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Abstract 

    In our thesis, we have presented an exact analytical solution of the massless 
Dirac-Graphene equation in the presence of two plane wave fields using 
Volkov's ansatz. We have also adapted the supersymmetric path integral 
formalism to construct the corresponding Dirac-graphene propagator. Finally, 
the wave functions are deduced. On the other hand, we have studied the problem 
of graphene's quasiparticle-hole pair creation from the vacuum under the action 
of two gauges different of an electromagnetic field and in NC phase space 
coordinates by using Schwinger's method. Also, we applied the same formalism 
to analyze the pair creation process of both scalar and spinorial relativistic 
particles. For each case, the effective action is calculated by the supersymmetric 
path integral formalism. As an application, all special cases of (θ, η, E, B) have 
been studied and discussed. In addition, the influence of one and two orthogonal 
plane wave fields on the pair creation process in graphene is examined. The 
essential result of this work is that noncommutativity has an influence on the 
process of pair creation from the vacuum, and the plane wave does not 
contributes to this process. Furthermore, we have solved the Dirac-graphene 
equation for quasiparticles in interaction with the combination of a plane wave 
and a parallel magnetic field, following two different techniques. The first one is 
by using the Redmond method, and the second is by using the delta functional 
method. We have also studied the pair creation of graphene's quasiparticle-hole 
from the vacuum by this configuration of the field. 

    Key words: Graphene, quasi-particles, path integral, Fradkin and Gitmann 
formalism, Green's function, propagator, Dirac equation, Grassmann variables, 
Non-commutative geometry, Schwinger effect, plane wave, electromagnetic 
field, Redmond field. 
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Chapter 1

General introduction

The award of the Nobel Prize in Physics in 2010 went to Sir Konstantin Sergeevich Novoselov

and Andre Geim, Dutch and Russian-British scientists, for the importance of their revolu-

tionary work on graphene [1]. graphene is a two-dimensional material made of carbon atoms

arranged in a honeycomb lattice, having excellent optical, mechanical, and electrical properties

[2]. Nowadays, researchers�attention is increasingly focused on researching the extraordinary

features of graphene [3, 4]. For example, the graphene quasiparticles have a linear relationship

between energy and momentum [5, 6] and behave as massless relativistic fermions [7, 8, 9] satis-

fying the two-dimensional Dirac equation with an e¤ective speed of light of 106 m:s�1 so-called

�the Fermi velocity �F�[10, 11, 5]. This property resulted in a number of new phenomena, par-

ticularly the Hall e¤ect and the Klein tunneling e¤ect [5]. This makes graphene a unique model

system that gives the ability to examine the e¤ects of quantum electrodynamics in strong �elds

[12, 13]. Additionally, it introduces a promising new direction of research about gravity-like

phenomena (also known as "analogue gravity") on graphene [14]; the Hawking e¤ect, [15] and

the Schwinger e¤ect, which is the fundamental topic of this work.

It is well known that the fundamental sources of the strong �eld are modern optical lasers

such as the HERCULES laser [16] and the Extreme Light Infrastructure (ELI) [17] can produce

intense electromagnetic �elds, which are of the order E = 1015 V=m corresponding to �eld

strengths E = 10�3Ecr where (Ecr = 1:32 � 1018 V=m) [18]: In addition, the European X-ray
Free-Electron Laser (XFEL), where the �eld strength is of the order E = 1017 V=m [19].

Astrophysical objects are another source for strong electromagnetic �elds. Among these

sources, we �nd black holes, active galactic nuclei, gamma-ray bursts, which generate super-
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strong electromagnetic �elds [20], and pulsars [21], like rotating neutron stars, which emit

electromagnetic radiation periodically. There are many other sources, like linear colliders and

relativistic heavy ion collisions [18].

The use of a laser as a strong electromagnetic radiation source revealed the new character-

istics of elementary particles, and in the near future, the system of two lasers can form a new

scienti�c revolution. There are also a series of studies concerning the Compton scattering and

the Schwinger e¤ect in the presence of a strong �eld, particularly in graphene material.

Before World War II, British physicist Paul Dirac made many contributions to quantum me-

chanics. In 1926, Dirac in his thesis demonstrated the equivalence of the two recent formalisms

of quantum physics, Heisenberg�s matrix mechanics and Schrödinger�s wave mechanics. The

fundamental contributions are: the magnetic monopole [27, 28, 29], which makes it possible to

explain the quanti�cation of the electric charge and which has not yet been detected by ex-

periments; the quantum statistics of fermions, called Fermi-Dirac; and the �rst mathematical

formalism of quantum �eld theory. What attracted attention was how Dirac could imagine the

existence of antimatter (the proton in that period) in 1930 in his paper "A Theory of the

Electron and the Proton" [30].

Two years before, exactly in 1928, [31] Dirac wrote an equation that combined quantum

theory and special relativity to describe the behavior of spin 1=2 quantum particles (electrons,

for example) moving at a speed close to that of light [32].

There remained the problem of the negative energy solutions [holes] of these equations (in

the classical case, one can purely and simply reject the negative solutions, but in the quantum

case, transitions can take place between these states). Dirac then proposes a solution to this

problem by assuming that the universe consists of both negative and positive energy states.

After having imagined protons, he indicated in 1931 that these states of negative energy known

as the Dirac sea could be occupied by "a new kind of particle, unknown to experimental physics,

having the same mass and opposite charge to those of the electron". Since the positron was not

observed in that period, it was the proton that was �rst interpreted as the electron�s antiparticle.

As early as 1932, Anderson con�rmed Dirac�s theory by discovering the positive electron, or

positron, in cosmic rays and in �+ radioactivity [33, 32].

After the discovery of the Dirac theory and with the discovery of the famous paradox of

Klein [34], the most important non-perturbative quantum e¤ect in quantum �eld theory is the

pair production phenomenon, �rst predicted in the presence of a strong and static external
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electric �eld by Julian Schwinger, one of the founders of quantum �eld theory.

Despite the fact that the theory was originally put forward in 1930 by a team of researchers

consisting of Fritz Sauter, Werner Heisenberg, and Hans Euler, they computed the leading

quantum correction to the Maxwell Lagrangian in their paper [35, 36]. Also, they found that

the e¤ective action in quantum electrodynamics (QED) of a particle interacting with a classical

electric �eld has an imaginary part, which means that the vacuum is unstable in an electric

�eld, which prevents the creation of particle-antiparticle pairs. But Schwinger took his best

e¤ort to determine exactly the conditions under which this e¤ect should appear and gave a full

theoretical description in 1951 [37].

As a result, it takes his name "the Schwinger e¤ect". He showed that the vacuum-vacuum

transition amplitude has an intimate bond with the e¤ective action [37] as follows

A (vac� vac) = exp ({Seff ) ; (1.1)

and the pair creation probability can be extracted from the imaginary part of this action,

PCreat: = 1� jA (vac� vac)j2 ' 2 ImSeff : (1.2)

On the other hand, according to Shwinger, it is well known that a strong electric �eld creates

scalar particles, while a magnetic �eld and a plane wave do not create pairs of particles.

In the presence of a constant and strong electric �eld E , the famous formula concerning the
probability of pair creation per unit of volume and time, referred to as the Schwinger formula,

is given by [37, 38, 39]

PCreat: =
e2E2
8�3

1X
n=1

(�1)n+1

n2
exp

�
�n�m

2

eE

�
: (1.3)

In the presence of a constant and strong electromagnetic �eld (E ;B), the probability of pair
creation per unit of volume and time is modi�ed to [39]

PCreat: =
e2B
8�2

1X
n=1

(�1)n+1

n
csc

�
n�
B
E

�
exp

�
�n�m

2

eE

�
: (1.4)

Following [126], in lower dimension (2+1)D, for graphene, the previous equations were

reduced to

PCreat: =
(eE)3=2

4�2�
1=2
F

1X
n=1

(�1)n+1

n3=2
for m = 0; (1.5)
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and

PCreat: =

�q
(eE)2 � (�F eB)2

�3=2
4�2�

1=2
F

1X
n=1

(�1)n+1

n3=2
for m = 0: (1.6)

In theoretical side, the study of pair production processes driven by a strong external force

from the vacuum requires theoretical ideas that can e¤ectively describe nonperturbative physics.

We can use various techniques, such as, for example, the semi-classical methodWKB [40, 41, 42],

the wordline path integral formalism [43, 44, 45], Parker�s adiabatic approach [46], the diago-

nalization of the Hamiltonian [47, 48, 49, 50, 51, 52, 53], and the Bogoliubov transformation

linking the "in" states with the "out" states [54, 55, 56, 57, 58, 59, 60, 61, 62] and the instanton

method [63, 64, 65, 66, 67, 68] and also the technique of Schwinger via the computation of the

imaginary part of the e¤ective action [37, 69, 70, 71, 72, 73].

The pair production process attracts the attention of many researchers, and its interest

started when researchers started studying the Big Bang theory, which led to the creation of the

universe as we know it, despite this e¤ect can not be solved the problem of the Big Bang theory

(In the �rst few minutes after the big bang, there is an increase in the number of matter over

the number of antimatter �where did this increase in the number of particles come from?�).

There are numerous applications for the Schwinger e¤ect in modern physics. This e¤ect may

also be applicable in other contexts, such as cosmological pair creation [74, 75, 76, 77, 78, 79],

Hawking radiation [80, 81, 82, 83, 84, 85, 86], black hole creation [87] and heavy nuclei to black

holes [88]. In modern cosmology, the production of particles can have an important e¤ect on

the in�ation phase problem and have an impact on how our universe evolves. Additionally, in

the context of quantum �eld theory, gravitational and electromagnetic �elds can both produce

particle-antiparticle pairs from vacuum in curved space [89].

Furthermore, the event horizon of a black hole casually separates pairs into the interior and

the exterior under the in�uence of gravitational and electromagnetic �elds, and the black hole

emits all species of particles [89].

On the other hand, the production of charged particle-antiparticle pairs in an external

electric �eld was studied for (2 + 1)�dimensional theories, and examining the Schwinger e¤ect
in semiconductors and Dirac materials like graphene has advanced signi�cantly in recent years.

Nowaday, a series of studies concern the Schwinger e¤ect in graphene in the presence of a

strong electric �eld [90, 91], because of the possibility of observing it experimentally in graphene
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[92, 93]: Following [94], the rate and the probability of pair production for a constant electric

�eld are calculated using the semi-classical approach for multilayer graphene and via an exact

solution of the Schrödinger equation for the case of monolayer graphene. Furthermore, in the

framework of non-commutativity, the issue of pair creation is also treated [95], and the pair

production probability is deduced for both scalar and spinor relativistic particles in the presence

of an electromagnetic �eld in a non-commutative space considering Schwinger�s method.

On the experimental side, the theoretical physicist attempts to incorporate the Schwinger

e¤ect in the laboratory, but this is very di¢ cult to achieve experimentally. because it requires

an electric �eld of the order of the critical value Ecr =
m2

e
= 1:32� 1018V=m for the electrons,

which exceeds the current technological capacities [96].

Actually, the pair production mechanism has never been tested experimentally. The prospects

for observing the Schwinger mechanism in future laser installations of X-rays are studied in [97].

However, the fact that the e¤ective masses of the electron and hole in graphene are zero

will open a window for an experimental investigation of QED phenomena in strong �elds, in

particular the Schwinger e¤ect, because it might be observed experimentally in graphene [92,

93]. In January 2022, a team of researchers from Manchester University announced a surprising

discovery: they con�rmed the Schwinger e¤ect and showed that the theory �rst proposed 70

years ago was correct when the scientists were able to really create the matter and antimatter

from the vacuum under the in�uence of a strong electric �eld with a simple laboratory in

monolayer graphene.

Researchers accelerated electrons in a vacuum simulator to the highest speed permitted

by graphene�s vacuum (1=300 c) [98]. Electrons appeared to become superluminous at this

point, producing an electric current greater than what is permitted by the fundamental laws

of quantum condensed matter physics. This e¤ect�s cause was attributed to the spontaneous

production of extra charge carriers, or holes. Thus, as anticipated, the researchers�wish to

scienti�cally con�rm Schwinger�s phenomenon in graphene material in the lab came true.

On the other hand, path integral formalism is one of the most important techniques for

describing graphene�s electronic structure and solving problems of its conductivity [22, 23].

Norbert Wiener �rst proposed the idea of a path integral in 1920 as a technique for solving

problems in the theory of di¤usion and Brownian motion, involving integrals in in�nite dimen-

sion but unrelated to the quantum domain and its phenomena [99]. The propagator, which

expresses the physical system�s transition amplitude between its initial and �nal states, is the
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heart of this formulation. This latter is also known as Green�s function.

Feynman�s path integral is a pleasant subject of discussion between mathematicians and

physicists. It allows physicists to present, thanks to a mathematical idea, a simple and rich

formalism that describes physical phenomena, especially quantum phenomena. Originally, it

has been used in the study of quantum mechanics and quantum �eld theory, where it can be

the starting point of the covariant formalism or of the canonical formalism.

On the other hand, the path integral does not contain the operators, and due to its compati-

bility with calculation techniques, it has succeeded in solving several problems in non-relativistic

quantum mechanics. Also, it is the origin of the Feynman diagrams. Despite the success of this

formulation and the interest it has received from physicists in di¤erent branches of quantum

mechanics, such as theoretical physics, statistical physics, and other branches, this formulation

is not ideal because it is di¢ cult to suggest a continuous path for the spin because of its discrete

nature.

There have been numerous attempts to include spin in path integral formulation. In 1966,

Fradkin developed the calculations for relativistic particles interacting with an electromagnetic

wave [100, 101], to see him again with Gitman in 1991, where �nally they succeeded to describe

correctly the spinning particles by means of the formalism of path integrals and formulate

the propagator of Dirac particles by using fermionic variables (Grassmann variables). This

particular model is known as the "Fradkin-Gitman Model", this model was re-examined by

Berezin and Marinov [102, 103].

In the case of the Dirac equation, the fundamental idea of this formalism is to write the

causal Green�s function like the inverse of an operator, and then we used a generalized proper

time having two parts, one bosonic and the other fermionic. This formalism is used for solving

many problems. For example, the problem of relativistic spinning particles in interaction with

an electromagnetic plane wave �eld was treated via path integrals [100, 104] and the path-

integral representations for the propagators of scalar and spinorial relativistic particles in an

external electromagnetic �eld were derived [105].

Additionally, for graphene, the exact Green�s function is constructed in uniform electric and

magnetic �elds [24], and the exact solutions for Green�s function for quasiparticles in the �eld

of slow-light pulse was constructed using the Fock-Schwinger proper time method [25, 26].

Furthermore, in the last few years, deformed-commutative geometry algebra played an im-

portant role in the �eld of physics due to the continuity of its applications in all branches of the
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subject. For example, the non-commutative space is necessary when studying the low energy

yield of the D-brane with B-�eld background. The e¤ects of non-commutativity may also
appear on a very small scale or in very high energy conditions. Furthermore, one of the strong

motivations of non-commutative geometry is to obtain a coherent mathematical framework

in which it would be possible to study quantum gravity. Particularly, it�s interesting to test

noncommutativity on graphene.

Modern physics is based on quantum mechanics, which clari�es the three main forces in the

micro-world (the electromagnetic, weak and strong forces), and applies the theory of operator

algebras acting on a Hilbert space (Von Neumann algebras) and on general relativity (GR),

which explains the force of gravity in the macro-world. It mainly uses Riemannian geometry

as a mathematical formalism.

Nowadays, scientists aspire to unify quantum �eld theory and gravity into one theory known

as "the Grand Uni�ed Theory". Several solutions have been proposed to solve this issue, but

they are contradictory. We cite the widely used standard model that has been very successful

as an example for the uni�cation of the three main forces (strong, electromagnetic, and weak).

There were other models for the uni�cation of the four forces into one model, including the

supersymmetry model, extra-dimensional model, string theory, and M. theory.

All of these attempts led to the appearance of a new concept of non-commutative geometry.

This concept is based on generalizing ordinary legal commutation relations and Heisenberg�s

uncertainty principle, which leads to a new theory known as "non-commutative algebra" [106].

Geometry is based on the principle of describing spaces, which are sets of points equipped

with an additional structure. Nowadays, physically, a point is an elusive theoretical concept,

and, moreover, even though we describe the world as a space (a collection of points), e¤ectively,

we always use coordinates, which are functions on the space. Therefore, the notion of a function

(in particular, a continuous function) appears to be more fundamental than that of a point.

In physics, this is clearly visible when we take into account quantum e¤ects, in particular the

Heisenberg uncertainty principle. Then, it is impossible (both in theory and in practice) to

observe a point or to �x the coordinates with an arbitrarily small accuracy.

Noncommutative geometry is an extensive theory that has numerous intriguing applications

in both mathematics and physics, such as the quantum hall e¤ect, quantum computing, the

standard model, quantum �eld theory, and the list goes on.

The origin of non-commutative geometry was �rst related to the idea of non-commutative
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space-time that was suggested by Heisenberg in 1930 and presented in 1947 by Snyder [107],

which is strongly driven largely by the foundations of quantum mechanics within the framework

of canonical quanti�cation, and that �rstly related to the idea of non-commutative space-time

and to the need to regularize the divergence of quantum �eld theory.

In 1985, the term noncommutative geometry was introduced by Alain Connes and others

in a program aiming to generalize the di¤erent concepts of ordinary geometry into equivalent

concepts for noncommutative algebras [108].

In recent years, N. Seiberg and E. Witten published their famous article [109] which was the

most cited article at that time. This aroused and encouraged great interest in non-commutative

geometry, which has become extremely interesting for the study of many physical problems, and

it became clear that there is an intimate connection between these concepts and string theory.

Studies of this geometric type and its implication largely contribute to bring out various �elds

of physics, in particular relativistic and non-relativistic quantum mechanics [110, 111, 112, 113,

114, 115, 116, 117, 118] and in the description of the theories of quantum gravity.

On the other hand, the non-commutative theory replaces the non-commutativity of oper-

ators linked to space-time coordinates by a deformation of the algebra of de�ned functions

in space-time and replaces the ordinary theory by a non-commutative theory, including re-

placing ordinary �elds with non-commutative �elds and ordinary products with Moyal-Weyl

products. Taking into account the fact that the notions of non-commutativity in phase space

are based mainly on the Seiberg-Witten maps, the star product of Moyal-Weyl, and the linear

transformation of the Bopp shift.

Several authors have solved many related problems, for example: Klein Gordon oscillators

[119], central potential [120] an Aharonov-Bhom e¤ect [121]....etc.

The deformation of space due to non-commutativity in �eld theory can be expressed by the

commutation relations of the Hermitian operator [122]h
X̂i; P̂j

i
= i~eff:�ij;

h
X̂i; X̂j

i
= i�ij;

h
P̂i; P̂j

i
= i�ij; (1.7)

with �; � n i; j = 1; 2; 3; (1.8)

where the e¤ective Planck constant ~eff: can be written as [123]

~eff: = ~
�
1 +

��

4~

�
: (1.9)

In the same way as the previous deformation, a formulation of path integrals was constructed

in the context of non-commutative, and various attempts were presented. As a case study, the
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problem of a charged particle with spin 1=2 moving in any electromagnetic �eld was treated in

this relativistic case [124]

Furthermore, we take into account a noncommutative graphene description. For massless

Dirac fermions, this description consists of a Dirac equation plus noncommutative corrections

that are handled in the presence of an external magnetic �eld. We contend that since graphene

is a two-dimensional Dirac system, it is especially intriguing to investigate noncommutativity

in this material. We discover that whereas momentum noncommutativity has an impact on

graphene�s energy levels, Hall conductivity is una¤ected [125].

The principal motivation of the present thesis is to study some relativistic problems of

physics via the supersymmetric path integrals formalism in graphene material. One of these

problems is the pair production process from the vacuum by an external �eld without and

within the non-commutative geometry, due to its importance and advantages, mainly in QED

and QFT , as well as the study of the behavior of quasiparticles in graphene.

This thesis is consistes of eight chapters organized in the following way: The �rst chapter

is a general introduction; the second chapter gives a brief overview of graphene, its structure,

its properties, and their applications in theoretical physics.

Whereas in the third chapter, we give an exact analytical solution of the massless Dirac

equation for graphene in the presence of two plane wave �elds using the Volkov ansatz and

deduce the corresponding wave functions.

In addition, in the fourth chapter, we aim to address the problem of graphene quasiparticles

in interaction with a single and two orthogonal electromagnetic plane wave �elds. In our

calculations, we rely on the supersymmetric path integral proposed by Fradkin and Gitman

[105]. This formalism gives results identical to the results obtained via the exact solution for

both cases [149]. The solution of the Green function for these two special con�gurations of

plane waves is determined, and the wave functions are exactly deduced.

In the �ve chapter, we use the original paper [126] as a basis and principal part of this work,

we study the problem of pair production from the vacuum in monolayer graphene, subjected

to two di¤erent gauges of a constant electromagnetic �eld in the framework of NC phase space

coordinates using Schwinger�s method. We calculate the e¤ective action and the corresponding

pair creation probability. The special cases of the results are also studied and discussed.

Also in the sixth chapter, we study the problem of pair creation of both scalar and spinorial

relativistic particles from the vacuum by a constant electromagnetic �eld in the framework of
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non-commutative phase space coordinates using Schwinger�s method, and we discuss the special

cases of pair production probability in per unit volume and time and compare them with those

of the literature [126] by taking the limit �F ! c;m! 0:

In the seventh chapter, we solve the Dirac-graphene equation for quasiparticles in interac-

tion with the combination of a Volkov�s plane wave and a constant magnetic �eld parallel to

the direction of propagation of the electromagnetic wave using two methods: the �rst is the

Redmond method, and the second is the Delta functional method. Then, we examine particular

cases of our result by taking a limit on the �elds and comparing them with those in the liter-

ature. On the other hand, we study the in�uence of this con�guration of �elds on the process

of pair creation. The last chapter is the general conclusion, which presents a summary of our

main results.

The thesis concludes with one appendix, in which we present the details of diverse calcula-

tions of the inverse of the matrix elements (M�1)
�� for determining the Polyakov spin factor:



Chapter 2

Fundamental properties of graphene

The main goal of this chapter is to provide a brief overview of graphene, its structure, properties,

and applications in theoretical physics.

2.1 Forms of Carbon

Carbon is di¤erent from other elements due to its special capacity to hybridize, which also

enables it to form 0D, 1D, 2D, and 3D structures. Diamond and graphite are two materials

constructed from carbon in three dimensions (3D).

The lower-dimensional forms of carbon (0� 2)D are graphene with a 2D structure, carbon

nanotubes with a 1D structure (the sheet of graphene is rolled into a cylindrical tube with a

diameter of around 1nm to form carbon nanotubes), and fullerene with a 0D structure, which

are composed of derivatives of the two-dimensional carbon (graphene) and the one-dimensional

carbon nanotubes [127, 128].
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Figure1 : Forms of carbon materials: graphite, graphene, carbon nanotube,

and fullerene. Image taken from [129].

2.2 The discovery of graphene material and its funda-

mental properties

Recently, the attention of researchers has turned to a two-dimensional material called graphene,

which is the building block of graphite and consists of a monolayer of carbon atoms arranged

in hexagonal cells that are only one atom thick.

The �rst study on graphene was investigated in 1947 by Wallace, who derived its band

structure [128] and it was isolated experimentally for the �rst time in 2004 by Andre Geim and

Kostaya Novoselov using the micromechanical cleavage technique; for that, they were awarded

the Nobel Prize in Physics in 2010 [130, 131, 132, 133].

Due to its amazing and extraordinary properties, such as zero band gap when its electronic

structure is characterized by conical valence and conduction band dynamics, graphene is one

of the most crucial topics in condensed matter research.

As a result, it is the best thermal and electrical conductor at room temperature, and its

vast surface area makes it an extremely chemically inert nanoparticle [134] that is completely

impermeable to even the smallest atom (Helium).

Among other characteristics, one can notice the high electron mobility (more than 200; 000
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cm2.V �1:s�1) and the ballistic transport [135]. As a result of these characteristics, the electron

wave packet can travel over great distances without scattering. Due to this, considerable re-

search has been attempted to incorporate graphene into electronic devices. It has been employed

in a number of applications, such as supercapacitors, lithium-ion batteries, and conducting elec-

trodes [151, 137].

Currently, it is the strongest known material and one of the thinnest objects conceivable,

which is also 200 times stronger than materials with Young�s modulus of 1TPa [138, 139].

Additionally, it is one of the most elastic and �exible materials and is approximately completely

transparent (97:3%).

2.3 Crystallographic structure of graphene

Graphene is a two-dimensional material composed of carbon atoms arranged in a honeycomb

lattice. The carbon-carbon bond length is a0 = 1:42�A. The carbon atom is the sixth element

in the periodic table; it has four covalent electrons with the con�guration 1S2 2S2 2P 1x 2P
1
y

2P 0z see Figure 2(b):

There is no electron in the energy level of 2Pz, therefore, it is equivalent to the energy levels

2P 1x and 2P
1
y .Figure 2(a).

The nucleus of a carbon atom is surrounded by six electrons, among them four valence

electrons, which are three types of hybridization (SP 1; SP 2and SP 3): Figure2(c):The carbon

atom shares SP 2 electron with three neighboring carbon atoms to form a lattice. Thus forming

a monolayer graphene. Figure 2(d)

The hybrizidation SP 2 in graphene forms two bands � and �: Figure 2(e) [128].

The monolayer graphene honeycomb lattice consists of two atoms in the unit cell, which

form the two triangular sublattices A and B. the two primitive lattice vectors are written as

~a1 =
a

2

�
1;

p
3
�
; ~a2 =

a

2

�
1; �

p
3
�
; a =

p
3a0 �

p
3� 1:42 = 2:64�A; (2.1)

where a is the lattice constant and a0 is the inter-atom distance. (see Fig. 2).
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Figure 2 : The basics of graphene structure. Image taken from [128].

2.4 Band structure of graphene

Graphene is a model of a gapless semiconductor in general band theory. In graphene, the

valence band is completely �lled, the conduction band is empty, and there is no band gap

in between. The Fermi energy of this material corresponds to the energy at conical points.

