# Table des matières

| In       | Introduction |                                                           |                                                                     |    |  |
|----------|--------------|-----------------------------------------------------------|---------------------------------------------------------------------|----|--|
| 1        | Rap          | ppels e                                                   | t définitions utiles                                                | 5  |  |
|          | 1.1          | Le principe classique d'analyse des séries chronologiques |                                                                     |    |  |
|          |              | 1.1.1                                                     | Estimation de la tendance en l'absence de la saisonnalité           | 6  |  |
|          |              | 1.1.2                                                     | Elimination du trend et de la saisonnalité                          | 9  |  |
|          | 1.2          | Rappe                                                     | el sur les processus aléatoires                                     | 10 |  |
|          | 1.3          | Modèl                                                     | le linéaire général                                                 | 11 |  |
|          |              | 1.3.1                                                     | Relation entre les poids $\psi$ et les poids $\pi$                  | 13 |  |
|          |              | 1.3.2                                                     | La fonction génératrice des autocovariances d'un processus linéaire | 13 |  |
|          |              | 1.3.3                                                     | La fonction d'autocorrélation (acf)                                 | 15 |  |
|          |              | 1.3.4                                                     | La fonction d'autocorrélation partielle (pacf)                      | 15 |  |
|          | 1.4          | Le pér                                                    | riodogramme d'un processus                                          | 16 |  |
|          |              | 1.4.1                                                     | Le périodogramme d'un processus linéaire stationnaire               | 17 |  |
| <b>2</b> | Mo           | délisat                                                   | ion des séries stationnaires                                        | 18 |  |
|          | 2.1          | Modèl                                                     | les de Box-Jenkins                                                  | 18 |  |
|          |              | 2.1.1                                                     | Le modèle $AR(p)$                                                   | 18 |  |
|          |              | 2.1.2                                                     | Le modèle $MA(q)$                                                   | 21 |  |
|          |              | 2.1.3                                                     | Le modèle $ARMA(p,q)$                                               | 23 |  |
|          |              | 2.1.4                                                     | Modèles linéaires non-stationnaires                                 | 27 |  |
|          |              | 2.1.5                                                     | Méthode de prévision                                                | 28 |  |
|          |              | 2.1.6                                                     | Prévision à l'aide d'un processus $ARMA$                            | 29 |  |
|          | 2.2          | fication de modèle pour les séries chronologiques         | 30                                                                  |    |  |
|          |              | 221                                                       | Position du problème                                                | 30 |  |

### TABLE DES MATIÈRES

|                  |        | 2.2.2    | Ajustement d'un modèle et détermination de son ordre | 31 |
|------------------|--------|----------|------------------------------------------------------|----|
|                  |        | 2.2.3    | Détermination de l'ordre d'un modèle                 | 32 |
| 3                | App    | olicatio | ons sous $R$                                         | 34 |
|                  | 3.1    | L'anal   | yse des séries chronologiques                        | 34 |
|                  |        | 3.1.1    | Création d'une série temporelle                      | 34 |
|                  |        | 3.1.2    | Décomposition classique                              | 36 |
|                  |        | 3.1.3    | La méthode de différence                             | 41 |
|                  | 3.2    | La mé    | thode de Box-Jenkins                                 | 41 |
|                  |        | 3.2.1    | Pour un processus $AR(1)$                            | 41 |
|                  |        | 3.2.2    | Pour un processus $MA(1)$                            | 42 |
|                  |        | 3.2.3    | Pour un processus $ARMA(1,1)$                        | 42 |
|                  | 3.3    | Identif  | ication                                              | 43 |
|                  |        | 3.3.1    | Ajustement d'un modèle                               | 43 |
|                  |        | 3.3.2    | Le choix de modèle                                   | 45 |
| C                | onclu  | sion     |                                                      | 47 |
| $\mathbf{B}^{i}$ | ibliog | graphie  | <b>;</b>                                             | 47 |

# Introduction

Une série chronologique est une suite formée d'observations au cours du temps. L'analyse des séries chronologiques est un outil couramment utilisé de pour décrire, expliquer puis prévoir dans le futur. Ce domaine possède beaucoup d'applications en finance, en chimie, en économétrie et en météorologie et dans bien d'autres.

A la base, l'étude formelle des séries chronologiques consiste à trouver un modèle mathématique qui explique le mieux possible les données observées. A partir de ce modèle, il est possible de faire la prévision. Cependant la justesse des prévisions dépend fortement de la qualité du modèle choisi, il est donc primordial de trouver des modèles qui reflètent le mieux possible la réalité afin de minimiser les erreurs de prévision.

La démarche, en modélisation d'une série temporelle, consiste à observer l'existence d'une tendance et d'une saisonnalité, ainsi qu'à vérifier la stationnarité en analysant les diagrammes appropriés. Nous nous traitons aussi sur la méthode de Box-Jenkins qui traite les processus stationnaires, cela consiste à la sustruction d'un modèle selon la phase de l'identification du modèle.

La méthode de Box-Jenkins exige un processus stationnaire. Cependant, dans la nature les séries ne sont généralement pas stationnaires. Les modèles que nous avons choisi d'utiliser pour modéliser nos séries soit le modèle ARMA et ARIMA.

Ce travail est organisé en trois chapitres :

Le premier commence par des rappels et les définitions utiles pour nous aider à mieux comprendre l'étude dans la suite de ce mémoire, nous avons discuté les principes classiques des séries chronologiques, nous adoptons la partie déterministe qui contient la tendance et la saisonnalité, ensuite, nous éliminons ces derniers composante et nous gardons la partie aléatoires la plus intéressante, en plus nous donnons des définitions sur le processus stochastique, le modèle linéaire générale et leurs caractéristiques à savoir la fonction d'autocovariance, la fonction d'autocorrélation simple et partielle, et le périodogramme.

Le deuxième chapitre est constitué de deux sections :

Dans la première section, nous allons traiter les modèles de Box et Jenkins, en présentant trois principaux modèles stationnaires : AR, MA, ARMA et non stationnaires : ARIMA et SARIMA en étudiant leurs proprietés (la stationnarité, l'inversibilités, la causalité, acf, pacf, périodogramme), à la fin de ce section nous examinons sur la méthode de prévision à l'aide d'un processus ARMA.

La deuxième section traite la méthode d'identification de Box et Jenkins qui se base sur la comparaison de caractéristiques théoriques des processus ARMA à leurs équivalents empiriques (la fonction d'autocorrélation simple et partielle) pour obtenir le meilleur modèle choisi en utilisant l'un critère d'information, le critère AIC ou le critère BIC.

Le dernier chapitre, abordera l'aspect pratique de notre travail, nous utiliserons pour ce fait, le logiciel R: (logiciel libre de traitement des données et d'analyse statistique mettant en oeuvre le langage de programmation S).

# Chapitre 1

# Rappels et définitions utiles

# 1.1 Le principe classique d'analyse des séries chronologiques

Les techniques modernes pour l'étude des séries chronologiques ont été initiées par Yule[19]. Les travaux de Wold[18] ont permis de développer une théorie complète des modèles d'autoregréssif- moyenne mobile (ARMA). Dans les années quarante Wiener[17] et Kolmogoroff[8] ont résolu le problème de l'estimation des filtres continus et discrets respectivement. Au début des années soixante Kalman[6] et Kalman et Bucy[7] ont étendu les procédures d'estimation de Wiener[17] et Kolmogorroff[8] aux séries chronologiques non stationnaires. Une série chronologique est une suite de variable aléatoire observée séquentiellement dans le temps.

L'objectif de l'approche de l'étude des séries chronologiques est de séparer la composante aléatoire de la partie déterministe du processus étudié. Cette étude se compose de deux étapes :

La première est appelée "analyse des séries chronologiques" dont l'objectif est de mettre en évidence les caractéristiques du phénomène engendrant la série chronologique. Ceci est réalisé en utilisant simultanément les propriétés des autocorrélations et les propriétés spéctrales de la série chronologique.

La deuxième étape consiste en l'utilisation du plusieurs types de méthodes telles que la décomposition de la série chronologique, lissage exponentiel ou les modèles autorégressifsmoyennes mobiles, toute ces méthodes tendent à isoler le bruit blanc dans les valeurs obser-

vées de la série chronologique.

Le principe de décomposition des série chronologiques est basé sur l'hypothèse que toute série chronologique est constituée de trois composantes principales : la tendance  $(T_t)$ , la saisonnalité  $(S_t)$  et la partie aléatoire  $(Z_t)$ .

Soit  $(X_t)$  le processus observé, si on suppose que la relation entre les trois composantes est additive, on aura alors le modèle additive :

$$X_t = T_t + S_t + Z_t.$$

Le modèle multiplicatif : on suppose que les variations saisonnières et les variations accidentelles dépendent de la tendance, alors  $X_t$  s'écrit de la manière suivante :

$$X_t = T_t \times S_t \times Z_t.$$

Le modèle mixte : si on suppose que les variations saisonnières dépendent de la tendance et  $X_t$  s'écrit :

$$X_t = T_t \times S_t + Z_t.$$

La partie aléatoire est bien évidement la partie la plus intéressante à modéliser pour une série chronologique, on note  $Z_t$  la composante aléatoire, supposée de moyenne nulle, mais possédant en général une structure de corrélation non nulle.

#### 1.1.1 Estimation de la tendance en l'absence de la saisonnalité

Supposons dans un premier temps, que la partie déterministe du modèle soit uniquement composée d'un trend  $T_t$  linéaire :

$$X_t = T_t + Z_t \tag{1.1}$$

Nous allons résumer trois méthodes principales pour estimer  $T_t$ .

#### Estimation paramétrique

Cette méthode consiste à estimer la tendance par la méthode des moindres carrés ordinaires. Supposons que l'on observe la série chronologique, il semble naturel d'estimer la composante  $T_t$  de cette série par une fonction linéaire  $\widehat{T}_t = \widehat{a} + \widehat{b}t$  où  $\widehat{a}$  et  $\widehat{b}$  sont des estimateurs des coefficients de la fonction linéaire estimant  $T_t$ . Pour trouver ces estimateurs par la méthode des moindres carrés ordinaires, il faut minimiser l'erreur quadratique en remplaçant  $T_t$  par  $\widehat{T}_t$  dans (1.1). **Proposition 1.1.1** Soit  $X_1$ ,  $X_2$ ,...,  $X_N$ , la série chronologique observée, alors pour déterminer les coefficients  $\hat{a}$  et  $\hat{b}$ , on doit minimiser la quantité :

$$\sum_{t=1}^{N} (X_t - a - bt)^2 \tag{1.2}$$

et en posant  $\overline{X} = \frac{1}{N} \sum_{t=1}^{N} X_t$ , la solution de minimisation est :

$$\begin{cases}
\widehat{a} = \frac{4N+2}{N-1}\overline{X} - \frac{6}{N(N-1)} \sum_{t=1}^{N} tX_t \\
\widehat{b} = \frac{6}{N(N-1)} \left( \frac{2}{N(N+1)} \sum_{t=1}^{N} tX_t - \overline{X} \right)
\end{cases}$$

**Preuve** Pour minimiser l'équation (1.2), il faut dériver cette expression selon a et b, ce qui donne aprés quelques simplifications et en égalant à zéro le système :

$$(i) \sum_{t=1}^{N} X_t - aN - b \sum_{t=1}^{N} t = 0$$

$$(ii) \sum_{t=1}^{N} t X_t - a \sum_{t=1}^{N} t - b \sum_{t=1}^{N} t^2 = 0$$

On peut à présent utiliser les formules usuelles :

$$\sum_{t=1}^{N} t = \frac{N(N+1)}{2} \quad \text{et} \quad \sum_{t=1}^{N} t^{2} = \frac{N(N+1)(2N+1)}{6}$$

En divisant (i) et (ii) par N, on obtient :

$$\overline{X} - a - \frac{b(N+1)}{2} = 0$$

$$\frac{1}{N} \sum_{t=1}^{N} tX_t - \frac{a(N+1)}{2} - \frac{(N+1)(2N+1)}{6}b = 0$$

Où  $\overline{X}$  est la moyenne empirique de  $\{X_t\}_{t=1}^N$ .

La solution de ce système est :

$$\begin{cases}
\widehat{a} = \frac{4N+2}{N-1}\overline{X} - \frac{6}{N(N-1)} \sum_{t=1}^{N} tX_t \\
\widehat{b} = \frac{6}{N(N-1)} \left( \frac{2}{N(N+1)} \sum_{t=1}^{N} tX_t - \overline{X} \right)
\end{cases}$$

#### Estimation non paramétrique

Dans certaines situations, il n'est pas facile de trouver le degré du polynôme d'ajustement pour  $T_t$ . Il n'est pas toujours possible d'utiliser la méthode des moindres carrés car le polynôme utilisé au départ pour  $T_t$  n'est pas parfois ni linéaire ni quadratique.

Dans cette situation, nous avons recourt à la théorie non paramétrique de l'estimation du trend.

En effet, supposons que  $T_t$  soit linéaire dans un intervalle [t-q;t+q]. Dans ce cas une bonne estimation de la tendance est donnée par :

$$\widehat{T}_t = mm_{p,t}(X_t) = \frac{1}{p} \sum_{k=-q}^q X_{t+k};$$
 (moyenne mobile d'ordre  $p = 2q + 1$ ).

$$\widehat{T}_{t} = mm_{p,t}(X_{t}) = \frac{1}{p} \left[ \frac{1}{2} X_{t-q} + \frac{1}{2} X_{t+q} + \sum_{k=-q+1}^{q-1} X_{t+k} \right];$$
 (moyenne mobile d'ordre  $p = 2q$ ).

