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Abstract
Resolution of some optimization problems via kernel functions

by Safa GUERDOUH

This thesis topic falls within the realm of linear optimization and semidefinite opti-
mization. The objective is to study primal-dual interior-point methods for solving
linear optimization problems. These methods are based on introducing new hyper-
bolic kernel functions to determine new class of search directions. The analysis of
the complexity will be established, and an extension to the semidefinite optimization
case will be addressed.

In particular, we investigate the concept of feasible and infeasible interior-point
methods that rely on kernel functions to define the search directions.

We first deal with feasible primal-dual interior-point methods for solving linear
optimization problems. These methods are based on new hyperbolic kernel func-
tions. We study the primal-dual interior-point method based on each kernel function
and we derive the complexity bounds for each method. The proposed methods are
then implemented in Matlab and compared with several existing kernel functions in
the literature on various linear optimization examples.

Then, we extend primal-dual feasible interior-point methods to solve semidefi-
nite optimization problems. We provide a concise summary on the basic of primal-
dual interior-point methods for semidefinite optimization followed by the complex-
ity analysis of primal-dual interior-point algorithms based on a class of kernel func-
tions.

After that, we present a full-Newton step infeasible interior-point method for
solving linear optimization problems based on a hyperbolic kernel function. Unlike
the feasible interior-point methods, this method doesn’t require a feasible starting
point. Under some appropriate conditions, we guarantee that this method will con-
verge to an optimal solution. In addition, we showcase the practical efficiency of the
method by performing some numerical experiments.

Keywords: Linear programming, Semidefinite programming, Feasible interior-
point methods, Infeasible interior-point methods, Kernel functions, full-Newton step,
Complexity analysis, Large and small-update methods.
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1

Introduction

Mathematical programming, also known as mathematical optimization, is a field
of mathematics and computer science that deals with finding the best solution from
a set of feasible solutions to a given problem. The goal is to optimize an objective
function, subject to a set of constraints. Mathematical programming has applications
in various fields, including operations research, engineering, economics, finance,
and data science.

The key concepts and components of mathematical programming are

• Objective Function: This is the function that needs to be either maximized or
minimized. It represents the quantity you want to optimize, such as profit,
cost, time, or efficiency.

• Decision Variables: These are the variables that you can adjust or "decide" on to
achieve the optimal solution. The values of these variables impact the objective
function.

• Constraints: They are conditions or limitations that must be satisfied. They can
represent restrictions on the decision variables and are essential in modeling
real-world problems accurately.

• Feasible Region: It is the set of all possible combinations of values for the deci-
sion variables that satisfy the given constraints.

• Optimal Solution: It is the combination of values for the decision variables
that results in the best (maximum or minimum) value of the objective function
while satisfying all constraints.

• Optimization Algorithms: They are computational procedures used to find
the optimal solution among a set of feasible solutions to a particular problem.
Various algorithms are used to solve optimization problems, including simplex
method, interior-point methods and many more.

Mathematical programming provides a systematic and efficient way to make de-
cisions and allocate resources in a wide range of applications, making it a powerful
tool for addressing complex real-world problems.

Depending on the characteristics of the feasible set and of the objective function,
some properties can be attributed to the problem, impacting significantly the scope
of the problem and the method for its resolution. These properties are generally
non-exclusive and are given above by order of importance. Indeed the key property
of an optimization problem lies in its convexity, since it guarantees that the problem
is polynomially solvable.

Convex optimization is an important class of mathematical optimization that
deals with problems where both the objective function and the constraints are con-
vex. Such problems are of significant importance in optimization since convexity is
generally considered as the true discriminant between "easy" and "hard" problems
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in optimization.
Convex optimization has been studied heavily not only for its very powerful and el-
egant theory, but also because of its widespread applications in many different fields
of engineering and science such as data analysis, control theory, signal processing,
relaxation and randomization, and robust optimization. In addition to strong and
elegant theories, the potential for creating efficient and robust software has made
convex optimization very popular.

Conic optimization deals with a class of problems that is essentially equivalent to
the class of convex problems, i.e. minimization of a convex function over a convex
set. However, formulating a convex problem in a conic way has the advantage of
providing a very symmetric form for the dual problem, which often gives a new
insight about its structure, especially dealing with duality. An example of a conic
convex problem is as follows: for a proper cone K

(Pc)


inf cTx
s.t. Ax = b
x ∈ K,

for any c ∈ Rn, b ∈ Rm and A ∈ Rm×n.
The feasible set of a conic optimization problem (Pc) is the intersection of the

cone K with the polyhedron

{x ∈ Rn : Ax = b}.

In particular, if

• K = Rn
+ (nonnegative orthant), then (Pc) is a linear optimization (LO) prob-

lem.

• K = {(x0, x) ∈ R×Rn : ||x|| ≤ x0} (second-order cone), then (Pc) is a second-
order conic optimization (SOCO) problem.

• K = Sn
+ (cone of positive semidefinite matrices), then (Pc) is a semidefinite

optimization (SDO) problem.

These optimization areas are listed in such a way that each area includes the previous
one i.e., any SOCO problem can be put under the form of a SDO, any LO problem
can be put under the form of a SOCO and any LO problem can be put under the
form of a SDO.

In conclusion, if the cone is the nonnegative orthant, the second order cone or
the cone of positive semidefinite symmetric matrices, then we have respectively a
LO problem, a SOCO problem or a semidefinite optimization problem. These three
cones are the most relevant for the optimization field, and they were classified as be-
longing to the set of self- dual and homogenous cones, also called symmetric cones.

Linear programming

A linear programming or a LO problem involves the optimization (minimization or
maximization) of a linear objective function under a finite set of linear constraints.
These constraints may take the form of either equality or inequality. When the con-
straints are incompatible and do not permit any feasible solution, the problem is
deemed infeasible; otherwise, it is considered feasible. In the feasible case, where
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the feasible set is not empty, two possibilities arise: the objective function is either
unbounded or bounded within the domain. In the former case, the problem is la-
beled as unbounded, while in the latter case, it is termed as bounded.

For any LO problem, a corresponding dual problem can be formulated. The
dual problem is closely connected to the primal problem, and this relationship is
succinctly expressed through the optimal sets of both problems. If the optimal set
of one problem is nonempty, the optimal set of the other problem is also nonempty.
Furthermore, the optimal values of the objective functions for both problems are
equal. These significant outcomes constitute the fundamental principles of the du-
ality theory in LO.

The initial duality results in LO were obtained through a nonconstructive ap-
proach. These results can be deduced from various forms of Farkas’ lemma [25] or
more general separation theorems for convex sets, as detailed in works of Osborne
in [81] and Saigal in [93]. An alternative method relies on direct inductive proofs of
theorems by Farkas, Weyl, and Minkowski, with the duality results for LO emerging
as a corollary of these theorems, as discussed by Gale [28].

Methods for solving a linear programming problem

Simplex method

The simplex method, introduced by Dantzig in 1947, starts from a vertex within the
feasible region, which is essentially a polyhedron. It proceeds by traversing along
an edge to a vertex with non-increasing values of the objective function (for a min-
imization problem). This process is iteratively repeated until an optimal vertex is
obtained. Despite its generally favorable practical performance, there exists an ex-
ample, as provided by Klee and Minty [60], having 2n inequality constraints and
n variables that necessitates 2n iterations for the simplex method. This indicates
that the simplex method might not exhibit a polynomial worst-case iteration bound.
In fact, for numerous variants of the simplex method employing different pivoting
rules, instances with exponential running times have been identified.

Ellipsoid method

The ellipsoid method was introduced by Khachiyan [55] in 1979. The ellipsoid
method constructs a sequence of ellipsoids that enclose an optimal solution, if one
exists, and the volumes of these ellipsoids uniformly decrease at each step. The it-
eration bound of the ellipsoid method is O(n2L), where L represents the length of
input data bits. However, despite its theoretical advantages, the ellipsoid method
has proven to be impractical for real-world applications (see for instance [13, 35]),
and the simplex method has remained the preferred choice in practice.

Interior-point method

The first "interior-point" methods (IPMs) and their polynomial complexity emerged
in the mid-fifties. These methods were primarily generated by a barrier method pro-
posed by [27] to solve nonlinear problems. In 1967, P. Huard introduced the central
path method to solve problems with nonlinear constraints [50]. The term "interior-
point" comes from the fact that unlike traditional methods like the simplex algorithm
that move along the boundary of the feasible region, IPMs navigate through the in-
terior, maintaining feasibility and approaching the optimal solution.
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Although, IPMs have been known since 1960, they received renewed attention
after Karmarkar’s result [53] in 1984. He presented a polynomial-time method with
an iteration bound that is better than that of Khachiyan’s ellipsoid method by a factor
of O(n). Later, Renegar [89] improved Karmarkar’s iteration bound, namely (nL),
by a factor of

√
n.

A short historical account

First steps of linear optimization.

- 1930-1940. First appearance of LO formulations.

- 1939-1945. Second World War: operations research makes its debuts with
military applications.

- 1947. G. B. Dantzig publishes the first article about the simplex method for
LO [21].

- 1970. V. Klee and G. Minty prove that the simplex method has exponential
worst-case complexity [60].

First steps of interior-point methods

- 1955. K. R. Frisch proposes a barrier method to solve nonlinear programs
[27].

- 1967. P. Huard introduces the method of centers to solve problems with non-
linear constraints [50].

- 1968. A. V. Fiacco and G. P. McCormick develop barrier methods for convex
nonlinear optimization [26].

It’s noteworthy that these barrier methods were originally designed for addressing
nonlinear optimization problems. While they can be extended to LO, it’s crucial
to highlight that the developers do not regard them as practical alternatives to the
simplex method.

The interior-point methods revolution

- 1984. N. Karmarkar discovers a polynomial IPM that is practically more ef-
ficient than the ellipsoid method. He also claims superior performance com-
pared to the simplex method [53].

- 1994. Y. Nesterov and A. Nemirovski publish a monograph on polynomial
IPMs for convex optimization [77].

- 1995. A. Alizadeh [1] elegantly applied IPMs to solve SDO problems arising
from combinatorics.

- 2000. Since Karmarkar’s first breakthrough, more than 3000 articles have been
published on the topic of IPMs. A few textbooks have been also published (see
e.g. [92, 105, 106]).
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Primal-dual interior-point methods

Primal-dual IPMs offer a robust and efficient approach for solving linear and semidef-
inite programming problems, particularly for large-scale applications, thanks to their
polynomial-time complexity and ability to handle a wide range of constraints. They
operate by following a trajectory called the central path, which lies in the interior of
the feasible region. This path connects feasible solutions that simultaneously satisfy
the primal and dual optimality conditions. In fact, they employ a path-following
strategy to trace the central path, maintaining a balance between primal feasibility,
dual feasibility, and optimality. This strategy ensures that the solution remains in the
interior of the feasible region. At each iteration, primal-dual IPMs compute a search
direction that moves along the central path towards the optimal solution. This is
typically done by solving a system of linear equations derived from the Karush-
Kuhn-Tucker (KKT) conditions. In addition, they have polynomial-time complexity,
making them attractive for large-scale linear and convex quadratic programming
problems. The polynomial-time complexity is an improvement over the exponential
worst-case behaviour of the simplex method.

Primal-dual IPMs are divided into feasible IPMs and infeasible IPMs (IIPMs).
Feasible IPMs start from a primal-dual strictly feasible triple and generate a sequence
of strictly feasible triples converging to an optimal solution of the primal and dual
pair of problems. In contrast, in IIPMs the initial iterates are not feasible, and apart
from reaching optimality one needs to strive for feasibility.

Primal-dual IPMs based on kernel functions (KFs) form an intriguing subset
within the realm of IPMs. This approach seamlessly combines two fundamental
concepts: primal-dual IPMs and KFs. The selection of the KF holds significance not
only for theoretical analysis but also for the algorithm’s performance. Specifically,
the central path followed by IPMs to solve a LO problem is derived by solving a
parametric system, using a barrier function defined in terms of a KF with appropri-
ate barrier parameters.

Feasible primal-dual interior-point methods based on kernel functions

Feasible primal-dual IPMs represent the class of primal-dual IPMs designed for solv-
ing constrained optimization problems, where the initial starting point satisfies the
constraints.

Feasible primal-dual IPMs based on KFs represent a fascinating subclass of fea-
sible IPMs. This approach combines two fundamental concepts: primal-dual IPMs
and KFs. The choice of the KF plays an important role not only for the IPM analy-
sis but also for the performance of the corresponding interior-point algorithm (IPA).
Specifically, the KF is used to define an equivalent form of the central path of the
IPM, to define the proximity measure, and to obtain search directions. In fact, the
central path followed by IPMs is obtained by solving a parametric system that is
characterized by a barrier function defined in terms of a KF. In addition, the gra-
dient of the KF serves to define a measure of the distance between the iterates and
the central path. Both the KF and the proximity measure effect the iteration bounds
since some of their properties play an important role in the complexity analysis. That
is why the complexity rate depends on the proposed KF.

Roos et al. [92] introduced the first primal-dual IPM based on the classical log-
arithmic barrier function. Subsequently, Peng et al. [83] presented primal-dual
IPMs for LO based on the so-called self-regular (SR) barrier functions, significantly
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improving the theoretical complexity achieved with the classical logarithmic KF.
They obtained the currently best iteration bound for large-update IPMs, namely
O(

√
n log n log n

ϵ ), where n represents the number of variables, and ϵ is the desired
accuracy in terms of the objective value. This success motivated the exploration of
alternative KFs in lieu of the classical logarithmic KF.

In 2002, Bai et al. [11] presented a primal-dual IPA for LO problems based on a
simple non SR KF. They established that the complexity bound for large- and small-
update methods are O (qn log n

ϵ ) and O(q2√n log n
ϵ ) respectively.

In 2004, Bai et al. [8] introduced the first KF with a trigonometric barrier term.
The evaluation of this function has been done furthermore by El Ghami et al. [30] in
2012. They established the worst case iteration complexity as O(n

3
4 log n

ϵ ).
Since then, a number of various KFs with a trigonometric barrier term has been

proposed and analyzed. For these, we refer the reader for example to Li et al. [66],
Bouafia et al. [15] and Peyghami et al. [45]. The authors in [15] are the first to reach
the best known complexity bound for large-update methods based on trigonomet-
ric KFs for LO. In 2014, Peyghami et al. [88] and Cai et al. [19] proposed new KFs
with trigonometric-logarithmic barrier terms for LO. In the same year, Peyghami et
al. [86] presented an other KF with an exponential-trigonometric barrier term which
has O(

√
n log2 n log n

ϵ ) complexity bounds for large-update methods. The complex-
ity bound derived in [88], namely O(n

2
3 log n

ϵ ), improves the complexity bounds ob-
tained in [30, 19, 86]. Note that the KF proposed in [19] yields the same complexity
derived in [88].

Recently, Touil and Chikouche [100] introduced the first IPM based on a hyperbolic-
logarithmic KF. They demonstrated that the corresponding IPA attains O(n

2
3 log n

ϵ )
iterations as the worst-case complexity bound for the large-update method. In [98],
they presented an IPM based on a pure hyperbolic barrier term. The complexity
analysis for large-update IPMs using this KF resulted in an O(n

3
4 log n

ϵ ) iteration
bound.

We end this overview by mentioning the works of Bai et al. [9, 10], Amini et al.
[4, 5, 3] and Bouafia et al. [16] where the authors proposed KFs with exponential
barrier terms.
In view of the precedent, most of KFs used in IPMs can be categorized into five main
types: logarithmic, simple algebraic, exponential, trigonometric and hyperbolic. The
remaining KFs are just compositions or binary combinations of these types, see e.g.
[17, 46] for recent proposed KFs.

Infeasible primal-dual interior-point methods based on kernel functions

IIPMs provide a framework for solving optimization problems where the starting
point doesn’t satisfy the constraints. These methods iteratively navigate through
the interior of the feasible region, restoring feasibility and approaching an optimal
solution.

Lustig [70] introduced the first infeasible-start IPM. His approach underwent fur-
ther refinement in Mehrotra’s predictor-corrector algorithm [74]. Subsequently, Roos
[90] introduced a novel primal-dual infeasible IPA (IIPA) utilizing only full-Newton
steps. Some extensions on LO were explored by Liu and Sun [67], Liu et al. [68], and
Mansouri and Roos [71].

Salahi et al. [94] presented a new primal-dual IIPM for LO, based on a specific
SR KF. Recently, Kheirfam and Haghighi [58, 57] and Moslemi and Kheirfam [76]
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investigated the complexity analysis of trigonometric proximity-based IIPMs for LO
and SDO problems.

Semidefinite programming

The study of semidefinite programming also known as SDO is currently one of the
most active research areas in optimization. The Interest in SDO has grown even more
in recent years as numerous applications have been identified in various fields such
as control, statistics, finance, localization, robust optimization, and engineering.

SDO is a subfield of convex optimization concerned with the optimization of a
linear objective function over the intersection of the cone of positive semidefinite
matrices with an affine space.

IPMs were first developed by Karmarkar [53] for LO problems. After that, using
the fact that LO is a special case of SDO, many primal-dual IPMs were extended to
solve SDO problems including even primal-dual IPMs based on KFs which was a
significant contribution initiated by Nesterov and Todd [78].

Scope of the thesis

In this thesis, we deal with the complexity analysis and numerical implementation of
IPMs for LO and SDO problems. In particular, we investigate the concept of feasible
and IIPMs that rely on KFs to define the search directions.

In Chapter 1, we deal with feasible primal-dual IPMs based on KFs. We first give
a summary on the basics of primal-dual IPMs for LO. In Section 2, we present the
main steps to obtain the complexity of primal-dual IPAs based on a specific class
of KFs. This section is hugely inspired by the work of Bai et al. [8]. After that,
we apply the procedure used in Section 2 on three new hyperbolic KFs: an expo-
nential hyperbolic KF [39], a parameterized hyperbolic logarithmic KF which can
be considered as a generalization of the KF proposed in [100] and a hyperbolic KF
[41] which is a generalization, up to a multiplicative constant, of the KF introduced
in [98]. The primal-dual IPA based on each of these functions is studied and the
complexity bounds for large- and small-update methods are derived. In addition to
the theoretical study, we showcase the practical performance of each algorithm by
comparing it with other existing IPAs based on KFs.

In Chapter 2, we extend our exploration of primal-dual feasible IPMs based on
KFs, as discussed in Chapter 1, into the realm of SDO. Hence, we deal with feasible
primal-dual IPMs based on KFs for solving SDO problems. We first give a concise
summary on the basic of primal-dual IPMs for SDO. Then, we present the main steps
to obtain the complexity of primal-dual IPAs based on the same class of KFs studied
for LO in Chapter 1. As an application, we study an IPM based on a new twice
parametric KF which is a combination of the prototype SR KF and the hyperbolic
KF introduced in [83] and [41] respectively. We end this chapter by presenting some
numerical experiments to showcase the practical performance of the IPA based on
the twice parametrized KF in solving SDO problems.

In Chapter 3, we study a full-Newton step IIPA for solving LO problems based on
a new hyperbolic KF. Unlike the feasible IPAs previously studied in Chapter 1, this
algorithm doesn’t require a feasible starting point. In addition, the algorithm avoids
a big-M or a two-phase approach. Each main iteration of this algorithm involves a
sequence of actions, including a feasibility step, and a series of centrality steps.
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The feasibility search directions are computed using the hyperbolic KF; however,
the centering search directions are obtained using the classical KF. Furthermore, un-
der general conditions we guarantee that our algorithm will converge to an opti-
mal solution. Using some mild properties, the complexity analysis for the primal-
dual IIPM based on the corresponding proximity function indicates that the iter-
ation bound of the algorithm matches the currently best iteration bound for IIPMs.
We consolidate these theoretical results by performing some numerical experiments.
These experiments were split into two segments. In the initial part, we conducted
a comparison between the IIPM based on the considered KF and other established
IIPMs using a set of problems from the Netlib repository. In the subsequent part, we
evaluated our algorithm against the well-known SeDuMi solver.

Finally, we end this thesis with some conclusions and recommendations for po-
tential avenues of future works.
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Feasible primal-dual IPMs based
on kernel functions for linear

optimization

In this chapter, we deal with feasible primal-dual interior-point methods (IPMs)
based on kernel functions (KFs) for linear optimization (LO). We first give a sum-
mary on primal-dual IPMs. In Section 1.2, we present the main steps to obtain the
complexity of primal-dual interior-point algorithms (IPAs) based on a specific class
of KFs. The presented procedure is then applied on three new hyperbolic KFs.

1.1 Preliminaries

In this section, we outline some concepts and basic tools required in feasible IPMs
based on KFs such as central path, search direction, proximity measure, step size,
proximity function, complexity analysis, etc.

1.1.1 Description of the generic primal-dual interior-point algorithm based
on kernel functions

In this subsection, we only showcase the main steps of feasible primal-dual IPMs
based on KFs. At the end, we provide a formal description of the primal-dual IPA
based on KFs. For more details and informations on the theory of feasible primal-
dual IPMs, we refer the readers to the monograph of Peng et al. [84] as well as the
references provided therein.

Recall that in this chapter, we are concerned about solving LO problems. To be
more specific, we deal with a LO problem (P) which is formulated in the following
standard form: Given the vectors b ∈ Rm and c ∈ Rn, the matrix A ∈ Rm×n, find a
vector x ∈ Rn, such that

(P)


min cTx
Ax = b,
x ≥ 0,

x is called the vector of variables. The set of feasible solutions for (P) is defined as
follows

FP = {x ∈ Rn : Ax = b, x ≥ 0} .
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FP is called the primal feasible region.
The corresponding dual problem of (P) is given by

(D)


max bTy
ATy + s = c,
s ≥ 0,

where y ∈ Rm is called the vector of variables and s ∈ Rn is called the vector of dual
slack variables. The set of feasible solutions for (D) is given by

FD =
{
(y, s) ∈ Rm × Rn : ATy + s = c, s ≥ 0

}
.

FD is called the dual feasible region. The relative interiors of FP and FD are defined
respectively as follows

F̊P = {x ∈ Rn : Ax = b, x > 0} ,

F̊D =
{
(y, s) ∈ Rm × Rn : ATy + s = c, s > 0

}
.

Throughout this chapter, we assume that the matrix A has full rank i.e., rank(A) =
m < n. This assumption implies that for a given dual feasible vector s, the vector y is
uniquely defined. This means that we can determine a feasible solution of (D) only
by s.

The connections and relationships between the primal problem (P) and the dual
problem (D) have been studied by many authors. We refer the readers to the duality
theory presented in [92]. We only recall the following main results. The first result is
the Duality Theorem (due to J. von Neumann, 1947, [79]), and the second result will
be referred to as the Goldman–Tucker Theorem (Goldman and Tucker, 1956, [36]).

Theorem 1.1.1. ([79, Duality Theorem]) If (P) and (D) are feasible then both problems
have optimal solutions. Then, if x ∈ FP and (y, s) ∈ FD, these are optimal solutions if
and only if xTs = 0. Otherwise neither of the two problems has optimal solutions: either
both (P) and (D) are infeasible or one of the two problems is infeasible and the other one is
unbounded.

Theorem 1.1.2. ([36, Goldman-Tucker Theorem]) If (P) and (D) are feasible then there
exists a strictly complementary pair of optimal solutions, that is an optimal solution pair
(x, s) satisfying

x + s > 0.

Central path

In what follows, we suppose that problems (P) and (D) satisfy the interior-point
condition (IPC), i.e., there exists (x0, y0, s0) such that

Ax0 = b, x0 > 0, ATy0 + s0 = c, s0 > 0,

which is equivalent to
F̊P × F̊D ̸= ∅.

Under the IPC, it follows from Theorem 1.1.1 that a primal-dual feasible triple (x, y, s)
is optimal if and only if xTs = 0. This is called the complementarity condition for
(P) and (D). Because the vectors x and s are nonnegative, the complementarity con-
dition is equivalent to xs = 0. Hence, any primal-dual optimal solution (x̄, ȳ, s̄) of
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(P) and (D) satisfies the following conditions:
Ax = b, x ≥ 0,
ATy + s = c, s ≥ 0,
xs = 0.

(1.1)

System (1.1) is called The Karuch-Kuhn-Tucker (KKT) optimality conditions for LO.
The first and second equations represent primal and dual feasibility. Whereas, the
last equation signify the complementarity condition for (P) and (D).

The theory of IPMs suggests that the third equation in (1.1) has to be perturbed.
Hence, replacing the last equation in (1.1) by the parameterized equation

xs = µe, µ > 0,

leads to the following system 
Ax = b, x > 0,
ATy + s = c, s > 0,
xs = µe.

(1.2)

Theorem 1.1.3. ([84, Theorem 1.2.4]) If the IPC holds, then for each µ > 0, the parameter-
ized system (1.2) has a unique solution.

Observing the last equation in system (1.2), any solution of this system verifies
that

x > 0 and s > 0.

Hence, a solution exists if and only if the IPC is verified. Since the IPC holds, the
previous theorem indicates that for each µ > 0, system (1.2), has a unique solution
denoted by (xµ, yµ, sµ). The vector xµ is called the µ- center of (P) and (yµ, sµ) the µ-
center of (D). The set of unique solutions {(xµ, yµ, sµ) : µ > 0} creates a homotopy
trajectory in the interior of the feasible region labeled as the central path of problems
(P) and (D). The behaviour of the central path as µ approaches zero has been a
prominent focus. McLinden delved into this aspect in [72], particularly exploring
the limiting behaviour of the path for monotone complementarity problems. After
that, Megiddo [73] established that as µ tends to zero, the central path of (P) and
(D) converges to a primal-dual optimal solution.

However, the last equation in system (1.2) makes it difficult to obtain the µ cen-
ters since it is nonlinear. A remedy to this issue is to use a numerical iterative proce-
dure based on the popular Newton-Raphson’s method. The details of this procedure
will be shown in what follows.

Search directions

Introducing a parameter τ > 0 as a threshold value and fixing µ > 0, let us defined
the τ-neighbourhood N (τ, µ) as follows

N (τ, µ) = {(x, y, s) ∈ F̊P × F̊D, Φ(x, s, µ) ≤ τ},

with τ the radius of the neighbourhood and Φ a so-called proximity measure. Φ is
used to measure the distance from the point (x, s) to (xµ, sµ) and will be defined later
in terms of a KF.
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Starting with a point in the neighborhood N (τ, µ), we solve the following system
of linear equations 

A∆x = 0,
AT∆y + ∆s = 0,
s∆x + x∆s = µe − xs,

(1.3)

to obtain the search direction (∆x, ∆y, ∆s). Since A has full row rank, system (1.3)
uniquely defines (∆x, ∆y, ∆s) for any x > 0 and s > 0.

Therefore, by taking a step along the search direction, one constructs a new iter-
ate point

x+ := x + α∆x, y+ := y + α∆y, s+ := s + α∆s. (1.4)

The step size α ∈]0, 1] has to be chosen approximately so that the new iterates satis-
fies the strict positivity condition i.e.,

(x+, s+) > 0.

The concept of IPMs is visually represented in the figure provided below.

FIGURE 1.1: Graphical Interpretation of IPMs

Now, we define the scaled vector v and the scaled search directions dx and ds as
follows

v =

√
xs
µ

, dx =
v∆x

x
, ds =

v∆s
s

. (1.5)

Utilizing these notations, system (1.3) is restated in the subsequent way
Adx = 0,
AT

∆y + ds = 0,
dx + ds = v−1 − v,

(1.6)
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where A = 1
µ AV−1X, V = diag(v), X = diag(x).

A significant observation is that the right-hand side in the last equation of (1.6)
is equal to minus gradient of the following function

Ψc(v) =
n

∑
i=1

ψc(vi), (1.7)

with

ψc(t) =
t2 − 1

2
− log t.

Thus the third equation in (1.6), often called the scaled centering equation, can be
rewritten as follows

v−1 − v = −∇Ψc(v).

This indicates that Ψc essentially determines the search direction. In addition, it’s
easy to verify that

∇2Ψc(v) = diag(e + v−2),

and that the matrix diag(e + v−2) is positive definite. This implies that the Hessian
∇2Ψc(v) is positive definite which indicates that Ψc is strictly convex. Moreover,

∇Ψc(e) = 0.

It follows that Ψc(v) attains its minimal value at v = e, with Ψc(e) = 0. This means
that Ψc(v) is nonnegative everywhere and vanishes if and only if v = e, that is, if
and only if x = xµ and s = sµ. Therefore, the µ- center (xµ, sµ) can be identified as
the minimizer of the function Ψc. For this reason, Ψc serves mainly as a "proximity"
measure of closeness for (x, s) with respect to the µ-center.

These observations concerning Ψc led to the creation of the concept of primal-
dual IPMs based on KFs. The basic idea in these methods is to replace ψc by any
strictly convex function ψ : ]0,+∞[→ [0,+∞[ which is minimal at t = 1 with ψ(1) =
0. The corresponding proximity function Ψ is then obtained by replacing ψc by ψ in
(1.7). This explains the reason for calling ψ the KF of the barrier function Ψ. Besides,
Ψ is minimal at v = e and Ψ(e) = 0 i.e.,

Ψ(v) = 0 ⇔ ∇Ψ(v) = 0 ⇔ v = e.

Thus, Ψ still serves as a proximity measure for closeness with respect to the µ-center
(xµ, sµ) and the inequality

Ψ(v) ≤ τ,

defines a τ−neighbourhood of the µ-center. Hence we can define Φ(x, s; µ) as fol-
lows

Φ(x, s; µ) = Ψ(v).

In the sequel, we will use the norm-based proximity measure σ(v) defined by

σ(v) := σ(x, s; µ) =
1
2
∥dx + ds∥ =

1
2
∥∇Ψ(v)∥ . (1.8)

One can easily verify that σ(v) = 0 if and only if v = e. This means that σ vanishes
only at the µ-center. In other words,

σ(v) = 0 ⇔ v = e ⇔ xs = µe.
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In this chapter, we will consider three alternatives for ψc:

1. the exponential hyperbolic KF [39]

ψ (t) =
t2 − 1

2
+ sinh2(1)

(
ecoth(t)−coth(1) − 1

)
, ∀t > 0.

2. the parameterized hyperbolic logarithmic KF [42] which can be considered as
a generalization of the KF proposed in [100]

ψ(t) =
t2 − 1

2
+

sinh2(1)
sinh2(1) + p cothp−1(1)

(
cothp(t)− log t− cothp(1)

)
, ∀t > 0,

with p ≥ 1.

3. the hyperbolic KF [41] which is a generalization, up to a multiplicative con-
stant, of the KF introduced in [98]

ψ (t) =
t2 − 1

2
+

sinh2(1)
p cothp−1(1)

cothp(t)− sinh2(1)
p

coth(1), ∀t > 0,

with p ≥ 2.

Coming back to system (1.6), we can convert it to
Adx = 0,
AT

∆y + ds = 0,
dx + ds = −∇Ψ(v).

(1.9)

Since A has full row rank, system (1.9) has a unique solution. Furthermore, the
vectors dx and ds are orthogonal and thus

dx = ds = 0 ⇔ ∇Ψ(v) = 0 ⇔ v = e ⇔ Ψ(v) = 0 ⇔ x = xµ and s = sµ.

Solving system (1.9) and using notations (1.5), we get the new search direction
(∆x, ∆y, ∆s).

Another way to obtain these search direction is to solve the following system
A∆x = 0,
AT∆y + ∆s = 0,
s∆x + x∆s = −µv∇Ψ(v).

This system can be condensed to the following form

M∆y = r,

where

M =AS−1XAT

r =µAS−1v∇Ψ(v).
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Once ∆y is found, ∆s and ∆x are determined through back substitutions

∆s = −AT∆y

∆x = −s−1 (x∆s − µv∇Ψ(v)) .

We end this section by providing a brief description of the algorithm corresponding
to the primal-dual IPM based on KFs summarized in Algorithm 1. Given a strictly
feasible point (x0, y0, s0) situated in a τ-neighbourhood of the given µ-center, we re-
duce µ to µ+ := (1 − θ)µ for some fixed 0 < θ < 1, and then solve the system
(1.9) to obtain the search direction (dx, ∆y, ds); Then, we use notations (1.5) to ob-
tain (∆x, ∆s). The new iterates are then computed according to (1.4). The positivity
condition of a new iterate is ensured by choosing an appropriate step size α. This
procedure is repeated until we find a new iterate (x+, y+, s+) that again belongs to
the τ-neighbourhood of the current µ-center, that is, until Ψ(v) ≤ τ. Then, we up-
date the parameter µ to µ+ and we let (x, y, s) = (x+, y+, s+). This procedure is
repeated until we find an iterate (x+, y+, s+) such that xT

+s+ < ϵ. In this case, an
ϵ-approximate optimal solution of problems (P) and (D) is found.