On the other hand, Sn (grey tin) and HgTe are three-dimensional crystals known as gapless

semiconductors.

The unusual, chiral nature of the electron states, as well as the high degree of electron-hole

symmetry, are what distinguish graphene from other materials. Rather than the gapless state

itself [140].
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Fugure 3 : Fermi energy at the Dirac point. Image taken from [141].

2.5 Synthesis of graphene

Novoselov and Geim received the Nobel Prize in Physics six years later "for pioneering experi-

ments regarding the two-dimensional material graphene." During this time, several techniques

for producing monolayer graphene have been created. Depending on the physical or chemical

procedure used to create the sheet of graphene, among these techniques we have:

2.5.1 Mechanical exfoliation

Everything starts with graphite. As in the pencils, if we zoom in, we would see a bunch of

graphene layers stuck together.

We just need to exfoliate them in each layer. The atoms are very tightly bonded, but the

layers are only weakly bonded among them, so we can just exfoliate them which a normal scotch

tape. We can just tear some of these layers apart. Using this method, the scientists managed

to get the �rst two-dimensional material ever, but the samples appear randomly distributed,

with uneven shapes and sizes. This is not an industrial way to make graphene [142].
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2.5.2 The chemical method

The Chemical Vapor Deposition (CV D) method is a process used to fabricate graphene mate-

rial. It begins with a copper wafer that is then submerged in methane (CH4) and heated to

extremely high temperatures.

When methane molecules (CH4) hit copper, the carbon atom gets trapped while the other

hydrogen atoms continue to move around. This e¤ectively creates a single layer of carbon atoms

that can be several centimeters long, but the carbon is too bonded to the copper, making it

di¢ cult to do anything with it.

The copper wafer is deposited on acid, which dissolves the copper but has no e¤ect on the

graphene, to transport the graphene around. First, the graphene is coated with an organic

polymer (PMMA) that serves as a protective layer.

The graphene (+PMMA) is then removed from the water using another wafer, typically

composed of (Si=SiO2) to remove any remaining acid residues.

Acetone or other solvents are used to remove the (PMMA) when the graphene is ready

to be employed in a device or experiment. and in doing so, we can create a two-dimensional

material [143].

2.6 The relation between the physics of graphene and

relativistic quantum mechanics

The main characteristic of graphene that has attracted more attention of researchers is its

electrons known as graphene quasiparticles, which behave as massless relativistic fermions and

are described by the (2 + 1)-dimensional Dirac equation with a fermi velocity of �F = c=300;

where c is the speed of light [1, 2, 4].

In graphene, the dispersion energy of electrons and holes is linear, similar to that of photons,

E� = �~�F jkj. Its bipartite crystal structure and the particular, regular arrangement of atoms
are the root causes of all these properties. It is the best material for investigating such single

electron physics. As a result, quantum �eld theory approaches are extremely useful in graphene

physics. Additionally, it makes it possible to investigate the e¤ects of strong �elds on quantum

electrodynamics [12, 13].

The study of the interactions between charge carriers in graphene and similar systems is
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interesting because of their application to superconductivity. Also, it is very useful in energy

storage systems, electronics, chemical sensors, optoelectronics, and nanocomposites.

To move from Dirac physics to graphene physics, we make the following replacements [18]:

m �! 0; (2.2)

c �! �f ; (2.3)

E� �! �~�F jkj ; ~ = 1 (2.4)

2.6.1 Dirac-graphene equation

The dynamics of graphene quasiparticles in an external �eld is decribed by the Dirac equation

for massless femions.

Which has the form of two equations: the �rst is for electron wave function, and the second

is for hole wave function.

i
@ 

@t
= �F� (k � eA (x; y; t)) ; (2.5)

where  is the two-component wave function  =
�
 A
 B

�
2.6.2 Dirac-graphene Hamiltonian

To describe electron and hole states in graphene material, one needs to de�ne the e¤ective

Hamiltonian (Dirac-graphene Hamiltonian) around the Dirac points K and K 0 which is analo-

gous to the Dirac Hamiltonian for massless fermions [140].

In the free case, the Dirac-graphene Hamiltonian near the points K and K 0 is de�ned by

HK = �F

0@ 0 px � ipy

px + ipy 0

1A ; (2.6)

and

HK0 = �F

0@ 0 px + ipy

px � ipy 0

1A : (2.7)

The Dirac Hamiltonian of graphene quasiparticles in interaction with an external �eld

A� (x) � A� (x; y; t) around one of the special points K and K 0 is given as
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HK;K0 = �F

0@ 0 (px � eAx (x))� i (py � eAy (x))

(px � eAx (x))� i (py � eAy (x)) 0

1A : (2.8)

For multilayer graphene, the Hamiltonian is de�ned by

HK;K0 = �F

0@ 0 ((px � eAx (x))� i (py � eAy (x)))
J

((px � eAx (x))� i (py � eAy (x)))
J 0

1A ;

(2.9)

where J is the chirality index or the number of layers.

2.6.3 Slowed light in graphene

The researchers have used the light to observe the nature of quantum electronic material. In

graphene, light was captured and slowed to the speed of the material�s electrons.

The research involved con�ning the plasmons vertically down to 5nm using heterostructures

made of high-quality graphene, hexagonal Boron Nitride (h-BN), and adjacent metals [144], due

to the capacity to modify its plasmon phase velocity to low values, close to its Fermi velocity

of �F � c=300, where c is the speed of light in vacuum, as a result, slow down the propagation

velocity.

2.6.4 Quantum imaging of graphene�s current �ow

The movement of electron currents in devices composed of ultra-thin materials has attracted

the attention of researchers. The �rst image presenting the motion of electrons in graphene

was �nally captured by a research team from the University of Melbourne. When scientists

shine a green laser light on diamonds and then watch and analyze the intensity of the red light

arising from the magnetic �eld created by the electric current, they are able to image the �ow

of electric currents in graphene. The team led by Hollenberg used a special quantum probe

based on an atomic-sized "color center" found only in diamonds to image the �ow of electric

currents in graphene [145].
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Figure 4 : An image of the current �ow in graphene was obtained using a diamond quantum.

Image taken from [145]



Chapter 3

Volkov-type solution of the

Dirac-graphene equation in the

presence of two orthogonal plane waves

3.1 Introduction

The exact solution of the Klein Gordon and Dirac equations in the presence of an electromag-

netic plane wave �eld is very important in relativistic quantum mechanics due to it�s widespread

use in laser beam applications.

The Volkov solution, which describes how Klein Gordon and Dirac particles behave in an

external electromagnetic plane wave �eld, was treated for the �rst time by Volkov [146] in 1935.

In the presence of two electromagnetic plane waves, Volkov�s solution for an electron was

reviewed in Refs [147, 148]. These publications actually provided the exact solutions of the

Dirac equation for two orthogonal electromagnetic plane wave �elds. This makes it possible

to calculate the modi�ed Compton formula for the scattering of two photons onto an electron

with accuracy.

In the same context, Volkov�s solution of Dirac-graphene equation that describes graphene

quasiparticles in the presence of an electromagnetic plane wave was derived in Refs. [149].

The principal motivation of the present chapter is to give an exact analytical solution of

the massless Dirac equation for graphene quasiparticles in the presence of two plane wave �elds

by using the Volkov ansatz. The identi�cation of the properties of the interaction between
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relativistic particles and laser light is the most interesting aspect of this solution, wich has also

been applied to the treatment of nonlinear Compton scattering.

3.2 Solution of the Dirac-graphene equation without a

�eld

The Dirac-graphene equation without a �eld is de�ned as

i
@ 

@t
= �F (�:p) ; (3.1)

where �F � 106 m=s is the velocity of quasiparticles in graphene named the Fermi velocity
[10, 11, 5],

and  is the two-component of the wave function  =
�
 A
 B

�
that corresponds to electron

and hole states:

Setting the natural units c = ~ = 1 then the momentum p � (p� ; px; py) is the wave number
k � (k� ; kx; ky) and k̂� = �i@� and the Minkowski tensor has signature g�� = diag(�1;+1;+1);
�; � = 0; 1; 2:

The last equation has the following simple solution [149]

 k = uke
i(kq�E�); uk =

1p
2

�
e�i�k

�ei�k

�
; (3.2)

where � = �F t, q =(x; y)and k =(kx; ky) :Whereas �k = arctan(
ky
kx
) is the polar angle and

the energies (electrons-holes) are given as

E� = �k� = �~�F jkj : (3.3)

3.3 Volkov�s solution for the Dirac-graphene equation in

the presence of a single plane wave �eld

In this section, we study the interaction between graphene electrons and a single electromagnetic

plane wave �eld. The dynamics of graphene quasiparticles in an external plane wave �eld is

described by the Dirac equation for massless fermions, which is given by [151, 152]

i
@ 

@t
= �F�: (k � eA (x; y; t)) ; (3.4)
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where k is the momentum of a quasiparticle in the natural units de�ned as

k = �i (ex@x + ey@y) ; � = ex�x + ey�y; � = �F t; (3.5)

with (ex; ey) are vectors direction of plane (x; y):Whereas the four-potential A� is a function

of the variable �; it is given as

A� = A� (�) ; � = nx: (3.6)

We consider that the �eld of a plane electromagnetic wave is linearly polarized along the

graphene surface chosen as

A� (x; y; t) = A (�) =
�
0; ~A (�)

�
; (3.7)

~A (�) = ~exA (�) : (3.8)

Moreover, we have the following properties

n� = (1; ~n) = (1; 0; 1) with n2 = 0: (3.9)

These allow us to write the variable � as � = �y � � ; which will play an important role in

the next calculation.

We put the parameter value � = 1 which means that velocities of electromagnetic wave and

quasiparticles in graphene coincide [149].

To solve this problem, let us introduce the following notation

L+ = ĥ+ i@� ; L� = ĥ� i@� ; (3.10)

where

ĥ = �x: (kx � eA (�)) + �y:ky; (3.11)

by taking the condition
�
~A (�) is parallel to the vector ~ex

�
since � dependent on (y; �) [149]:Then

the Hamiltonian expression is de�ned as

H = L+L� = @2� � @2x � @2y + 2ieA (�) @x

+e2A
2

(�) + ie@yA (�)�z � ie@�A (�)�x: (3.12)
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We impose that the four-potential A� (�) satis�es the Lorentz gauge condition

@�A
� (�) = n�: (A� (�))

0 = 0; (3.13)

) e�n� = 0) n�A� = 0; (3.14)

we de�ne then the equation H = 0 as follows

�
@2� � @2x � @2y + 2ieA (�) @x + e2A2 (�) + e@yA (�)�z � ie@�A (�)�x

�
= 0: (3.15)

According to the Volkov ansatz, the solution is of the form

k = ei�F (�)uk; (3.16)

with � = kq� E�; � = y � � :

Incorporating in (3:15) with (3:16), we check for F (�) the following equation

2i (k� � ky) _F +

�
�2eA (�) kx + e2A2 (�) + e

�
@�

@y
A0 (�)�z � i

@�

@�
A0 (�)�x

��
F = 0: (3.17)

Its solution will be given as

F = exp

�
i

2

Z y��

0

d�
�2eA (�) kx + e2A2 (�) + e (A0 (�)�z + iA0 (�)�x)

(k� � ky)

�
: (3.18)

Consequently, the solution of the Dirac-Graphene equation in the presence of an electromagnetic

plane wave is given as

 k = exp

�
i (kq� E�) +

i

2

Z y��

0

d�
�2eAkx + e2A2 + e (A0 (�)�z + iA0 (�)�x)

(k� � ky)

�
uk;

=
h
1 + eA

0(�)�z+iA0(�)�x
2(k��ky)

i
uke

i�eiS; (3.19)

where

S = �
Z
e2A2 (�)� 2eA (�) kx

2 (k� � ky)
d�: (3.20)
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3.4 Volkov�s solution for the Dirac-Graphene equation

in the presence of two plane wave �elds

In this section, we study the interaction between the graphene electrons and two orthogonal

electromagnetic plane wave �elds linearly polarized along the graphene surface that is chosen

as

A� (x; y; t) = A�1 (�1) + A�2 (�2) ; (3.21)

where

A�1 (�1) =
�
0; ~A1 (�1)

�
; A�2 (�2) =

�
0; ~A2 (�2)

�
; (3.22)

and

) A� (x; y; t) = ~e1A1 (�1) + ~e2A2 (�2) : (3.23)

Whereas

�1 = n�1x�; �2 = n�2x�: (3.24)

Also, we have the following properties

n�1 = (1; ~n1) ; n
�
2 = (1; ~n2)) n�1n1� = n�2n2� = 0; (3.25)

n�1n2� = 1� ~n1:~n2 = 0, ~n1==~n2: (3.26)

By using the same procedure as in the previous section and by taking into account the

condition
�
~A1 (�1) + ~A2 (�2) is parallel to the vector ~ex

�
since �1 and �2 dependent on (y; �);

the Hamiltonian expression is de�ned as

H = L+L� = @2� � @2x � @2y + 2ie (A1 (�1) + A2 (�2)) @x

+e2
�
(A1 (�1))

2 + (A2 (�2))
2 + 2A1 (�1)A2 (�2)~e1:~e2

�
+e@y (A1 (�1) + A2 (�2))�z � ie@� (A1 (�1) + A2 (�2))�x: (3.27)

We also consider that the four potentials A�1 (�1) and A�2 (�2) satisfy the Lorentz gauge

conditions 8<: @�A
�
1 (�1) = n�1 : (A1� (�1))

0 = 0;

@�A
�
2 (�2) = n�2 : (A2� (�2))

0 = 0;
(3.28)
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and we consider that the two waves are orthogonal, then we can write

e�1n1� = 0; e�2n2� = 0) n�1A1� = 0; n
�
2A2� = 0;

and A1� (�1)A
�
2 (�2) = 0: (3.29)

Now, towards the solution of the equation H = 0 and by using the Volkov ansatz, the

solution is of the form [147]

 k = e�ikqF (�1; �2)uk: (3.30)

Then, we write the equation for F (�1; �2) as follows

2ik�n
�
1

@�1
@y

F�1 + 2ik�n
�
2

@�2
@y

F�2 + e2
�
(A1 (�1))

2 + (A2 (�2))
2�F (�1; �2)

�2e (A1 (�1) + A2 (�2)) kxF (�1; �2) + ie@y (A1 (�1) + A2 (�2))�zF (�1; �2)

�ie@� (A1 (�1) + A2 (�2))�xF (�1; �2) = 0: (3.31)

At this stage, we are looking for the solution in the most simple form

F (�1; �2) = X (�1)Y (�2) : (3.32)

After insertion of Eq. (3.32) into Eq. (3.31) and division of the new equation by XY; we get

the terms depending only on �1, and on �2. Then we get�
2ik�n

�
1

@�1
@x�

X 0

X
+ e2A21 (�1)� 2eA1 (�1) kx + e@yA1 (�1)�z � ie@� (A1 (�1)�x

�
+

�
2ik�n

�
2

@�2
@x�

Y 0

Y
+ e2

�
A22 (�2)

�2 � 2eA2 (�2) kx + e@yA2 (�2)�z � ie@�A2 (�2))�x

�
= 0:

(3.33)

Next, the solution of Eq. (3.33) is reduced to the solution of two equations only; after the

simpli�cation, we obtain

X (�1) =

�
1 + e

@�1
@y

A01(�1)�z�i
@�1
@�

A01(�1)�x

2(k��ky)

�
exp

�
�i
Z

e2(A1(�1))
2�2eA1(�1)kx

2(k��ky) d�1

�
; (3.34)

and

Y (�2) =

�
1 + e

@�2
@y

A02(�2)�z�i
@�2
@�

A02(�2)�x

2(k��ky)

�
exp

�
�i
Z

e2(A2(�2))
2�2eA2(�2)kx

2(k��ky) d�2

�
: (3.35)
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With �1 = y1 � � 1; �2 = y2 � � 2 . The results can be written as

X (�1) =
h
1 + e

A01(�1)�z+iA
0
1(�1)�x

2(k��ky)

i
exp

�
�i
Z

e2(A1(�1))
2�2eA1(�1)kx

2(k��ky) d�1

�
; (3.36)

and

Y (�2) =
h
1 + e

A02(�2)�z+iA
0
2(�2)�x

2(k��ky)

i
exp

�
�i
Z

e2(A02(�2))
2�2eA02(�2)kx

2(k��ky) d�2

�
: (3.37)

The total solution then takes the following form

 k =
h
1 + e

A01(�1)�z+iA
0
1(�1)�x

2(k��ky)

i h
1 + e

A02(�2)�z+iA
0
2(�2)�x

2(k��ky)

i
uke

i�eiS1(A1)+iS2(A2); (3.38)

where

S1 = �
Z
e2 (A1 (�1))

2 + 2eA1 (�1) kx
2 (k� � ky)

d�1; (3.39)

S2 = �
Z
e2 (A2 (�2))

2 + 2eA2 (�2) kx
2 (k� � ky)

d�2: (3.40)

3.5 Conclusion

In this chapter, we have presented an exact analytical Volkov solution of the massless Dirac

equation for graphene in the presence of a single and two plane wave �elds using the Volkov

ansatz. We have derived the partial di¤erential equation (Volkov equation) and deduced the

wave function for graphene quasiparticles.



Chapter 4

Path integral formulation for graphene

quasiparticles in interaction with two

plane wave �elds

4.1 Introduction

The path integral formalism was able to successfully resolve several issues in NRQM because

of its compatibility with calculation techniques and the absence of operators. Although, the

success of this formulation did not make it the perfect one due to the problem that occurred

in the spin because of its discrete nature, it has not been easy to introduce it as a suggestion

for a continuous path.

Many various attempts to integrate spin into a path integral formulation can be classi�ed

into two categories. The �rst one was suggested by Feynmann, in which he described the spin

by using the bosonic variables. The second one was suggested by Fradkin in 1965 [100, 101] in

which he described the spin by using the fermionic variables (Grassmann variables). Then by

Berezin and Marinov [102, 103]. In the last decade, exactly in 1991, Fradkin and Gitmann [153]

have returned to this model and succeeded in establishing a rigorous formulation of path integral

representation with e¤ective classical actions [105] following the standard Feynman form
P

paths

exp[iS(path)], where S(path) is a supersymmetric action describing both the external motions

of the particle by bosonic-type variables and the internal dynamics relating to the spin of the

particle by Grassmann variables.
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The fundamental idea of this formalism is to write the causal Green�s function as the inverse

of an operator. Then multiplying this inverse by an adequate conjugate operator in order to

reduce the problem to a quadratic operator of Klein-Gordon type plus a spin-orbit type coupling

term. After that, we write it in integral representation by using a generalized proper time that

has two parts, one bosonic and the other fermionic. Then the Dirac matrices are replaced by

Grassmann variables. After doing all of this, we apply the functional integration method to

give the explicit result of Green�s function.

The aim of this chapter is to adapt the formalism of the path integral for graphene quasipar-

ticles. We construct the causal Green�s function via the supersymmetric formalism proposed by

Fradkin and Gitman [105] for graphene quasiparticles in the free case, in the presence of a single

plane wave �eld and two orthogonal plane wave �elds. Before that, we determine the Polyakov

spin factor by using the Grassmann functional integration technique. Finally, we deduce the

corresponding wave functions for each case.

4.2 The causal Green function for graphene quasiparti-

cles in the presence of an external electromagnetic

�eld

We consider a graphene�s quasiparticle in the presence of an external electromagnetic �eld

described by a vector potential A�(x) � A� (x; y; t) : For a (2+1)�dimensional space-time, the
corresponding causal Green�s function Sc (x�b ; x

�
a) satis�es the 2D Dirac-graphene equation

OgrSc (x�b ; x
�
a) = �3 (xb � xa) ; (4.1)

where the Dirac-graphene operator Ogr is de�ned as

Ogr = ĥ� i@� ; (4.2)

and ĥ represents the Hamiltonian of Dirac massless particles, de�ned as

ĥ =
�
p̂x � eÂ (x; y; �)

�
�x + p̂y�y: (4.3)

Here x = x�; � = 0; 1; 2 and � = �F t where the characteristic �F = (1:12� 0:02)� 106m=s
is the Fermi velocity in graphene, which replaces the speed of light in the Dirac theory.
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(�x; �y; �z) are the Pauli matrices; they are given as

�x =

0@ 0 1

1 0

1A ; �y =

0@ 0 �i
i 0

1A ; �z =

0@ 1 0

0 �1

1A : (4.4)

Setting the natural units c = ~ = 1; then the momentum p � (p� ; px; py) is the wave

number k � (k� ; kx; ky) and k̂� = �i@� and the Minkowski tensor has signature g�� =
diag(�1;+1;+1);�; � = 0; 1; 2:
In this work, we perform our study in (2 + 1)-dimensional, which allows us to express the

Dirac gamma matrices 
� as a function of the Pauli matrices in the following way


0 = �3; 

1 = i�2; 


2 = �i�1: (4.5)

Eq. (4.2) can be written as

Ogr = 
0i@� � 
1 (i@x + eA (x; y; �))� 
2i@y: (4.6)

According to the Schwinger proper time method [37], the propagator Sc (xb; xa) can be

written as a matrix element of the operator Ŝc in coordinate space

Sc (x�b ; x
�
a) = hxbj Ŝc jxai ; (4.7)

where hxbj, jxai are eigenvectors of the self-adjoint operator x̂� and form a complete ortho-

normal system with

x̂� jxai = x� jxai ; hxb jxai = �3 (xb � xa) ; (4.8)

by using Eqs. (4:1) and (4:7), we get

hxbj OgrŜc jxai = �3 (xb � xa) ; (4.9)

or

OgrŜc = I: (4.10)

So, the operator Ŝc is the inverse of the graphene operator Ogr; de�ned as

Ŝc = [Ogr]�1 = [Ogr] [Ogr]�2 : (4.11)

According to the habitual construction procedure of the path integral (the Schwinger trick),

we have

�i
Z 1

0

d� exp
�
i�
�
[Ogr]2 + i"

��
= � [Ogr]�2 [exp (i1)� exp (0)]

= [Ogr]�2 + i�; (4.12)
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and

i

Z
d� exp [i�Ogr] = � [Ogr] ; (4.13)

the operator Ŝc takes then the following form

Ŝc =

Z 1

0

d�

Z
d� exp

�
i
�
� [Ogr]2 + i�

�
+ i� [Ogr]

�
; (4.14)

where � is an even variable and � is an odd (Grassmann) variable [154]. Notice that �

anticommuting with the Ogr-operator and verifying the following properties

�2 = 1;

Z
d� = 0;

Z
�d� = 1: (4.15)

We omit the in�nitesimal quantity �: We express the operator Ŝc as follows

Ŝc =

Z 1

0

d�

Z
exp

�
�iĤ

�
d�: (4.16)

Here Ĥ is the Hamiltonian that governs the movement of the graphene quasiparticle ex-

pressed by the following equation

H (�; �) = �� [Ogr]2 + [Ogr]�; (4.17)

with

Ogr = 
0i@� � 
1 (i@x + eA (x; y; �))� 
2i@y; (4.18)

otherwise

Ĥ = �
�
@2� � @2x � @2y + 2ieA (x; y; �) @x + e2A2 (x; y; �)

�ie
�
A (x; y; �)

@�

0
1 � A (x; y; �)

@y

1
2

��
+ [Ogr]�:

= �
�
@2� � @2x � @2y + 2ieA (x; y; �) @x + e2A2 (x; y; �)

�ie
2
F��


�
�
�
+ [Ogr]�: (4.19)

Where F�� is the electromagnetic �eld tensor antisymmetric de�ned as a derivable of a

potential

F��

�
� = (@�A� � @�A�) 


�
� ;

= 2

�
A (x; y; �)

@�

0
1 � A (x; y; �)

@y

1
2

�
: (4.20)
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Now, the Green function is written in coordinate representation as

Sc (x�b ; x
�
a) =

Z 1

0

d�

Z
hxbj exp

�
�iĤ

�
jxai d�: (4.21)

To pass to the path integral representation for the Green function Sc (x�b ; x
�
a), we follow the

standard discretization method given in [153]. Subdividing the interval [xa;xb] intoN parts that

we will assume equal for simplicity, we write exp
�
�iĤ

�
by
h
exp

h
�iĤ= (N + 1)

ii(N+1)
:Then

introducing between themN completeness relation of the space-time eigen-states 1 =
R
d3x jxi hxj

each pair of in�nitesimal operators exp(�i"Ĥ); where " = 1=(N + 1):

We follow the standard discretization method for the kernel of Eq. (4.21). As it is known,

usually we write

exp
�
�i�Ĥ

�
=
h
exp

�
�i�Ĥ= (N + 1)

�iN+1
: (4.22)

After all of this, the Green function then takes the following discrete form

Sc (x�b ; x
�
a) =

Z 1

0

d�

Z
d�

Z +1

�1
dx1:::dxN hxN+1j exp

0@�iĤ
�
x̂; k̂
�

N + 1
�

1A jxNi
�::: hxjj exp

0@�iĤ
�
x̂; k̂
�

N + 1
�

1A jxj�1i ::: hx1j exp
0@�iĤ

�
x̂; k̂
�

N + 1
�

1A jx0i
=

Z 1

0

d�

Z
d� lim

"!0
�Nj=1

Z 1

0

d3xj�
N
j=1 hxjj exp

h
i"�Ĥ

i
jxj�1i ; " =

1

N + 1
:

Then we insert (N + 1) times the identities of this formula

1 =

Z
d3k jki hkj ; (4.23)

where the momentum k veri�es the following relations

k̂� jki = k� jki ; hk jk0i = �3 (k � k0) ; hx jki = 1

(2�)
3
2

eikx:

At the end, we take the limit N ! 1, which transforms the expression of Sc (x�b ; x�a) into
the following path integral

Sc (x�b ; x
�
a) =

Z 1

0

d�

Z
d� lim

"!0
�N�1j=1

Z 1

0

d3xj�
N
j=1

Z 1

0

d3kj hxjj exp
h
i"�Ĥ

i
jkji hkj j xj�1i :

(4.24)
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To eliminate the derivation operators, we inject the following relations

hxj j xj�1i =
exp (ixjxj�1)

(2�)3
: (4.25)

Then, the Green function (4.24) takes the following form

Sc (x�b ; x
�
a) =

Z 1

0

d�

Z
d�

Z
Dx
Z
Dk

�T exp
(
i
X
j

�
kj�xj + �"

�
k2j � 2ieA (xj; yj; � j) kxj + e2A2 (xj; yj; � j)

�
�ie
2
F��


�
�
�
+
�

0k�j + 
1

�
kxj � eA (xj; yj; � j)

�
+ 
2kyj

�
�

��
; (4.26)

where, x�j �
�
x0j = � j = �(sj); x

1
j = xj = x(sj); x

2
j = yj = y(sj)

�
; x�b = x�(sb); x

�
a = x�(sa);

and " = sj � sj�1 = 1= (N + 1) :

Whereas T is the time ordering operator, also called the chronological product operator of

Dyson (Dyson time ordering symbol), it a¤ects only on the phase relative to the coupling term

that ordered the x; k and 
�matrices, which are formally supposed to depend on the time
parameter s:

A more explicit expression for Sc (x�b ; x
�
a) is easily obtained. Taking at the end the limit

N !1 or
�
" = 1

N+1
! 0

�
, the continuous form of the Green function Sc (x�b ; x

�
a) becomes as

Sc (x�b ; x
�
a) =

Z 1

0

d�

Z
d�

Z
Dx
Z
Dk

�T exp
�
i

Z 1

0

ds
�
k _x+ �

�
�k2� + k2x + k2y � 2eA (x; y; �) kx + e2A2 (x; y; �)

�ie
2
F��


�
�
�
+
�

0k� + 
1 (kx � eA (x; y; �)) + 
2ky

�
�

��
; (4.27)

where the integration over trajectories x (s) is parametrized by parameter s 2 [0; 1] ; giving
the boundary conditions

x (0) = xa; x (1) = xb:

We note that x � (� ; x; y) and k � (k� ; kx; ky) respectively represent the quadratic vector
coordinate momentum.

