,A9 =



1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 −1 1 0 0 0 0 0

−1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



,

A10 =



1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 −1 1 0 0 0
0 0 −1 0 0 1 0 0
0 −1 0 0 0 0 1 0

−1 0 0 0 0 0 0 1


The proposed fast algorithm for the newmultiplier-less transform, Tp4, summarised
in the following steps, can be used to calculate the transformed vector y = Tp4.x, of
an input vector x of size 8.
Step 1 :

u0 = x0 +x7 u4 = −x3 +x4

u1 = x1 +x6 u5 = −x2 +x5

u2 = x2 +x5 u6 = −x1 +x6

u3 = x3 +x4 u7 = −x0 +x7
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Step2 :

k0 = u0 +u3 k4 = u4

k1 = u1 +u2 k5 = u5

k2 = −u1 +u2 k6 = u6

k3 = −u0 +u3 k7 = u7

Step3 :

y0 = −k0 +k1 y4 = k0 −k1

y1 = −k6 −2k7 y5 = 2k6 −k7

y2 = −k2 −2k3 y6 = 2k2 −k3

y3 = 2k5 y7 = 2k4

As can be shown from the algorithm above:

• step 1 required 8 additions;

• step 2 required 4 additions;

• step 3 required 6 addition and 6-bit shift operations.

The total is 24 additions and 6-bit shift operations. Using the separability property
of the DCT transform, the 2-D of the proposed transform can be calculated using
the 1-D implementation proposed, row-wise first and then column-wise.

3.3.2.2 Computational complexity evaluation

Table 3.3 presents a summary of the comparative analysis of several DCT approx-
imations considered in our study in terms of the degree of complexity. We also
include the exact DCT for comparison purposes. The number of addition, shift, and
multiplication operations needed for each transform, on one and two dimensions,
has been compared.

Table 3.3 clearly demonstrates that the proposed transform exhibits a notable
reduction in the number of operationswhen compared to its original transform coun-
terpart. Specifically, it necessitates 20% fewer operations than the T9 [35] transform.

3.4 Proposed transforms in image compression
All elements of our proposed transform matrices are {0,±1,±2}, so multiplication
operations are completely absent. The proposed low-complexitymatrices Tpi = {i =
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Table 3.3: Number of arithmetic operations required our proposed transform Tp4
and other DCT approximations

Transforms Multiplications Additions Bit-shifts Total
Scaled DCT [24] (2007) 05 29 00 34
Proposed transform Tp4 00 18 06 24

T1 [25] (2001) 00 24 00 24
T3 [104] (2008) 00 21 03 24
T7 [28] (2012) 00 24 00 24
T12 [6](2016) 00 17 00 17

T4−cintra [29] (2014) 00 24 00 24
T10 [38](2018) 00 24 02 26

T14 [106](2020) 00 18 01 19
T9 [35](2019) 00 24 06 30

1,2,3,4} can approximate the DCT matrix by means of orthogonalisation or quasi-
orthogonalisation. The first value of a leads to an orthogonal transform Tp1. There-
fore, the same fast algorithm is used to calculate both the forward and inverse trans-
form and the case of the other proposed transform for i = 3 and i = 4:

Tpi.T
−1
pi = I (3.16)

where I is the identity matrix. As with all, the proposed approximate DCT trans-
form, Tpi, can be modified to be Cpi to ensure the orthonormality conditions, this
procedure is approved in different papers of integer DCT approximations.

Cpi = Dpi.Tpi (3.17)

Cpi.C
′
pi = I (3.18)

Then C−1
pi = C ′

pi and Dpi is a diagonal matrix ensuring the orthogonality of the DCT
approximations, which is obtained by the following equation:

Dpi = diag
√

(Tpi.T ′
pi)−1 (3.19)

where
√

(.) signifies the matrix square root operation and diag(.) rends a diag-
onal matrix with the diagonal elements of its matrix argument. Since the quanti-
sation/dequantisation is applied on the block matrix in the transform domain, the
diagonal matrix Dpi can be merged into the quantisation/dequantisation matrix.
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On the other side, the second value of ′a′ leads to a non-orthogonal approxima-
tion for the 8 floating points DCT as many transforms known in literature [25, 104, 6,
71, 3]. Then, T̂p2 does not satisfy the orthogonality condition. However, T̂p2 × T̂ ′

p2 is
a nearly diagonal matrix. Indeed, the orthogonality property is not a strictly neces-
sary requirement for image compression applications, a good energy compaction
property can be achieved by a near orthogonality. The evaluation of the proximity of
a given non-orthogonal transformmatrix to another orthogonal matrix is performed
by computing the deviation from the diagonal measurement, given by [111]:

δ(A) = 1−||diag(A)||2F
||A||2F

(3.20)

A is a square matrix and ||.||F is the Frobenius norm of matrices [111]. The deviation
from diagonality of the matrix diagonalisation of SDCT T1 matrix has been adopted
as the maximum value that can be accepted for saying that a non-orthogonal trans-
form is a quasi-orthogonal [71]. This value is calculated from:

δ(T1.T t
1) ≈ 0.20 (3.21)

For a transform matrix T :
δ(T.T t) ≤ 0.20 (3.22)

δ(T̂p2.T̂ t
p2) = 0.0544 ≤ 0.20 (3.23)

All the following transforms: SDCT [25], BAS transformproposed in [104], transforms
given in [71] andPADCT introduced in [6] are non-orthogonal, and they are considered
as good approximations of the DCT, just like the approximate DTT TT proposed in
[3]. Table 3.4 summarises the deviation from the orthogonality of these transforms.
The deviation from orthogonality value of SDCT is the greatest one, and it is consid-

Table 3.4: Deviation from diagonal measurement for non-orthogonal transforms

Transform T1 [25] T3[104] T̂ [71] T̃ [71] T12 [6] TT [3] T̂p2
δ 0.200 0.177 0.071 0.058 0.133 0.133 0.054

ered as the maximum value that can be taken by a transform. Since our transform
T̂p2 has the smallest value of deviation from orthogonality than the well-known exist-
ing non-orthogonal transforms, it ismore “nearly-orthogonal” than these transforms.
Therefore, the non-orthogonal approximation T̂p2 referred to be Ĉp2 can be obtained
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by:
Ĉp2 = D̂p2.T̂p2 (3.24)

D̂p2 = diag

√
(T̂p2.T̂ ′

p2)−1
(3.25)

D̂p2 = diag(1/
√

8,1/
√

18,1/
√

20,1/
√

18,1/
√

8,1/
√

18,1/
√

20,1/
√

18) (3.26)

The second investigation for JPEG standard quality enhancement is to propose the
approach to generate quantisation matrix adapted to JPEG standard based on inte-
ger DCT or DTT approximations.

3.5 Integer DCT-based JPEG quantisation matrix

This section proposes an enhancement of the baseline JPEG compression standard
based on integer DCT approximations.

• Regarding energy distribution of integer DCT coefficients, an appropriate quan-
tisation matrix has been proposed.

• This matrix is approximated to a power of two elements to reduce the com-
plexity cost in image compression standard JPEG.