Remark 1.1.4.

• According to [92], we call the step where the present iterate is in a certain neighbour-
hood of the current µ-center an outer iteration, and the procedure to get a primal-dual
pair (x, y, s) in the neighborhood of this µ-center an inner iteration. In the algorithm,
we use the proximity Φ(x, y, s) to control the iterates.

• The choice of the parameter θ is an important ingredient of IPMs. Generally, when θ is
a constant independent of n, for example θ = 1

2 , the algorithm is called a large-update
(or long-step) method. On the other hand, if θ depends on the problem dimension n,
for example θ = 1

2
√

n , then the algorithm is referred to as a small-update (or short-
step) method. It’s noteworthy that there exists a gap between the practical efficiency
and the theoretical worst-case complexity within these two categories of IPMs in the
literature. Specifically, large-update methods tend to exhibit higher practical efficiency,
albeit with a more unfavorable theoretical complexity bound when compared to small-
update methods, which possess a complexity of O(

√
n log n

ϵ ).
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Algorithm 1 : Generic Feasible Primal-Dual Interior-Point Algorithm for Lin-
ear Optimization

Input data

a threshold parameter τ ≥ 1;

an accuracy parameter ϵ > 0;

a fixed barrier update parameter θ ∈]0, 1[;

(x0, y0, s0) satisfy the IPC and µ0 = 1 such that

Φ
(

x0, s0; µ0) := Ψ(v0) ≤ τ.

begin

x : = x0; y : = y0; s : = s0;

µ : = x0s0;

while xTs ≥ ϵ do

begin (outer iteration)

µ : = (1 − θ)µ;

v :=
√

xs
µ ;

while Φ(x, s; µ) := Ψ(v) > τ do

begin (inner iteration)

Solve system (1.9) to get (dx, ∆y, ds);

Use (1.5) to obtain (∆x, ∆s);

Choose a suitable step size α;

x := x + α∆x; y := y + α∆y; s := s + α∆s;

v :=
√

xs
µ ;

end while (inner iteration)

end while (outer iteration)

end
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1.1.2 Definitions and technical lemmas

Let C2(R++, R+) be the set of twice differentiable functions defined from R++ to
R+.

Definition 1.1.5. Let ψ ∈ C2(R++, R+). ψ is a KF if it satisfies the following conditions

• KF1 ψ(1) = ψ′(1) = 0.

• KF2 ψ′′(t) > 0, ∀t ∈ R++ (strict convexity).

• KF3 ψ is a coercive KF ,i.e.,

lim
t→0+

ψ(t) = lim
t→+∞

ψ(t) = +∞.

The corresponding proximity function (barrier function) is defined as follows

Ψ(v) =
n

∑
i=1

ψ(vi), ∀v > 0. (1.10)

Remark 1.1.6. If
lim

t→0+
ψ(t) = c < +∞,

then, ψ has a finite barrier term. An example is the following KF introduced in [9]

ψ(t) =
t2 − 1

2
+

1
b
(eb(1−t) − 1), ∀t > 0 with b > 0.

Proposition 1.1.7. Let ψ be as defined in Definition 1.1.5, then

(i) ψ is nonnegative and vanishes at its global minimal point t = 1.

(ii) ψ
′
(t) ≥ 0 if t ≥ 1 and ψ

′
(t) < 0 if t < 1.

(iii) ψ is completely defined by its second derivative, i.e.,

ψ(t) =
∫ t

1

∫ ξ

1
ψ

′′
(z) dz dξ ∀t > 0.

(iv) the derivative function ψ′ is monotonically increasing on R++.

Remark 1.1.8. Let ψ be a KF. Then, the restriction functions

ψ : [1,+∞[→ [0,+∞[,

and
ψ′ :]0, 1] →]− ∞, 0],

are both monotonically increasing.

This remark allows us to introduce the following definition

Definition 1.1.9. Let ϱ and ρ be the inverse functions:

• ϱ : [0,+∞[ −→ [1,+∞[ the monotonically increasing inverse function of the restric-
tion of ψ to [1,+∞[.
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• ρ : [0,+∞[ −→ ]0, 1] the monotonically decreasing inverse function of the restriction

of −1
2

ψ′ to ]0, 1].

The inverse functions ϱ and ρ, thus defined, play a centric role in the complexity
analysis of feasible primal-dual IPAs based on KFs.

FIGURE 1.2: Graphical Interpretation of the inverse functions ϱ and ρ

1.2 Analysis of the primal-dual interior-point algorithm for
a class of kernel functions

1.2.1 A specific class of kernel functions

In this section, we are inspired by the work of Bai et al. [8]. In particular, we study a
class of KFs which satisfies all the eligibility conditions introduced in [8] except the
following condition

2ψ′′ (t)2 − ψ′ (t)ψ′′′ (t) > 0, ∀t < 1.

Let ψ be a KF. In this section, we require that ψ is three times continuous differen-
tiable and satisfies hypothesis

• H1 For all t ∈ R++, ψ
′′′
(t) < 0.

• H2 For all t > 1, tψ
′′
(t)− ψ

′
(t) > 0, (ψ is sqrt-convex).

• H3 For all t < 1, tψ
′′
(t) + ψ

′
(t) > 0, (ψ is e-convex).

We also assume, as in [8], that the KF is written in the following form

ψ(t) =
t2 − 1

2
+ ψb(t), ∀t > 0,

with ψ
′
b(t) < 0 and ψ

′′
b (t) ≥ 0 for all t > 0.

ψb is called the barrier term and t2−1
2 is called the growth term. The growth term
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dominates the behavior of ψ(t) when t goes to infinity, whereas the barrier term
dominates its behavior when t approaches zero.

These conditions will facilitate the complexity analysis of the IPM based on the
KF ψ.

Remark 1.2.1. We call the property described in H3 the exponential convexity, or shortly
e-convexity (Lemma A.0.9). This property is not satisfied for a non-coercive KF. An example
for such KF is the function introduced in [9].

Proposition 1.2.2. One has the following properties

(i) ψ
′′
(t) ≥ 1, ∀t > 0.

(ii) ψb(1) = 0, and ψ
′
b(1) = −1.

(iii) ψ
′′′
b (t) < 0, ∀t > 0.

Lemma 1.2.3. ([8, Lemma 2.4]) We have

ψ
′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt) > 0, ∀t > 1, ∀β > 1.

Proof. Fixing t > 1, we define the following function

gt(β) = ψ
′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt), ∀β ≥ 1.

Differentiating gt with respect to β, we get for all β ≥ 1

g′t(β) = tψ
′′
(t)ψ

′′
(βt)− βtψ

′
(t)ψ

′′′
(βt)− ψ

′
(t)ψ

′′
(βt),

= ψ
′′
(βt)

(
tψ

′′
(t)− ψ

′
(t)
)
− βtψ

′
(t)ψ

′′′
(βt) > 0,

since ψ is a KF and due to H1 and H2. It follows that the function gt is strictly
increasing on [1,+∞[. Hence

gt(β) > gt(1) = 0, ∀β > 1.

The desired inequality is then obtained.

Lemma 1.2.4. ([8, Lemma 2.5]) One has

ψ(t) <
1
2
(t − 1)ψ′(t) and ψ

′
(t) > (t − 1)ψ

′′
(t), ∀t < 1, (1.11)

while
ψ(t) >

1
2
(t − 1)ψ′(t) and ψ

′
(t) > (t − 1)ψ

′′
(t), ∀t > 1. (1.12)

Proof. Let’s define the function l as follows

l(t) = 2ψ(t)− (t − 1)ψ
′
(t), ∀t > 0.

Deriving l twice, we get

l′(t) = ψ
′
(t)− (t − 1)ψ

′′
(t),

l
′′
(t) = −(t − 1)ψ

′′′
(t).
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Obviously, by KF1
l(1) = l

′
(1) = 0.

Furthermore, using H1, we obtain

l
′′
(t) > 0, ∀t > 1,

l
′′
(t) < 0, ∀t < 1.

This implies that the function t 7→ l
′
(t) in monotonically increasing for t > 1, and

monotonically decreasing for t < 1. Therefore,

l
′
(t) > l

′
(1) = 0, ∀t > 1,

l
′
(t) > l

′
(1) = 0, ∀t < 1.

This gives the second parts of (1.11) and (1.12). In addition, it implies that the func-
tion t 7→ l(t) is increasing on R++. Consequently,

l(t) > l(1) = 0, ∀t > 1,
l(t) < l(1) = 0, ∀t < 1.

This concludes the proof.

Lemma 1.2.5. ([8, Lemma 2.6]) We have

1
2

ψ
′′
(1)(t − 1)2 < ψ(t) <

1
2

ψ
′′
(t)(t − 1)2, ∀t < 1,

and
1
2

ψ
′′
(t)(t − 1)2 < ψ(t) <

1
2

ψ
′′
(1)(t − 1)2, ∀t > 1.

Proof. Since ψ is thrice continuous differentiable and ψ(1) = ψ
′
(1) = 0, the

Taylor expansion of ψ implies that

ψ(t) =
1
2

ψ
′′
(1)(t − 1)2 +

1
6

ψ
′′′
(ξ)(ξ − 1)3,

with t < ξ < 1 for t < 1 and 1 < ξ < t for t > 1. Using H1, we get

ψ(t) >
1
2

ψ
′′
(1)(t − 1)2, ∀t < 1,

ψ(t) <
1
2

ψ
′′
(1)(t − 1)2, ∀t > 1.

In addition, using the previous lemma, the other remaining inequalities are achieved.

Lemma 1.2.6. ([8, Lemma 3.1]) Let β, t1, t2 ∈ R++ such that β ≥ 1 and t1 ≤ 1 ≤ t2 with
ψ(t1) = ψ(t2). Then,

ψ(βt2) ≤ ψ(βt1).

The equality holds if and only if t1 = t2 = 1 or β = 1.

Proof. We define the function h as follows

h(β) = ψ(βt1)− ψ(βt2), ∀β ≥ 1.
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Differentiating h with respect to β, we get

h′(β) = t1ψ′(βt1)− t2ψ′(βt2).

Obviously h(1) = 0. Using KF2, it follows that

ψ′(βt1) ≤ ψ′(βt2) and ψ′(βt2) ≥ ψ′(1) = 0.

Therefore,
h′(β) ≤ (t1 − t2)ψ

′(βt2) ≤ 0,

i.e., h is decreasing on [1,+∞[. This proves the inequality since h(1) = 0.
For the second part of the lemma, the equality is obviously satisfied for β = 1.

On the other hand, for β > 1 and h(β) = 0, applying the mean value theorem on h
yields that there exists ξ ∈]1, β[ such that

h′(ξ) =
h(β)− h(1)

β − 1
.

Or h(β) = h(1) = 0. This implies that

h′(ξ) = 0,

and
t1ψ′(ξt1) = t2ψ′(ξt2).

Utilizing the strict monotonicity of ψ′ and the fact that t1 ≤ 1 ≤ t2, we get ξt1 = ξt2
and therefore t1 = t2 = 1.

Lemma 1.2.7. ([8, Lemma 6.2]) Let ϱ be the function defined by Definition 1.1.9. Then for
all w ∈ [0,+∞[, one has

√
1 + 2w ≤ ϱ (w) ≤ 1 +

√
2w.

Proof. Let w = ψ(t), for t ∈ [1,+∞[. We start with the right hand side inequality.
Using (iii) of Proposition 1.1.7 and (i) of Proposition 1.2.2, we have

w = ψ(t) =
∫ t

1

∫ ζ

1
ψ

′′
(ξ)dξdζ ≥

∫ t

1

∫ ζ

1
dξdζ =

1
2
(t − 1)2.

Therefore, substituting by t = ϱ(w) we get the first inequality.
For the second inequality, using the fact that ψb is decreasing on ]0,+∞[ and the

second item of Proposition 1.2.2 we obtain

w = ψ(t) ≤ t2 − 1
2

, ∀t ≥ 1. (1.13)

Hence putting t = ϱ(w), the desired inequality is achieved.

1.2.2 Properties of proximity functions and proximity measures

In this section, we provide upper bounds of the proximity function Ψ defined in
(1.10) and the proximity measure σ defined in (1.8) after the µ- update. These bounds
will intervene in the complexity analysis. In accordance with Algorithm 1, at the
beginning of an outer iteration, we have Ψ (v) ≤ τ before the update of µ with the
factor (1 − θ). After updating µ in an outer iteration, the value of Ψ(v) increases
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since v is divided by the factor
√

1 − θ. Then during the inner iteration, the value of
Ψ (v) decreases until it passes the threshold τ.

Theorem 1.2.8. ([8, Theorem 3.2]) For any v ∈ Rn
++ and β ≥ 1, we have

Ψ (βv) ≤ nψ

(
βϱ

(
Ψ (v)

n

))
.

Proof. For the first case β = 1, the equality is immediate since ϱ is the inverse of
the restriction of ψ to [1,+∞[.

As for the proof of the case β > 1, we first consider the constrained maximization
problem (MP) defined for any z ∈ R+ as follows

(MP)

{
max

v
Ψ(βv)

Ψ(v) = z.

Applying the Lagrange multiplier theorem [69] implies that solving (MP) is equiv-
alent to solving the following problem

βψ
′
(βvi) = λψ

′
(vi), i = 1 . . . n, (1.14)

with λ ∈ R called the Lagrange multiplier. Using KF1 and the fact that ψ
′

is strictly
increasing, we have for all β > 1,

ψ
′
(β) > ψ

′
(1) = 0,

which implies that
vi ̸= 1, i = 1 . . . n.

In addition, we assume that vi > 1 for all i. In fact, let (zi)1≤i≤n be a linear decompo-

sition of z, i.e., z =
n
∑

i=1
zi. Then, the equation Ψ(v) = z can be reduced to the system

of equations
ψ(vi) = zi, i = 1 . . . n.

There are two solutions for this equation: vi = v(1)i < 1 and vi = v(2)i > 1. Using

Lemma 1.2.6 for t1 = v(1)i and t2 = v(2)i , we have

ψ(βv(1)i ) ≤ ψ(βv(2)i ),

and since we are maximizing Ψ(βv), we may assume without lost of generality that

vi = v(2)i > 1, i = 1 . . . n.

A direct consequence from this assumption and equation (1.14) is

ψ
′
(vi) > 0 and ψ

′
(βvi) > 0,

hence λ > 0. Let us define for all β > 1 a new univariate function h as follows

h(t) =
ψ

′
(t)

ψ′(βt)
, ∀t ≥ 1.
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Differentiating h, we get

h
′
(t) =

ψ
′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt)

(ψ′(βt))2 > 0, ∀t > 1.

The strict positivity of h
′

is due to Lemma 1.2.3. Thus, h is strictly monotonically
increasing. Since we have from equation (1.14)

h(vi) =
β

λ
, i = 1 . . . n,

it follows that vi are all mutually equal. Let vi = t > 1 for all i = 1 . . . n. From the
constraint of problem (MP) and the definition of Ψ, we may conclude that

nψ(t) = z.

As a consequence, Ψ attains its maximal value at v with vi = t = ϱ( z
n ). The

maximal value that Ψ(βv) can reach is then given by

Ψ(βte) = nψ(βt) = nψ
(

βϱ
( z

n

))
= nψ

(
βϱ

(
Ψ(v)

n

))
.

Corollary 1.2.9. Let v+ =
v√

1 − θ
with 0 ≤ θ < 1. If we assume that Ψ (v) ≤ τ just

before the µ-update to (1 − θ)µ, we have the following upper bound

Ψ (v+) ≤ nψ

 ϱ
(τ

n

)
√

1 − θ

 .

Proof. Applying Theorem 1.2.8 with β = 1√
1−θ

, and using the increasing of the
functions ϱ and ψ on [0,+∞[ and [1,+∞[ respectively, we get the desired inequality.

As a consequence, we have the following lemmas.

Lemma 1.2.10. ([30]) Let v+ =
v√

1 − θ
and 0 ≤ θ < 1. If we assume that Ψ (v) ≤ τ just

before the µ-update to (1 − θ)µ, we have the following upper bound

Ψ(v+) ≤
θn + 2τ + 2

√
2τn

2(1 − θ)
:= Ψ0.

Ψ0 is an upper bound for Ψ(v+) during the process of the algorithm.

Proof. From (1.13), we have

ψ(t) ≤ t2 − 1
2

, ∀t ≥ 1.
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Hence putting t =
ϱ( τ

n )√
1 − θ

≥ 1 ( from the definition of ϱ), and using Corollary

1.2.9 we get

Ψ (v+) ≤
n
2

(
ϱ
(

τ
n

)2

1 − θ
− 1

)
.

Thanks to Lemma 1.2.7, we obtain

Ψ (v+) ≤
n
2


(

1 +
√

2τ
n

)2

1 − θ
− 1


=

θn + 2τ + 2
√

2τn
2(1 − θ)

.

Lemma 1.2.11. ([8, Lemma 6.3]) Let v+ =
v√

1 − θ
with 0 ≤ θ < 1. If we assume that

Ψ (v) ≤ τ just before the µ−update to (1 − θ)µ, we have the following upper bound

Ψ (v+) ≤
ψ′′(1)

2

(
θ
√

n +
√

2τ
)2

1 − θ
.

Proof. Recall that from Corollary 1.2.9, Ψ(v+) is bounded by

Ψ (v+) ≤ nψ

 ϱ
(τ

n

)
√

1 − θ

 .

Hence, using Lemma 1.2.7 for w = τ
n we have

Ψ (v+) ≤ nψ

1 +
√

2τ
n√

1 − θ

 .

But, from Lemma 1.2.5, we have

ψ(t) ≤ 1
2

ψ
′′
(1)(t − 1)2, ∀t ≥ 1.
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Using this inequality for t =
1 +

√
2τ
n√

1 − θ
≥ 1, we get

Ψ (v+) ≤
nψ

′′
(1)

2

1 +
√

2τ
n√

1 − θ
− 1

2

≤ nψ
′′
(1)

2

 θ +
√

2τ
n√

1 − θ

2

=
ψ′′(1)

2

(
θ
√

n +
√

2τ
)2

1 − θ
,

where the last inequality is due to the fact that

1 −
√

1 − θ =
θ

1 +
√

1 − θ
≤ θ.

In the following lemma, we give a lower bound of the proximity measure σ(v)
defined by (1.8) in terms of the proximity function Ψ (v) defined by (1.10).

Lemma 1.2.12. For any v > 0, we have

σ(v) ≥
√

Ψ (v)
2

.

Proof. By item (iii) of Proposition 1.1.7, we can write

ψ(t) =
∫ t

1

∫ ξ

1
ψ

′′
(z)dzdξ, ∀t > 0.

Using the first item of Proposition 1.2.2, it follows that

ψ(t) ≤
∫ t

1

∫ ξ

1
ψ

′′
(ξ)ψ

′′
(z)dzdξ

=
∫ t

1
ψ

′′
(ξ)ψ

′
(ξ)dξ

=
1
2

ψ
′
(t)2, (1.15)

where the equalities are due to the fact that ψ
′
(1) = 0. Therefore, using (1.10), (1.15)

and (1.8), we obtain

Ψ(v) =
n

∑
i=1

ψ (vi) ≤
n

∑
i=1

1
2

ψ′ (vi)
2

=
1
2
∥∇Ψ(v)∥2

= 2σ(v)2.
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Remark 1.2.13. Through this chapter, we assume that τ ≥ 1. Using Lemma 1.2.12 and the
assumption that Ψ(v) ≥ τ, we have

σ(v) ≥
√

1
2

.

1.2.3 Computation of the displacement step

The purpose of this subsection is to compute a default step size α such that (x+, y+, s+)
defined in (1.4) are strictly feasible and the proximity function decreases sufficiently.
Due to (1.5) for fixed µ, we may write

x+ =
x
v
(v + αdx), s+ =

s
v
(v + αds).

This leads to

v+ =

√
x+s+

µ
=
√
(v + αdx)(v + αds).

Now, we define the difference of proximities between a new iterate and a current
iterate for a fixed µ as below

f (α) = Ψ (v+)− Ψ (v) .

Recall that the step size α is chosen to satisfy

v + αdx > 0 and v + αds > 0.

Therefore using the e-convexity property of ψ (hypothesis H3), we get by Lemma
A.0.9

Ψ (v+) ≤
1
2
(Ψ(v + αdx) + Ψ(v + αds)) ,

Thus, f (α) ≤ f1(α) where

f1 (α) =
1
2
(Ψ(v + αdx) + Ψ(v + αds))− Ψ (v) . (1.16)

Differentiating the function f1 with respect to α, we get

f ′1 (α) =
1
2

n

∑
i=1

(
ψ′(vi + αdxi)dxi + ψ′(vi + αdsi)dsi

)
.

and

f ′′1 (α) =
1
2

n

∑
i=1

(
ψ′′(vi + αdxi)d

2
xi
+ ψ′′(vi + αdsi)d

2
si

)
. (1.17)

Hence, using (1.8) and the last equation of (1.9) we obtain

f ′1 (0) = −1
2
∇Ψ(v)T∇Ψ(v) = −2σ(v)2.

To simplify the notation, we set σ(v) := σ, and v1 = min(v).
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Lemma 1.2.14. ([8, Lemma 4.1]) Let f1(α) be as defined in (1.16). Then, we have

f ′′1 (α) ≤ 2σ2ψ′′(v1 − 2ασ).

Proof. Recall that dx and ds are orthogonal and dx + ds = −∇Ψ(v). Moreover,
using (1.8) one obtains

∥dx + ds∥2 = ∥dx∥2 + ∥ds∥2 = 4σ2.

This implies that
∥dx∥ ≤ 2σ and ∥ds∥ ≤ 2σ.

Consequently, for all i ∈ {1, . . . , n} one has

vi + αdxi ≥ v1 − 2ασ and vi + αdsi ≥ v1 − 2ασ. (1.18)

In addition, using H1, we can easily see that ψ
′′

is monotonically decreasing on R++.
Hence , using (1.17) and (1.18), it follows that

f ′′1 (α) ≤
1
2

ψ′′(v1 − 2ασ)
n

∑
i=1

(
d2

xi
+ d2

si

)
=

1
2

ψ′′(v1 − 2ασ)∥dx + ds∥2 = 2σ2ψ′′(v1 − 2ασ).

Lemma 1.2.15. ([8, Lemma 4.2]) If the step size α satisfies the inequality

ψ′ (v1)− ψ′ (v1 − 2ασ) ≤ 2σ, (1.19)

then
f ′1(α) ≤ 0.

Proof. Since f
′
1 is continuous and differentiable, we can rewrite f

′
1(α) as follows

f
′
1(α) = f

′
1(0) +

∫ α

0
f
′′
1 (ξ)dξ.

Therefore, using Lemma 1.2.14 and the fact that f
′
1(0) = −2σ2, we obtain

f
′
1(α) ≤ −2σ2 + 2σ2

∫ α

0
ψ

′′
(v1 − 2σξ)dξ

= −2σ2 − σ
∫ α

0
ψ

′′
(v1 − 2σξ)d(v1 − 2σξ)

= −2σ2 − σ
(

ψ
′
(v1 − 2σα)− ψ

′
(v1)

)
= σ

(
−ψ

′
(v1 − 2σα) + ψ

′
(v1)− 2σ

)
.

As a result, the inequality
f
′
1(α) ≤ 0,

will surely holds if α verifies

ψ
′
(v1)− ψ

′
(v1 − 2σα) ≤ 2σ.
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Lemma 1.2.16. ([8, Lemma 4.3]) Let ρ be the function defined in Definition 1.1.9. Then the
largest possible value of the step size α∗ satisfying (1.19) is given by

α∗ =
ρ (σ)− ρ (2σ)

2σ
.

Proof.
We would like to find the largest value of α such that inequality (1.19) is satisfied.
Differentiating the left hand side of (1.19) with respect to v1, and using the monoton-
ically decreasing behavior of ψ′′, we obtain

ψ′′ (v1)− ψ′′ (v1 − 2ασ) ≤ 0.

Thus, by fixing the value of σ, the smaller v1 is, the smaller α will be. In addition, by
the Definition of σ, we have

σ(v) =
1
2
∥∇Ψ(v)∥ ≥ 1

2
|ψ′

(v1)| ≥ −1
2

ψ
′
(v1)

The equality occurs if and only if v1 is the sole coordinate in v that deviates from 1,
and v1 < 1 (in which case ψ

′
(v1) < 0). Therefore, the worst-case scenario for the

step size α happens when v1 is taken such that

−1
2

ψ
′
(v1) = σ. (1.20)

In addition, differentiating the left hand side of inequality (1.19) with respect to α,
we get 2σψ

′′
(v1 − 2σα), which is obviously positive since ψ is convex. This means

that the function α 7→ ψ′ (v1) − ψ′ (v1 − 2ασ) is monotonically increasing. Thus,
the largest potential value of the step size α such that (1.19) is verified satisfies the
following equality

−1
2

ψ
′
(v1 − 2σα) = 2σ. (1.21)

Moreover, using the Definition 1.1.9, equalities (1.20) and (1.21) are rewritten in the
following forms

v1 = ρ(σ)

and
v1 − 2σα = ρ(2σ).

Hence, we may conclude that

α∗ =
ρ (σ)− ρ (2σ)

2σ
.

Lemma 1.2.17. ([8, Lemma 4.4]) Let ρ be the function defined in Definition 1.1.9 and α∗ be
as defined in Lemma 1.2.16. Then, we have

α∗ ≥ 1
ψ′′ (ρ (2σ))

.



1.2. Analysis of the primal-dual interior-point algorithm for a class of kernel
functions

29

Proof.
Since ρ is the inverse of the restriction of − 1

2 ψ
′

to ]0, 1], we can write

−ψ′(ρ(σ)) = 2σ. (1.22)

Differentiating the equality (1.22) with respect to σ, we get

−ψ′′(ρ(σ))ρ′(σ) = 2,

and consequently

ρ′(σ) =
−2

ψ′′(ρ(σ))
. (1.23)

Furthermore, from Lemma 1.2.16 we have

α∗ =
ρ (σ)− ρ (2σ)

2σ

=
1

2σ

∫ σ

2σ
ρ
′
(ξ)dξ

=
1
σ

∫ 2σ

σ

1
ψ′′(ρ(ξ))

dξ. (1.24)

The last equality is due to (1.23). Therefore, to obtain a lower bound of α∗, we need
to change the argument of the integral in (1.24) with its minimal value. So we need
to find the maximum of the function ξ → ψ′′(ρ(ξ)) for σ ≤ ξ ≤ 2σ. Recall that
since ψ satisfies H1, ψ′′ is monotonically decreasing on R++. This implies that for
σ ≤ ξ ≤ 2σ, the function ξ → ψ′′(ρ(ξ)) is maximal when the function ξ → ρ(ξ) is
minimal. Taking into account that ρ is monotonically decreasing, this happens when
ξ = 2σ. Hence, from (1.24) it follows that

α∗ =
1
σ

∫ 2σ

σ

1
ψ′′(ρ(ξ))

dξ

≥ 1
σ

1
ψ′′(ρ(2σ))

∫ 2σ

σ
dξ

=
1

ψ′′(ρ(2σ))
.

Theorem 1.2.18. ([8, Theorem 4.6]) Let us set ᾱ =
1

ψ′′ (ρ (2σ))
, as the default step size.

Then

f (ᾱ) ≤ −σ2ᾱ = − σ2

ψ′′ (ρ (2σ))
.

Proof. Let us define the univariate function g as follows

g(α) = −2ασ2 + ασψ′(v1) +
1
2

(
ψ(v1 − 2ασ)− ψ(v1)

)
.

Differentiating g twice we get

g′(α) = −2σ2 − σ

(
ψ′(v1 − 2ασ)− ψ′(v1)

)
g′′(α) = 2σ2ψ′′(v1 − 2ασ).
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We can easily see that

g(0) = f1(0) = 0, g′(0) = f ′1(0) = −2σ2 < 0.

On the other hand, from Lemma 1.2.14 we have

f
′′
1 (α) ≤ g

′′
(α).

Therefore, f
′
1(α) ≤ g

′
(α) and f1(α) ≤ g(α). Taking α ∈ [0, α∗] with α∗ defined in

Lemma 1.2.16, we get

g′(α) = −2σ2 − σ

(
ψ′(v1 − 2ασ)− ψ′(v1)

)
≤ 0.

Due to the increase of g
′′

in α, using Lemma A.0.11 we obtain

f (α) ≤ f1(α) ≤ g(α) ≤ 1
2

αg
′
(0) = −ασ2.

The proof is then completed by replacing α by ᾱ.

1.3 A primal-dual interior-point algorithm based on a kernel
function with an exponential-hyperbolic barrier term

In this section, we study a path-following IPM for solving LO problems based on the
following new KF

ψ (t) =
t2 − 1

2
+ sinh2(1)

(
ecoth(t)−coth(1) − 1

)
, ∀t > 0. (1.25)

This KF differs from other KFs in having an exponential-hyperbolic barrier term
that belongs to the hyperbolic type, recently introduced by I. Touil and W. Chik-
ouche [100, 98, 99]. We prove that the new KF belongs to the class defined in Section
1.2.1 and we estimate the decrease behaviour of the barrier function induced by the
new KF. After that, we derive the iteration bounds of the new IPA for both large-
and small-update methods. We back up the obtained theoretical results with some
preliminary numerical tests which show that our algorithm outperformed other al-
gorithms with better theoretical convergence complexity. The results of this section
have been the subject of a publication [39].

1.3.1 The new kernel function and its properties

For conveniency, we give the first three derivatives of ψ for all t > 0

ψ′(t) = t − sinh2(1)
sinh2(t)

ecoth(t)−coth(1), (1.26)

ψ′′(t) =1 + sinh2(1)ecoth(t)−coth(1)

(
2

coth(t)
sinh2(t)

+
1

sinh4(t)

)
≥ 1, (1.27)
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and

ψ′′′(t) = − sinh2(1)ecoth(t)−coth(1)

(
4

coth2(t)
sinh2(t)

+
6 coth(t) + 2

sinh4(t)
+

1
sinh6(t)

)
< 0.

FIGURE 1.3: Graphs of ψ, ψ′ ψ′′ and ψ′′′.

We clearly see that
ψ(1) = 0 and ψ′(1) = 0.

Hence, ψ verifies both conditions KF1 and KF2. Moreover, since

lim
t→0+

coth(t) = +∞ and lim
t→+∞

coth(t) = 1,

we get
lim

t→0+
ψ(t) = lim

t→+∞
ψ(t) = +∞.

This means that ψ is a KF satisfying H1.
Furthermore, we can write

ψ(t) =
t2 − 1

2
+ ψb(t),

with
ψb(t) = sinh2(1)

(
ecoth(t)−coth(1) − 1

)
.

From (1.26) and (1.27), it follows that

ψ′
b(t) < 0 and ψ′′

b (t) > 0, ∀t > 0.

The following lemma provides an important feature of the hyperbolic cotangent
function.

Lemma 1.3.1. One has for all t > 0

(i)
t coth(t)− 1 > 0, (1.28)
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(ii)
2t coth(t)− 1 > 0. (1.29)

Proof. For the first item, let’s define the function l as follows:

l(t) = t coth(t)− 1, ∀t > 0.

Deriving l, we obtain

l′(t) = coth(t)− t
sinh2(t)

=
cosh(t) sinh(t)− t

sinh2(t)
.

Recall that
sinh(2t) = 2 cosh(t) sinh(t), ∀t ∈ R.

Using this property of hyperbolic functions, we can rewrite l′ as follows:

l′(t) =
sinh(2t)− 2t

2 sinh2(t)
.

Moreover, the Taylor expansion of the hyperbolic sine function implies that

sinh(t) ≥ t, ∀t ≥ 0.

It follows that the function l is strictly increasing on the interval ]0,+∞[. Since

lim
t→0+

l(t) = 0 and lim
t→+∞

l(t) = +∞,

we conclude that t coth(t)− 1 > 0, ∀t > 0. The second item is a direct consequence
of the first item.

The next lemma reveals that ψ defined in (1.25) satisfies conditions H2 and H3.