Let us integrate over the x�component. First, we integrate the term
R 1
0
_xkxds by part
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Z 1

0

_xkxds = kxbxb � kxaxa �
Z 1

0

x _kxds; (4.28)

then Green�s function Sc (x�b ; x
�
a) rewrites as follows

Sc (x�b ; x
�
a) =

Z 1

0

d�

Z
d�

Z
Dx
Z
Dk

�T exp
�
i

Z 1

0

ds
h
kxbxb � kxaxa � x _k + k _q + �

�
�k2� + k2x + k2y � 2eA (x; y; �) kx + e2A2 (x; y; �)

�ie
2
F��


�
�
�
+
�

0k� + 
1 (kx � eA (x; y; �)) + 
2ky

�
�

��
: (4.29)

The integrations over the x�component give the Dirac functions �
�
_k
�
; which are de�ned

as

Z
Dx exp

�
�i
Z 1

0

x _kds

�
= �

�
_k
�
; (4.30)

which leads to the conservation of kx�momentum during the motion

kx1 = kx2 = ::::::kxN = kx; (4.31)

this gives for the Green function Sc (x�b ; x
�
a) the following result

Sc (x�b ; x
�
a) =

Z 1

0

d�

Z
d�

Z
Dx
Z
Dk

�T exp
�
i

Z 1

0

ds
�
kx (xb � xa) + k _q + �

�
�k2� + k2x + k2y � 2eA (x; y; �) kx + e2A2 (x; y; �)

�ie
2
F��


�
�
�
+
�

0k� + 
1 (kx � eA (x; y; �)) + 
2ky

�
�

��
: (4.32)

Otherwise

Sc (x�b ; x
�
a) =

Z
dkx
2�

eikx(xb�xa)Sc (q�b ; q
�
a ) ; (4.33)

where Sc (q�b ; q
�
a ) is written as

Sc (q�b ; q
�
a ) =

Z 1

0

d�

Z
d�

Z
Dq
Z
D�k

�T exp
�
i

Z 1

0

ds
�
�k _q + �

�
�k2� + k2x + k2y � 2eA (x; y; �) kx + e2A2 (x; y; �)

�ie
2
F�� (x) 


�
�
�
+
�

0k� + 
1 (kx � eA (x; y; �)) + 
2ky

�
�

��
: (4.34)
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We note that q � (q1; q2) = (� ; y) and �k � (k1; k2) = (k� ; ky) ; and the functional measure
symbols Dq and D�k are de�ned as

Dq =
NY
n=1

d�dy; D�k =
N+1Y
n=1

dk�
2�

dky
2�

: (4.35)

Next, one must obligatorily eliminate the ordering operator T by using the source technique

of Fradkin [105], associated to 
� (s) the odd sources �� (s) anticommuting with 
�matrices
by the de�nition such that 
 dependent on time.

T exp fF (
� (s))g = exp
�
F

�
�l
���

��
T exp

�Z 1

0

�� (s) 

�ds

�
j�=0 ; (4.36)

where �l
���

presents the derivation with respect to the Grassmann source �� (s) :

Then Sc (q�b ; q
�
a ) can be transformed as follows

Sc (q�b ; q
�
a ) =

Z 1

0

d�

Z
d�

Z
Dq
Z
D�k

� exp
�
i

Z 1

0

ds

�
�k _q + �

�
k2 � 2eA (x; y; �) kx + e2A2 (x; y; �)� ie

2
F��

�l
���

�l
���

�
+

�
k�

�l
��0

+ (kx � eA (x; y; �))
�l
��1

+ ky
�l
��2

�
�

��
T exp

�Z 1

0

�� (s) 

�ds

�����
�=0

: (4.37)

In the next step, we write the quantity T exp
nR 1

0
�� (s) 


�ds
o
via a Grassmannian path

integral [105] as follows

T exp
�Z 1

0

�� (s) 

�ds

�����
�=0

= exp

�
i
�

�l
���

�Z
 �(0)+ �(1)=��

exp

�Z 1

0

�
�
_ 
� � 2i�� �

�
ds

+ � (1) 
� (0)

�
D j�=0�=0; (4.38)

where D is de�ned by the following expression

D = D 

"Z
 �(0)+ �(1)=0

D exp

�Z 1

0

 � _ 
�
ds

�#�1
: (4.39)

Here q; � are even variables, �; �� and  (s) are (odd)-Grassmann variables, anticommuting

with the 
�matrices, and satisfy the following boundary conditions

x (0) = xa ; x (1) = xa ; � (0) = �0 ; � (0) = �0; (4.40)
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and

 � (0) +  � (1) = ��: (4.41)

By inserting the identity (4.38) in Eq. (4.37), the Green function will take the following

form

Sc (q�b ; q
�
a ) = exp

�
i
�

�l
���

�Z 1

0

d�

Z
d�

Z
Dq
Z
D�k
Z
D

exp

�
i

Z 1

0

ds
�
�k _q + �

�
k2 � 2eA (x; y; �) kx + e2A2 (x; y; �)

�
+ 2ie�F�� 

� �

�2i
�
k� 

0 + (kx � eA (x; y; �)) 1 + ky 
2
�
�� i � _ 

�
i
+  � (1) 

� (0)
o
�=0

: (4.42)

4.3 The causal Green�s function for free graphene�s qua-

siparticles

The causal Green�s function for the quasiparticles graphene in interaction with an electromag-

netic �eld Sc (x�b ; x
�
a) is given as

Sc (q�b ; q
�
a ) = exp

�
i
�

�l
���

�Z 1

0

d�

Z
d�

Z
Dq
Z
D�k
Z
D

exp

�
i

Z 1

0

ds
�
�k _q + �

�
k2 � 2eA (x; y; �) kx + e2A2 (x; y; �)

�
+ 2ie�F�� 

� �

�2i
�
k� 

0 + (kx � eA (x; y; �)) 1 + ky 
2
�
�� i � _ 

�
i
+  � (1) 

� (0)
o
�=0

: (4.43)

For the simplest and fundamental case of a free graphene quasiparticles, we put the electromag-

netic �eld A (x; y; �) = 0, and the corresponding causal Green�s function Sc (x�b ; x
�
a) is given as

[155]

Sc (x�b ; x
�
a) = exp

�
i
�

�l
���

�Z 1

0

d�

Z
d�

Z
Dx
Z
Dk exp

�
i

Z 1

0

ds
�
k _x+ �k2

��
Z
D exp

�
i

Z 1

0

ds
h
�2ik� ��� i � _ 

�
i
+  � (1) 

� (0)

�
�=0

: (4.44)

4.3.1 The evaluation of Green�s function

In order to evaluate the Green function in the free case, we integrate x �rst and perform the

functional integral over the paths x (s), which implies that the momentum k is conserved

k = cst: (4.45)
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Therefore, the Green function becomes as

Sc (x�b ; x
�
a) = exp

�
i
�

�l
���

�Z 1

0

d�

Z
d�

Z
Dk exp

�
i

Z 1

0

ds
�
k (xb � xa) + �k2

��
Z
D exp

�
i

Z 1

0

ds
h
�2ik� ��� i � _ 

�
i
+  � (1) 

� (0)

�
�=0

: (4.46)

Now, we calculate the functional integrations over Grassmaniann variables  (s) ; and we

replace the integration variables  by the velocity !(s) (there is no restriction on !(s)) as

follows

 (s) =
1

2

Z 1

0

" (s� s0)! (s0) ds0 +
�

2
; (4.47)

where " (s� s0) is the sign function, and it is de�ned as

" (s� s0) = sign (s� s0) =

8>><>>:
�1 for s0 � s

0 for s0 = s

1 for s � s0

; (4.48)

and the velocity (odd Grassmaian variable) !(s) by using the relation d
ds
" (s� s0) = 2� (s� s0) ;

is the derivative of  with respect to s as

_ (s) = ! (s) ; (4.49)

which gives

 �
_ 
�
= �1

2

Z
ds0! (s) " (s� s0)! (s0) +

�

2
! (s) ; (4.50)

and

 � (1) � (0) =

�
1

2

Z 1

0

" (1� s)!� (s) ds+
��

2

� �
1

2

Z 1

0

" (�s)!� (s) ds+
��
2

�
= ���

2

Z 1

0

!� (s) ds; (4.51)

on the other hand

! (1) + ! (0) =
d

ds
 js=1 +

d

ds
 js=0 =

d

ds
� = 0; (4.52)

whereas the measure D has the following de�nition
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D = D 

�Z
D exp

�Z 1

0

 �
_ 
�
ds

���1
: (4.53)

Finally, Green�s function can be transformed as follows

Sc (x�b ; x
�
a) = exp

�
i
�

�l
���

�Z 1

0

d�

Z
d�

Z
Dk exp

�
i
�
k (xb � xa) + �k2

�	
Z
D! exp

�
i

Z 1

0

ds

�
�2ik�

�
1

2

Z 1

0

" (s� s0)!� (s0) ds0 +
��

2

�
��

�i
�
1

2

Z 1

0

�
" (s� s0)!� (s0) ds0 +

��

2

��
!� (s)

�
ds� ��

2

Z 1

0

!� (s) ds

�����
�=0

: (4.54)

By using the following convolution notation

!�"!
� =

Z 1

0

Z 1

0

!� (s) " (s� s0)!� (s) dsds0: (4.55)

The causal Green function becomes as

Sc (x�b ; x
�
a) = exp

�
i
�

�l
���

�Z 1

0

d�

Z
d�

Z
Dk exp

�
i
�
k (xb � xa) + �k2

�	
Z
D! exp

�
i

Z 1

0

ds

�
�ik� ("!� + ��)�+

i

2
!�"!

�

������
�=0

: (4.56)

At this stage, we integrate over the ��Grassmann proper time; and we get

Sc (x�b ; x
�
a) = exp

�
i
� �l

���

� R1
0
d�
R
Dk exp fi [k (xb � xa) + �k2]g

�
R
D!

hR 1
0
[k� ("!

� + ��)] ds
i
exp

n
�1
2

R 1
0
!n"!

nd�
o���

�=0
;

(4.57)

by inserting the odd source � (�), the Green function transforms to

Sc (xb; xa) = exp
�
i~
n @l

@�n

� R1
0
d�
R
Dk exp fi [k (xb � xa) + �k2]g

�
R
D!

hR 1
0

h
k�

�
" �
��0
+ �0

�
+ kx

�
" �
��1
+ �1

�
+ ky

�
" �
��2
+ �2

�i
ds
i
I (�)

����=0
�=0

;
(4.58)

where the Gaussian integration I (�) over ! gives

I (�) =

Z
D! exp

�Z 1

0

�
�1
2
!�"!

� + ��!
�

�
ds

�
= exp

�
�1
2

Z 1

0

�
��"

�1 (s� s0) ��
�
ds

�
; (4.59)
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by using the following property "�1 (s� s0) = 1
2
d
ds
� (s� s0) ; the equation (4:59) takes the

following form

I (�) = exp

�
�1
4

Z 1

0

�
��

d

ds
� (s� s0) ��

�
ds

�
= exp

�
1

4

Z 1

0

�
_���

�
�
ds

�
: (4.60)

The expression of the Green function becomes as

Sc (xb; xa) = exp
�
i~
n @l

@�n

� R1
0
d�
R
Dk exp fi [k (xb � xa) + �k2]g

�
h
k�

�
" �
��0
+ �0

�
+ kx

�
" �
��1
+ �1

�
+ kx

�
" �
��2
+ �2

�i
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n
1
4

R 1
0

�
_���

�
�
ds
o����=0

�=0
:

(4.61)

At this level, we perform the di¤erentiation with respect to �, after that, we use these

identities

exp

�
i
�

�l
���

�
f (�)

����
�=0

= f

�
@l
@�

�
exp (i
���)

����
�=0

; (4.62)

and expanding exp (i
���) to the �rst order

exp (i
���) = 1 + i

���; (4.63)

the Green function takes the following form

Sc (xb; xa) = exp
�
i~
n @l

@�n

� R1
0
d�
R
Dk exp fi [k (xb � xa) + �k2]g

�
�
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�
�
��0

�
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�
�
��1

�
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�
�
��2

��
(1 + i
���)

��
�=0

;
(4.64)

where
�

��
exp

�
1

4

Z 1

0

�
_���

�
�
ds

�����
�=0

= 0: (4.65)

Finally, by integrating over the even variable �; we get

Sc (xb; xa) = i

Z
Dk
�
k�


0 + kx

1 + ky


2
�
exp fi [k (xb � xa)]g

Z 1

0

d� exp
�
i�k2

	
=

Z
Dkk̂ exp fi [k (xb � xa)]g

Z 1

0

d� exp
�
i�k2

	
= �

Z
Dk k̂

k2
exp fi [k (xb � xa)]g : (4.66)

Where k̂ = k�

� and

Dk =
N+1Y
n=1

dk�
2�

dkx
2�

dky
2�

: (4.67)
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4.3.2 The derivation of the wave function from Green�s function

The suitably normalized wave functions that describe the motion of the free graphene quasi-

particles are given as

 
(+)
s;k (x) = exp f�ikxgu (k; s) ; (4.68)

and

 
(�)
s;k (x) = exp fikxg � (k; s) : (4.69)

The sets
n
 
(+)
s;k

o
and

n
 
(�)
s;k

o
are each orthonormalized relative to the usual scalar product

( 
(+)
s;k ;  

(+)
s0;k0) = ( 

(�)
s;k ;  

(�)
s0;k0) = � (k � k0) �ss0 ; (4.70)

and

( 
(+)
s;k ;  

(�)
s0;k0) = 0: (4.71)

Eqs. (4.68) and (4.69) satisfy the 2D massless Dirac equation

i
@ 

@t
= �F (�:k) ; (4.72)

whilst u (k; s) =
1p
2

�
e�i�k

+ei�k

�
and � (k; s) =

1p
2

�
e�i�k

�ei�k

�
; are the solutions of the free Dirac-

graphene equation (the spinors), such as �u (k; s)u (k; s) = 1 and �� (k; s) � (k; s) = �1; and they
verify the below equations 8>><>>:

�+ =
P

�s u (k; s)u
+ (k; s) =

k̂

k

�� =
P

�s � (k; s) �
+ (k; s) =

�k̂
k

: (4.73)

4.4 The causal Green�s function for graphene quasipar-

ticles in interaction with a single plane wave �eld

To construct the causal Green�s function for a Dirac massless particles in the presence of an

electromagnetic plane wave �eld, let us consider the vector potential A (x) chosen as

A� (x; y; t) = A� (�) =
�
0; ~A (�)

�
; (4.74)

~A (�) = ~exA (�) ; (4.75)
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where A� (�) is an arbitrary function of the single variable

� = n�x� � �y � � ;

whereas � = �F t and x� = (� ; x; y) :

Here � = 1; indicating that the velocities of electromagnetic waves and quasiparticles in

graphene are the same and equal to �F = (1:12� 0:02)� 106m=s [144, 149].
The vector of propagation (the wave vector) n has the following components

n = (1; 0; 1); (4.76)

and verifying the condition of

n2 = n�n� = 0: (4.77)

Where Minkowski tensor has the signature g�� = diag (�1;+1;+1) :
In addition, we impose that the electromagnetic plane wave satisfy the Lorentz gauge con-

dition

@�A
� = n�(A

�)0 = (n�A
�)0 = 0; (4.78)

where the prime denotes the derivative functions of A (�) with regard to �:

The electromagnetic �eld tensor F�� is then de�ned as

F��

�
� = 2A0 (�)

�
@�

@�

0
1 � @�

@y

1
2

�
(4.79)

= 2A0 (�)
�
_��


0
1 � �0y

1
2
�
: (4.80)

Where _�� =
@�
@�
and �0y =

@�
@y
:

For all of this, the causal Green�s function for a Dirac massless particles in the presence of

an electromagnetic plane wave �eld is given as

Sc (q�b ; q
�
a ) = exp

�
i
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�l
���
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d�

Z
d�

Z
Dq
Z
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� �
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0 + (kx � eA (y; �)) 1 + ky 
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�� i �

_ 
�
i
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� (0)
o
�=0

: (4.81)
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4.4.1 The evaluation of Green�s function

The integrations over q (s) = (� (s) ; y (s)) seem to be di¢ cult due to the dependence of

A (n�q� = �) : We propose to introduce a new variable � that considers the plane wave vari-

able � = nq as independent from the quadriposition q via the following easily proved identity

[100, 104] Z
d�bd�a�

�
�a � n�q�a

�
�
�
�b � �a � n�(q�b � q�a)

�
= 1: (4.82)

Or rather its generalization which lets all time intervals [n� 1; n] occurZ
d�bd�a�

�
�a � n�q�a

� Z NQ
n=1

d�n
N+1Q
n=1

�
�
��n � n��q�n

�
= 1; (4.83)

where

�
�
��n � n�q�n

�
=

Z
dk�n
2�

exp
�
ik�n

�
��n � n��q�n

��
; (4.84)

with � = n�q� = y� � and ��n = �n� �n�1: By inserting this in equation (4.81), the Green
function takes the following form

Sc (q�b ; q
�
a ) = exp
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Z
D 

� exp
�
i

Z 1

0

ds
h�
�k � nk�

�
_q + k� _� + �

�
k2 � 2eA (�) kx + e2A2 (�)

�
+ 2ie�F�� (�) 

� �
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� (0)
o
�=0

; (4.85)

where

D� =
NQ
n=1

d�n; Dk� =
N+1Q
n=1

dk�n
2�

: (4.86)

Then shifting the momentum from �k + nk� into �k by taking into account the equations

n�A� = 0 and n�n� = 0, at the limit continuous N ! 1; we get for the Green function the

following expression
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Sc (q�b ; q
�
a ) = exp
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: (4.87)

Now it becomes possible to integrate over qj and �kj. Let us perform the functional integra-

tion on qj�variables; this latter gives N Dirac functions �
�
�kj � �kj�1

�
de�ned as

Z
Dqe�i

R 1
0 q

_kds = �
�
_k
�
; (4.88)

which leads to the conservation of (k� ; ky)�momentum of the quasiparticles in graphene

during the motion

k�1 = k�2 :::k�N+1 = k� = cst; ky1 = ky2 :::kyN+1 = ky = cst: (4.89)

For this conservation, the Green function Sc (x�b ; x
�
a) takes the following form
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� (0)
o
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: (4.90)

For performing the functional integrations over Grassmannian odd variables, we write the spin-

�eld couplage F�� (�) 
� � as follows

F�� (�) 
� � = 2 (n ) (A0 (�) ) : (4.91)

This writing inspires us to introduce a new Grassmannian variable � = n� � as an inde-

pendent variable from  via the following Grassmann functional identity [100]Z
d�bd�a�

�
�a � n� �a

� Z
D��

�
_� � n� _ �

�
= 1; (4.92)



4.4 The causal Green�s function for graphene quasiparticles in interaction with a
single plane wave �eld 47

where

�
�
_� � n� _ �

�
=

Z
dk�
2�

exp
h
ik�

�
_� � n� _ �

�i
; (4.93)

with k� is the momentum Grassmannian odd variable.

From Eqs. (4.92) and (4.93), the Green function becomes

Sc (x�b ; x
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; (4.94)

where

D� =
NQ
n=1

d�n; Dk� =
N+1Q
n=1

dk�n
2�

: (4.95)

In order to determine the functional integrations over Grassmannian variables  (s), we note

that these odd trajectories  (s) obey the antiperiodic boundary condition  � (0)+ � (1) = ��.

This condition can be suitably absorbed by replacing the integration over odd trajectories  (s)

by one over odd velocities ! (s) is de�ned as

 (s) =
1

2

Z
" (s� s0)! (s0) ds0 +

�

2
; (4.96)

where

" (s� s0) = sign (s� s0) =

8>><>>:
�1 for s0 � s

0 for s0 = s

1 for s � s0

;

and the measure D has the following de�nition

D = D 

�Z
D exp

�Z 1

0

 �
_ 
�
ds

���1
: (4.97)

We use the following convolution notation [100].

f"g =

Z 1

0

Z 1

0

f (s) " (s� s0) g (s0) dsds0: (4.98)
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For the transformation of !n (s), the Green function takes the Gaussian form and is written

as

Sc (x�b ; x
�
a) = exp
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: (4.99)

In order to extract the classical equation of motion relative to spin, therefore, make a

link between classical and quantum evolution, then perform the following translation shift of

velocity, which facilitates the calculation over the spin variables

!� (s)! !� (s) + in�
Z 1

0

"�1 (s� s0) k�(s
0)ds0: (4.100)

At this step, by using the plane wave properties n2 = 0 and nA = 0, the terms containing

the velocities will transform as follows.

For the linear term

!�"!
� ! !�"!

� � 2ik�n�!�: (4.101)

For the Delta bilinear term

"!� ! "!� + in�k�; (4.102)

the measure D! is unchanged. Then the Green function can be written as
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Sc (x�b ; x
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Now, we replace the delta functional �
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the Green function is then determined by the following expression

Sc (x�b ; x
�
a) = exp

�
i
�

�l
���

�Z 1

0

d�

Z
d�

Z
d3k

(2�)3
eik�(x

�
b�x

�
a)+i�k2

�
Z
d�bd�a� (�a � (ya � �a))

Z
D�

Z
Dk�

Z
d�bd�a

Z
dk�a

�
Z
D�

Z
Dk� exp

�
i

Z 1

0

ds
h
k�

�
_� + 2�k�n� � 2i��

�
+ k� ( _� + n�k��)

+k�a

�
�a �

1

2
n���

�
+ �

�
�2eA (�) kx + e2A2 (�)

�
+ 2ie��A0 (�) �

�i
�
(kx � eA (�)) �1 + k��

�
�
�
�	
I (�; �) j�=0; (4.105)

where I (�; �) gives the Gaussian integration over the odd !�velocities trajectories
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noting that M��(s; s
0) = g��" (s� s0) and g�� refers to the metric tensor of the Minkowski

space. While the expressions of external current sources J� are given as
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According to Refs. [100], we determine the spin factor I (�; �) ; which takes the Gaussian

form as
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where
q
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= 1 andM�1
�� is the inverse of the matrixM�� :
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which gives us the following form of spin factor I (�; �)
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The Green function then takes the following form
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After that, noticing that the integrations over k� and k� give the following delta functional



4.4 The causal Green�s function for graphene quasiparticles in interaction with a
single plane wave �eld 51

�( _� + nk�); (4.112)

and

�
�
_� + 2� (nk)� 2i��

�
: (4.113)

By integrating the arguments of delta functionals �( _� + nk�) and �
�
_� + 2� (nk)� 2i��

�
;

we get the following results
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and

_� + 2� (nk)� 2i�� = 0) �(s) = �a � 2� (nk) s+ 2i�a�s: (4.115)

At this level, we insert the explicit solutions of the classical equations of motion (4.114) and

(4.115) in the expression of the previous Green�s function, and after straightforward and long

computations, we obtain
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we use the following simpli�cations

(�a � n�k��s)A
0" (�a � n�k��s

0)A0 = �2k�n�A0"s0A0�a�: (4.117)

The Green function expression becomes as
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From the two delta functions shown in the above expression for the Green function, we can

get the following equations

�a =
1

2
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2
nk�; (4.119)

and

�b � �a = �nk�: (4.120)

The summation of the previous equations (4:119) and (4:120) gives

�a + �b = n���; (4.121)

this boundary condition represents the conservation of spin for quasiparticles during motion.

By summing the above two equations, we can �nd this equality (�b + �a = n�).

