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Abstract

Fractional-order calculus has attracted the attention of scholars in the areas of con-

trol and system analysis. However, despite its notable advantages, L1 adaptive control

technique remains unexplored in this field. This thesis introduces an extension of this

technique to fractional-order systems. Firstly, a new fractional-order L1 adaptive con-

troller is proposed for a class of fractional-order systems with matched uncertainties and

external disturbances. Then, the controller is generalized to the case of multiple-input

multiple-output incommensurate systems. The extension of the methodology is possible

thanks to the use of a fractional-order sliding surface, simplifying the control architecture

and facilitating stability analysis. In the pursuit of enhancing the developed controller,

neural networks are employed to handle time-varying input gain and unmodeled dynamics.

Additionally, fuzzy logic systems are implemented to tackle various sources of uncertainty

within the system. These include unknown input nonlinearities, unmodeled system dy-

namics, and external disturbances. The analysis of the obtained theoretical and simulation

results confirms that the developed strategies guarantee closed-loop stability maintaining

the key features of the L1 adaptive controller.

Keywords: L1 adaptive control, Fractional-order uncertain systems, Fractional-order

sliding surface, Neural networks, Fuzzy logic, Model-free control.
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Résumé

Le calcul d’ordre fractionnaire a attiré l’attention des chercheurs dans le domaine

de l’automatique et de l’analyse des systèmes. Cependant, malgré ses avantages consid-

érables, la technique de la commande L1 adaptative reste inexplorée dans ce domaine.

Cette thèse introduit une extension de cette technique de commande aux systèmes d’ordre

fractionnaire. Premièrement, une nouvelle commande L1 adaptative à ordre fractionnaire

est proposée pour une classe de systèmes d’ordre fractionnaire avec des incertitudes et des

perturbations externes. Ensuite, la commande est généralisée au cas des systèmes incom-

mensurables à entrées multiples et à sorties multiples. L’extension de la méthodologie

est rendue possible grâce à l’utilisation d’une surface de glissement d’ordre fractionnaire,

simplifiant l’architecture de contrôle et facilitant l’analyse de la stabilité. Dans le but

d’améliorer la commande développée, des réseaux de neurones sont utilisés pour gérer

les gains d’entrée variant dans le temps et les dynamiques non modélisées. De plus, des

systèmes de logique floue sont mis en œuvre pour aborder diverses sources d’incertitude

au sein du système. Celles-ci comprennent des non-linéarités d’entrée inconnues, des dy-

namiques non modélisées, et des perturbations externes. L’analyse des résultats théoriques

et des simulations obtenues confirment que les stratégies développées garantissent la sta-

bilité en boucle fermée tout en préservant les caractéristiques clés de la commande L1

adaptative.

Mots clés: Commande L1 adaptative, Systèmes d’ordre fractionnaire, Surface de glisse-

ment d’ordre fractionnaire, Réseaux de neurones, Logique floue, Commande sans modèle.
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  ا على الرغم من مزایاھ. الأنظمة وتحلیل  التحكمفي مجالات    باحثین جذب انتباه ال  الكسري   حسابال

لھذه التقنیة  تقدم ھذه الرسالة تمدیدا    في ھذا المجال.  ةغیر مستكشَف 1ℒ التحكم التكیفي تقنیة    ظلت،  الملحوظة

أولاً،  ذي  نظمة الأ  لتشمل الكسریة.  تكیفي  یقُترح الرتبة  الدرجات  جدید 1ℒ تحكم  ذات   الكسریة للأنظمة 

 التحكم لحالة الأنظمة الكسریة متعددة یعُمم . ثم،والخاضعة لمتغیرات غیر معروفة واضطرابات الخارجیة

ط  كسریةسطح انزلاق ذو درجة  یكون ممكنًا بفضل استخدام    توسیع مخطط التحكمإن    .المتغیرات ، مما یبُسِّ

ر تحلیل الاستقرار. في سعي لتعزیز التحكم، یتم استخدام الشبكات العصبیة للتعامل مع  ھندسة التحكم وییُسِّ

أنظمة المنطق    طبیق. بالإضافة إلى ذلك، یتم ت فةالدینامیات الغیر المعرو و  معدل الإدخال المتغیر مع الزمن

، الخطیة في الإدخال عدمقین داخل النظام. تشمل ھذه العناصر  الضبابي لمواجھة مصادر مختلفة لعدم الی

المعروالدینامیات   الخارجیةفةالغیر  والاضطرابات  تم    .،  التي  المحاكاة  وعملیات  النظریة  النتائج  تحلیل 

مع الحفاظ على الخصائص الرئیسیة    النظامؤكد أن الاستراتیجیات المطورة تضمن استقرار  ی  الحصول علیھا 

  . 1ℒ للتحكم التكیفي
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“One remains a scholar as long as they

are in pursuit of knowledge.

Once they believe they have attained it,

ignorance begins.”

Ibn Qutaybah, 889 AD, Baghdad, Iraq
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Introduction

Fractional-order calculus is a mathematical field with a rich history spanning 300 years.

Its origins can be traced to a question posed by L’Hopital in September 1695, discussing

the meaning of a derivative of order 0.5 [1]. This question led to the birth of what we now

call fractional-order calculus, opening up new paths for developments and explorations.

In essence, fractional-order calculus is an extension of integer-order calculus allowing

generalization of derivatives and integrals to encompass non-integer, arbitrary real, and

complex orders [2]. Consequently, terms such as “fractional-order”, “non-integer order”,

and “generalized order” are often used interchangeably in academic literature. Among

these terms, “fractional-order” is the most commonly used, and adopted in our work.

Although fractional-order calculus emerged during the same historical period as integer-

order calculus, it proceeded to experience comparatively slower development trajectory.

For a significant portion of its history, the concept remained largely confined to theoreti-

cal frameworks without practical applications. The ability to address real-world problems

was hindered by the absence of a structured solution [3]. Fractional-order calculus gar-

nered the attention of renowned mathematicians including Euler, Lagrange, Cauchy, and

Fourier during the 18th and 19th centuries. They mentioned the concept in their works and

contributed to its early development. The first recorded application of a fractional-order

operator can be traced back to 1823 when Niels Henrik Abel employed the concept to

tackle an integral equation fond in the tautochrone problem [3,4]. Subsequently, develop-

ing fractional operators and investigating their properties to solve Fractional-Order Differ-

ential Equations (FODEs) became the focal points of extensive research in the field [1,3].

Within literature, Numerous definitions of fractional-order derivatives and integration

have been suggested and out of the available definitions, three are gained prevalence:

Riemann-Liouville’s definition [5,6], Grünwald-Letnikov’s definition [7–10], and Caputo’s

definition [6,11].

Over the past three decades, various approximation methods came into existence along

with the advancement in the technology of high-speed computing. This progress paved the

way for the integration of fractional-order calculus into physical problems and engineering

applications [12]. These applications cover a wide range of fields, such as robotics [13],

signal processing [14], electrical circuits [15], bio-engineering [16], and economic processes
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[17], etc. Consequently, fractional-order calculus played a significant role in successfully

explaining and solving many important phenomena such as the conservation of mass [18],

and groundwater flow [19]. Compared to integer-order, fractional-order calculus has the

ability to represent high-order dynamical systems using fewer coefficients, thanks to the

arbitrary order that offers more flexibility and degree of freedom to accurately present a

specific behavior. Besides, fractional-order derivative is a non-local operator, and proves

particularly useful in modeling any physical system with hereditary or memory effects [6].

In some cases, fractional-order models have been considered more accurate descriptions of

some system dynamics compared to conventional models based on integer-order calculus

[20].

The integration of fractional-order calculus in control systems has garnered significant

interest among researchers owing to its inherent advantages. As fractional-order calculus

allows for more realistic representations of both linear and nonlinear dynamics, particu-

larly in systems known as Fractional-Order Systems (FOSs). Consequently, the develop-

ment of control mechanisms for this class of systems is an important task. Podlubny [21,22]

proposed various methodologies to solve FODEs and applied these methods in control the-

ory. He also emphasized that Fractional-Order Controllers (FOCs) are the most effective

method to achieve optimal performance for a fractional-order system [23]. As expected,

FOCs offer greater flexibility in adjusting control gains and provide more degrees of free-

dom, ultimately enhancing closed-loop performance, control accuracy, and control signal

efficiency compared to Integer-order Controllers (IOCs) [24]. The Fractional-Order Pro-

portional Integral Derivative (FOPID) controller, was proposed by Podlubny [23], is a

typical example of FOCs. It extends the conventional Proportional Integral Derivative

(PID) controller by incorporating fractional-order integral and derivative actions, intro-

ducing two additional parameters for tuning. Podlubny’s work in [22] presents different

methods for tuning and designing the FOPID, proving its superior performance compared

to the PID [25]. The applicability of the FOPID has been validated in various engineering

problems [26, 27], and many contributions discussed its advantages in different scenarios,

including non-minimum phase systems [28], higher-order systems [29], Fractional-Order

Nonlinear Systems (FONLSs) [1], and time-delayed systems [30].

The growing interest in FOSs and FOCs motivated researchers to propose different

control designs that extend the integer-order control methodologies to fractional-order

systems. Examples of such controllers include the Fractional-Order Sliding Mode Control

(FOSMC) [31], the fractional-order adaptive control [32], and the fractional-order model

predictive control [33]. It also led to the investigation of chaotic behavior of FONLSs.

This behavior is rather complex and can observed for some nonlinear systems. Several

mathematical definitions exist to characterize such behavior [1]. All of which share the

common feature of extreme sensitivity to small variations of initial conditions [1]. The

phenomena can be recognized through the application of the Lyapunov exponent criteria,

wherein the presence of a positive Lyapunov exponent serves as an indicator of a chaotic
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behavior [34]. The concept of Fractional-Order Chaotic Systems (FOCSs) was introduced

through the fractional-order Chua’s circuit [15], which demonstrated chaotic behavior in

systems at orders below three, showing a phenomenon that cannot be observed in integer-

order counterparts. The concept sparked further research into FOCSs alongside their

synchronization and control schemes. To date, FOCSs extensions from integer-order ones

have been widely studied. Notable examples include the fractional-order Arneodo’s sys-

tem [35], the fractional-order Lorenz system [36], and the fractional-order Duffing-Holmes

system [37]. Furthermore, other studies have focused on addressing the fractional-order

synchronization problem, such as projective synchronization [38], impulsive synchroniza-

tion [39], and complete synchronization [40], etc.

Adaptive control is an expression that refers to a closed-loop controller that possesses

the ability to adjust its parameters automatically to effectively overcome any change in

system dynamics, parameters, and perturbations. Research in this field was motivated by

the aviation and aerospace industries; a decent controller (autopilot in this case) is required

to deal with the dynamic characteristics of an aircraft that differ with the change in speed

and altitude. An adaptive control strategy can play a key role in achieving closed-loop

stability for nonlinear systems that involve uncertainties and unmodeled dynamics [41,42].

The literature on research and applications of this control strategy is rich in different

schemes that fall under its definition, such as self-oscillating adaptive controller and Model

Reference Adaptive Control (MRAC) [43]. MRAC is a typical adaptive approach with a

theory based on combining a control law and an adaptive law, where the adaptive law is an

online estimation for system uncertainties while the control law is a mathematical formula

designed from the ideal case of the closed-loop system. The latter can be obtained using

the estimated parameters, and the calculated control law is used to achieve and preserve

the stability of the closed-loop system.

Adaptive control encompasses two different strategies: Indirect Adaptive Control

(IAC) and Direct Adaptive Control (DAC). The concept behind the IAC is to contin-

uously estimate the uncertain quantities in real-time and uses the calculated values to

configure the stabilizing control law. In contrast, the DAC focuses on the direct estima-

tion of the appropriate control law gains to achieve stability in a closed-loop system [44].

Control gains are consequently, not constants but also variate dynamically, and the men-

tioned approaches have demonstrated their capabilities to effectively handle uncertainties,

perturbations, and variations by acquiring their proper estimations and ensuring reliable

closed-loop performances. Nonetheless, dating back to the early research on adaptive con-

trol during the 1950s [45], it was predominantly considered as a tool to control slowly vary-

ing uncertain systems. In order to maintain the robustness of the controlled system, de-

signers typically opted for low adaptation gains within adaptive closed-loop schemes [46].

Otherwise, the system may encounter the so-called parameter drifting and bursting in the

presence of fast adaptations, these phenomena entail a temporary lack of predictability

and repeatability in the system’s response. This, in turn, can lead to the occurrence of
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high-frequency oscillations and a reduction in transient performance [47]. It was men-

tioned in [48] that even for a stable closed-loop adaptive system, the latter can show

arbitrarily poor transient performances. Transient performance can be described as the

performance of the closed-loop system before the convergence of the adaptive parameters,

which occurs during the learning or process phase. Many factors can affect the transient

performance, including the adaptive gains of the controller, the initial conditions of the

system, the desired inputs, and the uncertain parameters. A number of studies have been

conducted to investigate the convergence and the robustness of adaptive controllers, with

many of them suggesting some modifications to enhance the performance of the strategy.

The σ-modification [49] and the e-modification [50] were proposed based on damping the

adaptive laws; the idea relies on the limitation of the adaptation loop gain and the elimi-

nation of its integral action, which helps in addressing the issue of parameter drifting. The

authors in [51] suggested a composite strategy that uses both the tracking and prediction

errors in a new adaptive law; as a result, they were able to limit the oscillatory behavior

caused by high adaptive gains. A high-gain switching MRAC [52] was proposed to achieve

an arbitrarily decent tracking performance compared to the one delivered by the conven-

tional MRAC. Additional modifications to adaptive controllers can be found in [53–55].

However, none of the mentioned efforts addressed certain transient performance aspects

as outlined in [44]. These aspects include the insertion of the control signal within the

calculated bounds, guaranteeing that any change in the system or the reference input will

not cause an oscillatory control signal or unacceptable transient performances, as well

as, suggesting improvements to the adaptive controller that are not related to high-gain

feedback.

As a recent modification, Cao and Hovakimyan [46,56] essentially introduced L1 adap-

tive control to address the problem of MRAC by providing a robust response in the pres-

ence of fast adaptations. The key improvement lies in the fact that the L1 adaptive control

scheme guarantees desired transient performances with analytically provable bounds for

system input and output signals simultaneously, those high control performances can be

achieved for a closed-loop system even when confronted with uncertainties, perturbations,

and unmodeled dynamics [57]. In contrast to MRAC, the L1 adaptive control methodol-

ogy permits the designer to utilize high adaptation gains without sacrificing robustness.

In other words, fast adaptations are beneficial for both robustness and performance, while

the coupling between the two is solved by using a low-pass filter in the adaptive control

channel [44]. Besides, the mentioned low-pass filter, the architecture of the L1 adap-

tive controller includes many components, namely a state predictor, a control law, and

adaptive laws [58]. The optimal performance of L1 adaptive control can be attained

by employing an auxiliary ideal closed-loop reference system, which is the result of the

elimination of the uncertainties within the controlled system. For that reason, the fil-

tered control signal is sensitized to ensure that the actual system response tracks that

of the closed-loop reference system. In this case, the implementation of a low-pass fil-
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ter serves the purpose of avoiding high-frequency control signals with the comprehension

that any uncertainty in the feedback loop can be only compensated within a specific

bandwidth [44]. An L1 norm condition can be deduced; any design parameter value

chosen within the range of this condition will guarantee closed-loop stability, however, a

thoughtful selection is required to maximize performance.

Contribution of the Thesis

In the field of fractional-order adaptive controllers, several works have been proposed

over the years focusing on one or more classes of FOSs. Up to this date, L1 adaptive

control design for FOSs has not been documented in existing literature. Indeed, the main

motivation of this thesis is to extend the application of the L1 adaptive scheme, which

exhibited advantages for both integer linear and nonlinear systems, to different classes of

FOSs. Furthermore, the aims and major contributions of this thesis that set it apart from

other existing studies are listed as follows:

• Design of a new fractional-order L1 adaptive controller for a general FOSs with

matched uncertainties and bounded time-varying external disturbances. The find-

ings on this scheme are supported by extensive numerical simulations and compar-

ative studies.

• Design of a Multivariable Fractional-Order L1 Adaptive Controller (MFOL1AC) for

a general class of FOSs with model uncertainties, time-varying external disturbances,

and unknown constant input gain. The proposed controller is applied to control

Multiple-Input Multiple-Output (MIMO) incommensurate FOSs as well as high-

dimensional fractional-order hyper-chaotic systems.

• Design of a Neural Network Fractional-Order L1 Adaptive Controller (NNFOL1AC)

for a general class FONLSs that are subject to uncertain dynamics and unknown

time-varying input gain. The conducted numerical simulations focus on the cases of

unknown constant and time-varying input gains.

• Design a Fuzzy Fractional-Order L1 Adaptive Controller (FFOL1AC) considering

a class of FONLSs that are subject to uncertain dynamics and unknown input non-

linearities (dead-zone and sector nonlinearities). The proposed controller is applied

for chaos synchronization problems.

Outline

The remaining sections of the thesis are structured in the form of chapters as follows:
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Chapter 1 provides a concise overview of fractional-order calculus, defining fractional-

order integrals and derivatives, and discussing their respective Laplace transform prop-

erties. It examines the advantages and disadvantages of these concepts and describes

fractional-order systems, including their stability conditions. Additionally, this chapter

discusses the implementation of fractional-order operators and includes a literature review

on fractional-order adaptive controllers.

Chapter 2 offers an overview of the fundamental architecture of model reference and

L1 adaptive controllers, highlighting the key differences and advantages of each method.

Through comparative performance analysis, the chapter demonstrates the superior ben-

efits of the L1 adaptive controller. Additionally, it includes a comprehensive literature

review on L1 adaptive control, providing a thorough background and context for the dis-

cussion.

Chapter 3 introduces the idea of the fractional-order L1 adaptive controller for a class

of fractional-order systems subject to matched uncertainties and bounded time-varying

external disturbances. Initially, a suitable form of a fractional-order sliding surface is se-

lected to simplify the control design and the stability analysis. Then the control structure

is derived based on L1 adaptive control methodology, which includes a control law, an

adaptive mechanism, and a predictor. Finally, a detailed numerical simulation is provided

focusing on the cases of constant and time-varying uncertainties and external disturbances.

Chapter 4 extends the idea of previous chapter to encompass multiple-input multiple-

output fractional-order systems by designing a multivariable fractional-order L1 adaptive

controller. This chapter introduces a new aspect to the proposed controller, specifically

addressing the challenge posed by unknown input gain. Consequently, a distinct control

structure is employed to effectively manage this uncertainty, complementing its capability

to handle unmodeled dynamics and external disturbances. It also focuses the applicability

of the proposed scheme to control incommensurate order and hyper-chaotic systems via

numerical simulations.

Chapter 5 addresses the design of a neural network fractional-order L1 adaptive

controller for a class of fractional-order nonlinear systems. Mainly focusing on the incor-

poration of a neural network as an online estimator in the control structure, and its role

to handle uncertain nonlinear dynamics and unknown time-varying input gain inherent

to the considered system. Finally, two scenarios are considered to test the efficiency of

the controller: chaos suppression of fractional-order systems, and the case of unknown

time-varying input gain through the control of fractional-order nonlinear systems.

Chapter 6 deals with the control of fractional-order systems in the case of input
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nonlinearity. The suggested controller includes a fuzzy system, which takes the role of an

online estimator for system nonlinear uncertain functions which helps in the handling of

the input nonlinearities. In this chapter, the focus of the simulations is shifted to synchro-

nization problems, where the controller is used to achieve master-slave synchronizations

between two different 2-dimensional and 3-dimensional fractional-order chaotic systems.
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Chapter 1
Generalities on Fractional Calculus

1.1 Introduction

Calculus is a branch of mathematics concerned with the study of how functions change.

It offers a methodical framework for modeling and comprehending systems that involve

varying quantities or dynamic processes. By employing calculus, the behavior of such

models can be predicted based on their properties [3]. As calculus developed, its scope

expanded to include fractional or non-integer orders, resulting in more generalized ver-

sions. Fractional calculus is a branch of mathematics that employs real or complex number

powers of integration and differentiation to characterize the dynamic behavior of systems

across domains [2]. Within the field of fractional calculus, the literature contains numer-

ous definitions of fractional-order derivatives and integrals. A simple approach to define

fractional-order integrals is the generalization of n-fold integrals [20]. The concept de-

scribed above gave rise to the formulation of the Riemann-Liouville integral, which was

the base to introduce certain definitions of the fractional-order derivative [21]. These

derivatives are important in describing FODEs [59], and eventually, FOSs.

In control theory, system stability is a critical property, that can be studied both

in time and frequency domains. The emergence of FOSs has led to a rising interest in

exploring and analyzing their stability within academia [1]. While the field of stability

analysis for these particular systems is not extensively explored, many significant findings

have been discussed in existing literature [3]. Investigations in this field revealed that

the stability behavior of Fractional-Order Linear Systems (FOLSs) is distinct from that

of the integer-order ones but also relies upon the roots of the characteristic polynomial

equation [60].

Understanding the stability of these systems is important because it directly influences

and explains their behavior. Toward this end, this chapter present a brief overview on

fractional calculus, focusing on the fractional-order derivatives, FOSs, and their stability

analysis. The rest of the chapter is divided into 6 sections and organized as follows. Section

1.2 provides a general introduction into fractional calculus by addressing the formulation

of fractional-order integral and derivative operators. Section 1.3 describes different repre-
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sentations of linear and nonlinear FOSs. Section 1.4 provides a general understanding on

the stability of FOSs. Section 1.5 deals with the problem of implementing fractional-order

operators. Section 1.7 concludes the chapter.

1.2 Fractional Calculus

Fractional calculus is a concept that was discovered several centuries ago, and their ap-

plications in modeling physical systems and control theory have been vastly studied in

recent years. However, this concept remains obscure to a significant portion of the aca-

demic community. Therefore, this section will focus on providing a concise introduction.

1.2.1 Fractional-Order Operators

As previously stated, fractional calculus is a mathematical field that tackles the possibility

of using real or complex number power of integration and differentiation. The term β is

used in this study to indicate the order of the fractional operator. Consequently, the

fractional-order integro-differential operator can be represented as bDβ
t , with t and b

being the limits of the operation. The fractional operator can be classified into three

forms based on the value of β: derivative for R(β) > 0, integration for R(β) < 0, and

identity for R(β) = 0. The overall idea is simply summarized in the subsequent expression

bDβ
t =


dβ

d tβ
, R(β) > 0

1, R(β) = 0´ t
b (dτ)β, R(β) < 0

(1.1)

In this study, the order β is assumed to be a real number. However, it is worth noting

that it can also be a complex number [24]. In what follows, we will highlight certain

fundamental properties of the fractional operator as reported in [6, 20]:

• For β= n where n is an integer number, the fractional operator bDn
t gives the same

results as the integer-order operator, that is

bDn
t g (t ) = d n g (t )

d t n
(1.2)

• For β= 0 the operation bDβ
t behaves as the identity operator, that is

bD0
t g (t ) = g (t ) (1.3)

• For two scalars a1 and a2 and two continuous differentiable functions g (t ) and f (t ),

the fractional-order derivative and integration are linear operations and agree with

9
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the expression that follows

bDβ
t (a1g (t )+a2 f (t )) = a1bDβ

t g (t )+a2bDβ
t f (t ) (1.4)

1.2.2 Some Important Functions in Fractional Calculus

After defining the fractional operator, it is important to address some special functions

that are often encountered in fractional calculus.

1.2.2.1 Gamma Function

The Gamma function Γ(β) is a mathematical function that provide an extension for facto-

rial operations to real or complex numbers. Therefore, it is a fundamental element in the

majority of fractional-order operator definitions. The definition of the Gamma function

is given as follows

Definition 1.1. [5, 6, 61] The Gamma function is defined in the following form

Γ(β) =
∞̂

0

tβ−1e−t d t ,R(β) > 0 (1.5)

with β is a complex number. �

The most important property of the Gamma function is derived from the above defi-

nition and states that

Γ(β+1) =βΓ(β) (1.6)

here β is a real number. The previous property further implies that

Γ(n +1) = nΓ(n)

= n(n −1)!

= n!

(1.7)

where n ∈N and N is a set of positive integers.

1.2.2.2 Mittag-Leffler Function

The Mittag-Leffler function is a generalization of the exponential function which plays a

significant role in the solution of FODEs, similar to how the exponential function does in

the solution of their integer-order counterparts. Within the four known forms, the most

often used are the 1-parameter and 2-parameter representations given in equations (1.8)

and (1.9), receptively [5, 6, 61]

Eβ(x) =
∞∑

k=0

xk

Γ(βk +1)
,β> 0 (1.8)

10
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Eβ,α(x) =
∞∑

k=0

xk

Γ(βk +α)
,β> 0,α> 0 (1.9)

The relation between the 1-parameter and 2-parameter representations is given in what

follows

Eβ,1(x) =
∞∑

k=0

xk

Γ(βk +1)
= Eβ(x) (1.10)

Some of the most essential relations of the Mittag-Leffler function are given as

E1,1(x) = E1(x) = ex (1.11)

and

E1,2(x) = ex −1

x
(1.12)

1.2.3 Fractional-Order Integral

In the area of fractional-order calculus, there exist several methods for generalizing the

order of integrals to non-integer values [61]. One well-known formulation, proposed by

Cauchy, represents an n-fold integral as a convolution integral. This strategy provides a

simple access to the idea. The formula is given by the following theorem

Theorem 1.1. [6] The n-fold integral of the function g (t ) is the following

0I n
t g (t ) =

t̂

0

(t −τ)n−1

(n −1)!
g (τ)dτ,n ∈N (1.13)

with N is a set of positive integers. �

A fractional-order integral generalizes the definition of integer-order integral. There-

fore, as stated in (1.7), the factorial operation (n −1)! found in the n-fold integral (1.13)

can be replaced with the continuous Gamma function for n ∈ R. Based on that, the

Riemann-Liouville integral can be introduced in the subsequent definition as

Definition 1.2. [20,21] The Riemann-Liouville integral of the fractional-order 0 <β< 1

is given as follows

0Iβt g (t ) = 0D−β
t g (t ) = 1

Γ(β)

t̂

0

g (τ)

(t −τ)1−βdτ (1.14)

where g (t ) represents a casual function of t , i.e., g (t ) = 0 for all t < 0, and Γ(β) is the

Gamma function introduced in Definition 1.1. �

11
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1.2.4 Fractional-Order Derivatives

The definition of fractional-order derivative is more straightforward. It builds upon the

understanding of both the fractional-order integral and the conventional integer-order

derivative. The literature offers several definitions of fractional-order derivatives and

integrals, each with its own suitability, complexity, and accuracy for different scenarios. In

this subsection, we will explore two possible ways to define the fractional-order derivative,

each of which will result in a different definition.

1.2.4.1 Riemann-Liouville’s Definition for Fractional Derivative

The Riemann-Liouville derivative can be obtained by repeatedly performing fractional-

order integration (1.14), followed by an appropriate number of integer-order differentia-

tion. The derivative is given by the following definition

Definition 1.3. [5,6] The Riemann-Liouville fractional derivative of order β> 0 is given

as

RL
0Dβ

t g (t ) = DnD−(n−β)g (t ) = d n

d t n

 1

Γ(n −β)

t̂

0

g (τ)

(t −τ)1+β−n
dτ

 (1.15)

with n −1 <β< n and n ∈N. �

1.2.4.2 Caputo’s Definition for Fractional Derivative

The fractional-order derivative given by Caputo [11] employs an alternate methodology.

Indeed, it follows an opposing approach compared to the Riemann-Liouville derivative.

The Caputo fractional derivative is summarized in the definition that follows

Definition 1.4. [6, 11] The Caputo fractional derivative of order β> 0 is given as

C
0Dβ

t g (t ) = D−(n−β)Dn g (t ) = 1

Γ(n −β)

t̂

0

g (n)(τ)

(t −τ)1+β−n
dτ (1.16)

with n −1 <β< n and n ∈N. �

1.2.5 Properties of Riemann-Liouville and Caputo Derivatives

In this subsection, we focus on certain significant properties of fractional-order derivatives

defined in the preceding sections. It is worth noting that due to brevity reasons, we would

not delve into the demonstration of these properties. For further details, refer to the

works in [2, 7–10].
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• The Riemann-Liouville and Caputo derivatives of a constant C are given by the

equations (1.17) and (1.18), respectively

RL
0Dβ

t C = C t−β

Γ(1−β)
(1.17)

C
0Dβ

t C = 0 (1.18)

• The relation between the Riemann-Liouville derivative and the Caputo derivative

can be summarized by the following equations

RL
0Dβ

t g (t ) = C
0Dβ

t g (t )+
n−1∑
k=0

t k−β

Γ(k −β+1)
g (k)(0+) (1.19)

C
0Dβ

t g (t ) = RL
0Dβ

t (g (t )−
n−1∑
k=0

g (k)(0+)
t k

k !
) (1.20)

• The relation between the Riemann-Liouville derivative and the Riemann-Liouville

integral is given by the equation that follows

0Iβt
RL

0Dβ
t g (t ) = g (t )−

n−1∑
k=0

[
RL

0Dβ−k
t g (t )

]
t=0

tβ−k

Γ(β−k +1)
(1.21)

• The relation between the Caputo derivative and the Riemann-Liouville integral can

be summarized by the following equation

0Iβt
C
0Dβ

t g (t ) = g (t )−
n−1∑
k=0

g (k)(0)
t k

k !
(1.22)

• For n = 1, we have

C
0Dβ

t g (t ) 0Iβt g (t ) = RL
0Dβ

t g (t ) 0Iβt g (t ) = g (t ) (1.23)

• For 0 <β< 1, the following inequality holds for all t ≥ 0

1

2
C
0Dβ

t (g (t ))2 ≤ g (t )C
0Dβ

t g (t ) (1.24)

• For 0 < β < 1, and for ḡ (t ) ∈ Rn a differentiable function vector, the following in-

equality holds for all t ≥ 0

1

2
C
0Dβ

t (ḡ T (t )P ḡ (t )) ≤ ḡ T (t )P C
0Dβ

t ḡ (t ) (1.25)

with P ∈Rn×n is a positive definite and symmetric constant matrix.
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• For β≥α≥ 0 the following equality holds for the Caputo derivative

C
0Dβ

t
C
0D−α

t (g (t )) = C
0Dβ−α

t (g (t )) (1.26)

• The Caputo fractional derivative can be found using the following equation

C
0Dβ

t g (t ) = RL
0D

−([β]−β)
t (g [β](t )) (1.27)

and
[
β
]

represents the integer part of β.

1.2.6 Laplace Transform of Fractional-Order Operators

The Laplace transform is a widely employed mathematical technique to manage engineer-

ing problems. The name“Laplace”was derived after Pierre-Simon Laplace, who developed

the transform during his studies on probability theory. In this section, we will provide

an overview of the Laplace transform applied to integer-order calculus, followed by an

explanation of its use for fractional-orders.