3.5.1 Default JPEG luminance quantisation matrix

The JPEG is the well-known standard for still grayscale and color image compres-
sion. It is based on DCT (or fast DCT/FDCT) whereas quantisation is an important
stage in this standard. Indeed, it is part of the process that allows reducing the size
of the images to be stored. However, it is also during this stage, that information
losses are generated.
In the JPEG standard, after a preprocessing stage, the M × N input image is subdi-
vided into blocks of 8×8 pixels Xi,j whose DCT is applied. The resulting coefficients,
Yu,v , are quantified afterward, Y quant

u,v .

Y quant
u,v = round(Yu,v ⊘QJP EG) (3.27)

where round(.) is the rounding function, and ⊘ denotes the elements-by-element
division. JPEG proposes a luminance quantisation matrix where each of the 64 DCT
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coefficients is quantised by the uniform quantiser, QJP EG [76].

QJP EG =



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 77
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99



(3.28)

The dequantisation stage in decoding process is given by :

Ŷ dequant
u,v = Y quant

u,v ⊙QJP EG (3.29)

where Ŷ dequant
u,v is the dequantised coefficients, and ⊙ denotes the element-wisemul-

tiplication. In the field of image and video compression, an effective alternative to
the traditional discrete cosine transform (DCT) called Integer Discrete Cosine Trans-
form (InDCT) has gained popularity over the past decade [112]. Numerous integer
DCT approximations have been proposed in the literature, offering of using a min-
imal number of integer arithmetic operations [1, 113, 37, 29, 114, 112, 115]. To en-
hance the compression ratio (CR) achieved by JPEG utilising DCT approximations,
it becomes essential to adjust the quantisation step in accordance with these ap-
proximations. By adopting the quantisation process to align with the characteris-
tics of the specific DCT approximations, improved compression performance can
be achieved.

3.5.2 Related work

In 2017, Oliveira et al.input forward, in [42], a novel quantisation scheme that is com-
patible with the JPEG standard and offers a significantly reduced complexity com-
pared to existing methods. The new scheme eliminates the need for multiplication
and addition operations, exclusively utilises bit-shifting operations. By combining
this low-complexity quantisation table with discrete cosine transform (DCT) approx-
imations, the overall complexity of the transform-quantisation pair in the JPEG en-
coding/decoding process can be decreased.
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The technique involves applying the nearest power-of-two function called np2 to
the default luminance JPEG quantization matrix.

np2(x) = 2round(log2x),x ∈ R (3.30)

The resulting approximate quantisation matrix, denoted as QOliveira, is provided in
[42]:

QOliveira =



6 8 8 16 32 32 64 64
16 16 16 16 32 64 64 64
16 16 16 24 32 64 64 64
16 16 16 32 64 64 64 64
16 16 32 64 64 128 128 64
32 32 64 64 64 128 128 64
64 64 64 64 128 128 128 128
64 64 64 128 128 128 128 128



(3.31)

By expressing the orthonormal integer approximation DCT matrix, denoted as C ,
as the product of the integer DCT matrix T and a diagonal matrix D, it is possible to
integrate the diagonal matrix D into the quantisation matrix. This integration elimi-
nates the need for separate multiplication operations associated with D, leading to
improved computational efficiency.

C = D.T (3.32)

Then, themodified forward and inverse quantisationmatrices, Q̂f and Q̂i, respec-
tively, can be written as:

Q̂Oliveira−f = np2(QJP EG ⊘ (d×dt)) (3.33)

Q̂Oliveira−i = np2((d×dt)⊙QJP EG) (3.34)

where d presents the column vector with the element corresponding to the main
diagonal of D, and dt is its transpose.

3.5.3 Proposed approach to generate quantisation matrix
The DCT coefficients are quantised by dividing them all by a factor. The JPEG norm
approach has the goal of rejecting low-value coefficients that only provide limited
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information in the image and reducing the dynamics of others. The resulting degra-
dation is invisible to the eye. However, It is crucial to remember, that not all the
coefficients contain the same amount of information. Therefore, this quantity must
be considered by the quantisation step as well as the fact that DCT concentrates the
image energy into a few altered coefficients associated with low frequencies, they
are subsequently richer on the information.

The quantisation factor should, therefore, be different depending on the position
of the coefficient in the block: it will be all the stronger as the coefficients will be
poor in information. It will be larger at high frequency than at low frequency. Indeed,
reducing the dynamic, view zeroing, a coefficient corresponding to high frequencies
(often related to noise) will not cause as much degradation as a coefficient corre-
sponding to low frequencies since the human eyes cannot sense the high-frequency
components in the image. Then, the energy of DCT coefficients plays a very impor-
tant role to define the best suitable quantisation step for each coefficient. In this
regard, using this strategy, we present a new approach to generate a quantisation
matrix intended for integer DCT-based JPEG encoder. Our approach is composed
of two stages:

3.5.3.1 Energy distribution of DCT approximations

It consists of generating a quantisation matrix based on the energy distribution of
integer DCT coefficients. Thus, two integer DCT approximations introduced in [1, 2]
have been considered which they present the more efficient transforms that approx-
imate the floating points DCT, and they provide the best trade-off between coding
performances and computation cost.

Fig. 3.5 shows an example of the energy distribution of the 64 coefficients of the
integer DCT approximations reported in [1] for test image Lena [116].

Concerning the transform in [2], we can show from Fig. 3.6 that the energy of the
coefficients differs from one transform to the other. The quantisation factor should
depend on the position of the coefficient in the block as well as on its energy. A
coefficient with low energy has poor information, so the corresponding quantisation
step should be high and vice versa. The implementation of this strategy leads us to
construct the novel quantisation matrix for the integer DCT-based JPEG standard.
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Fig. 3.4: Energy distribution of conventional DCT for test image Lena

Fig. 3.5: Energy distribution of DCT approximation in [1] for test image Lena
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Fig. 3.6: Energy distribution of DCT approximation in [2] for test image Lena

The quantisation matrix we suggest is as follows:

QP −DCT =



20 17 18 19 22 36 36 31
19 17 20 22 24 40 23 40
20 22 24 28 37 53 50 54
22 20 25 35 45 73 73 58
22 21 37 74 70 92 101 103
24 43 50 64 100 104 120 92
45 100 62 79 100 70 70 101
41 41 74 59 70 90 100 99



(3.35)

3.6 Quantisation matrix resulting from merging the di-
agonal matrix

As explained in the previous sections, it is possible to integrate the diagonal matrix,
denoted as D, derived from an integer approximationmatrix T , into the quantisation
step.
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3.6.1 Equivalent quantisation matrix

If transform matrix of 2-dimentional data X is T , so:

Y = C.X.Ct = (D.T ).X.(D.T )t = D.T.X.T t.D (3.36)

where X is the entry block, Y is the transformed block by the transform T,T t

denotes the transpose of the transform matrix T and C = D.T .
Let

Y ∗ = T.X.T t (3.37)

Y = D.Y ∗D (3.38)

Let d be the element of the diagonal matrix, D. The entry of Y at position (i, j) is:

y(i, j) = di.dj .y
∗(i, j) (3.39)

Assuming that the elements of the original quantisation matrix is Q = [q(i, j)], the
quantised coefficient yQ(i, j) is:

yQ(i, j) = y(i, j)/q(i, j)
= di.dj .y

∗(i, j)/q(i, j)
= (y∗(i, j))/(q(i, j)/(di.dj)

(3.40)

Hence, the quantisation matrix of integer approximate transform T can be de-
veloped from the conventional quantisation matrix element q(i, j) dividing it by di.dj

that is q(i, j)/(di.dj). Accordingly, the equivalent quantisation matrix is D−1.Q.D−1.