#### Méthode des différences itérées

Le modèle s'écrit:

$$X_t = T_t + Z_t$$

On peut éliminer la tendance sans l'estimer, définissons tout d'abord l'opérateur de retard B comme étant la fonction linéaire B qui, à toute variable  $X_t$  fait correspondre la variable précédente  $X_{t-1}$  telle que :

$$BX_t = X_{t-1}$$

De maniere récursive, on obtient :

$$B^{2}X_{t} = B(BX_{t}) = BX_{t-1} = X_{t-2}$$

On introduit également l'opérateur de différence  $\nabla$  dont l'application à  $X_t$  fournit la différence entre  $X_t$  et la valeur précédente  $X_{t-1}$  de la série :

$$\nabla X_t = X_t - X_{t-1}$$

En vertu de la définition précédente, on a directement :

$$\nabla X_t = X_t - BX_t = (1 - B)X_t$$

Plus généralement, l'opérateur de différence d'ordre d envoie la valeur  $X_t$  de la série observée sur la différence de  $X_t$  avec la valeur prise par la série au temps t-d, ie :

$$\nabla^{d} X_{t} = X_{t} - X_{t-d} = X_{t} - B^{d} X_{t} = (1 - B^{d}) X_{t}$$

Si on suppose que la tendance  $T_t$  est une fonction polynôme d'ordre k:

$$T_t = \sum_{j=0}^k a_j t^j$$

En appliquant l'opérateur de différence  $\nabla$ , d'ordre 1 on obtient :

$$\nabla T_t = T_t - T_{t-1} = \sum_{j=0}^k a_j t^j - \sum_{j=0}^k a_j (t-1)^j$$

Et en developpant (t-1) dans le membre de droite, il vient :

$$\sum_{j=0}^{k} a_j (t-1)^j = \sum_{j=0}^{k} a_j t^j + \sum_{j=1}^{k} b_{j-1} t^{j-1}$$

D'où,

$$\nabla T_t = \sum_{i=1}^k b_{j-1} t^{j-1} = \sum_{i=0}^{k-1} b_i t^i$$
 avec  $i = j-1$ 

On voit que l'opération à l'aide de  $\nabla$  fait diminuer d'une unité l'ordre du polynôme  $T_t$ , tandis que  $\nabla T_t$  est un polynôme d'ordre k-1. Dés lors, si on applique k fois l'opérateur  $\nabla$  au polynôme  $T_t$ , on obtient  $\nabla^k T_t = k! a_k$  où  $a_k$  est une constante indépendante de t alors :

$$\nabla^k X_t = \nabla^k (T_t + Z_t) = constante + \nabla^k Z_t,$$

est une série détendanciée (sans tendance).

#### 1.1.2 Elimination du trend et de la saisonnalité

On suppose à présent que, en plus du trend  $T_t$ , la série chronologique comporte une composante saisonnière  $S_t$ , on considère donc le modèle :

$$X_t = T_t + S_t + Z_t \tag{1.3}$$

Où,  $S_t$  est une fonction périodique en t de période  $d \in \mathbb{N}^*$  c'est à dire S(t+kd) = S(t),  $k \in \mathbb{N}^*$  et  $S_t$  ne comporte pas de composante trend, ce qui se traduit par :

$$\sum_{j=1}^{a} S_{t+j} = 0$$

Pour éliminer à la fois le trend et la saisonnalité, on peut également appliquer la méthode des différences. Etant donné le modèle (1.3), appliquons l'opérateur de différence  $\nabla^d$  d'ordre d, où d est la période de  $S_t$ , à la série observée  $X_t$ :

$$\nabla^{d} X_{t} = (1 - B^{d}) X_{t}$$

$$= X_{t} - B^{d} X_{t}$$

$$= X_{t} - X_{t-d}$$

$$= T_{t} + S_{t} + Z_{t} - T_{t-d} - S_{t-d} - Z_{t-d}$$

$$= (T_{t} - T_{t-d}) + (S_{t} - S_{t-d}) + (Z_{t} - Z_{t-d})$$

La série chronologique  $\nabla^d X_t$  est donc désaisonnalisée, mais elle comporte encore un trend  $\nabla^d T_t$ , et on a par définition le terme  $S_t - S_{t-d}$  est nul. Pour éliminer la tendance restante, on peut à nouveau utiliser la méthode des différences.

# 1.2 Rappel sur les processus aléatoires

**Définition 1.2.1** Un processus stochastique  $\{X_t\}_{t\in T}$  est une famille de variables aléatoires définies sur un espace probabilisé  $(\Omega, \mathcal{F}, P)$ .

**Définition 1.2.2** Soit  $\{X_t, t \in \mathbb{Z}\}$  un processus tel que var  $(X_t) < \infty$ . La fonction d'auto-covariance  $\gamma(.,.)$  de  $\{X_t\}$  est définie telle que :

$$\gamma_X(r,s) = cov(X_r, X_s) = E\left[ (X_r - E(X_r))(X_s - E(X_s)) \right] \qquad r, s \in T.$$

**Définition 1.2.3** Un processus aléatoire est strictement stationnaire si toutes ces caractéristiques c'est à dire, tout ces moments sont invariables pour tout changement de l'origine du temps.

Remarque 1.2.4 Le processus  $\{X_t, t \in \mathbb{Z}\}$  est dit strictement stationnaire si les lois de distributions jointes de  $(X_{t_1}, X_{t_2}, ..., X_{t_k})$  et  $(X_{t_1+h}, X_{t_2+h}, ..., X_{t_k+h})$  sont la même pour tous  $t_1, t_2, ..., t_k, k \in \mathbb{Z}$ .

Remarque 1.2.5 La stationnarité au sens strict est trop restrictive et on assouplit cette condition en définissant la stationnarité du second ordre.

**Définition 1.2.6** Le processus  $\{X_t, t \in \mathbb{Z}\}$  où  $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}$ , est dit stationnaire au sens faible si :

$$\begin{cases} (i) E |X_t|^2 < \infty & pour \ tout \ t \in \mathbb{Z} \\ (ii) E |X_t| = m & pour \ tout \ t \in \mathbb{Z} \end{cases}$$

si  $\{X_t, t \in \mathbb{Z}\}$  est stationnaire alors  $\gamma(r, s) = \gamma(r - s, 0)$  pour tout  $r, s \in \mathbb{Z}$ . Pour tout processus stationnaire  $\gamma_j = \gamma_{-j}, \forall j$ .

**Définition 1.2.7** Soit  $\{X_t\}$  un processus stationnaire. L'autocorrélation de  $X_t$  est définie telle que :

$$\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = corr(X_{t+h}, X_t) \quad pour \ tout \ t, h \in \mathbb{Z}.$$

# 1.3 Modèle linéaire général

Nous allons rappeler dans cette section quelques définitions et propriétés d'un modèle linéaire général pour un processus aléatoire.

**Définition 1.3.1** Soit  $X_t$  un processus aléatoire. L'opérateur B est appelé opérateur de recul et est défini tel que :

$$B^j X_t = X_{t-i}$$

L'opération dual de B, noté F, est appelé opérateur d'avance et est défini tel que :

$$F^j X_t = X_{t+j}$$

Il est évident que  $F = B^{-1}$ .

**Définition 1.3.2** Le processus  $\{Z_t\}$  est appelé bruit blanc, et est noté  $Z_t \sim WN(0, \sigma^2)$ , si les trois propriétés sont vérifiées :

- $(i) E(Z_t) = 0 \qquad \forall t \in \mathbb{Z}$
- $\left( ii\right) E\left( Z_{t}^{2}\right) =\sigma^{2}$
- $(iii) cov(Z_t, Z_s) = 0 \quad \forall s \neq t$

**Proposition 1.3.3** Soit  $\{X_t\}_{t\in\mathbb{Z}}$  un processus aléatoire centré et soit  $\{Z_t\}_{t\in\mathbb{Z}}$  un processus de bruit blanc. Alors  $X_t$  peut être exprimé tel que :

$$X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j} = \left(\sum_{j=0}^{\infty} \psi_j B^j\right) Z_t \tag{1.4}$$

 $Ou\ \psi(B) = \left(\sum_{j=0}^{\infty} \psi_j B^j\right)$  est appelé filtre linéaire ou fonction de transfert.

Remarque 1.3.4 Le filtre  $\psi(B)$  est dit stable et le processus  $X_t$  stationnaire si la série  $\sum_{j=0}^{\infty} \psi_j B^j$  est convergente i.e : si  $\sum_{j=0}^{\infty} |\psi_j| < \infty$ .

**Proposition 1.3.5** Un processus  $X_t$  centré peut être exprimé comme une combinaison linéaire de valeurs passées de  $X_t$  et de l'innovation présente  $Z_t$  tel que :

$$X_{t} = \sum_{j=0}^{\infty} \pi_{j} X_{t-j} + Z_{t}$$
 (1.5)

**Preuve** En effet, l'équation (1.4) peut être exprimée telle que :

$$X_{t} = \sum_{j=0}^{\infty} \psi_{j} Z_{t-j} = \psi_{0} Z_{t} + \psi_{1} Z_{t-1} + \psi_{2} Z_{t-2} + \dots = Z_{t} + \psi_{1} Z_{t-1} + \psi_{2} Z_{t-2} + \dots \qquad où \quad \psi_{0} = 1$$

$$Z_t = X_t - \psi_1 Z_{t-1} - \psi_2 Z_{t-2} - \dots$$

et en remplaçant  $Z_{t-1}$  dans l'équation ci-dessus par :

$$Z_{t-1} = X_{t-1} - \psi_1 Z_{t-2} - \psi_2 Z_{t-3} - \dots$$

On obtient:

$$Z_{t} = X_{t} - \psi_{1} (X_{t-1} - \psi_{1} Z_{t-2} - \psi_{2} Z_{t-3} - \dots) - \psi_{2} Z_{t-2} - \dots$$
$$= X_{t} - \psi_{1} X_{t-1} - \psi_{1}^{2} \psi_{2} Z_{t-2} - \psi_{1} \psi_{3} Z_{t-3} - \dots$$

Et on procède de la même manière pour  $Z_{t-2}$ , et ainsi de suite pour  $Z_{t-3}$ , etc. On aboutit à l'équation (1.5).

Remarque 1.3.6 L'équation (1.5) peut être exprimée telle que :

$$Z_t = \sum_{j=0}^{\infty} \pi_j X_{t-j} = \left(\sum_{j=0}^{\infty} \pi_j B^j\right) X_t,$$

où

$$\boldsymbol{\pi}\left(B\right) = \left(\sum_{j=0}^{\infty} \pi_j B^j\right).$$

En effet:

On a:

$$Z_{t} = X_{t} - \sum_{j=0}^{\infty} \pi_{j} X_{t-j}$$

$$= X_{t} - \sum_{j=0}^{\infty} \pi_{j} B^{j} X_{t}$$

$$= \left(1 - \sum_{j=1}^{\infty} \pi_{j} B^{j}\right) X_{t}$$

$$= \left(\sum_{j=0}^{\infty} \pi_{j} B^{j}\right) X_{t}$$

$$= \pi(B) X_{t},$$

d'où:

$$\pi\left(B\right)X_{t} = Z_{t}.\tag{1.6}$$

#### 1.3.1 Relation entre les poids $\psi$ et les poids $\pi$

En multipliant l'équation (1.6) par la fonction de transfert  $\psi(B)$  on obtient :

$$\psi(B) \pi(B) X_t = \psi(B) Z_t = X_t$$

D'où  $\psi(B) \pi(B) = 1$ , car  $\psi(B) \pi(B) X_t = X_t$ ,  $\forall X_t$ . Et par conséquent, on déduit la relation entre les poids  $\psi$  et les poids  $\pi$  telle que :

$$\boldsymbol{\pi}\left(B\right) = \boldsymbol{\psi}^{-1}\left(B\right) \tag{1.7}$$

# 1.3.2 La fonction génératrice des autocovariances d'un processus linéaire

La fonction génératrice des autocovariances d'un processus linéaire est un outil utile pour le calcul de certaines caractéristiques des séries chronologiques, puisque nous disposons des deux formes d'écriture d'un processus aléatoire, la forme autorégressive infinie et la forme moyenne mobile infinie.

Il est intéressant d'établir une relation entre les autocovariances et les poids de ces deux formes.