1.2.6.1 Generalities on Laplace Transform

Basically, the Laplace transform is a linear operation that is utilized to transform a func-

tion g (t ) to a function G(s) through the integral expression that follows [1, 20]

G(s) = L
{

g (t ); s
}= ∞̂

0

g (t )e−st d t (1.28)

where t and s are the real and complex arguments, respectively. The function G(s)

is referred to as the transform of g (t ), whereas g (t ) is called the original function. The

transform exhibits a highly beneficial property whereby many operations and relationships

performed on the original function g (t ) can be more easily managed when applied to the

transformed function G(s).

It is possible to restore the original function from its transform function using the

inverse Laplace transform, which is provided in the following expression [20]

g (t ) = L−1 {G(s); t } =
c+ j∞ˆ

c− j∞
G(s)e st d s,c =R(s) > c0 (1.29)

with c0 is located in the right half-plane of the absolute convergence of the integral (1.28).

The evaluation of the inverse Laplace transform from (1.29) is relatively complicated.

However, it has the potential to deliver some valuable insights into the behavior of the

unknown function g (t ) [1]. The rest of this section is related to the Laplace transform

of fractional-order integrals and derivatives, for that reason we consider the lower limit
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b = 0.

1.2.6.2 Laplace Transform of Fractional-Order Integrals

Theorem 1.2. [1,6] The Laplace transform of Riemann-Liouville integral is given in the

subsequent expression [1,6]

L
{

0Iβt g (t ); s
}
= s−βG(s) (1.30)

with β ∈R+. �

1.2.6.3 Laplace Transform of Fractional-Order Derivatives

Theorem 1.3. [6] The Laplace transform of the Riemann-Liouville derivative is given

in the subsequent expression

L
{

0Dβ
t g (t ); s

}
= sβG(s)−

n−1∑
v=0

sv RL
0Dβ−v−1

t g (0) (1.31)

with β ∈R+, n −1 <β< n, and n ∈N. �

Theorem 1.4. [6] The Laplace transform of the Caputo derivative is given in the ex-

pression that follows

L
{

0Dβ
t g (t ); s

}
= sβG(s)−

n−1∑
v=0

sβ−v−1g (v)(0) (1.32)

with β ∈R+, n −1 <β< n and n ∈N. �

Remark 1.1. For zero initial conditions, the Laplace transform of the two fractional-order

derivatives (Riemann-Liouville and Caputo) are similar and can be reduced to [1, 6]

L
{

RL
0Dβ

t g (t ); s
}
= L

{
C
0Dβ

t g (t ); s
}
= sβG(s) (1.33)

�

1.2.7 Initial Value Problems of Fractional Operators

Initial values typically refer to the states of a system at its starting point or a specific

time instant. These values serve as the basis for solving and analyzing mathematical

models that articulate the system’s behavior over the course of time. Specifying such

values when solving differential equations is necessary to obtain a unique solution. The

Riemann-Liouville derivative has a major disadvantage; it could be observed in (1.15)

that when using FODEs that are based on Riemann-Liouville’s definition it is mandatory

to impose zero initial conditions [1]. Nevertheless, there are cases where a zero initial
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condition may not be reasonable. Moreover, the Laplace transform of the Riemann-

Liouville derivative in (1.31) necessitates knowledge of the initial conditions of the function
RL

0Dβ−v−1
t g (t ), which is quite challenging to quire in terms of a physical quantity [3]. In

contrast, FODEs that employ the Caputo derivative have similar initial conditions to those

of integer-order differential equations. This is advantageous for practical applications as

real-world problems often require definitions of fractional derivatives that involve clear

and straightforward interpretations of initial conditions [1,6]. Besides, it is clear in (1.32)

that the Laplace transform of the Caputo derivative required only the knowledge of initial

conditions of the function g (v)(t ), which possess a clear physical interpretation [3]. For

these reasons, in practical applications Caputo’s definition is preferred, whereas Riemann-

Liouville’s definition is utilized more frequently in mathematical contexts. Following the

aforementioned discussion, we choose to adopt the Caputo fractional-order derivative to

describe FOSs and design FOCs. Therefore, throughout the remainder of this thesis, we

will symbolize the Caputo fractional derivative with the notation Dβ rather than C
0Dβ

t .

This notation simplifies the presentation and improves the clarity of our investigation into

fractional calculus and its applications to control theory.

1.3 Fractional-Order Systems

The preceding sections covered some of the essential definitions, concepts, and properties

of fractional-order operators. In this section, the main focus shifts to a particular class of

systems known as fractional-order dynamical systems.

1.3.1 Fractional-Order Linear Systems

Similar to integer-order calculus in control theory, the transfer function representation of

FOLSs can be obtained through the Laplace transform of their FODEs.

1.3.1.1 Transfer Function Method

In general, the continuous-time dynamics of a linear fractional-order system can be defined

using a fractional-order differentiation equation developed based on its first principle as

follows [59]

bmDβm y(t )+bm−1Dβm−1 y(t )+ . . .b0Dβ0 y(t ) =
anDαn u(t )+an−1Dαn−1 u(t )+ . . . a0Dα0 u(t )

(1.34)

where bi , i = 0,1, . . . ,m and ak ,k = 0,1, . . . ,n are constant values, βi , i = 0,1, . . . ,m, and

αk ,k = 1,2, . . . ,n are real numbers, with βm > βm−1 . . . > β0, and αn > αn−1 . . . > α0. If the

fractional-order of both sides of (1.34) are integer multiples of a mutual factor, then the

equation is termed to be of commensurate order. Conversely, if no common factor exists

among them, the equation is referred to as being of incommensurate order.

16



Generalities on Fractional Calculus

For the case of commensurate fractional-orders, i.e., βi ,αk = jβ and β ∈R+, the equa-

tion (1.34) can be simplified to

m∑
j=0

b j D jβy(t ) =
n∑

j=0
a j D jβu(t ) (1.35)

with m > n. By employing the Laplace transform to equation (1.34) while assuming zero

initial conditions, the input-output representation of the fractional-order system in the

form of a transfer function can be found as follows [6]

H(s) = an sαn +an−1sαn−1 + . . . a0sα0

bm sβm +bm−1sβm−1 + . . .b0sβ0
= Y (s)

U (s)
(1.36)

with Y (s) and U (s) denote the fractional-order polynomials of the numerator and the

denominator, respectively. For the case of commensurate fractional-orders, the equation

(1.36) is reduced to

H(s) =

n∑
j=0

a j (sβ) j

m∑
j=0

b j (sβ) j
= Q(sβ)

P (sβ)
(1.37)

1.3.1.2 State Space Method

FOLSs can also be expressed in the state space domain, with a representation that takes

the subsequent form [62]

Dβx(t ) = Ax(t )+Bu(t )

y(t ) =C x(t )+Du(t )
(1.38)

where x(t ) = [x1(t ), x2(t ), . . . xm(t )]T ∈ Rm is the stat vector, u(t ) = [u1(t ),u2(t ), . . .un(t )]T ∈
Rn and y(t ) = [y1(t ), y2(t ), . . . yp (t )]T ∈ Rp are the input and output vectors, respectively.

A ∈ Rm×m is the system matrix, B ∈ Rm×n is the input matrix, C ∈ Rp×m is the output

matrix, and D ∈ Rp×n is the direct transmission matrix. The fractional-order is denoted

as β where β = [β1(t ),β2(t ), . . .βm(t )]T ∈ Rm. It is worth noting that the fractional-order

operator Dβ is exclusively applied to the elements of the pseudo state vector x(t ) in the

first equation of (1.38), where the latter is known as the fractional-order state equation,

whereas the second equation of (1.38) corresponds to the output equation.

1.3.2 Fractional-Order Nonlinear Systems

Generally, incommensurate FONLSs are represented with the following expression

Dβi xi (t ) = gi (x1(t ), x2(t ), . . . xm(t )), xi (0) = x0i (1.39)

with x0i , i = 1,2, . . . ,m are the initial conditions of the system and βi , i = 1,2, . . . ,m are the

derivative orders. A reduced representation of the system (1.39) can take the following
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vector form

Dβx(t ) =G(x) (1.40)

where β= [β1(t ),β2(t ), . . .βm(t )]T ∈Rm, x(t ) = [x1(t ), x2(t ), . . . xm(t )]T ∈Rm and G(t ) = [g1(t ),

g2(t ), . . . gm(t )]T ∈Rm.

Remark 1.2. When dealing with incommensurate FOSs, it is worth noting that the orders

under consideration are both distinct and arbitrary. This lack of correlation between the

orders poses a significant challenge in analysis and control design. On the other hand, in

commensurate systems, the orders of the FODEs are either identical or multiples of the

base order, making them mathematically manageable.

1.4 Stability of Fractional-Order Systems

The concept of stability is a fundamental aspect when discussing dynamical systems and

their behaviors. The very first Bounded-Input Bounded-Output (BIBO) stability defi-

nition was introduced by Matignon [60]. This foundational definition was subsequently

employed in the control of FOSs. Subsequent research efforts explored frequency domain

stability, including fractional-order Nyquist-based criterion [63]. Additional results re-

garding FOLSs were on the basis of linear matrix inequality such as found in the work of

Sabatier [64]. The emergence of the Laplace transform of fractional-order operators played

a crucial role in investigating the stability of FOLSs; this transform allows stability anal-

ysis by examining the roots of the characteristic equation derived from system’s transfer

function [60]. The approach was further extended in one hand, to the state space models

of FOLSs [65, 66]. To demonstrate the stability of FONLSs. Oustaloup [67] proposed

a power law stability based on the Mittag-Leffler function [68]. Indeed, the exponential

stability proved to be not suitable for examining the stability of FONLSs [60], and the

power law stability serves in this case as an alternative method. Further studies focused

on extending the Lyapunov criterion [69] to FONLSs. Podlubny’s work [70] employed

the Mittag-Leffler function to investigate stability of FONLSs using a fractional-order

Lyapunov method, delivered some interesting results. Later efforts further refined the

application of the Lyapunov method within the fractional-order domain. As observed in

the mentioned works [10,71,72].

This section will present the stability of FOSs. Initially, an overview of the stability

of FOLSs will be provided, followed by an analysis of the stability of FONLSs.

1.4.1 Stability of Fractional-Order Linear Systems

The analytical method employed to determine the stability of a factional-order linear

system involves examining the position of the roots on Riemann surfaces, which are one-

dimensional sheets utilized in complex analysis [73]. Without loss of generality, the sta-

bility condition for FOLSs can be summarized in the following theorems
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Theorem 1.5. [60] The commensurate fractional-order system described by the transfer

function G(s) = Q(sβ)/P (sβ) in (1.37) is stable if and only if the subsequent condition is

satisfied

|ar g (λi )| >βπ
2

, P (λ) = 0 (1.41)

where β ∈R with respect to 0 <β< 2, and λi is the i th root of the nominator P (sβ). �

Hence, the concept of pole location for integer-order stability can be seen as a special

case of this theorem, i.e., the case when β = 1 implies that all poles must appear in the

left half of the complex plan. Moreover, according to Theorem 1.5, the stability region

tends to the whole plan once β tends to zero, and tends to the real negative axis when β

tends to 2 [20]. The aforementioned idea is visually explained in Figure 1.1.

If the fractional-order system under consideration is represented in state space form,

the stability condition should have a slight modification, which can be expressed through

the following theorem

Theorem 1.6. [62] Let us consider the commensurate fractional-order described by the

state space representation in (1.38) in the case of the matrices triplet A, B , and C is

minimal. The system is stable if and only if the subsequent condition is satisfied

|ar g (ei g (A))| >βπ
2

(1.42)

with 0 <β< 2 and ei g (A) are the eigenvalues of matrix A. �
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Figure 1.1: Stability regions for fractional-order linear systems.

1.4.2 Stability of Fractional-Order Nonlinear Systems

It was mentioned in [60] that exponential stability; which is commonly used to study the

asymptotic stability of nonlinear systems, is not suitable for examining the stability of

FONLSs. Consequently, alternative approaches must be considered. In that sense, a new

definition of power law stability t−α has been introduced by Oustaloup as follows
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Definition 1.5. [67] The trajectory x(t ) = 0 of the fractional-order system defined in

(1.39) is t−α asymptotically stable if there is a positive real α such that

∀||x(t )||, t ≤ t0, ∃J (x(t ), t ≤ t0), such that ∀t ≥ t0, ||x(t )|| ≤ J t−α (1.43)

�

which implies that the trajectory of x(t ) gradually vanishes towards zero following t−α,

which is, in fact, slower than the exponential decay rate of integer-order systems. There-

fore, FOSs are occasionally called long memory systems [68]. The power law stability

definition was subsequently used to establish a novel stability condition for FONLSs, re-

ferred to as Mittag-Leffler stability. This stability condition is expressed by the subsequent

theorem

Theorem 1.7. [68] The fractional-order nonlinear system Dβx(t ) =G(t , x) is considered

Mittag-Leffler stable if

||x(t )|| ≤ {σ[x(t0)]Eβ(−p(t − t0)β)}b (1.44)

where t0 denotes the initial time, 0 < β < 1, p > 0, b > 0, and Eβ is the Mittag-Leffler

function introduced in (1.8). The function σ(x) is locally Lipschitz on x ∈ B ∈ Rm, which

satisfies σ(0) = 0 and σ(x) ≥ 0. �

Lyapunov’s second method is widely recognized for its ability to study the stability of

a system without the need to explicitly solve its differential equation. The work in [70]

has expanded this method to FOSs in terms of Mittag-Leffler stability. The notions of

the fractional-order Lyapunov stability are given in the following theorems

Theorem 1.8. [70] Let us consider x = 0 as an equilibrium point for the fractional-order

autonomous systems Dβx(t ) =G(t , x) defined in (1.39), and D is a domain that contains the

origin with D⊂Rm. Assuming the existence of a Lyapunov candidate function V (t , x(t )) :

[0,∞)×D→ R, to be locally Lipschitz with respect to x and continuously differentiable

such that

β1||x||a ≤V (t , x(t )) ≤β2||x||ab (1.45)

and

DβV (t , x(t )) ≤−β3||x||ab (1.46)

with t ≥ 0, x ∈ D, β ∈ R with respect to 0 < β < 1, β1, β2, β3, a, and b are arbitrary

positive constants. Then, the equilibrium point x = 0 is Mittag-Leffler stable. In the case

where the considered assumptions hold globally on Rm, then, the equilibrium point x = 0

is globally Mittag-Leffler stable. �

Theorem 1.9. [68] Let us consider x = 0 as an equilibrium point for the fractional-

order autonomous systems Dβx(t ) = G(t , x) defined in (1.39). Assuming the existence of
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a Lyapunov candidate function and cl ass −K functions βi , i = 1,2,3 such that

β1(||x||) ≤V (t , x(t )) ≤β2(||x||) (1.47)

and

DβV (t , x(t )) ≤−β3(||x||) (1.48)

with t ≥ 0, and β ∈ R with respect to 0 < β < 1. Then, the equilibrium point x = 0 is

asymptotically stable. Here, a cl ass−K function βi (t ) is defined as a continuous function

with βi : [0, t ) → [0,∞) that is strictly increasing and satisfy βi (0) = 0. �

Further details and aspects on the Lyapunov stability of FONLSs can be found in [3].

Other works such as in [65, 74], proposed an alternative approach to study the stability

of FONLSs, which is based on the linearization of the systems via the Jacobian method.

This approach is given below in the form of a theorem

Theorem 1.10. [65] Let us consider the Jacobian matrix J = ∂G
∂x , evaluated at specific

equilibrium point E∗ where G(t ) = [g1(t ), g2(t ), . . . gm(t )]T . Then, the equilibrium point of

the commensurate fractional-order system defined in (1.39) are asymptotically stable if

|ar g (ei g (J ))| = |ar g (ei g (λi ))| >βπ
2

(1.49)

with λi , i = 1,2, . . . ,m are the eigenvalues of the matrix J . �

1.5 Implementation of Fractional-Order Operators

In the previous sections, some basic definitions of FOSs and their stability theorems are

addressed. Yet, the implementation of fractional-order operators remains unexplored. In-

deed this aspect is straightforward for integer-order systems using traditional electrical

elements, it is not the case for FOSs since their implementation necessitates unlimited

amount of storage space. In fact, the fractional-order behavior can be exhibited via some

recently introduced capacitors (fractances) and inductors (fractductors) [75]. However,

these elements are currently in the development phase, and their availability is limited.

As a result, alternative realization methods have been proposed using basic electrical el-

ements. The R-C infinite ladder network [22] is a relevant example with an idea that

is based on approximating the fractional-order behavior using a finite number of R-C

elements. Hence, the major problem is the requirement of an approximation method to

include any fractional-order operator in a practical realization or even an equivalent digi-

tal implementation. Theoretically, the main issue with the digital implementation is that

a fractional-order operator requires an infinite amount of memory for the historical com-

putational data; all past functions take place during the calculations of a fractional-order

integral [76, 77]. For that particular reason, effective methods to represent a fractional-

order operator in a finite-dimensional integer-order approximation are required [77]. Vari-
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ous fractional-order approximation techniques have been designed for continuous time do-

mains such as Carlson’s method [78], Matsuda’s method [79], and Oustaloup’s method [80].

The Carlson’s and the Matsuda’s methods represent effective methods to approximate

fractional-order operators. Despite this, several researchers [78, 81, 82] have highlighted

major setbacks associated with the aforementioned. Carlson’s method is limited to re-

duced orders of the fractional operator, and Matsuda’s method results in improper ap-

proximations if its order is selected as an odd number. The approximation method pro-

posed by Oustaloup relies on a recursive pole-zero distribution of the transfer function

within a specific frequency range [83]. Of the available methods, Oustaloup’s approxima-

tion has been established as the most suitable and stands out as popular and commonly

used [20]. The strategy served as the foundation for the development of many software

packages that assist fractional-order control design and system identification. A powerful

computational software with a large set of tools for control design and system analysis

as MATLAB/Simulink environment was eventually supported with some fractional-order

packages such as the fractional-order robust control (Commande Robuste d’Ordre Non

Entier (CRONE)) toolbox [83], Ninteger toolbox [84], the Fractional-Order Modeling and

Control (FOMCON) toolbox [85], and the Fractional-Order Transfer Functions (FOTF)

toolbox [86].

This section focuses on some of the most well-known approximation methods for

fractional-order operators.

1.5.1 Carlson’s Approximation

The method proposed by Carlson [78], which is derived from a regular Newton process

used for iterative approximation of the βth root. The method begins with the formulation

of the subsequent relationships

H(s)
1
β −G(s) = 0, H(s) =G(s)β (1.50)

For each iteration we give β= 1
α

and m = α
2 , the starting from an initial value H0(s) = 1,

the approximated rational function is defined in the following form

Hi (s) = Hi−1(s)
(α−m)+Hi−1(s)(α+m)G(s)

(α+m)+Hi−1(s)(α−m)G(s)
(1.51)

1.5.2 Matsuda’s Approximation

The method proposed by Matsuda [79] involves approximating an irrational function with

a rational one. This is achieved by using Continued Fraction Expansion and fitting the

original function at a series of logarithmically spaced points. For N selected points given

22



Generalities on Fractional Calculus

as sk ,k = 1,2, . . . , N , the approximation takes on the form

H(s) = a0 + s − s0

a1
+ s − s1

a2
+ s − s2

a3
+ . . . (1.52)

with ai = vi (si ), v0(s) = H(s), and vi+1(s) = s−si
vi (s)−ai

.

1.5.3 Oustaloup’s Approximation

Oustaloup’s approximation, also known as Oustaloup’s recursive filter, relies on the recur-

sive pole-zero distribution of a transfer function within a specific frequency range (ωb ,ωh).

In other words, to approximate a fractional-order operator sβ by an integer-order transfer

function, the poles and zeroes of the latter can be calculated using the equation that

follows [80,87]

H(s) = sβ ≈C
N∏

i=1

s +ω′
i

s +ωi
(1.53)

where the filter gain C , poles, and zeros are evaluated using

ω′
i =ωbω

(2i−1−β)
N

u ,ωi =ωbω
(2i−1+β)

N
u ,C =ωβh (1.54)

with ωu =
√

ωh
ωb

and N is the order of the filter.

In the case when β ≥ 1 such as in the fractional-order transfer function (1.36), the

operator sβ can be written as [88]

sβ = sn sα (1.55)

where n =β−α is the integer part of β. Therefore, only the fractional-order part sα should

be approximated. Hence, each operator found in (1.36) can be approximated based on

(1.55), resulting in an integer-order transfer function.

1.6 Literature Review on Fractional-Order Adaptive Controllers

Due to the growing interest in FOSs and the challenges they present, many research

efforts have focused on integrating fractional-order operators in adaptive control strate-

gies. Notably, a fractional-order MRAC was designed in [89], introducing two methods

to extend the conventional MRAC by incorporating fractional-order reference models and

fractional-order adaptive laws. This work is considered one of the earliest research on this

particular topic.

Research on fractional-order adaptive control remains a hot topic, with recent studies

continuing to advance the field. For example, the work in [90] discussed the generalization

of direct MRAC methodology, specifically tailored for FOLSs. On the other hand, [91]

opts for an indirect MRAC to control a particular class of FOSs. A discussion on tuning
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control and adaptive gains of a fractional-order MRAC using optimization algorithms was

provided in [92]. Another example of locating the optimal values of the adaptive gains

using a multi-objective genetic algorithm illustrated in [93]. The authors used fractional-

order integral-type adaptation laws to accelerate the convergence and improve control

signal efficiency. A fractional-order MRAC was suggested for the control of fractional-

order multi-variable systems [32]. A composite fractional-order MRAC was developed

including the estimation error parameter into the adaptation law [94]. A fractional-order

MRAC design includes a feed-forward compensation to improve the stability behavior and

the robustness of the closed-loop system [95].

In terms of improving the scheme of fractional-order adaptive controllers, an adaptive

sliding mode controller was designed in [96]. The structure of this controller relies on a

fractional-order switching control law and some adaptive laws to deal with uncertainties

and external disturbances. Another adaptive sliding mode for control and synchronization

of FOCSs is provided in [97]. The work in [98], offers a comparison between fractional-

order adaptive sliding mode controllers. The study was based on two different sliding

surfaces and the approaches used for chaos synchronization problems. A fractional-order

adaptive backstepping controller was designed to deal with actuator faults, uncertainties,

and disturbances, while achieving closed-loop stability for a considered fractional-order

system [99]. In [38], a chaos synchronization strategy is presented, the former’s purpose

is to control an incommensurate system subject to input saturation using an adaptive

controller with fractional-order adaptation laws.

The resulting improvements of incorporating intelligent algorithms as nonlinearity ap-

proximators can be observed for FOCs. As an example, the authors in [100, 101] used

fuzzy system approximation in a fractional-order adaptive control scheme, while other

works used Neural Networks (NN) approximators [102, 103]. To achieve a projective

synchronization for two distinct FOCSs, besides employing a fuzzy adaptive controller,

the authors in [104] used a fractional-order variable-structure technique to robustly deal

with input nonlinearities within the system. The work in [105] discussed the use of the

fuzzy adaptive mechanism in the synchronization of both uncertain and incommensurate

FOCSs. The backstepping-based adaptive controller [106] benefited from a fuzzy system

that treats fractional-order derivatives in the virtual command function as a part of the

uncertain function. Authors in [107] have developed an adaptive resilient controller that

was capable of ensuring the finite-time stability of the closed-loop system based on NN

and fractional-order command-filtered backstepping methodology. The work in [108] pro-

posed an adaptive NN control for a class of time-delayed FOSs. The controller uses a

linear observer to estimate immeasurable tracking error components. An adaptive NN

terminal sliding mode controller was established along with a commanded filtered back-

stepping approach to control a fractional-order synchronous motor in [109]. The adaptive

NN controller in [110] relies on an event-triggered mechanism to achieve the stability of

nonstrict-feedback FONLSs with input saturation. An adaptive controller based on a
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fractional-order command filter and a Radial Basis Function Neural Network (RBFNN)

is designed in [111] for FOCSs with uncertain input dead zones.

1.7 Conclusion

This chapter aims to offer a comprehensive insight into fractional calculus by focusing

on its key aspects. Highlighting the fundamental definitions of fractional-order operators,

including the fractional-order integral and two popular approaches for fractional-order

derivatives. To facilitate further analysis, we explored the extension of the Laplace trans-

form to fractional calculus. In addition, we examined several properties of fractional-order

derivative definitions, thus, demonstrating the relevance and significance of the Caputo

fractional-order derivative to this work. Outlining these fundamental definitions and ex-

ploring their properties, allow introducing a new class of systems known as fractional-order

dynamical systems. These systems can be described using differential equations that in-

volve fractional-order derivatives. The overall stability discussions reveal that the FOSs

exhibit distinct behaviors compared to integer-order ones. Yet, it can be seen that the

stability notations of the latter are rather special cases of the ones observed in FOSs.

Moreover, the problem with the implementation of fractional-order operators has been

discussed, showing that Oustaloup’s recursive filter is a well-established method for finite-

dimensional approximation of the fractional-order operator.
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Chapter 2
L1 Adaptive Control

2.1 Introduction

Adaptive controllers are designed to handle the challenges posed by systems with uncer-

tain dynamics, time-varying parameters, and external disturbances. Unlike traditional

controllers, which rely on fixed parameters derived from precise mathematical models,

adaptive controllers can modify their behavior in real-time to cope with changes in the

system [41, 42]. L1 adaptive control represents a significant advancement in adaptive

control methodologies, offering robust performance in the presence of system uncertain-

ties and high adaptation gains [46, 56]. Distinguished by its fast adaptation capabilities,

L1 adaptive control swiftly adjusts control parameters to maintain system stability and

desired performance. This method stands out due to its ability ensures a predictable

transient response while providing consistent performance even during adaptation [44].

L1 adaptive control is a new and promising technique that have been studied extensively

in the last few years. The methodology of this controller, which is the foundation of this

research, is relatively new and unique. Thus, this chapter will attempt to present the L1

adaptive controller, showcasing its structure and advantages. The rest of the chapter is

divided into 4 sections and organized as follows. Section 2.2 shows the basic architecture

of the L1 adaptive controller. Section 2.3 provides an analysis of the robustness and

performance of the L1 adaptive controller. Section 2.4 offers a brief literature review on

L1 adaptive control methodology. Section 2.5 concludes the chapter.

2.2 Basic Architecture of L1 Adaptive Controller

This section will provide an explanation of the theoretical principles behind the L1 adap-

tive controller, offering a comprehensive understanding that supports this research, noting

that the following subsections adhere to the work stated in [44].
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2.2.1 Mathematical Basis

2.2.1.1 Barbalat’s lemma

Barbalat’s lemma is a frequently employed mathematical concept in stability analysis and

control theory. The lemma can be expressed within the scope of Lyapunov functions and

their derivatives, under certain conditions, it can be utilized to establish the convergence

of this functions to zero as time approaches infinity.

Lemma 2.1. [112] Let a function g :R→R be uniformly continuous on [0,∞). Then, if

the term lim
t→∞
´ t

0 g (τ)dτ exists and have a finite value, it holds that

lim
t→∞g (t ) = 0 (2.1)

�

2.2.1.2 Projection Operator

The projection operator is frequently used to synthesize adaptation laws. Within the

adaptive schemes, the utilization of the projection operator serves the purpose of avoiding

parameter drifting, ensuring bounds to the estimated function, and guaranteeing the ro-

bustness of the controller. The application of the projection operator to adaptive schemes

is detailed in [113]. In this part, we recall certain useful definitions and proprieties as

stated in [44,113].

Definition 2.1. Θ⊆Rn is known as a convex set if for all p, q ∈Θ, we have

ςp + (1−ς)q ∈Θ (2.2)

with 0 ≤ ς≤ 1. �

Definition 2.2. The function g :Rn →R is known as a convex function if for all p, q ∈Rn,

we have

g (ςp + (1−ς)q) ≤ ςg (p)+ (1−ς)g (q) (2.3)

with 0 ≤ ς≤ 1. �

Definition 2.3. Let us consider a convex compact set Θk with a smooth boundary as

Θk = {p ∈Rn |g (p) ≤ k} (2.4)

with 0 ≤ k ≤ 1, and g :Rn →R is the smooth convex function that follows

g (p) = (εp +1)pT p −p2
max

εp p2
max

(2.5)
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with pmax represents the imposed norm bound on the vector p and εp ∈R+ is the projection

tolerance bound of the designer’s choice. The definition of the projection operator Pr o j (., .)

is given for any two vectors p, q ∈Rn in the following form

Pr o j (p, q) =
q − ∇g (p)(∇g (p))T

‖∇g (p)‖2 qg (p), i f g (p) > 0 and (∇g (p))T q > 0

q, Other wi se
(2.6)

where ∇g (p) = (∂g (p)
∂p1

. . . ∂g (p)
∂pn

)T . �

Lemma 2.2. For a convex set Θ0 defined as

Θ0 = {p ∈Rn|g (p) ≤ 0} (2.7)

and for a parameter p(t ) evolving according to the subsequent dynamics

ṗ(t ) = Pr o j (p(t ), q) (2.8)

where p(t0) ∈Θk . Then we have

p(t ) ∈Θk (2.9)

and for p∗ ∈Θ0, we have

(p −p∗)T (Pr o j (p, q)−q) ≤ 0 (2.10)

�

2.2.2 Model Reference Adaptive control

In order to enhance comprehension of the L1 adaptive control theory, this part will provide

a concise overview of the indirect MRAC, for that reason, let us consider the following

class of linear time-invariant systems{
ẋ(t ) = Ax(t )+B(u(t )+θT (t )x(t )), x(0) = x0

y(t ) =C T x(t )
(2.11)

where A ∈ Rn×n is a known matrix, B and C ∈ Rn are known constant vectors, such that

the pair (A,B) is controllable, x(t ) = [x1, . . . , xn]
T ∈ Rn is the measured state with x0 ∈ Rn

are the corresponding initial values, y(t ) ∈ R is the system output, θ ∈ Rn is a vector of

unknown parameters, and u ∈R is the control signal with the subsequent structure

u(t ) = uad (t )+um(t ) (2.12)

where uad (t ) is the control law that incorporates the adaptive components and um(t ) is

selected as follows

um(t ) =−K T x(t ) (2.13)

28



L1 Adaptive Control

with K ∈ Rn is a feedback gain that yields in a Hurwitz matrix Am ∈ Rn×n defining the

desired dynamics for the closed-loop system, where Am = A−BK T .