3.6.2 Equivalent to inverse quantisation matrix

In the decoding process, the inverse quantisation matrix and the inverse transform
are combined as follows:

CT .(Y Q.Q).C =(D.T )T (Y Q ⊗Q)(D.T )
= T T .D.[Y Q ⊗Q].D.T

= T T .(D.Y Q.D)⊗Q.T

= T T .[Y Q ⊗D.Q.D)].T

(3.41)
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The symbol ⊗ represents the matrix dot where y(i, j)Q denotes the quantisation co-
efficient of y(i, j). This implies that didjy(i, j)Q must be calculated before perform-
ing the inverse transform. This step can be integrated with the inverse quantisation
process to make the inverse quantisation step as q(i, j)didj .

Therefore, when we use the integer approximate DCT transform matrix T to per-
form the forward and inverse transform, the quantisation and inverse quantisation
of the matrices are different. the resulting proposed quantisation matrix is:

QP −DCT −f = QP −DCT ⊘ (d×dt) (3.42)

QP −DCT −f is the forward quantisation matrix specifically designed for the JPEG
coder, taking into account the integer DCT approximations used in the compression
process. By applying the same method during the dequantisation stage, we can
obtain the inverse quantisation matrix:

QP −DCT −i = (d×dt)⊙QP −DCT (3.43)

3.6.3 Quantisation matrix design based on integer DCT

Despite the use of integer DCT approximations, the quantisation and dequantisation
stages in JPEG still involve floating-point multiplications and rounding operations.
However, we propose an alternative approach by introducing an integer power-of-
two approximation for our quantisation matrix, denoted as QP −DCT −f . This ap-
proach eliminates the need formultiplication operations in thematrices used during
JPEG quantisation and dequantization stages.

The new proposed forward and inverse approximate quantisation matrices are
expressed as:

Q̃P −DCT −f = 2ceil.log2(QP −DCT −f) (3.44)

Q̃P −DCT −i = 2ceil.log2(QP −DCT −i) (3.45)

where ceil(x) rounds the elements of x,x ∈ R, to the nearest integers. The resulting
matrices required bit-shift operations only, and they can be integrated directly into
image compression standard JPEG based on integer DCT.

3.6.4 Arithmetic cost evaluation

The arithmetic cost evaluation of forward and inverse transform /quantisation pair
stages for a single 8×8 image block is tabulated in Table 3.5.
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If no approximations are applied to the standard JPEG standard and only the fast-
scaled DCT (5 multiplications and 29 additions for an 8-sample vector) is used, the
standard JPEG requires the greatest number of operations (1180). This number is
reduced by Oliveira et al. in [42], an arithmetic operations savings of 24.1% in addi-
tions, and nomultiplication is needed in their implementation. An additional bit-shift
operation is required; it can be implemented visually with no computation cost.

In all our four proposed scenarios mentioned in Table 3.5, the number of arith-
metic operations is decreased compared with JPEG standard, it reaches to 640 op-
erations only and no multiplication is required using the transform in [1] with 16 ad-
ditions and the proposed quantisation matrix, Q̃P −DCT −f , with bit-shift operations
only. The reduction achieved to 512 additions means a saving of 44.8% compared
with the JPEG baseline and 27.3% compared with the quantisation matrix in [42].

Table 3.5: Arithmetic complexity comparison required by conventional JPEG and
other scenarios

Senario Addition Bits-Shift Multipli-
cation Round(.) Total Operation

saving
Standard JPEG 928 0 288 64 1180 -
Transf. in [1] and

QJP EG
512 0 128 64 704 40.34%

Transf.in [1]
and QP −DCT

512 0 128 64 704 40.34%

Transf. in [1] and
Q̃P −DCT

512 128 0 0 640 45.8%

Transf. in [2]and
Q̂Oliveira

704 128 0 0 832 29.5%

3.7 Integer DTT-based JPEG quantisation matrix
The framework for image compression and decompression in the DTT-based JPEG
standard follows a similar structure to the DCT-based JPEG baseline system, con-
sisting of three fundamental steps: DTT transform, quantisation, and entropy coding.
However, the key distinction lies in the use of the forward DTT in encoding, replac-
ing the original floating-point DCT, while the inverse DTT is employed alongside the
inverse floating-point DCT in decoding. This disparity stems from the different trans-
form basis matrices employed in DTT compared to DCT.

Recently, various researchers in [3, 4] proposed integer DTTs with applications
for image and video compression. According to experimental results, these approx-
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imate DTTs provide comparable performance to the DCT for lossy image compres-
sion. However, they did not investigate how to design the modified quantisation
matrix based on DTT. In this section, we propose to improve the baseline JPEG com-
pression standard based on integer DTT approximations.

3.7.1 Related work

DTT-based JPEG standard consists of replacing the DCT transform with the DTT.
It is mentioned that this quantisation matrix can be used as an exact luminance
quantisation matrix of the DTT [36]. In [117], an optimal quantisation matrix for the
DTT-based JPEG baseline is proposed. In reference, an optimal quantisation matrix,
Qopt, for a DTT-based JPEG baseline is proposed such as the following:

Qopt =



6 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 17 19
16 16 16 16 16 17 19 26
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16



(3.46)

3.7.2 Energy distribution of integer DTT approximations

The proposed approach discussed in section 3.5.3.1 to generate a quantisation ma-
trix by exploiting the energy distribution of integer DCT approximations suitable for
integer DCT-based JPEG standard has been exploited for DTT approximations.
Due to their efficiency in approximating the DTT and providing the best compromise
between coding performance and computational cost, the two integer approxima-
tions in [3, 4] were considered. Fig. 3.7, Fig. 3.8 and Fig. 3.9 show the energy
distribution of the Lena test image coefficients, using the exact DTT and the DTT
approximations reported in [3, 4], respectively.

Those figures illustrate that the energy distribution of coefficients varies across
different transforms. Fig. 3.8 presents the energy distribution of the DTT approxi-
mation reported in [3] for the test image Lena.
Considering this discrepancy, it becomes necessary for the quantisation factor to
depend not only on the coefficient’s position within the block but also on its energy
level; Coefficients with higher energy contain valuable information, thus requiring
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lower quantisation factors, whereas coefficients with lower energy can be assigned
higher quantisation factors to achieve efficient compression.

Fig. 3.7: Energy distribution of exact DTT for test image Lena

3.7.3 Quantisation matrix design based on integer DTT

The image compression based on DTT is similar to that of JPEG adopting a linear
uniform quantisation process to quantise the transformed coefficients, by dividing
the low-frequency coefficients by a small quantisation step and dividing the high-
frequency coefficients by a large quantisation step.

As a result, the quantisation factor should be different depending on the coeffi-
cient’s position in the block: it should be greater when the coefficients have little in-
formation content. In this context, we have proposed a quantisation matrix adapted
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Fig. 3.8: Energy distribution of the DTT approximation in [3] for test image Lena.

Fig. 3.9: Energy distribution of the DTT approximation in [4] for test image Lena
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to the integer DTT transforms.