Let us now integrate over �a and over �b: The propagator is therefore reduced to the following

expression
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Now, we integrate over k�; this integration gives us the delta function �
�
_� + 2�nk � in��

�
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_� = �2�nk + in��; (4.123)
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Performing now the integration over the proper time s, and by simpli�cation, the Green

function becomes as
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To eliminate the constraints �b = nxb, replace the delta function � (�b � �a + 2�k
�n� � in����)

by its integral representation
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Next, shifting the momentum k by k�nk�b ; and according to integrate over the ��Grassmann
proper time, one obtains
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Then performing the derivation with respect to � and using the relation
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Expanding exp (i
���) to the second order as follows
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Using the properties n2 = 0, nA = 0; and ÂB̂+B̂Â = 2AB; after this step, Green�s function

is transformed to
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The expression of Green�s function becomes as
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At the end, the integration over the bosonic proper time � one obtains
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4.4.2 The derivation of the wave function from the Green function

To determine the wave functions, we integrate over the energy k� by applying the residue

theorem. The poles of Green�s function give us the positive and negative energies (the plus sign

stands for graphene quasiparticles, and the minus sign

stands for holes), they are given by
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The application of the residue theorem gives
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we have a projection of the positive and negative energy states [156]8>><>>:
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: (4.138)

where u (k; s) and � (k; s) are the spinors, which are the solutions of the free graphene

quasi-particles equation verifying �u (k; s)u (k; s) = 1 and �� (k; s) � (k; s) = �1;
The expansion of Green�s function in terms of the complete basis of states for quasiparticles

in an external �eld is given as
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where

 
(+)
s;k (x) =

�
1 +

e

2k�n�
n̂Â

�
u (k; s)

� exp
�
�ikx+ i

2 (ky � k� )

Z nq

0

�
�2eA (�) kx + e2A2 (�)

�
d�

�
; (4.140)
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According to Ref. [156]. The solutions of a complete and orthonormal system relative can

be rewritten as
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which satisfy the 2D massless Dirac equation

i
@ 

@t
= �F�: (k � eA (x; y; t)) : (4.145)

This result agrees exactly with that of Refs. [149] and with that obtained in the third

chapter of this thesis.

4.5 The causal Green function for Dirac-graphene

quasiparticles in interaction with two plane wave

�elds

The main goal of this section of the chapter is to calculate the relative causal Green�s function

for graphene quasiparicles in interaction with orthogonal two plane wave �elds described by the
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4-vector waves n�1 and n
�
2 with components n

�
1 = n�2 = (1; 0; 1); via path integral formalism.

For this choice, n�1 and n
�
2 verify the properties n

�
1n1� = n�2n2� = 0 and also n

�
1n2� = 0: After

that, we deduce the corresponding wave function.

4.5.1 The evaluation of Green�s function

According to the previous section, the relative causal Green�s function Sc (q�b ; q
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a ) (setting the

natural unit c = ~ = 1) has the following expression
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Where
�
�k = (k� ; ky)

�
and (q = (� ; y)). and the electromagnetic �eld tensor F�� is then de�ned

as
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with _�� =
@�
@�
and �0y =

@�
@y
:

At this stage, it is useful to introduce two new variables �1 and �2 that consider the plane

wave variables n1q and n2q respectively, and are independent from the quadriposition q. So,

we use the following identity
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We suggest the introduction of the two new Grassmannian variables �1 = n1 and �2 = n2

as independent variables from  via the following identities
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Also, using this replacement, which represents the coupling term of the two electromagnetic

plane wave �elds with the spin variables, is de�ned as
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By inserting the Eqs. (4.149), (4.150) and (4.151) in the Eq (4.146) and shifting the momentum

k by k + nik�i taking into account the properties niA (�i) = 0, n�1n1� = n�2n2� = 0; and

n�1n2� = 0, the causal Green function expression is then simpli�ed to
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: (4.152)

Performing the integration over the q�variables: This integration gives us the delta Dirac
functions, which implies that the momentum (k� ; ky)-momentum is conserved. After this, Eq.

(6.26) the Green function will take the following form
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a ) = exp
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: (4.153)

Next, we perform the functional integration over Grassmannian odd variables  (s); which

requires the introduction of the variables !��velocity de�ned in Eq. (4.96). By making the
following shift

!� (s) �! !� (s) + in�i

Z 1

0

"�1 (s� s0) k�i(s
0)ds0: (4.154)
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After some calculations, the causal Green function takes the following form

Sc (q�b ; q
�
a ) = exp
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Where

I (�i; �i) =

Z
D! exp

�Z 1

0

�
�1
2
!�M��!

� + J�!�
�
ds

�
; (4.156)

withM��(s; s
0) = g��" (s� s0) and the external current sources J� has the following expression

J� = ��
Z 1

0

(k� + eAi� (�i (�
0))) " (� 0 � �) d� 0

� 2e�
Z 1

0

�i (�
0)A0i (�i (�

0)) " (� 0 � �) d� 0 +
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2
k�ian
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i : (4.157)

The integration of the spin term can now be easily applied thanks to its Gaussian form,

which is simpli�ed to

I (�i; �i) = exp

�Z 1
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ds

�
�e� (k� + e (A1� + A2�)) "� (A

0
1 + A02)�
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k�n

�
i k�ia�

+2e2�2�i (A
0
1 + A02) "�i (A

0
1 + A02)

�	
: (4.158)

Let us now perform the integration over k�1 and k�2 and over k�1 and k�2. These integrations

are easy and directly given the following products of the delta functionals

2Q
i=1

� ( _�i + n�i k��)! �i (s) =
�
�ia � n�i k��s

�
; (4.159)

and
2Q
i=1

�
�
_�i + 2�k

�n�i � 2i�i�
�
) _�i + 2�k

�n�i � 2i�i� = 0: (4.160)

The argument of the delta functional in Eqs. (4.159) and (4.160) gives us the explicit

solutions of the classical equations of motion
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�i (s) = �ia � nik�s; (4.161)

and

�i(s) = �ia � 2� (nik) s+ 2i�ia�s: (4.162)

By substituting all the previous results in Eqs. (4:155) and after straightforward and long

computations. We immediately obtain the expression of Green�s function, which is determined

by
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Let us now integrate over k�ia, which gives the delta functional �
�
�ia � 1

2
n�i �� � 1

2
k�n

�
i k�ia�

�
.

From this, we get the constraints

�ia =
1

2
n�i �� +

1

2
k�n

�
i �; (4.164)

and

�ib = �ia � n�i k��; (4.165)

it is easy to show that the antiperiodic boundary condition on the spin variables �ib+�ia = n�i ��

is satis�ed and conserved.

�ib + �ia = n�i ��: (4.166)

Using the above equations in the Eqs. (4:163) and by performing the integration over �a and

�b: After this, the propagator is reduced to the following form
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Replacing the Delta functional � (�ib � �ia + 2�k
�ni� � in�i ���) by its integral representation
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(4.168)

and change the momentum k� by k� � n�i k�ib and after that, integrating over the Grassmann

proper time �; the result simpli�es to
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At this stage, we perform the di¤erentiation with respect to � by using the identities (4.130)

and (4.131). The expression of the causal Green�s function is rewritten as
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�eÂib +

e2

2k�n�
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At the end, where we used the relation ÂB̂ + B̂Â = 2AB with Â = A�

�; taking into

account the properties n2 = 0 and niAi = 0; and after performing the integration over the

bosonic proper time �, the Green function related to the graphene�s quasiparticles in interaction

with two electromagnetic plane wave �elds is given as
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4.5.2 The derivation of the wave function from Green�s function

The suitably normalized wave functions that describe the motion of the graphene quasiparticles

in interaction with two electromagnetic plane wave �elds are given by
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The solutions of a complete and orthonormal system relative can be rewritten as
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and
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This result agrees exactly with that obtained in the third chapter by using Volkov�s method.

4.6 Conclusion

In this chapter, we have calculated the causal Green�s function of graphene quasiparticles via

the supersymmetric path integral formalism. First, in the free case, then for the quasiparticles
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in interaction with one electromagnetic plane wave �eld and with two electromagnetic plane

wave �elds. Finally, the wave functions are exactly deduced and presented for the three consid-

ered cases. The results obtained from the path integral formalism are identical to the results

obtained via Volkov�s method in the previous section. These results give us all information

about the behavior of graphene�s quasiparticles which helps us study the electronic, magnetic,

and nonlinear properties of graphene at high energy.

If the angle between the two waves is so small
�
�̂ � 1

�
(see Ref. [157]), in the future it

can help us solve many problems, such as, for example, the Schwinger e¤ect and the Compton

e¤ect..... etc.



Chapter 5

Schwinger pair production in

monolayer graphene under the action

of a constant electromagnetic �eld and

in non-commutative phase space

coordinates

5.1 Introduction

At �rst, the Schwinger e¤ect was studied for a constant electric �eld [37]. More generally, the

issue of pair creation was studied for various con�gurations of �elds, such as the electromagnetic

�eld. For example, this problem was treated in detail in Ref. [158] in the presence of a constant

electromagnetic �eld for both scalar and spinorial particles using the Bogoliubov transformation

method.

Furthermore, in Ref. [39] the author used Schwinger�s method for calculating the e¤ective

action and the pair production probability for both scalar and spinorial relativistic particles in

the presence of a constant electromagnetic �eld plus a volkov plane wave. He shown that the

results for scalar and spinning particles are di¤erent by the spin factor, and he deduced that

the plane wave has no in�uence on the process of pair creation.

On the other hand, it is well known that the amazing properties of graphene material
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[1, 2, 4, 161] allow to study the quantum electrodynamics e¤ects of the strong �elds [12, 13]. In

recent years, a series of studies concerning the Schwinger e¤ect have been conducted through a

strong external �eld in graphene, because pair creation is essential for investigating this system.

Moreover, the Schwinger e¤ect was studied also for monolayer graphene under the action of a

strong electric �eld [162, 163, 164] and in the presence of an electric current [165], for bilayer

graphene in anisotropic QED [166] and for multilayer graphene by several researchers [94]. Also,

the Schwinger e¤ect was treated for the time-dependent Schwinger mechanism in Ref. [167]. In

the same context, in Ref. [94] the probability of pair production for a constant electric �eld was

calculated using the semi-classical approach for multilayer graphene also via an exact solution

of the Schrödinger equation for the case of monolayer graphene was obtained.

There are some researches in the literature that study the in�uence of the pair creation

problem on the NC space coordinates developed by Chikh Jabbari in Ref. [95], the author

calculated the e¤ective action and deduced the rate and the pair creation probability for both

scalar and spinorial relativistic particles in the presence of an electromagnetic �eld in non-

commutative space coordinate considering Schwinger�s method.

In this chapter, we apply the Schwinger method in NC phase space coordinates for Dirac-

graphene quasiparticles in interaction with a constant electromagnetic �eld via path integral

formalism using the method of Fradkin and Gitman [105, 168].

We consider two gauges of quadri-vector potential in NC phase space. For calculating the

e¤ective action and the pair creation probability, we assume that the direction of the magnetic

�eld ~B is along the z�axis, ~B = B~k and electric �eld is along the y�axis, ~E = E~j. Thus, our
aim is to formulate the e¤ective action under these two gauges in NC phase space coordinates.

The �rst one is the Landau gauge, de�ned by

A� = (0;�
B
2
X2;

B
2
X1 + Et); (5.1)

and the second is

A� = (�EX 2;�
B
2
X2;

B
2
X1); (5.2)

where X1 = x� �
2
py and X2 = y + �

2
px:

We made the corresponding Lagrangian function to calculate Green�s function, and after

that, we formulate the corresponding e¤ective action for calculating the pair production prob-

ability. At the end, we discuss the results for special cases. On the other hand, we study the

in�uence of the plane wave on the process of particle-antiparticle pair creation.
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5.2 The formal method of e¤ective action

5.2.1 Dirac-Graphene equation for quasiparticles in interaction with

an electromagnetic �eld in non-commutative phase-space co-

ordinates

The massless Dirac equation on this NC phase space can be written as

{
� (p� � eA�(x)) ?  (x) = 0: (5.3)

Where the ? represents the star product, it has been used to incorporate the non-commutativity

between the coordinates and between the momentum operators.

Following Refs. [169, 170], the Moyal star product is de�ned as

(f ? g) (x; p) = e
{
2
�ij@

x
i @

x
j +

{
2
�ij@

p
i @

p
j f(x; p)g(x; p)

= f(x; p)g(x; p) +
{

2
�ij@

x
i f@

x
j g jxi=xj +

{

2
�ij@

p
i f@

p
j g jpi=pj +O

�
�2
�
; (5.4)

where f(x; p) and g(x; p) are two arbitrary functions and O (�2) indicates the higher order
terms of (�; �); then by using this formula (5.4), we return to the usual product.

As a result, the corresponding massless Dirac equation for monolayer graphene on NC phase

space coordinates (5.3) will be simpli�ed as

Ô?
Graph (x) = 0; (5.5)

where the Dirac-graphene operator of the monolayer graphene on NC phase space is de�ned as

Ô?
Graph = {
�D� = {
�

�
P̂� � eA�(X̂ )

�
; � = 0; 1; 2: (5.6)

While A�(X̂ ) represents the quadri-vector potential of a constant electromagnetic �eld and

� are Dirac matrices, in (2 + 1)-dimensions are represented by the Pauli matrices as follows


0 = �3; 

1 = {�2; 


2 = �{�1: (5.7)

By applying the Bopp shift transformation [171, 172, 173, 169, 170, 174, 175], the non-

commuting coordinates
�
X̂ �; P̂�

�
can be expressed in terms of the commuting coordinates

(x̂i; p̂i). Where the time component rests unchanged in the following way [122]
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X̂0 = x0 � t; P̂0 = @0 = {@=@� ; X̂i = x̂i �
�ij
2
p̂j; P̂i = p̂i +

�ij
2
x̂j; i = 1; 2: (5.8)

Where � = �F t; �F = (1:12� 0:02)� 106 m=s is the Fermi velocity in graphene and �ij; �ij
are the results of non-commutativity in plane (x; y) are de�ned as

�ij = �"ij , �ij = �"ij: (5.9)

Here the parameter "ij is the Levi-Civita symbol [176], and �; � are the parameters of the

deformation.

The operators
�
X̂ �; P̂�

�
satisfy the below commutation relationsh

P̂i; P̂j
i
= {�ij;

h
X̂i; X̂j

i
= {�ij;

h
X̂i; P̂j

i
= {�ij; i; j = 1; 2: (5.10)

While the operators (x̂i; p̂i) are new variables that satisfy the usual canonical commutation

relations,

[x̂i; x̂j] = 0; [p̂i; p̂j] = 0; [p̂i; x̂j] = i�ij: (5.11)

5.2.2 The vacuum-vacuum transition amplitude A (vac� vac)

In quantum �eld theory (QFT ), the vacuum-vacuum transition amplitude for spinning particles

that existed at the point (xi; ti) to be found at the point (xf ; tf ) is written as a functional integral

over all Grassmann �eld con�gurations  (x) and � (x) which is clari�ed in the papers [37, 177],

given by

A = h0out j0ini ; (5.12)

=

Z
D D� exp

�
{

Z
d3xLGraph

�
(5.13)

= exp
h
{S
(NC)
eff:

i
; (5.14)

where LGraph is the Lagrangian density.
In NC phase space coordinates, the Lagrangian density is de�ned as

LGraph = � Ô?
Graph ; (5.15)

with Ô?
Graph representing the massless Dirac-graphene electron operator in NC phace space

coordinates, that is de�ned as

Ô?
Graph = {
�

�
P̂� � eA�(X̂�)

�
; � = 0; 1; 2: (5.16)
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The functional integral (5:13) is Gaussian, then the vacuum-vacuum transition amplitude

has the following form

Aspin: = det
�
Ô?
Graph

�
: (5.17)

In order to evaluate the determinant det
�
Ô?
Graph

�
, we use the following formula

det Â = det Ây = �i�i = det
h
ÂÂ

yi1=2
; (5.18)

where Ây is the conjugate of the operator Ây: Notice that the eigenvalues of Â and Ây are

conjugate. Then we can write

Aspin: � det
h
Ô?
GraphÔ

?y
Graph

i1=2
; (5.19)

� det
h
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e

2
���F?

��

i1=2
: (5.20)

Here Ô?
KG represents the Klein-Gordon operator, which is de�ned by

Ô?
KG =

�
P̂� � eA�(X̂ )

��
P̂� � eA�(X̂ )

�
; (5.21)

and ��� = {
2

�
� is the spin tensor and F?

�� is the strength antisymmetric tensor, of a gauge

�eld related to noncommutative geometry given by

F?
�� = @�A� � @�A� + �e [A�;A� ]? : (5.22)

Form [177] we have the formula
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Ô?
KG �

e

2
���F?

��

ii
(5.23)

= exp

�
1

2
Tr
�
ln
h
Ô?
KG �

e

2
���F?

��

i��
: (5.24)

Using the representation

ln Â = Cst�
Z 1

0

d�

�
exp

h
�{�Â

i
; (5.25)

we obtain

ln
h
Ô?
KG �

e

2
���F?

��

i
= Cst�

Z 1

0

d�

�
exp

h
�{�

h
Ô?
KG �

e

2
���F?

��

ii
: (5.26)
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5.2.3 The Schwinger e¤ective action

Formally, the e¤ective action expression is given as [158]

S
(NC)
eff: =

Z 1

0

d�

�
Tr G(NC) (x�b ; x�a ; �) ; (5.27)

Here "Tr" indicates the complete diagonal summation over the continuous space-time co-

ordinates and 
�matrices (Tr = Tr
Trx).

It is obvious that the determination of S(NC)eff: requires the knowledge of the kernel propagator

de�ned by

G(NC) (x�b ; x�a ; �) = �{T hxbj exp
n
�{�

h
Ĥ
�
X̂ �; P̂�

�io
jxai ; (5.28)

where

Ĥ
�
X̂ �; P̂�

�
= Ô?

KG

�
X̂ �; P̂�

�
� e

2
���F?

��

�
X̂ �; P̂�

�
: (5.29)

Whilst "T" represents the time ordering operator that a¤ects on the phase relative to the

coupling term, which ordered the x; p and 
�matrices.
We understand from Eq. (5.27), that the kernel propagator calculation helps us in deter-

mining the e¤ective action as well as the probability of particle creation. To do this, we follow

the standard discretization method for the kernel (5:28) and write as usual exp
�
� {
h
�0Ĥ

�
=h

exp
�
� {
h
"Ĥ
�iN+1

, with " = �0=(N + 1), and then insert N identities
R
jx�i hx�j dx� = 1

and (N + 1) times the identities
R
jp�i hp�j dp� = 1 between all the in�nitesimal operators

exp
�
� {
h
"Ĥ
�
. Therefore, the expression of G(NC) (xb; xa; �) will be taken as the following Hamil-

tonian path-integral representation

G(NC) (x�b ; x�a ; �) = { lim
N!1

Z 1

0

d�0

NY
k=1

Z
d3x�k

N+1Y
k=1

Z
d3p�k
2�

exp

(
i

N+1X
k=1

�
p�k�x

�
k

+

�
"

�
1

�2F

�
p0k � eA0(x

0
k;X i

k)
�2 � �P i

k � eAi(x0k;X i
k)
�2 � {e

2

�
�F?

��

���
; (5.30)

Following the method of Fradkin and Gitman [168], we can write the e¤ective action as

follows

S
(NC)
eff: = �{

Z
d�

�

Z
dtbdxbdyb

�
Z
DtDxDy

Z
D exp

�
{

Z �

0

ds
h
L (x; _x; s)� {eF?

�� 
� � + { _ 

i�
xb=xa

; (5.31)
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where L (x; _x; s) represents the Lagrangian function associated with a uniform electromagnetic

�eld in NC phase space coordinates, and as usual, we de�ne (Dx; Dy and Dt) as,

Dx� = lim
N!1

r
mx�

2{��

NQ
k=1

�
dx�k

r
mx�

2{��

�
; (5.32)

and the measure D has the following de�nition

D = D 

�Z
D exp

�
�i
Z �

0

ds � (s)
_ 
�
(s)

���1
; (5.33)

where  � (s) are odd Grassmann variables that obey the boundary condition  (0)+ (�) = 0.

We note that the di¤erence between the e¤ective action and the kernel propagator is the factor

(1=�) ; with the boundary condition x�(0) = x�(�).

5.2.4 The pair production probability

The probability of transition vacuum-vacuum amplitude Aspin: is de�ned by

Pvac�vac = jAspin: (vac� vac)j2

= jh0out j0inij2

= exp

�
�
Z
d3x2 ImLeff

�
= exp (�2 ImSeff ) : (5.34)

Schwinger [37] has shown that the probability of pair creation is the imaginary part of the

e¤ective action Seff de�ned as

PCreat = 1� Pvac�vac

= 1� exp
�
�
Z
d3x2 ImLeff

�
' 2 ImSeff : (5.35)

5.2.5 Gauge invariance

It is well known that, in the case of the commutative phase space (i.e., � = 0 and � = 0),

the previous quadri-potentials (A� = (0;�B
2
X2; B2X1 + Et) and A� = (�EX 2;�B

2
X2; B2X1)) are
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connected by this gauge transformation A0�(x) = A�(x)+@��(x); where �(x) denotes the gauge

function are physically equivalent (also known as gauge invariance).

However, in the noncommutative case (i.e., � 6= 0 and � 6= 0) they are no longer equivalent
according to this usual gauge transformation , and as we shall observe in our application con-

cerning the production of pairs. Otherwise, the equation (5.5) is not invariant uder this usual

gauge transformation because of the NC phase space. We may deduce, without making any

claims, that one should introduce adequate gauge transformations containing the noncommuta-

tivity parameters (�; �) to satisfy a corresponding gauge invariance of the equation (5.5). These

gauge transformations would also ensure the invariance of the Maxwell equations corresponding

to the �elds in this NC phase space.

5.3 The construction of e¤ective action for the �rst gauge

of �eld

5.3.1 The evaluation of propagator G(NC) (xb; xa; �)

In this section, we study the creation of particles from the vacuum in monolayer graphene, under

the action of a uniform electromagnetic �elds A� = (0;�B
2
X2; B2X1+Et); in a non-commutative

space coordinate considering Schwinger�s method.

For constructing the e¤ective action, we must calculate the Green function via the super-

symmetric path integral formalism. It is convenient to write the Hamiltonian Ô?
Graph

�
X̂ �; P̂�

�
associated with this gauge in (2 + 1)-dimensions as follows

Ĥ
�
X̂ �; P̂�

�
= Ô?

Graph

�
X̂ �; P̂�

�
= � (p0)2 +

�
px

�
1 +

eB�
4

�
+
eB
2

�
1 +

�

eB

�
y

�2
+

�
py

�
1 +

eB�
4

�
� eB
2

�
1 +

�

eB

�
x� eEt

�2
� {e

2

�
�F?

�� : (5.36)

By making the shift p� ! p� + p0� and after a long and straightforward calculation, we

obtain the classical Lagrangian function corresponding to this gauge of �eld

LG1

�
x; _x;  ; _ ; s

�
= �mt

2
_t2 +

mx

2
_x2 +

my

2
_y2 + !1x _y � !2 _xy + !3t _y

� ieF?
�� 

� � + i _ ; (5.37)
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Wheremt;mx andmy are the mass of particles in NC phase space along the t, x, y directions,

respectively, and !1; !2 and !3 are the frequencies along the x and y directions.

mt =
�2F
2
; mx = my =

1

2(1+ eB�
4 )

2 ; !1 = !2 =
eB
2
(1+ �

eB)
(1+ eB�

4 )
;

!3 =
eE�

1 + eB�
4

� ; (5.38)

and

F?
02 =

E
�F
; F?

12 = B(1 + �eB
4
+ �

eB ): (5.39)

Note that the mass of graphene quasiparticles, m; is posed as m = 0: By applying the path

integral formalism using the method of Fradkin and Gitman [105], we obtain

G(NC) (x�b ; x�a ;�) =
Z
DtDxDy

Z
D exp

�
i

Z �

0

dt
h
�mt

2
_t2 +

mx

2
_x2 +

my

2
_y2

+!1x _y � !2 _xy + !3t _y + ieF?
�� 

� � � i _ 
io

; (5.40)

where Dx; Dy and Dt are de�ned as

Dx� = lim
N!1

r
mx�

2{��

NQ
k=1

�
dx�k

r
mx�

2{��

�
; (5.41)

where the measure D is given by

D = D 

�Z
D exp

�
�
Z �

0

dt _ 

���1
: (5.42)

The standard technique of the Gaussian integration over the Grassmannian variables gives

us
q

detM(e)
detM(e=0)

; the propagator then takes the following form

G(NC) (x�b ; x�a ;�) =

s
detM (e)

detM (e = 0)Z
DtDxDy exp

�
i

Z �

0

dt
h
�mt

2
_t2 +

mx

2
_x2 +

my

2
_y2 + !1x _y � !2 _xy + !3t _y

i�
; (5.43)

with

M�� (e; � ; �
0) =

�
����

0(� � � 0)� eF?
�� (�) �(� � � 0)

�
: (5.44)

It is easy to show that the spin factor (SF) is written ass
detM (e)

detM (0)
= exp

�
��
2

Z e

0

de0Tr

Z
d�
�
M�1��� (e0; � ; �)F?