The objective of the controller is to achieve a bounded tracking response of the output

signal y(t ) to a bounded reference signal yd (t ). This can be achieved by using the nominal

control signal that follows

uadnom (t ) =−θT x(t )+Kg yd (t ) (2.14)

with Kg =− 1
C T A−1

m B
[115]. The choice of the control uadnom (t ) provides a perfect cancellation

of the uncertainties within the system (2.11), and leads to the subsequent reference system

{
ẋm(t ) = Am xm(t )+BKg yd (t ), x(0) = x0

y(t ) =C T x(t )
(2.15)

However, due to the utilization of the unknown vector θ, the implementation of the

control law (2.14) is not feasible. Hence, it is necessary to determine an appropriate

control input uad (t ) as

uad (t ) =−θ̂T x(t )+Kg yd (t ) (2.16)

where θ̂(t ) ∈Rn is the estimation of the unknown vector θ. Consequently, by denoting the

tracking error as e(t ) = xm(t )−x(t ), one can have the following error dynamics

ė(t ) = Ame(t )+B θ̃T (t )x(t ),e(0) = 0 (2.17)

where θ̃(t ) = θ̂(t )−θ and θ̂(t ) follows the adaptation law given bellow

˙̂θ(t ) =−Γx(t )eT (t )PB , θ̂(0) = θ̂0 (2.18)

where Γ > 0 is the adaptation gain, and P T = P > 0 is defined by solving the Lyapunov

algebraic equation that follows

PAm + AT
mP =−Q (2.19)

with QT =Q > 0 is an arbitrary symmetric matrix. With the choice of a Lyapunov candi-

date function as

V = eT Pe + 1

Γ
θ̃T θ̃ (2.20)

it is straightforward to find

V̇ =−eT Qe ≤ 0 (2.21)

In other words, this means that the tracking error and the estimation error are Lya-

punov stable. Furthermore, to prove that the tracking error converges asymptotically to

zero, we calculate the second derivative of the Lyapunov function, hence

V̈ =−2eT Qė (2.22)
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based on (2.17), it follows that ė(t ) and V̈ (t ) are bounded which lead to the conclusion

that V̇ (t ) is continuous. The previous discussion allows us to apply Barbalat’s lemma

(details are given in Lemma 2.1), which implies that lim
t→∞V̇ (t ) = 0 and lim

t→∞e(t ) = 0.

In the case of predictor-based MRAC, we consider the following state predictor dy-

namics {
˙̂x(t ) = Am x̂(t )+B(uad (t )+ θ̂T (t )x(t )), x̂(0) = x0

ŷ(t ) =C T x̂(t )
(2.23)

where x̂(t ) ∈ Rn is the prediction of the state vector x(t ) and ŷ(t ) ∈ R is the prediction of

the output signal y(t ). By subtracting (2.11) from (2.23), i.e., x̃ = x̂(t )−x(t ), one can get

the prediction error dynamics as follows

˙̃x(t ) = Am x̃(t )+B θ̃(t )x(t ), x̃(0) = 0 (2.24)

Applying the same adaptation law as in (2.18) results in the same analysis using

Lyapunov function where e(t ) is replaced with x̃(t ). That is to say

V̇ =−x̃T Qx̃ ≤ 0 (2.25)

It is worth noting that the adaptive component in MRAC is derived by estimating the

unknown parameter θ. Through the examination of the estimation error dynamics and

the application of Lyapunov stability, it can be demonstrated that the estimation error is

bounded but not necessarily convergent. It is important to note that without introducing

the feedback signal u(t ), we cannot apply Barbalat’s lemma to conclude the convergence

of x̃(t ) to zero. Both x(t ) and x̂(t ) can diverge at the same rate, keeping x̃(t ) uniformly

bounded [115]. If we use the control law (2.16) in (2.23), we obtain

{
˙̂x(t ) = Am x̂(t )+BKg yd (t ), x̂(0) = x0

ŷ(t ) =C T x̂(t )
(2.26)

which shows that the closed-loop state predictor replicates the bounded ideal system of

(2.15). Hence, Barbalat’s lemma can be invoked to conclude that lim
t→∞x̃(t ) = 0.

Furthermore, the Lyapunov analysis of the closed-loop system implies that the tracking

error e(t ) (or the prediction error x̃(t )) is upper bounded for all t ≥ 0 as

‖e(t )‖ ≤
√

V (t )

λmi n(P )
≤

√
V (0)

λmi n(P )
= ‖θ̃(0)‖√

λmi n(P )Γ
(2.27)

with λmi n(P ) is the minimum eigenvalue of the matrix P . This indicates that the tracking

error can be arbitrarily reduced for higher adaptation gain Γ [114]. However, it follows

from the representation of the control law (2.16) and the adaptation law (2.18) that

large adaptation gains introduce high-gain feedback control, this can be seen through the

presence of high-frequency oscillations in the control signal and a drop in the ability to
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tolerate time delays [44].

2.2.3 L1 Adaptive Control

Just like the previous discussion of MRAC, we consider the system represented in (2.11)

with the control structure defined by (2.12). According to the representation of um(t ), we

can have the following representation of the system{
ẋ(t ) = Am x(t )+B(uad (t )+θT (t )x(t )), x(0) = x0

y(t ) =C T x(t )
(2.28)

with the state predictor given by the representation bellow{
˙̂x(t ) = Am x̂(t )+B(uad (t )+ θ̂T (t )x(t )), x̂(0) = x0

ŷ(t ) =C T x̂(t )
(2.29)

where the estimated values of the unknown vector θ(t ) are governed by the subsequent

projection-type adaptation law

˙̂θ(t ) = ΓPr o j (θ̂(t ),−x̃(t )PB x(t )), θ̂(0) = θ̂0 (2.30)

Pr o j (., .) is the Projection operator introduced in Definition 2.3. The control law uad is

defined as

uad =−C (s)(η̂(s)−Kg yd (s)) (2.31)

where η̂(s) and yd (s) are the transform functions of η̂(t ) = θ̂(t )x(t ) and yd (t ), respectively,

and C (s) is a BIBO stable and strictly proper transfer function with the form

C (s) = ωc

s +ωc
(2.32)

which represents a filter with DC gain C (0) = 1.

Finally, the L1 adaptive controller given by equations (2.29), (2.30), and (2.31) is

subject to the L1 norm condition in (2.33), with the filter C (s) and the feedback gain K

are chosen to fulfill it [44,115]

‖G(s)‖L1 L < 1 (2.33)

where G(s) = H(s)(1−C (s)), H(s) = (sI+ Am)−1B and L = max
θ∈Θ

‖θ‖1, with Θ is a convex set.

We can examine both transient and steady-state performance by verifying that the

prediction error remains uniformly bounded, regardless of the adaptive control signal.

Additionally, we can prove that the control signal ensures that the prediction error con-

verges to zero as time approaches infinity. To achieve this, let us start by defining the
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prediction error dynamics using (2.28) and (2.29)

˙̃x(t ) = Am x̃(t )+B θ̃T (t )x(t ), x̃(0) = 0 (2.34)

Next considering the Lyapunov candidate function as follows

V = x̃T P x̃ + 1

Γ
θ̃T θ̃ (2.35)

with its derivative is given as

V̇ =−x̃T Qx̃ +2θ̃T (Pr o j (θ̂,−xx̃T PB)+xx̃T PB) (2.36)

according to Lemma 2.2, we can write the following inequality

V̇ ≤−x̃T Qx̃ (2.37)

This implies that the prediction error and the estimation errors are bounded. Further

analysis based on the Projection properties and the fact that x̃(0) = 0 yields in

‖x̃τ‖L∞ ≤
√

θmax

λmi n(P )Γ
(2.38)

with θmax = 4max
θ∈Θ

‖θ‖2. Moreover, as the bound on ‖x̃τ‖L∞ was established regardless of

the control signal, it implies that the signals x(t ) and x̂(t ) can diverge at an equivalent

rate, ensuring a uniformly bounded error. However, if the L1 norm condition given

in (2.33) is satisfied, it is possible to prove that the prediction vector x̂(t ) is uniformly

bounded despite the presence of uad (t ) within its dynamics. Taking a step further, the

asymptotic stability of the prediction error can be proved by the use of Barbalat’s lemma,

i.e., lim
t→∞x̃(t ) = 0.
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Figure 2.1: L1 adaptive control architecture.

In summary, the general form of the L1 adaptive controller is illustrated in Figure 2.1,
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and it overall results can be outlined as follows [44]:

• The closed-loop system consists of two loops: The adaptation loop with the objective

of estimating the unknown parameters, and the control loop that eliminates the

effects of the unknown parameters.

• The system performance can be enhanced both in transient and steady-state re-

sponse since fast adaptations can be accomplished by increasing the adaptation

gain without compromising robustness.

• The high adaptation gains and low-pass filter complement each other. Separately,

they might not be as effective. For instance, using high adaptation gains without the

filter could result in high-gain feedback. Also, a low-pass filter without a high-gain

could harm the system performance resulting in a sluggish response.

Detailed stability and performance analysis of L1 adaptive control theory can be found

in [44].

2.3 Robustness and Performances Analysis

This subsection conducts a preliminary performance analysis of the L1 adaptive controller

as introduced in (2.29), (2.30), and (2.31) compared to the MRAC outlined in (2.12),

(2.16), and (2.18). To facilitate this comparison, we consider the scalar system that

follows

ẋ(t ) =−x(t )+u(t )+θ, x(0) = x0 (2.39)

where θ is an unknown constant disturbance. The control objective is to stabilize the

origin by effectively rejecting the disturbance θ. In this scenario, both the L1 adaptive

controller and MRAC are reduced to linear model-following controllers [115]. Conse-

quently, evaluating the performance of the closed-loop adaptive systems involves applying

classical control theory tools like the Bode and Nyquist criteria. For the system described

by (2.39), the MRAC architecture is presented by the integral controller that follows

u(t ) =−θ̂(t ) (2.40)

where θ̂(t ) is the estimation of θ, which is given by

˙̂θ(t ) =−Γe(t ), θ̂(0) = θ0 (2.41)

with e(t ) = xm(t )−x(t ) and xm is generated by the subsequent reference model

ẋm(t ) =−xm(t ), xm(0) = x0 (2.42)

An illustrative block diagram of the closed-loop system is given in Figure 2.2. As it
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Figure 2.2: Closed-loop linear model-following model reference adaptive control.

can be seen, the adaptation gain Γ is positioned within the feedback loop of the control

system. As a result, the loop gain and bandwidth of the closed-loop system are dependent

on the value of Γ. Moreover, in the absence of the disturbance θ, the resulting closed-loop

system is similar to the reference model in (2.42). Consequently, the robustness properties

of MRAC can be examined through the stability margins of the loop transfer function,

which can be computed utilizing the information provided in Figure 2.2 as

Lu1u2 (s) = Γ

s(s +1)
(2.43)

Figure 2.3 and Figure 2.4 depict Nyquist and Bode plots of this transfer function for

different values of the adaptation gain. Figure 2.3 illustrates that Nyquist plots of Lu1u2 (s)

never crosses the negative part of the real line, signifying infinite gain margins (gm =∞)

for the closed-loop system. Nevertheless, it is evident from Bode plots (Figure 2.4) that

an increase in the adaptation gain results in a reduction of the phase margin, eventually

leading to its disappearance. The gain crossover frequency ωg c can be computed from [116]

as

|Lu1u2 ( jωg c )| = Γ

ωg c
√
ωg c +1

(2.44)

which results in

ωg c =
√p

4Γ2 +1−1

2
(2.45)

Finally, the phase margin is given by

φm =π+∠|Lu1u2 ( jωg c )| = ar ct an(
1

ωg c
) (2.46)

These equations imply that any increase in the adaptation gain Γ leads to a higher

gain crossover frequency and consequently reduces the phase margin, which agrees with

the results presented in Figure 2.3 and Figure 2.4. In other words, increasing Γ enhances

closed-loop performance. However, it is evident that this improvement hurts its robust-
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ness. Thus, the adaptation gain can be considered as the key in the balance between

performance and robustness in the design of MRAC. Next, for the systems presented in
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Figure 2.3: Nyquist plot for the loop transfer function Lu1u2 .
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Figure 2.4: Bode plots for the loop transfer function Lu1u2 .

(2.39), the state predictor of the L1 adaptive controller is given as

˙̂x(t ) =−x̂(t )+u(t )+ θ̂(t ), x̂(0) = x0 (2.47)

which results in the following prediction error

˙̃x(t ) =−x̃(t )+ θ̃(t ), x̃(0) = 0 (2.48)

where the estimation θ̂(t ) is derived following the subsequent dynamics

˙̂θ(t ) =−Γx̃(t ), θ̇(0) = θ0 (2.49)
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Finally, the control signal is chosen as

u(t ) =−C (s)θ̂(s) (2.50)

with C (s) = ωc
s+ωc

. An illustrative block diagram of the closed-loop system is provided in
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Figure 2.5: Closed-loop linear model-following L1 adaptive controller.

Figure 2.5, wherein it is evident that the adaptation gain Γ exclusively affects the fast

estimation loop (depicted in Grey), whereas the bandwidth of the control loop is specified

by the low-pass filter C (s). In addition, according to this figure, we can deduce the loop

transfer function that follows

Hu1u2 (s) = ΓC (s)

s(s +1)Γ(1−C (s))
(2.51)

Figure 2.6 illustrates Nyquist plot for this transfer function. This figure implies that

the phase margin of the L1 adaptive controller approaches π
2 as the adaptation gain Γ

increases. Hence, it is obvious that the phase and the gain margins of the L1 controller
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Figure 2.6: Nyquist plot for the loop transfer function Hu1u2 .
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Figure 2.7: Effect of adaptation gain’s value on gain and phase margins.

are not significantly affected by large values of Γ. The effect of the adaptive gain on the

robustness margins of the two closed-loop systems is clearly presented in Figure 2.7. The

figure shows that, while the MRAC has an infinite gain margin and a phase margin that

diminishes as the adaptation gain increases, the L1 adaptive controller has a guaranteed

bounded away from zero gain and phase margins in the presence of fast adaptation.

2.4 Literature Review on L1 Adaptive Control

Since introducing the concept of L1 adaptive control that proved its fast adaptation capa-

bilities, extensive efforts have been dedicated to analyzing and elucidating its underlying

principles. To further enrich theoretical understanding, Cao and Hovakimyan designed

an L1 adaptive controller for a linear system with constant uncertainty [117]. Additional

results [118] have explored a different system involving uncertain time-varying parameters

and bounded disturbances. The work in [119] investigated a linear MIMO system con-

sidering unmatched uncertainties. Further findings on this subject are reported in [120].

The output-feedback concept was considered in the design of an L1 adaptive controller for

a Single-Input Single-Output (SISO) system with time-varying disturbances [121]. The

authors have also provided an in-depth discussion on the stability margins associated with

the L1 methodology [122]. A comprehensive overview published in 2010 in a form of a

book [44] consolidates most of the aforementioned results [46, 56, 117, 118, 121, 122] and

provides detailed proofs, alongside structured design guidelines to solve the trade-off be-

tween closed-loop robustness, closed-loop performances, and system identification, taking

into account various classes of linear and nonlinear systems.

In the area of practical systems, L1 adaptive control has undergone extensive valida-

tion, particularly in the field of flight control, especially before 2011. Notable examples

include unmanned aerial vehicles [123], micro-air vehicles [124], flexible crew launch ve-

hicle [125], and flexible aircraft (Sensorcraft) [126]. Importantly, L1 adaptive control is

not exclusive to flight control; to this date it has found applications in other practical
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systems requiring fast adaptations. Examples of such systems include parallel kinematic

manipulators [127], electro-pneumatic actuators [58], and underwater vehicles [128].

Simultaneously, owing to the proven potential of L1 adaptive control, there pierced a

surge of interest and several research works have been dedicated to extending its applica-

bility to a wider range of systems and to introduce new aspects to the scheme. The work

in [129] presents an extension to output feedback L1 adaptive control for a system with

unknown time-varying and state-dependent nonlinearities, and also provides two filters for

both matched and unmatched adaptive estimations. A nonlinear reference system based

on L1 adaptive control was designed in [130]. The study demonstrated that the considered

system follows the performance specifications imposed by the nonlinear ideal system both

in transient and steady-state. However, this particular investigation was limited to affine

systems in the presence of matched uncertainties. The challenge of controlling a system

with unmatched disturbances has been addressed in several works [131,132]. Furthermore,

researchers have discussed the application of the L1 adaptive control methodology to non-

linear uncertain non-affine systems, with investigations conducted on both SISO [58,133]

and MIMO formulations [134].

In addition to these contributions, an L1 adaptive controller was designed for a class

of nonlinear systems, taking into account the presence of an unknown time-varying hys-

teresis in the input [135]. This controller was also designed to address the presence of a

dead-zone nonlinearity [136]. The subject of fault-tolerant control has been the focus of

several works. For instance, the fault-dependent L1 adaptive backstepping controller [137]

was designed to handle system uncertainties and to achieve a fault-tolerance control for

nonlinear systems despite malfunctioning actuators. In another study [138], a sliding

mode controller was used as an adaptive law and a virtual control within the L1 adaptive

architecture, demonstrating promising results.

Interesting findings were presented in [139], showcasing the benefits of using NN as

nonlinearity approximators in the L1 adaptive control structure. These findings hold

practical significance and can be useful in real-world applications as the outcome of this

architecture allows the relaxation of certain design parameters such as the adaptation gain,

without compromising performances. Fuzzy Logic Systems (FLSs) have also demonstrated

their advantages across various contexts. In one instance, a nonlinear system with an

unknown backlash-like hysteresis was considered in [140], and the strategy involved the

direct estimation of the nonlinear functions of the controlled system through the use

of FLSs. The approach simplified controller implementation and reduced the required

number of adaptive parameters. In [141], the authors introduced a modification to the

L1 adaptive scheme by replacing the state predictor with a fuzzy predictor to control

a disturbed nonlinear system. Feed-forward action, which is not fully provided by the

L1 adaptive controller was also discussed and introduced to the scheme for a nonlinear

system in the presence of unmodeled dynamics [142].
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2.5 Conclusion

This chapter seeks to provide a general understanding of the L1 adaptive controller, elu-

cidating its architecture in contrast to the MRAC. Through this comparison, it illustrates

the major differences between the two schemes, while highlighting the ability of the L1

adaptive controller to deliver a satisfactory tracking response with faster adaptations in

the presence of uncertainties. The architecture of the L1 adaptive controller consists of

several key components, including a state predictor, a control law, a low-pass filter, and

adaptation laws. The predictor is responsible for estimating the values of the time-varying

uncertainties and the unknown external disturbances present in the system. These esti-

mated values are then adjusted according to the adaptation laws, which are extracted

via the Lyapunov stability criteria. Eventually, the adaptive estimates are incorporated

into the control signal generated by the L1 adaptive controller. To achieve fast transient

performance, high adaptation gains should be employed. However, a probable issue can

arise from the high-frequency components introduced into the control channel through the

adaptive estimates. These high-frequency components can lead to system instability. To

resolve this problem and assure robust control, a low-pass filter is included in the control

channel. Finally, a state feedback control signal is generated from the filtered control law

and fed to the system under control.
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Chapter 3
L1 Adaptive Control Design for

Fractional-Order Uncertain Systems

3.1 Introduction

L1 adaptive control is a new promising technique introduced in [46, 56]. Regarded as

an improvement to MRAC; both share state predictor architecture and a similar anal-

ysis approach. However, L1 adaptive control proves to deliver a satisfactory tracking

response with faster adaptations in the presence of uncertainties and bounded external

disturbances. The objective of this chapter is to design a new FOL1AC for a general class

of FOSs with matched uncertainties and bounded time-varying external disturbances.

Initially, a suitable form of a fractional-order sliding surface is selected to simplify the

control design and the stability analysis of the considered class of FOSs. Besides the

fractional-order sliding surface, the architecture of the controller is relatively based on

the basic L1 adaptive controller. In the suggested control technique, a low-pass filter is

incorporated in the control channel, which separates the estimation loop from the control

loop. Besides, the proposed controller can ensure uniform performance bounds for system

signals both in transient and steady-state. As a result, unlike conventional adaptive con-

trol methods, the proposed controller enables for fast adaptation without compromising

robustness, making it an alternative controller for uncertain FOSs. The outline of the

chapter is given as follows. Section 3.2 throws light on the problem. Section 3.3 intro-

duces the proposed FOL1AC. Section 3.4 discusses the stability analysis of the proposed

scheme. Section 3.5 investigates the validity of the controller via some simulation results.

Section 3.6 concludes this chapter.

3.2 Problem Formulation

This section deals with the description of the class of systems under consideration and

specifies the control objective. As a start, let us consider a class of SISO FOSs represented
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in the following form{
Dβx(t ) = Ax(t )+B(u(t )+θT (t )x(t )+σ(t )), x(0) = x0

y(t ) =C T x(t )
(3.1)

where Dβ is the Caputo fractional derivative, 0 <β< 1 is the derivative order, A ∈Rn×n is

a known matrix defined in (3.2), B and C ∈Rn are known constant vectors, such that the

pair (A,B) is controllable, x(t ) = [x1(t ), . . . , xn(t )]
T ∈Rn is the measured pseudo state vector

of the fractional-order system, x(0) = x0 is the corresponding vector of initial conditions,

u(t ) ∈ R is the control input, y(t ) ∈ R is the system output, σ(t ) ∈ R represent system

external disturbances which is unknown, and θ(t ) ∈Rn is a vector of unknown parameters

A =



0 1 0 . . . 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

a1n a2n . . . . . . ann

 , B =


0
...

0

Bn

 , and C =


1

0
...

0

 (3.2)

According to (3.2), the system represented by the equation (3.1) can be written in the

following form 

Dβx1(t ) = x2(t )

Dβx2(t ) = x3(t )

...

Dβxn−1(t ) = xn(t )

Dβxn(t ) = An x(t )+Bn(u(t )+θT (t )x(t )+σ(t ))

y(t ) = x1(t )

(3.3)

with the vector An = [a1n a2n . . . ann] ∈Rn is the nth row of the matrix A, and Bn ∈R is the

nth value of the vector B .

The control objective is to synthesize an input signal u(t ) for the system represented in

(3.3) in order to achieve a bounded tracking response of the output signal y(t ) = x1(t ) to a

bounded reference signal yd (t ) while compensating the unknown parameters and external

disturbances and ensuring the boundedness of all other signals.

3.3 Fractional-OrderL1 Adaptive Controller

In this section, the FOL1AC is developed based on a fractional-order sliding surface for

the class of FOSs introduced in (3.3). To proceed with the control design, the following

assumptions are necessary.

Assumption 3.1. The reference signal yd (t ) and its successive fractional-order derivatives

D jβyd (t ), j = 1, . . . ,n are assumed to exist, to be smooth and bounded. �
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Assumption 3.2. The vector of unknown parameters θ(t ) and external disturbances σ(t )

are upper bounded for all t ≥ 0 as follows

θ(t ) ∈Θ
|σ(t )| <Ψ

(3.4)

where Ψ ∈R+ is a known constant and Θ is a known convex set with a definition given in

Definition 2.1. �

Assumption 3.3. Let θ̇(t ) and σ̇(t ) be the bounded derivatives of the continuous func-

tions θ(t ) and σ(t ), respectively, such that for all t ≥ 0 we have

‖θ̇(t )‖ ≤ dθ <∞
|σ̇(t )| ≤ dσ <∞

(3.5)

where dθ and dσ are positive constants. �

3.3.1 Choice of an Appropriate Fractional-Order Sliding Surface

Let the error vector E(t ) = [e1,e2, . . . ,en]T ∈Rn be defined as

E(t ) = Yd (t )−x(t ) (3.6)

where e1(t ) = yd (t )− x1(t ) is the tracking error and Yd (t ) ∈ Rn is a vector containing the

reference signal yd (t ) and its successive fractional-order derivatives. Therefore, one has

the following representation of the error dynamics

Dβe1(t ) = e2(t )

Dβe2(t ) = e3(t )

...

Dβen−1(t ) = en(t )

Dβen(t ) = Dnβyd (t )−Dβxn(t )

(3.7)

To achieve the aforementioned objective, the design of this controller follows a two-

step approach. The first step involves selecting the sliding surface function, denoted by

z(t ), which ensures the convergence of the tracking errors. The second step focuses on

synthesizing a suitable control law that forces the system states onto the predefined sliding

surface in finite time.

Regarding the systems presented in (3.1) and the error dynamics in (3.7), we chose

the form of a fractional-order sliding surface z(t ) as [104]

z(t ) = Dβ−1en(t )+
ˆ t

0
λT E(t )dτ=

[
1 λT

][
Dβ−1en(t )´ t

0 E(t )dτ

]
(3.8)
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with λ= [λ1,λ2, . . .λn]T ∈Rn is a vector of adjustable design parameters to be determined

by the designer in order to ensure the stability.

Remark 3.1. Integrating fractional-order sliding surfaces within fractional-order adaptive

controllers is a well-established technique [97, 98, 104]. This approach simplifies the con-

trol architecture by offering reduced-order dynamics that are easier to handle. Notably,

the specific form chosen in equation (3.8) presents a key advantage: it seamlessly ac-

cepts integer-order derivatives. This characteristic facilitates stability analysis and the

derivation of adaptation laws in familiar integer-order forms. �

Once z(t ) = ż(t ) = 0, the system is known to operate in the sliding surface. Conse-

quently, for a significantly small value of ż(t ), i.e., ż(t ) ≈ 0, and according to the property

given in (1.26), one can have

Dβen(t )+λT E(t ) =
[

1 λT
][

Dβen(t )

E(t )

]
= 0 (3.9)

which leads to

Dβen(t ) =−λT E(t ) (3.10)

By replacing Dβen(t ) from equation (3.7) in (3.10), the state space representation of

the errors dynamics in the case where z(t ) = ż(t ) = 0 can be written in the subsequent

form 

Dβe1(t )

Dβe2(t )

...

Dβen−1(t )

Dβen(t )


︸ ︷︷ ︸

DβE(t )

=



0 1 0 . . . 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−λ1 −λ2 −λ3 · · · −λn


︸ ︷︷ ︸

Ae



e1(t )

e2(t )

...

en−1(t )

en(t )


︸ ︷︷ ︸

E(t )

(3.11)

Thus, the design parameters λi , i = 1, . . . ,n must be selected strictly positive to satisfy

the stability condition in (1.42), i.e., |ar g (ei g (Ae ))| > βπ
2 . This case implies that the

sliding surface dynamics are asymptotically stable which ensures that tracking error and

its fractional-order derivatives converge to zero. Therefore, the purpose of FOL1AC is to

guarantee that the system reaches in the fractional-order sliding surface, which is true by

ensuring that z(t ) vanishes towards zero.

3.3.2 Control Structure

Considering (3.8) and (3.7), the sliding surface dynamics can be written in the following

form
ż(t ) = Dβen(t )+λT E(t )

= Dnβyd (t )−Dαxn(t )+λT E(t )
(3.12)
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replacing Dβxn(t ) from (3.3) in (3.12), one has

ż(t ) = Dnβyd (t )− An x(t )−Bn(u(t )+θT (t )x(t )+σ(t ))+λT E(t ) (3.13)

Let us consider the control signal structure as

u(t ) = um(t )+uad (t ) (3.14)

where

um(t ) = 1

Bn
(Dnβyd (t )− An x(t )+λT E(t )+αz(t )) (3.15)

with α is a positive constant.

Replacing (3.15) and (3.14) in (3.13) to obtain the following sliding surface dynamics

ż(t ) =−αz(t )−Bn(uad (t )+θT (t )x(t )+σ(t )), z(0) = z0 (3.16)

We consider the following predictor that replicates the dynamics described by (3.16)

with the unknown parameters are replaced with their estimated values

˙̂z(t ) =−αẑ(t )−Bn(uad (t )+ θ̂T (t )x(t )+ σ̂(t )), ẑ(0) = z0 (3.17)

where ẑ(t ) ∈ R is the prediction of z(t ), θ̂(t ) ∈ Rn and σ̂(t ) ∈ R are the projection-type

adaptive estimations values of the unknown parameters θ(t ) and σ(t ), respectively. These

values are governed by the following projection-type adaptation laws

˙̂θ(t ) = ΓPr o j (θ̂(t ), z̃(t )x(t ))

˙̂σ(t ) = ΓPr o j (σ̂(t ), z̃(t ))
(3.18)

where z̃(t ) = ẑ(t )−z(t ) ∈R is the prediction error, Γ> 0 is the adaptation gain, and Pr o j (., .)

is the projection operator introduced in Definition 2.3.

The control law uad is defined as

uad (s) =−C (s)η̂(s) (3.19)

where η̂(s) is the Laplace transform of η̂(t ) = θ̂(t )x(t )+ σ̂(t ), and C (s) is a BIBO stable

and strictly proper transfer function with the form

C (s) = ωc

s +ωc
(3.20)

which represents a filter with DC gain C (0) = 1. Finally, an illustrative block diagram of

the proposed FOL1AC is given in Figure 3.1.
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Figure 3.1: Diagram block of the proposed fractional-order L1 adaptive controller.

3.4 Stability and Performances Analysis

This section analyzes the performances and the stability of the developed controller, for

that reason the subsequent assumptions are necessary

Assumption 3.4. The sliding surface form in (3.8) ensures that the two signals z(t ) and

x(t ) share the same stability behaviors, using the facts that θ(t ) is bounded in Assumption

3.2 and θ̂(t ) ∈Θ according to Lemma 2.2, the following bounds are acceptable

|θT (t )x(t )| ≤ L|z(t )|+L0 (3.21)

|θ̂T (t )x(t )| ≤ L|z(t )|+L0 (3.22)

where L and L0 are positive constants. �

The controller proposed in (3.14), (3.17), (3.18), and (3.19) is subject to the L1 norm

condition in (3.23), with the filter C (s) and the design parameter α are chosen to fulfill it

‖G(s)‖L1 L < 1 (3.23)

where G(s) = H(s)(1−C (s)), H(s) = −(s +α)−1Bn and L > 0 is introduced in Assumption

3.4.

Remark 3.2. Using the fact that α > 0 and C (s) is a BIBO stable and strictly proper

transfer function we can easily conclude that G(s) and H(s) are also BIBO stable and

proper transfer functions. �
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3.4.1 Closed-loop Ideal Reference System

We consider now the non-adaptive form of the controller proposed in (3.14), (3.17), (3.18),

and (3.19) to represent the closed-loop ideal reference system as follows

{
żr e f (t ) =−αzr e f (t )−Bn(uadr e f (t )+θT (t )xr e f (t )+σ(t )), zr e f (0) = z0

uadr e f (s) =−C (s)(ηr e f (s))
(3.24)

where ηr e f (s) is the Laplace transform of ηr e f (t ) = θT (t )xr e f (t )+σ(t ).