QP −DT T =



16 16 18 19 24 36 36 31
19 16 20 22 24 40 23 40
20 22 24 28 37 53 50 54
24 20 25 35 45 73 73 58
22 21 37 74 70 92 101 103
24 43 50 64 100 104 120 92
45 100 62 79 100 70 70 101
41 41 74 59 70 90 100 99



(3.47)

3.8 Conclusion
Two different approaches to developing low-complexity integer 8-point DCT approx-
imations were proposed.

1. Based on a 16-floating-points DCT matrix and rounding off operations, this ap-
proach allows us to achieve two integer-8-point DCT transforms process low
computational complexity and without multiplication operations.

2. As a result of a successful introduction of some zeros in the transform in speci-
fied existing transforms, two novel others and efficient 8×8 orthogonal approx-
imate DCT-II transforms are obtained.

A new multiplier-less integer DCT-based JPEG quantisation matrix based on the
energy distribution of existing 8×8 integer DCT approximations are introduced. On
one hand, to assure efficient JPEG compression standard and on the other hand,
to eliminate any rounding operations due to quantisation stage. The same strategy
is applied to approximate the DTT-based JPEG algorithm and leads to a new and
efficient quantisation matrix.

74



Chapter 4

Experiments, evaluations, and
discussions

4.1 Introduction
Image compression is one of the important applications of theDCT. In order to check
the effectiveness of the proposed transforms Tpi and compared to other existing
DCT approximations, the following platform (Intel Core I5-8250U Processor ×64 at
1.6 GHz, 8 GB memory) using MATLAB R2017b programming language considered
the compression of six well-known test images such as Lena, Cameraman [116], Bar-
bara, Boat, Baboon, and Airplane [118], of size 512 × 512 (8 bpp). These images are
different in the type of content and the amount of detail they contain, which is in-
dicated by their patial Frequency Measure (SFM) [119] and Spectral Activity Mea-
sure (SAM) [120] parameters.

The SFM indicates the overall activity level in an image and the SAM indicates
the predictability of an image; the values of SAM vary between [1,∞[ and the higher
values of the SAM imply that the image is more predictable. The different character-
istic of images considered is tabulated in Table 4.1.
We carry out an experiment according to the following steps:

• Select one of the six test images as the input image;

• Divide each image into non-overlapping blocks of 64 (8×8) pixels;

• Apply the forward approximate DCT transform, considered in this study, to
each block for each image;
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4.1 Introduction

Table 4.1: The six greyscale test images used in this study

Name Image Size (pixel ×pixel) Pixel length SAM SFM

Lena 512×512 8 bits 910.17 14.02

Barbara 512×512 8 bits 445.82 29.45

Boat 512×512 8 bits 1144.4 17.85

Baboon 512×512 8 bits 99.70 36.51

Cameraman 512×512 8 bits 8132.4 14.36

Airplane 512×512 8 bits 2064.1 16.79

• Apply the zigzag scan;

• Select the coefficient retained of the 64 coefficients from each block and re-
construct the image by applying the inverse transform.

In order to evaluate the quality of the reconstructed images, three quantitative met-
rics are considered: Peak Signal to Noise Ratio, Structural Similarity Index Measure,
and Percentage Energy Error Norm. They are generally used in recent works of im-
age compression to evaluate the performance of several transformations.

76



Experiments, evaluations, and discussions

4.2 Proposed transforms based on 16-point DCT perfor-
mance evaluation

The efficiency curves of the proposed transform Cp1 and the existing transforms,
with the same arithmetic complexity, are shown in Fig. 4.1.

Fig. 4.1: Efficiency of proposed transform Cp1 and other integer DCT
approximations

Fig.4.1 shows that the proposed transform Cp1 offers improved efficiency com-
pared to the other transforms for all correlation coefficient values. It is the most
efficient transform after the integer DCT approximation C10 proposed in [38], noted
that C10 required 28 additions and 6-bit shift operations. Thus, an improvement of
about 27.8% in the number of arithmetic operations compared to Cp1.

Table 4.2 presents the Total Error Energy, ϵtotal, of the proposed transform Ĉp2

and considered approximated transforms.

Table 4.2: Total Error Energy, ϵtotal, for the proposed transform Ĉp2 and other
transforms

Transform C1 [25] C3[104] Ĉ [71] C̃ [71] C12 [6] CT [3] Ĉp2
ϵtotal 3.32 4.19 1.79 3.64 10.93 0.78 0.04
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4.2 Proposed transforms based on 16-point DCT performance evaluation

Among all considered non-orthogonal transforms, the proposed transform Ĉp2

provides the lowest value of the total error energy (grey highlighted in Table 4.2).
Note that our transform requires 24 additions and 6-bit shift operations, similar to
that of the approximate Tchebichef transformation reported in [3]. The transform
in [71] requires 26 additions. However, it provides a high total error energy. While
the transform of [6] performs the smallest number of arithmetic operations (17 addi-
tions) of the overall considered transforms, it displays the highest total error energy.

To illustrate the superiority of proposed transforms in image compression com-
pared to existing DCT approximations, the variation of the three assessment criteria:
PSNR, SSIM, PEEN, and their APE are shown in Fig.4.2, Fig.4.3, and Fig. 4.4, respec-
tively.

a b

Fig. 4.2: PSNR performance criteria: (a) Curves of average PSNR values for
different DCT approximations. (b) Corresponding APE

From Fig.4.2, the proposed transform Tp1 outperforms all recent integer trans-
forms considered in this study for all compression ratio values. It is slightly higher,
about 0.085, than the transform T11 reported in [38] requiring the same number of
operations. This superiority can be seen clearly observing the APE of PSNR’s curve
depicted in Fig. 4.2a. Our proposed transform demands 13.3% less operations than
the transform T9 reported in [35], on the other hand, it significantly outperformed T9

in terms PSNR inmiddle and high compression ratio. The other transforms T4−cintra

[29], T7 [28] and T3 [104] required the same number of operations than the proposed
transform Tp1 but their performances remain less significant.
These results are confirmed by the SSIM and PEEN assessment criteria and their
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corresponding APE curves presented in Fig.4.3 and Fig.4.4 respectively. From these
figures, the proposed transform Tp1 has the lowest value of APE compared to the
other transforms.

a b

Fig. 4.3: SSIM performance criteria: (a) Curves of average SSIM values for different
DCT approximations. (b) Corresponding APE

a b

Fig. 4.4: PEEN performance criteria: (a) Curves of average PEEN values for
different DCT approximations. (b) Corresponding APE

In the same way, the curves obtained of the second proposed transform T̂p2 by
using different performance measures are shown in Fig.4.5. In view of the fact that
the DCT matrices: T8, T9 in [35] and T6−cintra [29], with 24 additions and 6-bit shift
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4.2 Proposed transforms based on 16-point DCT performance evaluation

operations, have the higher performance than the T1, we have considered them for
the performance comparison of the proposed transform T̂p2

a b

c

Fig. 4.5: Quality assessment in terms of: (a) PSNR,(b) PEEN, (c) SSIM of proposed
transform T̂p2 and different DCT approximations

From the PSNR, SSIM, and PEEN variation plots depicted in Fig.4.5, it appears
clearly that the compression performance of the proposed transform T̂p2 is very
close to that Scaled DCT [75] requiring 11.8 % fewer operations. Compared to the
transforms T8, T9 and T6−cintra, the proposed transform T̂p2 offers a considerable
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superiority in performance in terms of the comparison criteria: PSNR, PEEN, and
SSIM, while it kept the same number of arithmetic operations.