Lemma 1.3.2. Let ψ be as defined in (1.25). Then,

(i) tψ′′(t)− ψ′(t) > 0, ∀t > 0.

(ii) tψ′′(t) + ψ′(t) > 0, ∀t > 0.

Proof. Using (1.26) and (1.27), we have for all t > 0

tψ′′(t)− ψ′(t) =
sinh2(1)
sinh2(t)

ecoth(t)−coth(1)

(
2t coth(t) + 1 +

t
sinh2(t)

)
> 0,

and

tψ′′(t) + ψ′(t) = 2t +
sinh2(1)
sinh2(t)

ecoth(t)−coth(1)

(
2t coth(t)− 1 +

t
sinh2(t)

)
> 0,

by taking into account (1.29) of Lemma 1.3.1.
As a result ψ belongs to the class of KFs introduced in Section 1.2. Thus, we can

take advantage of all the results presented there without proofs.

Let ϱ and ρ be as defined in Definition 1.1.9. We have the following lemma.
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Lemma 1.3.3. For all (z, t) ∈ [0,+∞[×]0, 1] such that z = − 1
2 ψ′ (t) , one has

coth(t) ≤ log
(

ecoth(1)(2z + 1)
)

.

Proof. Let z ≥ 0 and 0 < t ≤ 1 such that z = − 1
2 ψ′ (t) , then ρ (z) = t.

Using (1.26), we have

2z = −ψ′(t)

= −t +
sinh2(1)
sinh2(t)

ecoth(t)−coth(1).

Since sinh is a monotonically increasing function, we obtain

ecoth(t)−coth(1) ≤ (2z + 1),

which implies that
coth(t) ≤ log(ecoth(1)(2z + 1)).

1.3.2 Decrease of the proximity during a (damped) Newton step

We first study the effect of updating the barrier parameter µ on the value of the
proximity function Ψ(v), defined in (1.10) corresponding to ψ defined in (1.25). Since

ψ
′′
(1) =1 + 2 coth(1) +

1
sinh2(1)

≤ 2(3 coth(1) + 1),

we deduce directly from Lemma 1.2.11 the following corollary.

Corollary 1.3.4. Let θ be such that 0 < θ < 1. If Ψ(v) ≤ τ, then

Ψ (v+) ≤
3 coth(1) + 1

(1 − θ)

(
θ
√

n +
√

2τ
)2

:= Ψ0.

Ψ0 is an upper bound for Ψ (v+) during the process of the algorithm.

Now, we would like to compute a default step size ᾱ such that (x+, y+, s+) de-
fined in (1.4) are strictly feasible and the proximity function Ψ decreases sufficiently.
Recall that during an inner iteration the parameter µ is fixed and from (1.5) we have

x+ =
x
v
(v + ᾱdx), s+ =

s
v
(v + ᾱds), v+ =

√
x+s+

µ
.

We provide an upper bound for the decreasing value of the proximity function
in an inner iteration by the next theorem.

Theorem 1.3.5. If ᾱ is the default step size, then

Ψ(v+)− Ψ(v) ≤ −
√

Ψ(v)

80 log2
(

ecoth(1)(
√

Ψ(v) + 1)
) . (1.30)
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Proof. From (1.27) , we have

ψ′′(t) =1 +
(
t − ψ′(t)

) (
2 coth(t) +

1
sinh2(t)

)
≤ 1 + 3

(
1 − ψ′(t)

)
coth2(t), ∀t > 0.

Putting t = ρ (2σ) , we get

ψ′′ (ρ (2σ)) ≤ 1 + 3 (1 + 4σ) coth2 (ρ (2σ)) .

Thus, applying Lemma 1.3.3 for t = ρ(2σ) and z = 2σ we get

ψ′′ (ρ (2σ)) ≤ 1 + 3 (1 + 4σ) log2
(

ecoth(1)(4σ + 1)
)

≤ 4(1 + 4σ) log2
(

ecoth(1)(4σ + 1)
)

≤ 4(σ + 4σ) log2
(

ecoth(1)(4σ + 1)
)

= 20σ log2
(

ecoth(1)(4σ + 1)
)

,

where the second inequality is obtained since

(1 + 4σ) log2
(

ecoth(1)(4σ + 1)
)
≥ log2

(
ecoth(1)

)
> 1,

while the last one is obtained using Remark 1.2.13. Hence, from Theorem 1.2.18 it
follows that

Ψ(v+)− Ψ(v) = f (ᾱ) ≤ − σ

20 log2 (ecoth(1)(4σ + 1)
) .

Let’s define the function

t 7→ g(t) := − t
log2 (ecoth(1)(4t + 1)

) , t > 0.

Differentiating g, we get

g
′
(t) = − (4t + 1) log(ecoth(1)(4t + 1))− 8t

(4t + 1) log3(ecoth(1)(4t + 1))
.

To study the sign of g
′
(t), let’s define another function

t 7→ h(t) := (4t + 1) log(ecoth(1)(4t + 1))− 8t, t ≥ 0.

Differentiating h, we have

h
′
(t) =4 log(ecoth(1)(4t + 1))− 4.

= 4 log(4t + 1) + 4(coth(1)− 1).

Since coth(1) > 1, h
′
is strictly positive on R+ which implies that h is monotonically

increasing. Hence, for all t > 0

h(t) > h(0) = coth(1) > 0.
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It follows that g
′

is is strictly negative on ]0,+∞[ and therefore g is monotonically

decreasing. Thanks to Lemma 1.2.12, we have σ ≥
√

Ψ(v)
4

, which gives

Ψ(v+)− Ψ(v) ≤ −
√

Ψ(v)

80 log2
(

ecoth(1)(
√

Ψ(v) + 1)
) .

1.3.3 Iteration complexity

Now, we compute how many inner iterations are required to return to the situation
where Ψ(v) ≤ τ after µ-update. Let us define the value of Ψ(v) after µ-update as
Ψ0, and the subsequent values in the same outer iteration as Ψi, i = 1, . . . , K, where
K stands for the total number of inner iterations in the outer iteration. The decrease
on each inner iteration is given by (1.30), that is,

Ψi+1 ≤ Ψi −
1

80 log2 (ecoth(1)(
√

Ψ0 + 1)
)Ψi

1
2 , i = 0, 1 . . . , K − 1.

A direct application of Lemma A.0.13 for tk = Ψk, β = 1
80 log2(ecoth(1)(

√
Ψ0+1))

and

γ =
1
2

, produces the following lemma.

Lemma 1.3.6. One has

K ≤ 160Ψ
1
2
0 log2(ecoth(1)(

√
Ψ0 + 1)).

We recall the following important result.

Lemma 1.3.7. ([92, Lemma II.17]) If the barrier parameter µ has an initial value µ0 and is
repeatedly multiplied by 1 − θ with 0 < θ < 1, then after at most

1
θ

log
n
ϵ

,

iterations we have
nµ ≤ ϵ.

Corollary 1.3.8. An upper bound for the total number of iterations is obtained by multiply-
ing the upper bound K by the number of barrier parameter updates, which is bounded above

by
1
θ

log
n
ϵ

.

Using Lemma 1.3.6, Corollary 1.3.8 and the fact that√
Ψ0 ≤ Ψ0,

we arrive at the final result of this subsection which summarizes the complexity
bound.
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Theorem 1.3.9. Let Ψ0 be an upper bound for Ψ(v+) and τ ≥ 1. Then, the total number of
iterations to obtain an approximate solution with nµ ≤ ϵ is bounded by

O
(

log2(Ψ0)Ψ
1
2
0

log n
ϵ

θ

)
.

For small-update methods with τ = O (1) and θ = Θ
(

1√
n

)
, Corollary 1.3.4

implies that Ψ0 = O (1) . Hence, the complexity of the primal-dual IPA for linear
programming problem based on the new KF is O

(√
n log n

ϵ

)
iterations complexity.

As for large-update methods i.e., τ = O (n) and θ = Θ (1) , Corollary 1.3.4 im-
plies that Ψ0 = O (n) . Thus, we obtain O

(√
n log2 n log n

ϵ

)
iterations complexity.

1.3.4 Numerical tests

In this section, we carried out through numerical experiments to show the compu-
tational performance of the proposed algorithm comparing it with other algorithms
based on the KFs provided in Table 1.1. Our experiments are implemented in MAT-
LAB R2012b using a Supermicro dual-2.80 GHz Intel Core i5 server with 4.00 Go
RAM. We have taken ϵ = 10−8, τ = n, and θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}.

TABLE 1.1: Considered kernel functions.

Kernel functions Complexity Ref.
ψc(t) = t2−1

2 − log t O
(
n log n

ϵ

)
[92]

ψ1(t) = t2−1
2 + ep( 1

t −1)−1
p , p = 2 O

(√
n log2 n log n

ϵ

)
[3]

ψ2(t) = t2−1
2 −

∫ t
1 ep( 1

x −1)dx, p = log(1 + n) O
(√

n log n log n
ϵ

)
[10]

ψ3(t) = t2−1
2 − log t + 1

8 tan2(π 1−t
4t+2 ) O

(
n

2
3 log n

ϵ

)
[88]

ψ4(t) =
1+2 coth(1)
2 sinh2(1)

(t2 − 1) + coth2(t)− coth2(1)− log t O
(

n
2
3 log n

ϵ

)
[100]

ψnew(t) = t2−1
2 + sinh2(1)

(
ecoth(t)−coth(1) − 1

)
O
(√

n log2 n log n
ϵ

)
New

To analyze the computational performance fairly, we choose a practical step size α
as in [54] i.e., α = min(αx, αs), with

αx = min
i=1,...,n

− xi

∆xi
if ∆xi < 0,

1 elsewhere,
and αs = min

i=1,...,n

− si

∆si
if ∆si < 0,

1 elsewhere.

This choice of α guarantees the strict positivity of the new point. Moreover, we
increase the step size by a fixed factor 0 < β < 1 (in our case we choose β = 0.9).
We conducted comparative numerical tests between the KFs provided in Table 1.1
on four fixed size test problems and a variable size test problem taken from Table B.2
and Table B.3 respectively. The summary of results is given in the following table.
From Table 1.2, it becomes clear that smaller values of the parameter θ influence
the iteration count negatively. Thus, for the variable size test problem EV3 from
Table B.3, we only choose θ ∈ {0.9, 0.99} for seven different sizes n = 2m where
m ∈ {5, 25, 50, 100, 200, 400, 1000}.

For each example, we used bold font to highlight the best, i.e., the smallest, iter-
ation number.
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TABLE 1.2: Number of inner iterations for fixed size examples.

Examples θ ψc ψ1 ψ2 ψ3 ψ4 ψnew

EF1

0.1
0.3
0.5
0.7
0.9

188
56
29
17
11

188
56
29
17
13

188
56
29
17
11

188
56
29
17
11

200
70
44
23
14

188
56
29
17
11

EF2

0.1
0.3
0.5
0.7
0.9

191
57
29
17
11

191
57
29
17
9

191
57
29
17
10

191
57
29
17
11

215
75
39
21
9

191
57
29
17
9

EF3

0.1
0.3
0.5
0.7
0.9

192
57
30
17
33

192
60
33
20
21

192
57
30
20
19

192
57
30
17
39

204
66
33
20
25

192
57
30
18
19

EF4

0.1
0.3
0.5
0.7
0.9

196
58
31
28
24

196
58
30
24
16

196
58
30
24
17

196
58
31
22
23

212
78
42
24
20

196
58
30
24
23

TABLE 1.3: Number of inner iterations for Example EV3

θ m ψc ψ1 ψ2 ψ3 ψ4 ψnew

θ = 0.9

5
25
50
100
200
400
1000

11
12
12
13
13
13
15

9
10
10
11
11
11
12

10
10
10
11
11
11
12

11
12
12
13
13
13
15

9
10
10
11
11
11
12

9
10
10
11
11
11
12

θ = 0.99

5
25
50
100
200
400
1000

11
11
13
13
13
13
13

10
10
12
12
12
12
12

11
10
12
12
12
12
12

11
11
13
13
13
13
13

10
10
12
12
12
12
12

10
10
12
12
12
12
12
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Although, three out of five considered KFs in Table 1.1 have better theoretical
convergence complexity, numerical results show that by using our new KF, with
exponential-hyperbolic barrier term, the best iteration complexity was achieved in
91% of the realized experiments.

1.4 Complexity of a primal-dual interior-point algorithm based
on a class of hyperbolic-logarithmic kernel functions

In this section, we first study a primal-dual IPA for solving LO problems, based on
the new KF with hyperbolic-logarithmic barrier term

ψ (t) =
t2 − 1

2
+ tanh2(1)

(
coth(t)− log t

)
− tanh(1), ∀t > 0. (1.31)

To improve the iteration bound, we generalize the barrier term of ψ by applying a
positive parameter p to obtain the following parametric KF

ψp(t) =
t2 − 1

2
+

sinh2(1)
sinh2(1) + p cothp−1(1)

(
cothp(t)− log t − cothp(1)

)
, p ≥ 2.

(1.32)
The latter contains the first hyperbolic-logarithmic KF, proposed recently by Touil
and Chikouche [100], as a special case up to a multiplicative constant and improves
significantly its theoretical complexity. In fact, the complexity analysis proves that
the new method enjoys the currently best iterations bounds for both large- and
small-update methods namely, O(

√
n log n log n

ϵ ) and O(
√

n log n
ϵ ). To illustrate the

effectiveness of the proposed KFs, we conducted numerical experiments comparing
with all existing KFs with log t in their barrier term. The results of this section were
the subject of a published paper [42].

1.4.1 The analysis of the interior-point method based on the non-parametric
kernel function

Some technical results

In the analysis of the algorithm based on ψ defined in (1.31), we need its first three
derivatives with respect to t which are given for all t > 0 by

ψ′(t) = t − tanh2(1)
(

1
sinh2(t)

+
1
t

)
, (1.33)

ψ′′(t) = 1 + tanh2(1)
(

2
coth(t)
sinh2(t)

+
1
t2

)
≥ 1, (1.34)

and

ψ′′′(t) = − tanh2(1)
(

2
sinh4(t)

+ 4
coth2(t)
sinh2(t)

+
2
t3

)
< 0.

Clearly, ψ′ (1) = ψ (1) = 0. Moreover, since

lim
t→0+

coth(t) = +∞ and lim
t→+∞

coth(t) = 1,
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we get
lim

t→0+
ψ(t) = lim

t→+∞
ψ(t) = +∞,

which imply that ψ is a KF satisfying H1.
Furthermore, we can write

ψ(t) =
t2 − 1

2
+ ψb(t),

with
ψb(t) = tanh2(1)

(
coth(t)− log t

)
− tanh(1).

We can easily see from (1.33) and (1.34) that

ψ′
b(t) < 0 and ψ′′

b (t) > 0, ∀t > 0.

Lemma 1.4.1. Let ψ be as defined in (1.31). Then,

(i) tψ′′(t)− ψ′(t) > 0, ∀t > 0.

(ii) tψ′′(t) + ψ′(t) > 0, ∀t > 0.

Proof. From (1.33) and (1.34), we have

tψ′′(t)− ψ′(t) = tanh2(1)

(
2t coth(t) + 1

sinh2(t)
+

2
t

)
> 0,

and

tψ′′(t) + ψ′(t) = 2t + tanh2(1)

(
2t coth(t)− 1

sinh2(t)

)
> 0,

by taking into account (1.29) of Lemma 1.3.1.

The previous lemma reveals that ψ satisfies conditions H2 and H3. As a conse-
quence, ψ belongs to the class of KFs introduced in Section 1.2.
Let ρ and ϱ be the functions defined in Definition 1.1.9. We give an implicit lower
bound for ρ in the following lemma.

Lemma 1.4.2. For all (z, t) ∈ [0,+∞[×]0, 1] such that z = − 1
2 ψ′ (t) , one has

coth(t) ≤ coth(1) (2z + 2)
1
2 .

Proof. Let z ≥ 0 and t ∈ ]0, 1] such that z = − 1
2 ψ′ (t) , then ρ (z) = t.

Since
1

sinh2(t)
= coth2(t)− 1, using (1.33), we have

2z = −ψ′(t)

= −t + tanh2(1)
(

coth2(t)− 1 +
1
t

)
,

which implies that

coth2(t) = coth2(1)(2z + t) + 1 − 1
t

≤ coth2(1)(2z + 2).
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Iteration complexity

Before updating µ in the generic IPA, we have Ψ (v) ≤ τ. After updating µ in an
outer iteration, the vector v is divided by the factor (1 − θ) , which generally leads
to an increase of the value of Ψ(v). Thus, during the inner iterations, the value of
Ψ (v) decreases until it passes the threshold τ. We proceed by studying the effect of
updating the barrier parameter µ on the value of Ψ(v).

Corollary 1.4.3. Let θ be such that 0 < θ < 1. If Ψ(v) ≤ τ, then

Ψ (v+) ≤
3 coth(1) + 1

(1 − θ)

(
θ
√

n +
√

2τ
)2

:= Ψ0.

Ψ0 is an upper bound for Ψ (v+) during the process of the algorithm.

Proof. Recall from Lemma 1.2.11 that

Ψ (v+) ≤
ψ′′(1)

2

(
θ
√

n +
√

2τ
)2

1 − θ
.

In addition, using (1.34)

ψ′′(1) = 1 + tanh2(1)
(

2
coth(1)
sinh2(1)

+ 1
)
≤ 1 +

(
2

coth(1)
sinh2(1)

+ 1
)

≤ 6 coth(1) + 2.

Therefore the desired inequality follows

Now, we would like to have a default step size α such that (x+, y+, s+) defined
in Algorithm 1 are strictly feasible and the proximity function (1.10) decreases suf-
ficiently. We recall that during an inner iteration the parameter µ is fixed and from
(1.5) we have

x+ =
x
v
(v + ᾱdx), s+ =

s
v
(v + ᾱds), v+ =

√
x+s+

µ
.

We then present an upper bound for the decreasing value of the proximity in the
inner iteration in the following theorem:

Theorem 1.4.4. If ᾱ is the default step size and σ ≥ 1, then we have

Ψ(v+)− Ψ(v) ≤ −Ψ(v)
1
4

273
. (1.35)

Proof. Using (1.34) and (1.29), we have for all t > 0

ψ′′(t) ≤1 + tanh2(1)
(

2 coth(t)(coth2(t)− 1) + 4 coth2(t)
)

≤ 1 + tanh2(1)
(

2 coth3(t) + 4 coth2(t)
)

≤ 1 + 6 tanh2(1) coth3(t).
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Using Lemma 1.4.2 for t = ρ(2σ) < 1 and z = 2σ > 0, we obtain

ψ′′ (ρ (2σ)) ≤
(

1 + 6 tanh2(1)
)

coth3(ρ (2σ))

≤ coth3(1)
(

1 + 6 tanh2(1)
)
(4σ + 2)

3
2

≤ coth3(1)
(

1 + 6 tanh2(1)
)
(4σ + 2(2σ))

3
2 .

Moreover, from Theorem 1.2.18 we have

Ψ(v+)− Ψ(v) ≤ − σ2

ψ′′ (ρ (2σ))
.

This implies that

Ψ(v+)− Ψ(v) ≤ − σ2

coth3(1)
(

1 + 6 tanh2(1)
)
(8σ)

3
2

= −
√

σ

8
3
2 coth3(1)

(
1 + 6 tanh2(1)

) .

Using Lemma 1.2.12, we get

Ψ(v+)− Ψ(v) ≤ − Ψ(v)
1
4

2
1
4 8

3
2 coth3(1)

(
1 + 6 tanh2(1)

)
≤ −Ψ(v)

1
4

273
.

In the rest of this subsection, we need to compute how many inner iterations are
required to return to the situation where Ψ(v) ≤ τ after µ-update. Let us define
the value of Ψ(v) after µ-update as Ψ0, and the subsequent values in the same outer
iteration as Ψk, k = 1, ..., K, where K stands for the total number of inner iterations
in the outer iteration. By the definition of f (α) and according to (1.35) , for k =
1, ..., K − 1, we obtain

Ψk+1 ≤ Ψk −
Ψ

1
4
k

273
.

As a consequence of Lemma A.0.13, by taking tk = Ψk, β =
1

273
and γ =

3
4

, we
get the following lemma.

Lemma 1.4.5. Let K be the total number of inner iterations in the outer iteration. Then, we
have

K ≤ 364 Ψ
3
4
0 ,

where Ψ0 is the value of Ψ(v) after the µ-update in an outer iteration.

Using Lemma 1.4.5 and Corollary 1.3.8, we derive an upper bound for the total
number of iterations.
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Theorem 1.4.6. The total number of iterations to obtain an approximate solution with nµ ≤
ϵ is bounded by (

364 Ψ
3
4
0

)(
log n

ϵ

θ

)
.

For large-update IPMs with τ = O (n) and θ = Θ (1) , we have O
(

n
3
4 log n

ϵ

)
iteration complexity for LO problems.

For small-update IPMs with τ = O (1) and θ = Θ
(

1√
n

)
, we get the currently

best known iteration bound, namely O
(√

n log n
ϵ

)
iterations.

Numerical tests

In this section, we show that the generic IPA based on the hyperbolic-logarithmic
KF (1.31) can be very efficient in solving LO problems. As in Section 1.3.4, we con-
ducted comparative numerical tests between the KFs provided in Table 1.4. The
latter contains all KFs with barrier terms constructed by log t combined with an-
other type of functions (to our knowledge) and the complexity results for the cor-
responding algorithms, starting with the classical logarithmic KF ψc in [92] and
its generalized version ψ1,p proposed by El Ghami et al. in [32]. Each KF was
tested with the same parameters used in Section 1.3.4 on the eight test problems
defined in Tables B.2 and B.3 with different sizes, ranging from very small to big
size problems. The problems with fixed size EF1, EF2, EF3 and EF4 were tested
for multiple values of θ, θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. Table 1.5 That corresponds to
fixed size problems shows that, in most cases, larger θ gives better iteration num-
bers. Thus, for variable size problems EV1, EV2, EV3 and EV4, we only choose
θ ∈ {0.7, 0.9, 0.99}. This reduces the number of experiments since we perform Al-
gorithm 1 with all considered KFs on four test problems for seven different sizes
n = 2m where m ∈ {5, 25, 50, 100, 200, 400, 1000}. This left us with 104 experiments
for each KF. The summary of results is given in tables below.
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Comments

Recall that the numerical results were obtained by performing Algorithm 1 with the
KFs defined in Table 1.4 (except ψnew,p) on eight test problems.
When there are parameters p ≥ 1 involved in the definition of a KF, we used two
values of these parameters: the parameter that gives the best theoretical iteration
bound and a common value p = 2, except for ψ1,p and ψ6,λ where we chose p = 1

2
and λ = 0.05 since the parameters p and λ take their values in the intervals ]0, 1] and
]0, 8

25π ] respectively. This left us with 15 different KFs.
For each example, we used bold font to highlight the best, i.e., the smallest, iter-

ation number.
From Tables 1.5-1.9, we may draw a few conclusions:

• For ψ1,p (the classical logarithmic barrier function ψc occurs if p = 1), although
the theoretical iteration bound of the algorithm is independent of the parame-
ter p, numerical tests show that p influences the iteration count. In both types
of problems (fixed or variable size), p = 1 gives better results which is in ac-
cordance with the analysis carried out by [32].

• The function ψ1, 1
2

never gives the smallest iteration number in examples with
variable size, even for examples with fixed size it gives the smallest iteration
number only for the values 0.1 and 0.3 of θ.

• For KFs ψ2, ψ5,2, ψ5,log n, ψ7,[log n] and ψ8, the dashes in the corresponding columns
of Tables 1.5-1.9 indicate that the algorithms require more than 104 iterations
to obtain an optimal solution. Despite this, ψ2, ψ5,2, ψ5,log n and ψ8, (and exclu-
sively ψ8) are the only ones to give the smallest iteration number for θ = 0.9 in
EV2 and EV3 (in EV1), while for θ = 0.99 in EV1 (resp. in EV4), ψ5,2 (resp. ψ8)
is the only function to achieve the best iteration number.

• The iteration numbers of the algorithm based on our KF ψnew depend on the
values of the parameter θ. In fact, the value 0.9 of θ gives better iteration num-
bers in general.

• In all examples with variable size for θ = 0.7, the KF ψnew has the smallest
iterations number with the KFs ψc, ψ3,p, ψ4,p, ψ6, ψ6,0.05, ψ7,2, ψ7,[log n] except ψ4,2
in Example 5.

• For our KF, the obtained iteration numbers coincided with, or at worst was
close to the best ones with a slackness of at most 4 iterations, except the case
θ = 0.99 in EV1, where the slackness attain thirty.

To confirm the superiority of our algorithm in terms of the total number of iterations,
we compute, for each KF the percentage of cases where the KF gives the best iteration
number. As an illustration, we plot a histogram that we use as a statistical tool to
compare the performance of the algorithms.
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FIGURE 1.4: Performance comparison between KFs in Table 1.4

Supported by the performance bar graph, We may conclude some remarks:

• For ψ4,p, the parameter which gives the best theoretical complexity bound has
better percentage than p = 2. But the concordance between the theoretical and
the numerical results is not always satisfied, as we can see in the case of ψ3,p,
ψ5,p and ψ7,p.

• We can easily see that the algorithms based on hyperbolic KFs attain the most
wins, on average, among the considered algorithms based on other types.

• Although the theoretical complexity obtained for ψ8 is better than the one of
ψnew, but numerical tests reveal that ψnew has better percentage. In fact, a
thorough analysis shows that in the examples with fixed size, it’s ψnew that
gives the smallest iteration number with a slackness which can amount up to
24 iterations. As for examples with variable size for θ = 0.7, ψnew performs
better than ψ8 in EV1, EV2 and EV4 while in EV3, ψ8 doesn’t have the ability
to complete the run successfully. In contrast, for the values 0.9 and 0.99 of θ,
ψ8 meets or exceeds ψnew with a slackness of no more than 7 iterations.

The numerical effectiveness of ψnew comparing with all KFs with logarithmic
barrier term motivates us to propose a generalization of this function in order to
achieve a better theoretical complexity.

1.4.2 The analysis of the interior-point method based on the parametric
kernel function

In the previous section, we performed a well-detailed complexity analysis for ψnew.
Thus, we discuss more briefly the analysis for the generalized KF ψnew,p.

ψnew,p(t) =
t2 − 1

2
+ ψb,p(t), t > 0, p ≥ 2,

with ψb,p(t) = ap

(
cothp(t)− log t − cothp(1)

)
and ap =

sinh2(1)
sinh2(1) + p cothp−1(1)

.
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Remark 1.4.7. This function can also be considered as a generalization, up to the multi-
plicative constant 1/a, of the KF ψ8 introduced in [100] (see Table 1.4).

Using simple calculations, we can easily prove that ψnew,p is indeed a KF and we
have:

TABLE 1.10: The first three derivatives of ψnew,p with tψ′′
new,p ±ψ′

new,p

ψ′
new,p(t) = t − ap

( p cothp−1(t)
sinh2(t)

+
1
t

)
ψ′′

new,p(t) = 1 + ap

( p(p − 1) cothp−2(t)
sinh4(t)

+
2p cothp(t)

sinh2(t)
+

1
t2

)
≥ 1

ψ′′′
new,p(t) = −ap

( p(p − 1)(p − 2) cothp−3(t)
sinh6(t)

+
(6p2 − 4p) cothp−1(t)

sinh4(t)
+

4p cothp+1(t)
sinh2(t)

+
2
t3

)
< 0

tψ′′
new,p − ψ′

new,p = ap

( p(p − 1)t cothp−2(t)
sinh4(t)

+
2pt cothp(t)

sinh2(t)
+

2
t
+

p cothp−1(t)
sinh2(t)

)
> 0

tψ′′
new,p + ψ′

new,p = 2t + ap

( p(p − 1)t cothp−2(t)
sinh4(t)

+
p cothp−1(t)

sinh2(t)

(
2t coth(t)− 1

))
> 0

Thus, ψnew,p belongs to the class the defined in Section 1.2. Whereas, the equivalent
of Lemma 1.4.2 for ψnew,p is

Lemma 1.4.8. For all (z, t) ∈ [0,+∞)× (0, 1] such that z = − 1
2 ψ′

new,p (t) , we have

coth(t) ≤
(
(sinh2(1) + cothp−1(1)) coth2(1)

) 1
p+1

(2z + 1)
1

p+1 .

Complexity analysis

The complexity analysis for the parameterized KF ψnew,p proceeds in the same way
as in the previous section for ψnew. To avoid repetition, we do not present all the
details of the computations. We only present the outcome of each step of our com-
putational scheme in Table 1.11.

TABLE 1.11: Outcomes of the computational scheme.

f (ᾱ) ≤ −
√

2Ψ(v)
p

2(p+1)

72
(

1 + 2 sinh2(1) coth5(1)(p + 5)
) Ψ(v+) ≤

coth(1)(p + 2)
(1 − θ)

(
θ
√

n +
√

2τ
)2

:= Ψ0

β =

√
2

72
(

1 + 2 sinh2(1) coth5(1)(p + 5)
) and γ =

p + 2
2(p + 1)

K ≤
[

72
√

2(5 + 4p)(p + 1)
(p + 2)

]
Ψ

p+2
2(p+1)
0

For small-update methods with τ = O (1) and θ = Θ
(

1√
n

)
, the complex-

ity of the primal-dual IPA for LO problems based on the new parametric KF is
O(p2√n log n

ϵ ) iterations complexity.

As for large-update methods i.e., τ = O (n) and θ = Θ (1) , the substitution of
these values into

K ≤
[

72
√

2(5 + 4p)(p + 1)
(p + 2)

]
Ψ

p+2
2(p+1)
0 ,
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does not give the best possible bound. A better bound is obtained using Ψ0 defined

in Lemma 1.2.10. As a consequence, we get O
(
(p + 1)n

p+2
2(p+1) log n

ϵ

)
iterations com-

plexity for large-update methods. This expression is minimal at p =
log n

2
− 1 and

then is equal to O
(√

n log n log n
ϵ

)
.

Numerical tests

Now, we would like to investigate the influence of parameterizing the KF (1.31) on
the computational behavior of the generic primal-dual algorithm for LO presented
in Algorithm 1. For this purpose, we present some numerical simulations for im-
plementing the algorithm based on the new parametric KF (1.32) on the same set
of problems and for different values of the parameter p. We also compare with the
KF that gave the best performance in the previous section ψ3,2 and with ψ8 which
is of the same hyperbolic-logarithmic type. The obtained results are listed in tables
below.

TABLE 1.12: Number of inner iterations for fixed size examples.

Example θ ψnew ψnew,2 ψnew,3 ψnew,4 ψnew, log n
2 −1 ψ3,2 ψ8

EF1

0.1
0.3
0.5
0.7
0.9

188
56
29
17
11

188
56
29
17
11

188
56
29
17
10

188
56
29
17
12

188
56
29
17
24

188
56
29
17
11

200
70
44
23
14

EF2

0.1
0.3
0.5
0.7
0.9

191
57
29
17
10

191
57
29
17
9

191
57
29
17
9

191
57
29
17
9

191
57
29
17
11

191
57
29
17
10

215
75
39
21
9

EF3

0.1
0.3
0.5
0.7
0.9

192
57
30
18
21

192
57
30
19
19

192
57
30
18
19

192
57
30
19
22

192
57
30
17
33

192
57
30
18
28

204
66
33
20
25

EF4

0.1
0.3
0.5
0.7
0.9

196
58
33
21
21

196
58
30
20
18

196
58
30
22
22

196
58
30
24
20

196
58
31
28
24

196
58
30
21
21

212
78
42
24
20



1.4. Complexity of a primal-dual interior-point algorithm based on a class of
hyperbolic-logarithmic kernel functions

53

TA
B

L
E

1.
13

:N
um

be
r

of
in

ne
r

it
er

at
io

ns
fo

r
EV

1
an

d
2

w
it

h
di

ff
er

en
ts

iz
es

n
=

2m
.