Remark 3.3. The control signal uadr e f (t ) depends on the unknown terms σ(t ) and θ(t )

which is not practical. We mention that this is not the case for the actual control law

uad (t ), and the signal uadr e f (t ) is used for analysis purposes only. �

Lemma 3.1. Let us consider that the design parameter α and the filter C (s) satisfy the

condition in (3.23), also regarding the representation of the closed-loop reference system

in (3.24), we have the following bound

‖zr e f τ‖L∞ ≤ ρ (3.25)

where

ρ = ‖G(s)‖L1

1−L‖G(s)‖L1

(L0 +Ψ)+ 1

1−L‖G(s)‖L1

‖zi nτ‖L∞ (3.26)

with zi n = (p +α)−1z0. �

Proof. From the representation of the closed-loop reference system (3.24), and using the

Laplace transform formulation, one has

szr e f (s)− z0 =−αzr e f (s)−Bn(uadr e f (s)+ηr e f (s))

=−αzr e f (s)−Bn((1−C (s))ηr e f (s))
(3.27)

then
zr e f (s) =−(s +α)−1Bn(1−C (s))(ηr e f (s))+ (s +α)−1z0

=G(s)ηr e f (s)+ zi n

(3.28)

Recalling that G(s), H(s), and C (s) are BIBO stable and proper transfer functions, and

since zi n is uniformly bounded. Then, for all τ> 0 we have the following upper bound

‖zr e f τ‖L∞ ≤ ‖G(s)‖L1‖ηr e f τ‖L∞ +‖zi nτ‖L∞ (3.29)

From the representation of ηr e f (t ), and based on Assumption 3.2 and Assumption 3.4,

we can conclude that

‖ηr e f τ‖L∞ ≤ L‖zr e f τ‖L∞ +L0 +Ψ (3.30)
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Replacing (3.30) in (3.29), it results

‖zr e f τ‖L∞ ≤ ‖G(s)‖L1 L‖zr e f τ‖L∞ +‖G(s)‖L1 (L0 +Ψ)+‖zi nτ‖L∞ (3.31)

Solving (3.31) for ‖zr e f τ‖L∞ , we get

‖zr e f τ‖L∞ ≤ ‖G(s)‖L1

1−L‖G(s)‖L1

(L0 +Ψ)+ 1

1−L‖G(s)‖L1

‖zi nτ‖L∞ (3.32)

We know that L0 and Ψ are finite positive values and zi n is uniformly bounded. Hence,

if the condition in (3.23) is fulfilled, one obtains that ‖zr e f τ‖L∞ is uniformly bounded,

that completes the proof. �

3.4.2 Transient and Steady-state Analysis

In this subsection, we analyze the performances bound between the closed-loop ideal

reference system represented in (3.24) and the system (3.1) with the proposed controller

defined in (3.14), (3.17), (3.18), and (3.19), both in transient and steady-state.

According to the Laplace transform formulation, the equations represented in (3.16)

and (3.17) can be represented in the frequency domain by equations (3.33) and (3.34),

respectively

z(s) =−(s +α)−1Bn(uad +η(s))+ zi n

= H(s)(−C (s)η̂(s)+η(s)+C (s)η(s)−C (s)η(s))+ zi n

=G(s)η(s)−C (s)H(s)η̃(s)+ zi n

(3.33)

and
ẑ(s) =−(s +α)−1Bn(uad + η̂(s))+ zi n

=G(s)η̂(s)+ zi n

(3.34)

where η(s) and η̃(s) = η̂(s)−η(s) is the Laplace transforms of η(t ) = θT (t )x(t )+σ(t ) and

η̃(t ) = θ̃T (t )x(t )+ σ̃(t ), respectively, with θ̃T (t ) = θ̂(t )−θ(t ) ∈ Rn and σ̃(t ) = σ̂(t )−σ(t ) ∈ R
are the estimation errors.

Since the prediction error z̃(t ) is defined in (3.18) as z̃(t ) = ẑ(t )−z(t ), it is easy to find

z̃(s) by subtracting (3.33) from (3.34), hence

z̃(s) = H(s)η̃(s) (3.35)

Lemma 3.2. Consider the system presented in (3.16) with the controller proposed in

(3.14), (3.17), (3.18), and (3.19), if the low-pass filter C (s) and the design parameter α

fulfill the condition in (3.23), we have the bounds that follow

‖z̃τ‖L∞ ≤√
2ϕ (3.36)
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and

‖ẑτ‖L∞ ≤ω (3.37)

where

ϕ= Bn

2Γ
(4max

θ∈Θ
‖θ‖2 +4Ψ2)+ Bn

αΓ
(max
θ∈Θ

‖θ‖dθ+Ψdσ) (3.38)

and

ω= ‖G(s)‖L1 (L
√

2ϕ+L0 +Ψ)

1−‖G(s)‖L1 L
+ ‖zi nτ‖L∞

1−‖G(s)‖L1 L
(3.39)

�

Proof. Let us consider the candidate Lyapunov function for stability analysis purpose as

follows

V (z̃, θ̃, σ̃) = 1

2
z̃2 + Bn

2Γ
θ̃2 + Bn

2Γ
σ̃2 (3.40)

The time derivative of V (z̃, θ̃, σ̃) in (3.40) is given as

V̇ (z̃, θ̃, σ̃) = z̃ ˙̃z + Bn

Γ
θ̃T ˙̃θ+ Bn

Γ
σ̃ ˙̃σ (3.41)

Recalling (3.16) and (3.17), we can write

V̇ (z̃, θ̃, σ̃) =−αz̃2 − z̃Bnη̃+ Bn

Γ
θ̃T ˙̃θ+ Bn

Γ
σ̃ ˙̃σ (3.42)

or

V̇ (z̃, θ̃, σ̃) =−αz̃2 +Bn θ̃T (
1

Γ
˙̂θ−xz̃)+Bnσ̃(

1

Γ
˙̂σ− z̃)− Bn

Γ
θ̃T θ̇− Bn

Γ
σ̃σ̇ (3.43)

Replacing the adaptation laws (3.18) in (3.43), one can have

V̇ (z̃, θ̃, σ̃) ≤−αz̃2 +Bn θ̃(Pr o j (θ̂, xz̃)−xz̃)+Bnσ̃(Pr o j (σ̂, z̃)− z̃)

+ Bn

Γ
(| θ̃T θ̇ | + | σ̃σ̇ |)

(3.44)

Lemma 2.2 implies that

Bn θ̃(Pr o j (θ̂, xz̃)−xz̃)+Bnσ̃(Pr o j (σ̂, z̃)− z̃) ≤ 0 (3.45)

then

V̇ (z̃, θ̃, σ̃) ≤−αz̃2 + Bn

Γ
(| θ̃T θ̇ | + | σ̃σ̇ |) (3.46)

The projection operator ensures that θ̂(t ) ∈Θ and |σ̂| ≤Ψ, hence

max
t≥0

(θ̃2(t )+ σ̃2(t )) ≤ (4max
θ∈Θ

‖θ‖2 +4Ψ2) (3.47)
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Also, using the upper bounds in Assumption 3.3, the following inequality holds

Bn

Γ
(| θ̃T θ̇ | + | σ̃σ̇ |) ≤ 2Bn

Γ
(max
θ∈Θ

‖θ‖dθ+Ψdσ) (3.48)

Consequently, if there exists a time t1 > 0, one has V (t1) >ϕ. Then, from (3.38), (3.40),

and (3.47), we can deduce that

1

2
z̃2 > Bn

αΓ
(max
θ∈Θ

‖θ‖dθ+Ψdσ) (3.49)

or

αz̃2 > 2Bn

Γ
(max
θ∈Θ

‖θ‖dθ+Ψdσ) (3.50)

Hence, from (3.46) and (3.50) it is easy to conclude that V̇ (t1) < 0. Moreover, since

z(0) = ẑ(0) we can verify that for all t > 0, we have

1

2
‖z̃‖2 ≤V (t ) ≤V (0) < Bn

2Γ
(4max

θ∈Θ
‖θ‖2 +4Ψ2) <ϕ (3.51)

which results in ‖z̃‖2 ≤ 2ϕ. Consequently, the fact that ‖.‖∞ ≤ ‖.‖ leads to the bound in

(3.36).

Next, using the inequality (3.36) and since z̃(t ) = ẑ(t )− z(t ), one can have

|‖ẑτ‖L∞ −‖zτ‖L∞ | ≤
√

2ϕ (3.52)

or

‖zτ‖L∞ ≤ (‖ẑτ‖L∞ +√
2ϕ) (3.53)

Using the frequency domain representation of the predictor dynamics (3.34) and re-

calling that G(s), H(s), and C (s) are BIBO stable and proper transfer functions. Then,

for all τ> 0 we have the following upper bound

‖ẑτ‖L∞ ≤ ‖G(s)‖L1‖η̂‖L∞ +‖zi nτ‖L∞ (3.54)

Based on Assumption 3.2 and Assumption 3.4, we can conclude that η̂(t ) ≤ L|z(t )|+
L0 +Ψ. Therefore, we have the upper bound that follows

‖ẑτ‖L∞ ≤ ‖G(s)‖L1 L‖zτ‖L∞ +‖G(s)‖L1 (L0 +Ψ)+‖zi nτ‖L∞ (3.55)

Replacing (3.53) in (3.55), we get

‖ẑτ‖L∞ ≤ ‖G(s)‖L1 (L(‖ẑτ‖L∞ +√
2ϕ)+L0 +Ψ)+‖zi nτ‖L∞ (3.56)

or by solving for ‖ẑτ‖L∞
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‖ẑτ‖L∞ ≤ ‖G(s)‖L1 (L
√

2ϕ+L0 +Ψ)

1−‖G(s)‖L1 L
+ ‖zi nτ‖L∞

1−‖G(s)‖L1 L
(3.57)

We know that L,
√

2ϕ, L0, Ψ are finite values and zi n is uniformly bounded. Then,

if the condition in (3.23) is fulfilled, one obtains that ‖ẑτ‖L∞ is uniformly bounded, that

completes the proof. �

Proposition 3.1. For the system in (3.1) and the controller defined via (3.14), (3.17),

(3.18), and (3.19), if the low-pass filter C (s) and the design parameter α fulfill the condition

in (3.23), we have

‖(zr e f (s)− z(s))τ‖L∞ ≤ δ1

‖(uadr e f (s)−uad (s))τ‖L∞ ≤ δ2

(3.58)

and
lim
Γ→∞

(zr e f (t )− z(t )) = 0

lim
Γ→∞

(uadr e f (t )−uad (t )) = 0
(3.59)

where

δ1 =
‖C (s)‖L1

1−‖G(s)‖L1 L

√
2ϕ (3.60)

and

δ2 = ‖C (s)‖L1 Lδ1 +‖H1(s)‖L1

√
2ϕ (3.61)

with H1(s) = C (s)
H(s) is a stable and proper transfer function. �

Proof. From (3.28) and (3.33), one can have

zr e f (s)− z(s) =G(s)ηe (s)+C (s)H(s)η̃(s) (3.62)

where ηe (s) is the Laplace transform of ηe (t ) = θT (t )(xr e f (t )−x(t )), which can be bounded

based on Assumption 3.4 as

‖ηeτ‖L∞ ≤ L‖(zr e f (s)− z(s))τ‖L∞ (3.63)

Replacing (3.35) in (3.62), one can have

zr e f (s)− z(s) =G(s)ηe (s)+C (s)z̃(s) (3.64)

Since G(s), H(s), and C (s) are BIBO stable and proper transfer functions. Then, for

all τ> 0 we have the following upper bound

‖(zr e f (s)− z(s))τ‖L∞ ≤ ‖G(s)‖L1 L‖(zr e f (s)− z(s))τ‖L∞ +‖C (s)‖L1‖z̃τ‖L∞ (3.65)

Solving for ‖(zr e f (s)− z(s))τ‖L∞ , results in
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‖(zr e f (s)− z(s))τ‖L∞ ≤ ‖C (s)‖L1

1−‖G(s)‖L1 L

√
2ϕ (3.66)

We know that
√

2ϕ is a finite value and C (s) is uniformly bounded, then if the condition

in (3.23) is fulfilled, one obtains that ‖(zr e f (s)− z(s))τ‖L∞ is uniformly bounded.

To demonstrate the second bound of (3.58), we can deduce the subsequent relation

from (3.19) and (3.24)

uadr e f (s)−uad (s) =−C (s)ηr e f (s)+C (s)η̂(s) (3.67)

Adding and subtracting C (s)η(s), yields in

uadr e f (s)−uad (s) =−C (s)ηe (s)+C (s)η̃(s) (3.68)

According to the work in [44] and using (3.35), we can write C (s)η̃(s) in the following

form

C (s)η̃(s) = C (s)

H(s)
H(s)η̃(s) (3.69)

or

C (s)η̃(s) = H1(s)z̃(s) (3.70)

Consequently, the equation (3.68) can be written as

uadr e f (s)−uad (s) =−C (s)ηe (s)+H1(s)z̃(s) (3.71)

According to the fact that C (s) is BIBO stable and strictly proper transfer function,

H1(s) is a proper and stable system. Therefore, we have the following upper bound for all

τ> 0

‖(uadr e f (s)−uad (s))τ‖L∞ ≤ ‖C (s)‖L1‖ηeτ‖L∞ +‖H1(s)‖L1‖z̃τ‖L∞ (3.72)

using the bounds ‖ηeτ‖L∞ ≤ L‖(zr e f (s)− z(s))τ‖L∞ and ‖z̃τ‖L∞ ≤√
2ϕ to deduce that

‖(uadr e f (s)−uad (s))τ‖L∞ ≤ ‖C (s)‖L1 L
‖C (s)‖L1

1−‖G(s)‖L1 L

√
2ϕ+‖H1(s)‖L1

√
2ϕ (3.73)

Since
√

2ϕ and L are finite values and based on the fact that C (s) and H1(s) are uni-

formly bounded. Then, if the condition in (3.23) is fulfilled, one obtains that ‖(uadr e f (s)−
uad (s))τ‖L∞ is uniformly bounded.

Next, for the second part of the proof we can easily confirm that ϕ defined in (3.38)

is subject to the following limit lim
Γ→∞

ϕ = 0 which leads to conclude that lim
Γ→∞

δ1 = 0 and

lim
Γ→∞

δ2 = 0. Since ‖(zr e f (s)− z(s))τ‖L∞ ≤ δ1 and ‖(uadr e f (s)−uad (s))τ‖L∞ ≤ δ2, we can

confirm that lim
Γ→∞

(zr e f (t )− z(t )) = 0 and lim
Γ→∞

(uadr e f (t )−uad (t )) = 0, which completes the

proof. �

Remark 3.4. The representation of ϕ Lemma 3.2 a proves that the prediction error can
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be improved arbitrarily by increasing the adaptation gain Γ and the design parameter α.

In addition, the closed-loop ideal reference system in (3.24) is able to deliver the optimal

performance of the proposed controller since its architecture depends on the unknown

terms σ(t ) and θ(t ); this system is the result of eliminating the uncertainties within a

specific frequency. Hence, according to Proposition 3.1, this optimal performance can be

archived by the proposed controller since it can derive the signals z(t ) and u(t ) to track

those of the reference signal. �

Remark 3.5. The proposed FOL1AC can be used to control a general class of uncertain

FOSs. Compared with the existing adaptive control schemes in [143–145], rapid adap-

tation is possible without losing robustness since the estimation and control loops are

separated. In contrast to the sliding mode controllers in [146, 147], the resulting control

signal in the presented controller is smooth and bounded. Contrary to the backstepping

control methods in [148, 149], which are afflicted by the issue of explosion of complexity,

the structure of the controller in this work is easy to implement in real time. �

3.5 Simulation Results

In this section, we will perform a numerical simulation to confirm the validity and effec-

tiveness of the proposed FOL1AC. The simulation will be based on the designed controller,

including a control law in the form of (3.19) with adaptation laws as in (3.18), and a pre-

dictor in the form of (3.17). Towards this end, let us consider a system in the form of

(3.1) such that

A =
[

0 1

1 1.5

]
,B =

[
0

1

]
,C =

[
1

0

]
and β= 0.95 (3.74)

where the convex set Θ and the positive constant Ψ considered in Assumption 3.2 are

defined within this simulation study by Θ = {ρ = [r1,r2]T ∈ R2 : ri ∈ [−6,6], i = 1,2} and

Ψ= 50. The design parameters Γ, λ, and α are chosen to reach the best performances, and

their values are set based on trial and error as Γ= 100000, λ= [11.5,4.3]T and α= 100. In

addition, the designed low-pass filter C (p) introduced in (3.20) is selected as C (s) = 16
p+16 .

The initial conditions of the system are set as x0 = [2,0]T . Finally, the dynamics of

the systems are simulated for 25s, and the parameters of Oustaloup’s filter are fixed as

ωb = 10−3, ωh = 103, and the approximation order N = 5. Two simulation cases will be

illustrated, each one is performed for two reference signals yd1 = 5 and yd2 = 5si n(0.5t ).

The first case is when both uncertainties and external disturbances are constants, i.e., θ1 =
[4,−3.5]T and σ1 = 2. Secondly, we examine the ability of the controller under time-varying

uncertainties and external disturbances, i.e., θ2 =
[
2+ cos(π2 t ),2+0.4si n(πt )+0.3cos(2t )

]T

and σ2 = cos(π2 t ).
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3.5.1 Case of Constant Uncertainties

Figures 3.2-3.11 present system responses to constant uncertainties and external distur-

bances. Figure 3.2 illustrates the actual output y for the reference signal yd1 and Figure

3.7 for the reference signal yd2. The resulting errors e1 and e2 for yd1 and yd2 are reported

in Figure 3.4 and Figure 3.9, respectively. These results confirm that, for both reference

signals, the controlled system follows its references with satisfactory transient behaviors

and small response times, about tr = 1.5s for yd1 and tr = 1s for yd2. Besides, the time

evolution of the fractional-order sliding surface z presented in Figure 3.5 and Figure 3.10

show that z rapidly converges to its prediction ẑ. The curves of the control input u are

smooth as illustrated in Figure 3.3 and Figure 3.8. From Figure 3.6 and Figure 3.11, one

can conclude that the controller is able to achieve a good estimation η̂ of the bounded

uncertain quantity η, which minimizes its effects on overall control performances.
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Figure 3.2: Actual output y and reference signal yd1 in the case of constant uncertainties and
disturbances.
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Figure 3.3: Control signal u for reference signal yd1 in the case of constant uncertainties and
disturbances.
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Figure 3.4: Tracking errors e1 and e2 for reference signal yd1 in the case of constant uncertain-
ties and disturbances.
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Figure 3.5: Sliding surface z and its predictor ẑ for reference signal yd1 in the case of constant
uncertainties and disturbances.

0 5 10 15 20 25

-10

-5

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8

-5

0

5

10

15

Figure 3.6: Uncertain quantity η and its estimation η̂ for reference signal yd1 in the case of
constant uncertainties and disturbances.
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Figure 3.7: Actual output y and reference signal yd2 in the case of constant uncertainties and
disturbances.
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Figure 3.8: Control signal u for reference signal yd2 in the case of constant uncertainties and
disturbances.
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Figure 3.9: Tracking errors e1 and e2 for reference signal yd2 in the case of constant uncertain-
ties and disturbances.
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Figure 3.10: Sliding surface z and its predictor ẑ for reference signal yd2 in the case of constant
uncertainties and disturbances.
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Figure 3.11: Uncertain quantity η and its estimation η̂ for reference signal yd2 in the case of
constant uncertainties and disturbances.

3.5.2 Case of Time-varying Uncertainties

System responses for time-varying uncertainties and external disturbance are reported

in Figures 3.12-3.21. System actual responses y for the reference signals yd1 and yd2

are represented in Figure 3.12 and Figure 3.17, respectively. Figure 3.14 illustrates both

tracking errors e1 and e2 for the reference signal yd1, and Figure 3.19 plots these errors

for yd2. The overall results affirm that, even in the presence of time-varying uncertainties

and external disturbance, the controller is able to achieve a satisfactory tracking response

while maintaining decent transient performances.
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Figure 3.12: Actual output y and reference signal yd1 in the case of time-varying uncertainties
and disturbances.
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Figure 3.13: Control signal u for reference signal yd1 in the case of time-varying uncertainties
and disturbances.

0 5 10 15 20 25

-6

-4

-2

0

2

4

6

Figure 3.14: Tracking errors e1 and e2 for reference signal yd1 in the case of time-varying
uncertainties and disturbances.
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Figure 3.15: Sliding surface z and its predictor ẑ for reference signal yd1 in the case of time-
varying uncertainties and disturbances.
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Figure 3.16: Uncertain quantity η and its estimation η̂ for reference signal yd1 in the case of
time-varying uncertainties and disturbances.
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Figure 3.17: Actual output y and reference signal yd2 in the case of time-varying uncertainties
and disturbances.
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Figure 3.18: Control signal u for reference signal yd2 in the case of time-varying uncertainties
and disturbances.
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Figure 3.19: Tracking errors e1 and e2 for reference signal yd2 in the case of time-varying
uncertainties and disturbances.
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Figure 3.20: Sliding surface z and its predictor ẑ for reference signal yd2 in the case of time-
varying uncertainties and disturbances.
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Figure 3.21: Uncertain quantity η and its estimation η̂ for reference signal yd2 in the case
time-varying uncertainties and disturbances.

Furthermore, Figure 3.13 and Figure 3.18 show a smooth bounded plot of the control

signal u for both yd1and yd2. Moreover, In Figure 3.15 and Figure 3.20, we can see a

fast tracking response of the fractional-order sliding surface z to its stable predictor ẑ.

Finally, good estimations of the uncertain quantity η are depicted in Figure 3.16 and

Figure 3.21, which confirm the robustness of the proposed controller and its ability to

handle the considered uncertainties.

3.5.3 Comparative Study

To further assess the benefits of the proposed controller, a comparative study of the

FOL1AC against the FOSMC suggested in [146] is executed under the same conditions and

for the two reference signals yd1and yd2. We consider the case of time-varying uncertainties

and external disturbances where θ3 = [
2+ cos(π2 t ),2+0.4si n(πt )+0.3cos(2t )

]T
and σ3 =

1
2 + 3

2 cos(π2 t ).

In order to emphasize the control performances of the suggested method, we examine

the characteristic of the tracking error e1 resulting from the FOL1AC and FOSMC in the

duration between t1 = 5s and t2 = 25s of the simulation. The resulting average absolute

value of e1 over the considered amount of test time, the range of e1, and its Standard

Deviation (STD) can be seen in Table 3.1 and Table 3.2 for the two reference signals yd1

and yd2, respectively. The collected results confirm that the proposed FOL1AC yields in

a faster response time (see Figure 3.22 and Figure 3.24) with better tracking performances

(see Table 3.1 and Table 3.2). In addition, unlike the resulting smooth control signals of

FOL1AC depicted in Figure 3.23 (top) and Figure 3.25 (top), the time evolution of the

fractional-order sliding mode control signals which are illustrated in Figure 3.23 (bottom)

and Figure 3.25 (bottom) suffer from the undesirable chattering problem. Besides, the

FOSMC requires the knowledge of the uncertain quantity θT X for its implementation

which is not the case for the proposed controller.

60



Fractional-Order L1 Adaptive Control

Table 3.1: Precision comparisons between the proposed fractional-order L1 adaptive control
and the fractional-order sliding mode controller for the reference signal yd1.

Control method Av g (abs(e1))×10−3 Range of e1 ×10−3 STD of e1 ×10−3

FOL1AC 5.40 (2.73,10.79) 1.69

FOSMC [146] 7.33 (3.95,18.51) 2.95

Table 3.2: Precision comparisons between the proposed fractional-order L1 adaptive control
and the fractional-order sliding mode controller for the reference signal yd2.

Control method Av g (abs(e1))×10−3 Range of e1 ×10−3 STD of e1 ×10−3

FOL1AC 11.45 (−21.01,15.48) 12.18

FOSMC [146] 13.49 (−23.87,16.02) 14
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Figure 3.22: Comparative study for the reference signal yd1 in the case of time-varying uncer-
tainties and disturbances θ3 and σ3.
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Figure 3.23: Comparative study for the reference signal yd1. Top. fractional-order L1 adaptive
control signal. Bottom. fractional-order sliding mode control signal.
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Figure 3.24: Comparative study for the reference signal yd2 in the case of time-varying uncer-
tainties and disturbances θ3 and σ3.
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Figure 3.25: Comparative study for the reference signal yd2. Top. fractional-order L1 adaptive
control signal. Bottom. fractional-order sliding mode control signal.

3.6 Conclusion

This chapter presents the development of a FOL1AC strategy for a class of FOSs, subject

to uncertainties and external disturbances. The architecture of the controller comprises

several components, namely a fractional-order sliding surface, a control law, an adaptive

mechanism, and a predictor. Theoretical findings indicate that both input and output

system signals converge to those of a stable closed-loop reference system. Furthermore,

the controller has the capability to perform a fast tracking response with satisfactory tran-

sient performances. The low-pass filter integrated into the control structure guarantees a

fast adaptation without losing robustness. Numerical simulations illustrate that the con-

troller is able to robustly deal with constant and time-varying uncertainties and external

disturbances, which agrees with the theoretical finding and confirms the effectiveness and

validity of the proposed controller.
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Chapter 4
Multivariable L1 Adaptive Control

Design for Fractional-Order Systems

with Constant Input Gain

4.1 Introduction

In the previous chapter, the L1 adaptive methodology has been effectively expanded to

encompass the control of FOSs that are subject to matched uncertainties and bounded

time-varying external disturbances. Notably, the aforementioned investigations did not

study the case of incommensurate systems with unknown input gain. Thus, the objec-

tive of this chapter is to broaden the scope of the proposed FOL1AC by introducing a

novel MFOL1AC. The latter is designed for a large class of uncertain systems with con-

stant input gain that have not been discussed in this thesis. Examples of such include

fractional-order hyper-chaotic systems, MIMO, and incommensurate FOSs. Furthermore,

the designed MFOL1AC does not rely on the structure of the system under considera-

tion, where the uncertainties are estimated through some projective-type adaptation laws.

Finally, Similar to previous studies on L1 adaptive control, the proposed approach can

deliver a fast and robust response with decent transient performance despite model un-

certainties, external disturbances, unknown input gain, and fast adaptations. The outline

of the chapter is given as follows. Section 4.2 throws light on the problem. Section 4.3

introduces the proposed MFOL1AC. Section 4.4 discusses the stability analysis of the pro-

posed scheme. Section 4.5 investigates the validity of the controller via some simulation

results. Section 4.6 concludes this chapter.

4.2 Problem Formulation

This section deals with the description of the class of systems under consideration and

specifies the control objective. To begin, let us consider a class of MIMO incommensurate
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FOSs represented in the subsequent form

Dβi xi (t ) = fxi (x)+∆Fxi (x, t )+σi ui (t ) (4.1)

where i = 1,2, . . . ,n, Dβi is the Caputo fractional derivative, 0 <βi < 1 is the derivative or-

der, x(t ) = [x1(t ), x2(t ), . . . , xn(t )]
T ∈Rn is the pseudo states vector of the system, fxi (x) and

∆Fxi (x, t ) are unknown continuous nonlinear functions that represent model uncertainties

and external disturbances, respectively, σi , i = 1,2, . . . ,n are the input gains with respect to

0 <ωl i <σi <ωui , here, ωl i , ωui are positive constants, and u(t ) = [u1(t ),u2(t ), . . . ,un(t )]
T ∈

Rn is the vector of control signals.

The objective of this chapter is to synthesize a control law ui (t ) based on a fractional-

order L1 adaptive controller to successfully achieve a bounded tracking response of the

pseudo states vector x(t ) to a bounded vector of reference signals yd (t ) = [yd1(t ), yd2(t ), . . . ,

ydn(t )]
T ∈ Rn while compensating the model uncertainties, external disturbances, and

input gains, as well as ensuring the boundedness of all other signals.

4.3 Multivariable Fractional-Order L1 Adaptive Controller

This section discussed the structure of the MFOL1AC, which is developed based on a

fractional-order sliding surface for the class of FOSs introduced in (4.1). To proceed with

the control design, the following assumption is necessary

Assumption 4.1. The Caputo fractional derivatives Dβi ydi (t ) of the given reference

signals are assumed to exist, to be smooth and bounded. �

4.3.1 Choice of an Appropriate Fractional-Order Sliding Surface

Let the tracking errors vector e(t ) = [e1(t ),e2(t ), . . . ,en(t )]
T ∈Rn be defined as

e(t ) = x(t )− yd (t ) (4.2)

where ei (t ) = xi (t )− ydi (t ). Therefore, the error dynamics can be written according to

(4.1) as

Dβi ei (t ) = fxi (x)+∆Fxi (x, t )+σi ui (t )−Dβi ydi (4.3)

Regarding the systems presented in (4.1) and the error dynamics in (4.3), we chose a

fractional-order sliding surface as follows

zi (t ) = Dβi−1ei (t )+
ˆ t

0
λi ei (t )dτ (4.4)

where z(t ) = [z1(t ), z2(t ), . . . zn(t )]T ∈Rn, and λ= [λ1,λ2, . . . ,λn]T is a vector positive design

parameters. According to the property given in (1.26), the time derivative of (4.4) is given
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as

żi (t ) = Dβi ei (t )+λi ei (t ) (4.5)

Once zi (t ) = żi (t ) = 0, the system is known to operate in the sliding surface. Conse-

quently, for a significantly small value of żi (t ), i.e., żi (t ) ≈ 0, one can have

Dβi ei (t )+λi ei (t ) = 0 (4.6)

we know that 0 <βi < 1, hence, it is sufficient to fix λi > 0 for all i = 1,2, . . . ,n to ensure the

stability of the sliding mode dynamics in (4.6) . In other words, λi > 0 satisfies the stability

condition applied for linear fractional-order systems give in (1.42), i.e., |ar g (−λi )| >βi
π
2 .

The above discussion implies that in the case of zi (t ) = żi (t ) = 0 the sliding sur-

face dynamics are asymptotically stable which ensures that tracking errors converge to

zero. Therefore, the purpose of MFOL1AC is to guarantee that the system reaches the

fractional-order sliding surface which is true by ensuring that zi (t ) vanishes towards zero.

4.3.2 Control Structure

Replacing Dβi ei (t ) from (4.3) in (4.5) to get the following expression

żi (t ) = fxi (x)+∆Fxi (x, t )+σi ui (t )+λi ei (t )−Dβi ydi (4.7)

For simplicity, let us denote a function hi (yd , x) as

hi (yd , x) =αi zi (t )+ fxi (x)+∆Fxi (x, t )+λi ei (t )−Dβi ydi (4.8)

hence, we can have

żi (t ) =−αi zi (t )+σi ui (t )+hi (yd , x), zi (0) = zi 0 (4.9)

with α= [α1,α2, . . . ,αn]T is a vector of positive constants.

The predictor represented in (4.10) replicates the dynamics described by (4.9) with the

unknown function hi (yd , x) and the gain σi are replaced with their estimated functions

ĥi (t ) and σ̂i (t ).
˙̂zi (t ) =−αi ẑi (t )+ σ̂i (t )ui (t )+ ĥi (t ), ẑi (0) = zi 0 (4.10)

where ẑi (t ) ∈ R is the prediction of zi (t ). The estimations ĥi (t ) and σ̂i (t ) are conducted

by the following projection-type adaptation law

˙̂σi (t ) = Γi Pr o j (σ̂i (t ),−z̃(t )i ui (t ))

˙̂hi (t ) = Γi Pr o j (ĥi (t ),−z̃i (t ))
(4.11)

where z̃(t ) = ẑ(t )− z(t ) ∈ Rn is the vector of prediction errors, Γi ∈ R+ is the adaptation
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gain, and Pr o j (., .) is the projection operator introduced in Definition 2.3.

The control law ui is employed as

ui (s) =−Ki D(s)η̂i (s) (4.12)

where η̂i (s) is the Laplace transform of η̂(t ) = σ̂i (t )ui (t )+ ĥi (t ), K = [K1,K2, . . . ,Kn]T is a

vector of positive feedback gains, and D(s) is a strictly proper transfer function, which is

included in the expression of a stable proper closed-loop filter as

Ĉi (s) = σ̂i Ki D(s)

1+ σ̂i Ki D(s)
(4.13)

consequently, the resulting form of the filter Ĉi (s) in (4.13) can represent a low-pass first-

order filter with the choice of the transfer function D(s) as D(s) = 1
s , which gives

Ĉi (s) = σ̂i Ki

s + σ̂i Ki
(4.14)

where Ĉi (0) = 1.