In comparisonwith theT10 [38], the proposed transformperformed very closely in
terms of PSNR, PEEN, and SSIM, while achieving a reduction of 12% in the number of
arithmetic operations. Although the proposed transform T̂p2 is non-orthogonal it pro-
vides the lowest value of deviation from the orthogonality measurement σ and the
total error energy, ϵtotal, compared to all other existing non-orthogonal transforms as
listed in Table 3.4 and Table 4.2, respectively and discussed previously, where it of-
fers better value than that of themaximum value of deviation from the orthogonality
considered in [119].

With regard to the visual effects of reconstructed images and by maintaining
a compression ratio (CR) up to the CR value recommended by [29, 6], the recon-
structed Lena images using the proposed transforms and the other approximate
DCT transforms considered in this study are illustrated in Fig.4.7 and Fig. 4.8.

Both proposed approximate transforms produce comparable results to that of
the scaled DCT, with no difference in visual perception.

From Fig. 4.6 we can show that our proposed transform T̂p2 outperforms the in-
teger approximate Tchebichef transform reported in [3] in terms of total error energy
Table 4.2 and PSNR despite they have the same number of arithmetic operations.

Fig. 4.6: PSNR variation of Tp2 vs Tchebichef transform for test image Lena
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4.3 Proposed transform based on introducing of element nul

a Original Lena 512×512
image

b Scaled DCT:
PSNR = 44.08dB

c T̂p2:
PSNR = 43.47dB

d T1 : PSNR = 39.905dB e T8 : PSNR = 43.419dB f T9 : PSNR = 41.462dB

g T10:
PSNR = 43.829dB

h T6−cintra:
PSNR = 42.723dB

Fig. 4.7: Original and reconstructed Lena image using : T̂p2 and different DCT
approximations

4.3 Proposed transformbasedon introducing of element
nul

4.3.1 First proposed transform
Fig. 4.9 shows the plot of averagePSNR, averagePEEN, and average SSIM values ob-
tained for the test images using different approximation methodsmentioned above.
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a Tp1 : PSNR = 42.95dB b T1 : PSNR = 39.91dB c T3 : PSNR = 42.33dB

d T5 : PSNR = 43.13dB e T7 : PSNR = 42.21dB f T9 : PSNR = 41.46dB

g T11 :
PSNR = 42.70dB

h T4−cintra : PSNR =
42.42dB

Fig. 4.8: Reconstructed Lena images using Tp1 and different DCT approximations

Figure 4.9a indicates that the proposed transform and Bas-2011 {a = 1} [5] achieve
similar results, although our transform retains 11.11% of the number of the required
operations. Compared with the same transformwith {a = 0}, our transform shows a
slight improvement at middle bit rates (with the number of the coefficients retained
ranging from 20 to 27). However, we can notice a significant improvement in perfor-
mance at high bit rates. Compared to the remaining transforms, the one we propose
provides better values of PSNR at all compression ratios, even though it illustrates
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4.3 Proposed transform based on introducing of element nul

the lowest complexity. Note that the transform T13 required 14 additions only. Nev-
ertheless, we can notice a decline in performance.
In Fig. 4.9b, we have shown the plot of average PEEN values obtained for different
approximation transforms. As can be seen from Fig. 4.9b, the proposed algorithm
delivers the best performance in comparison with the most existing methods at all
compression ratios. Fig. 4.9c confirms the results discussed above.

a b

c

Fig. 4.9: Quality assessment of Tp3 and other DCT approximations : (a) Average
PSNR, (b) Average PEEN, and (c) Average SSIM

Fig. 4.10a illustrates the difference in PSNR between the proposed transform T̂p2

and the parametric transform mentioned in [5] with specific parameters a = {2,1,0}

84



Experiments, evaluations, and discussions

Fig. 4.10b shows the difference between the PSNR obtained by our proposed
transform T̂p2 and that obtained by the transform in [6]. It is clear from this figure
that along with the number of additions reduced by one addition, another still more
important improvement in PSNR is achieved by our transform.

a b

c

Fig. 4.10: The gain in PSNR of Tp3 over : (a) T6 transform in [5] with a = {0,1,2}, (b)
T12 Transform in [6], (c) T2 Transform in [7]

As indicated by the above curves, the overall performanceof our transformshows
an improvement as compared to the previous one. In comparison with the trans-
form in [5] for a = 2, requiring 18 additions and 2 bit-shifts, the proposed transform,
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4.3 Proposed transform based on introducing of element nul

with just 16 additions, provides significant improvements in performance in terms
of both PSNR and computational complexity, as is evident from Fig. 4.10a and Table
4.3, respectively. With respect to the transform in [5] with a = 1 and 18 additions, our
transform produces a slight improvement, with only 16 additions. For a = 0, without
increasing complexity, similar results are displayed at low bit rates (the number of
coefficients retained is less than 15). On the other hand, at high bit rates (the number
of transformed coefficients retained is greater than 30), our transformation seems
to be better.

The difference between our transform and its original transform [7] is shown in
Fig. 4.10c. A slight degradation can be observed at the high compression ratio; this
degradation is increased when the compression ratio is decreased. And that’s due
to the fact that our transform presents a reduction of 4 arithmetical operations com-
pared to its original transform.
Table 4.3 summarises some numerical values of the average PSNR resulting from
the application of each transform on the test images for different numbers of coef-
ficients retained for the image reconstruction.

Table 4.3: Average PSNR (in dB) of different transforms

Methods Number of arithmetic
operations

Number of coefficients retained
05 10 20 30

Tp3 16 additions 37.03 29.20 41.36 44.17

T2[7]
18 additions and

2 bit-shifts 37.08 39.50 42.09 44.73

T12[6] 17 additions 36.29 37.45 38.26 41.49

T6 (a = 2) [5] 18 additions and
2 bit-shifts 36.86 38.50 40.03 42.44

T6 (a = 1) [5] 18 additions 37.00 39.12 41.18 44.02
T6 (a = 0) [5] 16 additions 37.03 39.20 41.23 43.47

T13 [32] 14 additions 35.85 37.22 39.29 40.42
T1 [25] 24 additions 35.34 37.56 39.40 41.83

Scaled DCT 29 additions and
5 multiplications 38.08 40.78 44.26 47.19

The PSNR values of the best transform that provides a good compromise be-
tween the number of operations and the compression performance are highlighted,
as shown in Table 4.3 and Table 4.4. These results provide clear evidence of an
improvement in performance by using our transform, in addition to performing a
few operations. As compared to the transform in [7], requiring 18 additions and 2-bit
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Experiments, evaluations, and discussions

shifts operations, the onewe proposed shows a slight decrease in PSNR. In contrast,
it generates cost savings in computation, without bit shift operations and with only
16 additions.

As shown in Table 4.3, the transform in [7] outperforms all other transforms, as
it has the largest number of arithmetic operations. Compared to our transform, we
notice a slight difference that varies from 0.2 dB (for Barbara) to 0.6 dB (for Airplane
and Lena). Note that the cost savings in computation associated with our transform
is 4 arithmetic operations without bit shifts.