�� (�)

�
; (5.45)
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where (M�1)
��
(� ; � 0) is the inverse of the matrix elementsM�� (� ; � 0) satisfying the following

relation Z 1

0

M�� (e; � ; s)
�
M��

��1
(e; s; � 0) = ���� (� � � 0) : (5.46)

Following Ref. [168] and after a long and simple calculation, which is presented in the

appendix, we obtain this results
detM (e)

detM (e = 0)
= cosh (e�1�) ; (5.47)

with �1 =

r�
E
�F

�2
� (B)2 (1+ �eB

4
+ �
eB )

2:

Following [178], the kernel propagator G(NC) (x�b ; x�a ;�) can be written as

G(NC) (x�b ; x�a ;�) = exp ({!2 (xaya � xbyb))K (x�b ; x�a ;�) cosh (e�1�) ; (5.48)

where K (xb;xa; �) is de�ned as

K (x�b ; x�a ; �) =
Z
Dy exp

�
{

Z �

0

hmy

2
_y2
i
dt

�
K [y (t)] ; (5.49)

K [y (t)] is the propagator of a free particle in a time-dependent external force (2!1 _y) and !3 _y;

respectively, on the axes (Ox) and (Ot) de�ned by

K [y (t)] = Kx [y (t)]�Kt [y (t)]

=

Z
Dx exp

�
{

Z �

0

�
mx

2
_x2 + (2!1) _yx

�
ds

�
�
Z
Dt exp

�
{
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0

h
�mt

2
_t2 + !3 _yt

i
ds

�
: (5.50)

Using the well known result of time-dependent forcing of a free particle [179], the propagators

Kx [y (t)] and Kt [y (t)] respectively have the following forms

Kx [y (t)] =

r
mx

2�{�
exp

�
{mx

2�
(xb � xa)

2	 exp f{ (2!1) (xbyb � xaya)g
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�
: (5.51)

and

Kt [y (t)] =

r
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�
�{mt
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mt�
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Z s

0
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�
: (5.52)
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Consequently, we can write propagator K [y (t)] as follows

K [y (t)] =
r
�mt

2�{�
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y (s0) ds0
��
ds

�
: (5.53)

Performing the integration by parts of the term (
R �
0
dt
h
y (t)

R t
0
y (s) ds

i
), the kernel propa-

gator K (x�b ; x�a ;�) then will express as follows
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: (5.54)

By using the following formula,

r
a

�

Z
d� exp

�
�a�2 + b�

�
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2
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�2#
: (5.55)

The Gaussian function exp
�
{my

2�

h
4!21
mxmy

� !23
mtmy

i hR �
0
y (s) ds

i2�
can be written as follows
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mxmy�
� !23
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)
d�: (5.56)

Incorporating Eq. (5.56) into Eq. (5.54), this gives for the kernel propagator K (x�b ; x�a ;�)
the following result

K (x�b ; x�a ;�) =
r
{my

4��

Z +1

�1
exp

n
� {my

4�
�2
o
K (x�b ; x

�
a ; �; �) d�; (5.57)

where K (x�b ; x
�
a ; �; �) is given by

K (x�b ; x
�
a ; �; �) =

Z
Dy exp
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[2!1 (xa � xb)� !3 (ta � tb) +my
1�] y

�
ds

�
: (5.58)
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This propagator represents a one-dimensional forced harmonic oscillator with frequency 
1

de�ned as


1 =

s
4!21
mxmy

� !23
mtmy

(5.59)

= 2

s
(eB)2

�
1 +

�

eB

�2�
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eB�
4

�2
� (eE)

2

�2F
; (5.60)

and a time-independent external force de�ned as

Fy =
1

�
[2!1 (xa � xb)� !3 (ta � tb) +my
�] : (5.61)

Following Ref. [179], the propagator K (x�b ; x
�
a ; �; �) transformed to

K (x�b ; x
�
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21

�
: (5.62)

At this stage, by substituting Eq. (5.62) into Eq. (5.57) and by performing the integration

over � from �1 to +1; then with some simpli�cations [178], we get for the expression of the

Green function the following result

G(NC) (x�b ; x�a ;�) = K0 (tb; ta; �)K0 (xb; xa; �) e
�{!3(tbyb�taya)e{!1(xbyb�xaya)
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2
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2 � !23 (ta � tb)
2��� cosh (e�1�) ; (5.63)

where K0 (tb; ta; �) and K0 (xb; xa; �) are the propagators of free particles olong t and x

direction respectively.



5.3 The construction of e¤ective action for the �rst gauge of �eld 76

5.3.2 The e¤ective action expression

As it is usually known, we write the e¤ective action corresponding to the �rst gauge, which

takes the following form

S
(NC,G1)
eff: = �{

Z 1

0

d�

�

Z
dtbdxbdyb cosh (e�1�)

�K0 (tb; ta; �)K0 (xb; xa; �) e
�{!3(tbyb�taya)e{!1(xbyb�xaya) (5.64)

�
q

my
1
2�{ sin(
1�)

q
{my

2��

r
�

{
my

�2
1
tan(
1�=2)

exp

�
{my
1

4

�
(ya � yb)

2 cot

�

1�

2

�
� {my
1

2�

�
1

m2
y


3
1

� �
2m2

y

2
1 tan(
1�=2)

�
(�4!1!3 (xa � xb) (ta � tb))

� {my
1
2�

�
1

m2
y


3
1

� �
2m2

y

2
1 tan(
1�=2)

��
4!21 (xa � xb)

2 � !23 (ta � tb)
2�������

xa=xb

: (5.65)

Consequently, by some simpli�cation, the e¤ective action takes this simple form

S
(NC,G1)
eff: = �{

Z 1

0

d�

�

Z
dtbdxbdyb cosh (e�1�)

�K0 (tb; ta; �)K0 (xb; xa; �)
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1
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: (5.66)

where

K0 (tb; ta; �) =

r
�mt

2�i�
(5.67)

K0 (xb; xa; �) =

r
mx

2�i�
(5.68)

Performing now the �nal space-time coordinates integral for all terms we obtain, the volume

that is de�ned as Z
dtbdxbdyb = TL2; (5.69)

the e¤ective action then becomes as follows

S
(NC,G1)
eff: = TL2 �1=2 ~
1�F

8�3=2(1+ eB�
4 )

2

Z 1

0

d�

�3=2
cosh (e�1�)

sinh
�
~
1�
� : (5.70)

Returning to real time via the replacements (T ! {T ) in the Eq. (5:70) : Consequently, we

get the expression of S(NC)eff in the framework of the NC phase space coordinate for �rst gauge,

which is de�ned as
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S
(NC,G1)
eff: = TL2 �3=2 ~
1�F

8�3=2(1+ eB�
4 )

2

Z 1
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�3=2
cosh (e�1�)

sinh
�
~
1�
� ; (5.71)

with ~
1 = �
1=2 which has the following form

~
1 =
�

2

s
4!21
mxmy

� !23
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; (5.72)

=
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(eE)2

�2F
� (eB)2

�
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�
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�2�
1 +

eB�
4

�2
: (5.73)

In commutative phase space (� = � ! 0) and B = 0, Eq. (5.71) agrees exactly with that of
Ref. [162, 94, 163].

5.3.3 The pair production probability

The pair production probability per unit volume and per unit time in the framework of the NC

phase space coordinate for the �rst gauge is de�ned as

P(NC,G1) (pair) = 2 ImS(NC)eff: : (5.74)

Where the imaginary part of S(NC)eff: can be written as follows

2 ImS
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�
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�
; (5.75)
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sinh
�
~
1�
� ; (5.76)

this result (5.76) is veri�ed when ~
21 > 0, while it equals zero in the opposite case.

Let us now achieve the integration over � by using the residue theorem. We close the

integration contour at in�nity with a semicircle in the upper half-plane.

The function sinh(~
�) has these poles ~
�k = ik� =) �k =
k�
~

along the integration contour;

then we can write
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1
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~
1
: (5.78)
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Finally, the expression of pair production probability per unit volume per unit time in the

framework of a NC phase space coordinate for the �rst gauge is simpli�ed in the following

manner

P(NC,G1) (pair) = TL2
~

3=2
1 �F

4�2(1+ eB�
4 )

2

1P
k=1

(�1)k

k3=2
cos

�
e�1
~
1

k�

�
; (5.79)

As a result, when there are no noncommutative coe¢ cients (i.e., � = � ! 0) in the case

when E 6= 0; B = 0, we have (e�1 = ~
1 =
E
�F
); and the pair production probability per unit

volume per unit time becomes as

P(NC,G1) (pair) = �FTL
2

4�2

�
eE
�F

�3=2 1P
k=1

(�1)2k

k3=2
=
TL2 (eE)3=2

4�2�
1=2
F

� (3=2) ; (5.80)

with � is the Riemann zeta function and � (3=2) =
P1

k=1 k
�3=2 = 2:61238:

The Eq. (5.80) con�rms the Schwinger results in graphene, which agrees exactly with those

of Refs. [162, 94].

Moreover, following Eq. (5.76) in the case of large magnetic �elds, the problem of pair

production is non-existent. The same result exists in the absence of electromagnetic �elds.

5.4 The construction of e¤ective action for the second

gauge of �eld

5.4.1 The evaluation of propagator G(NC,G2) (xb; xa; �)

In this section, we study the creation of particle-anti particle pairs from the vacuum in mono-

layer graphene under the action of the uniform electromagnetic �eld and in a non-commutative

space-phase coordinates considering Schwinger�s method.

We consider the vector potential A� (X ) that is given by

A� = (�EX 2;�
B
2
X2;

B
2
X1); (5.81)

where X1 = x� �
2
py and X2 = y + �

2
px:

The Hamiltonian Ô?
Graph

�
X̂ �; P̂�

�
associated with this gauge is de�ned as
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Ô?
Graph

�
X̂ �; P̂�

�
= (p̂0 + eE(ŷ + �

2
p̂x))

2 � (p̂x +
�

2
ŷ +

eB
2
(ŷ +

�

2
p̂x))

2

� (p̂y �
�

2
x̂� eB

2
(x̂� �

2
p̂y))

2 � {e

2

�
�F?

�� ; (5.82)

and the corresponding Lagrangian function LG2
�
x; _x;  ; _ ; s

�
for this gauge can be written

as

LG2

�
x; _x;  ; _ ; s

�
= mx

2
_x2 + mY

2
_Y 2 + !1x _Y � !2Y _x� !2Y Y

2

+
p0
�F
� (�; �) (xb � xa)� {eF?

�� 
� � + { _ ; (5.83)

with

Y = y +
(1+ eB�

4 )
eE[(1+ eB�

2 )�
eB�
4 (1+

�
2eB)]

p0; (5.84)

and

mx =
1

2

�
(1+ eB�

4 )
2�
�
e�E
2�F

�2� ; mY =
1

2(1+ eB�
4 )

2

!1 =
eB
2
(1+ �

eB)
(1+ eB�

4 )
; !2 =

eB
2 (1+

eB�
4 )(1+

�
eB)�

�
eE
�F

�2
�
2

(1+ eB�
4 )

2�
�
e�E
2�F

�2 ;

!2Y = �
�
eE
�F

�2
[(1+ eB�

4 )�
eB�
4 (1+

�
eB)]

2

(1+ eB�
4 )

2�
�
e�E
2�F

�2 and � (�; �) =
eB
2

�
1 + �

eB
�

eE
�F

��
1 + eB�

4

�
� eB�

4

�
1 + �

eB
�� ; (5.85)

also

F?
02 = �

E
�F
(1 + eB�

2
); F?

12 = �B(1 + �eB
4
+ �

eB ): (5.86)

Whereas mx and mY are the masses of quasiparticles in a NC phase space along the x and Y

directions, respectively, and !Y is the frequency along the Y . Note that in the ordinary case,

it is well known that the e¤ective masses and the frequencies are respectively given by mx =

mY = 1=2 and !1 = !2 =
eB
2
:

By applying the path integral formalism using the method of Fradkin and Gitman [105],

the corresponding Green�s function is de�ned as

G(NC;G2) (x�b ; x�a ; �) =
Z +1

�1

dp0
2�

e�{p0(tb�ta)

�
Z
DxDy

Z
D exp

�
{

Z �

0

d�
h
mx

2
_x2 + mY

2
_Y 2 + !1x _Y � !2Y _x

�!2Y Y 2 +
p0
�F
(xb � xa) � (�; �)� {eF?

�� 
� � + { _ 

��
: (5.87)
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The integration over spin is given as (i.e., see the Appendix),s
detM (e)

detM (e = 0)
= cosh (e�2�) ; (5.88)

with �2 =
q

E2
�2F
(1+ eB�

2
)2 � B2(1+ �eB

4
+ �
eB )

2:

By using the same methodology that was presented in the previous section, we perform all

the path integrations on the bosonic trajectories. Therefore, the kernel propagator G(NC;G2) (x�b ; x�a ; �)
can be expressed as,

G(NC;G2) (x�b ; x�a ; �) = exp ({!2 (xaYa � xbYb))K (x�b ; x�a ; �) ; (5.89)

where the kernel propagator K (x�b ; x�a ; �) can be written as,

K (x�b ; x�a ; �) =
Z
DY exp

�
{

Z �

0

h
mY

_Y 2

2
� !2Y Y

2
i
ds

�
K [Y (t)] : (5.90)

We note that K [Y (t)] is the free particle propagator in a time-dependent external force

((!1 + !2) _Y ) de�ned as

K [Y (t)] =
Z
Dx exp

�
{

Z �

0

h
mx

2
_x2 + (!1 + !2) _Y x

i
ds

�
: (5.91)

Following [179], the propagator K [Y (t)] is transformed to

K [Y (t)] =
r

mx

2�{�
exp

�
{mx

2�
(xb � xa)

2	 exp f{ (!1 + !2) (xbYb � xaYa)g

� exp
(
{

Z �

0

"
(!1 + !2)

�
(xa � xb)Y �

(!1 + !2)
2

2mx

Y 2 +
(!1 + !2)

2

mx�
Y

Z s

0

Y (s0) ds0

#
ds

)
:

(5.92)

After the integration by parts of the term
�R �

0
ds
�
Y (s)

R s
0
Y (s0) ds0

��
, we �nd

K (x�b ; x�a ; �) =
Z
DY exp

�
imY

2

Z �

0

h
_Y 2 + 2(!1+!2)

�mY
(xa � xb)Y �

�
(!1+!2)

2

mxmY
+ 2

!2Y
mY

�
Y 2
i
ds

�
� exp

(
imY

2

(!1 + !2)
2

mxmY �

�Z �

0

Y (s) ds

�2)
: (5.93)

Then, we write the �nal term in Eq. (5.93) as follows

exp

(
imY

2

(!1 + !2)
2

mxmY �

�Z �

0

Y (s) ds

�2)
=

r
imY

2��

Z +1

�1
exp

�
�imY

2��
�2

+imY
(!1 + !2)p
mxmY �

�

Z �

0

Y (s) ds

�
d�: (5.94)
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Then, the Eq. (5.93) reduces to

K (x�b ; x�a ; �) =
r
imY

2��

Z +1

�1
exp

�
�imY

2�
�2
�
K (x�b ; x�a ; �; �) d�; (5.95)

where K (x�b ; x�a ; �; �) is given by

K (x�b ; x�a ; �; �) =

Z
DY exp

�
i

Z �

0

h
mY

2

�
_Y 2 � !2Y 2

�
+

�
(!1+!2)

�

�
(xa � xb) +

r
mY

mx

�

��
Y

�
ds

�
; (5.96)

This propagator represents a one-dimensional forced harmonic oscillator with a time-independent

external force that is de�ned as

FY =
(!1 + !2)

�

�
(xa � xb) +

r
mY

mx

�

�
: (5.97)

Following [179], in this gauge, the expression of the kernel (5:96) takes the following form

K (x�b ; x�a ; �; �) =
q

mY 
2
2�{ sin(
2�)

exp
n
{ mY 
2
2 sin(
2�)

��
Y 2
a + Y 2

b

�
cos (
2�)� 2YbYa

�o
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�
{

�
�

(!1+!2)
�

�
(xa�xb)+

q
mY
mx

�
�
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2�)
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2�)� 1)

��
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(
{

�
(!1+!2)

�

�
(xa�xb)+

q
mY
mx

�
��2

mY 

3
2 sin(
2�)

(cos (
2�)� 1)
)
exp

"
{
�
�
(!1+!2)

�

�
(xa�xb)+

q
mY
mx

�
��2

2mY 

2
2

#
; (5.98)

with


2 =

s
(!1 + !2)

2

mxmY

+ 2
!2Y
mY

: (5.99)

Finally, after substituting Eq. (5.98) into Eq. (5.95) and performing the integration over

� from (�1 to +1) ; by combining Eq. (5.95) into Eq. (5.89), the Green function will be
expressed as follows

G(NC;G2) (x�b ; x�a ; �) =
Z
dp0
2�

cosh (e�2�)

�e�{p0(tb�ta) [A (
2�)]�1=2K0 (xb; xa; �)K
2 (Yb; Ya; �)

� exp
�
{!1 (xbYb � xaYa) + {

p0
�F
(xb � xa) � (�; �)

�
� exp

�
Dx (�) (xa � xb)

2 +DxY (�) (xa � xb) (Yb + Ya) +DY (�) (Yb + Ya)
2� ; (5.100)

where, K0 (xb; xa; �) is the propagator of free particles along the x direction.
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K
2 (Yb; Ya; �) is the propagator of a one-dimensional harmonic oscillator with frequency


2.

Whereas Dx (�) ; DxY (�) ; DY (�) are given as

Dx (�) = {
mx[(!1+!2)2=mxmY ]

2�2
32

(
2�� 2 tan (
2�=2))
A (
2�)

;

DxY (�) = {
[(!1+!2)=

p
mxmY ]

�
2

p
mxmY tan(
2�=2)

A(
2�)
and DY (�) = {

mY [(!1+!2)2=mxmY ]
2�
22

tan2(
2�=2)
A(
2�)

;

(5.101)

with

A (
2�) =
h
1 + (!1+!2)

2

�mYmx
32
[2 tan (
2�=2)� 
2�]

i
: (5.102)

5.4.2 The e¤ective action expression

Through the de�nition, the e¤ective action for the second gauge of quasiparticles of graphene

in the NC phase space coordinates takes the following form

S
(NC)
eff: = �{

Z 1

0

d�

�

Z
dp0
2�

Z
dtbdxbdyb cosh (e�2�)

�e�{p0(tb�ta) [A (
2�)]�1=2K0 (xb; xa; �)K
2 (Yb; Ya; �)

� exp
�
{!1 (xbYb � xaYa) + {

p0
�F
(xb � xa) � (�; �)

�
� exp

�
Dx (�) (xa � xb)

2 +DxY (�) (xa � xb) (Yb + Ya) +DY (�) (Yb + Ya)
2� jxb=xa : (5.103)

By performing the integration for all terms within the expression of S(NC)eff ; we get

S
(NC)
eff: = �{TL2

Z 1
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d�

�

Z
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2�

cosh (e�2�)

� [A (
�)]�1=2
r
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q
mY 
2

2�{ sin(
2�)

�
Z
dY exp

�
{mY
2

�
cos(
2�)�1
sin(
2�)

+
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2�)

�
Y 2

�
: (5.104)

For our study, we know that y = Y � p0
eE

(1+ eB�
4 )

[(1+ eB�
2 )�

eB�
4 (1+

�
2eB)]

; for this reason p0 must be

constrained to be in the range 0 < p0 < eEL((1 + eB�
2
)� eB�

4
(1 + �

2eB ))=(1 +
eB�
4
); in order that

the entire range of time is included as p0 is varied. After simplifying this integral and then

integrating over Y; the Eq. (6.34) gives us the following result
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S
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eff: = �{TL
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Integrating now over p0 and returning to real time via the replacements (T ! {T ) [37], we

obtain

S
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�
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4
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� ; (5.106)
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22 is given by
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�2 : (5.107)

In commutative phase space (� = � ! 0) and B = 0, Eq. (5.106) agrees exactly with that
of Ref. [162, 94, 163].

5.4.3 The pair production probability

The same steps that we made in the previous section to calculate the term (2 ImS(NC)eff: ), which

will give the pair production probability per unit volume per unit time in the framework of the

NC phase space coordinates for second gauge

P(NC,G2) (pair) = TL2
~

3=2
2 �F

4�2(1+ eB�
4 )

2

1P
k=1

(�1)k

(k)3=2
cos

�
e�2
~
2

k�

�
; (5.108)

when � ! 0 and � ! 0; the above result agrees with Refs. [162, 94].

5.5 Special cases and discussion

Table 1 represents a list of special e¤ective actions for graphene quasiparticles in NC phase

space with electric and magnetic �elds di¤erent from or equal to zero.

In order to discuss all the special cases of two gauges and compare the results between them,

we will show the results of the e¤ective actions for four cases (E 6= 0;B 6= 0; E 6= 0;B = 0;

E = 0;B 6= 0; and E = 0;B = 0) of both gauges.



TABLE I. Effective actions of special uniform electromagnetic fields within the NC phase space.

∀ (η, θ) E 6= 0 gauge 1 E 6= 0 gauge 2 E = 0 gauge 1 E = 0 gauge 2

B 6= 0 Eq. (48) Eq. (77)
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Let us start with the case of E 6= 0;B 6= 0; when � 6= 0 and � 6= 0: From the table, the

e¤ective actions are de�ned in the equations (Eq. (5.71) and Eq. (5.106)) as follows

S
(NC,G1)
eff: = TL2 �3=2 ~
1�F

8�3=2(1+ eB�
4 )

2

Z 1

0

d�

�3=2
cosh (e�1�)

sinh
�
~
1�
� ; (5.109)

and

S
(NC,G2)
eff: = {3=2

TL2 ~
2�F

8�3=2
�
1 + eB�

4

�2 Z 1

0

d�

�3=2
cosh (e�2�)

sinh
�
~
2�=2

� : (5.110)

As a result, in commutative phase space coordinates (i.e., � = � ! 0), the e¤ective actions

for two gauges are the same and become

S
(NC,G1,G2)
eff: = �FTL

2

8�3=2
�3=2

s
(eE)2

�2F
� (eB)2

Z 1

0

d�

�3=2
coth

0@s(eE)2
�2F

� (eB)2�

1A ; (5.111)

Consequently, when � = 0 and � 6= 0; the S(NC)eff: expression is the same for both gauges, and

it is given as

S
(NC,G2,G1)
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8�3=2
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2�

!
: (5.112)

Also, when � 6= 0 and � = 0; the expression of S(NC)eff: for two gauges, respectively, become as

S
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eff: = {3=2
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2
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and
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Where
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and �2;�=0 = (1+ eB�
2
)
q
(eE)2 =�2F � (eB)

2:

From the above Eqs. (5.113) and (5.114), for each gauge, the e¤ective action is di¤erent.

This indicates that in this case, the pair production problem becomes essential because if � 6= 0
and � = 0, we conclude that the creation of pairs for the two gauges gives di¤erent results.

On the other hand, in Ref. [95], the author "Sheikh-Jabbari" has studied the problem of pair

creation by an external electromagnetic �eld in NC space given in a gauge con�guration that

di¤ers from ours; his study gives necessarily di¤erent results, and this is due to the properties

of non-commutativity.

Then, for the second case (E 6= 0; B = 0), the e¤ective actions are de�ned in the Table1 .
In particular, when � = 0 and � 6= 0; we �nd the same expression of the S(NC)eff: for both gauges

that is given by

S
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while in the case when � 6= 0 and � = 0; the S(NC)eff: expression for both gauges is reduced to

S
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eff: = {3=2

�FTL
2
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eE
�F

Z 1
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d�
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coth
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; (5.117)

which gives the same expression in an ordinary uniform electric �eld [162, 94].

Then, in the third case (E = 0;B 6= 0), the expression of e¤ective actions is de�ned in

Table1. Especially if � = 0 and � 6= 0; the result of S(NC)eff: is the same for two gauges and is

written as

S
(NC,G1,G2)
eff: = {3=2

�FTL
2

8�3=2
eB
�
1 +

�

eB

�Z 1

0

d�

�3=2
cot
�
eB(1+ �

eB )�
�
: (5.118)

As well as when � 6= 0 and � = 0; the S(NC)eff: expression for two gauges is given by

S
(NC,G1,G2)
eff: = {3=2

�FTL
2

8�3=2
eB

1 + eB�
4

Z 1

0

d�

�3=2
cot
�
eB(1+ eB�

4
)�
�
: (5.119)

In the free case (B = E = 0), from Eq. (5.71) and Eq. (5.106), the e¤ective action in

these NC phase space coordinates for both gauges is the same result speci�ed in the following

equation

S
(NC,G1,G2)
eff�free = �3=2TL2

�F
8�3=2

Z 1

0

d�

�3=2
� cot (��) ; (5.120)

which is the same result of the e¤ective action of a charged massless particle in a constant

magnetic �eld (�=e).
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5.6 Schwinger�s pair production in monolayer graphene

under the action of electromagnetic plane wave �elds

In this section, we suggest to study the in�uence of a single plane wave �eld on the process

of particle-antiparticle pair creation from the vacuum in ordinary space phase coordinates in

monolayer graphene following the Green function that exists in the fourth chapter.

5.6.1 The e¤ective action expression for a single-plane wave �eld

As it is well known, Schwinger�s e¤ective action is de�ned as

Seff: =

Z 1

0

d�

�
Tr G (x�b ; x�a ; �) ; (5.121)

where the corresponding kernel propagator G (x�b ; x�a ; �) can be presented in the form

G (x�b ; x�a ; �) = �{T hxbj exp f�{� [H (x; k)]g jxai : (5.122)

The Green function for a (2 + 1)-dimensional relativistic Dirac massless particles in the

presence of an electromagnetic plane wave �eld is de�ned as [100]

G (x�b ; x�a ; �) =
Z 1

0

d�

Z
d3k

(2�)3

h
k̂
h
1 +

e

2nk
n̂
�
Âb � Âa

�i
� eÂb

+
e

2kn
n̂ (kAb)�

e2

2kn
n̂ (AaAb) +

e2

2kn
n̂ÂaÂb

�
exp

�
ik (xb � xa) + i�k2 +

i

2nk

Z �b

�a

�
�2eA (�) kx + e2A2 (�)

�
d�

�
; (5.123)

where, (n̂ = n�

�; Â = A�


�; k̂ = k�

�) :

The e¤ective action then takes the following form

Seff: = �i
Z
d�

�

Z
xb=xa

dxbTr

�Z
ei�k

2 d3k

(2�)3

�
k̂

�
1 +

e

2k�n�
n̂
�
Âb � Âa

��
�eÂb +

e

2kn
n̂ (kAb)�

e2

2kn
n̂ (AaAb) +

e2

2kn
n̂ÂaÂb

�
� exp

�
ik (xb � xa) +

i

2nk

Z �b

�a

�
�2eA (�) kx + e2A2 (�)

�
d�

��
; (5.124)

we have � = n�x� = y� � ! �a = ya� �a; �b = yb� � b and Âa = Aa�

�; Âb = Ab�


�; n̂ = n�

�,

also Ab� = A� (nxb) ; Aa� = A� (nxa) :
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We can write the e¤ective action expression with the component in the following form

Seff: = �i
Z
d�

�

Z
xb=xa

dxb

Z
d3k

(2�)3
ei�k

2

Tr

��
k�


0

�
1 +

e

2k�n�

��
n�


0 + ny

2
�
(Ax (nxb)� Ax (nxa)) 


1
��

+kx

1

�
1 +

e

2k�n�

��
n�


0 + ny

2
�
(Ax (nxb)� Ax (nxa)) 


1
��

+ky

2

�
1 +

e

2k�n�

��
n�


0 + ny

2
�
(Ax (nxb)� Ax (nxa)) 


1
��

�eAx (nxb) 
1 +
e2

2k�n�

�
n�


0 + ny

2
� �
Ax (nxa) 


1
� �
Ax (nxb) 


1
�

+
e

k�n�

�
n�


0 + ny

2
�
k�A� (nxb)�

e2

k�n�

�
n�


0 + ny

2
�
Aa�A

� (nxb)

�
� exp

�
ik (xb � xa) +

i

2k�n�

Z nxb

nxa

�
�2eA (nx) kx + e2A2 (nx)

�
n�dx�

��
:(5.125)

By using the fundamental properties of trace of 
 matrices, which are represented by the

Pauli matrices in two dimensions, they are de�ned as


0 = �3; 

1 = i�2; 


2 = �i�1: (5.126)

it is easy to obtain the traces

Tr
Trx G (x�b ; x�a ; �) = Tr
Trx

��
k̂

�
1 +

e

2k�n�
n̂
�
Âb � Âa

��
�eÂb +

e

2kn
n̂ (kAb)�

e2

2kn
n̂ (AaAb) +

e2

2kn
n̂ÂaÂb

�
exp

�
ik (xb � xa) + i�k2 � i

2nk

Z �b

�a

�
2eA (�) kx + e2A2 (�)

�
d�

��
= 0:(5.127)

The e¤ective action in this case thus vanishes.