4.4 Stability and Performances Analysis

This section analyzes the performances and the stability of the developed controller, for

that reason the subsequent assumptions are necessary

Assumption 4.2. The nonlinear function hi (yd , x) is assumed to accept the following

bound

|hi (yd , x)| ≤ L|zi (t )|+L0 (4.15)

with L and L0 are positive constants. �

Assumption 4.3. The derivative of nonlinear function hi (yd , x) can be bounded as

|ḣi (yd , x)| ≤ dhi <∞ (4.16)

�

The controller proposed in (4.10), (4.11), and (4.12) is subject to the L1 norm condi-

tion given by (4.17) are chosen to fulfill it

‖Gi (s)‖L1 L < 1 (4.17)

where Gi (s) = Hi (s)(1−Ci (s)), Hi (s) = (s+αi )−1, Ci (s) = σi Ki
s+σi Ki

is a low pass filter, and L > 0

is introduced in Assumption 4.2. Therefore, the design parameter αi and the filter C (s)i

are selected to fulfill it.
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Remark 4.1. Using the fact that αi > 0 and Ci (s) is a BIBO stable and strictly proper

transfer function we can easily conclude that Gi (s) and Hi (s) are also BIBO stable and

proper transfer functions. �

4.4.1 Closed-loop Ideal Reference System

Let us consider now a well-behaving reference system that stands for the closed-loop non-

adaptive description of the system in (4.1) with the controller given by (4.10), (4.11), and

(4.12). This system is given as
żi r e f (t ) =−αi zi r e f (t )+σi ui r e f (t )+hi (xr e f )

ui r e f (s) =−Ci (s)

σi
ηi r e f (s)

(4.18)

where zi r e f (0) = zi 0 and ηi r e f (s) is the Laplace transform of ηi r e f (t ) = hi (xr e f ).

Remark 4.2. The reference system in (4.18) is able to deliver the best achievable perfor-

mance of the proposed controller since its architecture depends on the unknown function

hi and input gain σi . However, its utilization is limited to stability and performance

analysis only. �

Lemma 4.1. Let us consider that both the design parameter αi and the filter Ci (s) satisfy

the L1 norm condition in (4.17), then with regards to the closed-loop reference system

representation in (4.18), the bound given bellow holds

‖zi r e f τ‖L∞ ≤ ρi (4.19)

where

ρi =
‖Gi (s)‖L1

1−L‖Gi (s)‖L1

L0 + 1

1−L‖Gi (s)‖L1

‖ziτ‖L∞ (4.20)

with zi = (s +αi )−1zi 0. �

Proof. From the representation of the closed-loop reference system (4.18), and using the

Laplace transform formulation, one has

szi r e f (s)− zi 0 =−αi zi r e f (s)+σi ui r e f (s)+ηi r e f (s) (4.21)

by replacing ui r e f (s), we can have

zi r e f (s) =Gi (s)ηi r e f (s)+ zi (4.22)

It is obvious that zi is uniformly bounded and according to Remark 4.1, the following

upper bound is valid for all τ> 0

‖zi r e f τ‖L∞ ≤ ‖Gi (s)‖L1‖ηi r e f τ‖L∞ +‖ziτ‖L∞ (4.23)
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Using Assumption 4.2, we can conclude that ‖ηi r e f τ‖L∞ ≤ L‖zi r e f τ‖L∞ +L0. Hence

‖zi r e f τ‖L∞ ≤ ‖Gi (s)‖L1

1−L‖Gi (s)‖L1

L0 + 1

1−L‖Gi (s)‖L1

‖ziτ‖L∞ (4.24)

We know that L0 is a finite positive value and zi is uniformly bounded. Hence, if the

condition in (4.17) is fulfilled, one obtains that ‖zi r e f τ‖L∞ is uniformly bounded, which

completes the proof. �

4.4.2 Transient and Steady-state Analysis

In this subsection, we analyze the performances bound between the closed-loop ideal

reference system represented in (4.18) and the system (4.1) with the controller given by

(4.10), (4.11), and (4.12), both in transient and steady-state.

Let denote ηi (s) as the Laplace transform of ηi (t ) = hi (yd , x). Then, the control law

given in (4.12) can expanded as

ui (s) =−Ki D(s)(η̃i (s)+ηi (s)+σi ui (s)) (4.25)

where η̃i (s) is the Laplace transform of η̃i (t ) = σ̃i (t )ui (t )+ h̃i (t ) with σ̃i (t ) and h̃i (t ) are

the estimation errors. Therefore, one can have

ui (s) =−Ci

σi
(η̃i (s)+ηi (s)) (4.26)

Consequently, the expression (4.9) can be written in the frequency domain as

szi (s)− zi 0 =−αi zi (s)−Ci (s)(η̃i (s)+ηi (s))+ηi (s) (4.27)

or

zi (s) =Gi (s)ηi (s)−Ci (s)Hi (s)η̃i (s)+ zi (4.28)

Next, it is easy to find z̃i (t ) from (4.9) and (4.10) since we have z̃i (t ) = ẑi (t )− zi (t ),

hence

˙̃zi (t ) =−αi z̃i (t )+ σ̃i (t )ui (t )+ h̃i (t ), z̃i (0) = 0 (4.29)

Consequently, it is straightforward to deduce the expression of z̃i (s) as

z̃i (s) = Hi (s)η̃i (s) (4.30)

Lemma 4.2. Regarding the system in (4.9) with the controller presented by (4.10), (4.11),

and (4.12), if the low-pass filter Ci (s) and the design parameter αi fulfill the condition in

(4.17), we have the bound that follows

‖z̃iτ‖L∞ ≤√
2ϕi (4.31)
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where

ϕi = 1

2Γi
(4max

hi∈Θ
‖hi‖2 + (ωui −ωl i )2)+ 1

αiΓi
max
hi∈Θ

‖hi‖dhi (4.32)

�

Proof. Consider the following Lyapunov candidate function

Vi (z̃i , h̃i , σ̃i ) = 1

2
z̃2

i +
1

2Γi
h̃2

i +
1

2Γi
σ̃2

i (4.33)

the time derivative of Vi (z̃i , h̃i , σ̃i ) in (4.33) is given as

V̇i (z̃i , h̃i , σ̃i ) = z̃i ˙̃zi + 1

Γi
h̃i

˙̃hi + 1

Γi
σ̃i ˙̃σi (4.34)

Since σi is a constant and by recalling (4.29), we can have

V̇i (z̃i , h̃i , σ̃i ) =−αz̃2
i + z̃i h̃i + z̃i σ̃i ui + 1

Γi
h̃i

˙̂hi − 1

Γi
h̃i ḣi + 1

Γi
σ̃i ˙̂σ (4.35)

or

V̇i (z̃i , h̃i , σ̃i ) =−αz̃2
i + h̃i (

1

Γi

˙̂hi + z̃i )+ σ̃i (
1

Γi

˙̂σi + z̃i ui )− 1

Γi
h̃i ḣi (4.36)

according to the adaptation law in (4.11) we can deduce that

V̇i (z̃i , h̃i , σ̃i ) ≤−αz̃2
i + h̃i (Pr o j (ĥi ,−z̃i )+ z̃i )+ σ̃i (Pr o j (σ̂i ,−z̃i ui )+ z̃i ui )+ 1

Γi
| h̃i ḣi | (4.37)

besides, Lemma 2.2 implies that

h̃i (Pr o j (ĥi ,−z̃i )+ z̃i )+ σ̃i (Pr o j (σ̂i ,−z̃i ui )+ z̃i ui ) ≤ 0 (4.38)

that is to say that

V̇i (z̃i , h̃i , σ̃i ) ≤−αz̃2
i +

1

Γi
| h̃i ḣi | (4.39)

The projection operator ensures that the estimated value ĥi remain within the compact

set Θ and |σ̂i | ≤χ, with χ ∈ [ωl i ,ωui ]. Hence

max
t≥0

(h̃2
i + σ̃2

i ) ≤ (4max
hi∈Θ

‖hi‖2 + (ωui −ωl i )2) (4.40)

consequently, the upper bound in Assumption 4.3 implies that

1

Γi
| h̃i ḣi |≤ 2

Γi
max
hi∈Θ

‖hi‖dhi (4.41)

For any given time t1 > 0, supposing that Vi (t1) >ϕi . Then, based on representation

of ϕi and Vi we can write
1

2
z̃2

i >
1

αiΓi
max
hi∈Θ

‖hi‖dhi (4.42)

69



Multivariable Fractional-Order L1 Adaptive Controller

or

αi z̃2
i >

2

Γi
max
hi∈Θ

‖hi‖dhi (4.43)

which also means that V̇i (t ) < 0. Moreover, the bound ‖z̃τ‖2 ≤ 2ϕi can be obtained based

on the fact z̃(0) = 0 as

‖z̃‖2 ≤V (t ) ≤V (0) < 1

2Γi
(4max

hi∈Θ
‖hi‖2 + (ωui −ωl i )2) <ϕi (4.44)

Finally, since ‖.‖∞ ≤ ‖.‖, we can have ‖z̃τ‖L∞ ≤√
2ϕi , that completes the proof. �

Remark 4.3. Lemma 4.2 and the representation of ϕi prove that the prediction error can

be improved arbitrarily by increasing the adaptation gain Γi and the design parameter

αi . �

Proposition 4.1. Regarding the systems in equations (4.9) and (4.18) with the controller

presented by (4.10), (4.11), and (4.12), if the filter Ci (s) and the parameter αi are chosen

to fulfill the condition in (4.17), then, we have the following

‖(zi r e f (s)− zi (s))τ‖L∞ ≤ δ1i

‖(ui r e f (s)−ui (s))τ‖L∞ ≤ δ2i

(4.45)

lim
Γi→∞

(zi r e f (t )− zi (t )) = 0

lim
Γi→∞

(ui r e f (t )−ui (t )) = 0
(4.46)

where

δ1i =
‖Ci (s)‖L1

1−‖Gi (s)‖L1 L

√
2ϕi (4.47)

and

δ2i = ‖Ci (s)

σi
‖L1 Lδ1i +‖H1i (s)

σi
‖L1

√
2ϕi (4.48)

with H1i (s) = Ci (s)
Hi (s) is a stable and proper transfer function. �

Proof. By subtracting (4.28) from (4.22), one can have

zi r e f (s)− zi (s) =Gi (s)(ηi r e f (s)−ηi (s))+Ci (s)Hi (s)η̃i (s) (4.49)

denoting ηei (s) = ηi r e f (s)−ηi (s) and according to (4.30), we can write

zi r e f (s)− zi (s) =Gi (s)ηei (s)+Ci (s)z̃i (s) (4.50)

The expression of ηei (s) can be bounded according to Assumption 4.2 as

‖ηi e (s)τ‖L∞ ≤ L‖(zi r e f (s)− zi (s))τ‖L∞ (4.51)
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therefore, for all τ> 0 we have the following upper bound

‖(zi r e f (s)− zi (s))τ‖L∞ ≤ ‖Gi (s)‖L1 L‖(zi r e f (s)− zi (s))τ‖L∞ +‖Ci (s)‖L1

√
2ϕi (4.52)

solving for ‖(zi r e f (s)− zi (s))τ‖L∞ , yields in

‖(zi r e f (s)− zi (s))τ‖L∞ ≤ ‖Ci (s)‖L1

1−‖Gi (s)‖L1 L

√
2ϕi (4.53)

We know that
√

2ϕi is a finite value and Ci (s) is uniformly bounded, which means

that if ‖Gi (s)‖L1 L < 1, then, for all τ> 0 we have that ‖(zi r e f (s)− zi (s))τ‖L∞ is uniformly

bounded.

Similarly, by subtracting (4.26) from (4.18), one can have

ui r e f (s)−ui (s) =−Ci (s)

σi
ηi e (s)+ Ci (s)

σi
η̃i (s) (4.54)

The work in [44] and the expression in (4.30) confirm that

Ci (s)η̃i (s) = H1i (s)z̃i (s) (4.55)

Consequently, the bound ‖ηeτ‖L∞ ≤ L‖(zr e f (s)− z(s))τ‖L∞ gives

‖(ui r e f (s)−ui (s))τ‖L∞ ≤ ‖Ci (s)

σi
‖L1 Lδ1i +‖H1i (s)

σi
‖L1

√
2ϕi (4.56)

Recalling the facts that Ci (s) and H1i (s) are uniformly bounded transfer functions

which means that if ‖Gi (s)‖L1 L < 1, then, for all τ> 0 we have that ‖(ui r e f (s)−ui (s))τ‖L∞
is uniformly bounded.

Next, for the second part of the proof, it is easy to establish that lim
Γi→∞

ϕi = 0, which

implies that lim
Γi→∞

δ1i = 0 and lim
Γi→∞

δ2i = 0. In addition, we have ‖(zi r e f (s)−zi (s))τ‖L∞ ≤ δ1i

and ‖(ui r e f (s)−ui (s))τ‖L∞ ≤ δ2i , that is to say lim
Γi→∞

(zi r e f (t )−zi (t )) = 0 and lim
Γi→∞

(ui r e f (t )−
ui (t )) = 0, that completes the proof. �

Remark 4.4. Proposition 4.1 admits that the proposed controller can drive zi (t ) to track

the best achievable performances delivered by the reference system (4.18), that is when

the value of the adaptation gain Γi is large enough. �

4.5 Simulation Results

In this section, we will test the effectiveness and confirm the above theoretical results

found on the proposed controller presented by (4.10), (4.11), and (4.12). To this end,

two simulation cases are considered along with a comparative study. First, we suggest

controlling chaos of the incommensurate fractional-order Hopfield neural chaotic network
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[150, 151] which is subject to model uncertainties, external disturbances, and unknown

input gain. The second case of simulation is concerned with the chaos suppression of a

4-dimensional fractional-order hyper-chaotic system. The latter is also considered in a

comparative study of the MFOL1AC against another fractional-order controller.

4.5.1 Case of Incommensurate Orders

Let us consider the representation of the incommensurate fractional-order Hopfield neural

chaotic network, which is given in [150,151] as
Dβ1 x1(t ) =−x1(t )+2t anh(x1)−1.2t anh(x2)+∆Fx1(x, t )+σ1u1(t )

Dβ2 x2(t ) =−x2(t )+2t anh(x1)−1.71t anh(x2)+1.15t anh(x3)+∆Fx2(x, t )+σ2u2(t )

Dβ3 x3(t ) =−x1(t )−4.75t anh(x1)+1.1t anh(x2)+∆Fx2(x, t )+σ3u3(t )

(4.57)

with ∆Fx1(x, t ) = 0.2cos(πx2x3)×cos(πx1)×si n(100t ), ∆Fx2(x, t ) = 0.2cos(πx1x3)×cos(πx2)×
si n(100t ), ∆Fx3(x, t ) = −0.2cos(πx2x1)× cos(πx3)× si n(100t ), and σi = 2, i = 1,2,3. The

fractional-orders are fixed as β = [0.96,0.97,0.98]T to ensure that the considered system

behaves chaotically [151]. The dynamics of the closed-loop system are simulated for 5s

with the initial conditions and reference signals are fixed as x(0) = [2.5,2,2.5]T and yd (t ) =
[3cos(2t ),1.5cos(t ),3cos(2t )]T , respectively. The initial values of ĥ are set to be zero and

σ̂(0) = 0.01 with their bounds in the projection operator are σ̂ ∈ [0.01,6] and ĥ ∈ [6,−6].

To reach the best performances, the simulation was executed using the following design

parameters acquired through trial and error: α= [12,11,13]T , Γ= [4000,8500,4500]T , and

λi = 10, i = 1,2,3. For the filter Ci (s) we chose the feedback gain Ki = 20, i = 1,2,3. Fi-

nally, the parameters of the Oustaloup’s filter are fixed as ωb = 10−3, ωh = 103, and the

approximation order N = 5.
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Figure 4.1: Evolution of the state x1 and yd1 in the case of incommensurate orders.
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Figure 4.2: Evolution of the state x2 and yd2 in the case of incommensurate orders.
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Figure 4.3: Evolution of the state x3 and yd3 in the case of incommensurate orders.
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Figure 4.4: Tracking errors e1, e2, and e3 in the case of incommensurate orders.
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Figure 4.5: Control signals u1, u2, and u3 in the case of incommensurate orders.

Figures 4.1-4.5 show closed-loop system responses in the case of incommensurate or-

ders. Figure 4.1, Figure 4.2, and Figure 4.3 illustrate the tracking trajectories of the states

x1, x2, and x3, respectively, to their corresponding reference signals. The evolution of the

tracking errors e1, e2, and e3 are represented in Figure 4.4. Besides, the resulting control

signals u1, u2, and u3 are smooth and bounded as it can be seen in Figure 4.5. It is obvious

from the mentioned results that the states track their desired reference signals, performing

a fast response and decent transient behavior maintaining smooth and bounded control

signals. Besides, this simulation confirms that the closed-loop stability of the system is

acquired and the MFOL1AC can behave robustly against model uncertainties, external

disturbances, and unknown input gain, which confirms the theoretical findings in previous

sections.

4.5.2 Case of Hyper-chaos Suppression

This subsection considers chaos suppression of a 4-dimensional fractional-order hyper-

chaotic systems, which is represented in the state space as [152]

Dβ1 x1(t ) = 5(x3 −x1 +x4)+∆Gx1(x, t )+u1(t )

Dβ2 x2(t ) = (1−10x1x3)+∆Gx2(x, t )+u2(t )

Dβ3 x3(t ) = (−6+10x1x2)+∆Gx3(x, t )+u3(t )

Dβ4 x4(t ) = (−10x2)+∆Gx4(x, t )+u4(t )

(4.58)

with ∆Gx1(x, t ) = 0.65si n(3x4)−0.55cos(3t ), ∆Gx2(x, t ) =−0.65cos(5x1)+0.55si n(3t ), ∆Gx3(

x, t ) = −0.6cos(3x2) + 0.55si n(3.5t ), and ∆Gx4(x, t ) = 0.65si n(1.5y3) − 0.55cos(2t ). The

fractional-orders are selected as βi = 0.95, i = 1,2, . . . ,4 to confirm the existence of chaos

phenomena [152]. The initial conditions of the systems are set as x(0) = [0.7,0.6,0.8,0.5]T .

The initial values of ĥi are set to be zero and σ̂i (0) = 0.01 with their bounds in the projec-

tion operator are σ̂i ∈ [0.01,6] and ĥi ∈ [6,−6]. The parameters αi , Γi , and λi are selected

74



Multivariable Fractional-Order L1 Adaptive Controller

to achieve the best performances possible and their values are set as α= [27,53,28,22]T ,

Γ = [64636,48084,48704,108592]T , and λi = 10, i = 1,2, . . . ,4. For the filter Ci (s) we chose

the feedback gain Ki = 35, i = 1,2, . . . ,4. Finally, the dynamics of the chaos suppression are

simulated for 6s, and with the parameters of the Oustaloup’s filter are fixed as ωb = 10−3,

ωh = 103, and the approximation order N = 5.

Figures 4.6-4.11 illustrate the simulation results in the case of hyper-chaos suppression.

Figures 4.6-4.9 show the trajectories of the states x1, x2, x3, and x4. The tracking errors

ei (t ), i = 1,2, . . . ,4 are presented in Figure 4.10. These figures demonstrate that the sup-

pression objective is achieved since the states x1, x2, x3, and x4 quickly converge near the

origin (about tr = 0.4s). Finally, the evolution of the control signals ui (t ), i = 1,2, . . . ,4 can

be seen in Figure 4.11. Based on the mentioned figure, it is clear that the resulted control

signals are bounded and relatively smooth. Therefore, this simulation example agrees

that the proposed control can ensure a fast response maintaining decent transient perfor-

mances and smooth control signals despite model uncertainties and external disturbances

presented by the systems, which affirms the obtained theoretical results.
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Figure 4.6: Evolution of the state x1 and yd1 in the case of hyper-chaos suppression.
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Figure 4.7: Evolution of the state x2 and yd2 in the case of hyper-chaos suppression.
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Figure 4.8: Evolution of the state x3 and yd3 in the case of hyper-chaos suppression.
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Figure 4.9: Evolution of the state x4 and yd4 in the case of hyper-chaos suppression.
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Figure 4.10: Tracking errors e1, e2, e3, and e4 in the case of hyper-chaos suppression.
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Figure 4.11: Resulting control signals u1, u2, u3, and u4 in the case of hyper-chaos suppression.

4.5.3 Comparative Study

To further assess the benefits of the proposed controller, a comparative study of the

MFOL1AC against the Adaptive Sliding Mode Control (ASMC) suggested in [152] is ex-

ecuted under the same conditions for the case of hyper-chaos suppression. The control

precision in this comparative study was inspected based on the errors ei , i = 1,2, . . . ,4,

delivered by the two controllers over a period of time (focusing on steady-state perfor-

mances). These characteristics are presented in Table 4.1, which includes the range, the

STD, and the average absolute value of the tracking errors.

Figure 4.12 and Figure 4.13 illustrate the resulting tracking errors ei (t ), i = 1,2, . . . ,4

for both controllers. These figures demonstrate clearly the faster response delivered by

the MFOL1AC, it also illustrates the enhanced steady-state preference which can be

translated to better robustness.
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Figure 4.12: Comparative study in the case of hyper-chaotic systems. Tracking errors. Top.
e1. Bottom. e2.
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Figure 4.13: Comparative study in the case of hyper-chaotic systems. Tracking errors. Top.
e3. Bottom. e4
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Figure 4.14: Comparative study in the case of hyper-chaotic systems. Resulting control signals.
Top. u1. Bottom. u2.
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Figure 4.15: Comparative study in the case of hyper-chaotic systems. Resulting control signals.
Top. u3. Bottom. u4.
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Table 4.1: Precision comparisons between the proposed multivariable fractional-order L1 adap-
tive control and the adaptive sliding mode control.

Controller Errors Av g (abs(ei )×10−3 Range of ei ×10−3 STD of ei ×10−3

MFOL1AC

e1 0.29 (−0.44,0.43) 0.31
e2 0.39 (−0.53,0.66) 0.44
e3 0.62 (−0.96,0.54) 0.68
e4 0.30 (−0.74,0.45) 0.33

ASMC [152]

e1 0.32 (−0.72,0.71) 0.37
e2 0.80 (−1.50,1.23) 0.90
e3 5.70 (−17.5,19.1) 8.02
e4 0.51 (−1.20,1.13) 0.64

The control signals are depicted in Figure 4.14 and Figure 4.15, in which it is obvious

that the resulting control signals of MFOL1AC do not suffer from the undesirable chat-

tering problem. Finally, the overall results affirm the main advantage of the L1 adaptive

controller which is faster responses with a decent transient response. Besides, Table 4.1

reveals the very satisfactory results of the proposed method in the steady-state regime in

comparison with those of the ASMC.

4.6 Conclusion

In this chapter, an MFOL1AC is proposed to control a class of MIMO FOSs. The design

begins by selecting a fractional-order sliding surface, followed by the synthesis of a control

law based on the L1 adaptive control methodology. The latter ensures the existence

of the sliding motion and eventually the convergence of the tracking errors. Theoretical

findings demonstrate that the controller can deliver a fast and robust response with decent

transient performance for a large class of systems in the presence of high adaptation

gains, model uncertainties, external disturbances, and unknown input gains. Finally, two

simulation cases were considered to investigate the ability of the proposed scheme: chaos

control of an incommensurate FOCSs, and a hyper-chaos suppression for fractional-order

hyper-chaotic system. The simulation discussion revealed that the results are satisfactory

for both cases and approve the theoretical discussions.
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Chapter 5
Neural network L1 Adaptive Control

Design for Fractional-Order Systems

with Time-varying Input Gain

5.1 Introduction

The aim of this chapter is to design a NNFOL1AC for a class of uncertain FONLSs that

are subject to model uncertainties and unknown time-varying input gain. In the previ-

ous chapters, the objective of controlling FOSs is achieved using the L1 adaptive control

methodology. Here, the control architecture integrates an RBFNN as an uncertainty es-

timator. This allows the implementation of the controller without any prior knowledge

of the controlled system model. NN are known for their universal approximation prop-

erty; they can approximate continuous nonlinear functions to any desired precision [153].

The principle is to incorporate the approximated function delivered by a neural network

estimator in the control architecture, which plays a key role in handling of the uncertain

nonlinearities of the system, results in small prediction errors, and significantly improves

control accuracy. Finally, the developed controller can also ensure uniform performance

bounds for system signals both in transient and steady-state. The rest of this chapter is

arranged in 5 sections as follows. Section 5.2 describes the main problem. Section 5.3

introduces the structure of the NNFOL1AC. Section 5.4 shows the stability analysis of the

proposed closed-loop scheme. Section 5.5 investigates the effectiveness and efficiency of

the proposed controller on two FONLSs via some numerical simulations and comparative

studies. Section 5.6 represents a conclusion to this chapter.

5.2 Problem Formulation

This section focuses on the characterization of the class of FOSs under consideration

alongside the nomination of the control objective. To begin, we consider a class of SISO
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uncertain FONLSs described as follows
Dβx1(t ) = x2(t ),Dβx2(t ) = x3(t ), . . . ,Dβxn−1(t ) = xn(t )

Dβxn(t ) = f (x)+ g (x)u(t )

y(t ) = x1(t )

(5.1)

where Dβ is the Caputo fractional derivative, β is the corresponding derivative order

with respect to 0 < β < 1, x(t ) = [x1(t ), . . . , xn(t )]
T ∈ Rn is the pseudo states vector which

is supposed to be measurable, u(t ) ∈R is the control signal, y(t ) ∈R is the output signal,

f (.) and g (.) are continuous unknown smooth functions that represent system uncertain

dynamics and unknown input gain, respectively.

The main objective of this chapter is to design an NNFOL1AC for the considered

system (5.1) in order to achieve a bounded tracking response of the output signal y(t ) =
x1(t ) to a bounded reference signal yd (t ) ∈ R while maintaining the boundedness for all

system signals.

5.3 Neural Network Fractional-Order L1 Adaptive controller

This part will discuss the structure of the closed-loop system, which is based on a

fractional-order sliding surface, an RBFNN, an L1 adaptive controller and the systems

introduced in (5.1).

To proceed with the control design and with regard to the system in (5.1), the following

assumptions are essential.

Assumption 5.1. For all x(t ) ∈R we assume that the nonlinear function g (x) is bounded

and strictly positive with respect to 0 < θ1 < g (x) < θ2, where θ1 and θ2 are positive

constants. It is worth noting that g (x) can be assumed strictly negative as −θ2 < g (x) <
−θ1 < 0, while the controller can be obtained similarly. �

Assumption 5.2. The reference signal yd (t ) and its successive fractional-order derivatives

D jβyd (t ), j = 1, . . . ,n are assumed to exist, to be smooth and bounded. �

5.3.1 Choice of an Appropriate Fractional-Order Sliding Surface

Let the vector E(t ) = [e1(t ),e2(t ), . . . ,en(t )]T ∈Rn be defined as

E(t ) = Yd (t )−x(t ) (5.2)

such as e1(t ) = yd (t )− x1(t ) is the tracking error and Yd (t ) is the vector of the reference

signal and its successive fractional-order derivatives defined in Assumption 5.2. Conse-
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quently, the error dynamics can be evaluated in the following form{
Dβe1(t ) = e2(t ),Dβe2(t ) = e3(t ), . . . ,Dβen−1(t ) = en(t )

Dβen(t ) = Dnβyd (t )−Dβxn(t )
(5.3)

regarding the error dynamics in (5.3) and the considered system in (5.1), the suitable

form of the fractional-order sliding surface to design the controller is the following

z(t ) = Dβ−1en(t )+
ˆ t

0
λT E(τ)dτ (5.4)

where λ= [λ1,λ2, . . .λn]T ∈Rn is a vector of adjustable design parameters, their values will

be discussed further in this chapter.

The time derivative of the fractional-order sliding surface is given according to the

property in (1.26) as

ż(t ) = Dβen(t )+λT E(t ) (5.5)

In the case where the system reaches in the fractional-order sliding surface, one can have

z(t ) = ż(t ) = 0. Thus, for ż(t ) significantly small, i.e., ż(t ) ≈ 0, it results

Dβen(t )+λT E(t ) = 0 (5.6)

or

Dβen(t ) =−λT E(t ) (5.7)

Furthermore, in this case, and by replacing the resulted equation (5.7) in (5.3), one

can extend the representation of the error dynamics to the subsequent form

Dβe1(t )

Dβe2(t )

...

Dβen−1(t )

Dβen(t )


︸ ︷︷ ︸

DβE(t )

=



0 1 0 . . . 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−λ1 −λ2 −λ3 · · · −λn


︸ ︷︷ ︸

A



e1(t )

e2(t )

...

en−1(t )

en(t )


︸ ︷︷ ︸

E(t )

(5.8)

Particularly, DβE(t ) = AE(t ), where A ∈ Rn×n is a constant matrix, the stability condi-

tion in Theorem 1.6, i.e., |ar g (ei g (A))| > βπ
2 , implies that the design parameters λi , i =

1,2, . . . ,n, must be strictly positive in order the guarantee that the sliding surface dynam-

ics are asymptotically stable. In addition, these conditions confirm that the tracking error

and its fractional-order derivatives converge towards zero. Therefore, the purpose of the

NNFOL1AC is to guarantee that the system reaches in the fractional-order sliding surface

by controlling z(t ) toward zero.
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Next step, replacing Dβen(t ) from (5.3) in (5.5), which results in

ż(t ) = Dnβyd (t )−Dβxn(t )+λT E(t ) (5.9)

this form can be extended using Dβxn(t ) from (5.1) to the form that follows

ż(t ) = Dnβyd (t )− f (x)− g (x)u(t )+λT E(t ) (5.10)

Let define a function v as

v(t , z) = Dnβyd (t )+λT E(t )+αz(t ) (5.11)

with α is a positive constant.

From (5.11), and by subtracting and adding αz in (5.10), one can have the following

equation

ż(t ) =−αz(t )− f (x)− g (x)u(t )+ v(t , z) (5.12)

For the unknown nonlinear expression g (x)u(t ) in (5.12), there exist always σ and

∆(x,u), such that

g (x)u(t ) =σu(t )−∆(x,u) (5.13)

where ∆ is the mismatch between g (x)u(t ) and σu(t ), σ is a positive unknown constant

with respect to 0 <ω1 <σ<ω2, with ω1 and ω2 are positive constants.

Now, by replacing (5.13) in (5.12), one can have

ż(t ) =−αz(t )− f (x)−σu(t )+∆(x,u)+ v(t , z) (5.14)

denoting H(x,u, v) =∆(x,u)− f (x)+ v(t , z), hence

ż(t ) =−αz(t )−σu(t )+H(x,u, v) (5.15)

Given its definition, the nonlinear function H(x,υ,u) is obscured by the uncertain

terms ∆(x,u) and f (x). Consequently, the subsequent section will focus on approximating

H(x,υ,u) by employing an RBFNN.