θ
m

EV
1

EV
2

ψ
ne

w
ψ

ne
w

,2
ψ

ne
w

,3
ψ

ne
w

,4
ψ

ne
w

,lo
g

n
2

−
1

ψ
3,

2
ψ

8
ψ

ne
w

ψ
ne

w
,2

ψ
ne

w
,3

ψ
ne

w
,4

ψ
ne

w
,lo

g
n

2
−

1
ψ

3,
2

ψ
8

θ
=

0.
7

5 25 50 10
0

20
0

40
0

10
00

18 19 20 20 21 21 22

18 19 20 20 21 21 22

21 22 23 23 24 24 25

22 23 24 24 25 25 26

18 19 20 20 21 21 22

18 19 20 20 21 21 22

35 36 37 37 40 40 41

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

28 29 32 32 33 33 34

θ
=

0.
9

5 25 50 10
0

20
0

40
0

10
00

14 15 15 17 17 17 18

14 15 16 16 16 16 17

16 17 17 18 18 18 19

16 17 17 18 18 18 19

22 15 16 15 16 15 16

14 15 15 16 16 16 18

12 13 13 14 14 14 15

10 11 11 12 12 12 14

9 11 11 12 12 12 13

9 10 10 11 11 11 12

9 10 10 11 11 11 12

11 11 11 12 12 12 13

10 11 11 12 12 12 14

9 10 10 11 11 11 12

θ
=

0.
99

5 25 50 10
0

20
0

40
0

10
00

28 28 30 30 30 30 30

24 24 27 27 27 27 27

29 29 31 31 31 31 31

30 30 32 32 32 32 32

21 28 38 31 27 25 31

29 29 31 31 31 31 31

21 21 23 23 23 23 23

10 10 13 13 13 13 13

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

11 10 12 12 12 12 12

10 10 13 13 13 13 13

10 10 12 12 12 12 12



54 Chapter 1. Feasible primal-dual IPMs based on kernel functions for LO

T
A

B
L

E
1.14:N

um
ber

ofinner
iterations

for
EV

3
and

4
w

ith
differentsizes

n
=

2m
.

θ
m

EV
3

EV
4

ψ
new

ψ
new

,2
ψ

new
,3

ψ
new

,4
ψ

new
, log

n
2

−
1

ψ
3,2

ψ
8

ψ
new

ψ
new

,2
ψ

new
,3

ψ
new

,4
ψ

new
, log

n
2

−
1

ψ
3,2

ψ
8

θ
=

0.7

52550
100
200
400
1000

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

–––––––

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

28313232333336

θ
=

0.9

52550
100
200
400
1000

10111112121214

9111112121213

9101011111112

9101011111112

11111112121213

10111112121214

9101011111112

12131314141415

12131314141415

12131314141516

12131314141516

12131314141516

12131314141415

12131314141415

θ
=

0.99

52550
100
200
400
1000

10101313131313

10101212121212

10101212121212

10101212121212

11101212121212

10101313131313

10101212121212

23232626262626

21212323232323

24242626262626

22222424242424

21262725232482

26262828282828

19192121212121



1.5. A primal dual interior-point algorithm based on a parameterized kernel
function with a pure hyperbolic barrier term

55

TABLE 1.15: The percentage of cases where the KF gives the best iter-
ation number.

ψi ψnew ψnew,2 ψnew,3 ψnew,4 ψnew, log n
2 −1 ψ3,2 ψ8

% 50.48 66.99 68.93 66.99 58.25 51.45 55.33

Comments

By comparing the results in Tables 1.12-1.15, we notice that:

• The number of iterations clearly depends on the value of the parameter p as
the gap between two different values of p can amount up to 59. It should also
be noted that ψnew,3 significantly reduces the number of iterations although
ψnew, log n

2 −1 has the best complexity bound theoretically.

• Comparing with ψnew, the KFs ψnew,2, ψnew,3, ψnew,4 and ψnew, log n
2 −1 were able

to produce even better iteration numbers especially in EV2 and EV3 for θ = 0.9
and θ = 0.99, while maintaining similar performance for θ = 0.7 in Examples
EV2, EV3 and EV4.

• ψnew,p, for all tested parameters, outperformed ψ3,2 which had the best per-
formance in the previous section. This confirms that the parametrization has
effected the number of iterations of the algorithm positively.

• ψnew,2 far outperformed ψ8 despite having the same complexity bounds and
more than, the same expression up to a multiplicative constant (see Remark
1.4.7).

1.5 A primal dual interior-point algorithm based on a param-
eterized kernel function with a pure hyperbolic barrier
term

In this section, we study a primal-dual IPA for solving linear programming problems
based on the following parameterized hyperbolic KF

ψ (t) := ψp (t) =
t2 − 1

2
+

ap

p
cothp(t)− sinh2(1)

p
coth(1), ∀t > 0, (1.36)

where ap =
sinh2(1)

cothp−1(1)
and p ≥ 2. The parameter p is called the barrier degree. This

function is a generalization, up to a multiplicative constant, of the newly introduced
KF [98]

ϕ(t) =
t2 − 1

2 sinh2(1)
+ coth(t)− coth(1), ∀t > 0.
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FIGURE 1.5: Graphs of ψ1, ψ3, ψ10 and ϕ

We prove that the KF (1.36) belongs to the eligible class of KFs introduced by Bai
et al. in [8] and hence it belongs to the class defined in Section 1.2. We derive the
complexity analysis for algorithms with large-update primal-dual IPMs. We show
that by choosing a specific parameter, the corresponding algorithm enjoys the cur-
rently best known iteration bound. Furthermore, we prove the practical efficiency of
the new algorithm by presenting some numerical results. The results of this section
are submitted for future publication. See [41] for a prepublication of these results.

1.5.1 Some technical lemmas

We first give the first three derivatives of ψ defined in (1.36) for all t > 0.

ψ′(t) = t − ap
cothp−1(t)

sinh2(t)
, (1.37)

ψ′′(t) =1 + ap

(
2

cothp(t)
sinh2(t)

+ (p − 1)
cothp−2(t)

sinh4(t)

)
> 1, (1.38)

and

ψ′′′(t) = −ap

(
4

cothp+1(t)
sinh2(t)

+ (6p − 4)
cothp−1(t)

sinh4(t)
+ (p − 1)(p − 2)

cothp−3(t)
sinh6(t)

)
< 0.

(1.39)

We easily verify that ψ is definitely a KF as it satisfies the following conditions:
ψ′ (1) = ψ (1) = 0 and lim

t→0+
ψ (t) = lim

t→+∞
ψ (t) = +∞.

Furthermore, we can write ψ(t) as

ψ(t) =
t2 − 1

2
+ ψb(t),

where

ψb(t) =
ap

p
cothp(t)− sinh2(1)

p
coth(1),

with ψ′
b(t) < 0 and ψ′′

b (t) > 0 for all t > 0.
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The following lemma confirms the e-convexity and the eligibility of ψ.

Lemma 1.5.1. Let ψ be as defined in (1.36). Then, we have

(i) tψ′′(t)− ψ′(t) > 0, ∀t > 0.

(ii) tψ′′(t) + ψ′(t) > 0, ∀t > 0.

(iii) 2ψ′′ (t)2 − ψ′ (t)ψ′′′ (t) > 0, ∀t < 1.

Proof. From (1.37) and (1.38), it follows that

tψ′′(t)− ψ′(t) = ap

(
(p − 1)t

cothp−2(t)
sinh4(t)

+
cothp−1(t)

sinh2(t)
(2t coth(t) + 1)

)
,

and

tψ′′(t) + ψ′(t) = 2t + ap

(
(p − 1)t

cothp−2(t)
sinh4(t)

+
cothp−1(t)

sinh2(t)
(2t coth(t)− 1)

)
.

The first item is obviously strictly positive for all t > 0. As for the second item, it’s
obtained using the second item of Lemma 1.3.1.
Lastly, using (1.37), (1.38) and (1.39), simple calculation leads to

2ψ′′(t)2 − ψ′(t)ψ′′′(t) = 2+apt + 4a2
p

coth2p(t)
sinh4(t)

+ 8ap
cothp(t)
sinh2(t)

+ 4ap(p − 1)
cothp−2(t)

sinh4(t)

+ a2
p p(p − 1)

coth2p−4(t)
sinh8(t)

+ 2a2
p(p − 2)

coth2p−2(t)
sinh6(t)

> 0,

since ap > 0 and p ≥ 2.

Remark 1.5.2. It is worth noting that any KF that satisfies H1 and the three conditions of
Lemma 2.4.1 is an eligible KF according to [8, p.109]. Thus, ψ is eligible.

After that, we give in the following lemma an implicit lower bound for ρ defined
in Definition 1.1.9.

Lemma 1.5.3. For all (z, t) ∈ [0,+∞[×]0, 1] such that z = − 1
2 ψ′ (t) , we have

coth(t) ≤ coth(1) (2z + 1)
1

p+1 .

Proof.
let z ≥ 0 and t ∈ (0, 1] such that z = − 1

2 ψ′ (t) , then ρ (z) = t. Using (1.37), we
have

2z = −ψ′(t)

= −t + ap
cothp−1(t)

sinh2(t)
,

= −t + ap cothp−1(t)(coth2(t)− 1).

Moreover, since

1 < cosh(t) ≤ cosh(1), ∀t ∈ (0, 1] and coth2(t)− 1 =
coth2(t)
cosh2(t)

,
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we obtain
coth2(t)− 1 ≥ 1

cosh2(1)
coth2(t), ∀t ∈]0, 1].

This implies that

2z + 1 ≥ 2z + t ≥ 1
cothp+1(1)

cothp+1(t).

1.5.2 Computation of displacement step

In this section, we compute a default step size ᾱ such that (x+, y+, s+) defined in
Algorithm 1 are strictly feasible and the proximity function (1.10) decreases suffi-
ciently. We recall that during an inner iteration the parameter µ is fixed and from
(1.5) we have

x+ =
x
v
(v + ᾱdx), s+ =

s
v
(v + ᾱds), v+ =

√
x+s+

µ
.

The following theorem gives an upper bound for the decreasing value of the prox-
imity gap function.

Theorem 1.5.4. If ᾱ is the default step size and σ ≥ 1, then we have

Ψ(v+)− Ψ(v) ≤ −
√

2Ψ(v)
p

2(p+1)

72 (1 + 8p)
. (1.40)

Proof. From (1.37) , we have

ψ′′(t) = 1 + ap

(
2

cothp(t)
sinh2(t)

+ (p − 1)
cothp−2(t)

sinh4(t)

)

= 1 + ap

(
2 cothp(t)(coth2(t)− 1) + (p − 1) cothp−2(t)(coth2(t)− 1)2

)

= 1 + ap

(
2 cothp+2(t)− 2 cothp(t) + (p − 1) cothp+2(t)

+(p − 1) cothp−2(t)− 2(p − 1) cothp(t)
)

≤ 1 + 2ap p
(

cothp+2(t)
)
.

Let t = ρ (2σ) . Lemma 1.5.3 implies that

ψ′′ (ρ (2σ)) ≤ 1 + 2 sinh2(1) coth3(1)p(4σ + 1)
p+2
p+1

≤
(

1 + 2 sinh2(1) coth3(1)p
)
(4σ + 1)

p+2
p+1 .
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On the other hand, from Theorem 1.2.18

Ψ(v+)− Ψ(v) ≤ − σ2

ψ′′ (ρ (2σ))
.

It follows that

Ψ(v+)− Ψ(v) ≤ − σ2(
1 + 2 sinh2(1) coth3(1)p

)
(4σ + 1)

p+2
p+1

≤ − σ2(
1 + 2 sinh2(1) coth3(1)p

)
(4σ + 2σ)

p+2
p+1

≤ − σ
p

p+1

36(1 + 8p)

≤ −
√

2Ψ(v)
p

2(p+1)

72 (1 + 8p)
,

where the last inequality is obtained using Lemma 1.2.12.

1.5.3 Iteration bound of the algorithm

We conclude this subsection by giving an upper bound for the number of inner iter-
ations needed to return to the τ-neighbourhood, i.e. Ψ (v) ≤ τ after µ-update. We
set Ψ0, as the value of Ψ (v) after µ-update, whereas the subsequent values in the
same outer iteration are denoted as Ψk, k = 1, ..., K, with K the total number of inner
iterations in the outer iteration that can be taken.

Recall that the decrease on each inner iteration is given by (1.40), that is,

Ψk+1 ≤ Ψk −
√

2Ψ
p

2(p+1)

k
72 (1 + 8p)

.

Consequently, using Lemma A.0.13 for the values tk = Ψk, β =

√
2

72(1 + 8p)
and

γ =
p + 2

2(p + 1)
, we get the following lemma.

Lemma 1.5.5. Let K be the total number of inner iterations in the outer iteration. Then we
have

K ≤
[

72
√

2(1 + 8p)(p + 1)
(p + 2)

]
Ψ

p+2
2(p+1)
0 ,

where Ψ0 is the value of Ψ (v) after the µ−update in outer iteration.

Using Lemma 1.5.5 and Corollary 1.3.8, we derive an upper bound for the total
number of iterations.
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Theorem 1.5.6. Let Ψ0 be the value defined in Lemma 1.2.10 and let τ ≥ 1. Then, the total
number of iterations to obtain an approximate solution with nµ ≤ ϵ is bounded by[

72
√

2(1 + 8p)(p + 1)
(p + 2)

]
Ψ

p+2
2(p+1)
0

log n
ϵ

θ
. (1.41)

For large-update methods with τ = O (n) and θ = Θ (1) , the complexity of

the primal-dual IPA for LO problems based on the new KF is O
(

pn
p+2

2(p+1) log n
ϵ

)
iterations complexity.

An interesting choice is p =
log n

2
− 1, which minimizes the iteration bound. Then,

it becomes O
(√

n log n log n
ϵ

)
iterations complexity.

As for small-update methods i.e., τ = O (1) and θ = Θ
(

1√
n

)
, the substitution

of these values into (1.41) does not give the best possible bound. A better bound is
obtained using the following Corollary

Corollary 1.5.7. Let θ be such that 0 < θ < 1. If Ψ(v) ≤ τ, then

Ψ (v+) ≤
(coth(1) + p)

(1 − θ)

(
θ
√

n +
√

2τ
)2

:= Ψ0,

Proof. The inequality is directly obtained using Lemma 1.2.11 and the fact that
ψ′′(1) ≤ 2 coth(1) + 2p.
Using Ψ0 defined in the previous corollary, we get O(p2√n log n

ϵ ) iterations com-
plexity for small-update methods.

1.5.4 Numerical tests

In this section, we validate the performance of the IPA based on the KF (1.36) by
providing numerical experiments. As in Sections 1.3.4 and 1.4.1, we conducted com-
parative numerical tests between the KFs provided in Table 1.16 on some problems
from the Netlib repository alongside the seven test problems taken from Tables B.2
and B.3. Since there are parameters involved in the definition of all considered KFs,
we chose two common values of these parameters: p = 2 and p = 4. This left us
with 12 different KFs.

TABLE 1.16: Considered kernel functions.

Kernel function Complexity Ref.

ψ1,p(t) = t2−1
2 + t1−p−1

p−1 , p ≥ 2 O
(

pn
p+1
2p log n

ϵ

)
[82]

ψ2,p(t) = t2−1
2 + e(

1
tp −1)−1

p , p ≥ 1 O
(√

n(log n)
p+1

p n log n
ϵ

)
[4]

ψ3,p(t) = t2−1
2 + ep( 1

t −1)−1
p , p ≥ 1 O

(
p−1√n(log n)2 log n

ϵ

)
[3]

ψ4,p(t) = t2−1
2 + 4

πp

(
tanp ( π

2t+2

)
− 1
)

, p ≥ 2 O
(

pn
p+2

2(p+1) log n
ϵ

)
[15]

ψ5,p(t) =
t2−1−log t

2 + t1−p−1
2(p−1) , p ≥ 2 O

(
pn

p+1
2p log n

ϵ

)
[14]

ψnew,p(t) = t2−1
2 + sinh2(1) cothp(t)

p cothp−1(1)
− sinh2(1) coth(1)

p , p ≥ 2 O
(

pn
p+2

2(p+1) log n
ϵ

)
New
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Each problem was tested for multiple values of θ, θ ∈ {0.7, 0.9, 0.95, 0.99}. For
variable size problems EV1, EV3 and EV4, we performed Algorithm 1 with the pro-
posed KFs for seven different sizes n = 2m where m ∈ {5, 25, 50, 100, 200, 400, 1000}.
In addition, the selected Netlib problems were tested for θ = 0.9. This left us with
113 experiments for every KF. The results are summarized in tables below.

TABLE 1.17: Total number of iterations for some Netlib problems for
θ = 0.9.

Problem m n ψ1,2 ψ1,4 ψ2,2 ψ2,4 ψ3,2 ψ3,4 ψ4,2 ψ4,4 ψ5,2 ψ5,4 ψnew,2 ψnew,4

afiro 27 51 115 105 101 100 117 116 114 104 108 103 109 97

blend 74 114 102 80 76 80 54 86 75 74 78 52 100 99

bore3d 233 334 28 28 28 28 28 28 28 28 28 28 28 28

degen2 444 757 34 34 36 34 34 34 35 34 34 34 34 34

degen3 1503 2604 36 36 37 36 36 36 36 36 36 36 36 36

nug05 210 225 18 – 19 18 18 18 18 19 18 18 18 18

nug06 372 486 61 58 74 56 57 60 71 53 53 56 57 62

nug07 602 931 56 81 64 66 68 61 73 73 69 69 63 64

nug08 912 1632 29 29 29 29 29 29 29 29 29 29 29 29

qap8 912 1632 29 – 29 31 30 29 – – 34 31 37 29

scsd1 77 760 23 23 23 23 23 23 23 23 23 23 23 23

scsd6 147 1350 27 27 27 27 27 27 27 27 27 27 27 27

scsd8 397 2750 25 25 25 25 25 25 25 25 25 25 25 25

sctap1 300 660 134 127 126 129 140 123 125 128 121 141 125 127

sctap2 1090 2500 76 70 75 68 71 50 84 86 44 54 68 83

sctap3 1480 3340 47 47 76 49 73 47 50 98 54 47 49 50
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Comments

Recall that the numerical results were obtained by performing Algorithm 1 with
the KFs defined in Table 1.16 on the aforementioned test problems and some Netlib
problems. For each example, we used bold font to highlight the best, i.e., the small-
est, iteration number.

From Tables 1.17-1.21 we may conclude a few remarks.

• We encountered a problem with KFs ψ1,4, ψ2,4, ψ3,4, ψ4,2 and ψ4,4 indicated by
dash in the corresponding columns of Tables 1.17-1.19 and 1.21. Despite this,
ψ2,4 is the only one to give the smallest iteration number in EF4 and EV1 for
θ = 0.99 and θ = 0.9 respectively.

• In all examples with variable size for θ = 0.7, ψ1,2, ψ4,3, ψ5,2, ψ5,2 and ψnew,2
have the same smallest iterations number. Moreover, ψnew,2 has also the best
iterations number in examples with fixed size for θ = 0.7.

• The iteration numbers of the algorithm based on the new KF depend on the
values of the parameters p. In fact, the value p = 2 gives better iteration num-
bers in general.

• ψnew,p outperformed the other KFs in Examples EF1, EF4 and EV1 for θ = 0.95,
and in Examples EV1 and EV4 for θ = 0.99.

• The algorithm based on ψnew,4 achieved the best iteration numbers for almost
63% of the tested Netlib problems.

• For our KF, the obtained iteration numbers coincide with, or in worst-case,
close to the best ones.

To assess the effectiveness and the superiority of our algorithm regarding the total
number of iterations, we calculate, for each KF the percentage of cases where the KF
has the smallest iteration number. As an illustration, we plot a histogram to compare
the performance of the algorithms.

FIGURE 1.6: Performance comparison between KFs in Table 1.16.
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Supported by the performance bar graph, we can see that the parameter p = 2 has
better percentage than p = 4 for all KFs. Furthermore, the algorithms based on the
new KF attain the most wins among the considered algorithms. In fact, ψnew,2 has
the best percentage among all KFs.

1.6 Comparative numerical tests between the new kernel func-
tions for solving LO problems

In this section, we conduct comparative numerical experiments between all new KFs
proposed in this thesis including the KFs presented in Chapters 2 and 3 (see Table
1.22). We have taken ϵ = 10−8, τ = n, and we use several values of parameter θ
namely

θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9, 0.99}.

As in Section 1.3.4, we chose the practical step size α [54]. Our purpose is to com-
pare the computational performance of the hyperbolic KFs provided in Table 1.22
on the eight test problems defined in Tables B.2 and B.3 with different sizes, ranging
from very small to big size problems. The summary of the results is presented in
tables below.

TABLE 1.22: Considered kernel functions.

Kernel function

ψ1(t) = t2−1
2 + sinh2(1)

(
ecoth(t)−coth(1) − 1

)
ψ2,p(t) = t2−1

2 + sinh2(1)
sinh2(1)+p cothp−1(1)

(
cothp(t)− log t − cothp(1)

)
, p = 2, 3, 4, log n

2 − 1

ψ3,p(t) = t2−1
2 + sinh2(1) cothp(t)

p cothp−1(1)
− sinh2(1) coth(1)

p , p = 2, 3, 4, log n
2 − 1

ψ4,p,q(t) = t2−1
2 + sinh2(1)

2p cothp−1(1)
cothp(t)− sinh2(1)

2p coth(1) + t1−q−1
2(q−1) , p, q = 2, 3, 4, log n

ψ5(t) = t2−1
4 −

t∫
1

sinh(1)
sinh(y)dy



68 Chapter 1. Feasible primal-dual IPMs based on kernel functions for LO

T
A

B
L

E
1.23:N

um
ber

ofinner
iterations

for
fixed

size
exam

ples.

Ex
θ

ψ
1

ψ
2,2

ψ
2,3

ψ
2,4

ψ
2, log

n
2

−
1

ψ
3,2

ψ
3,3

ψ
3,4

ψ
3, log

n
2

−
1

ψ
4,2,2

ψ
4,3,2

ψ
4,4,3

ψ
4,3,3

ψ
4,4,4

ψ
4,log

n,log
n

ψ
5

EF 1
0.1
0.3
0.5
0.7
0.9

188
56291711

188
56291711

188
56291710

188
56291712

188
56291724

188
56291710

188
56291711

188
56291712

188
56291710

188
56291710

188
56291710

188
56291711

188
56291711

188
56291712

188
56291710

188
56343343

EF 2

0.1
0.3
0.5
0.7
0.9

191
5729179

191
5729179

191
5729179

191
5729179

191
57291711

191
5729179

191
5729179

191
5729179

191
5729179

191
5729179

191
5729179

191
5729179

191
5729179

191
5729179

191
5729179

191
57353433

EF 3

0.1
0.3
0.5
0.7
0.9

192
57301819

192
57301919

192
57301819

192
57301922

192
57301733

192
57301819

192
57301819

192
57321920

192
57301832

192
57301921

192
57301819

192
57301819

192
57301819

192
57321926

192
57301920

192
57365353

EF 4

0.1
0.3
0.5
0.7
0.9

196
58302423

196
58302018

196
58302222

196
58302420

196
58312824

196
58302120

196
58302922

196
58302423

196
58302923

196
58302018

196
58302119

196
58302423

196
58302120

196
58302422

196
58302018

196
58374643



1.6. Comparative numerical tests between the new kernel functions for solving LO
problems

69

TA
B

L
E

1.
24

:N
um

be
r

of
in

ne
r

it
er

at
io

ns
fo

r
Ex

am
pl

e
EV

1
w

it
h

di
ff

er
en

ts
iz

es
n
=

2m
.

θ
m

ψ
1

ψ
2,

2
ψ

2,
3

ψ
2,

4
ψ

2,
lo

g
n

2
−

1
ψ

3,
2

ψ
3,

3
ψ

3,
4

ψ
3,

lo
g

n
2

−
1

ψ
4,

2,
2

ψ
4,

3,
2

ψ
4,

4,
3

ψ
4,

3,
3

ψ
4,

4,
4

ψ
4,

lo
g

n,
lo

g
n

ψ
5

θ=0.7

5 25 50 10
0

20
0

40
0

10
00

21 22 23 23 24 24 25

18 19 20 20 21 21 22

21 22 23 23 24 24 25

22 23 24 24 25 25 26

18 19 20 20 21 21 22

18 19 20 20 21 21 22

21 22 23 23 24 24 25

22 23 24 24 25 25 26

21 22 23 23 24 24 25

18 19 20 20 21 21 22

18 19 20 20 21 21 22

21 22 23 23 24 24 25

21 22 23 23 24 24 25

21 22 23 23 24 24 25

18 22 24 28 34 42 49

37 39 41 41 43 43 45

θ=0.9

5 25 50 10
0

20
0

40
0

10
00

15 16 16 17 17 17 18

14 15 15 15 15 15 17

16 17 17 18 18 18 19

16 17 17 18 18 18 19

22 15 16 15 16 15 16

13 14 14 15 15 15 16

15 16 16 17 17 17 18

15 16 16 17 17 17 18

14 14 14 15 15 15 19

13 14 14 15 15 15 16

13 14 14 15 15 15 16

15 16 16 17 17 17 18

13 14 14 15 15 15 16

15 16 16 17 17 17 18

13 16 29 27 42 38 49

44 48 48 52 52 52 56

θ=0.99

5 25 50 10
0

20
0

40
0

10
00

34 34 36 36 36 36 36

24 24 27 27 27 27 27

29 29 31 31 31 31 31

30 30 32 32 32 32 32

21 28 38 31 27 25 31

22 22 24 24 24 24 24

29 29 31 31 31 31 31

27 27 29 29 29 29 29

21 27 27 28 24 29 31

23 23 25 25 25 25 25

28 28 30 30 30 30 30

34 34 36 36 36 36 36

29 29 31 31 31 31 31

29 29 31 31 31 31 31

22 29 25 35 35 – 39

47 47 54 54 54 54 54



70 Chapter 1. Feasible primal-dual IPMs based on kernel functions for LO

T
A

B
L

E
1.25:N

um
ber

ofinner
iterations

for
Exam

ple
EV

2
w

ith
differentsizes

n
=

2m
.

θ
m

ψ
1

ψ
2,2

ψ
2,3

ψ
2,4

ψ
2, log

n
2

−
1

ψ
3,2

ψ
3,3

ψ
3,4

ψ
3, log

n
2

−
1

ψ
4,2,2

ψ
4,3,2

ψ
4,4,3

ψ
4,3,3

ψ
4,4,4

ψ
4,log

n,log
n

ψ
5

θ = 0.7

52550
100
200
400

1000

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020273926

36384040424244

θ = 0.9

52550
100
200
400

1000

9101011111112

9101011111112

9101011111112

9101011111112

11111112121213

9101011111112

9101011111112

9101011111112

9101011111112

9101011111112

9101011111112

9101011111112

9101011111112

9101011111112

9101011111112

33373741414145

θ = 0.99

52550
100
200
400

1000

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

10101212121212

36364444444444



1.6. Comparative numerical tests between the new kernel functions for solving LO
problems

71

TA
B

L
E

1.
26

:N
um

be
r

of
in

ne
r

it
er

at
io

ns
fo

r
Ex

am
pl

e
EV

3
w

it
h

di
ff

er
en

ts
iz

es
n
=

2m
.

θ
m

ψ
1

ψ
2,

2
ψ

2,
3

ψ
2,

4
ψ

2,
lo

g
n

2
−

1
ψ

3,
2

ψ
3,

3
ψ

3,
4

ψ
3,

lo
g

n
2

−
1

ψ
4,

2,
2

ψ
4,

3,
2

ψ
4,

4,
3

ψ
4,

3,
3

ψ
4,

4,
4

ψ
4,

lo
g

n,
lo

g
n

ψ
5

θ=0.7

5 25 50 10
0

20
0

40
0

10
00

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 20 21 21 22

18 19 20 56 48 38 36

36 38 40 40 42 42 44

θ=0.9

5 25 50 10
0

20
0

40
0

10
00

9 10 10 11 11 11 12

9 10 10 11 11 11 13

9 10 10 11 11 11 12

9 10 10 11 11 11 12

11 11 11 12 12 12 13

9 10 10 11 11 11 12

9 10 10 11 11 11 12

9 10 10 11 11 11 12

9 10 10 11 11 11 12

9 10 10 11 11 11 12

9 10 10 11 11 11 12

9 10 10 11 11 11 12

9 10 10 11 11 11 12

9 10 10 11 11 11 12

9 10 10 11 11 11 12

33 37 37 41 41 41 45

θ=0.99

5 25 50 10
0

20
0

40
0

10
00

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

10 10 12 12 12 12 12

36 36 44 44 44 44 44



72 Chapter 1. Feasible primal-dual IPMs based on kernel functions for LO

T
A

B
L

E
1.27:N

um
ber

ofinner
iterations

for
Exam

ple
EV

4
w

ith
differentsizes

n
=

2m
.

θ
m

ψ
1

ψ
2,2

ψ
2,3

ψ
2,4

ψ
2, log

n
2

−
1

ψ
3,2

ψ
3,3

ψ
3,4

ψ
3, log

n
2

−
1

ψ
4,2,2

ψ
4,3,2

ψ
4,4,3

ψ
4,3,3

ψ
4,4,4

ψ
4,log

n,log
n

ψ
5

θ = 0.7

52550
100
200
400

1000

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

18192020212122

181921212834–

36384040424244

θ = 0.9

52550
100
200
400

1000

12131314141415

12131314141415

12131314141516

12131314141516

12131314141516

12131314141415

12131314141415

13141415151516

11121213141415

11121213131314

12131314141415

13141415151516

12131314141415

13141415151516

121417–27––

43474751515155

θ = 0.99

52550
100
200
400

1000

24242626262626

21212323232323

24242626262626

22222424242424

21262725232482

22222424242424

23232525252525

18182020202020

22232523242623

21212323232323

26262828282828

23232525252525

26262828282828

23232525252525

22202627323548

46465454545454



1.6. Comparative numerical tests between the new kernel functions for solving LO
problems

73

Comments

Recall that the numerical results were obtained by performing Algorithm 1 with the
KFs defined in Table 1.22 on eight test problems. For each example, we used bold
font to highlight the best, i.e., the smallest, iteration number.

From Tables 1.23-1.27 we may draw a few conclusions.

• The function ψ5 never gives the smallest iteration number in examples with
variable size, even for examples with fixed size it gives the smallest iteration
number only for the values 0.1 and 0.3 of θ.

• For Examples EV2 and EV3 all considered KFs except ψ2, log n
2 −1, ψ4,log n,log n and

ψ5, achieved the smallest iteration number for all values of θ.

• The iteration numbers of the algorithm based on the parametric KFs depend
on the values of the parameters. In fact, the value p = 2 gives better iteration
numbers for ψ2,p and ψ3,p whereas the value p = q = 2 outperformed the other
considered values of the parameters for ψ4,p,q.

• We can see that the algorithm based on ψ4,2,2 attains the most wins among
all hyperbolic KFs of Table 1.22, although it has worse theoretical complexity
comparing with most of the considered KFs.
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Feasible primal-dual IPMs based
on kernel functions for

semidefinite optimization

In this chapter, we deal with feasible primal-dual interior-point methods (IPMs)
based on kernel functions (KFs) for solving semidefinite optimization (SDO) prob-
lems. We first give a concise summary on the basic of primal-dual IPMs for SDO.
Then, we present the main steps to obtain the complexity of primal-dual interior-
point algorithms (IPAs) for SDO based on the class of KFs defined in Section 1.2.
The approach described in Section 2.3 of this chapter is an extension from LO to
SDO of the approach presented in Section 1.2. As an application, we consider the
following twice parametrized hyperbolic KF

ψ (t) =
t2 − 1

2
+

a
2p

cothp(t)− sinh2(1)
2p

coth(1) +
t1−q − 1
2(q − 1)

, ∀t > 0,

where a =
sinh2(1)

cothp−1(1)
and p, q ≥ 2. This function is a combination of the pro-

totype self-regular (SR) KF [83] and the hyperbolic KF (1.36). We prove that the
complexity bounds of the new algorithm improve the results obtained by Touil and
Chikouche in [98, 100] and matches the results obtained for the KF (1.36) with ap-
propriate choices of the parameters p and q.

2.1 Introduction

SDO’s prominence is attributed to its ability to offer a framework for addressing fun-
damental problems in diverse practical domains like economics, engineering, and
operations research. Furthermore, it serves as a generalization of linear program-
ming, providing a broader perspective on optimization problems.