En effet, si  $\{X_t\}$  est un processus stationnaire ayant pour fonction d'autocovariance  $\gamma$  (.), alors sa fonction génératrice d'autocovariance est définie par :

$$\gamma(B) = \sum_{k=-\infty}^{+\infty} \gamma_k B^k \tag{1.8}$$

et on a

$$\gamma(B) = \sum_{k=-\infty}^{+\infty} \gamma_k B^k = \sigma_Z^2 \psi(B) \psi(F)$$

Preuve On a

$$X_{t} = \sum_{j=0}^{\infty} \psi_{j} Z_{t-j}$$

$$\gamma_{k} = E\left[X_{t} X_{t+k}\right] = \sum_{j=0}^{\infty} \sum_{h=0}^{\infty} \psi_{j} \psi_{h} E\left(Z_{t-j} Z_{t+k-h}\right)$$

Par ailleurs, on sait que:

$$E\left(Z_{t-j}Z_{t+k-h}\right) = \begin{cases} \sigma_Z^2 & si \ h = k+j \\ 0 & si \ h \neq k+j \end{cases}$$

D'où

$$\gamma_k = E\left[X_t X_{t+k}\right] = \sigma_Z^2 \sum_{j=0}^{\infty} \psi_j \psi_{j+k}$$

Par suite, en substituant dans la relation (1.8)  $\gamma_k$  par sa valeur, on obtient :

$$\gamma(B) = \sigma_Z^2 \sum_{k=-\infty}^{\infty} \sum_{j=0}^{\infty} \psi_j \psi_{j+k} B^k$$
$$= \sigma_Z^2 \sum_{j=0}^{\infty} \sum_{k=-j}^{\infty} \psi_j \psi_{j+k} B^k$$

Sachant que  $\psi_h=0$  pour h<0, et en posant h=j+k on aura :

$$\gamma\left(B\right) = \sigma_Z^2 \sum_{i=0}^{\infty} \sum_{h=0}^{\infty} \psi_j \psi_h B^{h-j}$$

D'où le résultat

$$\gamma(B) = \sigma_Z^2 \sum_{h=0}^{\infty} \psi_h B^h \sum_{j=0}^{\infty} \psi_j B^{-j}$$

Que l'on peut écrire tel que :

$$\gamma(B) = \sigma_Z^2 \psi(B) \psi(B^{-1}) = \sigma_Z^2 \psi(B) \psi(F)$$
(1.9)

### 1.3.3 La fonction d'autocorrélation (acf)

L'autocorrélation au décalage k,  $\rho(k)$  est définie par :

$$\rho\left(k\right) = \frac{\gamma\left(k\right)}{\gamma\left(0\right)}$$

### 1.3.4 La fonction d'autocorrélation partielle (pacf)

Elle mesure la liaison linéaire entre  $X_t$  et  $X_{t-k}$  une fois retirés les liens transistants par les variables intermédiares  $X_{t-1}, X_{t-2}, ..., X_{t-k+1}$ .

Le coefficient d'autocorrélation partielle d'ordre k, noté  $\phi_k$  est le coefficient de corrélation entre :

$$X_t - E(X_t \mid X_{t-1}, X_{t-2}, ..., X_{t-k+1})$$

et

$$X_{t-k} - E(X_{t-k} \mid X_{t-1}, X_{t-2}, ..., X_{t-k+1})$$

On a donc:

$$\alpha(k) = corr(X_t, X_{t-k} \mid X_{t-1}, X_{t-2}, ..., X_{t-k+1})$$

C'est donc le coefficient de  $X_{t-k}$  dans la régression de  $X_t$  sur  $X_{t-1}, X_{t-2}, ..., X_{t-k+1}, X_{t-k}$ .

Si  $X_t$  est un processus stationnaire centré, la prédiction optimale de  $X_t$  est passé jusqu'à t-k est donnée par :

$$E(X_t \mid X_{t-1}, X_{t-2}, ..., X_{t-k}) = \phi_{11}X_{t-1} + ... + \phi_{kk}X_{t-k}$$

Que l'on peut réecrire matriciellement :

$$R_k \phi_k = \rho^{(k)} \tag{1.10}$$

Où:

$$R_{k} = \begin{bmatrix} 1 & \rho_{1} & \rho_{2} & \dots & \rho_{k-1} \\ \rho_{1} & 1 & \rho_{1} & \dots & \rho_{k-2} \\ \rho_{2} & \rho_{1} & 1 & \dots & \rho_{k-3} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \dots & 1 \end{bmatrix}, \phi_{k} = \begin{bmatrix} \phi_{k1} \\ \phi_{k2} \\ \vdots \\ \phi_{kk} \end{bmatrix} et \quad \rho^{(k)} = \begin{bmatrix} \rho_{1} \\ \rho_{2} \\ \vdots \\ \rho_{k} \end{bmatrix}$$

telle que  $R_k$  est la matrice d'autocorrélation du vecteur  $(X_t, X_{t-1}, ..., X_{t-k+1})$ .

La matrice  $R_k^*$  obtenue en remplaçant la dernière colonne de  $R_k$  par le vecteur  $(\rho_1, \rho_2, ..., \rho_k)$ .

$$R_k^* = \begin{bmatrix} 1 & \rho_1 & \rho_2 & \cdots & \rho_{k-2} & \rho_1 \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{k-3} & \rho_2 \\ \rho_2 & \rho_1 & 1 & \cdots & \rho_{k-4} & \rho_3 \\ \vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\ \rho_{k-3} & \rho_{k-4} & \rho_{k-5} & \cdots & \rho_1 & \rho_{k-2} \\ \rho_{k-2} & \rho_{k-3} & \rho_{k-4} & \cdots & 1 & \rho_{k-1} \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & \rho_1 & \rho_k \end{bmatrix}$$

A l'aide de la relation (1.10) on peut calculer les  $\phi_{kk}$  tel que :

$$\phi_{kk} = \frac{|R_k^*|}{|R_k|} \text{ pour tout } k.$$

$$\phi_{11} = \rho_1$$

$$\phi_{22} = \frac{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & \rho_2 \end{vmatrix}}{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{vmatrix}} = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2}.$$

$$\phi_{33} = \frac{\begin{vmatrix} 1 & \rho_1 \\ \rho_1 & 1 \end{vmatrix}}{\begin{vmatrix} \rho_2 & \rho_1 & \rho_3 \\ \rho_2 & \rho_1 & \rho_3 \end{vmatrix}} = \frac{\rho_1^3 - \rho_1^2 \rho_3 + \rho_1 \rho_2^2 - 2\rho_1 \rho_2 + \rho_3}{1 - 2\rho_1^2 - \rho_2^2 + 2\rho_1^2 \rho_2}.$$

# 1.4 Le périodogramme d'un processus

Le périodogramme permet une estimation simple de la densité spectrale du processus aléatoire  $X_t$  observé par  $X_1, X_2, \ldots, X_n$ . Il est souvent utiliser comme outil d'identification d'un modèle stochastique pour une série chronologique, introduite par Shuster[15] en 1898.

**Définition 1.4.1** Soit  $(X_t)_{t\in\mathbb{Z}}$  un processus stochastique stationnaire de fonction d'autocovariance  $\gamma(k)$ , la densité spéctrale de  $(X_t)_{t\in\mathbb{Z}}$  s'écrit :

$$f(w) = \sum_{k=-\infty}^{+\infty} \gamma(k) \exp(iwk)$$
(1.11)

$$O\dot{u} \exp(iwk) = \cos(wk) + i\sin(wk)$$
  $\pi \le w \le \pi$ .

f(w) est la transformation de Fourier discrète de la fonction d'autocovariance.

Dans la pratique, la fonction d'autocovariance  $\gamma(k)$  est inconnue. Alors on remplace dans la relation (1.11)  $\gamma(k)$  par son estimation  $\widehat{\gamma}(k)$  on obtient :

$$\widehat{f}(w) = \sum_{k=-\infty}^{+\infty} \widehat{\gamma}(k) \exp(iwk)$$

L'estimation de f est assez vaste à déterminer, nous introduisons la définition suivante :

**Définition 1.4.2** En considérant les fréquences :  $w_j = \frac{2\pi j}{N}$  aux points  $j = 1, ..., \frac{N-1}{2}$ , le périodogramme est défini par :

$$I_{N}(w_{j}) = \frac{1}{N} \left| \sum_{k=1}^{N} X_{j} \exp\left(kw_{j}\right) \right|^{2}$$

 $I_N$  est un estimateur de la densité spéctrale f(w).

#### 1.4.1 Le périodogramme d'un processus linéaire stationnaire

On suppose que  $B=\exp{(-i2\pi\lambda)}$ , dans l'équation (1.9), nous obtenons le périodogramme d'un processus linéaire :

$$I(\lambda) = 2\sigma_Z^2 \psi \left(\exp(-i2\pi\lambda)\right) \psi \left(\exp(+i2\pi\lambda)\right)$$

$$= 2\sigma_Z^2 |\psi \left(\exp(-i2\pi\lambda)\right)|^2 \qquad 0 \le \lambda \le \frac{1}{2}.$$
(1.12)

# Chapitre 2

# Modélisation des séries stationnaires

### 2.1 Modèles de Box-Jenkins

Dans ce section, nous avons vu les modèles de Box-Jenkins[2], sont des modèles linéaires qui peuvent être stationnaires ou non stationnaires, les modèles stationnaires sont regroupés dans la famille des modèles ARMA qui composée des modèles Autorégressifs (AR), des modèles en Moyennes Mobiles (MA) et des modèles mixtes Autorégressifs-Moyennes Mobiles (ARMA), les modèles non stationnaires sont le modèle Autorégressive-Integrated-Moving Average (ARIMA) et le modèle Seasonal-Autoregressive-Integrated-Moving Average (SARIMA).

# **2.1.1** Le modèle AR(p)

**Définition 2.1.1** Soit  $X_t$  un processus stochastique stationnaire et centré, on dit que  $X_t$  est un processus autorégressif d'ordre p noté AR(p) le processus qui verifie l'équation suivante :

$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \dots + \phi_p X_{t-p} + Z_t$$

 $où Z_t \sim WN(0, \sigma^2).$ 

Remarque 2.1.2 Le polynôme  $\phi(B) = 1 - \phi_1 B - \dots - \phi_P B^p$  est le polynôme caractéristique du processus autorégressif. Le modèle s'écrit souvent :

$$\phi(B) X_t = Z_t.$$

#### Principales caractéristiques d'un modèle AR(p)

#### La fonction d'autocorrélation :

La fonction d'autocovariance d'un processus autorégressif AR(p) est donnée par :

$$\gamma\left(k\right) = E\left(X_{t}X_{t+k}\right) = E\left(X_{t}X_{t-k}\right).$$

On préfère travailler avec la forme  $E(X_tX_{t-k})$ , car les  $Z_t$  sont non corrélés avec les  $X_{t-k}$ , k > 0.On a

$$X_t X_{t-k} = \phi_1 X_{t-1} X_{t-k} + \phi_2 X_{t-2} X_{t-k} + \dots + \phi_p X_{t-p} X_{t-k} + Z_t X_{t-k}.$$

Et donc

$$\gamma(k) = E(X_t X_{t-k}) 
= \phi_1 \gamma(k-1) + \phi_2 \gamma(k-2) + \dots + \phi_p \gamma(k-p) + E(Z_t X_{t-k}), k > 0.$$

Donc on obtient

$$\gamma(k) = \sum_{j=1}^{p} \phi_j \gamma(k-j), k > 0.$$

En divisant l'égalité par  $\gamma(0)$ , on obtient

$$\rho(k) = \sum_{j=1}^{p} \phi_j \rho(k-j), k > 0.$$

Calcul de  $\gamma(0)$ 

$$\gamma(0) = \sigma^{2} = E(X_{t}^{2}) 
= E(X_{t}(\phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + Z_{t})) 
= \phi_{1}\gamma(1) + \phi_{2}\gamma(2) + \dots + \phi_{p}\gamma(p) + E(X_{t}Z_{t}) 
= \phi_{1}\gamma(1) + \phi_{2}\gamma(2) + \dots + \phi_{p}\gamma(p) + \sigma_{Z}^{2}.$$

On divise les deux membres par  $\gamma(0)$ , on obtient

$$\gamma\left(0\right)=\sigma^{2}=\frac{\sigma_{Z}^{2}}{1-\phi_{1}\rho\left(1\right)-\phi_{2}\rho\left(2\right)-\ldots-\phi_{p}\rho\left(p\right)}.$$

On écrit l'équation aux différences  $\rho_k = \sum_{j=1}^p \phi_j \rho_{k-j}, \ k=1,2,...,p$  sous forme matricielle :

$$\begin{cases} \phi_1 \rho_0 + \phi_2 \rho_1 + \dots + \phi_p \rho_{p-1} = \rho_1 & k = 1 \\ \phi_1 \rho_1 + \phi_2 \rho_0 + \dots + \phi_p \rho_{p-2} = \rho_2 & k = 2 \\ \vdots & \vdots & k = p \end{cases}$$

$$\vdots$$

Soient  $R_p$  la matrice du système :

$$R_{p} = \begin{pmatrix} 1 & \rho_{1} & \dots & \rho_{p-1} \\ \rho_{1} & 1 & \dots & \rho_{p-2} \\ \vdots & \vdots & \dots & \vdots \\ \rho_{p-1} & \rho_{p-2} & \dots & 1 \end{pmatrix}, \ \phi = \begin{pmatrix} \phi_{1} \\ \phi_{2} \\ \vdots \\ \phi_{p} \end{pmatrix} \ et \ \rho = \begin{pmatrix} \rho_{1} \\ \rho_{2} \\ \vdots \\ \rho_{p} \end{pmatrix}$$

Les équations de Yule Walker s'écrivent :

$$R_p \phi = \rho$$

D'où

$$\phi = R_p^{-1} \rho$$

Remarque 2.1.3 Nous constatons que la fonction d'autocorrélation  $\rho_k$  d'un processus AR(p) décroit exponentiellement vers zéro, cette décroissante exponentiellement est lisse si  $\rho_k$  est positive et oscillante si le signe de  $\rho_k$  alterne.

#### La fonction d'autocorrélation partielle :

Dans un modèle autorégressif d'ordre p, il est possible de montrer que :

$$\alpha(k) = \begin{cases} 1 & \text{si} \quad k = 0 \\ \rho_1 & \text{si} \quad k = 1 \\ \phi_p & \text{si} \quad k = p \\ 0 & \text{si} \quad k > p \end{cases}$$

Pour  $k \leq p$  les valeurs  $\alpha(k)$  sont calculées d'aprés la définition (1.10).