5.3.2 Neural Network Approximation

RBFNN are usually considered as two layers networks; a hidden layer that delivers a

nonlinear transformation of the inputs, and an output layer that linearly combines the

output of the previous layer. These networks can approximate any given continuous

nonlinear function H(ϑ) :Rn →R into the following [102,107,154]

H(ϑ) = w Tφ(ϑ)+ε(ϑ), |ε(ϑ)| ≤ ε (5.16)
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where ϑ= [ϑ1,ϑ2, . . . ,ϑn]T ∈Ωϑ ⊂Rn is the input vector, w = [w1, . . . , wl ]T ∈Rl is the weight

vector, l > 1 is the network nodes number and φ(ϑ) = [φ1(ϑ), . . . ,φl (ϑ)]T ∈Rl is the output

of the hidden layer with φm(ϑ) is given by the Gaussian radial basis function that follows

φm(ϑ) = exp(− (ϑ−ζm)T (ϑ−ζm)

κ2
m

),m = 1, . . . , l (5.17)

with the parameters ζm = [ζm1,ζm2, . . . ,ζmn]T and κm are the center of the receptive vector

and the width of the Gaussian function, receptively. �

According to (5.16), the function H(x,u, v) can be approximated by an RBFNN over

a compact set as

H(ϑ) = w T (t )φ(ϑ)+ε(ϑ), |ε(ϑ)| ≤ ε (5.18)

with ε(ϑ) is the approximation error, and ε is a uniform bound for ε(ϑ).

Replacing (5.18) in (5.15) gives

ż(t ) =−αz(t )−σu(t )+w T (t )φ(ϑ)+ε(ϑ), z(0) = z0 (5.19)

5.3.3 Control Structure

Let us consider the following form of the predictor, which replicates the dynamics de-

scribed by (5.19) with the unknown parameters σ and w(t ) are replaced with their esti-

mations σ̂(t ) and ŵ(t ), respectively

˙̂z(t ) =−αẑ(t )− σ̂u(t )+ ŵ T (t )φ(ϑ), ẑ(0) = z0 (5.20)

where ẑ(t ) ∈R is the prediction of the sliding surface z(t ). The values of σ̂(t ) and ŵ(t ) are

governed by the following projection-type adaptation laws

˙̂σ(t ) = ΓPr o j (σ̂(t ), z̃(t )u(t ))

˙̂w(t ) = ΓPr o j (ŵ(t ),−z̃(t )φ(ϑ))
(5.21)

where z̃(t ) = ẑ(t )−z(t ) ∈R represents the prediction error, Γ is a positive value that denotes

the adaptation gain, and Pr o j (., .) is the projection operator given by Definition 2.3.

Let us consider the following control law

u(s) = K D(s)η̂(s) (5.22)

with η̂(s) is the Laplace transform of η̂(t ) =−σ̂(t )u(t )+ŵ T (t )φ(ϑ), D(s) is a strictly proper

transfer function, and K ∈R+ is a positive feedback gain, which results in a stable proper

transfer function

Ĉ (s) = σ̂K D(s)

1+ σ̂K D(s)
(5.23)

The choice of D(s) = 1
s introduces Ĉ (s) in the form of the first-order low-pass filter in
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(5.24) with DC gain Ĉ (0) = 1

Ĉ (s) = σ̂K

s + σ̂K
(5.24)

Finally, an illustrative block diagram of the proposed NNFOL1AC is given in Figure

5.1.
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Figure 5.1: Diagram block of the proposed neural network fractional-order L1 adaptive con-
troller.

5.4 Stability and Performances Analysis

This section analyzes the performances and the stability of the developed controller. For

that reason, the following assumptions are required

Assumption 5.3. Since the pseudo state vector x(t ) shares a similar behavior with z(t )

in terms of stability and boundedness, then the following bound is justifiable

|H(x,u, v)| ≤ L|z(t )|+L0 (5.25)

where L and L0 are positive constants. �

Assumption 5.4. Let w(t ) be continuously derivable and its derivative ẇ(t ) is bounded

for all t ≥ 0 as follows

‖ẇ‖ ≤ dw <∞ (5.26)

�

The controller proposed in (5.20), (5.21), and (5.22) is subject to the L1 norm condi-

tion in (5.27)

‖G(s)‖L1 L < 1 (5.27)

where G(s) = H(s)(1−C (s)), H(s) = (s+α)−1, C (s) = σK
s+σK is a low pass filter, and L is given

in (5.25). Therefore, the design parameter α and the filter C (s) are selected to fulfill it.

Remark 5.1. Since C (s) is a BIBO stable and strictly proper transfer function and α> 0,

we can find that H(s) and G(s) are also BIBO stable and proper transfer functions. �
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Remark 5.2. The design parameters λi , i = 1,2, . . . ,n and α are utilized in this approach to

specify the desired closed-loop dynamics and the feedback gain K can be used to adjust the

bandwidth-limited filter C (s). In a given frequency range, this filter serves a critical role

in maintaining good tracking of the reference signals and enhancing robustness against

uncertainties. �

5.4.1 Closed-loop Ideal Reference System

In this subsection, we consider a well-behaved reference system that represents the non-

adaptive description of the system (5.1) and the proposed controller in (5.20), (5.21), and

(5.22) 
żr e f (t ) =−αzr e f (t )−σur e f (t )+w T (t )φ(ϑr e f )+ε(ϑr e f ), zr e f (0) = z0

ur e f (s) = C (s)

σ
ηr e f (s)

(5.28)

with ηr e f (s) is the Laplace transform of ηr e f (t ) = w T (t )φ(ϑr e f ).

Remark 5.3. The control signal ur e f (t ) depends on the unknown terms σ and w(t ) which

is not practical. We mention that this is not the case for the actual control law u(t ) and

the signal ur e f (t ) is used for analysis purposes only. �

Lemma 5.1. Let us consider that the design parameter α and the filter C (s) satisfy the

condition in (5.27), also regarding the representation of the closed-loop reference system

in (5.28), we have the following bound

‖zr e f τ‖L∞ ≤ ρ (5.29)

where

ρ = ‖G(s)‖L1

1−L‖G(s)‖L1

(L0 +ε)+ ‖H(s)‖L1

1−L‖G(s)‖L1

ε+ 1

1−L‖G(s)‖L1

‖zi nτ‖L∞ (5.30)

with zi n = (s +α)−1z0 �

Proof. The closed-loop reference system in (5.28) can be expressed in the frequency domain

as follows
szr e f (s)− z0 =−αzr e f (s)−σur e f (s)+ηr e f (s)+εr e f

=−αzr e f (s)−C (s)ηr e f (s)+ηr e f (s)+εr e f

(5.31)

where εr e f is the Laplace transform of ε(ϑr e f ). Consequently

zr e f (s) = (s +α)−1(1−C (s))ηr e f (s)+ (s +α)−1εr e f + (s +α)−1z0

=G(s)ηr e f (s)+H(s)εr e f + zi n

(5.32)

Since G(s), H(s), and C (s) are BIBO stable transfer functions and zi n is known and
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uniformly bounded, then, for all τ> 0 the expression in (5.32) yields in

‖zr e f τ‖L∞ ≤ ‖G(s)‖L1‖ηr e f τ‖L∞ +‖H(s)‖L1ε+‖zi nτ‖L∞ (5.33)

Next, based on the representations of H(x,u, v) and ηr e f (t ) in (5.18) and (5.28), re-

spectively, we can deduce that

‖ηr e f τ‖L∞ = ‖H(zr e f )−ε(zr e f )‖L∞ (5.34)

In addition, regarding Assumption 5.3 and using the bound of ε(ϑ) in (5.18), one can

obtain

‖ηr e f τ‖L∞ ≤ L‖zr e f τ‖L∞ +L0 +ε (5.35)

Replacing (5.35) in (5.33), it results

‖zr e f τ‖L∞ ≤ ‖G(s)‖L1 (L‖zr e f τ‖L∞ +L0 +ε)+‖H(s)‖L1ε+‖zi nτ‖L∞ (5.36)

Finally, solving for ‖zr e f τ‖L∞ , we obtain

‖zr e f τ‖L∞ ≤ ‖G(s)‖L1

1−L‖G(s)‖L1

(L0+ε)+ ‖H(s)‖L1

1−L‖G(s)‖L1

ε

+ 1

1−L‖G(s)‖L1

‖zi nτ‖L∞

(5.37)

It is evident that L0, ε are finite values, and zi n is known and uniformly bounded.

Consequently, the bound in (5.37) implies that if the condition in (5.27) is satisfied, then,

‖zr e f τ‖L∞ is uniformly bounded, this completes the proof. �

5.4.2 Transient and Steady-state Analysis

In this subsection, we present a performance analysis in both the transient and steady-

state of the system (5.1) and the proposed controller in (5.20), (5.21), and (5.22) in relation

to the well-behaved closed-loop reference system represented in (5.28).

In order to describe the prediction error dynamics z̃(t ), we subtract (5.19) from (5.20),

which results in

˙̃z(t ) =−αz̃(t )− σ̃(t )u(t )+ w̃ T (t )φ(ϑ)−ε(ϑ) (5.38)

with σ̂(t ) = σ̂(t )−σ and w̃(t ) = ŵ(t )−w(t ) represent the estimation errors.

Thus, the frequency domain expression of the prediction error dynamics is the following

z̃(s) = H(s)(η̃(s)−ε(s)) (5.39)

where η̃(s) is the Laplace transform of η̃(t ) =−σ̃u(t )+ w̃ T (t )φ(ϑ).
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Lemma 5.2. Consider the system presented in (5.19) with the controller proposed in

(5.20), (5.21), and (5.22), if the low-pass filter C (s) and the design parameter α fulfill the

condition in (5.27), we have the bound that follow

‖z̃τ‖L∞ ≤p
ϕ (5.40)

where

ϕ= 1

Γ
(4max

w∈Θ
‖w‖2 + (ω2 −ω1)2)+ Υ

−1

Γ
4max

w∈Θ
‖w‖dw +Υ−1ε2 (5.41)

with Υ= (2α−1) and α> 1
2 . �

Proof. In order to study the stability, we consider the following Lyapunov candidate

function

V (z̃, w̃ , σ̃) = z̃2 + 1

Γ
w̃ T w̃ + 1

Γ
σ̃2 (5.42)

The time derivative V̇ of (5.42) is given as

V̇ (z̃, w̃ , σ̃) = 2z̃ ˙̃z + 2

Γ
w̃ T ˙̃w + 2

Γ
σ̃ ˙̃σ (5.43)

Replacing (5.38) in (5.43), results in

V̇ (z̃, w̃ , σ̃) = 2z̃(−αz̃ − σ̃u + w̃ Tφ−ε)+ 2

Γ
w̃ T ˙̂w + 2

Γ
σ̃ ˙̂σ− 2

Γ
w̃ T ẇ (5.44)

or

V̇ (z̃, w̃ , σ̃) =−2αz̃2 +2w̃ T (
1

Γ
˙̂w + z̃φ)+2σ̃(

1

Γ
˙̂σ− z̃u)− 2

Γ
w̃ T ẇ −2z̃ε (5.45)

where ˙̂w and ˙̂σ are given in the adaptation laws (5.21). Thus

V̇ (z̃, w̃ , σ̃) =−αz̃2(t )+2w̃ T (Pr o j (ŵ ,− z̃φ)+ z̃φ)+2σ̃(Pr o j (σ̂, z̃u)− z̃u)

− 2

Γ
w̃ T ẇ −2z̃ε

(5.46)

Lemma 2.2 suggests that

2w̃ T (Pr o j (ŵ ,−z̃φ)+ z̃φ)+2σ̃(Pr o j (σ̂, z̃u)− z̃u) ≤ 0 (5.47)

which can give a bound to V̇ as follows

V̇ (z̃, w̃ , σ̃) ≤−2αz̃2 + 2

Γ
| w̃ T ẇ | +2 | z̃ | ε (5.48)

It is easy to prove that 2z̃ε≤ z̃2 +ε2, which leads to

V̇ (z̃, w̃ , σ̃) ≤−Υz̃2 + 2

Γ
| w̃ T ẇ | +ε2 (5.49)

According to Lemma 2.2, the projection operator used in (5.21) ensures that ŵ ∈ Θ
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and |σ̂| ≤χ,χ ∈ [ω1,ω2], that is to say

max
t≥0

(w̃ T w̃ + σ̃2) ≤ (4max
w∈Θ

‖w‖2 + (ω2 −ω1)2) (5.50)

In addition, the upper bound in Assumption 5.4 implies that

2

Γ
| w̃ T ẇ |≤ 4

Γ
(max

w∈Θ
‖w‖dw ) (5.51)

which leads to

V̇ (z̃, w̃ , σ̃) ≤−Υz̃2 + 4

Γ
max
w∈Θ

‖w‖dw +ε2 (5.52)

Adding and subtracting Υ
Γ w̃ T w̃ + Υ

Γ σ̃
2 in (5.52), gives

V̇ (z̃, w̃ , σ̃) ≤−Υz̃2 − Υ
Γ

w̃ T w̃ − Υ
Γ
σ̃2 + Υ

Γ
w̃ T w̃ + Υ

Γ
σ̃2 + 4

Γ
max
w∈Θ

‖w‖dw +ε2 (5.53)

or

V̇ (z̃, w̃ , σ̃) ≤−ΥV (z̃, w̃ , σ̃)+Υ(
1

Γ
(4max

w∈Θ
‖w‖2 + (ω2 −ω1)2)

+ Υ
−1

Γ
4max

w∈Θ
‖w‖dw +Υ−1ε2)

(5.54)

In conclusion

V̇ (z̃, w̃ , σ̃) ≤−ΥV (z̃, w̃ , σ̃)+Υϕ (5.55)

Therefore, if at any time t1 > 0, one has V (t1) > ϕ, the inequality in (5.55) leads to

conclude that V̇ (t1) < 0. Also using the fact that z(0) = ẑ(0), we obtain

V (0) < 1

Γ
(4max

w∈Θ
‖w‖2 + (ω2 −ω1)2) <ϕ (5.56)

Hence, V (t ) < ϕ for all t > 0. In addition, since z̃2 ≤ V (t ) and ‖.‖∞ ≤ ‖.‖, the bound

‖z̃τ‖L∞ ≤p
ϕ is acquired and the proof is completed. �

Proposition 5.1. Let us consider that the design parameter α and the filter C (s) satisfy

the condition in (5.27), then for the system represented in (5.1) and the controller defined

via (5.20), (5.21), and (5.22), we have

‖(zr e f (s)− z(s))τ‖L∞ ≤ δ1

‖(ur e f (s)−u(s))τ‖L∞ ≤ δ2

(5.57)

and
lim

Γ→∞,ε→0
(zr e f (t )− z(t )) = 0

lim
Γ→∞,ε→0

(ur e f (t )−u(t )) = 0
(5.58)

where

δ1 =
‖C (s)‖L1

1−‖G(s)‖L1 L

p
ϕ+ 3‖G(s)‖L1 +‖H(s)‖L1

1−‖G(s)‖L1 L
ε (5.59)
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and

δ2 = ‖C (s)

σ
‖L1 (Lδ1 +3ε)+‖H1(s)

σ
‖L1

p
ϕ (5.60)

with H1(s) = C (s)
H(s) . �

Proof. First, adding and subtracting σu(s)+η(s) in (5.22), that is to say

u(s) = K D(s)(η̂(s)+σu(s)+η(s)−η(s)−σu(s)) (5.61)

where we denote η(t ) = w T (t )φ(ϑ). Consequently, according to the definition of η̂(s) and

η̃(s) we can rewrite the control law as

u(s) = K D(s)(η̃(s)+η(s)−σu(s)) (5.62)

or by choosing D(s) = 1
s

u(s) = K

s +Kσ
(η̃(s)+η(s)) (5.63)

which results in

u(s) = C (s)

σ
(η̃(s)+η(s)) (5.64)

Replacing (5.64) in (5.19) and according to the Laplace transform, one can have

z(s) =H(s)((1−C (s))η(s)−C (s)η̃(s)+ε(s))+ zi n

=G(s)η(s)−H(s)C (s)η̃(s)+H(s)ε(s)+ zi n

=G(s)η(s)−C (s)z̃(s)+G(s)ε(s)+ zi n

(5.65)

Now, by subtracting (5.65) from (5.32), we can have

zr e f (s)− z(s) =G(s)ηe (s)+C (s)z̃(s)−G(s)ε(s)+H(s)εr e f (5.66)

where ηe (s) = ηr e f (s)−η(s), which can be bounded based on Assumption 5.3 and the bound

of ε(ϑ) in (5.18) as follows

‖ηeτ‖L∞ ≤ L‖(zr e f (s)− z(s))τ‖L∞ +2ε (5.67)

We know that G(s), H(s), and C (s) are BIBO stable transfer functions and zi n is known

and uniformly bounded. Therefore, using the bound of ηe , we can conclude that

‖(zr e f (s)− z(s))τ‖L∞ ≤ ‖G(s)‖L1 (L‖(zr e f (s)− z(s))τ‖L∞ +2ε)

+‖C (s)‖L1

p
ϕ+‖G(s)+H(s)‖L1ε

(5.68)

Solving (5.68) for ‖(zr e f (s)− z(s))τ‖L∞ , leads to

‖(zr e f (s)− z(s))τ‖L∞ ≤ ‖C (s)‖L1

1−‖G(s)‖L1 L

p
ϕ+ 3‖G(s)‖L1 +‖H(s)‖L1

1−‖G(s)‖L1 L
ε (5.69)
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Consequently, the bound in (5.69) implies that if the condition in (5.27) is satisfied

then ‖(zr e f (s)− z(s))τ‖L∞ is uniformly bounded.

On the other hand, from (5.64) and (5.28), one can have

ur e f (s)−u(s) = C (s)

σ
ηe (s)− C (s)

σ
η̃(s) (5.70)

According to the work in [44], we can write C (s)
σ η̃(s) as follows

C (s)

σ
(η̃(s)−ε(s)) = 1

σ

C (s)

H(s)
H(s)(η̃(s)−ε(s))

= 1

σ
H1(s)z̃(s)

(5.71)

or
C (s)

σ
η̃(s) = 1

σ
H1(s)z̃(s)+ C (s)

σ
ε(s) (5.72)

Using the fact that C (s) is represented by a proper transfer function, H1(s) is proper

and stable. Consequently, the following bound holds

‖(ur e f (s)−u(s))τ‖L∞ ≤ ‖C (s)

σ
‖L1 (L‖(zr e f (s)− z(s))τ‖L∞ +3ε)+‖H1(s)

σ
‖L1

p
ϕ (5.73)

Also, we use (5.69) to conclude the subsequent bound

‖(ur e f (s)−u(s))τ‖L∞ ≤ ‖C (s)

σ
‖L1 (Lδ1 +3ε)+‖H1(s)

σ
‖L1

p
ϕ (5.74)

Next, for the second part of the proof, it is evident that ϕ defined in (5.40) is subject

to the following limit lim
Γ→∞,ε→0

ϕ= 0, which leads to easily conclude that lim
Γ→∞,ε→0

δ1 = 0 and

lim
Γ→∞,ε→0

δ2 = 0. It is proven that ‖(zr e f (s)− z(s))τ‖L∞ ≤ δ1 and ‖(ur e f (s)−u(s))τ‖L∞ ≤ δ2 ,

thus, lim
Γ→∞,ε→0

(zr e f (t )−z(t )) = 0 and lim
Γ→∞,ε→0

(ur e f (t )−u(t )) = 0. That completes the proof.

�

Remark 5.4. Regarding the representation of ϕ in Lemma 5.2, it is clear that any aug-

mentation in the values of the design parameter α or the adaptation gain Γ can reduce

arbitrary the prediction error. Besides, Proposition 5.1 affirms that if the chosen adap-

tation gain Γ is large enough and the approximation error ε delivered by the RBFNN is

sufficiently small, the signals z(t ) and u(t ) can track those of the reference signal which

reflect the optimal non-adaptive performances of the proposed controller. �

Remark 5.5. Unlike L1 adaptive control approaches that rely solely on fast projection-

type adaptive laws, the use of an RBFNN can relax some design parameters, dependent

on the adaptation rate, while still achieving high performance. �
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5.5 Simulation Results

In this section, we will test the effectiveness and efficiency of the proposed NNFOL1AC.

To this end, two simulation cases are considered alongside a comparative study. First,

we suggest controlling the chaos of the fractional-order uncertain Genesio system with

an unknown constant input gain [155]. In the second case, we will test the capability

of the proposed controller for FONLSs with unknown time-varying input gain. Lastly, a

comparative study of the NNFOL1AC is executed against two other FOCs and for the

two considered FOSs. This simulation study includes a control law as in (5.22) with its

adaptation laws as in (5.21), the predictor form is selected as in (5.20), and the RBFNN

introduced in (5.16) and (5.17) is used in the control architecture as an estimator.

5.5.1 Case of Constant Input gain

Let us consider the fractional-order Genesio system [155] which takes the form of (5.1) as

follows 

Dβx1(t ) = x2(t )

Dβx2(t ) = x3(t )

Dβx3(t ) = f1(x)+u(t )+d1(t )

y(t ) = x1(t )

(5.75)

where x(t ) = [x1(t ), x2(t ), x3(t )]T is the system pseudo states vector which is considered

as measurable, f1(x) = x2
1 − 6x1 − 2.92x2 − 1.2x3 represent system uncertainties, d1(t ) =

0.1cos(5t )x3−0.1si n(t ) is the unknown external disturbances, y(t ) and u(t ) are the output

and input signals, respectively, the fractional-order β is fixed as β= 0.98, and the initial

conditions considered for the system are x(0) = [3,1,1]T .

This simulation example is performed for a reference signal yd (t ) = si n(t ), where the

values of the design parameters are fixed as Γ= 1000, λ= [7.5,9,5]T , and α= 5, which fulfill

the L1 norm condition in (5.27) and the stability condition in Theorem 1.6, and lead to

reach the best performances. The initial values of ŵ are set to be zero and σ̂(0) = 0.01 with

their bounds in the projection operator are σ̂ ∈ [0.01,12] and ŵ ∈ [12,−12]. The feedback

gain K and D(s) mentioned in the control law (5.22) are chosen as K = 40 and D(s) = 1
s .

For the RBFNN nodes number l = 200, where the center of the receptive vector ζm ∈ [−3,3]

with an increment of 0.0302, the input vector is ϑ = [e1,e2,e3,u]T and the width of the

Gaussian function is κm = 4,m = 1,2, . . . , l . Finally, the dynamics of the closed-loop system

are simulated for 30s, and the parameters of the Oustaloup’s filter are fixed as ωb = 10−3,

ωh = 103, and the approximation order N = 5.

Figures 5.2-5.8 show system responses in the case of constant input gain. Figure 5.2

illustrates the tracking response of the system output y to the desired signal yd . The time

evolution of x2 and x3 are illustrated in Figure 5.3 and Figure 5.4, respectively. Moreover,

the control input is represented in Figure 5.6. It can be seen from the mentioned results
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that the system pseudo state vectors track their desired reference signals, performing a fast

response and decent transient behavior with a smooth and bounded control signal. Figure

5.5 represents the time evolution of the sliding surface z and its prediction ẑ. Indeed, this

figure affirms that z tracks ẑ across the origin. Finally, Figure 5.7 and Figure 5.8, show

bounded values of the estimations ∥ ŵ ∥ and σ̂, respectively. As a result, it is clear

that this simulation confirms that the closed-loop stability of the system is acquired and

the NNFOL1AC can behave robustly against system uncertain dynamics and unknown

external disturbances.
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Figure 5.2: Actual output y and reference signal yd in the case of constant input gain.
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Figure 5.3: Evolution of the state x2 = Dβx1 and Dβyd in the case of constant input gain.
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Figure 5.4: Evolution of the state x3 = D2βx1 and D2βyd in the case of constant input gain.
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Figure 5.5: Sliding surface z and its prediction ẑ in the case of constant input gain.
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Figure 5.6: Control signal u in the case of constant input gain.
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Figure 5.7: Evolution of the Euclidean norm of the estimation ŵ in the case of constant input
gain.
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Figure 5.8: Evolution of the estimated value σ̂ in the case of constant input gain.

5.5.2 Case of Time-varying Input Gain

In this part of the simulation, we consider the uncertain nonlinear fractional-order system

(5.76) which is in the form of (5.1)
Dβx1(t ) = x2(t )

Dβx2(t ) = f2(x)+ g2(x)u(t )+d2(t )

y(t ) = x1(t )

(5.76)

where Dβ is the Caputo fractional derivative, β = 0.95 is the corresponded order, x(t ) =
[x1(t ), x2(t )]T represents the overall pseudo states vector which is considered as measurable,

y(t ) and u(t ) are the output and input signals, respectively. f2(x), g2(x), and d2(t ) are

considered as continuous unknown nonlinear functions, these functions represent system

uncertain dynamics, unknown input gain, and external disturbances, respectively. These
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functions are given as

f2(x) = g si nx1 −mt mp qx2
2cosx1si nx1

q(4/3−mt mp cos2x1)
(5.77)

g2(x) = mt cosx1

q(4/3−mt mp cos2x1)
(5.78)

d2(t ) = 0.1si n(2t )e−0.1t (5.79)

The numerical values of mt ,mp , g , and q are selected as mt = 0.909, mp = 0.1, g = 9.8,

and q = 0.5. It is important to mention that the functions f2(x), g2(x) and d2(t ) are used

only for simulation purposes. Indeed, these functions are assumed to be unknown, that is

to say, the NNFOL1AC does not rely on their values.

The RBFNN estimator introduced in (5.16) is used in the control architecture, where

the network nodes number is fixed as l = 200, the width of the Gaussian function τm =
5;m = 1,2, . . . , l , the center of the receptive vector ζm ∈ [−6.5,6.5] with an increment of

0.0653, and the input vector z = [e1,e2,u]T . In order to achieve the best performances,

the design parameters are selected as Γ= 5000, λ= [25,5.8]T , and α= 75. The bounds of

the projection operator are σ̂ ∈ [0.01,12] and ŵ ∈ [12,−12] with the initial values of ŵ(0) = 0

and σ̂(0) = 0.01. The simulation results are obtained for a reference signal yd = 0.5si n(t )

and initial conditions x(0) = [0.2,0]T . For the control law introduced in (5.22), we select

the feedback gain K = 34 and D(s) = 1
s . Finally, the dynamics of the closed-loop system

are simulated for 15s, and the parameters of the Oustaloup’s filter are fixed as ωb = 10−3,

ωh = 103, and the approximation order N = 5. Figures 5.9-5.14 show system responses

in the case of time-varying input gain. Figure 5.9 represents the tracking trajectory of

the actual system output y in response to the reference signal yd . The time evolution

of x2 and Dβyd are reported in Figure 5.10. In addition, the resulting control signal u

is illustrated in Figure 5.12. These mentioned results affirm that the closed-loop system

tracks its reference signal with a fast response time, about tr = 0.5s, and a decent transient

behavior maintaining a smooth and bounded control signal.

0 5 10 15

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 5.9: Actual output y and reference signal yd in the case of time-varying input gain.
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Figure 5.10: Evolution of the state x2 = Dβx1 and Dβyd in the case of time-varying input gain.
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Figure 5.11: Sliding surface z and its prediction ẑ in the case of time-varying input gain.
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Figure 5.12: Control signal u in the case of time-varying input gain.
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Figure 5.13: Evolution of the Euclidean norm of the estimation ŵ in the case of time-varying
input gain.
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Figure 5.14: Evolution of the estimated value σ̂ in the case of time-varying input gain.

Moreover, Figure 5.11 shows that the sliding surface z converges to its corresponding

prediction ẑ across the origin. In Figure 5.13 and Figure 5.14, one can clearly see bounded

values of the estimations ∥ ŵ ∥ and σ̂, respectively. Thereby, the closed-loop stability of the

system and the robust behaviors of the controller against uncertain dynamics, unknown

input gain, and external disturbances, are confirmed by these simulation results.

5.5.3 Comparative study

In order to highlight the advantages and the performances of the proposed NNFOL1AC,

two comparative studies have been performed of the proposed strategy against the Sliding

Mode Active Disturbance Rejection Controller (SMADRC) suggested in [156] and the

FOSMC designed in [146] for the systems (5.75) and (5.76), respectively. The same

conditions as the previous simulations have been considered for the NNFOL1AC.

The performances of the controllers on each comparative simulation were examined

based on the characteristics of the resulted tracking error e1 for a considered interval of
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time; the average absolute value of e1, its range, and its STD, alongside the sum of the

absolute value of u over the whole time of simulation. The above characteristics for both

NNFOL1AC and SMADRC for an interval of time t ∈ [15,30] are listed in Table 5.1 and

for both NNFOL1AC and FOSMC for an interval of time t ∈ [5,15] are listed in Table 5.2.

Figure 5.15, Figure 5.16, and Figure 5.17 illustrate the tracking responses of the system

(5.75) to their reference signals for the NNFOL1AC and SMADRC. Figure 5.18 (Top)

and Figure 5.18 (Bottom) show the time evolution of the control signal u delivered by the

NNFOL1AC and SMADRC, respectively. Figure 5.19 depicts the tracking responses of

the system (5.76) to their reference signals for the NNFOL1AC and FOSMC. Figure 5.20

(Top) and Figure 5.20 (Bottom) show the time evolution of the control signal u delivered

by the NNFOL1AC and FOSMC. From these results, it is clear that for each case both

control strategies can achieve closed-loop stability. However, the NNFOL1AC is capable

to deliver a faster response with better transient performances and smaller tracking errors

alongside a smaller sum of the absolute value of the control signal.
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Figure 5.15: Comparative study in the case of constant input gain. Actual output y = x1 and
reference signal yd .
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Figure 5.16: Comparative study in the case of constant input gain. Evolution of the state
x2 = Dβx1 and Dβyd .
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Figure 5.17: Comparative study in the case of constant input gain. Evolution of the state
x3 = D2βx1 and D2βyd .
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Figure 5.18: Comparative study in the case of constant input gain. Top. Neural network
fractional-order L1 adaptive control signal. Bottom. Sliding mode active disturbance rejection
control signal.
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Figure 5.19: Comparative study in the case of time-varying input gain. Actual state vectors
and reference signals.
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Figure 5.20: Comparative study in the case of time-varying input gain. Top. Neural network
fractional-order L1 adaptive control signal. Bottom. Fractional-order sliding mode control
signal.

It is important to mention that the main advantage of the proposed NNFOL1AC

(in addition to the tracking performance) is that the control signal does not rely on the

values of fi (x) and gi (x), i = 1,2, where the SMADRC is designed for a constant and

known input gain σ and the FOSMC requires the values f2(x) and g2(x) in the control

design. Besides, the control signal of the latter is suffering from the chartering phenomena

which is unfavorable for the controller and the system.

Table 5.1: Precision comparisons between the proposed neural network fractional-order L1

adaptive control and the sliding mode active disturbance rejection controller.

Control method Av g (abs(e1))×10−2 Range of e1 ×10−2 STD of e1 ×10−2 ∑
(abs(u))

NNFOL1AC 0.56 (−0.59,−0.13) 0.28 1.07×105

SMADRC [156] 11.13 (−13.79,19.71) 11.69 1.22×105

Table 5.2: Precision comparisons between the proposed neural network fractional-order L1

adaptive control and the fractional-order sliding mode controller.