Several methods were proposed to find an optimal solution for SDO problems.
Primal-dual IPMs rank among the most efficient methods both theoretically and
practically. IPMs were first developed by Karmarkar [53] for LO problems. After
that, using the fact that LO is a special case of SDO, many primal-dual IPMs were
extended to solve SDO problems, which was a significant contribution initiated by
Alizadeh [1] and Nesterov and Todd [78].
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The first primal-dual IPM based on the classical logarithmic barrier function was
introduced by Roos et al. [92]. After that, Peng et al. presented primal-dual IPMs
based on the so-called SR barrier functions, in [83] for LO and SDO. They signif-
icantly improved the theoretical complexity obtained for the classical logarithmic
KF and obtained the currently best iteration bound for large-update IPMs namely,
O(

√
n log n log n

ϵ ), with n denotes the number of variables in the problem and ϵ de-
notes the desired accuracy. This was one of the main motivations for considering
other KFs as a substitute for the classical logarithmic KF. In this context, Bai et al. [9]
introduced in 2002 an IPM based on an exponential barrier term which has a finite
value at the boundary of the feasible region. The growth term of this finite KF was
later parametrized by El Ghami et al. [31] and the approach was extended to solve
different types of optimization problems including SDO [34].

In 2004, Bai et al. [8] proposed a new class of eligible KFs which are not necessar-
ily SR. This class includes the classical logarithmic KF and SR KFs as special cases.
They presented a unified analysis of primal-dual IPMs based on eligible KFs for LO.
The results obtained in [8] were successfully extended to SDO [29].

In [4, 5, 3], published in 2005 and 2007, Amini and his co-authors proposed
parametrizations of the two exponential KFs proposed for the first time in [8]. They
improved the iteration complexity for large-update methods from O(

√
n log2 n log n

ϵ )
to O(

√
n log n log n

ϵ ). The IPMs based on these parametric exponential KFs were
later extended to solve SDO [20, 85]. Upon scrutiny of the works cited above that
focus on IPMs based on KFs, it can be concluded that the theoretical complexity
bounds remain unaffected by the type of problem when switching from one prob-
lem type to another using, of course, the same KF.

We cannot talk about KFs without mentioning trigonometric KFs. This type of
functions has been extensively explored in the literature [56, 86, 59, 43, 66, 44], start-
ing with the work of El Ghami et al. [33] where the authors studied an IPM based
on the first trigonometric KF introduced in [8]. They established that the complexity
bounds for large- and small-update methods are O(n

3
4 log n

ϵ ) and O(
√

n log n
ϵ ) re-

spectively. This function was later generalized by Bouafia et al. [15] and El Ghami
el al. [87] in 2016 for LO and SDO respectively. They obtained O(

√
n log n log n

ϵ )
iterations complexity for large-update methods which is a significant improvement
from the results obtained by El Ghami et al. in [33].

Recently, Touil and Chikouche [100] introduced the first IPM based on a hyperbolic-
logarithmic KF for SDO. They proved that the corresponding IPA meets O(n

2
3 log n

ϵ )
iterations as the worst case complexity bound for the large-update method. In an-
other paper [98], they presented an IPM based on a pure hyperbolic barrier term
with an O(n

3
4 log n

ϵ ) iteration complexity. To improve the iteration bound based on
hyperbolic KFs, Guerdouh et al. in [41] proposed an IPM for solving LO problems
based a generalization of the KF proposed in [98]. They showed that their algorithm
enjoys the currently best-known iteration bound for both large- and small-update
methods.

2.2 Preliminaries

In this section, we showcase the main steps of feasible primal-dual IPMs based
on KFs for SDO. At the end, we provide a formal description of the correspond-
ing primal-dual IPA. For more details and informations on the theory of feasible
primal-dual IPMs, we refer the readers to the monograph of Peng et al. [84] and the
references listed therein.
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Recall that in this chapter, we are concerned about solving the SDO problem (P)
which is formulated in the following standard form
Given the vector b ∈ Rm and matrices Ai, i = 1, . . . , m, C ∈ Sn, find a matrix X ∈ Sn,
solution of the constrained minimization problem

(P) min {C • X; Ai • X = bi, i = 1, . . . , m; X ⪰ 0} .

The set of feasible solutions for (P) is defined as follows

FP = {X ∈ Sn
+ : Ai • X = bi, i = 1, . . . , m} .

The dual problem of (P) is given by

(D) max

{
bTy;

m

∑
i=1

yi Ai + S = C; S ⪰ 0

}
,

where y ∈ Rm, and the set of feasible solutions for (D) is given by

FD =

{
(y, S) ∈ Rm × Sn

+ :
m

∑
i=1

yi Ai + S = C

}
.

In this chapter, we assume that the matrices Ai, i = 1, . . . , m are linearly indepen-
dent. Under this assumption, y is uniquely determined for a given dual feasible S.
This corresponds in LO to the assumption that the constraint matrix A must have full
rank. To see this, note that the linear independence of matrices {A1, A2, . . . , Am}, is
equivalent to the linear independence of the vectors {vec(A1), vec(A2), . . . , vec(Am)}.
Practical algorithms for ensuring full row rank of a matrix can be found in [7].

Remark 2.2.1. If all matrices Ai, i = 1, . . . , m and C are both diagonal, SDO is reduced to
LO. In this case, both X and S can be assumed to be diagonal as well, since the off-diagonal
elements of X and S do not impact the objective function or constraints. In addition, any LO
problem written in the standard form as presented in Section 1.1 can be formulated into a
SDO problem with C = diag(c), Ai = diag(ai), i = 1 . . . m, where ai are the row vectors of
A, X = diag(x), and S = diag(s).

Central path

In what follows, we suppose that the problems (P) and (D) satisfy the interior-point
condition (IPC), i.e., there exists (X0, y0, S0) such that

Ai • X0 = bi, i = 1, ..., m, X0 ∈ Sn
++,

m

∑
i=1

y0
i Ai + S0 = C, S0 ∈ Sn

++.

Many theoretical findings related to IPMs for LO were seamlessly extended to
their SDO counterpart. For example, if the primal-dual pair (X, y, S) is feasible for
both (P) and (D), then

bTy ≤ tr(CX),

serving as a direct extension of its LO counterpart. However, despite these exten-
sions, it is acknowledged by several authors [61, 95, 104] that building a duality the-
ory as strong as Theorem 1.2.2 in [84] for LO is unattainable for SDO. Nevertheless,
a relatively weaker duality theory is established [77, 102, 95].
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Theorem 2.2.2. ([84, Theorem 5.1.1]) (P) and (D) have optimal solutions X and (y, S)
satisfying

tr(CX) = bTy,

if both of the following conditions hold

(i) (P) is strictly feasible, that is, there exists X ∈ Sn
++ such that

Ai • X = tr(AiX) = bi, i = 1, . . . , m.

(ii) (D) is strictly feasible, that is, there exists (y, S) ∈ Rm × Sn
++ such that

m

∑
i=1

yi Ai + S = C.

Under the IPC, Theorem 2.2.2 implies that (P) and (D) have optimal solutions X
and (y, S) satisfying

C • X − bTy = tr(CX)− bTy = tr

(
X(

m

∑
i=1

yi Ai + S)

)
− bTy

= tr(X S) +
m

∑
i=1

yitr(AiX)− bTy

= tr(X S) +
m

∑
i=1

yitr(bi)− bTy

= tr(X S) = 0.

Since X and S are positive semidefinite matrices, Lemma C.1.25 implies that

X S = 0.

Hence, finding an optimal solution of (P) and (D) is equivalent to solving the non-
linear system of equations

Ai • X = bi, i = 1, . . . , m, X ∈ Sn
+,

m
∑

i=1
yi Ai + S = C, S ∈ Sn

+,

XS = 0.

(2.1)

System (2.1) is called The Karuch-Kuhn-Tucker (KKT) optimality conditions. The
first and second equations are called primal and dual feasibility and the last equation
is called the complementarity condition for (P) and (D).

As in the LO case, the theory of IPMs for the SDO case suggests that the third
equation in (2.1) has to be perturbed. Hence, replacing XS = 0 by the nonlinear
equation XS = µI, with parameter µ > 0, leads to the following system

Ai • X = bi, i = 1, . . . , m, X ∈ Sn
++,

m
∑

i=1
yi Ai + S = C, S ∈ Sn

++,

XS = µI.

(2.2)
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The existence and uniqueness of a solution for system (2.2) are well-established in
the following theorem, as documented in references [77, 64, 101].

Theorem 2.2.3. Suppose that both (P) and (D) are strictly feasible. Then, for every positive
µ > 0 system (2.2) has a unique solution.

Since the IPC holds the previous theorem implies that for each µ > 0, the pa-
rameterized system (2.2) has a unique solution denoted by (Xµ, yµ, Sµ). The solution
(Xµ, yµ, Sµ) may be interpreted as the parametric representation of a smooth curve
(the central path) in terms of the parameter µ. The central path converges to the so-
called analytic center of the optimal set as µ → 0. For more details about the limiting
behaviour and other properties of the solution set of SDO, one can consult [13, 62,
61, 95, 104] and the references therein.

Search directions

Similar to LO case, we introduce a threshold parameter τ > 0 and we fixe µ > 0.
Then, we define the τ-neighbourhood N (τ, µ) as follows

N (τ, µ) = {(X, y, S) ∈ Sn
++ × Rm × Sn

++ : Ai • X = bi, 1 ≤ i ≤ m,
m

∑
i=1

yi Ai + S = C, Φ(X, S, µ) ≤ τ},

with τ the radius of the neighbourhood and Φ a so-called proximity measure. Φ is
used to measure the distance from the point (X, S) to (Xµ, Sµ) and will be defined
later in terms of a KF.

Using Newton’s approach on system (2.2), we arrive at the following system
Ai • ∆X = 0, i = 1, . . . , m,
m
∑

i=1
∆yi Ai + ∆S = 0,

X∆S + ∆XS = µI − XS,

(2.3)

with (∆X, ∆y, ∆S) is the search direction. A key requirement for IPMs for SDO is
to generate symmetric ∆X and ∆S matrices. From the second equation in (2.3), ∆S
is clearly symmetric. However, this is not true in general for ∆X. Various methods
have been proposed to symmetrize the final equation in (2.3). In this context, we
adopt the approach presented by Zhang as outlined in [107] in which he defined the
linear transformation HP : Rn×n → Sn given by

HP(M) :=
1
2

(
PMP−1 + (PMP−1)T

)
,

with P ∈ Rn×n a non-singular matrix. P is called the scaling matrix and it determines
the symmetrization strategy.

Zhang also observed that if P is invertible and M is similar to a (symmetric)
positive definite matrix, then

HP(M) = µI ⇔ M = µI.

This observation indicates that the last equation in (2.2) can be replaced by

HP(XS) = µI.
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Hence, we can rewrite system (2.3) as follows
Ai • ∆X = 0, i = 1, . . . , m,
m
∑

i=1
∆yi Ai + ∆S = 0,

HP(X∆S + ∆XS) = µI − HP(XS).

The idea introduced by Zhang [107] was tested with various matrices P, resulting in
different directions. See Table 2.1 for some popular choices of P.

TABLE 2.1: Choices for the scaling matrix P

Name of the direction P Reference
Alizadeh-Haeberly- Overton (AHO) I [2]
Helmberg-Kojima-Monteiro (HKM) X− 1

2 [75], [64]
Helmberg-Kojima-Monteiro (HKM) S

1
2 [75], [48], [64]

Nesterov-Todd (NT)
(

X
1
2 (X

1
2 SX

1
2 )−

1
2 X

1
2

)− 1
2

[96]

In this section, we consider the symmetrization scheme from which the Nesterov-
Todd (NT) direction [96] is derived. The advantage of this choice is that the NT scal-
ing technique presented in [96] transfers the primal variable X and the dual variable
S into the same space: the so-called V-space. Let

W = X
1
2 (X

1
2 SX

1
2 )−

1
2 X

1
2 = S− 1

2 (S
1
2 XS

1
2 )

1
2 S− 1

2 , PNT = W− 1
2 and D = P−1

NT = W
1
2 .

The matrix D can be used to rescale X and S to the same matrix V defined as
follows

V =
1
√

µ
DSD =

1
√

µ
D−1XD−1 =

1
√

µ
(D−1XSD−1)

1
2 . (2.4)

In addition, the matrices D and V are both symmetric and positive definite.
Using the above notations, the NT search direction is then obtained by solving

the following system 
Ai • DX = 0, i = 1, . . . , m,
m
∑

i=1
∆yi Ai + DS = 0,

DX + DS = V−1 − V,

(2.5)

with

Ai =
1
√

µ
DAiD, i = 1, .., m, DS =

1
√

µ
D∆SD, DX =

1
√

µ
D−1∆XD−1. (2.6)

Since the Ai, i = 1, . . . , m, are linearly independent so the Ai, i = 1, . . . , m. Hence,
system (2.5) has a unique solution (DX, ∆y, DS) with DX and DS are symmetric ma-
trices.
Observe that

V−1 − V = −ψ′
c(V),

where ψ′
c denotes the matrix valued matrix function defined from Sn

++ to Sn as fol-
lows

ψ′
c(V) = QTdiag(ψ′

c(λ1(V)), ψ′
c(λ2(V)), ..., ψ′

c(λn(V)))Q, QQT = I,
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with Q an orthonormal matrix that diagonalizes V. The matrix barrier function Ψc is
defined from Sn

++ to R+ by

Ψc(V) =
n

∑
i=1

ψc(λi(V)). (2.7)

The basic of kernel-based IPMs for SDO, as in LO case, is to replace ψc by any strictly
convex function ψ : ]0,+∞[→ [0,+∞[ which is minimal at t = 1 with ψ(1) = 0. The
corresponding proximity function Ψ is then obtained by replacing ψc by ψ in (2.7).
This explains the reason for calling ψ the KF of the barrier function Ψ.

Remark 2.2.4. In this chapter, when we refer to the function ψ and its first three derivatives
ψ

′
, ψ

′′
and ψ

′′′
without specifying further details, it signifies a matrix function if the argu-

ment is a matrix. However, if the argument lies in R it represents a univariate real valued
function.

Returning to system (2.5), it’s reformulated in the following form
Ai • DX = 0, i = 1, ..., m,
m
∑

i=1
∆yi Ai + DS = 0,

DX + DS = −ψ′(V).

(2.8)

Since ∆X and ∆S are orthogonal it is trivial to see that DX and DS are orthogonal,
and so, DX • DS = 0. Thus, we can easily verify that

DX = DS = 0n×n ⇔ ψ′(V) = 0n×n ⇔ V = I ⇔ Ψ(V) = 0 ⇔ XS = µI,

i.e., if and only if X = Xµ and S = Sµ, as it should. Otherwise Ψ(V) > 0. Hence, if

(X, y, S) ̸= (Xµ, yµ, Sµ),

then
(∆X, ∆y, ∆S) ̸= (0n×n, 0m, 0n×n).

This implies that Ψ serves as a proximity measure for closeness with respect to the
µ−center (Xµ, Sµ) and the inequality

Ψ(V) ≤ τ,

defines a τ−neighbourhood of the µ−center. Hence we can define Φ(X, S; µ) as
follows

Φ(X, S; µ) = Ψ(V).

We also define the norm-based proximity measure σ(V), as follows

σ(V) =
1
2
∥DX + DS∥ =

1
2

∥∥ψ′ (V)
∥∥ =

1
2

√
tr
(

ψ′ (V)2
)

. (2.9)

By taking a step along the search direction, the new point (X+, y+, S+) is then com-
puted by

X+ = X + α∆X, y+ = y + α∆y, S+ = S + α∆S, (2.10)

with the step size α chosen such that the strict positivity of X+ and S+ is guaranteed.
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We end this section by providing a brief description of the algorithm correspond-
ing to the primal-dual IPM based on KFs for SDO summarized in Algorithm 2. Start-
ing with an interior-point (X0, y0, S0) situated in a τ-neighbourhood of the given
µ-center, we decrease µ to µ+ := (1 − θ)µ for some fixed 0 < θ < 1. Then, we
compute the search direction (DX, ∆y, DS) by solving system (2.8). Using notations
(2.6), we get (∆X, ∆S). After that, we choose an appropriate value of the step size
α, which guarantees the strict positivity of the new iterate (X+, S+). We repeat
the procedure until we find a new iterate (X+, y+, S+) that again belongs to the τ-
neighborhood of the current µ-center. Then, we update the parameter µ to µ+ and
we let (X, y, S) = (X+, y+, S+). This process is repeated until µ is small enough,
more precisely until nµ < ϵ for a certain accuracy parameter ϵ, at this stage we have
found an ϵ−optimal solution of (P) and (D).
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Algorithm 2 : Generic Primal-Dual Feasible Interior-Point Algorithm for Semidefi-
nite Optimization

Input

a threshold parameter τ ≥ 1;

an accuracy parameter ϵ > 0;

a fixed barrier update parameter θ ∈]0, 1[; (X0, y0, S0) satisfy the IPC and µ0 = 1

such that Φ(X0, S0; µ0) = Ψ
(
V0) ≤ τ.

begin

X : = X0; y : = y0; S : = S0; µ : = µ0;

while nµ ≥ ϵ

begin (outer iteration)

µ : = (1 − θ)µ;

V := 1√
µ (DXSD−1)

1
2 ;

while Φ(X, S; µ) = Ψ(V) > τ

begin (inner iteration)

Solve system (2.8) and use (2.6) to obtain (∆X, ∆y, ∆S);

Choose a suitable step size α;

X := X + α∆X;

y := y + α∆y;

S := S + α∆S;

V := 1√
µ (DXSD−1)

1
2 ;

end while (inner iteration)

end while (outer iteration)

end
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2.3 Analysis of the interior-point algorithm based on a spe-
cific class of kernel functions

In what follows, we extend the approach presented in Section 1.2 for SDO. Let ψ
be a KF that belongs to the class introduced in Section 1.2, i.e., ψ is a three times
continuous differentiable KF satisfying

• H1 For all t ∈ R++, ψ
′′′
(t) < 0,

• H2 For all t > 1, tψ
′′
(t)− ψ

′
(t) > 0, (ψ is sqrt-convex),

• H3 For all t < 1, tψ
′′
(t) + ψ

′
(t) > 0, (ψ is e-convex),

and written in the following form

ψ(t) =
t2 − 1

2
+ ψb(t), ∀t > 0,

with ψ
′
b(t) < 0 and ψ

′′
b (t) ≥ 0 for all t > 0.

Now, we provide upper bounds for the proximity function Ψ defined in (2.7) and
a lower bound for the proximity measure σ defined in (2.9) after the µ-update. These
bounds will be necessary in the complexity analysis. In accordance with Algorithm
2, at the beginning of an outer iteration we have Ψ (V) ≤ τ before the update of
µ with the factor (1 − θ). After updating µ in an outer iteration, the value of Ψ(V)
increases since V is divided by the factor

√
1 − θ. Then during the inner iteration,

the value of Ψ (V) decreases until it passes the threshold τ.

Theorem 2.3.1. ([29, Theorem 3.1]) Let ϱ be as defined in Definition 1.1.9. Then, for any
V ∈ Sn

++ and β > 1, we have

Ψ (βV) ≤ nψ

(
βϱ

(
Ψ (V)

n

))
.

Proof. We first consider the maximization problem (MP) defined for any z ∈ R+

as follows

(MP)


max

V
Ψ(βV) =

n
∑

i=1
ψ(βλi(V)),

Ψ(V) =
n
∑

i=1
ψ(λi(V)) = z.

Let the vector v be such that

vi = λi(V), i = 1, . . . , n.

Then,

Ψ(V) =
n

∑
i=1

ψ(vi) = Ψ(v),

and

Ψ(βV) =
n

∑
i=1

ψ(βvi) = Ψ(βv).
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Therefore, applying Theorem 1.2.8, we get

Ψ(βv) ≤ nψ

(
βϱ

(
Ψ (v)

n

))

= nψ

βϱ


n
∑

i=1
ψ(vi)

n




= nψ

βϱ


n
∑

i=1
ψ(λi(V))

n




= nψ

(
βϱ

(
Ψ (V)

n

))
.

The inequality derives since Ψ(βv) = Ψ(βV).

Remark 2.3.2. Let V+ =
V√

1 − θ
and 0 ≤ θ < 1. If we assume that Ψ (V) ≤ τ just before

the µ−update to (1 − θ)µ, we get the following upper bound

Ψ (βV) = Ψ (V+) ≤ nψ

 ϱ
(τ

n

)
√

1 − θ

 ,

where β =
1√

1 − θ
.

As a consequence, we have the following two lemmas that proofs proceed exactly
as in the proofs of Lemma 1.2.10 and Lemma 1.2.11 respectively.

Lemma 2.3.3. Let V+ =
V√

1 − θ
and 0 ≤ θ < 1. If we assume that Ψ (V) ≤ τ just before

the µ−update to (1 − θ)µ, we get the following upper bound

Ψ(V+) ≤
θn + 2τ + 2

√
2τn

2(1 − θ)
:= Ψ0.

Ψ0 is an upper bound for Ψ(V+) during the process of Algorithm 2.

Lemma 2.3.4. Let V+ =
V√

1 − θ
and 0 ≤ θ < 1. If we assume that Ψ (V) ≤ τ just before

the µ−update to (1 − θ)µ, we get the following upper bound

Ψ (V+) ≤
ψ′′(1)

2

(
θ
√

n +
√

2τ
)2

1 − θ
:= Ψ0.

Ψ0 is an upper bound for Ψ(V+) during the process of Algorithm 2.

The following lemma provides a lower bound of σ(V) in terms of the proximity
function Ψ (V) .

Lemma 2.3.5. Let σ(V) be defined by (2.9). Then, for any V ∈ Sn
++, we have

σ(V) ≥
√

Ψ (V)

2
.
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Proof. Recall that the matrix barrier function Ψ(V) is defined as follows

Ψ(V) =
n

∑
i=1

ψ(λi(V)).

Using the first item of Proposition 1.2.2, it follows that for all t > 0

ψ (t) ≤ 1
2

ψ′(t)2.

Hence, using (2.9), we obtain

σ(V)2 =
1
4

tr
(

ψ′ (V)2
)
=

1
4

n

∑
i=1

ψ′ (λi (V))2 ≥ 1
2

n

∑
i=1

ψ (λi (V)) .

This completes the proof.

Remark 2.3.6. Throughout this chapter, we assume that τ ≥ 1. Using Lemma 2.3.5 and
the assumption that Ψ(V) ≥ τ, we have

σ(V) ≥
√

1
2

.

2.3.1 Computation of the displacement step

The purpose of this subsection is to compute a default step size α such that (X+, y+, S+)
defined in (2.10) are strictly feasible and the proximity function decreases suffi-
ciently.

Proposition 2.3.7. ([83, Proposition 5.2.6]) For any X1, X2 ∈ Sn
++, we have

Ψ

((
X

1
2
1 X2X

1
2
1

) 1
2
)

≤ 1
2
(Ψ (X1) + Ψ (X2)) .

Proof. Recall that for any non-singular matrix U ∈ Rn×n we have

ηi(U) = (λi(UTU))
1
2 = (λi(UUT))

1
2 , i = 1, . . . n.

Hence, using the fact that the square root of a symmetric positive definite matrix is
also symmetric, we get

ηi(X
1
2
1 X

1
2
2 ) = (λi(X

1
2
1 X2X

1
2
1 ))

1
2 = λi(X

1
2
1 X2X

1
2
1 )

1
2 , i = 1, . . . , n.
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Since X1 and X2 are symmetric positive definite, using Lemma C.2.5 and the e-
convexity of ψ (hypothesis H3), one gets

Ψ((X
1
2
1 X2X

1
2
1 )

1
2 ) =

n

∑
i=1

ψ((λi(X
1
2
1 X2X

1
2
1 ))

1
2 )

=
n

∑
i=1

ψ(ηi(X
1
2
1 X

1
2
2 ))

≤
n

∑
i=1

ψ(ηi(X
1
2
1 )ηi(X

1
2
2 ))

≤ 1
2

n

∑
i=1

[
ψ(η2

i (X
1
2
1 )) + ψ(η2

i (X
1
2
2 ))

]
=

1
2
(Ψ(X1) + Ψ(X2)) .

Now, we consider the decrease in Ψ as a function of α noted f defined by

f (α) = Ψ (V+)− Ψ (V) .

Using (2.4), (2.6) and (2.10), for fixed µ, we get

X+ = X + α∆X = X + α
√

µDDXD =
√

µD(V + αDX)D,

S+ = S + α∆S = S + α
√

µD−1DSD−1 =
√

µD−1(V + αDS)D−1,

V+ = V + αDX = V + αDS,

and
V2
+ = (V + αDX)(V + αDS),

with the step size α chosen such that

V + αDX ∈ Sn
++ and V + αDS ∈ Sn

++.

Hence, since V + αDX, V + αDS ∈ Sn
++, it follows that

V2
+ ∼ (V + αDX)

1
2 (V + αDS)(V + αDX)

1
2 ,

which implies that the matrix V+ and the matrix ((V + αDX)
1
2 (V + αDS)(V + αDX)

1
2 )

1
2

have the same eigenvalues. Thus, we can write

f (α) = Ψ

((
(V + αDX)

1
2 (V + αDS) (V + αDX)

1
2

) 1
2
)
− Ψ (V) .

Or, from Proposition 2.3.7, we get

Ψ (V+) ≤
1
2
(Ψ(V + αDX) + Ψ(V + αDS)) .

Therefore, f (α) ≤ f1(α), where

f1 (α) =
1
2
(Ψ(V + αDX) + Ψ(V + αDS))− Ψ (V) . (2.11)
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Differentiating the function f1 with respect to α, we get

f ′1 (α) =
1
2

tr
(
ψ′(V + αDX)DX + ψ′(V + αDS)DS

)
,

and
f ′′1 (α) =

1
2

tr
(
ψ′′(V + αDX)D2

X + ψ′′(V + αDS)D2
S
)

. (2.12)

Hence, using (2.9) and the last equation of (2.8) we obtain

f ′1 (0) = −1
2

tr
((

ψ′ (V)
)2
)
= −2σ(V)2.

In what follows, we set σ(V) := σ for simplicity purposes.

Lemma 2.3.8. ([103, Lemma 5.19]) Let f1(α) be as defined in (2.11). Then, we have

f ′′1 (α) ≤ 2σ2ψ′′(λmin(V)− 2ασ).

Proof. Recall that DX and DS are orthogonal, i.e., DX • DS = tr(DXDS) =
tr(DSDX) = 0 and DX + DS = −∇Ψ(v). Moreover, using the definition (2.9) of
σ one obtains

∥DX + DS∥2 = ∥DX∥2 + ∥DS∥2 = 4σ2.

This implies that
|λmax(DX)| ≤ 2σ and |λmax(DS)| ≤ 2σ.

Using Lemma C.1.27 and the fact that V, V + αDX, V + αDS ∈ Sn
+, one gets for all

i = 1, . . . , n

λi(V + αDX) ≥ λmin(V)− α|λmax(DX)| ≥ λmin(V)− 2ασ,
λi(V + αDS) ≥ λmin(V)− α|λmax(DS)| ≥ λmin(V)− 2ασ,

which implies using the decrease of ψ
′′

that

ψ
′′
(λi(V + αDX)) ≤ ψ

′′
(λmin(V)− 2ασ) , i = 1, . . . , n,

and
ψ

′′
(λi(V + αDS)) ≤ ψ

′′
(λmin(V)− 2ασ) i = 1, . . . , n.

Hence,
ψ

′′
(V + αDX) ⪯ ψ

′′
(λmin(V)− 2ασ) I,

and
ψ

′′
(V + αDS) ⪯ ψ

′′
(λmin(V)− 2ασ) I.

Using the last item of Proposition C.1.24, we obtain

tr
(

ψ
′′
(V + αDX) D2

X

)
≤ tr

(
ψ

′′
(λmin(V)− 2ασ) D2

X

)
,

and
tr
(

ψ
′′
(V + αDS) D2

S

)
≤ tr

(
ψ

′′
(λmin(V)− 2ασ) D2

S

)
.
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Therefore, using (2.12) it follows that

f ′′1 (α) =
1
2

tr
(

ψ′′(V + αDX)D2
X + ψ′′(V + αDS)D2

S

)
=

1
2

(
tr
(
ψ′′(V + αDX)D2

X
)
+ tr

(
ψ′′(V + αDS)D2

S
) )

≤ 1
2

(
tr
(

ψ
′′
(λmin(V)− 2ασ) D2

X

)
+ tr

(
ψ

′′
(λmin(V)− 2ασ) D2

S

))

=
1
2

ψ
′′
(λmin(V)− 2ασ)

(
tr
(

D2
X

)
+ tr

(
D2

S

))
=

1
2

ψ
′′
(λmin(V)− 2ασ)

n

∑
i=1

(
λi
(

DX
)2

+ λi
(

DS
)2
)

= 2σ2ψ
′′
(λmin(V)− 2ασ) ,

where the last equality is due to the fact that ∥DX∥2 + ∥DS∥2 = 4σ2.

Putting vi = λi(V), i = 1, . . . , n and v1 = λmin(V), we can proceed exactly as in
the LO case to obtain the following lemmas (see Lemmas 1.2.15, 1.2.16 and 1.2.17).

Lemma 2.3.9. If the step size α satisfies the inequality

ψ′ (λmin (V))− ψ′ (λmin (V)− 2ασ) ≤ 2σ, (2.13)

then
f ′1(α) ≤ 0.

Lemma 2.3.10. Let ρ be the function defined in Definition 1.1.9. Then the largest possible
value of the step size α∗ satisfying (2.13) is given by

α∗ =
ρ (σ)− ρ (2σ)

2σ
.

Lemma 2.3.11. Let ρ be the function defined in Definition 1.1.9 and α∗ be as defined in
Lemma 2.3.10. Then, we have

α∗ ≥ 1
ψ′′ (ρ (2σ))

.

Theorem 2.3.12. Let us set ᾱ =
1

ψ′′ (ρ (2σ))
, as the default step size. Then

f (ᾱ) ≤ −σ2ᾱ = − σ2

ψ′′ (ρ (2σ))
.

Proof. As in the LO case, we define the univariate function g as follow

g(α) = −2ασ2 + ασψ′(λmin(V))+
1
2

(
ψ (λmin(V)− 2ασ)−ψ(λmin(V))

)
, ∀α ∈ [0, α∗].

Differentiating g twice, we get

g′(α) = −2σ2 − σ

(
ψ′(λmin(V)− 2ασ)− ψ′(λmin(V))

)
g′′(α) = 2σ2ψ′′(λmin(V)− 2ασ).
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Obviously,
g(0) = f1(0) = 0, g′(0) = f ′1(0) = −2σ2 < 0.

On the other hand, from Lemma 2.3.8 we have

f
′′
1 (α) ≤ g

′′
(α).

Therefore, f
′
1(α) ≤ g

′
(α) and f1(α) ≤ g(α). Taking α ∈ [0, α∗], we obtain

g′(α) = −2σ2 − σ

(
ψ′(λmin(V)− 2ασ)− ψ′(λmin(V))

)
≤ 0.

Due to the increase of g
′′

in α, using Lemma A.0.11 we arrive at

f (α) ≤ f1(α) ≤ g(α) ≤ 1
2

αg
′
(0) = −ασ2.

2.4 A primal-dual IPM for SDO based on a bi-parametrized
kernel function

In this section, we provides a new primal-dual IPA for solving SDO problems based
on a new KF. The latter combines the popular SR KF and the hyperbolic KF (1.36).
The complexity analysis shows that by choosing special values of the parameters, the
so far best-known iteration bounds for large- and small-update methods are derived.
Moreover, preliminary numerical experiments showcased the practical efficiency of
the algorithm based on the new KF comparing with some other existing KFs. The
results presented in this section are parts of a submitted paper [40].

2.4.1 The new kernel function and its properties

In 2001, Peng et al. [83] proposed an IPM based on a SR function defined for all t > 0
as follows

ψSR(t) =
t2 − 1

2
+

t1−q − 1
q − 1

, q ≥ 2.

In 2016, Bouafia et al. [15] introduced an IPM based on a KF with a parameterized
trigonometric barrier term defined as follows

ψTrigo(t) =
t2 − 1

2
+

4
πp

(
tanp

(
π

2t + 2

)
− 1
)

, p ≥ 2.

Later on, Bouafia and Adnane [17] combined the SR function ψSR with the paramet-
ric trigonometric KF ψTrigo to propose the following twice parametric KF

ψTrigo/SR(t) = t2 +
t1−q

q − 1
− q

q − 1
+

4
πp

(
tanp

(
π

2t + 2

)
− 1
)

, p, q ≥ 2.