Seff: = 0: (5.128)

Consequently, the pair production probability of quasiparticles-holes in graphene by an

electromagnetic plane wave is null.

PCreat = 0: (5.129)
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5.6.2 The e¤ective action expression for two plane wave �elds

In this section, we suggest to study the in�uence of the two orthogonal plane wave �elds on

the creation of quasiparticles-holes) in monolayer graphene. The Green function for a (2 + 1)-

dimensional relativistic Dirac massless particles in this con�guration of the �eld is de�ned as

G (x�b ; x�a ; �) =
Z

d2k

(2�)2

Z 1

0

d�
2Q
i=1

�
k̂

�
1� e

2k�ni�
n̂i

�
Âib � Âia

��
�eÂib +

e2

2k�n�
n̂iÂiaÂib +

e

k�ni�
n̂ikAib �

e2

k�ni�
n̂AiaAib

�
� exp

�
ik (xb � xa) + i�k2 +

i

2k�ni�

Z �ib

�ia

�
�2e (Ai (�i)) kx + e2 (Ai (�i))

2� d�i� : (5.130)

It is easy to show that the traces of G (x�b ; x�a ; �) are null.

Tr
TrxG (x�b ; x�a ; �) = Tr
Trx
2Q
i=1

�
k̂

�
1� e

2k�ni�
n̂i

�
Âib � Âia

��
�eÂib +

e2

2k�n�
n̂iÂiaÂib +

e

k�ni�
n̂ikAib �

e2

k�ni�
n̂AiaAib

�
� exp

�
ik (xb � xa) + i�k2 +

i

2k�ni�

Z �ib

�ia

�
�2e (Ai (�i)) kx + e2 (Ai (�i))

2� d�i� = 0; (5.131)

Then the corresponding e¤ective action is also null.

Seff: = 0: (5.132)

Therefore, the probability of pair production for graphene quasiparticles under the action

of two orthogonal electromagnetic plane wave �elds is null.

PCreat = 0: (5.133)

5.7 Conclusion

In this chapter, we have studied the problem of particle-antiparticle pair creation from the

vacuum in monolayer graphene by a constant electromagnetic �eld in the framework of non-

commutative phase space coordinates using Schwinger�s method.

we have made the corresponding quadratic Lagrangian, and then we have calculated the

e¤ective action using the supersymetric path integral formalism for the �rst and second gauges
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that are de�ned in the Eqs. (5.1) and (5.2). Also, all special cases of (�; �; E ;B) for each gauge
are discussed. It is shown that the results are identical to the Schwinger result in (2+1) QED:

When we put the limits � �! 0; � �! 0 and B =0; we get the same results for the
probability that are obtained in the Refs. [94]. Also, we have obtained an important result, and

we show that when E = B =0; the corresponding e¤ective action is equivalent to the e¤ective
action in a constant magnetic �eld (B � �

e
).

On the other hand, the con�guration of the �eld consists of one plane wave �eld, and two

orthogonal plane wave �elds do not contribute to the e¤ective action. Consequently, there is

no in�uence of the plane wave �elds on the process of pair creation.



Chapter 6

Schwinger pair production of scalar

and spinorial particles by a constant

electromagnetic �eld and in

non-commutative phase space

coordinates

6.1 Introduction

The main goal of this chapter is the study of the creation of relativistic scalar and spinorial

particles from the vacuum by an electromagnetic �eld in noncommutative (NC) phase space

coordinates, considering the Schwinger method. We calculate the e¤ective action and the

probability of the creation of both scalar and spinorial particles. Also, we discuss all special

cases of pair creation probability for each case of (�; �; E ;B) .

6.2 Scalar particles

For determine the pair production probability of scalar particles in the framework of the NC

phase space coordinates of quantum �eld theory, we must use the vacuum-vacuum transition

amplitude A(NC)scalar: as a functional integral over all scalar �eld con�gurations '(x) and '
�(x);
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which considered independents and given as [177, 39]

A
(NC)
scalar: (vac� vac) =

Z
D'D'� exp

�
{

Z
d4xL(NC)KG ('; '

�; @�'; @�'
�)

�
; � = 0; 1; 2; 3; (6.1)

where LKG is the scalar Lagrangian density de�ned by

L(NC)KG = '� (x) ÔKG ? ' (x) = '� (x)

��
P̂� � eA�

�
X̂
��2

�m2

�
? ' (x) : (6.2)

While the operators
�
X̂ �; P̂�

�
satisfy the canonical commutation relations de�ned ash

P̂i; P̂j
i
= {�ij;

h
X̂i; X̂j

i
= {�ij;

h
X̂i; P̂j

i
= {�ij; i; j = 1; 2; (6.3)

and the operators (x̂i; p̂i) are new variables that satisfy the usual canonical commutation

relations given as

[x̂i; x̂j] = 0; [p̂i; p̂j] = 0; [p̂i; x̂j] = i�ij: (6.4)

For solving the previous functional integral, we consider this equation��
P̂� � eA�

�
X̂
��2

�m2

�
? �n (x) = �n�n (x) ; (6.5)

on the other hand, we have Z
d4x�n (x)�

�
m (x) = �nm: (6.6)

If we expand ' (x) on the basis {�n (x)}as

' (x) =
X
n

an�n (x) : (6.7)

we �nd

A
(NC)
scalar: = N

Z Q
i;j

daidaj exp

"
{
X
n

janj2 �n

#
= N

h
det
�
Ô?
KG

�i�1
: (6.8)

We can write the term 1

det(Ô?KG)
as follows

1

det(Ô?
KG)

= exp
h
�Tr

�
ln Ô?

KG

�i
; (6.9)

by using the following representation

ln Ô?
KG = Const�

Z 1

0

d�

�

Z
Dx exp

h
�{�Ô?

KG

i
: (6.10)

From Eqs. (6.8), (6.9) and (6.10) we obtain the famous expression of the e¤ective action

S
(NC)
eff: = �{

Z 1

0

d�

�
Tr hxbjT: exp

n
�{�Ô?

KG

�
X̂ ; P̂

�o
jxai : (6.11)

Where "Tr" indicates the complete diagonal summation over the continuous space-time coor-

dinates.
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6.2.1 The evaluation of propagator G(NC) (xb; xa; �)

We consider the vector potential A� (X ) which is the same as the second gauge in previous
chapter, de�ned as

A� = (�EX 2;�
B
2
X2;

B
2
X1; 0); (6.12)

The corresponding Hamiltonian Ô?
KG subjected to the action of this uniform electromagnetic

�eld is de�ned as follows

Ô?
KG

�
X̂ ; P̂

�
= (Ê + eE(ŷ + �

2
p̂x))

2 � (p̂x +
�

2
ŷ +

eB
2
(ŷ +

�

2
p̂x))

2

�(p̂y �
�

2
x̂� eB

2
(x̂� �

2
p̂y))

2 �m2: (6.13)

where

X̂i = x̂i �
�ij
2
p̂j; P̂i = p̂i +

�ij
2
x̂j; i = 1; 2: (6.14)

It is simple to demonstrate that the action of a scalar propagator of a charged particle in

a constant external electromagnetic �eld in NC phase space coordinates is identical to that

of a propagator in a constant external magnetic �eld in the z direction and with a quadratic

potential in standard quantum �eld theory.

By using the Lagrangian representation, we �nd

S
(NC)
eff: = �{

Z 1

0

d�

�
e�{�m

2

Tr

�Z
dE

2�
e�{E(tb�ta)G(NC) (xb; xa)

�
: (6.15)

The propagator G(NC) (xb; xa) is distinguished from the e¤ective action S(NC)eff: by the parame-

ter 1=� and the boundary condition ~x(0) = ~x(�):Then, to calculate the e¤ective action (S(NC)eff: ),

we must calculate the propagator G(NC) (xb; xa) as follows

G(NC) (xb; xa) =
Z
DxDyDz exp

�
{

Z �

0

L (x; _x; t) dt

�
: (6.16)

Where the Lagrangian function is given as

L (x; _x; t) = mx

2
_x2 + mY

2
_Y 2 +

mz

2
_z2 + !1x _Y � !2Y _x� !2Y Y

2

+E (xb � xa) � (�; �) : (6.17)

Whereas the variable Y is dependent on term energy de�ned as (Y = y+ E
eE

(1+ eB�
4 )

[(1+ eB�
2 )�

eB�
4 (1+

�
2eB)]

)

and mx; mY and mz are the e¤ective masses along the x, Y and z directions, respectively, while
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!Y is the frequency along the Y and !1; !2 play the role of the components of the e¤ective mag-

netic �eld. These masses and frequencies depend on the values of the external electromagnetic

�eld (E ;B) and the parameters of deformation (�; �) and are given by

mx =
1

2
h
(1+ eB�

4 )
2�( e�E2 )

2
i ; mY =

1

2(1+ eB�
4 )

2 ; mz =
1
2
;

!1 =
eB
2
(1+ �

eB)
(1+ eB�

4 )
; !2 =

eB
2 (1+

eB�
4 )(1+

�
eB)�(eE)

2 �
2

(1+ eB�
4 )

2�( e�E2 )
2 ;

!2Y = � (eE)
2 [(1+ eB�

4 )�
eB�
4 (1+

�
eB)]

2

(1+ eB�
4 )

2�( e�E2 )
2 and � (�; �) =

eB
2

�
1 + �

eB
�

eE
��
1 + eB�

4

�
� eB�

4

�
1 + �

eB
�� : (6.18)

Knowing that the coordinate z is free, then the propagator is given as

G(NC) (xb; xa) =
r

mz

2�{�
exp

�
{mz

2�
(zb � za)

2	 exp ({!2 (xaYa � xbYb))K (xb;xa; �) ; (6.19)

where the kernel propagator K (x�b ; x�a ; �) can be written as

K (xb;xa; �) =
Z
DY exp

�
{

Z �

0

h
mY

_Y 2

2
� !2Y Y

2
i
dt

�
K [Y (t)] ; (6.20)

We note that K [Y (t)] is the free particle propagator in a time-dependent external force

((!1 + !2) _y) de�ned by

K [Y (t)] =
Z
Dx exp

�
{

Z �

0

h
mx

2
_x2 + (!1 + !2) _Y x

i
dt

�
: (6.21)

Following [179], the propagator K [Y (t)] is transformed to

K [Y (t)] =
r

mx

2�{�
exp

�
{mx

2�
(xb � xa)

2	 exp f{ (!1 + !2) (xbYb � xaYa)g

� exp
(
{

Z �

0

"
(!1 + !2)

�
(xa � xb)Y �

(!1 + !2)
2

2mx

Y 2 +
(!1 + !2)

2

mx�
Y

Z t

0

Y (s) ds

#
dt

)
:

(6.22)

By substituting Eq. (6.22) into Eq. (6.20) we obtain

G(NC) (xb;xa; �) =
r

mz

2�{�
e{
mz

2�
(zb�za)2

r
mx

2�{�
e{
mx

2�
(xb�xa)2e{!1(xbYb�xaYa)

�
Z
DYK (xb;xa; �) : (6.23)
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After integration by part of the term (
R �
0
dt
h
Y (t)

R t
0
Y (s) ds

i
), we �nd

K (xb;xa; �) =
Z
DY exp

�
{mY

2

Z �

0

h
_Y 2 + 2(!1+!2)

�mY
(xa � xb)Y �

�
(!1+!2)

2

mxmY
+

2!2Y
mY

�
Y 2
i
dt

�
� exp

(
{mY

2

(!1 + !2)
2

mxmY �

�Z �

0

Y (s) ds

�2)
: (6.24)

Then, we can write the �nal term in Eq. (6.24) as follows [178]

exp

(
{mY

2

(!1 + !2)
2

mxmY �

�Z T

0

Y (s) ds

�2)
=

r
{mY

2��

Z +1

�1
exp

n
� {mY

2�
�2

+{mY
(!1 + !2)p
mxmY �

�

Z �

0

Y (t) dt

�
d�: (6.25)

Therefore, Eq. (6.24) becomes as

K (xb;xa; �) =
r
{mY

2��

Z +1

�1
exp

n
� {mY

2�
�2
o
K (xb;xa; �; �) d�; (6.26)

where K (xb;xa; �; �) is given by

K (xb;xa; �; �) =

Z
DY exp

�
{

Z �

0

h
mY

2

�
_Y 2 � 
2Y 2

�
+

�
(!1+!2)

�

�
(xa � xb) +

r
mY

mx

�

��
Y

�
dt

�
: (6.27)

This propagator represents a one-dimensional forced harmonic oscillator with a time-independent

external force de�ned as

FY =
(!1 + !2)

�

�
(xa � xb) +

r
mY

mx

�

�
: (6.28)

Following [179], in this gauge, the expression of the kernel (6.27) takes the following form

K (xb;xa; �; �) =
q

mY 

2�{ sin(
�)

exp
n
{ mY 

2 sin(
�)

��
Y 2
a + Y 2

b

�
cos (
�)� 2YbYa

�o
� exp

�
{

�
�

(!1+!2)
�

�
(xa�xb)+

q
mY
mx

�
�


 sin(
�)
(Yb + Ya) (cos (
�)� 1)

��
� exp

(
{

�
(!1+!2)

�

�
(xa�xb)+

q
mY
mx

�
��2

mY 
3 sin(
�)
(cos (
�)� 1)

)
exp

"
{
�
�
(!1+!2)

�

�
(xa�xb)+

q
mY
mx

�
��2

2mY 
2

#
; (6.29)

with


2 =

 
(!1 + !2)

2

mxmY

+ 2
!2Y
mY

!
: (6.30)
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Finally, after substituting Eq.(5.98) into Eq. (5.95) and performing the integration over �

from (�1 to +1) ; then by combining (5.95) into (5.89), the Green function will express as
follows

G(NC) (xb;xa; �) = �{
Z 1

0

d�

�
e�{�m

2

Z
dE

2�

Z
dtbdxbdybdzb

�e�{E(tb�ta) [A (
�)]�1=2K0 (zb; za; �)K0 (xb; xa; �)K
 (Yb; Ya; �)

� exp f{!1 (xbYb � xaYa) + {E (xb � xa) � (�; �)g

� exp
�
Dx (�) (xa � xb)

2 +DxY (�) (xa � xb) (Yb + Ya) +DY (�) (Yb + Ya)
2� jxb=xa : (6.31)

where K0 (xb; xa; �) and K0 (zb; za; �) are the propagators of free particles along the axes x

and z; respectively.

K
 (Yb; Ya; �) is the propagator of a one-dimensional harmonic oscillator with frequency


2.

Whereas Dx (�) ; DxY (�) ; DY (�) are given as,

Dx (�) = {
mx[(!1+!2)2=mxmY ]

2�2
3

(
�� 2 tan (
�=2))
A (
�)

;

DxY (�) = {
[(!1+!2)=

p
mxmY ]

�


p
mxmY tan(
�=2)

A(
�)
and DY (�) = {

mY [(!1+!2)2=mxmY ]
2�
2

tan2(
�=2)
A(
�)

; (6.32)

with

A (
�) =
h
1 + (!1+!2)

2

�mYmx
3
[2 tan (
�=2)� 
�]

i
: (6.33)

6.2.2 The e¤ective action expression S
(NC)
eff

We calculate the �nal space-time coordinates integral for each term in the S(NC)eff expression, we

obtain

S
(NC)
eff: = �{TL2

Z 1

0

d�

�
e�{�m

2

Z
dE

2�

� [A (
�)]�1=2
r

mz

2�{�

r
mx

2�{�

q
mY 


2�{ sin(
�)

�
Z
dY exp

�
{mY


�
cos(
�)�1
sin(
�)

+
2[(!1+!2)2=mxmY ]

�
2
tan2(
�=2)
A(
�)

�
Y 2

�
: (6.34)

In our study, we have y = Y � E
eE

(1+ eB�
4 )

[(1+ eB�
2 )�

eB�
4 (1+

�
2eB)]

; for this E must be constrained in the

range 0 < E < eEL((1 + eB�
2
)� eB�

4
(1 + �

2eB ))=(1 +
eB�
4
) in order that the entire range of time is
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included as E varies. By simpli�cation and after integrating over the variable Y; the e¤ective

action takes the following form

S
(NC)
eff: = �{TL2

Z 1

0

d�

�
e�{�m

2

Z eEL[(1+ eB�
2 )� eB�

4 (1+ �
2eB)]

(1+ eB�
4 )

0

dE

2�

�
r

mz

2�{�

r
mx

2�{�

s
�


2{!2Y tan (
�=2)
mY 


2�{ sin(
�)
: (6.35)

Returning to real time via the replacements (T ! {T ) in the Eq. 6.35: Consequently, we get

the �nal expression of S(NC)eff in the presence of a constant electromagnetic
�
~E = E~j; B = B~k

�
�eld in the framework of a NC phase space coordinate for the scalar case de�ned as [37]

S
(NC)
eff: = TL3

~
=(1 + eB�
4
)2

16�2

Z 1

0

d�

�2
e�{�m

2

sin(~
�)
: (6.36)

where ~
2 = �
2=4:
In the free case (B = E = 0), the e¤ective action expression in this NC phase space becomes

as follows

S
(NC)
eff�free: = {TL3

�

16�2

Z 1

0

d�

�2
e�{�m

2

sinh(��)
; (6.37)

this formula agrees exactly with that of Ref. [37] for a charged particle in a constant

magnetic �eld (B = �=e).

6.2.3 The pair production probability

The pair production probability per unit volume and per unit time in the framework of a NC

phase space coordinates is de�ned a

P(NC,G1) (pair) = 2 ImS(NC)eff: : (6.38)

Where the imaginary part of S(NC)eff: can be written as follows

2 ImS
(NC)
eff: =

1

{

�
S
(NC)
eff: � S

�(NC)
eff:

�
=
1

{
TL3

~
=(1 + eB�
4
)2

16�2

Z +1

�1

d�

�2
e�{�m

2

sinh
�
~
�
� : (6.39)

This result is veri�ed when ~
2 > 0, whereas it equals zero in the opposite case.
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Finally, the expression of pair production probability per unit volume per unit time in

the framework of NC phase space coordinates for scalar particles is simpli�ed in the following

manner

P(NC) (pair) = TL3
~
2

8�3(1+ eB�
4 )

2

1P
k=1

(�1)k+1

k2
e�

k�
~

m2

: (6.40)

Moreover, in the case when E 6= 0; B = 0, � = 0; and � = 0; the pair production probability
per unit volume per unit time becomes as

P(NC) (pair) = TL3

8�3
(eE)2

1P
k=1

(�1)k+1

k2
e�

k�
eEm

2

: (6.41)

Following the Eq. (6.39), for the large magnetic �eld B �, the pair production problem is

non-existent, which is the same result in the case of the absence of the electromagnetic �eld.

In the absence of the parameters of deformation (i.e., � ! 0 and � ! 0), we obtained the

Schwinger results for scalar relativistic particles (see, Refs [37, 35]).

6.3 Spinorial case

6.3.1 The evaluation of propagator G(NC) (xb; xa; �)

In this case of the Dirac particle, the vacuum-vacuum transition amplitude A(NC)spin: is de�ned as

a functional integral over all Grassmann �eld con�gurations  (x) and � (x) de�ned by

A
(NC)
spin: (vac� vac) =

Z
D D� exp

�
{

Z
d4x� ÔDirac 

�
; (6.42)

� det
h
Ô?
KG �

e

2
���F?

��

i1=2
: (6.43)

where Ô?
KG represents the Hamiltonian of the Klein-Gordon equation in NC phase space coor-

dinates de�ned in the previous section, and F?
�� is the strength tensor of a gauge �eld related

to the non-commutativity of phase space given as

~F?
02 = E(1 + eB�

2
); ~F?

12 = �B(1 + �eB
4
+ �

eB ): (6.44)

6.3.2 The e¤ective action expression

To determine the e¤ective action expression for relativistic spinorial particles, we introduce two

paths of integral representations, including spinor indices represented by Grassmann variables
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[105, 168] and the variables relative to space-time coordinates. Consequently, we can write

S
(NC)
eff: = �{

Z
d�

�
exp

�
�{m2�

� Z
dtbdxbdybdzb

Z
dE

2�
e�{E(tb�ta)
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DxDyDz

Z
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Z �
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dt
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� � + { _ 
io

xb=xa
; (6.45)

where the measure D is given by

D = D

�Z
D exp

�
�
Z �

0

dt _ 

���1
: (6.46)

Directly, the integration over Grassmann variables gives the following result

S
(NC)
eff: = �{

Z
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�
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� Z
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�1
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xb=xa
, (6.47)

with

M�� (e; � ; �
0) =

�
����

0(� � � 0)� eF?
�� (�) �(� � � 0)

�
: (6.48)

Returning to real time via the replacement (T ! {T ) in the Eq. 6.35: Consequently, the

�nal form of S(NC)eff in the presence of a constant electromagnetic
�
~E = E~j; B = B~k

�
�eld in the

framework of NC phase space coordinates for relativistic spinorial particles becomes as [37]

S
(NC)
eff: = �{

L3T

16�2

Z 1

0

d�

�2
~


(1+ eB�
4 )

2
cosh(e��)

sinh(~
�)
e�{�m

2

: (6.49)

In the free case (B = E = 0), the e¤ective action in this NC phase space becomes as follows

S
(NC)
eff�free: = �{TL3

�

16�2

Z 1

0

d�

�2
coth (��) e�{�m

2

; (6.50)

6.3.3 The pair production probability

In this case, the pair production probability per unit volume and per unit time in the framework

of the NC phase space coordinates for spinorial relativistic particles takes the following form

P(NC) (pair) = 1

8�3

~
2�
1 + eB�

4

�2 1P
n=1

(�1)k+1

k2
cos

�
e�
~

k�

�
e�

k�m2

~
 ; (6.51)
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In the absence of the parameters of deformation (i.e., � ! 0 and � ! 0), we obtained the same

results as Schwinger for 1=2�spin particles [39, 37]. In the free case (B = E = 0), the pair

production problem is non-existent.

6.4 Special cases

Table 2 represents a list of pair production probabilities of bosonic and spinorial particles in

NC phase space coordinates with electric and magnetic �elds di¤erent from or equal to zero.



TABLE II. The pair production probability of special uniform electromagnetic fields within the 

NC phase space.

∀ (η, θ) θ 6= 0, η 6= 0 θ 6= 0, η = 0 θ = 0, η 6= 0 θ = 0, η = 0

B 6= 0, E 6= 0

P
(N

C
)
(p

ai
r)
'

1
8
π

3
Ω̃

2

(1
+
e
B
θ

4
)2

co
s
( ε

e
Υ Ω̃
π
) e−

π
m

2

Ω̃

P
(N

C
)
(p

ai
r)
'

1
8
π

3
Ω̃

2
e−

π
m

2

Ω̃
co

s

  εe

√ E2
(1

+
e
B
θ

2
)2
−
B

2
(1

+
e
B
θ

4
)2

Ω̃
π

 
w

it
h

Ω̃
=

√ (e
E

)2
[(

1
+
e
B
θ

4
)−

e
B
θ

4
]2
−
( eB

(1
+
e
B
θ

4
)2
−
e
B
(
e
θ
E

2
)2
−

(e
E

)2
θ 2

) 2
( (1

+
e
B
θ

4
)2
−

(
e
θ
E

2
)2
)

P
(N

C
)
(p

ai
r)
'

1
8
π

3
e
( E2
−
B

2
( 1

+
η e
B
) 2) e−

π
m

2

e

√ E
2
−
B

2
(1

+
η e
B

)2

co
s

(ε
π

)

P
(N

C
)
(p

ai
r)
'

1
8
π

3

( (e
E)

2
−

(e
B

)2
) e−

π
m

2
√

(
e
E

)
2
−

(
e
B

)
2

co
s

(ε
π

)

B = 0, E 6= 0

P
(N

C
)
(p

ai
r)
'

1
8
π

3
Ω̃

2

1
−

(
e
E
θ
)
2

4

e−
π
m

2
√ 1
−

(
e
E
θ
)
2

4

Ω̃
co

s

( ε
π
√

(e
E

)2
−
η

2

√ 1
−

(
e
E
θ
)
2

4

Ω̃

)

W
it

h
Ω̃

=

√ (e
E)

2
( 1
−

η
θ 4

) 2 −
( η
−

θ 2
(e
E)

2
( 1

+
η
θ 4

)) 2
P

(N
C

)
(p

ai
r)
'

(e
E

)2

8
π

3
e−

π
m

2

e
E

P
(N

C
)
(p

ai
r)

=
1

8
π

3

( (e
E)

2
−
η

2
) e−

π
m

2
√

(e
E

)2
−
η

2

P
(N

C
)
(p

ai
r)
'

(e
E

)2

8
π

3
e−

π
m

2

e
E

101



6.4 Special cases 102

From the e¤ective action expressions of both bosonic and fermionic particles , we will see

that if (B 6= 0; E = 0; 8 (�; �)) the imaginary part of this latter is zero, this leads to the
corresponding pair production probability also being zero, which indicates that there is no pair

creation.