Remarque 2.1.4 Nous constatons que la fonction d'autocorrélation partielle  $\alpha(k)$  d'un processus AR(p) est égale à zéro quand k > p. Autrement dit la fonction d'autocorrélation partielle d'un processus autorégressif chute à zéro au déla de p.

Exemple 2.1.5  $X_t = 0.7X_{t-1} + Z_t$ 

La ACF est définie par 
$$: \rho(k) = \frac{\gamma(k)}{\gamma(0)}$$
. Or  $\gamma(k) = E(X_t X_{t-k})$ .

$$\gamma(k) = E(X_t X_{t-k}) = 0.7E(X_{t-1} X_{t-k}) + E(X_{t-k} Z_t) = 0.7\gamma(k-1)$$

$$\rho(k) = 0.7\rho(k-1), \ avec \ \rho(0) = 1$$

Ainsi,  $\rho(k) = 0.7^k$ ,  $\forall k$ . D'où, on déduit les cinq premiers coefficient de la ACF.

| k         | 0 | 1   | 2    | 3     | 4      |
|-----------|---|-----|------|-------|--------|
| $\rho(k)$ | 1 | 0.7 | 0.49 | 0.343 | 0.2401 |

La PACF d'un processus AR(1) est nulle sauf pour le premier coefficient qui égale à :  $\phi_{11} = \rho(1) = 0.7$ . Ainsi, on a :

$$\phi_{kk} = \begin{cases} 0.7 & si \ k=1 \\ 0 & sinon \end{cases}$$

Le périodogramme : Pour le processus AR(p)

 $\psi\left(B\right)=\phi^{-1}\left(B\right)$  et  $\phi\left(B\right)=1-\phi_{1}B-\phi_{2}B^{2}-...-\phi_{P}B^{P}$  et en utilisant le périodogramme d'un processus linéaire (1.12), alors on obtient l'équation suivante :

$$I\left(\lambda\right) = \frac{2\sigma_z^2}{\left\lceil 1 - \phi_1 e^{-i2\pi\lambda} - \phi_2 e^{-i4\pi\lambda} - \ldots - \phi_p e^{i2\pi p\lambda} \right\rceil} \quad ; 0 \le \lambda \le \frac{1}{2}$$

# **2.1.2** Le modèle MA(q)

**Définition 2.1.6** Soit  $X_t$  un processus stochastique stationnaire et centré. On dit que  $X_t$  est un processus moyenne mobile d'ordre q noté MA(q), le processus qui verifie l'équation suivante :

$$X_t = Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2} + \dots + \theta_q Z_{t-q}$$
(2.1)

 $O\grave{u}\ Z_t \sim WN(0,\sigma^2)$ 

Remarque 2.1.7 Un tel processus est donc linéaire pour la suite additive :

$$\psi_{j} = 0, j < 0, \psi_{0} = 1, \psi_{1} = \theta_{1}, ..., \psi_{q} = \theta_{q} \ et \ \psi_{q} = 0, j > q$$

On écrit habituellement  $X_t = \boldsymbol{\theta}(B) Z_t$  où  $\boldsymbol{\theta}(B)$  est le polynôme

$$\boldsymbol{\theta}\left(B\right) = 1 + \theta_1 B + \dots + \theta_q B^q$$

et B l'opérateur de décalage arrière (appelé aussi opérateur de retard) .

Le polynôme  $\theta(B)$  est appelé polynôme caractéristique du processus moyenne mobile.

#### Principales caractéristiques d'un modèle MA(q)

La fonction d'autocorrélation : Le calcul de la fonction d'autocovariance d'un processus MA(q) est obtenu tel que :

$$\gamma(k) = E(X_t X_{t-k}) 
= E[(Z_t + \theta_1 Z_{t-1} + ... + \theta_q Z_{t-q}) (Z_{t-k} + \theta_1 Z_{t-k-1} + ... + \theta_q Z_{t-k-q})],$$

et donc:

$$\gamma_k = \begin{cases} (\theta_k + \theta_1 \theta_{k+1} + \theta_2 \theta_{k+2} + \dots + \theta_q \theta_{k+q}) \sigma_Z^2 & k = 1, 2, \dots, q \\ 0 & k > q \end{cases}$$

La variance du processus  $X_t$  est donnée par la formule suivante :

$$\gamma_0 = (1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2) \sigma_Z^2$$

Par conséquent, la fonction d'autocorrélation est définie telle que :

$$\rho_k = \begin{cases} \frac{\theta_k + \theta_1 \theta_{k+1} + \theta_2 \theta_{k+2} + \dots + \theta_q \theta_{q+k}}{1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2} & k = 1, 2, \dots, q \\ 0 & k > q \end{cases}$$

Remarque 2.1.8 Nous constatons que la fonction d'autocorrélation  $\rho_k$  d'un processus MA(q) est égale à zéro quand k > q. Autrement dit la fonction d'autocorrélation d'un processus moyenne mobile chute à zéro au déla de q.

#### Exemple 2.1.9 Processus moyenne mobile MA(2)

$$X_{t} = Z_{t} + \theta_{1} Z_{t-1} + \theta_{2} Z_{t-2}$$
  
 $\gamma(k) = cov(X_{t}, X_{t-k}) = E(X_{t} X_{t-k}) - E(X_{t}) E(X_{t-k}),$ 

donc:

$$\gamma(k) = E(X_t X_{t-k}) 
= E[(Z_t + \theta_1 Z_{t-1} + \theta_2 Z_{t-2}) (Z_{t-k} + \theta_1 Z_{t-k-1} + \theta_2 Z_{t-k-2})] 
\gamma(k) = \begin{cases}
\sigma_Z^2 + \theta_1^2 \sigma_Z^2 + \theta_2^2 \sigma_Z^2 & \text{si } k = 0 \\
\theta_1 \sigma_Z^2 + \theta_1 \theta_2 \sigma_Z^2 & \text{si } |k| = 1 \\
\theta_2 \sigma_Z^2 & \text{si } |k| = 2 \\
0 & \text{si } k > 2
\end{cases}$$

Alors:

$$\rho\left(k\right) = \frac{\gamma\left(k\right)}{\gamma\left(0\right)}$$

$$= \begin{cases} 1 & si \ k = 0 \\ \frac{\theta_{1} + \theta_{1}\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}} & si \ |k| = 1 \\ \frac{\theta_{2}}{1 + \theta_{1}^{2} + \theta_{2}^{2}} & si \ |k| = 2 \\ 0 & si \ k > 2 \end{cases}$$

Donc : la fonction d'autocorrélation MA(2) s'annule si le k > 2.

#### La fonction d'autocorrélation partielle :

La fonction d'autocorrélation partielle  $\alpha(k)$  d'un processus MA(q) décroit exponentiellement vers zéro.

Le périodogramme : pour le processus MA(q) ona :

$$\psi(B) = \theta(B) = 1 - \theta_1 B - \theta_2 B^2 - \dots - \theta_q B^q$$

Donc, en utilisant l'équation (1.12) le périodogramme d'un processus MA(q) est obtenu tel que :

$$I(\lambda) = 2\sigma_Z^2 \left| 1 - \theta_1 e^{-i2\pi\lambda} - \theta_2 e^{-i4\pi\lambda} - \dots - \theta_q e^{-i2\pi q\lambda} \right|^2; 0 \le \lambda \le \frac{1}{2}$$

Remarque 2.1.10 Un processus autoregressif d'ordre 1 peut être exprimé sous la forme moyenne mobile en inversant l'équation.

$$(1 - \phi B) X_t = Z_t \Longleftrightarrow X_t = \frac{1}{(1 - \phi B)} Z_t = \left(\sum_{k=0}^{\infty} \phi_k B^k\right) Z_t$$

On obtient ainsi une moyenne mobile d'ordre q dont les coefficients décroissent exponentiellement.

$$AR(p) \sim MA(\infty)$$

# **2.1.3** Le modèle ARMA(p,q)

**Définition 2.1.11** On dit qu'un processus stationnaire et centré,  $X_t$  est un processus ARMA(p,q) si pour chaque t il vérifie la relation :

$$X_{t} = \phi_{1}X_{t-1} + \phi_{2}X_{t-2} + \dots + \phi_{p}X_{t-p} + Z_{t} - \theta_{1}Z_{t-1} - \theta_{2}Z_{t-2} - \dots - \theta_{q}Z_{t-q}$$

$$Ou Z_{t} \sim WN(0, \sigma^{2})$$
(2.2)

Remarque 2.1.12 En utilisant l'opérateur B, l'équation (2.2) peut être exprimée telle que :

$$\phi(B) X_t = \theta(B) Z_t$$

où  $\phi(B) = 1 - \phi_1 B - \dots - \phi_P B^P$  et  $\theta(B) = 1 - \theta_1 B - \dots - \theta_q B^q$  sont appelés polynômes caractéristiques respectifs des parties autoregressives et moyennes mobiles du processus.

#### Principales caractéristiques d'un modèle ARMA(p,q)

La fonction d'autocorrélation : En multipliant les deux membres de l'équation (2.2) par  $X_{t-k}$ , nous constatons que la fonction d'autocovariance satisfait l'équation de différences :

$$\gamma_{k} = \phi_{1}\gamma_{k-1} + \ldots + \phi_{p}\gamma_{k-p} + \gamma_{XZ}\left(k\right) - \theta_{1}\gamma_{XZ}\left(k-1\right) - \ldots - \theta_{q}\gamma_{XZ}\left(k-q\right),$$

où  $\gamma_{XZ}(k)$  est la fonction d'autocovariance de  $X_t$  et de  $Z_t$  définie par  $\gamma_{XZ}(k) = E(X_{t-k}|Z_t)$ , comme  $X_{t-k}$  dépend seulement des innovation avant l'insant t-k par les représentations en moyenne mobile définie :

$$X_{t-k} = \psi(B) Z_{t-k} = \sum_{i=0}^{\infty} \psi_j Z_{t-k-j},$$

il suit

$$\gamma_{XZ}(k) = \begin{cases} 0 & \text{Si } k > 0 \\ \psi_{-K} \sigma_Z^2 & \text{Si } k \le 0 \end{cases}$$

Dorénavant l'équation précédente pour  $\gamma_k$  peut être exprimée :

$$\gamma_k = \phi_1 \gamma_{k-1} + \dots + \phi_p \gamma_{k-p} - \sigma_Z^2 \left( \theta_k \psi_0 + \theta_{k+1} \psi_1 + \dots + \theta_q \psi_{q-k} \right)$$
 (2.3)

Avec le paramètre  $\theta_0 = -1$ 

Nous voyons que (2.3) implique :

$$\gamma_k = \phi_1 \gamma_{k-1} + \dots + \phi_p \gamma_{k-p} \qquad k \ge q+1$$

La variance égale à :

$$\gamma_0 = \phi_1 \gamma_1 + \dots + \phi_p \gamma_p + \sigma_Z^2 \left( 1 - \theta_1 \psi_1 - \dots - \theta_q \psi_q \right)$$
 (2.4)

Et dorénavant :

$$\rho_k = \phi_1 \rho_{k-1} + \ldots + \phi_p \rho_{k-p} \qquad k \ge q+1$$

Où bien

$$\phi(B) \rho_k = 0 \qquad k \ge q + 1$$

Par example le processus ARMA(1,1)

$$X_t - \phi_1 X_{t-1} = Z_t - \theta_1 Z_{t-1}$$

Telle que:

$$(1 - \phi_1 B) X_t = (1 - \theta_1 B) Z_t$$

A partir de l'équation (2.3) et (2.4) nous obtenons :

$$\begin{split} \gamma_0 &= \phi_1 \gamma_1 + \sigma_Z^2 \left( 1 - \theta_1 \psi_1 \right) \\ \gamma_1 &= \phi_1 \gamma_0 - \theta_1 \sigma_Z^2 \\ \gamma_k &= \phi_1 \gamma_{k-1} \qquad k \ge 2, \end{split}$$

avec :  $\psi_1 = \phi_1 - \theta_1$ .

Par conséquent, la résolution des deux premières équations en  $\gamma_0$  et  $\gamma_1$  ci dessus, la fonction d'autocovariance du processus est déterminée telle que :

$$\begin{array}{lcl} \gamma_{0} & = & \dfrac{1+\theta_{1}^{2}+2\phi_{1}\theta_{1}}{1-\phi_{1}^{2}}\sigma_{Z}^{2} \\ \\ \gamma_{1} & = & \dfrac{\left(1-\phi_{1}\theta_{1}\right)\left(\phi_{1}-\theta_{1}\right)}{1-\phi_{1}^{2}}\sigma_{Z}^{2} \\ \\ \gamma_{k} & = & \phi_{1}\gamma_{k-1} & k \geq 2 \end{array}$$

Il est claire que  $\rho_k$  vérifie l'équation de réccurence  $\rho_k = \phi_1 \rho_{k-1}, k \geq 2$ , alors  $\rho_k = \phi_1^{k-1} \rho_1, k \geq 1$ . Ainsi, la fonction d'autocorrélation décroit exponentiellement quand  $k \longmapsto \infty$ .

Cette décroissance exponentielle est lisse si  $\phi_1$  est positif et oscillante si  $\phi_1$  est négatif. En effet, le signe de  $\rho_1$  est détermininé par le signe de  $(\phi_1 - \theta_1)$ .