We now compare the performance of the proposed transform with other trans-
forms considered in this study. As Table 4.4 illustrates, the results showa significant
improvement over the transform T12 [6] up to 2 dB, Moreover, even if our transform
has the smallest number of operations, it outperforms the parametric transforma-
tion of [7].
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Experiments, evaluations, and discussions

Finally, a subjective evaluation is shown in Fig. 4.11 for the Lena test image. The
image has been subjected to a JPEG-like compression experiment. Only 5 of the
64-transformed coefficients in each block were used to reconstruct the image, all
other coefficients were set to zero. This value is already considered in a previous
work [2]. As may be noted, the reconstructed image using the proposed algorithm
produces fewer blocking artifacts than the methods in [2]. The quality of the image
reconstructed using the transform in [2] diminished, even though the number of op-
erations has been reduced by two compared to the proposed one.
As a result, the proposed transform offers a good compromise between perfor-
mance and complexity.

a b Tp3 : PSNR = 27.05dB c T13 : PSNR = 24.77dB

d T12 :
PSNR = 26.69dB

e T6 {a = 2}:
PSNR = 26.69dB

f Tp1 :
PSNR = 25.71dB

Fig. 4.11: The original and reconstructed Lena image using proposed Tp3 transform
and different DCT approximation
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4.3 Proposed transform based on introducing of element nul

4.3.1.1 Complexity analysis in termsof comparing the running timeof the forward
transformation

The proposed fast algorithm and the algorithm presented in [7] were compared in
terms of running time. The comparison was conducted using MATLAB program-
ming language on a platform consisting of an Intel Core I5-8250U Processor ×64 at
1.6 GHz and 8 GB memory.
The forward transform was performed on three Lena greyscale images of sizes
256 × 256, 512 × 512, and 1024 × 1024, and the average values obtained were pre-
sented in Table 4.5 The results in the table confirm our previous findings regarding
arithmetic operations, as the proposed algorithm outperforms the other algorithm
in terms of running time. This is because the proposed transform requires fewer
computations.

Table 4.5: Comparison of the Running Time between the Proposed Transform Tp3
and its Original Version

Transforms
Lena image size

256× 256 512 × 512 1024 × 1024
Tp3 0.0111 0.0446 0.317
T2 0.0120 0.0462 0.0331
T12 0.0116 0.0448 0.0320

Scaled DCT 0.0908 0.433 1.869

4.3.1.2 Comparison of Performance with Hadamard Transform

In this particular section, we are comparing the compression performance of the
proposed transform Tp3 with the 8-point Hadamard transform [121]. A similar exper-
iment to the one described in section 4.1 is performed using the Hadamard trans-
form [121], our proposed transform, and the conventional DCT transform. The per-
formance comparison is presented in Fig. 4.12, based on themetrics of PSNR, PEEN,
and SSIM. The results indicate a clear improvement in the performance of the pro-
posed transform as compared to the Hadamard transform, with only 16 additions
performed instead of the 24 required by the Hadamard transform.
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a b

c

Fig. 4.12: Evaluation of Tp3 Vs Hadamard transform for image Lena in terms : (a)
PSNR (b) PEEN (c) SSIM

4.3.2 Second proposed transform

In Fig. 4.13, the variations in performance criteria PSNR, PEEN, and SSIM for the
"Lena" test image are plotted. At low bit rates where the number of spectral coeffi-
cients retained is less than 15, the proposed transform, Tp4, is similar in performance
to transforms T1, T3, T7, T12, and T9, as seen in Fig. 4.13a. However, there is a slight
decrease in performance compared to transform T10 and due to a reduction in addi-
tional operations. At middle and high bit rates, the proposed transform outperforms
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4.3 Proposed transform based on introducing of element nul

all the other transforms except for the T10 transform, with a difference in PSNR per-
formance of less than 1 dB, even though our transform has 6 fewer additions.

a b

c

Fig. 4.13: Objective quality assessment of Tp4 for image Lena in terms of:
(a) PSNR (b) PEEN (c) SSIM
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a b

c

Fig. 4.14: Difference between the proposed and other DCT approximations for test
image ‘Lena’ in terms of: (a) PSNR (b) PEEN (c) SSIM

Based on Fig. 4.13b, when the number of coefficients retained is below 15 (high
bit rate), there isminimal variation in PEENbetween Tp4 and T14 However, at different
bit rates, our proposed transform outperforms the T14 transform. It’s worth noting
that both transforms involve the same number of additions, except that our trans-
form employs more bit shift operations. In practical implementation, most adders
and shifters function concurrently, resulting in a decrease in delay.
By examining Fig. 4.13c and Fig. 4.14c, it becomes apparent that the proposed trans-
form Tp4 yields superior SSIM values compared to the other transforms, consistent
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4.3 Proposed transform based on introducing of element nul

with the earlier findings.
To provide an objective assessment of the results, we focus on the disparity be-
tween the proposed transform Tp4 and other approximate transforms. The results
are presented in Fig. 4.14, where it can be seen fromFig. 4.14a that the Tp4 transform
surpasses most of the rival approaches in PSNR performance. Tp4 outperforms T1,
T3, T9, and T12 transforms across all compression ratios, with significant gains of
approximately 3 dB, 4 dB, 2.5 dB, and 5 dB, respectively.

Based on the discussion, it was concluded that T12 [6], T10 [38], T14 [106], and T9

[35] are the approximations that strike a better balance between performance and
complexity. The non-orthogonal transforms in [25] and [104] were excluded from
consideration due to their limited performance in image compression. It is worth
noting that while the fast algorithm for the inverse transform in [104] requires only 21
additions and 3 bit-shift operations, no algorithmwas proposed in [25] for efficiently
computing the inverse SDCT matrix.
Table 4.6 provides a summary of the numerical results obtained from implementing
the proposed transform, Tp4, and the recent approximations discussed earlier under
the JPEG-like standard. These results are based on PSNR and compression ratio
(CR) values. To ensure a fair comparison, we calculated the PSNR value for each
transform using an equal ratio.

Table 4.6: Comparison of Compression Performance among Several Approximate
DCT Transforms

Image Lena Boat Baboon Airplane Bridge Cameraman

Scaled DCT PSNR 33.91 32.24 24.05 33.33 27.02 36.33
CR 12.89 11.57 8.89 12.33 08.16 13.88

T12[6]
PSNR 28.77 26.32 21.69 26.30 23.23 27.78
CR 12.55 11.56 08.31 12.22 08.19 13.91

T10 [38] PSNR 31.59 29.68 23.55 29.27 26.10 31.93
CR 12.55 11.81 08.35 12.22 08.21 13.80

T14 [106] PSNR 30.73 29.14 23.15 29.28 25.43 30.80
CR 12.32 11.53 8.26 12.45 08.29 13.70

T9 [35] PSNR 30.57 29.10 23.44 29.30 25.66 30.62
CR 12.82 11.61 8.38 12.46 08.23 13.64

Tp4
PSNR 30.71 29.16 23.33 29.75 25.77 30.73
CR 12.72 11.57 8.28 12.21 08.14 13.75

Table 4.6 displays the comparison of compression performance among several
approximate DCT transforms, indicating that the proposed transform offers compa-
rable compression quality to [6] for all test images. Conversely, the non-orthogonal
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SDCT transform demonstrates the lowest image quality for all images considered.
Furthermore, the proposed transformgenerally shows improvedperformance, achiev-
ing a cost complexity reduction of 6 additions without compromising image quality,
when compared to the transform in [35]. When a single addition decrement is made,
the DCT transform’s performance evaluation shows a decline compared to the pro-
posed Tp4 transform for all test images. Moreover, the proposed transform outper-
forms the T14 transform in terms of PSNR formost of the test images, with the same
number of addition operations.
The subjective evaluation in image compression applications considers different
numbers of retained coefficients. For instance, in [122], the authors found that only
16 coefficients are necessary for accurate image reproduction.
The study conducted a subjective evaluation of image reconstruction using differ-
ent transforms, which is presented in Fig. 4.15. The reconstruction was performed
using only 16 out of 64 spectral coefficients from each block for the test image,
Lena. The results show that the proposed transform produces fewer blocking arte-
facts compared to the transforms used in previous studies [35] and [104]. Based on
this finding, the study concludes that the proposed transform provides a favorable
balance between performance and arithmetic complexity.