P(NC) (pair) = 0: (6.52)

But when (B 6= 0; E 6= 0; � 6= 0; and � 6= 0), the pair production probability P(NC) (pair) is
de�ned in Eqs. 5.79 and 6.38 given as

P(NC) (pair) ' 1

8�3

~
2�
1 + eB�

4

�2 cos��e�~
 �

�
e�

�m2

~
 ; (6.53)

with � = (0; 1) representing the bosonic and fermionic particles, respectively.

While when (B 6= 0; E 6= 0; � 6= 0; and � = 0) the pair production probability becomes as

P(NC)�=0 (pair) =
1

8�3
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2
)2 � B2(1+ eB�

4
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2

�2�
(1+ eB�

4 )
2�( e�E2 )

2
� :

In addition, we conclude that if (B 6= 0; E 6= 0; � = 0; and � 6= 0) the pair production

probability will end up with the following result

P(NC)�=0 (pair) '
1
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eB)
2

cos (��) : (6.55)

Likewise, when the e¤ects of the deformation are absent (B 6= 0; E 6= 0; � = 0; and � = 0), we
obtain the following result

P(NC)�=�=0 (pair) '
1

8�3
�
(eE)2 � (eB)2

�
e
� �m2p

(eE)2�(eB)2 cos (��) : (6.56)

In addition, in the absence of the magnetic �eld (E 6= 0; B = 0) and in the presence of NC
phase space (� 6= 0; � 6= 0), the probability of this type of creation pair becomes as
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4
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:
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Also, the result of Eq. (6.53) if � ! 0 and � 6= 0 agree with the following result,

P(NC)�=0 (pair) '
1

8�3
�
(eE)2 � �2

�
e
� �m2p

(eE)2��2 : (6.58)

But if � ! 0 and � 6= 0; the Eq. (6.53) leads to the standard result

P(NC)�=0 (pair) '
(eE)2

8�3
e�

�m2

eE : (6.59)

Also, when the e¤ects of the deformation are absent (B = 0; E 6= 0; � = 0; and � = 0),

will recover the standard result of the uniform electric �eld for the bosonic pair production

probability in Ref. [37] given as

P(NC)�=�=0 (pair) '
(eE)2

8�3
e�

�m2

eE : (6.60)

If we take the limit m �! 0; c �! �F in (2 + 1) QED, we obtain the same result in Ref.

[126] in the case of graphene.

6.5 Conclusion

In this chapter, we have studied the problem of pair creation of scalar and spinorial relativistic

particles from a vacuum by a constant electromagnetic �eld in the framework of NC phase

space coordinates using Schwinger�s method.

we have made the corresponding quadratic Lagrangian, and then we have calculated the

e¤ective action using the supersymetric path integral formalism for two cases of relativistic

particles de�ned by Eqs. (6.36) and (6.49). Also, all particular cases of (�; �; E ;B) for each
case are discussed. It is shown that in the absence of the parameter of deformations (i.e.,

� �! 0; � �! 0 ); we recover that the results agree with the Schwinger results: Also, it

is shown that when E = B =0; the e¤ective action is equivalent to the e¤ective action in a
constant magnetic �eld (B � �=e).



Chapter 7

Dirac-graphene quasiparticles in the

combination of a Volkov plane wave

and a parallel constant magnetic �eld

7.1 Introduction

In recent years, the Redmond solution for charged particles moving in an arbitrary electromag-

netic plane wave and a uniform static magnetic �eld was studied in Refs [180]. Furthermore, the

same problem was solved via the path integral formalism, using the delta-functionals method

[181] and via the Schwinger action principle method by solving the Heisenberg equations [182].

Also using a supersymmetric action [183, 184].

As a special case, the Green functions for charged particles of spin zero and spin 1=2,

which are in interaction with an electromagnetic plane wave, were constructed according to the

path integral formalism through di¤erent methods, the direct method and the semi-classiclal

approach [104], and by using a supersymmetric action proposed by Fradkin and Gitman [100].

On the other hand, the Volkov solution of the massless Dirac equation for graphene in

the �eld of slow-light pulse with arbitrary time dependence has also been discussed [185].

Furthermore, its generalization for two orthogonal electromagnetic plane wave �elds via path

integral formalism using the method of Fradkin and Gitman is analyzed in the fourth chapter

of the thesis.

In this chapter, we solve the Dirac equation for graphene quasiparticles in interaction with
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the combination of a plane wave and a parallel magnetic �eld using the Redmond method.

Also, we solve in the framework of Feynman�s path integrals the Redmond problem using the

method of delta-functionals, where the integrations of the spin factor are done by using the

T-product technique [186]. We construct the corresponding Green�s function via Feynman�s

technique.

At the end, we examine the issue of the creation of quasiparticle-hole pairs in monolayer

graphene under the action of this con�guration of �eld.

7.2 Formulation of problem

In this section of the chapter, we present a short review of our notation and conventions. We

consider massless graphene quasiparticles of charge e � 0 in interaction with an electromagnetic
plane wave �eld plus a static magnetic �eld parallel to the direction of propagation of the plane

wave. We write the vector potential as a sum of two terms as follows [180, 181, 182]

AComb
� (x) = A� (�) + A�

�
xT
�
; (7.1)

where

A� (�) = ~exA (�) ; (7.2)

A�
�
xT
�
= i

B
2
(���� � x+ ���� � x) : (7.3)

The �rst term generates the electromagnetic plane wave �eld with the vector of propagation

n which has a real components n� = (1; ~n) = (1; 0; 1) satisfy ��n� = ���n
� = n�n

� = 0 and

� = nx � n�x
� = �y � � :

Here � = 1; indicating that the velocities of electromagnetic waves and quasiparticles in

graphene coincide. While the second term generates the constant magnetic �eld.

We introduce the vectors � and �� which are complex conjugates of each other, with com-

ponents �� = 1p
2
(0; 1; i) and ��� =

1p
2
(0; 1;�i) are satisfying the orthogonality conditions

�� = ���� = 0 and ��� = 1:

We note that in the (2 + 1)-dimension, the Minkowski tensor has the signature g�� =

diag (�1;+1;+1) and units are chosen such that ~ = c = 1: Also, we consider that the graphene
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quasiparticles with a magnetic �eld is moving in the z direction, which allows us to introduce

the quantities

x� iy: (7.4)

We suppose that the potential A� (�) satis�es the Lorentz gauge condition

@�A
� (�) = n� (A

�)0 = 0; (7.5)

where the prime denotes the derivative with respect to �; which is equivalent to

n�A
� (�) = 0: (7.6)

7.3 Solution of the Dirac-graphene equation in the com-

bination of a Volkov plane wave and a constant mag-

netic �eld

The dynamics of graphene quasiparticles in the combination of a Volkov plane wave and a

parallel magnetic �eld is described by the Dirac equation for massless fermions, de�ned as

�
k̂2 � 2e

�
Â
�
xT
�
+ Â (�)

�
k̂x + e2

�
Â
�
xT
�
+ Â (�)

�2
� ie

2
FComb
�� 
�
�

�
(x) = 0; (7.7)

where k̂� = �i@� �
�
E
�F
; ~k
�
� i
�

@
�F @t

; ~r
�
is the momentum operator in the natural units,

with �F representing the Fermi velocity equals �F = (1:12� 0:02)� 106m=s. Since the vector
potential AComb

� and  (x) depend only on xT and �.

and 
� are Dirac matrices, in two dimensions, are represented by the Pauli matrices in the

following manner


0 = �3; 

1 = {�2; 


2 = �{�1: (7.8)

With

�x =

0@ 0 1

1 0

1A ; �y =

0@ 0 �i
i 0

1A ; �z =

0@ 1 0

0 �1

1A : (7.9)

According to the known Volkov ansatz, we seek a solution of the form

(x) = ei� k
�
xT ; �

�
uk; (7.10)
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where

� = kq� E�; q =(qx; qy) , � = y � � : (7.11)

By substituting (7.10) into Eq. (7.7), we obtain the equation for  k
�
xT ; �

�
�
k2 + 2ik@ � @2 � 2ie

�
Â
�
xT
�
+ Â (�)

�
kx + e2

�
Â
�
xT
�
+ Â (�)

�2

�ie
2
FComb
�� 
�
�

�
 k
�
xT ; �

�
= 0; (7.12)

where

FComb
�� 
�
� = (F�� (B) + f�� (�)) 


�
� (7.13)

= 2A0 (�)

�
@�

@�

0
1 � @�

@y

1
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�
+ 2

 
@A
�
xT
�

@�

0
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�
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�
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1
2

!
(7.14)

= 2 (
�n�)
�

� _A� (�s)

�
+ iB (
�
�� � 
��
�) : (7.15)

This may be rewritten in the following form

�
2i (k� � ky)

@

@�
+ k2 � @2 � 2ie

�
Â
�
xT
�
+ Â (�)

�
kx + e2

�
Â
�
xT
�
+ Â (y; �)

�2

+
eB
2
(
�
�� � 
��
�)� ie (
�n�)

�

� _A� (�s)

��
 k
�
xT ; �

�
= 0; (7.16)

At this stage, to complete the solution of equation (7.16), we need the analogy to the

classical situation. From Ref. [180], we have the following classical equations of motion

m�x� = �eFComb
�� _x� ; (7.17)

The equation (7:17) is transformed to

m�x� + ieB����� _x� � ieB����� _x� + en�
dA�
d�

_x� � e _A� = 0; (7.18)

The mass parameter m must be equal to 1=2. It also seems that the classical equations of

motion (7.17) lead to the following relation after multiplying this latter by n. Consequently,

we can write

n�x = 0) nx = �s; (7.19)
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which represents the �-variable is de�ned by � = �s and � is a constant: We make these

transformations8><>:
eiK:��T�e

�iK:� = �T� � eF�� (B)K�

eiK:�
�
�2in:k @

@�

�
e�iK:� = �2in:k @

@�
+ �: _K � e

2
_K�F�� (B)K�

: (7.20)

where K (s) is the transverse vector and

�T = kT � eA
�
xT
�
; (7.21)

The combination eiK:� k then satis�es the equation�
�2in:k @

@�
+ �: _K � e

2
_K�F�� (B)K� �

�
k2
�T
+
�
�T � eF�� (B)K� + eA (�)

�2
+
eB
2
(
�
�� � 
��
�)� ie (
�n�)

�

� _A� (�s)

��
eiK:� k = 0; (7.22)

where (k2)T = �k2: We determine K (s) using the condition K (�1) = 0; the equation

(7:22) separates to

�: _K + 2�T (�eF�� (B)K� + eA (�s)) = 0 �! 1

2
_K = �eF�� (B)K� + eA (�s) ; (7.23)

which is the classical equation with m = 1=2 and�
�2in:k @

@�
� _J (s)

�
eiK:� k = 0; (7.24)

where

J (s) =

Z s

�1

he
2
_K�F�� (B)K� + (�eF�� (B)K� + eA (�))2

i
: (7.25)

The solution of Eq. (7:24) is given as�
�2in:k @

@�
� _J (�)

�
eiK:�̂ k = 0;

�2in:k @
@�
 k = _J (�) k

!  k = Ce
i

2n:k
J(�); C = cst (7.26)

and

 k
�
xT ; �

�
= eiK�� k; (7.27)
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with the terms linear in �T dropping out, the equation becomes as follows

�
2i (k� � ky)

@

@�
 k �

�
k2
�T
+

��
�T
�2
+
eB
2
(
�
�� � 
��
�)

�ie (
�n�)
�

� _A� (�)

���
eiJeiK�� k

�
xT ; �

�
= 0; (7.28)

The separation constant was determined just as in the case of the Klein Gordon equation.

Then we can write�
2i (k� � ky)

@

@�
+ eB (S � 1)� ie (
�n�)

�

� _A� (�)

��
eiJeiK�� �k = 0; (7.29)

and h�
k2
�T � ���2�T � eB

�i
eiJeiK�� �k = 0; (7.30)

with S = 1
2
(
�
�� � 
��
�) :

The equation (7:30) describes the particles in an uniform static magnetic �eld. This latter

analogy to the equation of harmonic oscilator. We have this commutation relation

[��; �� ] = �ieF�� (B) (7.31)

multyplying the right hand side and the left hand side of the equation by this term �����

we get the following result

[�����; �
��� ] = eB =)

�
�����p
eB

;
����p
eB

�
= 1: (7.32)

This is the commutaion relation for annihilation and creation operators. If e � 0 then the
following term �� � � is the annihilation operator and the ground states determined by

�� � � 0
�
xT
�
= 0 (7.33)

This is a �rst-order partial di¤erential equation which separates if A
�
xT
�
is a linear function

of xT ; then other eigenfunctions (the excited states) is obtained by repeatedly applying the

creation operator � � � to ground state given as

	n
�
xT
�
= (n)�

1
2 (eH)�

n
2 (� � �)n0 	

�
xT
�

(7.34)

Since �
�T
�2
= (�� � �) (� � �) + (� � �) (�� � �) (7.35)
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The allowed values of (k2)T give us the following expression

�
k2
�T
= 2neB: (7.36)

Consequently, the complete set of solutions to the Dirac-graphene equation has the following

form

(k; n; x) = eipx�iJ�iK��
�
	n�1

�
xT
�
f+ (�) + 	n

�
xT
�
f� (�)

	
; (7.37)

where 	n�1
�
xT
�
and 	n

�
xT
�
are the solutions of the oscillator equations respectively of

order n� 1 and n:
whereas f� are spinors determined by Eq. (6:26) :The equation for f+ (s) is given in Eq.

2i (k� � ky) _f+ =
h
eB (
��) (
�)� ie (
�n�)

�

� _A� (y � �)

�i
f+ = 0: (7.38)

By solving the equation (7:38) by iteration starting with f+ on the right hand side repre-

sented by a constant spinor u+ satisfying Su+ = u+ which implies 
�u+ = 0:

We get for f+ (�) the following form

f+ (�) = [1 + 
n
�
�R (�)]u+; (7.39)

where R (�) is a scalar function of �:

Incorporating Eq. (7:39) into Eq. (7:38) and after some manipulation of the 
 matrices,

the equation takes the following form�
_R (�) + i!0R (�)�

e

2 (k� � ky)
� _A (�)

�
(
n) (
��)u+ = 0; (7.40)

the solution of the above equation is given as follows

R (�) =
ie

2 (k� � ky)
e�i!0�

Z �

�1
� _A (�) ei!0�

0
d�0; (7.41)

By applying for f� the same procedure as f+, we obtain the folowing solution

f� (�) = [1 +R
� (�) 
n
�] u�: (7.42)
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7.4 Path integral formulation for Dirac-graphene quasi-

particles in the combination of a Volkov plane wave

and a parallel constant magnetic �eld

7.4.1 Construction of the causal Green�s function Sc (xb; xa)

The Green function for graphene quasiparticles in interaction with the combination of a plane

wave and a constant magnetic �eld parallel to the direction of propagation of the electromag-

netic wave is de�ned as

OGraphSc (xb; xa) = � (xb � xa) ; (7.43)

where

OGraph = 
0 (i@� )� 
1
�
i@x � eAComb (x)

�
� 
2 (i@y) ; (7.44)

with � = �F t and

AComb
� (x) = A�

�
xT
�
+ A� (�) ; � = 0; 1; 2: (7.45)

In lower dimensions, the Dirac gamma matrices 
� are represented by the Pauli matrices in

the following way


0 = �3; 

1 = i�2; 


2 = �i�1: (7.46)

We can write Sc (xb; xa) as a matrix element of the operator Sc as follows

Sc (xb; xa) = hxaj Ŝc jxbi ; (7.47)

by using the Schwinger proper time method, we get

Ŝc =

Z 1

0

d� exp
�
�i�Ĥ

�
; (7.48)

where Ĥ is the Hamiltonian operator, de�ned as

Ĥ
�
x̂; k̂
�
=

�
OGraph

�2
;

= ÔKG �
ie

2

�
�FComb

�� ; (7.49)

and ÔKG being the Klein Gordon operator, given by

ÔKG = @2� � @2x � @2y + 2ieAComb (x) @x + e2
�
AComb (x)

�2
; (7.50)



7.4 Path integral formulation for Dirac-graphene quasiparticles in the
combination of a Volkov plane wave and a parallel constant magnetic �eld 112

whereFComb
�� is the electromagnetic �eld tensor de�ned as a derivable of a potentialAComb (x)

can then be written as

FComb
�� = @�AComb

� � @�AComb
� ; (7.51)

= F�� (B) + f�� (�) ; (7.52)

= iB
�
���

�
� � ���

�
�

�
+ n�

dA�
d�

� n�
dA�
d�

; (7.53)

whereas B is the static magnetic �eld.
Formally, knowing that Sc(xb; xa) = hxaj exp

�
�iĤ

�
jxbi ; we easily write for the Green

function the following result

Sc(xb; xa) = hxaj exp
�
�iĤ

�
jxbi : (7.54)

Let us now derive the path integral representation for the Green function Sc(xb; xa)

Sc (x�b ; x
�
a) =

Z
Dx
Z
Dk

�T exp
�
i

Z 1

0

ds
�
k _x+ �

�
�k2� + k2x + k2y � 2eAComb (x) kx

+e2
�
AComb (x)

�2 � ie

2

�
�FComb

��

���
; (7.55)

Where T is the time ordering operator, e¤ects only on the phase relative to the coupling

term.

Here x � (� ; x; y) represents the quadratic vector coordinate, and k � (k� ; kx; ky) is the

quadratic vector momentum. Whereas A0 (�) is the abbreviated derivative functions of A (�)

with respect to �. The same goes for other derivatives: _�� =
@�
@�
and �0y =

@�
@y
:

we can write the causal Green function Sc(xb; xa) as follows

Sc (xb; xa) = KKG (xb; xa;�)S (xb; xa;�) : (7.56)

where

S (xb; xa;�) = T exp
�
i

Z �

0

ds

�
�ie
2

�
�FComb

��

��
; (7.57)

and

KKG (xb; xa;�) =
Z
Dx exp

�
i

Z �

0

h
k _x�

�
k � eAComb

�2i
ds

�
; (7.58)
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7.4.2 The evaluation of the kernel propagator KKG (xb; xa;�)

Explicitly, the propagator KKG (xb; xa;�) is de�ned as

KKG (xb; xa;�) = lim
N!1

Z
�N�1j=1 d

4xj�
N
j=1

d3kj

(2�)4
� �Nj=1

� exp
h
i
h
kj�xj � "

�
kj � eAComb

j

�2ii
; (7.59a)

where

xj = x (sj) ; xa = x (0) ; �xj = xj � xj�1;

AComb
j = AComb (sj) and " = sj � sj�1 =

�

N
: (7.60)

Let us consider � as a variable independent of nx: The integration over x (s) seems to be

di¢ cult due the dependence A (nx = �) : We insert this identityZ
d�bd�a� (�a � kxa) � [�b � �a � n (xb � xa)] = 1; (7.61)

into the expression (7:59a) or rather its generalization, which lets all time intervals [j � 1; j]
occur Z

d�bd�a� (�a � nxa)

Z
�N�1j=1 d�j�

N
j=1�

�
��j � n�xj

�
= 1; (7.62)

where ��j = �b � �a and

�
�
��j � n�xj

�
=
1

2�

Z
dk�j exp

h
ik�j

�
��j � n�xj

�i
: (7.63)

The propagator (7:59a) then becomes as

KKG (xb; xa;�) =
Z
d�bd�a� (�a � nxa) �K (�b; xb; �a; xa;�) ; (7.64)

where

�K (�b; xb; �a; xa;�) =

Z
DxDkD�Dk� exp

�
i

Z �

0

�
k _x� k2 � 2ekxAComb (x)

�e2
�
AComb (x)

�2
+ k�

�
_� � n _x

�i
ds
i
: (7.65)

where

Dx = �N�1j=1 dxj; (7.66)

Dk = �N�1j=1

dkj

(2�)3
; (7.67)

D� = �N�1j=1 d�j; (7.68)

Dk� = �N�1j=1

dk�j
2�

; (7.69)
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Let us use the transverse and longitudinal components of the vectors (x; k) de�ned as

x =

0@ xT

xL

1A ; k =

0@ kT

kL

1A . (7.70)

By changing kL � nk� into kL and taking n2 = 0 and nA (�) = 0; By simpli�cation, we

obtain the following expression for the propagator �K (�b; xb; �a; xa;�)

�K (�b; xb; �a; xa;�) =

Z
DxLDkLDxTDkTD�Dk�

� exp
�
i

Z �

0

h
kL _xL + kT _xT �

�
kL
�2 � �kT �2

�2e
�
kLx + kTx

�
AComb (x)� e2

�
AComb (x)

�2
+k� _� �

�
kLn

�
k�

i
ds
o
: (7.71)

In discretized form

NX
1

kLj �x
L
j = kLNx

L
N � kL1 x

L
0 +

N�1X
1

�
kLj � kLj+1

�
xLj : (7.72)

The integrations over xLj give us the Dirac distributions �(k
L
j+1 � kLj ) which lead to the

conservation of the longitudinal component of the momentum of graphene quasiparticles during

the motion

kL1 = kL2 = ::: = kLN = kL: (7.73)

then the propagator �K (�b; xb; �a; xa;�) becomes as

�K (�b; xb; �a; xa;�) =

Z
DkLDxTDkTD�Dk� exp

�
i

Z �

0

h
kL _xL �

�
kL
�2i

ds

�
� exp

�
i

Z �

0

h
kT _xT �

�
kT
�2 � ekTxAComb (x)

�e2
�
AComb (x)

�2
+ k�

�
_� �

�
kLn

��i
ds
i
: (7.74)

Let us integrate over the variables k�j : The path integral
R
Dk� over the variables k�j gives

Z
Dk� exp

�
i

Z �

0

k�

�
_�j �

�
kLn

��
ds

�
= �N�1j=1

Z
dk�j
2�

exp

�
i

Z �

0

k�j

�
_�j �

�
kLn

��
ds

�
;(7.75)

= �N�1j=1 �
�
�jb � �ja �

�
kLn

��
; (7.76)
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which imposes on the paths N constraints as follows

��j = (k
Ln)" ; j 2 [1; N ]: (7.77)

These constraints give us the equation

d�j
ds

= (kLn) or else
� (s)� � (0)

s
=
�b � �a
�

= (kLn): (7.78)

The propagator �K (�b; xb; �a; xa;�) is then transformed to

�K (�b; xb; �a; xa;�) =

Z
DxLDkLDxTDkTD��

�
�b � �a �

�
kLn

��
� exp

�
i

Z �

0

h
kL _xL �

�
kL
�2i

ds

�
� exp

�
i

Z �

0

h
kT _xT �

�
kT � eAComb (x)

�2i
ds

�
; (7.79)

By substituting (7:79) in (7:64), the transverse propagator KKG (xb; xa;�) then becomes

KKG (xb; xa;�) =

Z
d�bd�a� (�a � kxa) �K (�b; xb; �a; xa;�) ; (7.80)

=

Z
d�bd�a� (�a � kxa) �

�
�b � �a �

�
kLn�

��
DkL

� exp
h
i
h
kL
�
xLb � xLa

�
�
�
kL
�2
�
ii
KT
KG

�
xTb ; x

T
a ;�

T
�
: (7.81)

Where

KT
KG

�
xTb ; x

T
a ;�

T
�
=

Z
DxTDkT exp

�
i

Z �

0

h
kT _xT �

�
kT � eAComb (x)

�2i
ds

�
: (7.82)

By changing kT �eAComb into kT , we get

KT
KG

�
xTb ; x

T
a ;�

T
�
=

Z
DxTDkT exp

�
i

Z �

0

h
kT _xT �

�
kT � eAComb (x)

�2i
ds

�
=

Z
DxT

d2kT

(2�)2
exp

�
i

Z �

0

h
�
�
kT
�2
+ kT _xT

+exTF (H) _xT + eA (�) _xT
�
ds
�
; (7.83)

where

A�
�
xT
�
_x�T = x�F�� (H) _x

�T ; (7.84)
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and by integrating on the variables kT ; we get for the transverse propagator KT
KG (xb; xa;�)

the following expression

KT
KG

�
xTb ; x

T
a ;�

T
�
=
1

4

Z
DxT exp

�
i

Z �

0

h�
_xT
�2
+ exTF (H) _xT + eA (�) _xT

i
ds

�
: (7.85)

To eliminate the term A (�) _xT , we take the following transformation

XT = xT �QT ; (7.86)

_XT = _xT � _QT ; (7.87)

where QT satisfy this equation

_QT = eF (H)QT � eA (�) ; A (�1) = 0: (7.88)

After lengthy manipulations, the propagator KT
KG

�
xTb ; x

T
a ;�

T
�
then becomes as

KT
KG

�
xTb ; x

T
a ;�

T
�
=

1

4

Z
DXT exp

�
i

Z �

0

��
_XT
�2
+ eXTF (H) _XT

+eA (�) _QT + e
d

ds

�
xTF (H)QT

��
ds

�
= exp

h
�i
�
J (�)� e

�
xTF (H)QT

�����b
�a

i
KT
KG0

�
XT
b ; X

T
a ;�

T
�
; (7.89)

where

J (�) =

Z �

�1
d�A (�)

dQT

d�
; (7.90)

and KT
KG0

�
XT
b ; X

T
a ;�

T
�
is de�ned as

KT
KG0

�
XT
b ; X

T
a ;�

T
�
=

Z
DXT exp

�
i

Z �

0

��
_XT
�2
+ eXTF (H) _XT

�
ds

�
(7.91)

=

Z
dud� exp

�
i

Z �

0

��
_u2 + _�2

�
� !0 (u _� � � _u)

�
ds

�
; (7.92)

with XT =

0@ u

�

1A ; and the cyclotron frequency !0 is de�ned as !0 = eB:

Now, to determine the kernal propagator KKG0
�
XT
b ; X

T
a ;�

T
�
; we decouple the coordinates

u and � by introducing a rotation of coordinate axes as follows0@ u

�

1A =

0@ cos
�
!0
2
s
�
� sin

�
!0
2
s
�

sin
�
!0
2
s
�

cos
�
!0
2
s
�
1A0@ �

�

1A :
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Finally, the kernal propagator KKG0
�
XT
b ; X

T
a ;�

T
�
is reduced to

KKG0
�
XT
b ; X

T
a ;�

T
�
=

!0

4i� sin
�
!0
2
�
� exp hi!0

4

��
u2b � u2a

�
+
�
�2b � �2a

��
cot
�!0
2
�
�

+2 (ub�a � �bua)] : (7.93)

After lengthy manipulations, the propagator KKG (xb; xa;�) takes the symmetrical form

KKG (xb; xa;�) =
!0

16i� sin
�
!0
2
�
� Z d�bd�a

Z
DkL� (�a � kxa) �

�
�b � �a �

�
kLn�

��
� exp

h
�i
�
J (�) + e

�
xTF (H)QT

�����b
�a

i
� exp

h
i
h
kL
�
xLb � xLa

�
�
�
kL
�2
�
ii

� exp
h
i
!0
4

��
u2b � u2a

�
+
�
�2b � �2a

��
cot
�!0
2
�
�
+ 2 (ub�a � �bua)

i
;(7.94)

with

DkL =
N+1Y
n=1

dkL

2�
; (7.95)

Now, we replace the distribution �
�
�b � �a �

�
kLn�

��
by its integral representation

�
�
�b � �a �

�
kLn�

��
=
1

2�

Z
dk�b exp

�
ik�b

�
�b � �a �

�
kLn�

���
; (7.96)

and taking the replacement kL ! kL�nk�b with n2 = 0; which indicates that �b = nxb; �a =

nxa:

By performing the integration over �a, �b; the propagator KKG (xb; xa;�) takes then the
following form

KKG (xb; xa;�) =
!0

16i� sin
�
!0
2
�
� Z dkL

2�
exp

h
i
h
kL
�
xLb � xLa

�
�
�
kL
�2
�
ii

� exp
h
�i
�
J (�) + e

�
xTF (H)QT

�����b
�a

i
� exp

h
i
!0
4

��
u2b � u2a

�
+
�
�2b � �2a

��
cot
�!0
2
�
�
+ 2 (ub�a � �bua)

i
:(7.97)

Finally, the integration over kL give us the following result

KKG (xb; xa;�) = i1=2
!0

32�3=2�1=2 sin
�
!0
2
�
� exp i�xLb � xLa

�2
4�

!
� exp

h
�i
�
J (�) + e

�
xTF (H)QT

�����b
�a

i
� exp

h
i
!0
4

��
u2b � u2a

�
+
�
�2b � �2a

��
cot
�!0
2
�
�
+ 2 (ub�a � �bua)

i
;(7.98)
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with

J (�) =

Z �

�1
d�A (�)

dQT

d�
;QT = xT �XT and XT =

0@ u

�

1A ; !0 = eB: (7.99)

7.4.3 The evaluation of spin factor S (xb; xa;�)

Let us evaluate the spin factor S (xb; xa;�) de�ned by

S (xb; xa;�) = T exp
�
i

Z �

0

ds

�
�ie
2

�
�FComb

��

��
: (7.100)

To eliminate the T product, we use Schulman�s formula, which is de�ned as [153]

T exp
�
�i
Z b

a

(H1 (s) +H2 (s)) ds

�
= T exp

�
�i
Z b

a

H1 (s) ds

�
�
(
T exp

"
�i
Z b

a

"�
T exp

�
�i
Z s

a

H1 (s
0) ds0

���1
H2 (s)

�
T exp

�
�i
Z s

a

H1 (s
0) ds0

��
ds

���
: (7.101)

Let us write down the quantity T exp
n
i
R �
0
ds
�
� ie
2

�
�FComb

��

�o
as follows

T exp
�
i

Z �

0

ds

�
�ie
2

�
�FComb

��

��
= T exp

�
�i
Z �

0

(H1 +H2) ds

�
(7.102)

where

H1 = � (i!0=2) 
1
2; (7.103)

and

H2 = � (ie=2) k̂
dÂ

d�
with Â = A�


�: (7.104)

At �rst, we calculate the term T exp
h
�i
R �
0
H1 (s) ds

i
: After the simpli�cation, we obtain

T exp
�
�i
Z �

0

H1 (s) ds

�
= exp

h
�i!0
2
�
i� �̂�̂�

2

�
+ exp

h
i
!0
2
�
i� �̂��̂

2

�
: (7.105)

In the second step, we calculate the following term(
T exp

"
�i
Z �

0

"�
T exp

�
�i
Z s

a

H1 (s
0) ds0

���1
H2 (s)

�
T exp

�
�i
Z s

a

H1 (s
0) ds0

��#
ds

#)
;

(7.106)



7.4 Path integral formulation for Dirac-graphene quasiparticles in the
combination of a Volkov plane wave and a parallel constant magnetic �eld 119

where H1 is hermitian��

i
�y
= �
i; (AB)y = ByAy

�
�! H1 = � (i!0=2) 
1
2 ! Hy

1 = � (i!0=2) 
1
2: (7.107)

Then we can write

�
T exp

�
�i
Z s

a

H1 (s
0) ds0

���1
= T exp

�
i

Z s

a

Hy
1 (s

0) ds0
�
: (7.108)

Or �
T exp

�
�i
Z s

0

H1 (s) ds

���1
= exp

h
i
!0
2
s
i� �̂��̂

2

�
+ exp

h
�i!0
2
s
i� �̂�̂�

2

�
: (7.109)

Whereas �
T exp

�
�i
Z s

0

H1 (s
0) ds0

���
T exp

�
�i
Z s

0

H1 (s
0) ds0

���1
= 1: (7.110)

This allows us to write

�
T exp

�
�i
Z s

0

H1 (s
0) ds0

���1
H2 (s)

�
T exp

�
�i
Z s

0

H1 (s
0) ds0

��
= � (ie=2)

"�
�̂�̂�

2

� 
k̂
dÂ

d�

!�
�̂�̂�

2

�
+

�
�̂��̂

2

� 
k̂
dÂ

d�

!�
�̂��̂

2

�#

� (ie=2) exp [�i!0s]
�
�̂��̂

2

� 
k̂
dÂ

d�

!�
�̂�̂�

2

�

� (ie=2) exp [i!0s]
�
�̂�̂�

2

� 
k̂
dÂ

d�

!�
�̂��̂

2

�
; (7.111)

Now, it is easy to show that�
�̂�̂�

2

� 
k̂
dÂ

d�

!�
�̂�̂�

2

�
+

�
�̂��̂

2

� 
k̂
dÂ

d�

!�
�̂��̂

2

�
= 0: (7.112)

and 8>>>><>>>>:
�
�̂��̂
2

� 
k̂
dÂ

d�

!�
�̂�̂�

2

�
= k̂�̂�

�
�
dA

d�

�
�
�̂�̂�

2

� 
k̂
dÂ

d�

!�
�̂��̂
2

�
= k̂�̂

�
��
dA

d�

� : (7.113)

Finally, we can write
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�
T exp

�
�i
Z s

0

H1 (s
0) ds0

���1
H2 (s)

�
T exp

�
�i
Z s

0

H1 (s
0) ds0

��
= � (ie=2) exp [�i!0s] k̂�̂�

�
�
dA

d�

�
� (ie=2) exp [i!0s] k̂�̂

�
��
dA

d�

�
; (7.114)

therefore, the equation (7:106) is reduced to

T exp

"
�i
Z �

0

"�
T exp

�
�i
Z s

0

H1 (s
0) ds0

���1
H2 (s)

�
T exp

�
�i
Z s

0

H1 (s
0) ds0

��##
ds

= 1� e=2k̂�̂�
Z �

0

ds exp [�i!0s]
�
�
dA

d�

�
� e=2k̂�̂

Z �

0

ds exp [i!0s]

�
��
dA

d�

�
; (7.115)

we have
d�

ds
= kLn! d� = dskLn! ds =

1

kLn
d�, then we can write

�
1� e

2
k̂�̂�
Z �

0

ds exp [�i!0s]
�
�
dA

d�

�
� e

2
k̂�̂

Z �

0

ds exp [i!0s]

�
��
dA

d�

��
= 1� e

2kLn
k̂�̂�
Z �

0

d�0 exp

�
�i!0

�0

kLn

��
�
dA

d�0

�
� e

2kLn
k̂�̂

Z �

0

d�0 exp

�
i!0

�0

kLn

��
��
dA

d�0

�
; (7.116)

Combining (7:105) and (7:115), the result of the calculation for the termT exp
n
i
R �
0
ds
�
� ie
2

�
�FComb

��

�o
is abbreviated to

S (xb; xa;�) = T exp
�
i

Z �

0

ds

�
�ie
2

�
�FComb

��

��
=

�
exp

h
�i!0
2
�
i� �̂�̂�

2

�
+ exp

h
i
!0
2
�
i� �̂��̂

2

��
�
�
1� e

2
k̂�̂�
Z �

0

ds exp [�i!0s]
�
�
dA

d�

�
�e
2
k̂�̂

Z �

0

ds exp [i!0s]

�
��
dA

d�

��
: (7.117)

Finally, by integrating over kL; the Green function expression becomes as
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Sc (xb; xa) = S (xb; xa;�)KKG (xb; xa;�)

= i1=2
!0

32�3=2�1=2 sin
�
!0
2
�
� exp i�xLb � xLa

�2
4�

!

� exp
�
�i
�
J (�) +

e

2

�
xTF (H)QT

������b
�a

�
� exp

h
i
!0
4

��
u2b � u2a

�
+
�
�2b � �2a

��
cot
�!0
2
�
�
+ 2 (ub�a � �bua)

i
�
�
exp

h
�i!0
2
�
i� �̂�̂�

2

�
+ exp

h
i
!0
2
�
i� �̂��̂

2

��
�
�
1� e

2
k̂�̂�
Z �

0

ds exp [�i!0s]
�
�
dA

d�

�
�e
2
k̂�̂

Z �

0

ds exp [i!0s]

�
��
dA

d�

��
; (7.118)

with

J (�) =

Z �

�1
d�A (�)

dQT

d�
; (7.119)

7.5 Schwinger�s pair production in monolayer graphene

in the combination of an electromagnetic plane wave

and a parallel magnetic �eld

7.5.1 Shwinger�s e¤ective action and the pair production probability

In this section, we will recall how to construct the same system [37] but for graphene quasipar-

ticles in the combination of a Volkov plane wave and a parallel magnetic �eld. Firstly, we will

calculate the e¤ective action that is de�ned as
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Seff : =

Z 1

0

d�

�
Tr
TrxS (xb; xa;�)KKG (xb; xa;�)

=

Z 1

0

d�

�
TrxTr


"
i1=2

!0

32�3=2�1=2 sin
�
!0
2
�
� exp i�xLb � xLa

�2
4�

!
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�
�i
�
J (�) +

e

2

�
xTF (H)QT

������b
�a

�
� exp

h
i
!0
4

��
u2b � u2a

�
+
�
�2b � �2a

��
cot
�!0
2
�
�
+ 2 (ub�a � �bua)

i
�
��
exp

h
�i!0
2
�
i� �̂�̂�

2

�
+ exp

h
i
!0
2
�
i� �̂��̂

2

��
�
�
1� e

2
k̂�̂�
Z �

0

ds exp [�i!0s]
�
�
dA

d�

�
�e
2
k̂�̂

Z �

0

ds exp [i!0s]

�
��
dA

d�

���
: (7.120)

In lower-dimensional space-time, the Dirac gamma matrices 
� as a function of the Pauli

matrices are de�ned in the following way


0 = �3; 

1 = i�2; 


2 = �i�1: (7.121)

then we can write

Tr

�̂�̂�

2
= Tr


�
1

2
I � i

2

�

1
2

��
= Tr


�
1

2
I � i

2
((i�2) (�i�1))

�
= Tr


�
1

2
I � 1

2
�3

�
= 1; (7.122)

and

Tr
�̂��̂

2
= Tr


�
1

2
I +

i

2

�

1
2

��
= Tr


�
1

2
I +

i

2
((i�2) (�i�1))

�
= Tr


�
1

2
I +

1

2
�3

�
= 1: (7.123)
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On the other hand, we have

Tr


��
�̂�̂�

2

�
k̂�̂�
�
= Tr


��
1

2
I +

i

2

�

1
2

�� �
�
�
k0


0
�
+
�
k3


3
���

= 0; (7.124)

Tr


��
�̂�̂�

2

�
k̂�̂

�
= Tr


��
�̂��̂

2

�
k̂�̂�
�
= Tr


��
�̂��̂

2

�
k̂�̂

�
= 0 (7.125)

Also, we have � = n�x� = y � � ! �a = ya � �a; �b = yb � � b and �̂ = ��

�; �̂� = ���


�; n̂ =

n�

�: When we put �a = �b and by simpli�cation, we get the e¤ective action expression given

by

Seff : = i1=2
!0

32�3=2

Z
dxdyd�

Z 1

0

d�

�3=2
1

sin
�
!0
2
�
� hexp hi!0

2
�
i
+ exp

h
�i!0
2
�
ii
;(7.126)

= i1=2
�
!0
2

�
8�3=2

Z
dxdyd�

Z 1

0

d�

�3=2
cos
�
!0
2
�
�

sin
�
!0
2
�
� ; (7.127)

We perform the �nal space-time coordinates integral for all terms, and returning to real

time via the replacements (T �! iT ) on the expression Seff : we get

Seff : = i3=2
�
eB
2

�
�F

8�3=2
TL2

Z 1

0

d�

�3=2
cot

�
eB
2
�

�
; (7.128)

this latter is the e¤etive action for charged massless particle in a constant magnetic �eld.

Consequently, the pair production probability of quasiparticles-holes in graphene by the Red-

mond �eld is null

P (pair) = 0; (7.129)

7.6 Conclusion

In this chapter, we have solved the Dirac-graphene equation in the presence of an electromag-

netic plane wave plus a uniform static magnetic �eld parallel to the direction of the propagation

of the electromagnetic plane wave using the Redmond method and via path integral formalism

using the delta-functionals approach.

For the path integral formalism, we have constructed the propagator and integrated the spin

factor by using the T-product technique. Furthermore, we have calculated the probability of

pair production using Schwinger�s method. As it is well known, the essential result is that the
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magnetic �eld does not create pairs; the pair production probability does not depend on the

plane wave and its combination cannot creat pairs in monolayer graphene. This result agrees

with Ref. [39] .



Chapter 8

General conclusion

In this thesis, we have studied some problems of relativistic quantum mechanics in monolayer

graphene. We have treated the behavior of graphene quasiparticles in the presence of some

con�guration of �elds consisting of a single plane wave, two plane waves, and the combination

of the plane wave plus a uniform magnetic �eld. In addition, we analyzed the problem of pair

creation from a vacuum under the action of an electromagnetic �eld in the framework of a

non-commutative geometry.

In the third chapter, we �nd the solutions of the massless Dirac-graphene equation in the

presence of two orthogonal electromagnetic plane waves via the ansatz proposed by Volkov.

Furthermore, in the fourth chapter, we have constructed the causal Green�s function of

graphene quasiparticles in interaction with two electromagnetic plane waves using a general

representation for the propagator via bosonic and fermionic path integrals formalism. The

wave functions have been deduced, and the results are agree with those obtained via Volkov�s

method.

In the �fth chapter, we have studied the issue of pair creation from the vacuum in monolayer

graphene, under the action of a static external electromagnetic �eld in the framework of non-

commutative phase space coordinates by using Schwinger�s method. We have calculated the

e¤ective action for two di¤erent gauges by using the supersymetric path integral. It is shown

that the results are identical to the Schwinger result when we put the limits � �! 0; � �! 0

and B �! 0: For the same limit, we recover the same results of the probability obtained in

the literature [94] via the semi-classical approach for multilayer graphene with the number of

layers J = 1; and the same results obtained via the exact solution of the Schrödinger equation
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for the case of monolayer graphene. Additionally, we have studied the in�uence of a plane wave

and two orthogonal plane wave �elds on the process of pair creation in monolayer graphene. In

this case, we have deduced that a single plane wave and the two orthogonal plane waves don�t

create pairs.

Also in the sixth chapter, we have studied the problem of pair creation of both scalar

and spinorial relativistic particles from the vacuum by a constant electromagnetic �eld in the

framework of non-commutative phase space coordinates using the same method in the previous

chapter, and we have discussed the special cases of the pair production probability and compare

them with those of the literature [126] by taking the limit �F ! c;m! 0:

In the last chapter, we have presented the solution of Redmond problem in graphene using

di¤erent methods, we solved the Dirac-graphene equation in the presence of an electromagnetic

plane wave plus a uniform static magnetic �eld parallel to the direction of the propagation of

the electromagnetic plane wave using the Redmond method and via path integral formalism

using the delta-functional method.

For the path integral formalism, we have constructed the propagator and corresponding

Green�s function. For this role, we integrate the spin factor by using the T-product technique.

Furthermore, the pair creation problem is examined, and the null pair production probability

is deduced.

Furthermore, we aspire from this research to generalize it to two waves propagating in

di¤erent directions, which has been discussed in the special case when the angle between the

directions of propagation of the waves is very small
�
�̂ � 1

�
used in the application of laser

beams to produce strong electromagnetic radiation.

Through this work, we can say that the path integral formalism is a successful technique

that can be used in solving problems related to plane wave �eld, and the calculation of the pair

production probability and its results are essential because the Schwinger mechanism can be

realized experimentally in condensed matter, especially in graphene.

Appendix A: Inverse matrix
�
M�1���:

In order to determine
q

detM(e)
detM(e=0)

, we are going to calculate the inverse matrix (M�1)
��
;

where

M�� (e; � ; �
0) =

�
����

0(� � � 0)� eF?
�� (�) �(� � � 0)

�
: (1)
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As we know the relation betweenM�� (� ; �
0) and its inverse matrix (M�1)

��
(� ; � 0) satisfying :Z 1

0

M�� (e; � ; s)
�
M��

��1
(e; s; � 0) = ���� (� � � 0) : (2)

Substituting (1) into (2) we obtainZ 1

0

ds
�
����

0(� � s)� eF?
���(� � s)

� �
M��

��1
(e; s; � 0) = ���� (� � � 0) : (3)

This latter is equivalent to the di¤erential equation

d

d�
M�1

�� (e; � ; �
0)� eF? �

� M�1
�� (e; � ; �

0) = ���� (� � � 0) : (4)

Knowing that in our case F? is a constant, let us insert the following general solution [168]

M�1 (e; � ; � 0) = exp (e�F?) ~c (� ; � 0) : (5)

Into Eq. (4), we get

~c (� ; � 0) = � (� � � 0) exp (�e� 0F?) + ~c (� 0) : (6)

Therefore, from (6) and (5) we obtain,

M�1 (e; � ; � 0) = exp (e�F?) [� (� � � 0) exp (�e� 0F?) + ~c (� 0)] : (7)

In this step we can determine the conditionM�1
�� (0; �

0) = ~c (� 0) ; by inserting the integral over

� on the equation (1), we �nd

M�1
�� (1; �

0)�M�1
�� (0; �

0) = eF? �
�

Z 1

0

M�1
�� (e; � 1; �

0) d� 1 + ���

Z 1

0

� (� 1 � � 0) d� 1; (8)

withM�1
�� (1; �

0) = �M�1
�� (0; �

0) ; Eq. (8) becomes as

�2~c (� 0) ��� = eF? �
�

Z 1

0

M�1
�� (e; � 1; �

0) d� 1 + ��� : (9)

After that, we insert the expression ofM�1
�� in Eq. (9) and we can �nd ~c (�

0) after a long and

straightforward calculations as follows:

~c (� 0) = �e�e� 0F?ee�F?
�
1 + ee�F

?��1
: (10)

Substituting (10) into (7), we get

M�1 (e; � ; � 0) =
1

2
ee(���

0)F?
�
" (� � � 0)� tanh

�
e�

2
F?

��
; (11)
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where �(� � � 0) = [1 + " (� � � 0)] =2:

Further, with a simple calculation, we can concludes
detM (e)

detM (0)
= exp

�
1

2

Z e

0

de0
Z �

0

d�
�
M�1��� (e0; � ; �)F?

��

�
(12)

= exp

�
�

4

Z e

0

de0
�
F?

�� tanh

�
e0�

2
F?

�����
: (13)

To evaluate Seff we start by �nding
q
det cosh

�
�F?
2

�
: Since F? is antisymmetric it can be use

the series of tanh(x) and the matrix characteristics of F?(�), (i.e., (F?)3 / F?).

For example, for the �rst gauge, we have

F?
02 =

E
�F
; F?

12 = �B(1 + �eB
4
+ �

eB ); (14)

and for the second gauge, we have

F?
02 =

E
�F
(1 + eB�

2
); F?

12 = �B(1 + �eB
4
+ �

eB ): (15)

From these, we can prove the following equality for two gauges respectively

�
tanh

�
e0�

2
F?

��
��

=

tanh

 
e0�
2

r�
E
�F

�2
� B2(1+ �eB

4
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eB )

2

!
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4
+ �
eB )

2

F?
�� ; (16)

and

�
tanh

�
e0�

2
F?

��
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=

tanh
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2
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E
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(1 + eB�

2
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4
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2
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Finally, we get s
detM (e)

detM (e = 0)
= exp

(
�

4

Z e

0

de0

"
F?
��F?�� tanh(

e0�1;2
2
�)

�1;2

#)
; (18)

with �1;2 are de�ned in above sections: While F?
��F?�� is given by

TrF?2 = F?
��F?�� = 2�21;2: (19)

Which we can easily rewrite (18) as followss
detM (e)

detM (e = 0)
= exp

�Z e

0

de0
�
�1;2�

2
tanh

�
e0�1;2
2

�

���
= cosh (e�1;2�) : (20)
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 ملخص
متعامدتين   نن  كهرو مغناطيسيتيموجتيفي وجود  ة البعدجرافين ثنائي-قمنا بحل معادلة ديراك هاته الأطروحةفي 

لأشباه جسيمات الجرافين التي تتفاعل مع نفس  بناء دالة غرينلطريقة تكاملات المسار  طبقناكما فولكوف.  باستعمال حل
.دالتي الموجة الموافقتين استنتجنا و باستخدام طريقة فرادكن و جيثمان السابق لالحق  

حقل حالتين مختلفتين لوجود ب في فضاء لا تبادلي  نظام الجرافينفي الفراغ  منظاهرة خلق الجسيمات  كذلك درسنا
باستخدام فعل شوينغر الجسيمات أزواج  خلقاحتمال  استنتجناحيث  ,شوينغرباستخدام طريقة  ثابتكهرومغناطيسي 

 أهم النتائج التي تحصلنا عليها هي أن الفضاء الامن للنتائج التي تحصلنا عليها.  بعض الحالات الخاصةدرسنا  و, الفعال
 كذلك درسنا تأثير موجة كهرومغناطيسية واحدة ثم موجتسن كهرومغناطيسيتين .تبادلي له دور في خلق أزواج الجسيمات 

  متعامدتين على ظاهرة خلق أزواج الجسيمات والذي يكون معدوما.

موجة  كون منم في وجود تراكب حقلينقمنا بحل معادلة ديراك الخاصة بأشباه جسيمات الجرافين  بالإضافة إلى ذلك
 الأولى .مختلفتين طريقتينب الكهرومغناطيسية يوازي اتجاه حركة الموجة ثابتمغناطيسي حقل  كهرومغناطيسية و

بعد الحصول على دالة غرين قمنا بحساب . ماننالمسارات لفاي تكامل طريقة طريقة رادموند والثانية باستعمال باستعمال
يمكنه خلق أزواج  أن هذا الحقل لاالنتيجة و كانت  فراغالاحتمال خلق أزواج الجسيمات في فعل شوينغر الفعال و استنتجنا 

.أيضاالجسيمات في مادة الجرافين   

رافين, أشباه الجسيمات, تكاملات المسار, دالة غرين, الناشر, معادل ديراك, متغيرات غراسمان, جال الكلمات المفتاحية:   
  قل مغناطيسي, موجة كهرومغناطيسية, حقل رادموند., حمفعول شوينغرية, تبديلالهندسة اللا 

Résumé  

Dans cette thèse, nous avons résolu l'équation de Dirac-Graphène en présence de deux ondes 

électromagnétique perpendiculaires en utilisant l’ansatz de Volkov, et nous avons finalement obtenu 

les fonctions d'onde correspondantes. Nous avons également accompli le même travail basé sur le 

formalisme des intégrales de chemins, où la fonction de Green a été construite en appliquant la 

méthode de Feynman en utilisant la technique de Fradkin et Gitman. 

Aussi, nous avons voulu étudier le phénomène de création des particules à partir du vide dans le 

système du graphène dans un espace non commutatif par deux jauges différentes d’un champ 

électromagnétique constant en utilisant l’action effective de Schwinger suivant l’intégrale de chemin, 

d'où nous avons calculé la probabilité de création des particules. Comme application  telle que nous 

l'avons déduite pour certains cas particuliers de (θ,η,E,B). De plus, nous avons également examiné 

l’influence d’un et deux champs d’ondes planes orthogonales sur le processus de création de paires 

dans le graphène qui est nul. 

De plus, nous avons résolu l'équation de Dirac-Graphène pour des quasi-particules en interaction 

avec la combinaison d'une onde plane et d'un champ magnétique constant parallèle à la direction de 

propagation de l'onde électromagnétique, dans un premier temps en utilisant la méthode de 

Redmond, la deuxième est la méthode de Delta fonctionnelle. Enfin, la création de paires de 

quasiparticules de graphène à partir du vide par cette configuration de champ est analysée. 

Mots-clés : Graphene, quasi-particules, integral de chemin, La fonction de Green, propagateur, 

L’equation de Dirac , Les variables de Grassmann, La geometrie non-commutative, L’effet de 

Shwinger, onde plane, Champ électromagnétique, Champ de Redmond. 