After that, Guerdouh et al. [41] proposed a primal-dual IPM based on the fol-
lowing parametric hyperbolic KF

ψHyper(t) =
t2 − 1

2
+

sinh2(1) cothp(t)
p cothp−1(1)

− sinh2(1) coth(1)
p

, p ≥ 2.
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Motivated by the last two works, we introduce a new efficient twice parameterized
KF

ψHyper/SR =
t2 − 1

2
+

a
2p

cothp(t)− sinh2(1)
2p

coth(1) +
t1−q − 1
2(q − 1)

, ∀t > 0, (2.14)

where a =
sinh2(1)

cothp−1(1)
and p, q ≥ 2. To simplify the notations, we denote ψTrigo/SR

by ψ. For convenience of reference, we give its first three derivatives with respect to
t as follows:

ψ′(t) = t − a
cothp−1(t)
2 sinh2(t)

− 1
2tq , (2.15)

ψ′′(t) =1 +
a
2

(
2

cothp(t)
sinh2(t)

+ (p − 1)
cothp−2(t)

sinh4(t)

)
+

q
2tq+1 > 1, (2.16)

and

ψ′′′(t) = − a
2

(
4

cothp+1(t)
sinh2(t)

+ (6p − 4)
cothp−1(t)

sinh4(t)
+ (p − 1)(p − 2)

cothp−3(t)
sinh6(t)

)

− q(q + 1)
2tq+2 < 0.

We can easily verify that ψ′ (1) = ψ (1) = 0 and lim
t→0+

ψ (t) = lim
t→+∞

ψ (t) = +∞. This

implies that ψ is a KF verifying H1. Furthermore, we can write

ψ(t) =
t2 − 1

2
+ ψb(t),

with

ψb(t) =
a

2p
cothp(t)− sinh2(1)

2p
coth(1) +

t1−q − 1
2(q − 1)

.

From (2.15) and (2.16), it follows that

ψ′
b(t) < 0 and ψ′′

b (t) > 0, ∀t > 0.

The following lemma provided some key properties of ψ including the e-convexity.
In addition, it also implies that ψ defined in (2.14) belongs to the class of KFs defined
in Sections 1.2 and 2.3.

Lemma 2.4.1. Let ψ be the function defined in (2.14). Then, we have

(i) tψ′′(t)− ψ′(t) > 0, ∀t > 0.

(ii) tψ′′(t) + ψ′(t) > 0, ∀t > 0.

Proof. From (2.15) and (2.16), it follows that for all t > 0

tψ′′(t)− ψ′(t) =
a
2

(
(p − 1)t

cothp−2(t)
sinh4(t)

+
cothp−1(t)

sinh2(t)
(2t coth(t) + 1)

)
+

q + 1
2tq ,
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and

tψ′′(t) + ψ′(t) = 2t +
a
2

(
(p − 1)t

cothp−2(t)
sinh4(t)

+
cothp−1(t)

sinh2(t)
(2t coth(t)− 1)

)
+

q − 1
2tq .

tψ′′(t)−ψ′(t) is obviously strictly positive for all t > 0. Using (1.29) of Lemma 1.3.1,
we obtain the second item of the lemma.

Let ϱ and ρ be as defined in Definition 1.1.9. Then we have the following lemma.

Lemma 2.4.2. For all (z, t) ∈ [0,+∞[×]0, 1] such that z = − 1
2 ψ′ (t) , one has

(i) coth(t) ≤ coth(1) (4z + 1)
1

p+1 .

(ii) 1
t ≤ (4z + 2)

1
q .

Proof. Let (z, t) ∈ [0,+∞[×]0, 1] such that z = − 1
2 ψ′ (t) . Then, (2.15) implies

that

2z = −ψ′(t)

= −t + a
cothp−1(t)
2 sinh2(t)

+
1

2tq

= −t + a cothp−1(t)
coth2(t)− 1

2
+

1
2tq

= −t + a cothp−1(t)
coth2(t)

2 cosh2(t)
+

1
2tq , (2.17)

where the last equality is due to the fact that coth2(t) − 1 =
coth2(t)
cosh2(t)

. Since the

function t 7→ cosh(t) is a monotonically increasing and
1
tq ≥ 1 for all 0 < t ≤ 1, we

obtain

cothp+1(t)
2 cothp+1(1)

=
a cothp+1(t)
2 cosh2(1)

≤ a cothp+1(t)
2 cosh2(t)

= 2z + t − 1
2tq ≤

(
2z +

1
2

)
.

Therefore,
cothp+1(t) ≤ cothp+1(1) (4z + 1) ,

which proves the first item. For the second item, from (2.17), we have

0 ≤ a cothp+1(t)
2 cosh2(1)

= 2z + t − 1
2tq ,

which implies that
1
t
≤ (4z + 2)

1
q .

This completes the proof.
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2.4.2 Analysis of the algorithm

Now, we would like to have a default step size ᾱ such that (X+, y+, S+) defined
in Algorithm 2 are strictly feasible and the proximity function (2.7) decreases suffi-
ciently. We recall that during an inner iteration the parameter µ is fixed. Using (2.4),
(2.6) and (2.10), for fixed µ, we get

X+ =
√

µD(V + ᾱDX)D, S+ =
√

µD−1(V + ᾱDS)D−1, V+ = V + ᾱDX = V + ᾱDS.

We then present an upper bound for the decreasing value of the proximity in the
inner iteration in the following theorem

Theorem 2.4.3. If ᾱ is the default step size and σ ≥ 1, then we have

f (ᾱ) ≤ − Ψ(V)
pq−p−2
2(p+1)q

100
√

2
(

1 + (sinh2(1) coth3(1))p + q
2

) .

Proof. From (2.15) , we have

ψ′′(t) =1 +
a
2

(
2

cothp(t)
sinh2(t)

+ (p − 1)
cothp−2(t)

sinh4(t)

)
+

q
2tq+1 ,

=1 +
a
2

(
2 cothp(t)

(
coth2(t)− 1

)
+ (p − 1) cothp−2(t)

(
coth2(t)− 1

)2
)
+

q
2tq+1

=1 +
a
2
(
2 cothp+2(t)− 2 cothp(t) + (p − 1) cothp+2(t)

+ (p − 1) cothp−2(t)− 2(p − 1) cothp(t)
)
+

q
2tq+1

≤1 + ap cothp+2(t) +
q

2tq+1 .

Let t = ρ (2σ) . Lemma 2.4.2 implies that

ψ′′ (ρ (2σ)) ≤ 1 + (sinh2(1) coth3(1))p(4σ + 1)
p+2
p+1 +

q
2
(4σ + 2)

q+1
q

≤
(

1 + (sinh2(1) coth3(1))p +
q
2

)
(8σ + 2)

(p+2)(q+1)
(p+1)q

≤
(

1 + (sinh2(1) coth3(1))p +
q
2

)
(8σ + 2σ)

(p+2)(q+1)
(p+1)q .

The last inequality is due to Remark 2.3.6. Hence, using Theorem 2.3.12 and Lemma
2.3.5, we get

f (ᾱ) ≤ − σ2

ψ′′ (ρ (2σ))

≤ − σ2(
1 + (sinh2(1) coth3(1))p + q

2

)
(10σ)

(p+2)(q+1)
(p+1)q

≤ − σ
pq−p−2
(p+1)q

100
(

1 + (sinh2(1) coth3(1))p + q
2

)
≤ − Ψ(V)

pq−p−2
2(p+1)q

100
√

2
(

1 + (sinh2(1) coth3(1))p + q
2

) ,



94 Chapter 2. Feasible primal-dual IPMs based on kernel functions for SDO

which completes the proof.

Iteration complexity

Now, we compute how many inner iterations are required to return to the situation
where Ψ(V) ≤ τ after µ-update. Let us define the value of Ψ(V) after µ-update as
Ψ0, and the subsequent values in the same outer iteration as Ψi, i = 1, ..., K, where K
stands for the total number of inner iterations in the outer iteration. The decrease on
each inner iteration is given by

Ψi+1 ≤ Ψi −
1

100
√

2
(

1 + (sinh2(1) coth3(1))p + q
2

)Ψi
pq−p−2
2(p+1)q .

We arrive at the final result of this section which summarizes the complexity bounds
for large and small-update methods.

Theorem 2.4.4. Let Ψ0 be the value defined in Lemma 2.3.3 and let τ ≥ 1. Then, the total
number of iterations to obtain an approximate solution with nµ ≤ ϵ is bounded by

(100
√

2
(

2 + sinh2(1) coth3(1)(p + 1) + q
)
(p + 1)q

(p + 2)(q + 1)

)
Ψ

(p+2)(q+1)
2(p+1)q

0
log n

ϵ

θ
.

Proof. Using Lemma A.0.13 we get

K ≤
(100

√
2
(

2 + sinh2(1) coth3(1)(p + 1) + q
)
(p + 1)q

(p + 2)(q + 1)

)
Ψ

(p+2)(q+1)
2(p+1)q

0 ,

with K the number of inner iterations in an outer iteration. The result then follows
from Corollary 1.3.8.

For large-update method with τ = O (n) and θ = Θ (1) , the complexity of the
primal-dual IPA for SDO problems based on the new KF is

O
(
(p + q)n

(p+2)(q+1)
2(p+1)q log n

ϵ

)
iterations complexity.

Taking p = q = log n, the iteration bound becomes O
(√

n log n log n
ϵ

)
iterations

complexity.
For small-update method i.e., τ = O (1) and θ = Θ

(
1√
n

)
, we get

O((p + q)
√

n log n
ϵ ) iterations complexity for small-update methods.



2.4. A primal-dual IPM for SDO based on a bi-parametrized kernel function 95

2.4.3 Numerical tests

In this section, we consolidate our theoretical analysis by performing some pre-
liminary numerical experiments. We have taken ϵ = 10−8, τ =

√
n, and θ ∈

{0.1, 0.3, 0.5, 0.7, 0.9}.

TABLE 2.2: Considered kernel functions.

Kernel function Ref.
ψc(t) = t2−1

2 − log t [92]
ψ1,p(t) = t − 1 + t1−p−1

p−1 , p = 2, 3, 4 [103]

ψ2(t) = t2−1
2 − log t + λ tan2(π 1−t

4t+2 ), λ = 8
25 π [19]

ψ3(t) = t2 − 2t + 1
sin( πt

t+1 )
[59]

ψ4,p(t) =
t2−1−log t

2 + e
1
tp −1−1

2p , p = 3, 4 [24]

ψ5(t) =
1+2 coth(1)
2 sinh2(1)

(t2 − 1) + coth2(t)− coth2(1)− log t [100]

ψ6(t) = t2−1
2 sinh(1)2 + coth(t)− coth(1) [98]

ψ7,p(t) = t2−1
2 + (e−1)p+1

pe(et−1)p − e−1
e , p = 2, 3, 4 [65]

ψ8(t) = t2−1
2 + sinh2(1)

(
ecoth(t)−coth(1) − 1

)
[39]

ψTrigo,p(t) = t2−1
2 + 4

πp

(
tanp ( π

2t+2

)
− 1
)

, p = 2, 3, 4 [15]

ψTrigo/SR,p,q(t) = t2 + t1−q

q−1 −
q

q−1 +
4

πp

(
tanp ( π

2t+2

)
− 1
)

, p, q = 2, 3, 4 [17]

ψSR,p(t) = t2−1
2 + t1−p−1

p−1 , p = 2. [83]

ψHyper,p(t) = t2−1
2 + sinh2(1)

p

(
cothp(t)

cothp−1(1)
− coth(1)

)
, p = 2, 3, 4 [41]

ψHyper/SR,p,q(t) = t2−1
2 + a

2p cothp(t)− sinh2(1)
2p coth(1) + t1−q−1

2(q−1) , , p, q = 2, 3, 4 New

We conducted comparative numerical tests between the algorithms based on the
KFs provided in Table 2.2 on the test problem SDP1 taken from Table B.4. The sum-
mary of results is given in the following table.
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T
A

B
L

E
2.3:N

um
ber

ofinner
iterations

for
θ
∈
{0.1,0.3,0.5,0.7,0.9}.

K
F

θ
=

0.1
θ
=

0.3
θ
=

0.5
θ
=

0.7
θ
=

0.9
m

5
10

15
20

5
10

15
20

5
10

15
20

5
10

15
20

5
10

15
20

ψ
c

192
202

202
212

58
61

61
63

30
32

32
32

17
18

18
18

15
17

17
17

ψ
1,2

202
213

242
298

60
59

63
96

31
31

33
33

18
18

31
31

16
16

16
18

ψ
1,3

203
272

291
334

60
87

147
172

31
31

31
34

18
18

32
50

16
16

16
18

ψ
1,4

203
350

398
435

60
152

244
234

32
35

33
33

18
35

123
103

16
16

16
16

ψ
2

626
686

690
670

530
552

553
556

33
65

67
67

504
510

512
512

15
558

558
558

ψ
3

193
205

204
214

57
61

61
61

30
32

31
31

18
18

18
18

15
17

17
17

ψ
4,3

198
211

210
222

59
63

63
86

31
32

32
32

18
19

19
26

15
16

16
16

ψ
4,4

200
213

212
212

59
63

63
63

31
33

33
33

18
19

19
19

16
16

16
16

ψ
5

699
677

678
688

547
557

555
557

50
52

529
530

502
503

505
510

37
558

558
585

ψ
6

193
205

204
206

57
61

63
63

30
32

32
32

17
18

18
18

15
17

17
17

ψ
7,2

192
689

683
702

57
539

546
547

30
34

34
34

17
–

–
–

15
17

–
–

ψ
7,3

664
681

655
679

520
538

535
544

34
49

49
49

–
–

–
–

15
–

–
–

ψ
7,4

667
664

695
698

546
548

554
556

44
56

56
56

–
–

–
–

–
–

–
–

ψ
8

192
664

697
702

57
527

540
546

30
34

34
34

17
504

506
512

15
17

17
35

ψ
Trigo,2

192
204

679
654

57
61

150
537

30
31

35
35

17
18

76
50

15
17

17
17

ψ
Trigo,3

192
648

699
663

57
529

537
546

30
34

34
34

17
54

71
514

15
17

17
35

ψ
Trigo,4

597
655

679
689

57
530

546
545

30
37

37
37

17
502

504
501

15
17

60
–

ψ
Trigo/SR

,2,2
664

688
686

706
544

547
556

559
34

526
528

523
502

–
590

515
–

–
–

–
ψ

Trigo/SR
,3,2

669
687

697
699

543
546

561
560

34
527

529
527

509
508

533
601

–
561

–
–

ψ
Trigo/SR

,4,3
676

685
684

706
548

555
551

565
37

526
527

528
510

508
588

–
502

–
–

–
ψ

SR
,2

193
204

203
213

57
61

60
64

30
32

31
33

17
18

18
18

15
16

16
16

ψ
H

yper/SR
,2,2

191
202

207
209

57
61

63
208

30
31

31
31

17
18

18
18

15
16

16
16

ψ
H

yper/SR
,3,2

192
202

207
209

57
70

61
419

30
31

31
31

17
18

18
18

15
16

16
16

ψ
H

yper/SR
,4,3

191
201

205
210

57
66

414
125

30
31

31
31

17
18

18
18

15
16

16
16

ψ
H

yper,2
192

675
657

649
57

589
533

548
30

35
37

37
17

505
511

507
15

17
17

17
ψ

H
yper,3

192
682

679
674

57
535

529
547

30
34

34
34

17
73

109
109

15
17

35
503

ψ
H

yper,4
647

658
669

688
511

537
552

550
30

34
34

36
17

503
503

503
15

35
40

–
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Comments

Recall that the numerical results were obtained by performing Algorithm 2 with
the KFs defined in Table 2.2. We used bold font to highlight the best, i.e., the small-
est, iteration number. The dash (–) in Table 2.3 indicates that the algorithm requires
a huge number of iterations to obtain the optimal solution. By comparing the results
in Table 2.3, we can easily see that the algorithm based on our KF attains the most
wins, on average, among all considered algorithms. In particular, ψHyper/SR far out-
performed ψHyper. In fact, in all experiments ψHyper/SR doesn’t exceed 209 iterations
except in two cases, while ψHyper takes more than 500 iterations 28 times. This con-
firms that adding the SR barrier term to the hyperbolic barrier one has affected posi-
tively the number of iterations of the algorithm without reducing the performance of
the SR KF. But this is not always satisfied, as we can see for the trigonometric barrier
KF (compare the number of iterations of ψTrigo and ψTrigo/SR in Table 2.3) .

2.5 Comparative numerical tests between the new kernel func-
tions for solving SDO problems

In this section, we conduct comparative numerical experiments between the new
KFs provided in Table 1.22 for solving SDO problems. We have taken ϵ = 10−8,
τ =

√
n, and θ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. As in Section 2.4.3, we chose the practical

step size α [54]. Our purpose is to compare the computational performance of the
new hyperbolic KFs provided in Table 1.22 on the two test problems defined in Table
B.4 with different sizes m ∈ {5, 10, 15, 20} . The summary of results is given in the
following tables.
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T
A

B
L

E
2.4:N
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ofinner
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for
Exam

ple
SD

P1.

K
F

θ
=

0.1
θ
=

0.3
θ
=

0.5
θ
=

0.7
θ
=

0.9

m
5

10
15

20
5

10
15

20
5

10
15

20
5

10
15

20
5

10
15

20

ψ
1

192
664

697
702

57
527

540
546

30
34

34
34

17
504

506
512

15
17

17
35

ψ
2,2

198
211

211
211

59
63

63
63

30
32

32
32

18
19

19
19

16
16

16
16

ψ
2,3

197
210

210
210

59
63

63
63

30
32

32
32

18
19

19
19

16
16

16
16

ψ
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197
210

210
210

59
63

63
63

30
32

32
32

18
19

19
19

16
16

16
16

ψ
2, log

n
2

−
1

199
212
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211

59
63

63
63

31
33

33
33

18
19

19
19

16
16

16
16
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3,2

192
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649

57
589

533
548
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35

37
37

17
505

511
507

15
17

17
17

ψ
3,3

192
682

679
674

57
535

529
547

30
34

34
34

17
73

109
109

15
17

35
503

ψ
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647
658

669
688

511
537

552
550

30
34

34
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17
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503
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15
35
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–
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2
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1

197
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209
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58
62

62
62

30
32

32
32

18
19

19
19

16
16

16
16

ψ
4,2,2

191
202

207
209

57
61

63
208

30
31

31
31

17
18

18
18

15
16

16
16

ψ
4,3,2

192
202

207
209

57
70

61
419

30
31

31
31

17
18

18
18

15
16

16
16
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4,4,3

191
201

205
210

57
66
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30
31

31
31

17
18

18
18

15
16

16
16

ψ
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n,log
n

197
209

209
209

58
62

62
62

30
32

32
32

18
19

19
19

15
16

16
16

ψ
5

202
216

216
216

60
64

64
64

31
33

33
33

18
19

19
19

16
16

16
16
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0
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0
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32

32
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30
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0
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0
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−
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19
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0
21

0
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0
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62
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24
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3
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0
21
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0
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9
20
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Comments

Recall that the numerical results were obtained by performing Algorithm 2 with
the KFs defined in Table 1.22. We used bold font to highlight the best, i.e., the small-
est, iteration number. By comparing the results in Tables 2.4 and 2.5, we can easily
see that the algorithm based on ψ4,p,q attains the most wins, on average, among all
considered hyperbolic KFs. In particular, ψ4,4,3 achieved the smallest iteration num-
ber in 26 out of 40 cases. On the other hand, ψ5 exhibits poorer performance when
compared to the other functions under consideration.
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Infeasible primal-dual
interior-point algorithm for linear

optimization based on a kernel
function

In this chapter, we analyze a full-Newton step infeasible interior-point algorithm
(IIPA) for solving linear optimization (LO) problems based on the following hyper-
bolic kernel function (KF)

ψ (t) =
t2 − 1

4
−
∫ t

1

sinh(1)
2 sinh(y)

dy, ∀t > 0. (3.1)

This is the first KF whose barrier term is the integral of a hyperbolic function. See
[18, 37] for other KFs with similar forms.

Unlike feasible IPAs, this algorithm doesn’t need a feasible starting point. In
addition, the algorithm avoids a big-M or a two-phase approach. Each main iteration
of this algorithm involves a sequence of actions, including a feasibility step, and a
series of centrality steps.

The feasibility search directions are computed using the hyperbolic KF (3.1);
however, the centring search directions are obtained using the classical KF. Using
some mild properties, the complexity analysis for the primal-dual infeasible interior-
point method (IIPM) based on the proximity function induced by ψ indicates that
the iteration bound of the algorithm matches the currently best iteration bound for
IIPMs. We consolidate these theoretical results by performing some numerical ex-
periments. The results of this chapter were published in [38].

3.1 Introduction

The LO problem has gained growing attention in academic literature both from the
theoretical and computational points of view. This model has found extensive use
in modelling diverse problems across fields like economics, engineering, and opera-
tions research.

The first modelisation of an economic problem in the form of a LO problem was
made by the Russian mathematician L.V. Kantorovich (1939, [52]) and the general
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formulation was given later by the American mathematician G.B. Dantzig in his
work [22].

Various methods were proposed to solve LO problems. IPMs, that were first
developed by Karmarkar [53], are among the most popular methods. They are based
on using Newton’s method in a careful and controlled manner.

Initially, IPAs that necessitated a feasible initial-point were investigated [63, 75].
However, it is important to note that a feasible initial point is not generally available.
Lustig [70] offered a solution to this issue when he introduced the first infeasible-
start algorithm. His method was further refined in the predictor-corrector algorithm
of Mehrotra [74]. After that, Roos [90] presented a new IIPA, which uses only full-
Newton steps. Some variants on Roos’s approach were conducted by Liu and Sun
[67], Liu et al. [68] and Mansouri and Roos [71].

Salahi et al. [94] introduced a new IIPM for LO based on a specific self-regular KF.
Recently, Kheirfam and Haghighi [57, 58] and Moslemi and Kheirfam [76] studied
the complexity of trigonometric proximity based IIPMs for LO and SDO problems.

An alternative approach to determine new search directions was proposed by
Rigó and Darvay [23]. They presented a novel method that relies on an algebraic
transformation of the centering equation of the system, which defines the central
path.

3.2 Preliminaries

In this section, we present a brief description of the basics of IIPMs using KFs for
LO. We introduce crucial ideas and necessary tools, such as initial point, perturbed
problem, central path, and proximity measure. Let’s start with recalling the standard
LO problem

(P)


min cTx

Ax = b,

x ≥ 0,

and its dual problem

(D)


max bTy

ATy + s = c,

s ≥ 0,

where A ∈ Rm×n with rank(A) = m < n, c ∈ Rn and b ∈ Rm are given.
As discussed in Section 1.1, in feasible IPMs, a triple (x, y, s) is called an ϵ−

solution of (P) and (D) if
xTs = 0.

On the other hand, in IIPMs, a triple (x, y, s) is called an ϵ− solution of (P) and (D)
if the norms of the residual vectors rb = b − Ax and rc = c − ATy − s do not exceed
ϵ, with xTs ≤ ϵ. In other words, a feasible triple (x, y, s) is called an ϵ-solution of (P)
and (D) if

max{∥rb∥, ∥rc∥, xTs} ≤ ϵ.

Following the usual approach of IIPMs, we choose x0 > 0 and s0 > 0 such that
x0s0 = µ0e for some positive number µ0, while rb

0 and rc
0 denote the initial residual
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vectors. In this chapter, we select the initial iterates as follows:

x0 = s0 = ξe, y0 = 0, µ0 = ξ2, (3.2)

with µ0 the initial duality gap and ξ satisfies the following inequality

∥x∗ + s∗∥∞ ≤ ξ, for some optimal solution (x∗, y∗, s∗) of (P) and (D).

3.2.1 The perturbed problems

Following [90], for any ν with 0 < ν ≤ 1, we consider the pair of perturbed problems
(Pν) and (Dν)

(Pν)


min(c − νrc

0)Tx

Ax = b − νrb
0,

x ≥ 0,

(Dν)


max(b − νrb

0)Ty

ATy + s = c − νrc
0,

s ≥ 0.

Note that if ν = 1 then (Pν) and (Dν) satisfy the interior-point condition (IPC), i.e.,
(Pν) has a feasible solution x > 0 and (Dν) has a solution (y, s) with s > 0. This
implies that the triple (x, y, s) = (x0, y0, s0) yields a strictly feasible solution of the
pair of problems (Pν) and (Dν).

Theorem 3.2.1. ([106, Theorem 5.13]) The original problems (P) and (D) are feasible if
and only if for each ν satisfying 0 < ν ≤ 1 the perturbed problems (Pν) and (Dν) satisfy
the IPC.

Proof. We start with the first implication. Let’s suppose that (P) and (D) are
both feasible. Let x̄ be a feasible solution of (P) and (ȳ, s̄) a feasible solution of (D).
This implies that x̄ ≥ 0, s̄ ≥ 0 and

Ax̄ = b, AT ȳ + s̄ = c.

Now, let’s define the triplet (x, y, s) as follows

x = (1 − ν)x̄ + νx0, y = (1 − ν)ȳ + νy0, s = (1 − ν)s̄ + νs0,

with 0 < ν ≤ 1. x and s are obviously strictly positive since x̄, s̄ are positive and
x0, s0 are strictly positive. In addition,

Ax = (1 − ν)Ax̄ + νAx0 = (1 − ν)b + νAx0 = b − ν(b − Ax0),

which means that x is feasible for (Pν). In a similar way we have

ATy + s = (1 − ν)(AT ȳ + s̄) + ν(ATy0 + s0)

= (1 − ν)c + ν(ATy0 + s0)

= c − ν(c − ATy0 − s0),

indicating that (y, s) is feasible for (Dν). Hence, (Pν) and (Dν) verify the IPC.
For the inverse implication, we suppose that for each 0 < ν ≤ 1, (Pν) and (Dν) verify
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the IPC. This implies that for each 0 < ν ≤ 1, (Pν) and (Dν) are feasible. Letting ν
go to zero, it can be deduced that both (P) and (D) are feasible.

3.2.2 The central path of the perturbed problems

In what follows, we assume that (P) and (D) are feasible. Then, Theorem 3.2.1
implies that for every 0 < ν ≤ 1, the perturbed problems (Pν) and (Dν) satisfy the
IPC. Therefore, using Theorem 1.1.1, it follows that there exists an optimal solution
for the pair of problems (Pν) and (Dν). In addition, finding an optimal solution of
(Pν) and (Dν) is equivalent to solving the non-linear system of equations

b − Ax = νrb
0, x ≥ 0,

c − ATy − s = νrc
0, s ≥ 0,

xs = µe, µ > 0.

(3.3)

The set of unique solutions

{(x(µ, ν), y(µ, ν), s(µ, ν)) : µ > 0, 0 < ν ≤ 1},

defines the central path with (x(µ, ν), y(µ, ν), s(µ, ν)) denote the µ-centers of (Pν)
and (Dν). In the sequel, the parameters µ and ν always satisfy the relation µ = νµ0

and we denote (x(µ, ν), y(µ, ν), s(µ, ν)) = (x(ν), y(ν), s(ν)) for simplicity purposes.
It can be noticed from system (3.3) that the parameters ν and µ control the feasibility
and the optimality, respectively. In addition, taking ν = 0 and thus µ = 0, system
(3.3) coincides with the KKT system (1.1) in Section 1.1.

3.2.3 An iteration of the algorithm

Before we define the search directions, we showcase the outline of one iteration of
the IIPA. Starting by the initialization defined in (3.2), each main iteration consists
of a so-called feasibility step, a µ-update and a few centrality steps. The feasibility
step provides iterates (x f , y f , s f ) that are strictly feasible for (Pν+) and (Dν+), with
ν+ = (1 − θ)ν and θ ∈]0, 1[. These iterates belong to the quadratic convergence re-
gion with respect to the µ+-center of (Pν+) and (Dν+), with µ+ = ξ2ν+. After that,
we apply a limited number of centering steps (at most 5 centering steps). These
centering steps produces iterates (x+, y+, s+) that are strictly feasible for (Pν+) and
(Dν+), and such that δ(x+, s+; µ+) ≤ τ. This process is repeated until the duality
gap xTs and the norms of the residual vectors rb and rc are less than some prescribed
accuracy parameter ϵ.

A graphical illustration of an iteration of the algorithm is given by Figure 3.1. The
straight lines depict the central paths of the pairs (Pν) and (Dν) and (Pν+) and (Dν+).
The dark gray circles represents the τ−neighbourhoods of the µ and µ+-centers. The
proximity measure δ(x, s; µ), denoted by Φ(x, s; µ) in the graphical illustration, will
be defined later in the centrality step.

The region in light gray shows the quadratically convergent region of the µ+-
center of (Pν+) and (Dν+). The quadratically convergent region of the µ+-center is
the set of primal-dual (feasible) pairs (x f , s f ) satisfying

δ(x f , s f ; µ+) ≤ τ f .
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The Newton steps are illustrated by the arrows and the iterates by the circles. Each
iteration starts at a point inside the τ−neighbourhood of the µ-centers of (Pν) and
(Dν). After a feasibility step, one gets iterates inside the light gray region. Using
a few centering steps, one obtains iterates in the dark gray neighbourhood of the
µ+-center of (Pν+) and (Dν+).

FIGURE 3.1: An illustration of an iteration of the algorithm

3.2.4 Feasibility step

To generate iterates (x f , y f , s f ) that are strictly feasible for (Pν+) and (Dν+), we have
to solve the following system of equations

A∆ f x = θνr0
b,

AT∆ f y + ∆ f s = θνr0
c ,

s∆ f x + x∆ f s = µe − xs.

(3.4)

This system has a unique solution (∆ f x, ∆ f y, ∆ f s). The feasible new iterates are then
defined by

x f = x + ∆ f x, y f = y + ∆ f y, s f = s + ∆ f s. (3.5)

Let the scaled search directions d f
x and d f

s be defined as follows:

v =

√
xs
µ

, d f
x =

v∆ f x
x

, d f
s =

v∆ f s
s

. (3.6)
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Using these definitions, system (3.4) is then rewritten in the following form
Ad f

x = θνr0
b,

AT ∆ f y
µ + d f

s = θνvs−1r0
c ,

d f
x + d f

s = v−1 − v,

(3.7)

where A = AV−1X, V = diag(v) and X = diag(x).
Observe that the right-hand side in the last equation of (3.7) is equal to minus gradi-
ent of the classical logarithmic scaled barrier (proximity) function

Ψ(v) =
n

∑
i=1

ψc(vi), (3.8)

where

ψc(t) =
t2 − 1

2
− log t,

is the so-called KF of the barrier function Ψ(v).
Coming back to system (3.7), we can convert it to

Ad f
x = θνr0

b,

AT ∆ f y
µ + d f

s = θνvs−1r0
c ,

d f
x + d f

s = −∇Ψ(v).

(3.9)

Similarly to Section 1.1, we replace ψc by the KF ψ defined in (3.1). The correspond-
ing proximity function Ψ is then obtained by replacing ψc by ψ in (3.8). We also
define a new proximity mesure based on this KF, as follows:

σ(x, s; µ) = σ(v) =
∥∥∥d f

x + d f
s

∥∥∥ = ∥∇Ψ(v)∥ =

∥∥∥∥ sinh(e)
2 sinh(v)

− v
2

∥∥∥∥ . (3.10)

We can easily verify that

σ(v) = 0 ⇔ ∇Ψ(v) = 0 ⇔ v = e.

This implies that σ can be indeed considered as a proximity measure.

3.2.5 Centrality step

After the feasibility step, we perform some centring steps to get new iterates in the
desired τ- neighbourhood of the µ+-center. Starting with (x, y, s) = (x f , y f , s f ), the
centring step is obtained by taking full steps with the search direction (∆x, ∆y, ∆s)
solution of the following Newton system

A∆x = 0,

AT∆y + ∆s = 0,

s∆x + x∆s = µe − xs.

(3.11)
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Following this centrality step, the new point (x+, y+, s+) is then computed according
to

x+ = x + ∆x, y+ = y + ∆y, s+ = s + ∆s. (3.12)

For convenience, we introduce the following scaled vector v and scaled search direc-
tions dx and ds

v =

√
xs
µ

, dx =
v∆x

x
, ds =

v∆s
s

. (3.13)

Using (3.13), system (3.11) can be transformed into the following form
Adx = 0,

AT ∆y
µ + ds = 0,

dx + ds = v−1 − v,

(3.14)

where A = AV−1X, V = diag(v) and X = diag(x). The third equation in (3.14) is
called the scaled centering equation.