An enlarged view of a section of the reconstructed test image ’Lena’ is presented
in Fig. 4.16 for the three transforms: T9, T12, T14 and Tp4. It is evident from this figure
that the image reconstructed by our transform has fewer blocking artefacts com-
pared to the other two transforms. This suggests that our transform outperforms
the other two transforms in terms of blocking artefact reduction.
**** Other test images
Additional test images have been introduced in this section to validate the results,
as only the reference image Lena was utilised in previous sections to evaluate the
proposed transform.

The figures: Fig. 4.17, Fig. 4.18, and Fig.4.19 depict the curves illustrating the
variations in objective quality assessment for the test images Boat, Bridge, and Cam-
eraman. The assessment criteria include PSNR, PEEN, and SSIM.When considering
the Bridge image, which exhibits a lower predictability level (SAM=134.48), the pro-
posed transform demonstrates a remarkable similarity to other transforms for high
and medium compression ratios, while surpassing them in other cases.
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4.3 Proposed transform based on introducing of element nul

a b PSNR=31.28 dB, CR =11.71

c PSNR=31.88 dB, CR =12.31 d PSNR=29.11 dB, CR =11.90

e PSNR=31.28 dB,
CR =11.71

f PSNR=30.64 dB,
CR =12.78

g PSNR=31.46 dB,
CR =12.26

Fig. 4.15: The reconstructed Lena image using various transforms: (a) Original
image, (b) Scaled DCT, (c) T10, (d) T12, (e) T14, (f) T9, (g) Tp4
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a b

c d

Fig. 4.16: An enlarged view of an area of the Lena test image using:
(a) T14, (b) T12, (c) T9 , (d) Tp4
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4.3 Proposed transform based on introducing of element nul

a b

c

Fig. 4.17: Objective quality assessment in terms of (a) PSNR, (b) PEEN, and (c)
SSIM of proposed transform Tp4 for the test image Boat
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a b

c

Fig. 4.18: Objective quality assessment in terms of : (a) PSNR, (b) PEEN, and (c)
SSIM of proposed transform Tp4 for the test image Bridge
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4.3 Proposed transform based on introducing of element nul

a b

c

Fig. 4.19: Objective quality assessment in terms of (a) PSNR, (b) PEEN, and (c)
SSIM of proposed transform Tp4 for the test image Cameraman
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4.4 Performance comparison of proposed transformver-
sus Hadamard and Tchebichef transforms

Two other transforms which have recently been used in the field of compression are
the Walsh – Hadamard transform (WHT) and the Tchebichef transform. These two
linear image transforms are chosen because of their flexibility, energy compaction,
and decorrelation properties [3, 123, 124]. In this section, we compare the compres-
sion performance of the proposed transform to the 8-points Hadamard transform
in [121] and Tchebichef transforms TT ch1 and TT ch2 in [3, 109], respectively.

The arithmetic complexity of these transforms is summarised in Table 4.7. Note
that the two Tchebichef transforms matrices are not orthogonal. However, the mul-
tiplication of the forward and inverse matrices has a deviation from the diagonality.

Table 4.7: A cost comparison of arithmetic operations with the Hadamard and
Tchebichef transforms

Transform One dimension
add. Shift Mult. Total

Hadamard 24 0 0 24
TT ch1 20 0 0 20

(TT ch1)−1 29 8 0 37
TT ch2 24 6 0 30
Tp4 18 6 0 24

We perform a similar experiment to that described in section 4.1, using these two
transforms, with our proposed transform and the conventional DCT transform. The
performance comparison is provided in terms of PSNR, PEEN, and SSIM, for Lena
test image. The results obtained are illustrated in Fig. 4.20. In comparison with the
Hadamard transform, requiring 24 additions, the results of our study show signifi-
cant improvements in the visual performance of the proposed transform. According
to the results presented in Fig.4.20, the proposed integer DCT significantly improves
the overall compression performance of the approximate Tchebichef transform pro-
posed in [3] while it takes advantage of the significantly lower operating costs com-
pared to the approximation non-orthogonal of Tchebichef in [109]. In addition, a
degradation of about 1 dB in terms of PSNR is obtained by our transformation com-
pared to the Tchebichef approximation introduced in [3], which can be interpreted by
the significant reduction in the arithmetic computation of our proposed transform.
At low bit rates, we can observe from the SSIM and PEEN plots, that the results of
our transform are close to those in [3].
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a b

c

Fig. 4.20: Objective quality assessment in terms of (a) PSNR, (b) PEEN, and (c)
SSIM of proposed transform Tp4 for the Lena test image

4.5 Integer DCT-based JPEG quantisation matrix

For an appropriate assessment of our proposed quantisation matrix in an image
compression application, the simulation of the JPEG-like standard is considered.
Four different scenarios summarized in Table 4.8 have been applied to the three
gray-scale test images Lena, Boat, and Bridge. These images are chosen for their
differences in the type of content and the amount of detail they contain, which is
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indicated by their Spatial Frequency Measure (SFM) and Spectral Activity Measure
(SAM) parameters.

Kipping the same values of Compression Ratio (CR) for all different considered
scenarios, the resultant images quality criteria PSNR is given in Table 4.8. From
Table 4.8, it can be shown that the high PSNR values are delivered when we used
the proposed bit-shift approximate quantisationmatrix,Q̃P −DCT , combined with the
integer DCT transform suggested in [1] for all considered test images. It can offer
an average gain in PSNR until about 2 dB. A slight improvement can be shown using
the approach suggested in [42], about 0.3 dB compared to the conventional JPEG
approach.

Table 4.8: Image quality comparison in terms of PSNR for different test images

Test Image CR Quantisation Matrix PSNR (dB) PSNR Improvement (dB)

Lena

14.70 QJP EG 29.81 -
14.56 QP −DCT 31.08 1.27
14.65 Q̃P −DCT 32.03 2.22
14.86 Q̂Oliveira 29.84 0.03

Boat

12.16 QJP EG 28.76 -
11.92 Qp−DCT 29.83 1.07
12.10 Q̃P −DCT 31.14 2.38
12.09 Q̂Oliveira 29.14 0.38

Bridge

7.72 QJP EG 25.70 -
7.67 QP −DCT 26.31 0.61
7.66 Q̃P −DCT 27.29 1.59
7.81 Q̂Oliveira 25.77 0.07

4.6 Integer DTT-based JPEG quantisation matrix
For a fair assessment of our proposed quantisation matrix of greyscale image com-
pression, the JPEG-like standard is considered. The image compression /decom-
pression system follows the framework of the DTT-based JPEG standard, with three
important steps: transform (exact DTT or integer approximate DTT transforms),
quantisation and entropy coding.