Control method Av g (abs(e1))×10−3 Range of e1 ×10−3 STD of e1 ×10−3 ∑
(abs(u))

NNFOL1AC 0.741 (−1.37,1.005) 0.83 5.94×105

FOSMC [146] 0.973 (−2.35,1.009) 1.04 8.08×105

5.6 Conclusion

This chapter presents the design of an NNFOL1AC for a considered class of uncertain

FONLSs. The proposed controller is based on L1 adaptive control architecture and in-

corporates a fractional-order sliding surface and an RBFNN. Theoretical demonstrations

prove that the controller is capable of achieving closed-loop stability with improvable
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performance bounds in relation to a stable virtual reference system. The low-pass filter

placed in the control channel plays a central role in the separation of the estimation loop

from the control loop, which leads to preserving the robustness during the improvement

of the transient performances in contrast to the conventional adaptive control methods.

Besides, the control law has an integral structure which results in a smooth control signal.

The simulation results in this chapter were obtained from the application of the pro-

posed controller to an uncertain fractional-order chaotic system, having complex dynam-

ics and unpredictable behavior. Further simulations, have been presented for a nonlinear

fractional-order system in the case of unknown time-varying input gain. The simulation

discussion revealed that the results are satisfactory for both cases and approve with the

theoretical discussions.
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Chapter 6
Fuzzy L1 Adaptive Control Design

for Fractional-Order Uncertain

Systems with Input Nonlinearity

6.1 Introduction

The main goal of this chapter is to explore and investigate the control of FOSs that are

subject to unknown structure, perturbations, and input nonlinearities (dead-zone and

sector nonlinearities). The parametric uncertainties and disturbances have a significant

impact on the performance of a control scheme. Moreover, the presence of unknown input

nonlinearities further complicates the achievement of tracking responses for FOSs. Since

real-world applications of FOSs often involve input nonlinearities, it is more convenient to

consider these nonlinearities in control schemes. If not, it may end up in poor performances

and eventually system instability [104]. Towards controlling such a class of systems, an

alternative control scheme is developed, based on L1 adaptive control strategy and FLSs.

The latter serves as an online estimator, aiding in the manipulation and approximation

of system uncertainties and unknown input nonlinearities. The developed FFOL1AC in

this chapter can be seen as a model-free controller that can control all system states with

one controller while delivering a fast response, decent transient performances, a smooth

control signal, and a bound to all closed-loop signals. The rest of the chapter is divided

into 5 sections and organized as follows. Section 6.2 introduces the problem formulation

and the main control objective. Section 6.3 develops and explains the control architecture.

Section 6.4 investigates the closed-loop stability of the system. Section 6.5 presents two

simulation examples and a comparative study. Section 6.6 concludes the chapter.

6.2 Problem Formulation

This section deals with the description of the class of systems under consideration and

specifies the control objective. Towards this end, let us consider the following class of
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SISO n-dimensional uncertain FONLSs
Dβx j (t ) = x j+1(t ), j = 1,2, . . . ,n −1

Dβxn(t ) = f (x)+µ(u(t ))+d(x, t )

y(t ) = x1(t )

(6.1)

where β is the derivative order with respect to 0 <β< 1, x(t ) = [x1(t ), . . . , xn(t )]
T ∈Rn is the

system pseudo states vector which is supposed to be measurable, f (.) is an unknown con-

tinuous nonlinear function, u(t ) ∈R is the control signal, µ(u(t )) is the input nonlinearity

that will be defined later, and d(x, t ) represents system perturbations.

Input nonlinearity µ(u(t )) includes both dead-zone and sector nonlinearities which can

be described as [104]

µ(u(t )) =


κ1(u)(u −umax), u > umax

0, −umi n ≤ u ≤ umax

κ2(u)(u +umi n), u <−umi n

(6.2)

with κ1(u) > 0 and κ2(u) > 0 are unknown nonlinear functions, umax and umi n are strictly

positive and unknown values. The objective of this chapter is to design an FFOL1AC to

achieve a robust tracking response of the output signal y(t ) to a bounded reference signal

yd (t ) ∈R , despite the presence of uncertain dynamics, unknown perturbations, and input

nonlinearities.

6.3 Fuzzy Fractional-Order L1 Adaptive Controller

This section will introduce the structure of the proposed control scheme, which is based

on a fractional-order sliding surface, a fuzzy logic system, and an L1 adaptive controller.

Therefore, the following assumption is essential.

Assumption 6.1. The reference signal yd (t ) and its successive fractional-order derivatives

D jβyd (t ), j = 1, . . . ,n are assumed to exist, to be smooth and bounded. �

6.3.1 Choice of an Appropriate Fractional-Order Sliding Surface

To begin, let us select a fractional-order sliding surface in the subsequent form

z(t ) = Dβ−1en(t )+
ˆ t

0
λT E(τ)dτ (6.3)

where z(t ) ∈R, λT = [λ1,λ2, . . .λn]∈Rn is a vector of design parameters that will be defined

later to ensure the stability, and E(t ) = [e1(t ),e2(t ), . . . ,en(t )]T ∈Rn is the vector of tracking
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errors defined as

E(t ) = x(t )−Yd (t ) (6.4)

with e1(t ) = x1(t )−yd (t ) is the tracking error and Yd (t ) is the vector of the reference signal

and its successive fractional-order derivatives. From (6.4), the tracking errors dynamics

can be described as follows{
Dβe j (t ) = e j+1(t ), j = 1,2, . . . ,n −1

Dβen(t ) = Dβxn(t )−Dnβyd (t )
(6.5)

According to the property in (1.26), the time derivative of (6.3) is given as

ż(t ) = Dβen(t )+λT E(t ) (6.6)

In the case where the system reaches in the fractional-order sliding surface, one can

have z(t ) = ż(t ) = 0. Hence, for a significantly small value of the resulted ż(t ), i.e., ż(t ) ≈ 0,

one has

Dβen(t ) =−λT E(t ) (6.7)

As a generalization from equations (6.5) and (6.7), the state space representation of

the error dynamics can be written as

Dβe1(t )

Dβe2(t )

...

Dβen−1(t )

Dβen(t )


︸ ︷︷ ︸

DβE

=



0 1 0 . . . 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−λ1 −λ2 −λ3 · · · −λn


︸ ︷︷ ︸

A



e1(t )

e2(t )

...

en−1(t )

en(t )


︸ ︷︷ ︸

E

= AE (6.8)

or DβE = AE where A ∈Rn×n is a constant matrix. The well-known stability condition that

is applied to FOLSs and summarized in Theorem 1.6, i.e., |ar g (ei g (A))| >βπ
2 , requires that

the design parameters λi , i = 1,2, . . . ,n, must be chosen strictly positive. This case implies

that the sliding surface dynamics are asymptotically stable which ensures that tracking

error and its fractional-order derivatives converge to zero. Therefore, the purpose of the

controller can be fulfilled by controlling z(t ) and ż(t ) toward zero.

To acquire a dynamical representation of the sliding surface z(t ), we begin by replacing

(6.5) in (6.6), hence

ż(t ) = Dβxn(t )−Dnβyd (t )+λT E(t ) (6.9)

replacing Dβxn(t ) from (6.1) in (6.9), one has

ż(t ) = f (x)+µ(u(t ))+d(x, t )−Dnβyd (t )+λT E(t ) (6.10)
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Let us define a function υ as

υ(t , z) =λT E(t )+αz(t ) (6.11)

with α ∈ R+. Adding and subtracting αz in (6.10) and considering (6.11), we have the

subsequent expression

ż(t ) =−αz(t )+υ(t , z)+ f (x)+µ(u(t ))+d(x, t )−Dnβyd (t ) (6.12)

For the input nonlinearity µ(u(t )) defined by (6.2), there is always a positive unknown

constant σ and an unknown function ∆(x,u), such that

µ(u(t )) =σu(t )−∆(x,u) (6.13)

where 0 <ω1 <σ<ω2, with ω1 and ω2 are some positive constants, and ∆(x,u) represents

the mismatch between µ(u(t )) and σu(t ). Hence

ż(t ) =−αz(t )+υ(t , z)+ f (x)+σu(t )−∆(x,u)+d(x, t )−Dnβyd (t ) (6.14)

Now, by introducing a function h(x,υ,u) as

h(x,υ,u) = υ(t , z)+ f (x)+d(x, t )−∆(x,u)−Dnβyd (t ) (6.15)

one obtains

ż(t ) =−αz(t )+σu(t )+h(x,υ,u) (6.16)

Note that the nonlinear function h(x,υ,u) remains uncertain due to its unknown terms.

In the subsequent section, we introduce and employ a fuzzy logic system for the purpose

of approximating this function.

6.3.2 Fuzzy Logic System Approximation

A fuzzy logic system is commonly used as an estimator in the control architecture. Ba-

sically, FLSs includes a fuzzifier, a rule base, a fuzzy inference system, and a defuzzi-

fier. In this chapter, we consider a zero-order Takagi–Sugeno fuzzy logic system that

employs a set of fuzzy I F − T HE N rules to define a mapping from the input vector

ϑT = [ϑ1,ϑ2, . . . ,ϑm] ∈Ωϑ ⊂ Rm to a scalar output ĥ ∈ R, where the i th I f −T HE N fuzzy

rule is defined for m fuzzy sets N i
k ,k = 1, . . . ,m as follows [104,105,157]

i f ϑ1 i s N i
1 and . . . , and ϑm i s N i

m T hen ĥ i s hi , i = 1, . . . , M (6.17)

with hi is a fuzzy singleton of the output in the corresponding rule.

The use of a production inference system and a singleton fuzzifier lead to the equation
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of the fuzzy logic system output

ĥ(ϑ) =
∑M

i=1 hi (
∏m

k=1ψN i
k

(ϑk ))∑M
i=1(

∏m
k=1ψN i

k
(ϑk ))

= w T (ϑ)φ (6.18)

with ψN i
k

(ϑk ) represents the membership degree of the corresponding input ϑk , M is the

number of fuzzy rules defined by (6.17), φ is a vector containing all adjustable elements

in the resulting part of the fuzzy rule and w T (ϑ) = [w1(ϑ), . . . , wM (ϑ)] ∈ RM is the basis

functions vector with

wi (ϑ) =
∏m

k=1ψN i
k

(ϑk )∑M
i=1(

∏m
k=1ψN i

k
(ϑk ))

(6.19)

As mentioned before, FLSs are commonly used as online estimators in the control

architecture. Based on the universal approximation results presented by [158], this fuzzy

system demonstrates the capability to approximate any nonlinear smooth function h(ϑ)

within a compact operating space with a high degree of accuracy. Hence, according to

(6.18), the function h(x,υ,u) can be approximated as follows

h(ϑ) = w T (ϑ)φ(t )+ε(ϑ), |ε(ϑ)| ≤ ε (6.20)

with ε(ϑ) is the approximation error, and ε is a uniform bound for ε(ϑ). It is worth noting

that (6.20) is true assuming that the structure and parameters of the fuzzy system are

properly predefined.

Now, replacing (6.20) in (6.16), one can acquire the following representation of the

sliding surface dynamics

ż(t ) =−αz(t )+σu(t )+w T (ϑ)φ(t )+ε(ϑ), z(0) = z0 (6.21)

Remark 6.1. The control input u(t ) is used as an input for the fuzzy system approximator

employed to estimate the unknown function h(x,υ,u). It is worth noting that there is no

algebraic loop problem since the control law has an integral structure as can be observed

throughout the rest of this chapter. �

6.3.3 Control Structure

The following predictor (6.22) replicates the dynamics described by (6.21) with the un-

known parameters σ and φ(t ) are replaced with their estimations σ̂(t ) and φ̂(t ), respec-

tively.
˙̂z(t ) =−αẑ(t )+ σ̂(t )u(t )+w T (ϑ)φ̂(t ), ẑ(0) = z0 (6.22)

where ẑ(t ) ∈R represents the prediction of the sliding surface z(t ). The values of σ̂(t ) and
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φ̂(t ) are governed by the following projection-type adaptation laws

˙̂σ(t ) = ΓPr o j (σ̂(t ),−z̃(t )u(t ))

˙̂φ(t ) = ΓPr o j (φ̂(t ),−z̃(t )w(ϑ))
(6.23)

where Γ ∈ R+ is the adaptation gain, Pr o j (., .) is introduced in Definition 2.3 as the pro-

jection operator, and z̃(t ) is the prediction error that is defined as z̃(t ) = ẑ(t )− z(t ).

The control law is defined as

u(s) =−K D(s)η̂(s) (6.24)

with η̂(s) is the Laplace transform of η̂(t ) = σ̂(t )u(t )+w T (ϑ)φ̂(t ), K is a feedback gain, and

D(s) is a strictly proper transfer function, which is included in the expression of a stable

proper closed-loop filter as

Ĉ (s) = σ̂K D(s)

1+ σ̂K D(s)
(6.25)

consequently, the resulting form of the filter Ĉ (s) in (6.25) can represent a low-pass first-

order filter with the choice of the transfer function D(s) as D(s) = 1
s , which gives

Ĉ (s) = σ̂K

s + σ̂K
(6.26)

where Ĉ (0) = 1. Finally, an illustrative block diagram of the proposed FFOL1AC is given

in Figure 6.1.

ϕ̂

Equation

 (5.3) 
δ E

-

+

uEquation 

(5.23) 

Equation

 (5.23) 

Equation

 (5.24) 

Equation

 (5.22) 

Adaptive laws

Predictor

Control law

Fuzzy fractional-order L1 adaptive controller

D(s)

w

Fuzzy logic

Approximator

σ̂

z̃

z̃
z

ẑ

x

y

Figure 6.1: Diagram block of the proposed fuzzy fractional-order L1 adaptive controller.

6.4 Stability and Performances Analysis

This part focuses on the performance and the stability analysis of the developed controller.

Hence, we consider that the following assumptions are necessary
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Assumption 6.2. In the description of the above system (6.1), the perturbation d(x, t )

is assumed to accept a bound d∗ ∈R+ as follows

|d(x, t )| ≤ d∗ (6.27)

�

Assumption 6.3. Assuming that h(x,υ,u) in (6.15) accepts the following bound

|h(x,υ,u)| ≤ L|z(t )|+L0 (6.28)

where L and L0 are some positive constants. �

Assumption 6.4. Let φ̇ be the bounded derivative of the continuous function φ(t ) such

as for all t ≥ 0

‖φ̇‖ ≤ dφ <∞ (6.29)

�

Remark 6.2. The fractional-order sliding surface (6.3) ensures that x(t ) shares the same

stability behavior with z(t ), using the fact that υ(t , z) is known and d(x, t ) is bounded

as suggested in Assumption 6.2. We can assume that the uncertain quantity h(x,υ,u) is

upper bounded by a functional bound. Hence, with regards to the bound in (6.28), it is

obvious that the latter is not constant and it grows as the sliding surface z(t ) grows to

infinity, which makes it physically acceptable. �

The control architecture defined via (6.22), (6.23), and (6.24), is subject to the L1

norm condition that follows

‖G(s)‖L1 L < 1 (6.30)

where G(s) = H(s)(1−C (s)), H(s) = (s+α)−1, C (s) = σK
s+σK is a low pass filter, and L is given

in (6.28). Therefore, the design parameter α and the filter C (s) are selected to fulfill it.

Remark 6.3. Using the fact that α > 0 and C (s) is a strictly proper and BIBO stable

transfer function, we can easily conclude that both G(s) and H(s) are BIBO stable and

proper transfer functions. �

6.4.1 Closed-Loop Ideal Reference System

We consider now a well-behaving reference system that stands for the closed-loop non-

adaptive description of the system (6.21) with the control architecture defined via (6.22),

(6.23), and (6.24), this system is defined as
żr e f (t ) =−αzr e f (t )+σur e f (t )+w T (ϑr e f )φ(t )+ε(ϑr e f ), zr e f (0) = z0

ur e f (s) =−C (s)

σ
ηr e f (s)

(6.31)
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with ηr e f (s) denotes the Laplace transform of ηr e f (t ) = w T (ϑr e f )φ(t ).

Remark 6.4. Unlike the proposed control law u(s) in (6.24), the representation of ur e f (s)

relies on the unknown terms σ and φ(t ) which does not reflect the purpose of this work.

However, we mention that ur e f (s) is used for analytical purposes only. �

Lemma 6.1. Let us consider that both the design parameter α and the filter C (s) satisfy

the L1 norm condition in (6.30), then with regards to the closed-loop reference system

representation in (6.31), the bound that follows holds

‖zr e f τ‖L∞ ≤ ρ (6.32)

where

ρ = ‖G(s)‖L1

1−L‖G(s)‖L1

(ε+L0)+ ‖H(s)‖L1

1−L‖G(s)‖L1

ε+ 1

1−L‖G(s)‖L1

‖zi nτ‖L∞ (6.33)

with zi n = (s +α)−1z0. �

Proof. The closed-loop reference system expression in (6.31) can be represented in the

frequency domain as

szr e f (s)− z0 =−αzr e f (s)+σur e f (s)+ηr e f (s)+εr e f (6.34)

where εr e f is the Laplace transform of ε(ϑr e f ). Thus, replacing ur e f (s) with its expressions,

it results

zr e f (s) = (s +α)−1(1−C (s))ηr e f (s)+ (s +α)−1εr e f + (s +α)−1z0 (6.35)

or

zr e f (s) =G(s)ηr e f (s)+H(s)εr e f + zi n (6.36)

Since zi n is known and the transfer functions G(s) and H(s) are BIBO stable and

proper, it follows from (6.36) that the next upper bound is valid for all τ> 0

‖zr e f τ‖L∞ ≤ ‖G(s)‖L1‖ηr e f τ‖L∞ +‖H(s)‖L1ε+‖zi nτ‖L∞ (6.37)

Next, based on the expression (6.20) and replacing w T (ϑr e f )φ(t ) with ηr e f (t ), we can

easily obtain

‖ηr e f τ‖L∞ = ‖h(ϑr e f )−ε(ϑr e f )‖L∞ (6.38)

Furthermore, Assumption 6.3 and the bound of ε(ϑ) in (6.20) suggest the following

bound

‖ηr e f τ‖L∞ ≤ L‖zr e f τ‖L∞ +ε+L0 (6.39)

replacing (6.39) in (6.37), yields in

‖zr e f τ‖L∞ ≤ ‖G(s)‖L1 (L‖zr e f τ‖L∞ +ε+L0)+‖H(s)‖L1ε+‖zi nτ‖L∞ (6.40)
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solving for ‖zr e f τ‖L∞ , we deduce that

‖zr e f τ‖L∞ ≤ ‖G(s)‖L1

1−L‖G(s)‖L1

(ε+L0)+ ‖H(s)‖L1

1−L‖G(s)‖L1

ε+ 1

1−L‖G(s)‖L1

‖zi nτ‖L∞ (6.41)

It is clear that zi n is known and uniformly bounded, also both L0 and ε have finite

values. By considering that the condition in (6.30) is satisfied, it follows from (6.41) that

the boundedness of ‖zr e f τ‖L∞ holds for all τ> 0, which completes the proof. �

6.4.2 Transient and Steady-state Analysis

In this subsection, we discuss the transient and steady-state performances of the system

(6.1) and the control architecture defined via (6.22), (6.23), and (6.24) with respect to

the well-behaving reference system represented in (6.31).

Since we have z̃(t ) = ẑ(t )− z(t ), the prediction error dynamics can be described by

subtracting (6.21) from (6.22) as

˙̃z(t ) =−αz̃(t )+ σ̃(t )u(t )+w T (ϑ)φ̃(t )−ε(ϑ) (6.42)

where σ̃(t ) = σ̂(t )−σ and φ̃(t ) = φ̂(t )−φ(t ) are the estimation errors.

Consequently, expanding (6.42) to the frequency domain, one has

z̃(s) = H(s)(η̃(s)−ε(s)) (6.43)

with η̃(s) is the Laplace transform of η̃(t ) = σ̃(t )u(t )+w T (ϑ)φ̃(t ).

Lemma 6.2. Let us consider that both the design parameter α and the filter C (s) satisfy

the L1 norm condition in (6.30), then with regards to the prediction error dynamics

representation in (6.43), the following bound is valid

‖z̃τ‖L∞ ≤p
ϕ (6.44)

where

ϕ= (
1

Γ
(4max

φ∈Θ
‖φ‖2 + (ω2 −ω1)2)+ Υ

−1

Γ
4max
φ∈Θ

‖φ‖dφ+Υ−1ε2 (6.45)

with Υ= (2α−1) and α> 1
2 . �

Proof. In view of studying the stability, we consider the candidate Lyapunov function that

follows

V (z̃, φ̃, σ̃) = z̃2 + 1

Γ
φ̃T φ̃+ 1

Γ
σ̃2 (6.46)

where its time derivative V̇ is given as

V̇ (z̃, φ̃, σ̃) = 2z̃ ˙̃z + 2

Γ
φ̃T ˙̃φ+ 2

Γ
σ̃ ˙̃σ (6.47)
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replacing (6.42) in (6.47), it results in

V̇ (z̃, φ̃, σ̃) = 2z̃(−αz̃ + σ̃u +w T φ̃−ε)+ 2

Γ
φ̃T ˙̂φ− 2

Γ
φ̃T φ̇+ 2

Γ
σ̃ ˙̂σ (6.48)

or

V̇ (z̃, φ̃, σ̃) =−2αz̃2(t )+2φ̃T (
1

Γ
˙̂φ+ z̃w)+2σ̃(

1

Γ
˙̂σ+ z̃u)

− 2

Γ
φ̃T φ̇−2z̃ε

(6.49)

Consequently, from (6.23), one has

V̇ (z̃, φ̃, σ̃) =−2αz̃2(t )− 2

Γ
φ̃T φ̇−2z̃ε+2φ̃T (Pr o j (φ̂,−z̃w)+ z̃w)

+2σ̃(Pr o j (σ̂,−z̃u)+ z̃u)
(6.50)

It follows from Lemma 2.2 that

2φ̃T (Pr o j (φ̂,−z̃w)+ z̃w)+2σ̃(Pr o j (σ̂,−z̃u)+ z̃u) ≤ 0 (6.51)

hence

V̇ (z̃, φ̃, σ̃) ≤−2αz̃2 + 2

Γ
| φ̃T φ̇ | +2 | z̃ | ε (6.52)

It is straightforward to establish that 2z̃ε≤ z̃2 +ε2, that is to say

V̇ (z̃, φ̃, σ̃) ≤−Υz̃2 + 2

Γ
| φ̃T φ̇ | +ε2 (6.53)

Letting Θ be a convex set, with φ̂ ∈Θ follows from Lemma 2.2, the latter also ensures

that |σ̂| ≤χ,χ ∈ [ω1,ω2], hence

max
t≥0

(φ̃T φ̃+ σ̃2) ≤ (4max
φ∈Θ

‖φ‖2 + (ω2 −ω1)2) (6.54)

Similarly, based on the upper bound in Assumption 6.4, we get

2

Γ
| φ̃T φ̇ |≤ 4

Γ
(max
φ∈Θ

‖φ‖dφ) (6.55)

as a result

V̇ (z̃, φ̃, σ̃) ≤−Υz̃2 + 4

Γ
max
φ∈Θ

‖φ‖dφ+ε2 (6.56)

adding and subtracting Υ
Γ φ̃

T φ̃+ Υ
Γ σ̃

2 in (6.56), yields in

V̇ (z̃, φ̃, σ̃) ≤−Υz̃2 − Υ
Γ
φ̃T φ̃− Υ

Γ
σ̃2 + Υ

Γ
φ̃T φ̃+ Υ

Γ
σ̃2 + 4

Γ
max
φ∈Θ

‖φ‖dφ+ε2 (6.57)

or
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V̇ (z̃, φ̃, σ̃) ≤−ΥV (z̃, φ̃, σ̃)+Υ((
1

Γ
(4max

φ∈Θ
‖φ‖2 + (ω2 −ω1)2)

+ Υ
−1

Γ
4max
φ∈Θ

‖φ‖dφ+Υ−1ε2)
(6.58)

Finally, one can conclude that

V̇ (z̃, φ̃, σ̃) ≤−ΥV (z̃, φ̃, σ̃)+Υϕ (6.59)

Thus, for any given time t1 > 0, if we have V (t1) > ϕ, it follows from (6.59) that

V̇ (t1) < 0. Besides, since z(0) = ẑ(0), it is obvious that V (0) < 1
Γ (4max

φ∈Θ
‖φ‖2+(ω2−ω1)2) <ϕ.

Therefore, we can conclude that V (t ) < ϕ for all t > 0. Finally, the bound ‖z̃τ‖L∞ ≤p
ϕ

can be acquired based on the facts that z̃2 <V (t ) and ‖.‖∞ ≤ ‖.‖, that completes the proof.

�

Proposition 6.1. Let us consider that both design parameter α and the filter C (s) satisfy

the L1 norm condition in (6.30), then for the system represented in (6.1), we have

‖(zr e f (s)− z(s))τ‖L∞ ≤ δ1

‖(ur e f (s)−u(s))τ‖L∞ ≤ δ2

(6.60)

and
lim

Γ→∞,ε→0
(zr e f (t )− z(t )) = 0

lim
Γ→∞, ε→0

(ur e f (t )−u(t )) = 0
(6.61)

where

δ1 =
‖C (s)‖L1

1−‖G(s)‖L1 L

p
ϕ+ 3‖G(s)‖L1 +‖H(s)‖L1

1−‖G(s)‖L1 L
ε (6.62)

and

δ2 = ‖C (s)

σ
‖L1 (Lδ1 +3ε)+‖H1(s)

σ
‖L1

p
ϕ (6.63)

with H1(s) = C (s)
H(s) . �

Proof. First, adding and subtracting σu(s)+η(s) which allows us to rewrite the control

law in (6.24) as

u(s) =−K D(s)(η̂(s)+σu(s)+η(s)−σu(s)−η(s)) (6.64)

by letting η(t ) = w T (ϑ)φ(t ), we can have

u(s) =−K D(s)(η̃(s)+η(s)+σu(s)) (6.65)

consequently, by choosing D(s) = 1
s , we can deduce

u(s) =− K

s +σK
(η̃(s)+η(s)) (6.66)
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recalling the representation of the filter C (p) from (6.25), that is to say

u(s) =−C (s)

σ
(η̃(s)+η(s)) (6.67)

The expression in (6.21) can be expressed in the frequency domain as

z(s) = (s +α)−1(σu(s)+η(s)+ε(s))+ zi n (6.68)

replacing (6.67) in (6.68), leads to

z(s) =G(s)η(s)−H(s)C (s)η̃(s)+H(s)ε(s)+ zi n (6.69)

using the representation of z̃(s) in (6.43) to deduce that

z(s) =G(s)η(s)−C (s)z̃(s)+G(s)ε(ϑ)+ zi n (6.70)

Next, letting ηe (t ) = ηr e f (t )−η(t ) and subtracting (6.70) from (6.36), results in

zr e f (s)− z(s) =G(s)ηe (s)+C (s)z̃(s)+H(s)εr e f −G(s)ε(s) (6.71)

According to Assumption 6.3 and using the bound of ε(ϑ) in (6.20), ηe can be bounded

as

‖ηeτ‖L∞ ≤ L‖(zr e f (s)− z(s))τ‖L∞ +2ε (6.72)

Since the transfer functions C (s), G(s), and H(s) are BIBO stable and proper, with

regards to (6.71), we deduce that the next upper bound holds for all τ> 0

‖(zr e f (s)− z(s))τ‖L∞ ≤ ‖G(s)‖L1 (L‖(zr e f (s)− z(s))τ‖L∞ +2ε)

+‖C (s)‖L1‖z̃τ‖L∞ +‖G(s)+H(s)‖L1ε
(6.73)

solving for ‖(zr e f (s)− z(s))τ‖L∞ , results in

‖(zr e f (s)− z(s))τ‖L∞ ≤ ‖C (s)‖L1

1−‖G(s)‖L1 L

p
ϕ+ 3‖G(s)‖L1 +‖H(s)‖L1

1−‖G(s)‖L1 L
ε (6.74)

Similarly, in the second part of the proof, from (6.67) and (6.31), one can have

ur e f (s)−u(s) =−C (s)

σ
ηe (s)+ C (s)

σ
η̃(s) (6.75)

It follows from the work in [44] that C (s)
σ
η̃(s) can be written as

C (s)

σ
(η̃(s)−ε(s)) = 1

σ

C (s)

H(s)
H(s)(η̃(s)−ε(s))

= 1

σ
H1(s)z̃(s)

(6.76)

114



Fuzzy Fractional-Order L1 Adaptive Controller

consequently
C (s)

σ
η̃(s) = 1

σ
H1(s)z̃(s)+ C (s)

σ
ε(s) (6.77)

H1(s) is a stable and proper transfer function according to the fact that C (s) is BIBO

stable and strictly proper. Thus, replacing (6.77) in (6.75) leads to conclude that the

next upper bound is valid for all τ> 0

‖(ur e f (s)−u(s))τ‖L∞ ≤ ‖C (s)

σ
‖L1 (L‖(zr e f (s)− z(s))τ‖L∞ +3ε)+‖H1(s)

σ
‖L1

p
ϕ (6.78)

or

(ur e f (s)−u(s))τ‖L∞ ≤ ‖C (s)

σ
‖L1 (Lδ1 +3ε)+‖H1(s)

σ
‖L1

p
ϕ (6.79)

Next, it is obvious that ϕ defined in Lemma 6.2 agrees with the following limit

lim
Γ→∞,ε→0

ϕ= 0 that leads to easily deduce that lim
Γ→∞,ε→0

δ1 = 0 and lim
Γ→∞,ε→0

δ2 = 0. In addi-

tion, it was proven that ‖(zr e f (s)− z(s))τ‖L∞ ≤ δ1 and ‖(uad (s)−uad (s))τ‖L∞ ≤ δ2, hence,

lim
Γ→∞,ε→0

(zr e f (t )− z(t )) = 0 and lim
Γ→∞,ε→0

(ur e f (t )−u(t )) = 0, that completes the proof. �

Remark 6.5. Lemma 6.2 admits that the prediction error can be significantly reduced by

increasing the design parameter α and the adaptation gain Γ. Further results can be seen

in Proposition 6.1 since it affirms that if the chosen adaptation gain Γ is large enough and

the approximation error ε delivered by the fuzzy system is sufficiently small, the proposed

controller represented via (6.22), (6.23), and (6.24) can drive the signals z(t ) and u(t ) to

track those of the well-behaving reference system (6.31). �

6.5 Simulation results

In this section, we discuss the synchronization of different 2-dimensional and 3-dimensional

FOCSs to assess the effectiveness of the suggested FFOL1AC. These systems are subject

to uncertain dynamic terms, unknown perturbations, and input nonlinearities. For syn-

chronization purposes the structure of the FFOL1AC must have a slight modification. To

begin, let us consider the following class of n-dimensional uncertain FOCSs{
Dβx j (t ) = x j+1(t ), j = 1,2, . . . ,n −1

Dβxn(t ) = fx(x)
(6.80)

where β is the derivative order with respect to 0 < β < 1, x(t ) = [x1(t ), . . . , xn(t )]
T ∈ Rn is

the system pseudo states vector which is supposed to be measurable, fx(.) is an unknown

continuous nonlinear function. Model (6.80) is considered as the master system. Thus,

the controlled slave system that is related to (6.80) is given by

{
Dβy j (t ) = y j+1(t ), j = 1,2, . . . ,n −1

Dβyn(t ) = fy (y)+µ(u(t ))+d(y, t )
(6.81)
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where y(t ) = [y1(t ), . . . , yn(t )]
T ∈Rn is the system pseudo states vector which is assumed to

be measurable, u(t ) ∈ R is the control signal, µ(u) is the input nonlinearity, d(y, t ) repre-

sents system perturbations, and fy (.) is an unknown continuous nonlinear function. The

vector of tracking error given by (6.4) must be replaced with the vector of synchronization

errors given bellow

E(t ) = y(t )−%x(t ) (6.82)

with % is a scaling factor. Hence, the function h(x,υ,u) defined in (6.15) must be selected

as

h(x, y,υ,u) = υ(t , z)+ fy (y)+d(y, t )−∆(y,u)−% fx(x) (6.83)

The resulting sliding surface dynamics are the same as (6.21). Besides, the numerical

simulations were performed for a scaling factor %= 1 and based on the designed controller

in the previous sections, including a control law in the form of (6.24) with adaptation

laws as in (6.23), a predictor in the form of (6.22), and a fuzzy logic system as described

by (6.17), (6.18), and (6.19). We mention that, since the modifications only affects the

function h(x,υ,u), which is approximated using FLSs, the structure of the controller and

its stability analysis remain the same while the vector of the reference signal and its

successive derivatives Yd (t ) is replaces with the pseudo states vector x(t ) of the master

system.