Remarque 2.1.13 La fonction d'autocorrélation  $\rho_k$  d'un processus ARMA(p,q) décroit exponentiellement vers zéro.

#### La fonction d'autocorrélation partielle :

Un processus ARMA(p,q) peu être exprimé tel que :

$$X_t = \boldsymbol{\phi}^{-1}(B) \boldsymbol{\theta}(B) Z_t.$$

Car

$$\phi(B) X_t = \theta(B) Z_t$$

Où  $\phi^{-1}(B)$  est un polynôme de B, ainsi la fonction d'autocorrélation partielle d'un processus mixte est infinie en étendue. Elle se comporte finalement comme la fonction d'autocorrélation partielle d'un processus moyenne mobile pure selon l'ordre de la moyenne mobile et les valeurs des paramètres qu'il contient.

Remarque 2.1.14 La fonction d'autocorrélation partielle  $\alpha$  (k) d'un processus ARMA(p,q) décroit exponentiellement vers zéro.

Le périodogramme : En utilisant l'équation (1.12), le périodogramme du processus mixte est :

$$\begin{split} I\left(\lambda\right) &= 2\sigma_{Z}^{2} \frac{\left|\theta\left(e^{-i2\pi\lambda}\right)\right|^{2}}{\left|\phi\left(e^{-i2\pi\lambda}\right)\right|^{2}} \\ &= 2\sigma_{Z}^{2} \frac{\left|1 - \theta_{1}e^{-i2\pi\lambda} - \theta_{2}e^{-i4\pi\lambda} - ...\theta_{q}e^{-i2\pi q\lambda}\right|^{2}}{\left|1 - \phi_{1}e^{-i2\pi\lambda} - \phi_{2}e^{-i4\pi\lambda} - ...\phi_{p}e^{i2\pi p\lambda}\right|^{2}}; 0 \leq \lambda \leq \frac{1}{2} \end{split}$$

La stationnarité, l'inversibilité et la causalité des modèles ARMA(p,q)

**Stationnarité :** La condition de stationnarité est que les racines de l'équation  $\theta(B) = 0$  doivent être situées à l'extérieur du cercle unité.

**Inversibilité**: Un processus ARMA(p,q) défini par l'équation (2.2) est dit inversible s'il existe une suite  $\{\pi_j\}$  telle que :

$$\sum_{j=0}^{\infty} |\pi_j| < \infty \text{ et pour tout } t \in \mathbb{Z}, Z_t = \sum_{j=0}^{\infty} \pi_j X_{t-j}.$$

Autrement dit un processus ARMA(p,q) est inversible si les racines de l'équation  $\phi(B) = 0$  sont à l'exterieur du cercle unité.

Causalité : Un processus ARMA(p,q) défini par l'équation (2.2) est dit causal s'il existe une serie  $\{\psi_i\}$  telle que :

$$\sum_{j=0}^{\infty} |\psi_j| < \infty \text{ et pour tout } t \in \mathbb{Z}, X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}.$$

Dans la proposition suivante, on donnera une condition necessaire et suffissante pour la stationnarité, l'inversibilité et la causalité d'un processus ARMA(p,q).

**Proposition 2.1.15** Soit  $X_t$  un processus ARMA(p,q) vérifiant l'équation (2.2), supposons que les polynômes

$$\phi(Z) = 1 - \sum_{i=1}^{\infty} \phi_i Z^i \text{ et } \theta(Z) = 1 - \sum_{i=1}^{\infty} \theta_i Z^i$$

n'ont pas des racines connues.

 $X_t$  est stationnaire et causal si est seulement si  $\phi(Z) \neq 0$  pour tout  $Z \in \mathbb{Z}$  tel que  $|Z| \leq 1$ , les coefficients  $\psi_i$  sont déterminés par :

$$\sum_{j=1}^{\infty} \psi_j Z^j = \frac{\phi(Z)}{\theta(Z)} Si |Z| \le 1$$

 $X_t$  est inversible si est seulement si  $\theta(Z) \neq 0$  pour tout  $Z \in \mathbb{Z}$  tel que  $|Z| \leq 1$ , les coefficients  $\pi_j$  sont déterminés par :

$$\sum_{j=1}^{\infty} \pi_j Z^j = \frac{\phi(Z)}{\theta(Z)} Si |Z| \le 1.$$

#### 2.1.4 Modèles linéaires non-stationnaires

#### Modèle ARIMA

La classe des modèles non stationnaires est trés utile dans le domaine de l'économétrie et les mathématiques financières. Ce genre de modèle permet de représenter des processus présentant un certain type de non-stationnarité que l'on peut éliminer par différentiation d'ordre d.

**Définition 2.1.16** On dit qu'un processus  $X_t$  est un ARIMA(Autoregressive Integrated Moving Avirage) d'ordre <math>(p, d, q) si  $\nabla^d X_t$  un processus ARMA(p, q).

On modélise alors le processus  $X_t$  sous la forme :

$$\phi(B) (1 - B)^d X_t = \phi(B) \nabla^d X_t = \phi(B) X_t = \theta(B) Z_t,$$

avec:

$$\phi(B) = \phi(B) (1 - B)^d$$

On écrit que la serie  $X_t$  suit un processus ARIMA(p, d, q).

Remarque 2.1.17 Les polynômes  $\phi(B)$  et  $\theta(B)$  sont de degrés p et q respectivement,  $\phi(B) \neq 0$  pour |B| < 1, alors que le polynôme  $\phi(B)$  admet une racine multiple B = 1.

#### Modèle SARIMA

Si l'on veut en même temps traiter les saisonnalités de période s on est amené à définir les processus SARIMA.

**Définition 2.1.18** Une série  $\{X_t\}$  suit un processus SARIMA (Seasonnal Autoregressive Integrated Moving Average) d'ordre (p, d, q)(P, D, Q) si cette série à une saisonnalité de période s et qu'on peut écrire :

$$Y_t = \nabla^d \nabla^D X_t = (1 - B)^d (1 - B^s)^D X_t$$

est un ARMA stationnaire de la forme :

$$\mathbf{A}(B) F(B^s) y_t = \boldsymbol{\theta}(B) G(B^s) Z_t \text{ où } Z_t \sim WN(0, \sigma^2)$$

- $\mathbf{A}(z) = 1 \sum_{k=1}^{p} a_k z^k$  est le polynôme générateur d'un AR(p).
- $\theta(z) = 1 + \sum_{k=1}^{q} \theta_k z^k$  est le polynôme générateur d'un MA(q).
- $F(z) = 1 \sum_{k=1}^{P} f_k z^k$  est le polynôme générateur d'un AR(P).
- $G(z) = 1 + \sum_{k=1}^{Q} g_k z^k$  est le polynôme générateur d'un MA(Q).

On note que le processus  $\{Y_t\}$  est causal si et seulement si :

$$\mathbf{A}(z) \neq 0$$
 et  $F(z) \neq 0$  pour  $|z| \leq 1$ .

Les valeurs de d et D sont en générale inférieures à 1, alors que les valeurs de p et q sont généralement inférieures à 2.

#### 2.1.5 Méthode de prévision

#### Principe de prévision

Soit  $(X_t)$  un processus aléatoire du second ordre défini sur  $(\Omega, P)$ , le problème le plus couramment rencontré est la prévision des valeurs futures de ce processus, prédire une valeur future  $X_{N+k}$  de  $\{X_t\}$  au vu d'une observation  $X = (X_1, X_2, ..., X_N)'$ , revient à chercher une fonction déterministe  $f: C^k \to C$  telle que  $\widehat{X}_{N+k} = f(X_1, X_2, ..., X_N)$ . La prédiction

optimale au sens des moindres carrés consiste à choisir f de telle sorte que la moyenne du carré de l'erreur de prévision  $E\left[\left|X_{N+k}-\widehat{X}_{N+k}\right|^2\right]$  soit minimale.

Dans l'espace de Hilbert  $H_N = [X_1, X_2, ..., X_N]$  engendré par  $\{X_1, X_2, ..., X_N\}$ , ce problème classique admet une solution unique :

$$\widehat{X}_{N+k} = E^{H_N}(X_{N+k}) = E(X_{N+k} \mid X_1, X_2, ..., X_N) = f(X_1, ..., X_N).$$

En d'autre termes,  $\widehat{X}_{N+k}$  est l'espérance conditionnelle de  $X_{N+k}$ , l'orsque on observe  $X_1, X_2, ..., X_N$ . En pratique la fonction f est difficile à déterminer, soit parce que la loi jointe de  $X_1, X_2, ..., X_N, X_{N+k}$  est mal connue, soit parce qu'elle ne se prête pas aux calculs explicites. Ceci nous amène à restreindre la classe des estimateurs considérés.

Le principe reste toujours le même, ie : on cherche à minimiser  $E\left[\left|X_{N+k}-\widehat{X}_{N+k}\right|^2\right]$ , où  $\widehat{X}_{N+k}=f\left(X_1,X_2,...,X_N\right)$ . Mais la fonction f sera déterminée parmi les fonctions linéaires. l'unique solution est évidemment donnée par  $\widehat{X}_{N+k}=proj\left(X_{N+k}\right)$  où proj est la projection orthogonale sur le sous espace vectoriel  $H_N$  engendré par  $X_1,X_2,...,X_N$  dans  $L^2\left(\Omega,P\right)$ .

Le principe de la prédiction linéaire revient à considérer que l'information fournie par l'observation X du processus ne depen que de l'espace  $H_N$ , sous espace vectoriel fermé de  $L^2(\Omega, P)$  engendré par les X.

# 2.1.6 Prévision à l'aide d'un processus ARMA

Une fois qu'on a trouvé un modèle acceptable pour la serie chronologique étudiée, il est possible de calculer les prévisions.

Soit  $X_1, X_2, ..., X_N$  une observation d'un processus  $\{X_t\}_{t\in\mathbb{Z}}$  obéissant à un modèle ARMA. On note  $\widehat{X}_{N+k}$  la prévision de  $X_{N+k}$  au temps N+k où N est la taille de l'échantillon des observations  $X_t$  et k>0 l'horizon de la prévision.

- $\bullet$  L'instant N est appelé origine de prévision.
- $\bullet e_N(k) = X_{N+k} \widehat{X}_{N+k}$  est l'erreur de prévision et  $E^{H_N}[e_N(k)] = 0$ .

Pour calculer une prévision  $\widehat{X}_{N+k}$  de la valeur future  $X_{N+k}$  de ce processus nous utiliserons soit les formes moyennes mobiles infinies ou les formes autoregressives infinies.

En effet, en passant aux prévisions d'un  $MA(\infty)$ .

$$X_{N+k} = \sum_{j=0}^{\infty} \psi_j Z_{N+k-j} = Z_{N+k} + \psi_1 Z_{N+k-1} + \psi_2 Z_{N+k-2} + \dots$$

Alors que la prévision  $\widehat{X}_{N+k}$  s'écrit :

$$\widehat{X}_{N+k} = \sum_{j=1}^{\infty} \psi_j Z_{N+k-j} = \psi_1 Z_{N+k-1} + \psi_2 Z_{N+k-2} + \dots$$

La prévision  $\widehat{X}_{N+k}$  peut aussi s'écrire sous la forme d'une éspérance conditionnelle :

$$\widehat{X}_{N+k} = E(X_{N+k} \mid X_{N+k-1}, X_{N+k-2}, ...) 
= E(X_{N+k} \mid Z_{N+k-1}, Z_{N+k-2}, ...)$$

L'erreur de prévision est déterminée par :

$$X_{N+k} - \hat{X}_{N+k} = Z_{N+k} + \psi_1 Z_{N+k-1} + \psi_2 Z_{N+k-2} + \dots - \psi_1 Z_{N+k-1} - \psi_2 Z_{N+k-2} - \dots$$

$$= Z_{N+k}.$$

# 2.2 Identification de modèle pour les séries chronologiques

### 2.2.1 Position du problème

Tout les phénomènes aléatoires ne peut veut être observés que ponctuellement sous forme d'une série chronologique  $X_1, X_2, ..., X_N$ . La position du problème est d'identifier le type de modèle qui régit ce phénomène. La méthode d'identification d'un processus ARMA (choix entre AR, MA et ARMA, et choix de p et q) de Box et Jenkins est basée sur la comparaison de caractéristiques théoriques des processus ARMA à leurs équivalents empiriques. Les caractéristiques utilisées sont les autocorrélations simples et partielles, étudiées dans la partie précédente.

On sait que les autocorrélations d'un processus MA(q) deviennent nulles à partir de l'ordre q+1. Si le graphique des autocorélations empiriques chute brusquement après k=q, on pourra donc dire que l'on est la présence d'un MA(q).

Si l'on considère maintenant les autocorrélations totales d'un AR(p), on sait qu'elles décroissent lentement dans le temps.

Mais il n'est guère possible de déduire une valeur de p à partir de l'examen du corrélogramme. On cherche donc une transformation du corrélogramme qui soit plus inter prétable.

Il s'agit du graphique des autocorrélations partielles que l'on note  $\alpha(k)$ . Les autocorrélations partielles ont la propriété d'être nulles à partir de l'ordre p+1 pour un processus AR(p). Par contre, pour un processus ARMA(p,q) la fonction d'autocorrélation  $\rho(k)$  et la fonction d'autocorrélation partielle  $\alpha(k)$  décroissent en même temps vers zéro quand  $k \to \infty$ .