For each transform, at the same compression ratio, we compute the PSNR us-
ing the standard quantisation matrix JPEG, QJP EG, the optimal quantisation matrix,
Qopt in [117] for exact DTT-based JPEG standard and the proposed quantisation ma-
trix, QP −DT T . The three well-known greyscale test images of size 512×512: Lena,
Boat, and Bridge were used for performance comparison purposes. These images
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4.6 Integer DTT-based JPEG quantisation matrix

Table 4.9: Performance evaluation of the proposed quantisation matrix

Transforms Quantisation
matrices

Lena Boat Bridge
CR PSNR CR PSNR CR PSNR

Exact DTT
QJP EG 13.01 29.80 11.71 28.31 08.29 24.49

Qopt 13.06 29.77 11.75 28.41 08.29 24.51
QP −DT T 13.01 29.69 11.62 28.32 08.21 24.45

DTT apprx.
in [3]

QJP EG 13.04 31.09 11.74 29.59 08.32 25.70
Qopt 13.23 31.10 11.92 29.61 08.37 26.02

QP −DT T 13.33 31.77 11.86 30.01 08.37 26.02

DTT approx.
in [4]

QJP EG 13.11 31.94 11.63 30.55 08.22 26.22
Qopt 12.84 32.31 11.78 30.59 08.30 26.23

QP −DT T 12.86 33.40 11.70 31.19 08.28 26.59

are chosen for their different content and the amount of detail they contain, which is
indicated by their parameters: spatial frequencymeasure (SFM) and spectral activity
measure (SAM). Table 4.9 shows the PSNR values obtained using similar compres-
sion ratio values for the various cases considered. When using the exact DTT-based
JPEG baseline, the PSNR values of our proposed quantisation matrix are slightly
lower than those of other existing quantisation matrices. For all test images, the
PSNR values again for the approximate DTT-based JPEG, using the proposed quanti-
sationmatrix, are higher than those of the other quantisationmatrices. For instance,
an improvement of about 0.6 dB is obtained when we compare our proposed quan-
tisation matrix with the optimal quantisation matrix Qopt proposed in [117].
Fig. 4.21 shows the reconstructed image using the exact DTT and approximate DTT
for different quantisation matrices. As can be seen from Fig. 4.21, the quality of the
reconstructed images using the quantisation matrices Qopt or QP −DT T is slightly
better than that of QJP EG when employing the exact DTT transform in the JPEG
standard. Moreover, by using the approximate DTT [4] in JPEG standard, it can be
shown that the visual quality of the images reconstructed with the proposed quan-
tisation matrix is superior to that of the two alternative quantisation matrices. Note
that the transform in [4] requires a smaller number of arithmetic operations com-
pared to the exact DTT transform.
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a Exact DTT, QJP EG, CR=17.84,
PSNR=29.19 dB

b Exact DTT, Qopt, CR=17,35,
PSNR=29.42 dB

c Exact DTT, QP −DT T ,
CR=17.85, PSNR=29.42 dB

d DTT in [4], QJP EG, CR=17.87,
PSNR=29.64 dB

e DTT in [4] , QJP EG, CR=17.39,
PSNR=30.56 dB

f DTT in [4], QP −DT T , CR=17.92,
PSNR=30.65 dB

Fig. 4.21: The reconstructed Lena image by different quantisation matrices
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4.7 Conclusion

4.7 Conclusion
The results obtained in our research were presented in this chapter. The implemen-
tation of our strategy in the JPEG still image compression standard shows the supe-
riority of our proposed integer transforms over other transforms in the literature. The
combination of our transforms with the proposed appropriate quantization matrix
ensures an improvement of the JPEG compression standard in terms of the number
of operations as well as the quality of the reconstructed images.
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Conclusion and Perspectives

We proposed two new approaches for developing low-complexity approximations
of the integer 8-point DCT. These approaches aim to simplify the computation of
the DCT while maintaining its accuracy, which can be useful in applications such as
image and video compression.

Based on 16-floating-points DCT matrix and rounding-off operations: this ap-
proach uses a 16-floating-points DCT matrix and rounding-off operations to achieve
two integer 8-point DCT transforms with low computational complexity and with-
outmultiplication operations. The proposed transforms outperform popular alterna-
tives in terms of compression performance criteria and computational complexity.
For example, in our tests on image compression, the proposed transforms achieved
a higher compression ratio than the popular DCT transforms while requiring less
computational resources. These results demonstrate the potential of the proposed
transforms for practical applications in image and video compression.

Successful introduction of some zeros in existing transforms: the second ap-
proach involves introducing some zeros into existing transforms, resulting in a new
transform that performs better than existing approximate transforms with the same
number of operations, and even some transforms with more operations. This new
transform requires only 16 additions, and an efficient algorithm has been developed
for its computation. The other approach results in a new transform that provides im-
proved image compression performance compared to other transformswith similar
arithmetic operations. While it performs similar operations to its counterparts, this
transformproduces higher-quality output images. Our proposedmethods save com-
putational cost compared to the original transform, with a reduction of 4 additions,
and an efficient and fast algorithm has been developed, making the new transform
suitable for hardware implementation.

We also propose a new multiplier-less JPEG quantisation matrix based on the
energy distribution of existing 8 × 8 integer DCT approximations. This matrix aims
to improve integer DCT-based JPEG standard efficiency and eliminate rounding op-
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4.7 Conclusion

erations that occur during the quantisation stage. Our proposed quantisationmatrix
improves the capability of image compression by providing high PSNR improvement
compared to existing quantisation matrices.

Specifically, we developed the quantisation matrix by analysing the energy distri-
bution of existing 8x8 integer DCT approximations. Our matrix is designed to allo-
cate quantisation step sizes according to the energy distribution of the DCT coeffi-
cients, which can result in more efficient compression. We tested our matrix on a
variety of images and found that it consistently outperformed existing quantisation
matrices in terms of PSNR improvement. In summary, our proposed multiplier-less
JPEG quantisation matrix offers a promising approach for improving image com-
pression efficiency and maintaining high image quality.

To design an efficient approximate DTT-based quantisation matrix, we investi-
gated the energy distribution of coefficients in existing integer DTT approximations.
Our experiments show that combining integer DTT approximations with the pro-
posed quantisation matrix outperforms the DTT based on the optimal quantisation
matrix by an average of about 0.6 dB in terms of PSNR. Additionally, compared to
the standard JPEG quantisation matrix, our approach achieves an improvement of
more than 0.43 dB.

Futurework encompasses incorporating the suggested transformations into real-
time applications and the domain of video compression. Additionally, another inter-
esting perspective involves adapting these transforms for data cryptography pur-
poses. Such an adaptation would enable the exploration of the potential applica-
tions of these transformations in data security and confidentiality protection. This
research aims to investigate the performance of the transforms in the context of
cryptography by evaluating their resistance to attacks and their ability to ensure the
integrity and confidentiality of sensitive data. This exploration thus presents oppor-
tunities for enhancing data security while capitalising on the advantages offered by
the proposed transforms.
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