Defining the proximity mesure δ as follows:

δ(x, s; µ) := δ(v) :=
1
2
∥v−1 − v∥. (3.15)

This proximity mesure was first used by Jansen et al. [51] and later, with some minor
modifications, by Roos et al. [92].

Note that
v = e ⇔ xs = µe.

This means that the variance vector v is the all-one vector if and only if the iterates x
and (y, s) are the µ-centers. In addition,

δ(v) = 0 ⇔ v = e,

which implies that δ vanishes only at the µ-center. Alternatively, it can be expressed
as

δ(v) = 0 ⇔ v = e ⇔ xs = µe.

As a consequence, we can use δ to measure the distance between an iterate (x, y, s)
and the µ-center of the perturbed problem pair (Pν) and (Dν).

We end this section by providing a brief description of the algorithm correspond-
ing to the primal-dual IIPM based on KFs summarized in Algorithm 3. Starting with
(x0, y0, s0) defined in (3.2), we solve system (3.9) and use (3.6) and (3.5) to obtain
(x f , y f , s f ) that are strictly feasible for (Pν+) and (Dν+), with ν+ = (1 − θ)ν and
θ ∈]0, 1[. The iterate (x f , y f , s f ) verifies δ(x f , s f , µ+) ≤ 1

4√2
. Then, we reduce µ to

µ+ := (1 − θ)µ for some fixed 0 < θ < 1. After that, we perform some centring
steps. In each centering step, we solve the system (3.14) to obtain the search direc-
tion (dx, ∆y, ds). Then, we use notations (3.13) to obtain (∆x, ∆s). The new iterate
(x+, y+, s+) is computed using (3.12). The centring step is repeated until δ(v+) ≤ τ.
Then, we let (x, y, s) = (x+, y+, s+). This procedure is repeated until the duality gap
xTs and the norms of the residual vectors rb and rc are less than some prescribed
accuracy parameter ϵ. In this case, an ϵ-approximate optimal solution of problems
(P) and (D) is found.



108 Chapter 3. Infeasible primal-dual IPA for LO based on a kernel function

Algorithm 3 : Primal-Dual Infeasible Interior-Point Algorithm for Linear Optimiza-
tion

Input
a threshold parameter τ > 0;
an accuracy parameter ϵ > 0;
a fixed barrier update parameter θ ∈]0, 1[;
an initialization parameter ξ > 0.

begin
x := ξe, y := 0, s := ξe, ν := 1;

while max(xTs, ∥b − Ax∥, ∥c − ATy − s∥) ≥ ϵ

begin
feasibility step:

Solve system (3.7) to get (d f
x, ∆ f y, d f

s );

Use (3.6) to obtain (∆ f x, ∆ f s);

(x, y, s) := (x, y, s) + (∆ f x, ∆ f y, ∆ f s);

µ−update:

µ : = (1 − θ)µ;

centering steps:
while δ(x, s; µ) > τ

Solve system (3.14) to get (dx, ∆y, ds);

Use (3.13) to obtain (∆x, ∆s);

(x, y, s) := (x, y, s) + (∆x, ∆y, ∆s);

end while (inner iteration)

end while (outer iteration)

end
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3.3 Analysis of the algorithm

In this section, we prove that the IIPM based on the new KF (3.1) is well defined. Ini-
tially, we present some technical lemmas that we need in the complexity analysis of
the algorithm. Subsequently, we establish the strict feasibility of the iterates derived
from the feasibility step. Following this, we establish an upper limit on the number
of iterations necessary for the algorithm to achieve an optimal solution.

3.3.1 Technical lemmas

The algorithm’s analysis relies heavily on the proximity measure δ defined in (3.15).
In what follows, we denote δ(x, s; µ) simply by δ. Then, we recall the following two
pivotal lemmas. The first lemma provides a simple bound on the coordinates of the
vector v defined in (3.13) in terms of the proximity measure δ. Whereas the second
lemma describes the improvement in the proximity after a feasible Newton step.

Lemma 3.3.1. ([92, Lemma II.60]) Let ρ(δ) := δ +
√

1 + δ2. Then

1
ρ(δ)

≤ vi ≤ ρ(δ), i = 1, . . . , n.

Proof. From the definition of v, we can conclude that

vi ≥ 0, i = 1, . . . , n.

In addition

δ(v) =
1
2

∥∥∥v−1 − v
∥∥∥ =

1
2

∥∥∥∥ e − v2

v

∥∥∥∥ .

Using some simple calculations as well as the Hölder inequality, we get

−2δvi ≤ 1 − v2
i ≤ 2δvi,

which implies that

(vi − δ)2 − 1 − δ2 ≤ 0 ≤ (vi + δ)2 − 1 − δ2,

and
(vi − δ)2 ≤ 1 + δ2 ≤ (vi + δ)2.

Thus,
vi − δ ≤ |vi − δ| ≤

√
1 + δ2 ≤ vi + δ.

Therefore, it follows that
vi ≤

√
1 + δ2 + δ = ρ(δ),

and
vi ≥

√
1 + δ2 − δ =

1√
1 + δ2 + δ

=
1

ρ(δ)
.

Lemma 3.3.2. ([92, Lemma II.51]) If δ ≤ 1, then the primal-dual Newton step is feasible,
i.e. x+ and s+ are nonnegative and (x+)Ts+ = nµ. Moreover, if δ < 1, then

δ(x+, s+; µ) ≤ δ2√
2(1 − δ4)

.
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Remark 3.3.3. The previous lemma presents a sharper version of Lemma II.49 in [92]. The
latter was used in the complexity analysis of the IIPA proposed in [90].

A direct consequence of this lemma is the following corollary.

Corollary 3.3.4 ([58]). If δ ≤ 1
4√2

then δ(x+, s+; µ) ≤ δ2 and

δ(x+, s+; µ+) ≤
(

1
4
√

2

)2k

.

Proof. The first part of the corollary is a direct consequence of Lemma 3.3.2. For
the second part, recall that after the feasibility step we perform centering steps in
order to get iterates (x+, y+, s+) that satisfy x+Ts+ = nµ+ and

δ(x+, s+; µ+) ≤ τ.

Assuming that δ = δ(x f , s f ; µ+) ≤ 1
4√2

, after k centering steps we get iterates

(x+, y+, s+) that are still feasible for (Pν+) and (Dν+) and that satisfy

δ(x+, s+; µ+) ≤
(

1
4
√

2

)2k

.

Remark 3.3.5. From Corollary 3.3.4, it follows that δ(x+, s+; µ+) ≤ τ will holds after

2 + [log2(log2
1
τ
)]

centering steps.

Recall that ψ is defined for all t > 0 as follows

ψ (t) =
t2 − 1

4
−
∫ t

1

sinh(1)
2 sinh(y)

dy.

For all t > 0, differentiating ψ two times we get

ψ′(t) =
t
2
− sinh(1)

2 sinh(t)
,

ψ′′(t) =
1
2
+

sinh(1) cosh(t)
2 sinh2(t)

≥ 1.

Clearly, ψ′ (1) = ψ (1) = 0, lim
t→0+

ψ (t) = lim
t→+∞

ψ (t) = +∞ and ψ′′ (t) > 0, ∀t > 0.

Thus, according to Definition 1.1.5, ψ is indeed a KF.
The complexity analysis of our algorithm relies heavily on the following lemma.

Lemma 3.3.6. One has ∣∣∣∣ t
2
− sinh(1)

2 sinh(t)

∣∣∣∣ ≤ ∣∣∣∣t − 1
t

∣∣∣∣ , ∀t > 0. (3.16)
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Proof. It’s clear that (3.16) is satisfied for t = 1. Let g be the function defined for
t > 0 as follows:

g(t) =
∣∣∣∣ t
2
− sinh(1)

2 sinh(t)

∣∣∣∣− ∣∣∣∣t − 1
t

∣∣∣∣
=


1
t
− t

2
− sinh(1)

2 sinh(t)
, ∀t ≥ 1,

t
2
+

sinh(1)
2 sinh(t)

− 1
t

, ∀t ≤ 1.

For this function, we have

g′(t) =


sinh(1) coth(t)

2 sinh(t)
−
(

1
t2 +

1
2

)
, ∀t > 1,(

1
t2 +

1
2

)
− sinh(1) coth(t)

2 sinh(t)
, ∀t < 1.

An important observation is that lim
t→0+

g(t) = lim
t→+∞

g(t) = −∞ and g(1) = 0. So, to

prove the inequality (3.16), it suffices to verify that

g′(t) > 0, ∀0 < t < 1, and g′(t) < 0, ∀t > 1.

We start by the case t > 1. Since the function t 7→ sinh(t) is monotonically increasing,
this implies that

g′(t) <
t2(coth(t)− 1)− 2

2t2 =:
h(t)
2t2 .

By deriving h, and using inequality (1.28) from Lemma 1.3.1, we can easily prove
that h(t) < 0, ∀t > 1.
Now, we move to the second case, i.e., t < 1. We rewrite g′ as follows:

g′(t) =
(t2 + 2) sinh2(t)− sinh(1)t2 cosh(t)

2t2 sinh2(t)

=
t2 sinh2(t) +

(
2 sinh2(t)− sinh(1)t2 cosh(t)

)
2t2 sinh2(t)

>
t2 sinh2(t) +

(
2 sinh2(t)− sinh(1) cosh(1)t2

)
2t2 sinh2(t)

>
t2 sinh2(t) + 2

(
sinh2(t)− t2

)
2t2 sinh2(t)

> 0,

where the inequalities are obtained using the increase of the hyperbolic cosine func-
tion on [0,+∞[, the fact that sinh(1) cosh(1) < 2, and that sinh(t) ≥ t, for all t > 0.
This completes the proof.

Remember that, in this chapter, we retain the logarithmic barrier function and its
proximity measure δ, despite introducing a new KF to define the feasibility step. The
previous lemma provides an important feature of ψ which enables us to provide an
upper bound for the proximity measure σ in terms of δ in the following result

Lemma 3.3.7. One has
σ(v) ≤ 2δ(v).
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Proof. The inequality is directly obtained using Lemma 3.3.6 and definitions
(3.10) and (3.15).

3.3.2 Analysis of the feasibility step

In this subsection, we demonstrate that following the feasibility step, the new it-
erates (x f , y f , s f ) are strictly positive and fall within the quadratically convergent
region of the µ+-center of (Pν+) and (Dν+), i.e.

δ(x f , s f ; µ+) ≤ 1
4
√

2
.

Recall that from (3.9)

d f
x + d f

s = −∇Ψ(v) =
(

sinh(e)
2 sinh(v)

− v
2

)
.

Hence, using (3.5) and (3.6) we may write

x f s f =
xs
v2 (v + d f

x)(v + d f
s )

= µ(v2 + v(d f
x + d f

s ) + d f
xd f

s )

= µ

(
v2 + v

(
sinh(e)

2 sinh(v)
− v

2

)
+ d f

xd f
s

)
= µ

(
v2

2
+

v sinh(e)
2 sinh(v)

+ d f
xd f

s

)
. (3.17)

In the next lemma, we provide a sufficient condition to guarantee the strict feasi-
bility of the feasibility step.

Lemma 3.3.8. The new iterates (x f , y f , s f ) are strictly feasible if

v2

2
+

v sinh(e)
2 sinh(v)

+ d f
xd f

s > 0. (3.18)

Proof. Let us define

xα = x + α∆ f x, yα = y + α∆ f y, sα = s + α∆ f s,

with 0 ≤ α ≤ 1 a step length. Taking α = 0 (α = 1), we get x0 = x (x1 = x f )
respectively and x0s0 > 0. Hence, using notations (3.6), (3.5) and inequality (3.18),
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we have

xαsα = µ(v + αd f
x)(v + αd f

s )

= µ
(

v2 + αv(d f
x + d f

s ) + α2d f
xd f

s

)
= µ

(
v2 + α

(
v sinh(e)
2 sinh(v)

− v2

2

)
+ α2d f

xd f
s

)
> µ

(
v2 + α

(
v sinh(e)
2 sinh(v)

− v2

2

)
+ α2

(
−v2

2
− v sinh(e)

2 sinh(v)

))
> µ

(
v2 + α

v sinh(e)
2 sinh(v)

− α
v2

2
− α2 v2

2
− α2 v sinh(e)

2 sinh(v)

)
> µ

(
v2 + α

v sinh(e)
2 sinh(v)

− α
v2

2
− α

v2

2
− α2 v sinh(e)

2 sinh(v)

)
= µ

(
(1 − α)v2 + α(1 − α)

v sinh(e)
2 sinh(v)

)
.

Since
v sinh(e)
2 sinh(v)

≥ 0, ∀v > 0, it follows that

(
(1 − α)v2 + α(1 − α)

v sinh(e)
2 sinh(v)

)
≥ 0.

Hence, we may conclude that for every α ∈ [0, 1], xαsα > 0 which means that none
of the components of xα and sα vanishes. Putting α = 1, we obtain x f > 0 and
s f > 0.

In the rest of the chapter, we denote

ω := ∥(ω1, ..., ωn)∥,

and
δ(x f , s f ; µ+) := δ(v f ) =

1
2
∥(v f )−1 − v f ∥,

where

ωi =
1
2

√
|d f

xi |2 + |d f
si |2 and v f =

√
x f s f

µ+
.

Remark 3.3.9. One has

|d f
xi d

f
si | ≤

1
2

(
|d f

xi |
2 + |d f

si |
2
)
= 2ωi

2 ≤ 2ω2, i = 1, . . . , n.

In the subsequent lemma, we present an upper bound for δ after the feasibility
step.

Lemma 3.3.10. If
v2

2
+

v sinh(e)
2 sinh(v)

+ d f
xd f

s > 0, then

δ(v f ) ≤ θ
√

n + 4δρ(δ) + 2ω2

2
√
(1 − θ)

(
1

ρ(δ)2 − 2δρ(δ)− 2ω2
) .
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Proof. From (3.15) we have

δ(v f ) =
1
2
∥(v f )−1 − v f ∥ ≤ 1

2v f
min

∥e − (v f )2∥. (3.19)

Using (3.17) and Remark 3.3.9, it follows that

∥e − (v f )2∥ ≤ 1
1 − θ

∥∥∥∥(1 − θ)e − v2

2
− v sinh(e)

2 sinh(v)
− d f

xd f
s

∥∥∥∥
=

1
1 − θ

∥∥∥∥(e − v2)− θe + v
(

v
2
− sinh(e)

2 sinh(v)

)
− d f

xd f
s

∥∥∥∥
=

1
1 − θ

∥∥∥∥v(v−1 − v)− θe + v
(

v
2
− sinh(e)

2 sinh(v)

)
− d f

xd f
s

∥∥∥∥
≤ 1

1 − θ

(
∥v(v−1 − v)∥+ θ

√
n +

∥∥∥∥v
(

v
2
− sinh(e)

2 sinh(v)

)∥∥∥∥+ 2ω2
)

. (3.20)

Furthermore, using (3.15), Lemma 3.3.1 and Lemma 3.3.6 we get the following in-
equalities ∥∥∥∥v

(
1
v
− v
)∥∥∥∥2

=
n

∑
i=1

∣∣∣∣vi

(
1
vi

− vi

)∣∣∣∣2
≤ ρ(δ)2

n

∑
i=1

∣∣∣∣ 1
vi

− vi

∣∣∣∣2
= 4ρ(δ)2δ2, (3.21)

and ∥∥∥∥v
(

v
2
− sinh(e)

2 sinh(v)

)∥∥∥∥2

=
n

∑
i=1

∣∣∣∣vi

(
vi

2
− sinh(1)

2 sinh(vi)

)∣∣∣∣2
≤ ρ(δ)2

n

∑
i=1

∣∣∣∣ 1
vi

− vi

∣∣∣∣2
= 4ρ(δ)2δ2. (3.22)

Substituting inequalities (3.21) and (3.22) into (3.20) produces the following inequal-
ity ∥∥∥e − (v f )2

∥∥∥ ≤ 1
1 − θ

(
4ρ(δ)δ + θ

√
n + 2ω2) . (3.23)
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In addition, using the definition of v f and (3.17), we have

(v f
min)

2 = min
i

1
1 − θ

(
vi

2

2
+

vi sinh(1)
2 sinh(vi)

+ d f
xi d

f
si

)
= min

i

1
1 − θ

(
vi

2

2
+

vi
2

2
− vi

2

2
+

vi sinh(1)
2 sinh(vi)

+ d f
xi d

f
si

)
= min

i

1
1 − θ

(
vi

2 −
(

vi
2

2
− vi sinh(1)

2 sinh(vi)

)
+ d f

xi d
f
si

)
≥ 1

1 − θ

(
v2

min −
∥∥∥∥v2

2
− v sinh(e)

2 sinh(v)

∥∥∥∥− 2ω2
)

≥ 1
1 − θ

(
1

ρ(δ)2 − 2ρ(δ)δ − 2ω2
)

, (3.24)

where the last inequality results from Lemma 3.3.1 with (3.22). Hence, by substitut-
ing (3.23) and (3.24) into (3.19), we arrive at the desired inequality.

Corollary 3.3.11. Let n ≥ 2, δ ≤ τ. Choosing τ =
1
16

, ω ≤ 1
2
√

2
and θ =

α

4
√

n
with

α ≤ 1, we have

1. the iterates (x f , y f , s f ) obtained after feasibility step are strictly feasible, i.e., x f s f > 0.

2. after the feasibility step, the new iterates (x f , y f , s f ) are within the region where the
Newton process targeting at the µ+-centers of (Pν+) and (Dν+), is quadratically con-

vergent, i.e., δ(v f ) ≤ 1
4
√

2
.

Proof. Recall from Lemma 3.3.8 that the new iterates (x f , y f , s f ) are strictly fea-
sible if

v2

2
+

v sinh(e)
2 sinh(v)

+ d f
xd f

s > 0. (3.25)

Thus, we need to verify that the inequality (3.25) is satisfied. Using (3.24), we get

min
i

(
vi

2

2
+

vi sinh(1)
2 sinh(vi)

+ d f
xi d

f
si

)
≥
(

1
ρ(δ)2 − 2ρ(δ)δ − 2ω2

)
≥
(

1
ρ(τ)2 − 2ρ(τ)τ − 2ω2

)
≃ 0.4995 > 0,

where the second inequality is obtained using the fact that ρ(δ) is monotonically
increasing with respect to δ. Therefore, for all i = 1, . . . , n

0 < min
i

(
vi

2

2
+

vi sinh(1)
2 sinh(vi)

+ d f
xi d

f
si

)
≤
(

vi
2

2
+

vi sinh(1)
2 sinh(vi)

+ d f
xi d

f
si

)
,
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which implies that inequality (3.25) is satisfied. Thus, the first item is proved.
Concerning the second item, using (3.25) and Lemma 3.3.10 we have

δ(v f ) ≤

1
4
+

1
4

(
1
16

+

√
1 +

1
162

)
+

1
4

2

√√√√√√√√√√
(

1 − 1
4
√

2

)


1(
1
16

+

√
1 +

1
162

)2 −

(
1
16

+

√
1 +

1
162

)
8

− 1
4


≤ 0.5974 ≤ 1

4
√

2
.

In the following part of this chapter, let’s assume that

τ =
1

16
, ω ≤ 1

2
√

2
and θ =

α

4
√

n
with α ≤ 1.

3.3.3 Upper bounds for ω and ∥q∥
In this subsection, we will adopt the same approach as outlined in Section 4.3 of [90].
Let L be the null space of the matrix Ā. It should be noted that the affine space

{ξ ∈ Rn : Āξ = θνrb
0},

is equal to d f
x + L. Moreover, the row space of Ā is equal to the orthogonal comple-

ment L⊥ of L defined as follows:

L⊥ =
{

ĀTz : z ∈ Rm
}

.

A clear observation is that d f
s ∈ θνvs−1rc

0 + L⊥. Additionally, L⊥ ∩ L = {0}. As a
result, the affine spaces d f

x + L and d f
s + L⊥ have a unique common point q, i.e., q is

the solution of the system  Aq = θνrb
0,

ATz + q = θνvs−1rc
0.

(3.26)

Lemma 3.3.12. Let q be the unique solution of (3.26). Then,

ω ≤ 1
2

√
∥q∥2 + (∥q∥+ σ(v))2.

Proof. The lemma is obtained using the same arguments as in Lemma 4.6 in [90]
with r = −∇Ψ(v). For q = 0, the inequality is satisfied with equality.

Assuming that q ̸= 0, let us denote

r = d f
x + d f

s = v−1 − v = −∇Ψ(v).
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FIGURE 3.2: Geometric interpretation of ω := ω(v)

Considering that
L⊕L⊥ = Rn,

and that r, q ∈ Rn, we can write

r = r1 + r2, q = q1 + q2,

with q1, r1 ∈ L and q2, r2 ∈ L⊥.
However, since d f

x − q ∈ L and d f
s − q ∈ L⊥, it follows that there exists l1 ∈ L and

l2 ∈ L⊥ such that
d f

x = q + l1, d f
s = q + l2.

This implies that

r = 2q + l1 + l2 = 2q1 + 2q2 + l1 + l2 = r1 + r2.

As the decomposition L+ L⊥ = Rn is unique, we can deduce that

l1 = r1 − 2q1, l2 = r2 − 2q2.

Therefore, we get
d f

x = q + r1 − 2q1 = (r1 − q1) + q2,

and
d f

s = q + r2 − 2q2 = (r2 − q2) + q1.
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Using the fact that L and L⊥ are orthogonal, we obtain

4ω(v)2 = ∥d f
x∥2 + ∥d f

s ∥2 = ∥r1 − q1∥2 + ∥q2∥2 + ∥q1∥2 + ∥r2 − q2∥2 = ∥q− r∥2 + ∥q∥2.

Since ∥r∥ = σ(v), we deduce that the maximum value of the right-hand side
∥q − r∥2 + ∥q∥2 is attained when

r =
−σ(v)q
∥q∥ .

Consequently, we derive that

4ω(v)2 ≤
∥∥∥∥(1 +

σ(v)
∥q∥

)
q
∥∥∥∥2

+ ∥q∥2 = ∥q∥2 + (∥q∥+ σ(v))2.

Lemma 3.3.13. ([90, Lemma 4.7]) One has

√
µ∥q∥ ≤ θνξ

√
eT
( x

s
+

s
x

)
.

Proof. Recall that A = AV−1X with V = diag(v) and X = diag(x). We can
express A as follows

A =
√

µAD,

with

D = diag
(

xv−1
√

µ

)
= diag

(√
x
s

)
= diag

(√
µvs−1

)
.

For now, let us put
rb = θνr0

b, rc = θνr0
c .

Using these notations, system (3.26) is rewritten in the following form
√

µADq = rb,
√

µDATz + q = 1
µ Drc.

It follows that
µAD2ATz = AD2rc − rb,

which implies that

z =
1
µ
(AD2AT)−1(AD2rc − rb).

Hence,

q =
1
µ

(
Drc − DAT(AD2AT)−1(AD2rc − rb)

)
.

We can easily verify that

q1 =
(

Drc − DAT(AD2AT)−1AD2rc

)
=
(

I − DAT(AD2AT)−1AD
)

Drc,

is the orthogonal projection of Drc onto the null space of AD.
Let (x̄, ȳ, s̄) be such that Ax̄ = b and AT ȳ + s̄ = c. Then we may rewrite rb and rc as
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follows
rb = θνr0

b = θν(b − Ax0) = θνA(x̄ − x0),

rc = θνr0
c = θν(c − ATy0 − s0) = θν(AT(ȳ − y0) + s̄ − s0).

DAT(ȳ − y0) belongs to the row space of AD, which is orthogonal to the null space
of AD, hence

∥q1∥ ≤ θν∥D(s̄ − s0)∥.

Moreover, the vector

q2 = DAT(AD2AT)−1rb = θνDAT(AD2AT)−1AD(D−1(x̄ − x0)),

is the orthogonal projection of θνD−1(x̄ − x0) onto the row space of AD. Therefore,

∥q2∥ ≤ θν∥D−1(x̄ − x0)∥.

Hence, using the fact that
√

µq = q1 + q2 q1 and q2 are orthogonal, we get

√
µ∥q∥ =

√
∥q1∥2 + ∥q2∥2 ≤ θν

√
∥D−1(x̄ − x0)∥2 + ∥D(s̄ − s0)∥2.

Taking x̄ = x∗ and s̄ = s∗, and using the fact that

∥x∗ + s∗∥∞ ≤ ξ,

it follows that the entries of the vectors x0 − x̄ and s0 − s̄ satisfy

0 ≤ x0 − x̄ ≤ ξe, 0 ≤ s0 − s̄ ≤ ξe.

As a consequence, we obtain√
∥D−1(x̄ − x0)∥2 + ∥D(s̄ − s0)∥2 ≤ ξ

√
∥D−1e∥2 + ∥De∥2 = ξ

√
eT
( x

s
+

s
x

)
,

which implies that

√
µ∥q∥ ≤ θν

√
∥D−1(x̄ − x0)∥2 + ∥D(s̄ − s0)∥2 ≤ θνξ

√
eT
( x

s
+

s
x

)
.

Corollary 3.3.14. ([58, Corollary 3.10]) Let τ =
1
16

and δ(v) ≤ τ. Then

√
x
s
≤

√
2

x(µ, ν)
√

µ
,
√

s
x
≤

√
2

s(µ, ν)
√

µ
.

Recall that δ(v f ) ≤ 1
4√2

holds if ω ≤ 1
2
√

2
. Using Lemma 3.3.12 and Lemma 3.3.7,

this will certainly holds if

∥q∥2 + (∥q∥+ 2δ)2 ≤ 1
2

.

Or from Lemma 3.3.13 and Corollary 3.3.14, it follows that

µ∥q∥ ≤ θνξ
√

2
√
∥x(µ, ν)∥2 + ∥s(µ, ν)∥2.



120 Chapter 3. Infeasible primal-dual IPA for LO based on a kernel function

As in [90], using µ = µ0ν = νξ2 and θ = α
4
√

n , we obtain the following upper bound
for the norm q

∥q∥ ≤
√

2α

4ξ
√

n

√
∥x(µ, ν)∥2 + ∥s(µ, ν)∥2

=
α

2ξ
√

2n

√
∥x(µ, ν)∥2 + ∥s(µ, ν)∥2.

Let us denote

κ(ξ, ν) =

√
∥x(µ, ν)∥2 + ∥s(µ, ν)∥2

ξ
√

2n
; 0 < ν ≤ 1, µ = µ0ν,

and
κ̄(ξ) = max

0<ν≤1
κ(ξ, ν).

We rewrite the upper bound for the norm q as follows

∥q∥ ≤ 1
2

ακ̄(ξ).

After some calculations, we conclude that

δ(v f ) ≤ 1
4
√

2
if ∥q∥ ≤ 0.4336.

However since ∥q∥ ≤ 1
2 ακ̄(ξ), the latter inequality will be satisfied if

α :=
0.8672
κ̄(ξ)

. (3.27)

The following result gives a range for the parameter κ̄(ξ). We follow the technics
from Section 4.6 of [90].

Lemma 3.3.15. One has
1 ≤ κ̄(ξ) ≤

√
2n.

Proof. From initialization (3.2), we get κ(ξ) = 1. This yields the left-hand side
of the inequality. For the other side, let x∗ be an optimal solution of (P) and (y∗, s∗)
an optimal solution of (D). For simplicity, we denote x = x(µ, ν), y = y(µ, ν) and
s = s(µ, ν). Hence, the triple (x, y, s) is the unique solution of the following system

A(x∗ − x − νx∗ + νξe) = 0, x ≥ 0,

AT(y∗ − y − νy∗) = s − s∗ + νs∗ − νξe, s ≥ 0,

xs = νξ2e, µ > 0.

Using the fact that the row space of a matrix and its null space are orthogonal, we
get

((1 − ν)x∗ − x + νξe)T(s − (1 − ν)s∗ − νξe) = 0. (3.28)

Let us define

a1 = (1 − ν)x∗ + νξe ≥ νξe,
a2 = (1 − ν)s∗ + νξe ≥ νξe.
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From (3.28), we get
aT

1 a2 = aT
1 s + aT

2 x. (3.29)

Therefore, since x∗Ts∗ = 0 and x∗ + s∗ ≤ ξe we can obtain

aT
1 a2 + xTs = ((1 − ν)x∗ + νξe)T((1 − ν)s∗ + νξe) + νξ2n

≤ 2νξ2n. (3.30)

In addition, we can easily verify that

aT
1 s + aT

2 x = ((1 − ν)x∗ + νξe)Ts + ((1 − ν)s∗ + νξe)Tx

≥ νξeT(x + s) = νξ(∥x∥1 + ∥s∥1). (3.31)

Using (3.29), (3.30) and (3.31) it follows that

(∥x∥1 + ∥s∥1) ≤ 2ξn.

Using the equivalence between the Euclidean norm and the 1-norm, we get the final
inequality.

3.3.4 Iteration bound

We arrive at the final result of this section which summarizes the complexity bound.
As we found in the previous sections, starting from an iterate (x, y, s) satisfying
δ(x, s; µ) ≤ τ with τ and θ defined previously, the new iterate (x f , y f , s f ) is strictly
feasible and δ(x f , s f ; µ+) ≤ 1

4√2
. Moreover, according to Remark 3.3.5, the number of

centrality steps needed to obtain iterates (x+, y+, s+) satisfying δ(x+, s+; µ+) ≤ τ is
at most 5. Therefore, the total number of main iterations is bounded by

1
θ

log
max{(x0)Ts0, ∥r0

b∥, ∥r0
c∥}

ξ
.

Let us recall that θ =
α

4
√

n
. Thus, using (3.27) and the fact that (x0)Ts0 = nξ2, we

obtain the following upper bound for the total number of iterations

25
√

nκ̄(ξ) log
max{nξ2, ∥r0

b∥, ∥r0
c∥}

ξ
.

From Lemma 3.3.15, we can state the final result of this section which summarizes
the complexity bound.

Theorem 3.3.16. Let (P) and (D) be feasible and ξ > 0 such that

∥x∗ + s∗∥∞ ≤ ξ

for some optimal solutions x∗ of (P) and (y∗, s∗) of (D). Then, the algorithm finds an
ϵ−solution of (P) and (D) after at most

25
√

2n log
max{nξ2, ∥rb

0∥, ∥rc
0∥}

ϵ

iterations.
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3.4 Numerical tests

In this section, we showcase the performance of the proposed algorithm outlined in
Algorithm 3 by performing some preliminary numerical tests.

3.4.1 Comparison with other algorithms

First, we compare the practical performance of our algorithm with six other IIPAs.
For each algorithm, we choose the suitable theoretical value of the parameter θ that
guarantees its convergence. The algorithms with their theoretical values of θ are
summarized in Table 3.1.

TABLE 3.1: Considered algorithms

Algorithms Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7

Ref. [67] [68] [58] [76] [91] [57] New

θ
1

8
√

2n
5

36n
1

7
√

2n
1

16n
1

8n
1

22n
1

5
√

2n

Since there is a parameter p involved in the definition of Algorithm 3, we choose

p =
1
2

. All the considered algorithms were implemented in MATLAB and were

tested on 10 problems from the Netlib repository. We set ϵ = 10−4, τ =
1
16

, and

(x0, y0, s0) = (ξe, 0, ξe), with ξ chosen such that ∥x∗ + s∗∥∞ ≤ ξ. The results are
summarized in the table below. For each example, we used bold font to highlight
the best, i.e., the smallest, iteration number.

TABLE 3.2: Total number of iterations for some Netlib problems

Problem ξ Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5 Alg. 6 Alg. 7

afiro 500 11199 9378 12898 20854 10421 28679 9209

adlittle 3500 36121 30249 41596 67238 33612 92458 29707

blend 89 22456 18805 25860 41802 20896 57482 18468

sc50a 350 16942 14187 19510 31541 15764 43373 13932

sc50b 325 16842 14104 19396 31356 15672 43119 13851

sc105 720 38471 32217 44301 71609 35798 98568 31640

sc205 200 76642 64185 88255 142650 71318 196149 63036

scagr7 500 49743 41657 57281 92589 46287 127316 40911

share2b 400 31736 26577 36546 59074 29531 81230 26101

stocfor1 6300 45112 37778 51948 83971 41978 115464 37102
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Based on the results presented in Table 3.2, we can clearly see that our algorithm
outperformed all the other algorithms with a difference in iteration numbers that
can amount up to 79614. In fact, our algorithm achieved the best iteration number
in all realized experiments.