### 2.2.2 Ajustement d'un modèle et détermination de son ordre

Le but de ce section est de présenter les outils statistiques les plus utilisés pour atteindre cet objectif. Nous verrons différentes méthodes qui permettront de choisir un modèle ARMA approprié aux données observées, avant de développer des tests d'ajustement pour valider ces choix. Le premier outil permettant de choisir l'ordre d'un modèle ARMA est basé sur l'analyse de la structure d'autocorrélation des données observées.

#### Méthode d'identification de Box-Jenkins

Lorsqu'on observe une série chronologique, la fonction d'autocorrélation empirique est un premier outil pour sélèctionner l'ordre du modèle qui doit être ajusté aux données.

Si  $\widehat{\alpha}(k)$  décroit vers zéro et si  $\widehat{\rho}(k)$  chute à zéro à partir d'un certain rang (ie. les valeurs de  $\widehat{\rho}(k)$  sont négligéables à partir d'un certain rang), alors on opte pour un modèle en moyenne mobile, pour décider de l'ordre de ce modèle MA on se base comme sur le résultat du test de l'hypothèse :

$$\begin{cases} H_0: \widehat{\rho}(k) = 0, \text{ pour } k > q \\ H_1: \widehat{\rho}(k) \neq 0, \text{ pour } k \leq q \end{cases}$$

Alors, si  $H_0$  est acceptée le rang du modèle MA est égal à q.

Si  $\widehat{\rho}(k)$  décroit vers zéro et si  $\widehat{\alpha}(k)$  chute à zéro à partir d'un certain rang (ie. les valeurs de  $\widehat{\alpha}(k)$  sont négligéables à partir d'un certain rang), alors on opte pour un modèle autorégressif, pour décider de l'ordre de ce modèle AR on se base comme dans le premier sur le résultat du test de l'hypothèse :

$$\begin{cases} H_0: \widehat{\alpha}(k) = 0, \text{ pour } k > p \\ H_1: \widehat{\alpha}(k) \neq 0, \text{ pour } k \leq p \end{cases}$$

Alors, si  $H_0$  est acceptée le rang du modèle AR est égal à p.

Remarque 2.2.1 La fonction d'autocorrélation partielle d'un processus AR joue le même rôle que l'autocorrélation d'un processus MA. En effet :

Si 
$$X_t \sim MA(q)$$
, alors  $\rho(k) = 0$  pour tout  $k > q$ .

Si 
$$X_t \sim AR(p)$$
, alors  $\alpha(k) = 0$  pour tout  $k > p$ .

Pour choisir l'ordre d'un modèle mixte ARMA, la double observation de l'acf et de la pacf seront nécessaires. D'ailleurs, remarquons de nouveau qu'en pratique il est toujours judicieux de regarder ces deux fonctions, l'acf et la pacf empirique, ensemble pour pouvoir ajuster le modèle AR et MA. L'acf et la pacf de modèle ARMA décroissent tout deux lentement (ie.  $\widehat{\alpha}(k)$  décroit vers zéro et  $\widehat{\rho}(k)$  décroit vers zéro).

Tableau récapitulatif

|                      | i e                                             | i e                                           |
|----------------------|-------------------------------------------------|-----------------------------------------------|
|                      | AR(p)                                           | MA(q)                                         |
| $autocorr\'elations$ | décroissent de manière                          | $\rho\left(k\right) = 0 \ si \  k  > q$       |
| simples              | exponentielle                                   | $\rho\left(k\right) \neq 0 \ si \  k  \leq q$ |
| $autocorr\'elations$ | $\alpha\left(k\right) = 0 \ si \  k  > p$       | décroissent de manière                        |
| partielles           | $\alpha\left(k\right) \neq 0 \ si \  k  \leq p$ | exponentielle                                 |

#### 2.2.3 Détermination de l'ordre d'un modèle

La sélèction de modèle est un problème bien connu en statistique, l'orsque le modèle est fixé, l'une des reponses apportées par les statisticiens au problème de la sélèction du modèle est la minimisation d'un critère pénalisé. Les premiers critères apparaissant dans la littérature sont le critère d'information d'Akaiké[1] (1973) et le critère d'information Bayésienne (1978) sont les plus utilisés pour choisir le meilleur d'entre deux modèles plausibles. Un modèle est meilleur qu'un autre si son AIC et BIC est le plus petit, le critère d'information d'Akaiké est basé sur la distance de Kulback-Leiber[9], alors que le BIC est basé sur la vraisemblance intégrée dans la théorie bayésienne.

#### Le critère d'information d'Akaiké

Ce critère est basé essentiellement sur l'information de Kulback-Leiber, le critère *AIC* s'applique aux modèles estimés par une méthode du maximum de vraisemblance : les analyses de variance, les régressions linéaires multiples, les régressions logistiques et de poisson peuvent rentrer dans ce cadre.

Le critère AIC est défini par :

$$AIC = -2\log \widetilde{L} + 2K$$

où  $\widetilde{L}$  est la vraisemblance maximisée et K le nombre de paramètres dans le modèle.

Avec ce critère, la déviance du modèle  $-2\log\left(\widetilde{L}\right)$  est pénalisée par 2 fois le nombre de paramètres.

L'AIC représente donc un compromis entre le biais, diminuant avec le nombre de paramètres, et la parcimonie, volonté de décrire les données avec le plus petit nombre de paramètres possibles.

Le meilleur modèle est celui possédant l'AIC le plus faible.

Lorsque le nombre de paramètres K est grand par rapport au nombre d'observations N, C'est à dire si N/K < 40, il est recommandé d'utiliser l'AIC corrigé.

Le critère d'information d'Akaiké corrigé,  $AIC_c$ , est défini par :

$$AIC_c = AIC + \frac{2K(K+1)}{N-K-1}$$

#### Le critère d'information de Bayesien

Dans les statistiques, le critère d'information bayesien (BIC) ou le critère de Schwartz[14] est un critère pour la sélèction du modèle parmi un ensemble fini de modèles, le modèle avec le BIC le plus bas est préféré. Il repose en partie sur la fonction de vraisemblance et est étroitement lié au critère d'information AIC.

Le BIC à été développé par Gideon E Schwartz est formellement défini comme :

$$BIC = -2\ln\left(\widetilde{L}\right) + K\ln(N)$$

Le BIC est utilisée dans les problèmes de sélèction de modèles.

# Chapitre 3

# Applications sous R

Nous présentons dans ce chapitre des exempls pratiques sur la modélisation des séries chronologiques, que nous avons étudié dans les deux chapitres précédents. On utilise le logiciel R.3.3.1 et les packages "stats", "forecast".

Le logiciel R est un logiciel de statistique, developpé initialement au début des années 1990 par Ross Ihaka et Robert Gentleman, ce logiciel sert à manipuler des données, à tracer des graphiques et à faire des analyses statistiques .

On peut télécharger le logiciel R à l'aide de votre navigateur web usuelle à l'adresse suivante :

$$http: //cran.r - project.org/$$

Pour installer le package depuis l'internet, commencer par lancer le logiciel R ensuite aller dans le menu "Package" puis sous menu "Installer le(s) package(s)", sélèctionner un mirroir proche de votre situation :

```
-France(lyon1) [http] -France(lyon2) [http] et cliquer sur "ok" puis sélèctionner le package.
```

# 3.1 L'analyse des séries chronologiques

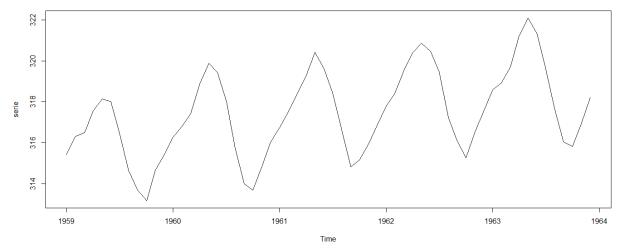
# 3.1.1 Création d'une série temporelle

co2: l'absorption de dioxyde de carbone dans les plantes herbeuses.

La fonction ts est utilisée pour la création d'un objet time series dont la syntaxe est donnée par :

```
ts(X, start, freq)
> library(stats)
> serie = ts(data.frame(co2), start = c(1959, 1), end = c(1963, 12), freq = 12)
> serie
                         Mar
                                                           Jul
        Jan
                 Feb
                                 Apr
                                         May
                                                  Jun
                                                                  Aug
                                                                           Sep
                                                                                   Oct
      315.42 316.31 316.50 317.56 318.13 318.00 316.39
                                                                 314.65
1959
                                                                         313.68
                                                                                  313.18
      316.27 316.81 317.42 318.87 319.87 319.43 318.01
1960
                                                                 315.74 314.00
                                                                                  313.68
 1961 316.73
               317.54 318.38 319.31
                                        320.42 319.61 318.42 316.63
                                                                         314.83
                                                                                  315.16
 1962
      317.78
               318.40 \quad 319.53 \quad 320.42 \quad 320.85 \quad 320.45 \quad 319.45
                                                                 317.25
                                                                         316.11
                                                                                  315.27
 1963
      318.58
               318.92 \quad 319.70 \quad 321.22 \quad 322.08 \quad 321.31 \quad 319.58 \quad 317.61 \quad 316.05
                                                                                  315.83
        Nov
                Dec
1959
      314.66
              315.43
 1960
      314.84 316.03
 1961
      315.94 \quad 316.85
1962 316.53 317.53
1963 316.91 318.20
> plot(serie, main = "l'absorption de dioxyde de carbone lecture à chaqueannée")
```





#### 3.1.2 Décomposition classique

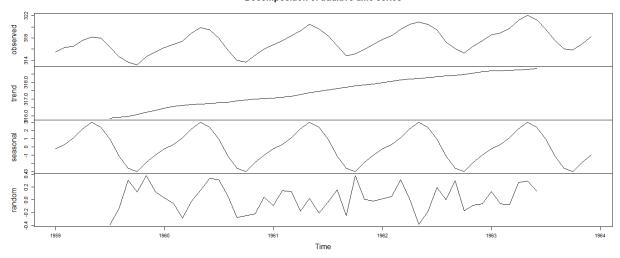
```
> m = decompose(serie, type = "additive")
> m
\$x
        Jan
                Feb
                       Mar
                               Apr
                                      May
                                               Jun
                                                       Jul
                                                              Aug
                                                                      Sep
                                                                              Oct
1959
      315.42
              316.31
                      316.50
                              317.56
                                     318.13 318.00
                                                     316.39
                                                             314.65
                                                                             313.18
                                                                     313.68
1960
      316.27
              316.81
                      317.42 318.87
                                     319.87
                                             319.43
                                                     318.01
                                                             315.74
                                                                     314.00
                                                                             313.68
1961
      316.73 317.54 318.38 319.31
                                     320.42 \quad 319.61 \quad 318.42 \quad 316.63 \quad 314.83 \quad 315.16
      317.78 318.40 319.53 320.42
                                     320.85
                                             320.45
                                                     319.45
                                                            317.25
                                                                     316.11
1962
                                                                             315.27
1963
      318.58
              318.92
                     319.70 321.22
                                     322.08
                                             321.31
                                                     319.58
                                                            317.61
                                                                     316.05
                                                                            315.83
       Nov
               Dec
 1959
      314.66 315.43
 1960 314.84 316.03
1961 315.94 316.85
1962 316.53 317.53
 1963 316.91 318.20
\$seasonal
                       Feb
                                   Mar
          Jan
                                                Apr
                                                             May
                                                                          Jun
1959
      -0.2169444
                    0.2964931
                                             2.2261806
                                                                       2.3678472
                                 1.0809722
                                                          3.0251389
      -0.2169444
                    0.2964931
                                             2.2261806
                                                                       2.3678472
1960
                                 1.0809722
                                                          3.0251389
1961
     -0.2169444
                    0.2964931
                                 1.0809722
                                             2.2261806
                                                          3.0251389
                                                                       2.3678472
1962 -0.2169444
                    0.2964931
                                 1.0809722
                                             2.2261806
                                                          3.0251389
                                                                       2.3678472
 1963 - 0.2169444
                                              2.2261806
                    0.2964931
                                 1.0809722
                                                          3.0251389
                                                                       2.3678472
           Jul
                       Aug
                                    Sep
                                                Oct
                                                             Nov
                                                                          Dec
1959
                                                         -1.9211111
       0.9252431
                   -1.1348611
                               -2.6078819
                                             -3.0118403
                                                                      -1.0292361
 1960
       0.9252431
                   -1.1348611
                               -2.6078819
                                             -3.0118403 -1.9211111 -1.0292361
1961
       0.9252431
                   -1.1348611 -2.6078819 -3.0118403 -1.9211111 -1.0292361
1962
                   -1.1348611 \quad -2.6078819 \quad -3.0118403 \quad -1.9211111 \quad -1.0292361
       0.9252431
1963
       0.9252431
                   -1.1348611 -2.6078819 -3.0118403 -1.9211111 -1.0292361
$trend
```