6.5.1 Case of 2-dimensional Chaotic Systems

This example considers two different Duffing-Holmes FOCSs. The master and slave de-

scriptions can be represented in the forms of (6.84) and (6.85), respectively

M aster

{
Dβx1(t ) = x2(t )

Dβx2(t ) = x1(t )−a11x2(t )−x3
1(t )+a12cos(t )

(6.84)

Sl ave

{
Dβy1(t ) = y2(t )

Dβy2(t ) = y1(t )−a21 y2(t )− y3
1(t )+a22cos(t )+ f1y (x, t )+d1(t )+µ1(u(t ))

(6.85)

where a11 = 0.25, a12 = 0.3, a21 = 0.3, a22 = 0.35, d1(t ) = 0.8si n(t ) + 0.45cos(3t ), and

f1y (x, t ) = 0.1si n(t )
√

y2
1 + y2

2 . According to the work in [37], chaotic behavior of the con-

sidered systems appears for β= 0.98.

The initial conditions are chosen as x(0) = [0.2,0.1]T and y(0) = [−0.15,0.25]T . To reach

the best performances, the simulation was executed using the following design parameters

acquired through trial and error: λ= [6.2,5.6]T , α= 10.5, and Γ= 85000. The parameters

of the low-pass filter (6.25) are selected here as K = 35 and D(s) = 1
s . For the estimations

σ̂(t ) and φ̂(t ), we chose their initial values as σ̂(0) = 0.01 and φ̂(0) = 0 with projection

bounds σ̂ ∈ [0.01,6]T and φ̂ ∈ [−6,6]T . The input vector of the fuzzy logic system is fixed
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as ϑ = [e1,e2,u, z]T and three membership functions ψN i
k

(ϑk ) set for each input ϑk ,k =
1,2, . . . ,4 as follows 

ψN 1
k

(ϑk ) = 1

2
(1+ t anh(−ϑk +ξ1k

ςk
))

ψN 2
k

(ϑk ) = exp(−1

2
(
ϑk +ξ2k

ςk j
))

ψN 3
k

(ϑk ) = 1

2
(1+ t anh(

ϑk +ξ3k

ςk
))

(6.86)

with the variances ςk = [0.2,0.2,2.9,0.03]T and the centers ξi 1 = [0.5,0,−0.5], ξi 2 = [0.5,0,−0.5],

ξi 3 = [7,0,−7], and ξi 4 = [0.08,0,−0.08]. Furthermore, the input nonlinearity µ1(u) is fixed

in this case as

µ1(u) =


(0.5−0.2e0.1si n(u))(u −0.7), u > 0.7

0, −0.7 ≤ u ≤ 0.7

(0.5−0.2e0.2cos(u))(u +0.7), u <−0.7

(6.87)

Finally, the dynamics of the chaos synchronization between the systems (6.84) and

(6.85) are simulated for 100s, and with the parameters of the Oustaloup’s filter are fixed

as ωb = 10−3, ωh = 103, and the approximation order N = 5.

Figures 6.2-6.6 display simulation results in the case of 2-dimensional chaotic systems.

Figure 6.2 and Figure 6.3 illustrate the master and slave synchronization trajectories of

the states (x1,y1) and (x2, y2), respectively. The synchronization errors e1 and e2 are rep-

resented in Figure 6.4. These figures affirm that the slave system (6.85) states trajectories

are synchronized in a short time to those of the master system (6.84). The control signal

u is relatively smooth and bounded as it can be seen in Figure 6.5. Figure 6.6 shows that

the sliding surface z converges to its expected values along with its prediction ẑ.

0 10 20 30 40 50 60 70 80 90 100

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 6.2: Master-slave synchronization trajectories of x1 and y1 in the case of 2-dimensional
chaotic systems.
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Figure 6.3: Master-slave synchronization trajectories of x2 and y2 in the case of 2-dimensional
chaotic systems.
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Figure 6.4: Master-slave synchronization errors e1 and e2 in the case of 2-dimensional chaotic
systems.
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Figure 6.5: Control signal u in the case of 2-dimensional chaotic systems.
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Figure 6.6: Evolution of the sliding surface z and its prediction ẑ in the case of 2-dimensional
chaotic systems.

Finally, the overall results confirm that the proposed controller ensures the bounded-

ness of all closed-loop signals with fast convergence of the synchronization errors e1 and e2

to zero, despite the control complexity due to the considered uncertain models, unknown

perturbations, and input nonlinearities.

6.5.2 Case of 3-dimensional Chaotic Systems

This subsection considers the synchronization of two different 3-dimensional FOCSs. As a

start, let us consider the fractional-order hybrid optical system [111] as the master system

with its description that takes the form of (6.80) as follows

M aster


Dβx1(t ) = x2(t )

Dβx2(t ) = x3(t )

Dβx3(t ) =−0.326x3(t )−x2(t )+0.761x1(t )(1−x1(t ))

(6.88)

The corresponding slave system is the fractional-order Genesio-Tesi system. Its description

is given by (6.89) in the form of (6.81)

Sl ave


Dβy1(t ) = y2(t )

Dβy2(t ) = y3(t )

Dβy3(t ) =−6y1(t )−2.29y2(t )−1.2y3(t )+ y2(t )+d2(t )+µ2(u(t ))

(6.89)

For the fractional-order β= 0.99, the master system and slave systems behave chaoti-

cally [111,159]. The simulation was performed for the initial conditions x(0) = [0.5,0.25,0.12]T

and y(0) = [1.6,−0.05,−0.55]T . The external perturbations introduced in (6.89) are cho-

sen as d2(t ) = 0.45si n(πt )y1 +1.1cos(2t ). To achieve satisfactory projective synchroniza-

tion performance, the following design parameters were chosen using the trial and error

method: λ = [3.12,4.6,2.8]T , α = 95, and Γ = 16000. For the low-pass filter (6.25), we
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select K = 45 and D(s) = 1
s . The projection bounds are set as σ̂ ∈ [0.01,6]T and φ̂ ∈ [−6,6]T ,

with the initial values are selected as σ̂(0) = 0.01 and φ̂(0) = 0. For the applied fuzzy logic

system, the input vector is fixed as ϑ= [e1,e2,e3,u, z]T . As in the previous example, three

membership functions ψN i
k

(ϑk ) are fixed for each input ϑk , k = 1,2, . . . ,5. Their forms

are already presented in (6.86), with the variances ςk = [0.3,0.25,0.6,1.5,0.09]T and the

centers ξi 1 = [1,0.25,−0.5], ξi 2 = [0.3,0.25,−0.8], ξi 3 = [1,−0.25,−1.5] , ξi 4 = [−3,−6.5,−10],

and ξi 5 = [0.2,0,−0.2]. Besides, this case considers the following input nonlinearity

µ2(u) =


(1−0.3si n(u))(u −3), u > 3

0, −3 ≤ u ≤ 3

(0.8−0.3cos(u))(u +3), u <−3

(6.90)
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Figure 6.7: Master-slave synchronization trajectories of x1 and y1 in the case of 3-dimensional
chaotic systems.
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Figure 6.8: Master-slave synchronization trajectories of x2 and y2 in the case of 3-dimensional
chaotic systems.
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Figure 6.9: Master-slave synchronization trajectories of x3 and y3 in the case of 3-dimensional
chaotic systems.
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Figure 6.10: Master-slave synchronization errors e1, e2, and e3 in the case of 3-dimensional
chaotic systems.
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Figure 6.11: Control signal u in the case of 3-dimensional chaotic systems.
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Figure 6.12: Evolution of the sliding surface z and its prediction ẑ in the case of 3-dimensional
chaotic systems.

Finally, the dynamics of the chaos synchronization between the systems (6.88) and

(6.89) are simulated for 100s, and with the parameters of the Oustaloup’s filter are fixed

as: ωb = 10−3,ωh = 103, and the approximation order N = 5.

Figures 6.7-6.12 illustrate simulation results in the case of 3-dimensional chaotic sys-

tems. Figure 6.7, Figure 6.8, and Figure 6.9 depict the master and slave synchronization

trajectories of the states (x1,y1), (x2, y2), and (x3, y3), respectively. Figure 6.10 shows the

synchronization errors e1, e2, and e3. Based on the mentioned figures, it is clear that a

fast synchronization response is achieved between the slave system (6.89) and the master

system (6.88). Figure 6.11 reveals that the control signal u is also smooth and bounded

for this example. Figure 6.12 shows that the sliding surface z quickly converges towards

its prediction ẑ.

6.5.3 Comparative Study

To further highlight the advantages of the proposed FFOL1AC, a comparative study has

been carried out between the FFOL1AC and the CFANNC suggested in [111] for the

master-slave synchronization of the systems (6.88) and (6.89). The same conditions as

the previous simulation have been considered for the NNFOL1AC. However, this case

considers the following input nonlinearity

µ2(u) =


2.1(u −1), u > 1

0, −1 ≤ u ≤ 1

2(u +1), u <−1

(6.91)

The synchronization precision in this comparative study was inspected based on the errors

e1, e2, and e3 delivered by the two synchronization methods over a period of time (focusing

on steady-state performances). Three main characteristics are presented in Table 6.1, the

range, the STD, and the average absolute value of the synchronization errors.
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Figure 6.13: Comparative study in the case of 3-dimensional chaotic systems. Master-slave
synchronization trajectories of x1 and y1.
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Figure 6.14: Comparative study in the case of 3-dimensional chaotic systems. Master-slave
synchronization trajectories of x2 and y2.
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Figure 6.15: Comparative study in the case of 3-dimensional chaotic systems. Master-slave
synchronization trajectories of x3 and y3.
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Figure 6.16: Comparative study in the case of 3-dimensional chaotic systems. Top. Fuzzy
fractional-order L1 adaptive control signal. Bottom. Command-filtered adaptive neural network
control.

Table 6.1: Precision comparisons between the proposed fuzzy fractional-order L1 adaptive
control and the command-filtered adaptive neural network control.

Controller Errors Av g (abs(ei )×10−2 Range of ei ×10−2 STD of ei ×10−2

FFOL1AC
e1 0.20 (0.16,0.23) 0.03
e2 0.12 (−0.25,−0.07) 0.04
e3 0.11 (−0.04,−0.47) 0.15

CFANNC [111]
e1 1.40 (−3.34,−0.82) 1.50
e2 2.60 (−2.84,3.76) 2.90
e3 4.53 (−6.42,6.62) 4.86

Figure 6.13, Figure 6.14, and Figure 6.15 illustrates master-slave synchronization tra-

jectories of the states (x1,y1), (x2, y2), and (x3, y3) for both controllers. The resulting

control signals by the FFOL1AC and CFANNC are depicted in Figure 6.16 (top) and

Figure 6.16 (bottom), respectively. These figures affirm the main advantage of the L1

adaptive controller which is fast adaptation with decent transient response. Besides, Table

6.1 reveals the very satisfactory results of the steady-state regime.

In summary, it is obvious that the simulation results agree with the theoretical and

analytical results and demonstrate the effectiveness of the designed FFOL1AC.

6.6 Conclusion

In this chapter, a FFOL1AC is designed to control a general class of FOSs that are subject

to uncertain models, unknown perturbations, and input nonlinearities. The controller is

derived based on a fractional-order sliding surface and includes a control law, an adaptive

mechanism, and a predictor. Besides, a fuzzy logic system is used in this control method

to efficiently handle system uncertainties and input nonlinearities. The estimation loop
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is decoupled from the control loop thanks to the low-pass filter placed within the input

channel. Thereby, the controller can achieve tracking response and preserve robustness

along with improving transient performances, which offers an efficient and robust control

strategy for the class of FOSs considered in this chapter. The conducted simulations in

this work focused on projective synchronization problems for different FOCSs. The results

are provided from two numerical simulation examples that demonstrate the applicability

and efficacy of the proposed synchronization approach, as well as the theoretical debates.
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Conclusion

This thesis explores the extension of L1 adaptive architecture and its implementation in

controlling several classes of fraction-order systems. The main contribution of the work is

to design new control schemes, accompanied by their theoretical demonstrations of stabil-

ity and validations through numerical simulations. With multiple architectures proposed,

this work can be summarized with 4 different parts: The 1st part is the development

of a fractional-order L1 adaptive controller for a class of fractional-order systems that

are subject to uncertainties and external disturbances. The architecture of the controller

comprises several components, namely a fractional-order sliding surface, a control law, an

adaptive mechanism, and a predictor. The use of the fractional-order sliding surface is

the key to apply the L1 adaptive methodology to a fractional-order system. It helps to

study the stability and derive integer-order forms of the adaptation laws. The 2nd part

addresses the problem of multiple-input multiple-output fractional-order systems. The

developed multivariable fractional-order L1 adaptive controller in this part is designed to

deal with model uncertainties and unknown input gain, where it was proven to encompass

the control of different classes of systems such as multiple-input multiple-output, incom-

mensurate, and hyper-chaotic systems. The 3r d part focuses on extending further the idea

by incorporating a radial basis function neural network approximator into its architecture.

The latter is used to approximate and handle nonlinear uncertain dynamics of the system

alongside the unknown time-varying input gain, which helps in relaxing some design pa-

rameters and results in small tracking errors that significantly improves control accuracy.

The 4th part further extends the developed controller to the case fractional-order sys-

tems that are subject to unknown input nonlinearity. The latter further complicates the

achievement of closed-loop stability. Thereby, the suggested controller includes a fuzzy

system, which helps in the manipulation of the uncertain dynamics, external disturbances,

and input nonlinearity posed by the structure of the system. The overall discussions on

the developed controllers demonstrate that both input and output system signals converge

to those of a stable closed-loop reference system, which indicates that the controller is

able to achieve closed-loop stability while performing a fast tracking response with sat-
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isfactory transient performances. The conducted simulations illustrate the applicability

of the L1 adaptive controller for different classes of fractional-order systems, holding the

key advantages of the methodology and robustly dealing with several challenges posed by

system uncertainties.

Future Perspectives

The various extensions and controllers discussed in this thesis are relatively new and

promising for further studies. However, similar to other fields of research, certain chal-

lenges still exist. In this section, we will present a variety of potential research scopes

that can be derived from our research.

• The designed fractional-order L1 adaptive controllers so far are still not beyond

simulations. Thus, a real-world implementation is necessary in order to fully validate

the effectiveness of such controllers.

• Applying the developed controller to other classes of systems. For example, systems

with unknown fractional-order and time-delayed systems.

• Extending the methodology to output feedback formulation and suggesting improve-

ments to the scheme by introducing a state observer.

• Incorporating an online estimator in the architecture of the multivariable fractional-

order L1 adaptive controller developed in Chapter 4, which could help in enhancing

the control accuracy and the overall performances.

• Investigating the effects of using a fractional-order low-pass filter in the control

channel, alongside developing projection-type adaptation laws of fractional-order.
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[82] Ali Yüce, Furkan N Deniz, and Nusret Tan. A new integer order approximation

table for fractional order derivative operators. IFAC-PapersOnLine, 50(1):9736–

9741, 2017.

[83] Alain Oustaloup, Pierre Melchior, Patrick Lanusse, O Cois, and F Dancla. The

CRONE toolbox for Matlab. In CACSD. Conference Proceedings. IEEE Interna-

tional Symposium on Computer-Aided Control System Design (Cat. No. 00TH8537),

pages 190–195. IEEE, 2000.
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tectures and robustness of model reference adaptive controllers and L1 adaptive

controllers. International Journal of Adaptive Control and Signal Processing, 28(7-

8):633–663, 2014.

[117] Chengyu Cao and Naira Hovakimyan. Design and analysis of a novel L1 adaptive

control architecture with guaranteed transient performance. IEEE Transactions on

Automatic Control, 53(2):586–591, 2008.

137



Bibliography

[118] Chengyu Cao and Naira Hovakimyan. Adaptive controller for systems with unknown

time-varying parameters and disturbances in the presence of non-zero trajectory

initialization error. International Journal of Control, 81(7):1147–1161, 2008.

[119] Chengyu Cao and Naira Hovakimyan. L1 adaptive controller for multi-input multi-

output systems in the presence of unmatched disturbances. In 2008 American Con-

trol Conference, pages 4105–4110. IEEE, 2008.

[120] Enric Xargay, Naira Hovakimyan, and Chengyu Cao. L1 adaptive controller for

multi-input multi-output systems in the presence of nonlinear unmatched uncer-

tainties. In Proceedings of the 2010 American control conference, pages 874–879.

IEEE, 2010.

[121] Chengyu Cao and Naira Hovakimyan. L1 adaptive output feedback controller

for systems of unknown dimension. IEEE Transactions on Automatic Control,

53(3):815–821, 2008.

[122] Chengyu Cao and Naira Hovakimyan. Stability margins of L1 adaptive control

architecture. IEEE Transactions on Automatic Control, 55(2):480–487, 2010.

[123] Enric Xargay, Naira Hovakimyan, Vladimir Dobrokhodov, Issac Kaminer, Ioannis

Kitsios, Chengyu Cao, Irene M Gregory, and Lena Valavani. Experimental validation

of l1 adaptive control: Rohrs’ counterexample in flight. Technical report, 2010.

[124] Randy Beard, Chengyu Cao, and Naira Hovakimyan. An L1 adaptive pitch con-

troller for miniature air vehicles. In AIAA guidance, navigation, and control con-

ference and exhibit, page 6777, 2006.

[125] Evgeny Kharisov, Irene Gregory, Chengyu Cao, and Naira Hovakimyan. L1 adaptive

control for flexible space launch vehicle and proposed plan for flight validation. In

AIAA Guidance, Navigation and Control Conference and Exhibit, page 7128, 2008.

[126] Irene Gregory, Chengyu Cao, Vijay Patel, and Naira Hovakimyan. Adaptive control

laws for flexible semi-span wind tunnel model of high-aspect ratio flying wing. In

AIAA Guidance, Navigation and Control Conference and Exhibit, page 6525, 2007.

[127] Moussab Bennehar, Ahmed Chemori, and François Pierrot. L1 adaptive control of

parallel kinematic manipulators: Design and real-time experiments. In 2015 IEEE

International Conference on Robotics and Automation (ICRA), pages 1587–1592.

IEEE, 2015.

[128] Nicholas Rober, Maxwell Hammond, Venanzio Cichella, Juan E Martin, and Pablo

Carrica. 3D path following and L1 adaptive control for underwater vehicles. Ocean

Engineering, 253:110971, 2022.

138



Bibliography

[129] Jie Luo and Chengyu Cao. L1 adaptive output feedback controller for a class of

nonlinear systems. In 2011 50th IEEE Conference on Decision and Control and

European Control Conference, pages 5425–5430. IEEE, 2011.

[130] Xiaofeng Wang and Naira Hovakimyan. L1 adaptive controller for nonlinear time-

varying reference systems. Systems & Control Letters, 61(4):455–463, 2012.

[131] Hai-tao Song, Tao Zhang, and Guo-liang Zhang. L1 adaptive controller of nonlinear

reference system in presence of unmatched uncertainties. Journal of Central South

University, 23:834–840, 2016.

[132] Zhiyuan Li and Naira Hovakimyan. L1 adaptive controller for MIMO systems with

unmatched uncertainties using modified piecewise constant adaptation law. In 2012

IEEE 51st IEEE conference on decision and control (CDC), pages 7303–7308. IEEE,

2012.

[133] Ronald Choe, Enric Xargay, and Naira Hovakimyan. L1 adaptive control for a class

of nonaffine-in-control nonlinear systems. IFAC Proceedings Volumes, 46(11):477–

482, 2013.

[134] Jie Luo, Chengyu Cao, and Qinmin Yang. L1 adaptive controller for a class of non-

affine multi-input multi-output nonlinear systems. international Journal of Control,

86(2):348–359, 2013.

[135] Xiaotian Zou, Chengyu Cao, and Naira Hovakimyan. L1 adaptive controller for

systems with hysteresis uncertainties. In Proceedings of the 2010 American Control

Conference, pages 6662–6667. IEEE, 2010.

[136] Zongyu Zuo, Xiao Li, and Zhiguang Shi. L1 adaptive control of uncertain gear

transmission servo systems with deadzone nonlinearity. ISA transactions, 58:67–75,

2015.

[137] Mikkel Eske Nørgaard Sørensen and Morten Breivik. UAV fault-tolerant control by

combined L1 adaptive backstepping and fault-dependent control allocation. In 2015

IEEE Conference on Control Applications (CCA), pages 1880–1886. IEEE, 2015.

[138] Wang Chao, Xie Wujie, Dong Wenhan, and Jiao Jinyan. L1 fault tolerant con-

trol with sliding-mode based adaptive law for aircraft actuator fault. In 2017 5th

International Conference on Mechanical, Automotive and Materials Engineering

(CMAME), pages 259–264. IEEE, 2017.

[139] John Cooper, Jiaxing Che, and Chengyu Cao. The use of learning in fast adaptation

algorithms. International Journal of Adaptive Control and Signal Processing, 28(3-

5):325–340, 2014.

139



Bibliography

[140] Hassan A Yousef, Mohamed Hamdy, and Kyrillos Nashed. L1 adaptive fuzzy con-

troller for a class of nonlinear systems with unknown backlash-like hysteresis. In-

ternational Journal of Systems Science, 48(12):2522–2533, 2017.

[141] Roshni Maiti, Kaushik Das Sharma, and Gautam Sarkar. Fuzzy predictor based L1

adaptive controller for nonlinear systems with disturbances. In 2017 IEEE Calcutta

Conference (CALCON), pages 253–257. IEEE, 2017.

[142] Rusong Zhu, Mingwei Xie, Zili Guo, Wen Gai, and Gengsheng Tang. Nonlinear L1

adaptive control with feedforward control action and its application in wind tunnel.

In 2019 Chinese Control Conference (CCC), pages 386–391. IEEE, 2019.

[143] Tieshan Li, Dan Wang, and Naxin Chen. Adaptive fuzzy control of uncertain MIMO

non-linear systems in block-triangular forms. Nonlinear Dynamics, 63:105–123,

2011.

[144] Ling Li and Yeguo Sun. Adaptive fuzzy control for nonlinear fractional-order un-

certain systems with unknown uncertainties and external disturbance. Entropy,

17(8):5580–5592, 2015.

[145] Shuai Song, Ju H Park, Baoyong Zhang, and Xiaona Song. Observer-based

adaptive hybrid fuzzy resilient control for fractional-order nonlinear systems with

time-varying delays and actuator failures. IEEE Transactions on fuzzy systems,

29(3):471–485, 2019.

[146] Tahereh Binazadeh and Mohammad H Shafiei. Output tracking of uncertain

fractional-order nonlinear systems via a novel fractional-order sliding mode ap-

proach. Mechatronics, 23(7):888–892, 2013.

[147] Shabnam Pashaei and Mohammad Ali Badamchizadeh. Control of a class of

fractional-order systems with mismatched disturbances via fractional-order slid-

ing mode controller. Transactions of the Institute of Measurement and Control,

42(13):2423–2439, 2020.

[148] Seongik Han. Fractional-order command filtered backstepping sliding mode control

with fractional-order nonlinear disturbance observer for nonlinear systems. Journal

of the Franklin Institute, 357(11):6760–6776, 2020.

[149] Fatemeh Doostdar and Hamed Mojallali. An ADRC-based backstepping control

design for a class of fractional-order systems. ISA transactions, 121:140–146, 2022.

[150] Liping Chen, Jianfeng Qu, Yi Chai, Ranchao Wu, and Guoyuan Qi. Synchronization

of a class of fractional-order chaotic neural networks. Entropy, 15(8):3265–3276,

2013.

140



Bibliography

[151] Fei Qi, Jianfeng Qu, Yi Chai, Liping Chen, and António M Lopes. Synchronization

of incommensurate fractional-order chaotic systems based on linear feedback control.

Fractal and Fractional, 6(4):221, 2022.

[152] Milad Mohadeszadeh and Hadi Delavari. Synchronization of fractional-order hyper-

chaotic systems based on a new adaptive sliding mode control. International Journal

of Dynamics and Control, 5:124–134, 2017.

[153] Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basis-

function networks. Neural computation, 3(2):246–257, 1991.

[154] Federico Girosi and Tomaso Poggio. Networks and the best approximation property.

Biological cybernetics, 63(3):169–176, 1990.

[155] Mohammad Pourmahmood Aghababa. A Lyapunov-based control scheme for robust

stabilization of fractional chaotic systems. Nonlinear Dynamics, 78(3):2129–2140,

2014.

[156] Nadia Djeghali, Maamar Bettayeb, and Said Djennoune. Sliding mode active distur-

bance rejection control for uncertain nonlinear fractional-order systems. European

Journal of control, 57:54–67, 2021.

[157] Salim Labiod and Thierry Marie Guerra. Direct adaptive fuzzy control for a class of

MIMO nonlinear systems. International Journal of systems science, 38(8):665–675,

2007.

[158] Li-Xin Wang. Adaptive fuzzy systems and control: design and stability analysis.

Prentice-Hall, Inc., 1994.

[159] Mohammad Reza Faieghi and Hadi Delavari. Chaos in fractional-order Genesio–

Tesi system and its synchronization. Communications in Nonlinear Science and

Numerical Simulation, 17(2):731–741, 2012.

141


	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	 Contribution of the Thesis
	 Outline
	 List of Publications

	1 Generalities on Fractional Calculus
	1.1 Introduction
	1.2 Fractional Calculus
	1.2.1 Fractional-Order Operators
	1.2.2 Some Important Functions in Fractional Calculus
	1.2.3 Fractional-Order Integral
	1.2.4 Fractional-Order Derivatives
	1.2.5 Properties of Riemann-Liouville and Caputo Derivatives
	1.2.6 Laplace Transform of Fractional-Order Operators
	1.2.7 Initial Value Problems of Fractional Operators

	1.3 Fractional-Order Systems 
	1.3.1 Fractional-Order Linear Systems
	1.3.2 Fractional-Order Nonlinear Systems

	1.4 Stability of Fractional-Order Systems 
	1.4.1 Stability of Fractional-Order Linear Systems
	1.4.2 Stability of Fractional-Order Nonlinear Systems

	1.5 Implementation of Fractional-Order Operators 
	1.5.1 Carlson's Approximation
	1.5.2 Matsuda's Approximation
	1.5.3 Oustaloup's Approximation

	1.6 Literature Review on Fractional-Order Adaptive Controllers 
	1.7 Conclusion

	2  L1 Adaptive Control 
	2.1 Introduction
	2.2 Basic Architecture of L1 Adaptive Controller
	2.2.1 Mathematical Basis
	2.2.2 Model Reference Adaptive control
	2.2.3  L1 Adaptive Control

	2.3 Robustness and Performances Analysis 
	2.4 Literature Review on L1 Adaptive Control 
	2.5 Conclusion


	3 L1 Adaptive Control Design for Fractional-Order Uncertain Systems 
	3.1 Introduction
	3.2 Problem Formulation 
	3.3 Fractional-OrderL1 Adaptive Controller
	3.3.1 Choice of an Appropriate Fractional-Order Sliding Surface
	3.3.2 Control Structure 

	3.4 Stability and Performances Analysis 
	3.4.1 Closed-loop Ideal Reference System
	3.4.2 Transient and Steady-state Analysis

	3.5 Simulation Results
	3.5.1 Case of Constant Uncertainties
	3.5.2 Case of Time-varying Uncertainties
	3.5.3 Comparative Study 

	3.6 Conclusion

	4 Multivariable L1 Adaptive Control Design for Fractional-Order Systems with Constant Input Gain 
	4.1 Introduction
	4.2 Problem Formulation
	4.3 Multivariable Fractional-Order L1 Adaptive Controller
	4.3.1 Choice of an Appropriate Fractional-Order Sliding Surface
	4.3.2 Control Structure

	4.4 Stability and Performances Analysis 
	4.4.1 Closed-loop Ideal Reference System
	4.4.2 Transient and Steady-state Analysis

	4.5 Simulation Results
	4.5.1 Case of Incommensurate Orders
	4.5.2 Case of Hyper-chaos Suppression
	4.5.3 Comparative Study

	4.6 Conclusion


	5 Neural network L1 Adaptive Control Design for Fractional-Order Systems with Time-varying Input Gain 
	5.1 Introduction
	5.2 Problem Formulation
	5.3 Neural Network Fractional-Order L1 Adaptive controller
	5.3.1 Choice of an Appropriate Fractional-Order Sliding Surface
	5.3.2 Neural Network Approximation
	5.3.3 Control Structure

	5.4 Stability and Performances Analysis 
	5.4.1 Closed-loop Ideal Reference System
	5.4.2 Transient and Steady-state Analysis

	5.5 Simulation Results
	5.5.1 Case of Constant Input gain
	5.5.2 Case of Time-varying Input Gain
	5.5.3 Comparative study

	5.6 Conclusion

	6 Fuzzy L1 Adaptive Control Design for Fractional-Order Uncertain Systems with Input Nonlinearity 
	6.1 Introduction
	6.2 Problem Formulation
	6.3 Fuzzy Fractional-Order L1 Adaptive Controller
	6.3.1 Choice of an Appropriate Fractional-Order Sliding Surface
	6.3.2 Fuzzy Logic System Approximation
	6.3.3 Control Structure

	6.4 Stability and Performances Analysis 
	6.4.1 Closed-Loop Ideal Reference System
	6.4.2 Transient and Steady-state Analysis

	6.5 Simulation results
	6.5.1 Case of 2-dimensional Chaotic Systems
	6.5.2 Case of 3-dimensional Chaotic Systems
	6.5.3 Comparative Study

	6.6 Conclusion
	General Conclusion
	 Conclusion
	 Future Perspectives

	Bibliography