3.4.2 Comparison with SeDuMi solver

In this subsection, we compare our algorithm (Alg. 7) with the SeDuMi solver using
the average CPU time. The latter is the time needed to obtain an optimal solution.
The comparison was done on a set of seven Netlib problems. While implementing
our algorithm, we maintain the same values of the parameters ϵ and τ and the same
starting point used in the previous subsection. As for θ, we used fixed values θ ∈
{0.4, 0.5, 0.6, 0.7} because they perform better than the theoretical value θ =

1
5
√

2n
.

The results are summarized in Table 3.3. For each example, we used bold font to
highlight the best, i.e., the shortest CPU time.

TABLE 3.3: Average CPU time measured in seconds for seven Netlib
problems

Problem afiro adlittle blend sc50a sc50b sc105 share2b

Alg. 7 0.0253 0.16 0.0846 0.0878 0.0585 0.1957 0.1747

SeDuMi 0.0302 0.1585 0.0869 0.0619 0.1252 0.1750 0.1411

From Table 3.3, it becomes clear that both our algorithm and SeDuMi solver take
similar time to obtain an optimal solution.
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Conclusions

Conclusions and remarks

In this thesis, our focus lied in the analysis of complexity and numerical implemen-
tation of IPMs for LO and SDO problems. Specifically, we explored the concept of
both feasible and infeasible IPMs using KFs to define search directions.

In Chapter 1, we investigated feasible primal-dual IPMs based on KFs for LO.
The chapter begun with a summary of primal-dual IPMs. Section 2 outlined the
steps to determine the complexity of primal-dual IPAs based on a specific class of
KFs, drawing inspiration from Bai et al.’s work [8]. We then applied this methodol-
ogy to three new hyperbolic KFs: the exponential hyperbolic KF [39], the parame-
terized hyperbolic logarithmic KF [42] which can be considered a generalization of
the KF proposed in [100] and the pure hyperbolic KF [41] which is a generalization,
up to a multiplicative constant, of the KF introduced in [98]. For each function, we
studied the primal-dual interior-point algorithm and derived complexity bounds for
both large- and small-update methods. Additionally, we presented practical perfor-
mance comparisons with existing interior-point algorithms based on KFs.

Chapter 2 extended the exploration of primal-dual feasible IPMs based on KFs, as
discussed in Chapter 1, to SDO. The chapter provided a concise summary of primal-
dual IPMs for SDO and outlined the steps to determine complexity based on the
same class of KFs studied in Chapter 1. The exposed procedure was applied to a
twice-parametrized KF, a combination of the prototype self-regular KF introduced
in [83] and the hyperbolic KF introduced in [41]. The chapter concluded with nu-
merical experiments showcasing the practical performance of the IPA based on the
new parametrized KF in solving SDO problems.

Chapter 3 shifted focus to a full-Newton step IIPA for solving LO problems based
on a new hyperbolic KF. In contrast to the feasible IPAs in Chapter 1, this algorithm
does not require a feasible starting point and avoids a big-M or a two-phase ap-
proach. Each main iteration involved a feasibility step and some centrality steps.
Feasibility search directions used the hyperbolic KF, while centring search directions
used the classical KF. Under general conditions, we guaranteed the convergence to
an optimal solution. The complexity analysis for the primal-dual IIPM based on the
corresponding proximity function, under mild properties, indicated that the itera-
tion bound matched the best iteration bound for IIPMs. We supported these theoret-
ical results with numerical experiments, comparing the IIPA based on the considered
KF with established IIPAs and evaluating against the SeDuMi solver.

Directions for further research

Future research might focus on the following questions.

• Is there a KF that exhibits equivalent complexity for both large-update and
small-update methods?



126

• Can dual (or primal) IPMs for LO be developed using the new class of KFs? If
so, how can these results be extended to SDO problems?

• Can the KFs used in feasible IPMs be used to define IIPMs?
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Convex analysis

Definition A.0.1. A function γ : C 7→ R, with C a convex subset of Rn, is called a convex
if it satisfies the inequality

γ(θξ1 + (1 − θ)ξ2) ≤ θγ(ξ1) + (1 − θ)γ(ξ2),

for any ξ1, ξ2 ∈ C and θ ∈ [0, 1].

Definition A.0.2. A function γ : C 7→ R, with C a convex subset of Rn, is called a concave
function if it satisfies the inequality

γ(θξ1 + (1 − θ)ξ2) ≥ θγ(ξ1) + (1 − θ)γ(ξ2),

for any ξ1, ξ2 ∈ C and θ ∈ [0, 1].

The following proposition presents some characterisations of convex and con-
cave functions defined on an interval of R.

Proposition A.0.3. Let I be an interval of R and γ : I 7→ R.

• If γ is continuous on I, γ is convex if and only if for all ξ1, ξ2 ∈ I

γ

(
ξ1 + ξ2

2

)
≤ 1

2
(γ(ξ1) + γ(ξ2)) . (A.1)

• If γ is continuous on I, γ is concave if and only if for all ξ1, ξ2 ∈ I

γ

(
ξ1 + ξ2

2

)
≥ 1

2
(γ(ξ1) + γ(ξ2)) .

• If γ is differentiable on I, γ is convex if and only if γ′ is increasing on I.

• If γ is differentiable on I, γ is concave if and only if γ′ is decreasing on I.

• If γ is twice differentiable on I, γ is convex if and only if γ′′(ξ) ≥ 0 for all ξ ∈ I.

• If γ is twice differentiable on I, γ is concave if and only if γ′′(ξ) ≤ 0 for all ξ ∈ I.

Remark A.0.4. We can see from the first item of the previous proposition that property
(A.1), called midpoint convexity, means convexity in the context of continuity. For a de-
tailed proof, see [80, Theorem 1.1.4] or visit https: // wikipedie. ovh/ articles/ f/ o/

https://wikipedie.ovh/articles/f/o/n/Fonction_convexe.html
https://wikipedie.ovh/articles/f/o/n/Fonction_convexe.html
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n/ Fonction_ convexe. html for another proof based on the density of dyadic rationals in
the real line.

Theorem A.0.5. A local minimizer of a convex function is also a global minimizer.

Theorem A.0.6. A local maximizer of a concave function is also a global maximizer.

Theorem A.0.7. Let γ be a twice differentiable function on an interval I of R containing
ξ0.

• If γ′(ξ0) = 0 and γ′′(ξ) ≤ 0, ∀ξ ∈ I, then, γ admits a global maximum on ξ0.

• If γ′(ξ0) = 0 and γ′′(ξ) ≥ 0 ∀ξ ∈ I, then, γ admits a global minimum on ξ0.

Corollary A.0.8. Let γ be a twice differentiable function on I, an interval of R containing
ξ0.

• If γ′(ξ0) = 0 and γ is convex, then, γ admits a global minimum on ξ0.

• If γ′(ξ0) = 0 and γ is concave then, γ admits a global maximum on ξ0.

Lemma A.0.9. ([84, Lemma 2.1.2]) Let ψ be a twice differentiable function on R++. Then,
the following properties are equivalent

(i) the function ξ → ψ(eξ) is convex, i.e., ψ is exponentially convex or shortly e-convex.

(ii) ψ
′
(t) + tψ

′′
(t) ≥ 0, ∀t ∈ R++.

(iii) ψ(
√

t1t2) ≤ 1
2 (ψ(t1) + ψ(t2)) , ∀t1, t2 ∈ R++.

Proof. We divide the proof into two parts: we first prove that (i) ⇔ (ii), then
we prove that (i) ⇔ (iii). The third equivalence is immediate.
For the first equivalence, let’s define the function γ1 : R 7→ R+ as follows

γ1(ξ) = ψ(eξ).

Using the next-to-last item of Proposition A.0.3, we have

(i) ⇔ γ
′′
1(ξ) = eξψ

′
(eξ) + e2ξψ

′′
(eξ) ≥ 0, ∀ξ > 0.

Setting t = eξ , we get

(i) ⇔ tψ
′
(t) + t2ψ

′′
(t) ≥ 0, ∀t > 0,

⇔ ψ
′
(t) + tψ

′′
(t) ≥ 0, ∀t > 0.

For the second equivalence, using the first item of Proposition A.0.3 on γ1, we obtain

(i) ⇔ ψ(e
ξ1+ξ2

2 ) ≤ 1
2

(
ψ(eξ

1) + ψ(eξ
2)
)

, ∀ξ1ξ2 ∈ R.

Setting t1 = eξ
1 and t2 = eξ

2 we arrive at the second equivalence, which completes the
proof.

https://wikipedie.ovh/articles/f/o/n/Fonction_convexe.html
https://wikipedie.ovh/articles/f/o/n/Fonction_convexe.html
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Lemma A.0.10. ([8, Lemma 2.2.3]) Let ψ be a twice differentiable function on R++. Then,
the following three properties are equivalent

(i) the function ξ → ψ(
√

ξ) is convex, i.e., ψ is square root convex or shortly sqrt-convex.

(ii) tψ
′′
(t)− ψ

′
(t) ≥ 0, ∀t ∈ R++.

(iii) ψ(

√
t2
1+t2

2
2 ) ≤ 1

2 (ψ(t1) + ψ(t2)) , ∀t1, t2 ∈ R++.

Proof. In a similar way to the proof of the previous lemma, we start by proving
that (i) ⇔ (ii), then we prove that (i) ⇔ (iii).
For the first equivalence, we define the function γ2 : R+ 7→ R+ as follows

γ2(ξ) = ψ(
√

ξ).

Using the next-to-last item of Proposition A.0.3, we have

(i) ⇔ γ
′′
2(ξ) =

1

4ξ
3
2

(√
ξψ

′′
(
√

ξ)− ψ
′
(
√

ξ
)
≥ 0, ∀ξ > 0.

Setting t =
√

ξ, we get

(i) ⇔ 1
4t3 (tψ

′′
(t)− ψ

′
(t)) ≥ 0, ∀t > 0,

⇔ ψ
′
(t)− tψ

′′
(t) ≥ 0, ∀t > 0.

For the other equivalence, from the first item of Proposition A.0.3, γ2 is convex if
and only if for all ξ1, ξ2 ∈ R+

ψ
(√ ξ1 + ξ2

2

)
≤ 1

2

(
ψ(
√

ξ1) + ψ(
√

ξ2)
)

.

By putting t1 =
√

ξ1 and t2 =
√

ξ2, we arrive at

ψ(

√
t2
1 + t2

2
2

) ≤ 1
2
(ψ(t1) + ψ(t2)) .

This completes the proof.

Lemma A.0.11. ([83, Lemma 12]) Let g be a twice continuous differentiable convex function
on R+ with g(0) = 0, and let g attain its (global) minimum at t∗ > 0. If g′′ is increasing
on [0, t∗], then

g (t) ≤ g′ (0)
2

t, 0 ≤ t ≤ t∗.

Proof. Since g is twice differentiable on R+, we can rewrite for all t > 0

g(t) =
∫ t

0
g′(ξ)dξ

g(t) =
∫ t

0

(
g′(ξ)− g′(0) + g′(0)

)
dξ

= g′(0)t +
∫ t

0

∫ ξ

0
g′′(ζ)dζdξ

≤ g′(0)t +
∫ t

0
ξg′′(ξ)dξ,
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where the last inequality is obtained using the increasing of g′′. Integrating by parts,
we get

g(t) ≤ g′(0)t + (ξg′(ξ))|t0 −
∫ t

0
g′(ξ)dξ

≤ g′(0)t −
∫ t

0
dg′(ξ)

= g′(0)t − g(t),

the last inequality holds because

g′(t) ≤ g′(t∗) = 0, ∀0 ≤ t ≤ t∗.

This inequality is due to the convexity of g and the fact that t∗ is a critical point.

Lemma A.0.12. ([83, Lemma 2.1]) If α ∈ [0, 1], then

(1 + t)α ≤ 1 + αt, ∀t ≥ −1.

Proof. The desired inequality is trivial for α = 0. For α ∈]0, 1], let us define the
function l as follows

l(t) = (1 + t)α − 1 − αt, ∀t ≥ −1.

Deriving l twice, we obtain

l′(t) = α(1 + t)α−1 − α,

l′′(t) = α(α − 1)(1 + t)α−2.

Clearly l′′ is negative on [−1,+∞[ since α ≤ 1. Hence, using Proposition A.0.3 l
is concave. In addition, l′(0) = 0. Therefore using Corollary A.0.8, it follows that the
function l reaches its maximal value at the point t = 0. Finally, since l(0) = 0, the
desired inequality is obtained.

Lemma A.0.13. ([83, Lemma 14]) Let t0, t1, . . . , tK be a sequence of positive numbers such
that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, . . . , K − 1, (A.2)

where β > 0 and 0 < γ ≤ 1. Then,

K ≤
tγ
0

βγ
.

Proof. Since the sequence t0, t1, . . . , tK is positive, (A.2) implies that for all k =
0, 1, . . . , K − 1

0 < tγ
k+1 ≤ (tk − βt1−γ

k )γ = tγ
k (1 − βt−γ

k )γ. (A.3)

Using Lemma A.0.12 with α = γ and t = −βt−γ
k , we obtain

tγ
k (1 − βt−γ

k )γ ≤ tγ
k (1 − γβt−γ

k ) = tγ
k − βγ, k = 0, 1, . . . , K − 1.

Thus, using this inequality in (A.3) we get

0 < tγ
k+1 ≤ tγ

k − βγ, k = 0, 1, . . . , K − 1.
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Consequently,

tγ
1 ≤ tγ

0 − βγ

tγ
2 ≤ tγ

1 − βγ ≤ tγ
0 − 2βγ.

This implies that, for all k = 1, . . . , K

0 < tγ
k ≤ tγ

0 − kβγ.

In particular when k = K, we get

tγ
0 − Kβγ > 0,

and thus,

K ≤
tγ
0

βγ
.
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Examples for numerical tests

TABLE B.1: Some Netlib-standard problems

Name Rows Columns Nonzeros Optimal value

adlittle 57 97 465 2.2549496316E + 05

afiro 28 32 88 4.6475314286E + 02

blend 75 83 521 3.0812149846E + 01

bore3d 234 315 1525 1.3730803942E + 03

degen2 445 534 4449 1.4351780000E + 03

degen3 1504 1818 26230 9.8729400000E + 02

sc50a 51 48 131 6.4575077059E + 01

sc50b 51 48 119 7.00000000000E + 01

sc105 106 103 281 5.2202061212E + 01

sc205 206 203 552 5.2202061212E + 01

scagr7 130 140 553 2.3313892548E + 08

scsd1 78 760 3148 8.6666666743E + 00

scsd6 148 1350 5666 5.0500000078E + 01

scsd8 398 2750 11334 9.0499999993E + 02

sctap1 301 480 2052 1.4122500000E + 03

sctap2 1091 1880 8124 1.7248071429E + 03

sctap3 118 225 1182 1.4240000000E + 03

share2b 97 79 730 4.1573224074E + 02

stocfor1 118 111 474 4.1131976219E + 04
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.2:Listoflinear
program

m
ing

exam
ples

w
ith

fixed
size

N
am

e
Inputdata

A
,b,c

Initialization
R

ef.

EF1
A
= (

1
1

1
1

1
1

0
−

3 )
,b

= (
10.5 )

,
c
= 

1234 
x

0
= 

0.5
0.27
0.14
0.09 

,
y

0
= (

00 )
,

s 0
= 

1234 
[6]

EF2
A
= (

2
1

1
0

0
1

2
0

1
0

0
1

0
0

1 )
,

b
= (

873 )
,

c
= 

−
4

−
5000 

x
0
= 

2.85
1.9
0.4

0.35
1.1 

,
y

0
= (

−
1.2

−
1.8

−
0.5 )

,
s 0

= 
0.2
0.3
1.2
1.8
0.5 

[6]

EF3
A
= (

2
1

0
−

1
0

0
0

0
1

0
1

−
1

1
1

1
1

1
1 )

,
b
= (

001 )
,

c
= 

3−
11000 

x
0
= 

0.06757
0.13258
0.13302
0.26774
0.13302
0.2664 

,
y

0
= (

−
2

−
2

−
3 )

,
s 0

= 
1046151 

[6]

EF4
A
= 

0
1

2
−

1
1

1
0

0
0

1
2

3
4

−
1

0
1

0
0

−
1

0
−

2
1

2
0

0
1

0
1

2
0

−
1

−
2

0
0

0
1

1
3

4
2

1
0

0
0

0 
,

b
= 

12321 
,

c
= 

10−
2110000 

x
0
= 

0.1819
0.0699
0.063

0.1105
0.2012
0.6732
1.1885
2.835

2.1912 
,

y
0
= 

−
1.3843

−
0.8751

−
0.4241

−
0.4463

−
3.0424 

,
s 0

= 

4.9398
13.1544
14.7156
9.1788
4.5072
1.3843
0.8751
0.4241
0.4463 

[6]
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program
m

ing
exam

ples
w

ith
variable

size
n
=

2m

N
am

e
Inputdata

Initialization
R

ef.

SD
P1

A
k
( i,j)

= 
1

ifi
=

j
=

k,
1

ifi
=

j
=

m
+

k,
0

otherw
ise

,
C
=

−
I,n

=
2m

,b
( i)

=
2,i

=
1,...,m

.

S
0
=

X
0
=

I,
y

0(i)
=

−
2,i

=
1,...,m

.
[65]

SD
P2

A
k
( i,j)

= 
1

ifi
=

j
=

k,
1

ifi
=

j
=

m
+

k,
0

otherw
ise

,
C
=

−
I,n

=
2m

,b
( i)

=
2,i

=
1,...,m

.

X
0
( i,j)

= {
1.5

if
i≤

j,
0.5

if
i
>

j,
y

0
( i)

=
−

2,
i
=

1,...,m
,and

S
0
=

I.
[97]
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Matrix analysis

For more details on matrix analysis, we refer the readers to [49].

C.1 Matrices

Definition C.1.1 (Rank). Let A ∈ Rn×m. Its rank, denoted rank(A), is a nonnegative
integer defined as the largest number of columns of A that constitutes a linearly independent
set.

Proposition C.1.2. rank(AT) = rank(A).

Definition C.1.3 (Matrix multiplication). Let A ∈ Rk×m and B ∈ Rm×n. Then AB ∈
Rk×n is defined as

(AB)i,j =
m

∑
l=1

Ai,l Bl,j.

Note that this product is not commutative, even if k = n. However it has some
other good properties.

Proposition C.1.4. Let A, B, C ∈ Rm×m. The matrix multiplication is:

(i) Associative: (AB)C = A(BC).

(ii) Distributive over matrix addition: A(B + C) = AB + AC.

(iii) Scalar multiplication: β(AB) = (βA)B = A(βB), ∀β ∈ R.

(iv) Commutative by transpose: (AB)T = BT AT.

Proposition C.1.5. Let A, B ∈ Rm×m, then

rank(AB) ≤ min(rank(A), rank(B)),

and
rank(A + B) ≤ rank(A) + rank(B).

Definition C.1.6 (Eigenvalues and eigenvectors). Let A ∈ Rn×n. If x ∈ Rn − {0} and
λ ∈ R satisfy Ax = λx, then λ is called eigenvalues of A and x is called an eigenvector of
A associated with λ.

Remark C.1.7. A is nonsingular if and only if it does not admit 0 as eigenvalue.
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Definition C.1.8 (Singular value). A singular value of a real matrix A is the positive
square root of an eigenvalue of the symmetric matrix AAT or AT A.

Definition C.1.9. Let A ∈ Rn×n. The trace of A denoted tr(A) is defined as follows

tr(A) =
n

∑
i=1

ai,i,

with ai,i denotes the entry on the ith row and ith column of A.

Proposition C.1.10. For all A, B, C ∈ Rn×n and α, β ∈ R, one has

• tr(αA + βB) = αtr(A) + βtr(B).

• tr(AT) = tr(A).

• tr(A2) ≤ tr(AT A).

• tr(ATB) = tr(ABT) =
m
∑

i=1

n
∑

j=1
Ai,jBi,j.

• tr(AB) = tr(BA).

• If A and B are symmetric then, tr(AB) ≤ 1
2 tr(A2 + B2).

• tr(ABC) = tr(CAB) = tr(BCA) ̸= tr(ACB).

• If B is nonsingular tr(B−1AB) = tr(A).

Proposition C.1.11. Let A ∈ Sn. Then

n

∑
i=1

λi(A) = tr(A) and
n

∏
i=1

λi(A) = det(A).

Definition C.1.12 ( Hadamard product). Let A ∈ Rm×n and B ∈ Rm×n. Then the
Hadamard product of A and B, denoted A ◦ B ∈ Rm×n is defined as

(A ◦ B)i,j = Ai,jBi,j.

From the above definition, we can see that the Hadamard product of two matri-
ces of the same dimension is the component wise product.

Definition C.1.13 (Frobenius inner product and Frobenius norm). For any A, B ∈
Rn×m, the Frobenius inner product is defined as follows

A • B = tr(ATB) = tr(BT A) =
n

∑
i=1

m

∑
j=1

Ai,jBi,j.

Its associated Frobenius norm denoted ∥ · ∥F is defined as follows

∥A∥F =
√

A • A.

Proposition C.1.14. (i) For A ∈ Rn×m, u ∈ Rn and v ∈ Rm, we have

uT Av = A • uvT.
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(ii) For A ∈ Sn,

∥A∥F =
√

tr(A2) =
n

∑
i=1

λ2
i (A),

with λi, i = 1, . . . , n, the eigenvalues of A.

Theorem C.1.15 (Singular value decomposition). Let us consider a matrix A ∈ Rn×m.
There exists a factorization of the form

A = UΣVT,

where U and V are n × n and m × m unitary matrix and Σ is an n × m diagonal matrix
with nonnegative real numbers on the diagonal. Such a factorization is called the singular
value decomposition of A.

Proposition C.1.16. The rank of a matrix A ∈ Rn×m equals the number of its non-zero
singular values.

Definition C.1.17 (Inverse and singular matrix). The inverse of a square matrix A, de-
noted by A−1 is a matrix X such that AX = XA = I. If A−1 exists, A is nonsingular,
otherwise it is singular.

Corollary C.1.18. • The rank of a matrix A ∈ Rn×m satisfies rank(A) ≤ min{n, m}

• We say that a matrix A has full rank if

rank(A) = min{n, m}.

With this notion, we can alternatively define a square matrix as nonsingular if it
has full rank.

The following theorem establishes a connection between the rank of the matrix
system and the number of solutions of the system.

Theorem C.1.19 (Rouché–Kronecker–Capelli). Let Ax = b be a system of linear equa-
tions with A ∈ Rm×n, b ∈ Rm and A∗ = [A|b] be its augmented matrix. The system has
solutions, i.e., is consistent if and only if

rank(A) = rank(A∗).

Moreover if rank(A) = n, the solution is unique. Otherwise, there are infinitely many
solutions.

Corollary C.1.20. The maximum number of linearly independent solutions of the consistent
linear system Ax = b is n − rank(A).

Positive semidefinite and Positive definite symmetric matrices and their proper-
ties

Theorem C.1.21. ([49]) A symmetric matrix A ∈ Sn, is positive semidefinite denoted A ⪰
0 if A satisfies any one of the following equivalent conditions:

• xT Ax ≥ 0 for all x ∈ Rn;

• All its eigenvalues are nonnegative;

• All the principal minors of A are nonnnegative;
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• There exists a matrix B ∈ Rm×n such that A = BBT.

Theorem C.1.22. ([49]) A symmetric matrix A ∈ Sn, is positive definite denoted A ≻ 0 if
A satisfies any one of the following equivalent conditions:

• xT Ax > 0 for all x ∈ Rn − {0};

• All its eigenvalues are positive;

• All the principal minors of A are positive;

• There exists B ∈ Rn×n with B has full column rank such that A = BBT.

Definition C.1.23. A matrix A ∈ Sn, is negative semidefinite (resp. definite), which is
denoted by A ⪯ 0 (resp. A ≺ 0) if −A is positive semidefinite (resp. definite).

Proposition C.1.24. 1. Let A, B ∈ Sn
+, then

• A ⪰ B ⇔ A − B ⪰ 0.
• A + B ⪰ B.
• A

1
2 BA

1
2 ⪰ 0.

• tr(AB) ≤ tr(A)tr(B).
• tr(AB) ≥ 0.

2. Let A, B ∈ Sn. We have the following equivalences

A ⪰ 0 ⇔ tr(ATB) ≥ 0, ∀B ⪰ 0,

A ≻ 0 ⇔ tr(ATB) > 0, ∀B ⪰ 0.

3. Let B ∈ Rn×n be a non singular matrix, then

A ∈ Sn
+ (resp. Sn

++ ) ⇔ BT AB ∈ Sn
+ (resp. Sn

++ ).

4. Let A, B ∈ Sn.

• If A ⪰ 0, then ∥A∥F ≤ tr(A) and n(det(A))
1
n ≤ tr(A).

• A ⪰ B ⇔ CT AC ⪰ CTBC , ∀C ∈ Rn×n.
• A ⪰ I then A is non singular and I ⪰ A−1.
• B ⪰ A ≻ 0 then B is non singular (B ≻ 0) and A−1 ⪰ B−1.
• If C, D ∈ Sn such that C − A ⪰ 0 and D − B ⪰ 0 then

tr(AB) ≤ tr(CD).

In particular, if C = A then tr(AB) ≤ tr(AD).

Lemma C.1.25. ([47, Lemma 1.2.3]) Let A, B ∈ Sn
+. Then

tr(AB) = 0 if and only if AB = 0.

Lemma C.1.26. Let A, B ∈ Sn
++. Then

AB ∼ A
1
2 BA

1
2 .

Lemma C.1.27. ([103, Lemma 5.18]) Let A, A + B ∈ Sn
+. Then one has

λi(A + B) ≥ λmin(A)− |λmax(B)|, i = 1, . . . , n.
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C.2 Matrix Functions

Definition C.2.1 (Matrix function). Let V ∈ Sn
++, with

V = QTdiag (λ1(V), . . . , λn(V))Q,

where Q is an orthonormal matrix (QT = Q−1) that diagonalizes V. Then, for given real
function ψ defined for all t > 0, the matrix function ψ(V) : Sn

++ → Sn is defined as follows

ψ(V) = QTdiag(ψ(λ1(V)), . . . , ψ(λn(V)))Q. (C.1)

Furthermore, the proximity function (measure) for SDO Ψ : Sn
++ → R+ is defined as

follows

Ψ(V) := tr(ψ(V)) =
n

∑
i=1

ψ(λi(V)). (C.2)

Remark C.2.2. If the function ψ is differentiable on the interval ]0,+∞[ such that

ψ′(t) > 0, ∀t > 0,

we can obtain the definition of the matrix function ψ′ by replacing ψ(λi(V)) in (C.1) by
ψ′(λi(V)) for each i = 1, . . . , n, i.e.,

ψ′(V) = Qtdiag(ψ′(λ1(V)), ψ′(λ2(V)), ..., ψ′(λn(V)))Q, .

Definition C.2.3. A matrix M(t) is said to be a matrix of functions if each entry of M(t)
is a function of t, i.e.,

M(t) = [Mij(t)].

The standard ideas of continuity, differentiability, and integrability can be seam-
lessly expanded to matrices of functions by considering each entry individually. This
approach involves interpreting the matrix operations entry-wise.

Proposition C.2.4. Suppose that the matrix-valued functions M(t), N(t) are differentiable
with respect to t. Then, one has

• d
dt (M(t)) := d

dt

[
Mij(t)

]
= M′(t).

• d
dt (tr(M(t))) := tr( d

dt M(t)) = tr(M′(t)).

• d
dt (tr(ψ(M(t)))) := tr [ψ′(M(t))M′(t)] .

• d
dt ((M(t)N(t))) := M′(t)N(t) + N′(t)M(t).

Lemma C.2.5. ([49, Lemma 3.3.14 (c)]) Let A, B ∈ Sn be two nonsingular matrices and f
a real-valued function such that t 7→ f (et) is a convex function. One has

n

∑
i=1

f (ηi(AB)) ≤
n

∑
i=1

f (ηi(A)ηi(B)),

where ηi(A) and ηi(B) denote the singular values of A and B respectively.
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 :ملخص

 

ل البرمجة سائم لحل يةو الثن -ةيالأول الداخلية قاطالن طرق. الهدف هو دراسة المعرفة نصف الخطية   البرمجةموضوع هذه الأطروحة يقع ضمن مجال البرمجة الخطية و 
هذه  ، وسيتم تمديدللخوارزمية تكلفةحساب . سيتم نتقالجديدة لتحديد فئة جديدة من اتجاهات الا ةزائديدوال  نواة  استعمالالخطية. تعتمد هذه الطرق على 

 الدالةالقابلة وغير القابلة للتنفيذ التي تعتمد على الداخلية  طاالنق طرقعلى وجه الخصوص، نحقق في مفهوم  .المعرفة نصف الخطية  البرمجة مسائل لحل  الطرق
 ةزائدينواة  عدة دوالعلى  لطرقالخطية. تعتمد هذه ا برمجةال سائلالقابلة للتنفيذ لحل مالداخلية  اطالنق طرقأولًا، نتعامل مع  .نتقالالنواة لتحديد اتجاهات الا

طوة بخالداخلية الغير قابلة للتنفيذ  اطنقالبعد ذلك، نقدم طريقة . المعرفة نصف الخطية  البرمجة مسائل القابلة للتنفيذ لحل  الداخلية  اطنقال طرق ددثم نم جديدة. 
Newton  ةزائديدالة نواة الخطية بناءً على  برمجةالسائل كاملة لحل م 

 

خطوة   الداخلية غير قابلة للتنفيذ، اطالنق طرق ،قابلة للتنفيذ الداخلية اطالنق طرق المعرفة، نصف  الخطية   البرمجة ،البرمجة الخطية : المفتاحية الكلمات
Newton   ،الخوارزميةتكلفة  تحليلكاملة. 

 

Résumé : 

Le sujet de cette thèse relève du domaine de l'optimisation linéaire et de l'optimisation semi-définie. 

L'objectif est d'étudier les méthodes de points-intérieurs primale-duale pour résoudre des problèmes 

d'optimisation linéaire. Ces méthodes se fondent sur l'introduction de nouvelles fonctions noyaux 

hyperboliques pour déterminer une nouvelle classe de directions de déplacement. L'analyse de la complexité 

sera établie, et une extension au cas de l'optimisation semi-définie sera abordée. En particulier, nous 

examinons le concept de méthodes de points intérieurs réalisables et non réalisables qui reposent sur des 

fonctions noyaux pour définir les directions de déplacement. Nous commençons par traiter des méthodes de 

points intérieurs primale-duale réalisables pour résoudre des problèmes d'optimisation linéaire. Ces méthodes 

sont basées sur de nouvelles fonctions noyaux hyperboliques. Ensuite, nous étendons les méthodes de points 

intérieurs primale-duale réalisables pour résoudre des problèmes d'optimisation semi-définie. Enfin, nous 

présentons une méthode de points-intérieurs non réalisable basée sur une fonction noyau hyperbolique pour 

résoudre des problèmes d'optimisation linéaire en utilisant une itération complète de Newton. 

Mots clés : Programmation linéaire, Programmation semi-définie linéaire, Méthode de points-intérieurs 

réalisable, Méthode de points-intérieurs non réalisable, Fonction noyau, Méthode complète de Newton,  

Analyse de la complexité 

 

 

Abstract : 

This thesis topic falls within the realm of linear optimization and semidefinite optimization. The objective is 

to study primal-dual interior-point methods for solving linear optimization problems. These methods are 

based on introducing new hyperbolic kernel functions to determine new class of search directions. The 

analysis of the complexity will be established, and an extension to the semidefinite optimization case will be 

addressed. In particular, we investigate the concept of feasible and infeasible interior-point methods that rely 

on kernel functions to define the search directions.  We first deal with feasible primal-dual interior-point 

methods for solving linear optimization problems. These methods are based on new hyperbolic kernel 

functions. Then, we extend primal-dual feasible interior-point methods to solve semidefinite optimization 

problems.  After that, we present a full-Newton step infeasible interior-point method for solving linear 

optimization problems based on a hyperbolic kernel function. 

Keywords : Linear programming, Semidefinite programming, Feasible interior-point methods, Infeasible 

interior-point methods, Kernel function, full-Newton step, Complexity analysis. 
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