|                 | Jan           | Feb     | Mar          | Apr       | May       | Jun        | Jul       | Aug           |  |
|-----------------|---------------|---------|--------------|-----------|-----------|------------|-----------|---------------|--|
| 1959            | NA            | NA      | NA           | NA        | NA        | NA         | 315.8613  | 315.9175      |  |
| 1960            | 316.4558      | 316.568 | 7 316.6275   | 316.6617  | 316.6900  | 316.7225   | 316.7667  | 316.8163      |  |
| 1961            | 317.0412      | 317.095 | 4 317.1671   | 317.2633  | 317.3708  | 317.4508   | 317.5288  | 317.6083      |  |
| 1962            | 317.9812      | 318.050 | 0 318.1292   | 318.1871  | 318.2162  | 318.2692   | 318.3308  | 318.3858      |  |
| 1963            | 318.6679      | 318.688 | 3 318.7008   | 318.7217  | 318.7608  | 318.8046   | NA        | NA            |  |
|                 | Sep           | Oct     | Nov          | Dec       |           |            |           |               |  |
| 1959            | 315.9767      | 316.069 | 6 316.1967   | 316.3287  |           |            |           |               |  |
| 1960            | 316.8867      | 316.945 | 0 316.9863   | 317.0167  |           |            |           |               |  |
| 1961            | 317.6921      | 317.786 | 2 317.8504   | 317.9033  |           |            |           |               |  |
| 1962            | 318.4146      | 318.455 | 0 318.5396   | 318.6267  |           |            |           |               |  |
| 1963            | NA            | NA      | NA           | NA        |           |            |           |               |  |
| \$randa         |               |         |              | _         | _         |            |           |               |  |
|                 | Jan           |         | Feb          |           | $\int ar$ | Apr        |           | May           |  |
| 1959            | NA            |         | NA           |           | $^{T}A$   | NA         |           | NA            |  |
| 1960            | 0.031111      | 1111 –  | -0.055243055 | 6 -0.288  | 4722222   | -0.0178472 | 222 0.15  | 48611111      |  |
| 1961            | -0.094308     | 55556   | 0.1480902778 | 0.1319    | 444444    | -0.1795138 | 889 0.02  | 40277778      |  |
| 1962            | 0.015694      | 4444 (  | 0.0535069444 | 0.3198    | 611111    | 0.00673611 | 11 -0.39  | 913888889     |  |
| 1963            | 0.129027      | 7778 –  | 0.064826388  | 9 -0.0818 | 8055556   | 0.27215277 | 78 0.29   | 40277778      |  |
|                 | Jun           |         | Jul          | A         | ug        | Sep        |           | Oct           |  |
| 1959            | NA            | _       | -0.396493055 | 6 -0.132  | 6388889   | 0.31121527 | 78 0.12   | 22569444      |  |
| 1960            | 0.339652      | 7778    | 0.3180902778 | 0.0586    | 111111    | -0.2787847 | 222 -0.25 | 531597222     |  |
| 1961            | -0.208680     | 05556 - | -0.033993055 | 6 0.1565  | 277778    | -0.2542013 | 889 0.38  | 55902778      |  |
| 1962            | -0.1870138889 |         | 0.1939236111 | -0.0009   | 9722222   | 0.30329861 | 11 -0.1   | -0.1731597222 |  |
| 1963            | 0.1375694444  |         | NA           | N         | $^{r}A$   | NA         |           | NA            |  |
|                 | Nov           |         | Dec          |           |           |            |           |               |  |
| 1959            | 0.384444444   |         | 0.1304861111 |           |           |            |           |               |  |
| 1960            | -0.2251388889 |         | 0.0425694444 |           |           |            |           |               |  |
| 1961            | 0.010694      | 4444 –  | -0.024097222 | 2         |           |            |           |               |  |
| 1962            | -0.088472     | 22222 - | -0.067430555 | 6         |           |            |           |               |  |
| 1963<br>\$figur | NA            |         | NA           |           |           |            |           |               |  |

#### 3.1. L'ANALYSE DES SÉRIES CHRONOLOGIQUES

```
[1] -0.2169444
                 0.2964931
                              1.0809722
                                           2.2261806
                                                       3.0251389
                                                                    2.3678472
[7]
     0.9252431
                 -1.1348611 -2.6078819 -3.0118403 -1.9211111 -1.0292361
$type
[1]" additive"
attr(,"class")
[1]" decomposed.ts"
> plot(m)
```

#### Decomposition of additive time series



> m = decompose(serie, type = "mult")

> m

\$x

OctJanFebMarAprMayJunJulAugSep $315.42 \ 316.31 \ 316.50 \ 317.56 \ 318.13 \ 318.00 \ 316.39 \ 314.65 \ 313.68 \ 313.18$ 1959  $316.81 \ 317.42 \ 318.87 \ 319.87 \ 319.43 \ 318.01 \ 315.74 \ 314.00 \ 313.68$ 1960 316.271961 316.73 317.54 318.38 319.31  $320.42 \quad 319.61 \quad 318.42 \quad 316.63 \quad 314.83 \quad 315.16$  $1962 \quad 317.78 \quad 318.40 \quad 319.53 \quad 320.42 \quad 320.85 \quad 320.45 \quad 319.45 \quad 317.25 \quad 316.11 \quad 315.27 \quad 316.27 \quad 316$  $1963 \quad 318.58 \quad 318.92 \quad 319.70 \quad 321.22 \quad 322.08 \quad 321.31 \quad 319.58 \quad 317.61 \quad 316.05 \quad 315.83$ NovDec

1959 314.66 315.43

1960 314.84 316.03

 $1961 \quad 315.94 \quad 316.85$ 

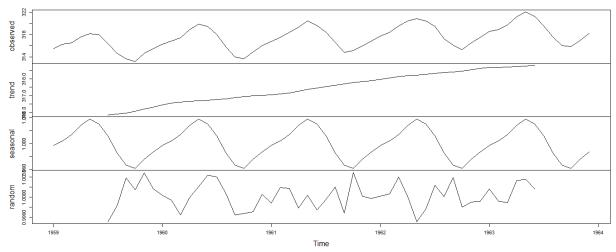
1962 316.53 317.53

1963 316.91 318.20

| \$seasonal                                           |                                                                                         |                                                                                         |                                                                                         |                                                                                         |                                  |                               |                                     |                                                  |
|------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------|-------------------------------|-------------------------------------|--------------------------------------------------|
|                                                      | Jan                                                                                     | Feb                                                                                     | Mar                                                                                     | Apr                                                                                     | $\sim$ $M$                       | $\overline{ay}$               | Jun                                 | Jul                                              |
| 1959                                                 | 0.9993195                                                                               | 1.0009367                                                                               | 1.00340                                                                                 | 51 1.0070                                                                               | 087 1.009                        | 95229 1                       | .0074537                            | 1.0029192                                        |
| 1960                                                 | 0.9993195                                                                               | 1.0009367                                                                               | 1.00340                                                                                 | 51 1.0070                                                                               | 087 1.009                        | 95229 1                       | .0074537                            | 1.0029192                                        |
| 1961                                                 | 0.9993195                                                                               | 1.0009367                                                                               | 1.00340                                                                                 | 51 1.0070                                                                               | 087 1.009                        | 95229 1                       | .0074537                            | 1.0029192                                        |
| 1962                                                 | 0.9993195                                                                               | 1.0009367                                                                               | 1.00340                                                                                 | 51 1.0070                                                                               | 087 1.009                        | 95229 1                       | .0074537                            | 1.0029192                                        |
| 1963                                                 | 0.9993195                                                                               | 1.0009367                                                                               | 1.00340                                                                                 | 51 1.0070                                                                               | 087 1.009                        | 95229 1                       | .0074537                            | 1.0029192                                        |
|                                                      | Aug                                                                                     | Sep                                                                                     | Oct                                                                                     | No                                                                                      | v $D$                            | lec                           |                                     |                                                  |
| 1959                                                 | 0.9964249                                                                               | 0.9917833                                                                               | 0.99051                                                                                 | 22 0.9939                                                                               | 518 0.996                        | 67619                         |                                     |                                                  |
| 1960                                                 | 0.9964249                                                                               | 0.9917833                                                                               | 0.99051                                                                                 | 22 0.9939                                                                               | 518 0.996                        | 67619                         |                                     |                                                  |
| 1961                                                 | 0.9964249                                                                               | 0.9917833                                                                               | 0.99051                                                                                 | 22 0.9939                                                                               | 518 0.996                        | 67619                         |                                     |                                                  |
| 1962                                                 | 0.9964249                                                                               | 0.9917833                                                                               | 0.99051                                                                                 | 22 0.9939                                                                               | 518 0.996                        | 67619                         |                                     |                                                  |
| 1963                                                 | 0.9964249                                                                               | 0.9917833                                                                               | 0.99051                                                                                 | 22 0.9939                                                                               | 518 0.996                        | 67619                         |                                     |                                                  |
| \$trend                                              | !                                                                                       |                                                                                         |                                                                                         |                                                                                         |                                  |                               |                                     |                                                  |
|                                                      | Jan                                                                                     | Feb                                                                                     | Mar                                                                                     | Apr                                                                                     | May                              | Jun                           | Jul                                 | Aug                                              |
|                                                      |                                                                                         |                                                                                         |                                                                                         |                                                                                         |                                  |                               |                                     | J                                                |
| 1959                                                 | NA                                                                                      | NA                                                                                      | NA                                                                                      | NA                                                                                      | NA                               | NA                            | 315.86                              | _                                                |
| 1959<br>1960                                         | NA $316.4558$                                                                           |                                                                                         | NA<br>316.6275                                                                          | NA<br>316.6617                                                                          | NA<br>316.6900                   | NA<br>316.722                 |                                     | 313 315.9175                                     |
|                                                      |                                                                                         | 316.5687                                                                                |                                                                                         |                                                                                         |                                  |                               | 25 316.76                           | 315.9175<br>367 316.8163                         |
| 1960                                                 | 316.4558                                                                                | 316.5687<br>317.0954                                                                    | 316.6275                                                                                | 316.6617                                                                                | 316.6900                         | 316.722                       | 25 316.76<br>08 317.52              | 315.9175<br>316.8163<br>288 317.6083             |
| 1960<br>1961                                         | 316.4558<br>317.0412                                                                    | 316.5687<br>317.0954<br>318.0500                                                        | 316.6275<br>317.1671                                                                    | 316.6617<br>317.2633                                                                    | 316.6900<br>317.3708             | 316.722<br>317.450            | 25 316.76<br>98 317.52<br>92 318.33 | 315.9175<br>316.8163<br>317.6083<br>308 318.3858 |
| 1960<br>1961<br>1962                                 | 316.4558<br>317.0412<br>317.9812                                                        | 316.5687<br>317.0954<br>318.0500                                                        | 316.6275<br>317.1671<br>318.1292                                                        | 316.6617<br>317.2633<br>318.1871                                                        | 316.6900<br>317.3708<br>318.2162 | 316.722<br>317.450<br>318.269 | 25 316.76<br>98 317.52<br>92 318.33 | 315.9175<br>316.8163<br>317.6083<br>308 318.3858 |
| 1960<br>1961<br>1962                                 | 316.4558<br>317.0412<br>317.9812<br>318.6679                                            | 316.5687<br>317.0954<br>318.0500<br>318.6883<br>Oct                                     | 316.6275<br>317.1671<br>318.1292<br>318.7008                                            | 316.6617<br>317.2633<br>318.1871<br>318.7217                                            | 316.6900<br>317.3708<br>318.2162 | 316.722<br>317.450<br>318.269 | 25 316.76<br>98 317.52<br>92 318.33 | 315.9175<br>316.8163<br>317.6083<br>308 318.3858 |
| 1960<br>1961<br>1962<br>1963                         | 316.4558<br>317.0412<br>317.9812<br>318.6679<br>Sep                                     | 316.5687<br>317.0954<br>318.0500<br>318.6883<br>Oct<br>316.0696                         | 316.6275<br>317.1671<br>318.1292<br>318.7008<br>Nov                                     | 316.6617<br>317.2633<br>318.1871<br>318.7217<br>Dec                                     | 316.6900<br>317.3708<br>318.2162 | 316.722<br>317.450<br>318.269 | 25 316.76<br>98 317.52<br>92 318.33 | 315.9175<br>316.8163<br>317.6083<br>308 318.3858 |
| 1960<br>1961<br>1962<br>1963                         | 316.4558<br>317.0412<br>317.9812<br>318.6679<br>Sep<br>315.9767                         | 316.5687<br>317.0954<br>318.0500<br>318.6883<br>Oct<br>316.0696<br>316.9450             | 316.6275<br>317.1671<br>318.1292<br>318.7008<br>Nov<br>316.1967<br>316.9863             | 316.6617<br>317.2633<br>318.1871<br>318.7217<br>Dec<br>316.3287<br>317.0167             | 316.6900<br>317.3708<br>318.2162 | 316.722<br>317.450<br>318.269 | 25 316.76<br>98 317.52<br>92 318.33 | 315.9175<br>316.8163<br>317.6083<br>308 318.3858 |
| 1960<br>1961<br>1962<br>1963<br>1959<br>1960         | 316.4558<br>317.0412<br>317.9812<br>318.6679<br>Sep<br>315.9767<br>316.8867             | 316.5687<br>317.0954<br>318.0500<br>318.6883<br>Oct<br>316.0696<br>316.9450<br>317.7862 | 316.6275<br>317.1671<br>318.1292<br>318.7008<br>Nov<br>316.1967<br>316.9863             | 316.6617<br>317.2633<br>318.1871<br>318.7217<br>Dec<br>316.3287<br>317.0167             | 316.6900<br>317.3708<br>318.2162 | 316.722<br>317.450<br>318.269 | 25 316.76<br>98 317.52<br>92 318.33 | 315.9175<br>316.8163<br>317.6083<br>308 318.3858 |
| 1960<br>1961<br>1962<br>1963<br>1959<br>1960<br>1961 | 316.4558<br>317.0412<br>317.9812<br>318.6679<br>Sep<br>315.9767<br>316.8867<br>317.6921 | 316.5687<br>317.0954<br>318.0500<br>318.6883<br>Oct<br>316.0696<br>316.9450<br>317.7862 | 316.6275<br>317.1671<br>318.1292<br>318.7008<br>Nov<br>316.1967<br>316.9863<br>317.8504 | 316.6617<br>317.2633<br>318.1871<br>318.7217<br>Dec<br>316.3287<br>317.0167<br>317.9033 | 316.6900<br>317.3708<br>318.2162 | 316.722<br>317.450<br>318.269 | 25 316.76<br>98 317.52<br>92 318.33 | 315.9175<br>316.8163<br>317.6083<br>308 318.3858 |

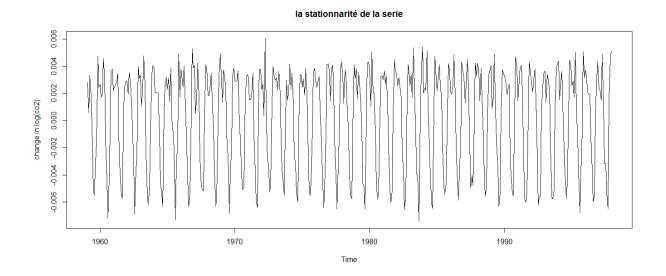
|                         | Jan       | Feb       | Mar       | Apr         | May         | Jun       | Jul         |  |
|-------------------------|-----------|-----------|-----------|-------------|-------------|-----------|-------------|--|
| 1959                    | NA        | NA        | NA        | NA          | NA          | NA        | 0.9987585   |  |
| 1960                    | 1.0000933 | 0.9998255 | 0.9991009 | 0.9999653   | 3 1.0005136 | 1.0010867 | 7 1.0010030 |  |
| 1961                    | 0.9996985 | 1.0004649 | 1.0004177 | 7 0.9994461 | 1.0000839   | 0.9993527 | 0.9998880   |  |
| 1962                    | 1.0000476 | 1.0001636 | 1.0009948 | 8 1.0000088 | 0.9987655   | 0.9994029 | 1.0005948   |  |
| 1963                    | 1.0004049 | 0.9997904 | 0.9997309 | 9 1.0008241 | 1.0008814   | 1.0004021 | NA          |  |
|                         | Aug       | Sep       | Oct       | Nov         | Dec         |           |             |  |
| 1959                    | 0.9995614 | 1.0009561 | 1.0003489 | 9 1.0011955 | 5 1.0003982 | }         |             |  |
| 1960                    | 1.0001787 | 0.9990999 | 0.9991786 | 6 0.9992730 | 1.0001261   |           |             |  |
| 1961                    | 1.0004966 | 0.9992012 | 1.0012354 | 4 1.0000380 | 0.9999245   | •         |             |  |
| 1962                    | 1.0000077 | 1.0009872 | 0.9994815 | 5 0.9997378 | 0.9997956   | ;         |             |  |
| 1963                    | NA        | NA        | NA        | NA          | NA          |           |             |  |
| \$figure                |           |           |           |             |             |           |             |  |
| [1]                     | 0.9993195 | 1.0009367 | 1.0034051 | 1.0070087   | 1.0095229   | 1.0074537 | 1.0029192   |  |
| [8]                     | 0.9964249 | 0.9917833 | 0.9905122 | 0.9939518   | 0.9967619   |           |             |  |
| \$type                  |           |           |           |             |             |           |             |  |
| [1]" $multiplicative$ " |           |           |           |             |             |           |             |  |
| attr(,"class")          |           |           |           |             |             |           |             |  |
| [1]" $decomposed.ts$ "  |           |           |           |             |             |           |             |  |
| > plot(m)               |           |           |           |             |             |           |             |  |

#### Decomposition of multiplicative time series



#### 3.1.3 La méthode de différence

Pour tester la stationnairité avec R on peut soit utiliser la fonction  $diff(\log())$ .  $> plot(diff(\log(co2)), ylab = "changeinlog(co2)", main = "la stationnarité de la serie", type = "l")$ 



### 3.2 La méthode de Box-Jenkins

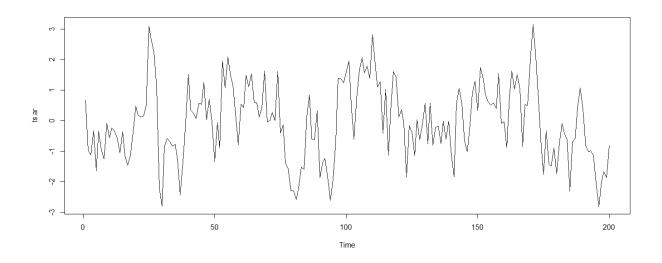
On applique la méthode de Box-Jenkins sur les processus AR(p), MA(q) et ARMA(p,q).

Premièrement on installe le package "stats" et on charge le package à l'aide de la commande library():

## **3.2.1** Pour un processus AR(1)

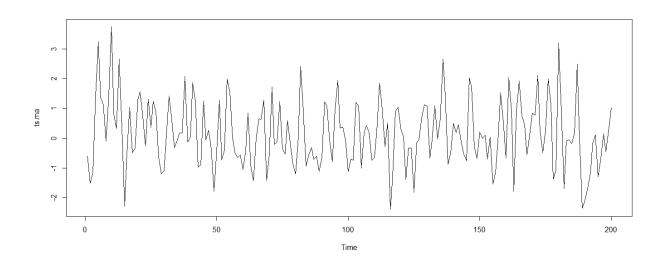
$$X_t = 0.7X_{t-1} + Z_t$$
  
>  $ts.ar = arima.sim(list(order = c(1, 0, 0), ar = 0.7), n = 200)$ 

> ts.plot(ts.ar, type = "l")



## **3.2.2** Pour un processus MA(1)

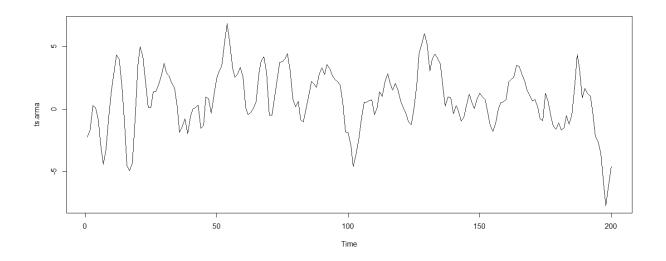
$$X_t = 0.7Z_{t-1} + Z_t$$
  
>  $ts.ma = arima.sim(list(order = c(0, 0, 1), ma = 0.7), n = 200)$   
>  $ts.plot(ts.ma, type = "l")$ 



## **3.2.3** Pour un processus ARMA(1,1)

> ts.arma = arima.sim(list(order=c(1,0,1),ar=0.8,ma=0.6),n=200)

> ts.plot(ts.arma, type = "l")



# 3.3 Identification

## 3.3.1 Ajustement d'un modèle

## Pour AR(1):

> par(mfrow = c(1,2))

1

> ARMAacf(ar = 0.7, lag.max = 5) #corrélations

2

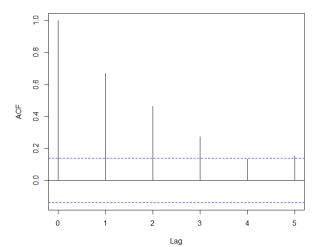
- 3 4

5

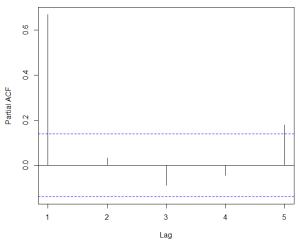
- $1.00000 \ 0.70000 \ 0.49000 \ 0.34300 \ 0.24010 \ 0.16807$
- > acf(ts.ar, 5)
- > ARMAacf(ar = 0.7, lag.max = 5, pacf = T) #corrélations partielles
- $[1] \quad 0.7 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0$

> pacf(ts.ar, 5)





# Series ts.ar



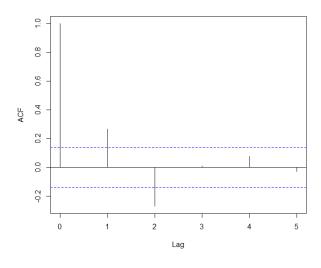
## Pour MA(1):

> par(mfrow = c(1,2))

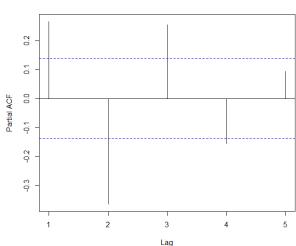
> acf(ts.ma, 5)

> pacf(ts.ma, 5)

#### Series ts.ma



#### Series ts.ma

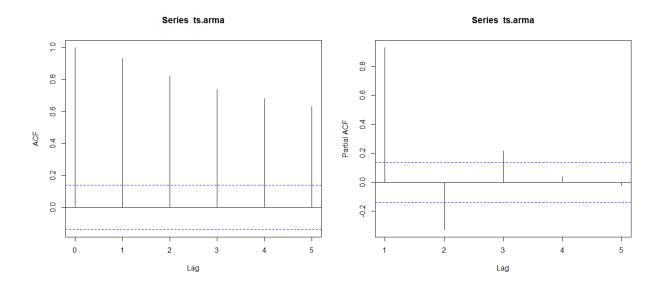


## Pour ARMA(1,1):

> par(mfrow = c(1,2))

> acf(ts.arma, 5)

> pacf(ts.arma, 5)



#### 3.3.2 Le choix de modèle

```
> library(forecast)
> x = rnorm(60)
> x.arma = Arima(x, order = c(1, 0, 1))
> x.arma
Series: x
ARIMA(1,0,1) with non - zero mean
Coefficients:
       ar1
               ma1
                       mean
     -0.6980 0.8926 -0.1365
      0.1785
               0.1117
                       0.1226
s.e.
sigma^2 estimated as 0.7658: log likelihood = -75.75
AIC = 159.5 \ AICc = 160.22 \ BIC = 167.87
> x.ARMA = Arima(x, order = c(3, 0, 3))
> x.ARMA
Series: x
ARIMA(3,0,3) with non - zero mean
Coefficients:
```

$$AIC = 161.32$$
  $AICc = 164.14$   $BIC = 178.08$ 

On remarque que :

$$AIC(ARMA(1,1)) = 159.5 < AIC(ARMA(3,3)) = 161.32$$

$$\operatorname{et}$$

$$BIC(ARMA(1,1)) = 167.87 < BIC(ARMA(3,3)) = 178.08$$

Donc ARMA(1,1) est le meilleur modèle car son AIC et BIC sont le plus petit.

# Conclusion

Notre travail est basé sur la modélisation des séries chronologiques, en utilisant la méthode de Box-Jenkins, on s'intéresse au modèle stationnaire ARMA à l'aide des fonctions d'autocorrélations, l'autocorrélations partielles et les critères d'information notamment AIC et BIC.

On peut conclure à des valeurs prévisionnelles et des résultats satisfaisants et homogènes qui nous conforte dans notre conviction que la méthode utilisée est la plus adéquate pour effectuer notre études.

# Bibliographie

- [1] Akaiké. H, "Information theory and anextension of the maximum likelihood principale", Institute of statistical Mathématics 4-6-7 Minami Azbu, Minato-ru, Tokyo, Japan 106, 2nd Internatial Symposium on Information Theory.
- [2] Box G.E.P. and Jenkins G.H. Time series analysis, Forecasting and Conntrol. Holden Day, San Francisco (1976).
- [3] Broekwell.P.J. and Davis R.A. Time series: "Theory and methods". Springer-verlag, New York, 2<sup>nd</sup> Ed. (1996).
- [4] Jonathan D. Cryer Kung-Sik Chan. Time series Analysis with application in R. second edition (2008).
- [5] Hamilton J.D. Time series analysis. Princeon University Press, Princeton (1994).
- [6] Kalman, R. E, "A new approach to linear filtering and prediction problems theory, "J. Basic Engrg, 1961.
- [7] Kalman, R. E, and R. S. Bucy, "New results in linear filtering and prediction theory, "J. Basic Engrg, 1961.
- [8] Kolmogoroff, A, "stationary sequences in Hilbert space, "Bull. Math. Univ. Moscow, 1941.
- [9] Kullback, S. and Leiber, R, A, "On information and sufficiency". Ann. Math. Statist. 1951.
- [10] Michel Lubrano. Introduction à la modélisation des séries temporelles univariées. September 2008.
- [11] O.Roustant. Introduction aux séries chronologiques. Novembre 2008.
- [12] Rainer Von Sachs and Sébastien Van Bellogem, stat 2414, séries chronologiques, 4ème édition 26 sepembre 2005.

- [13] Régis Bourbonnais Michel Terraza, Analyse des séries temporelles. Applications à l'économie et à la gestion, Dunod 2016.
- [14] Schwarz, G. "Estimant la dimension d'un modèle". Annales des statistiques. 1978.
- [15] Shuster, A, "On the investigation of hidden periodicities," Terr. Mag. Atmos. Elect, 1898.
- [16] V.Monbet. Modélisation des séries temporelles. 2011.
- [17] Wiener, N, "Extrapolation, Interpolation and Smoothing of Stationary Time Series", Wiley, New York, 1949.
- [18] Wold, H, O, "A study in the analysis of stationary time series", Almqvist & Wiksell, Uppsala, Sweden, 1938 (2nd. ed. 1954).
- [19] Yule, G, U, "On a methode of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers", 1927.