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Introduction

Mathematical modelling and its applications to various phenomena of physics, biology and

ecology often lead to problems with nonclassical boundary conditions. Boundary conditions of

such a type are called nonlocal boundary conditions (boundary integral conditions). Nonlocal

initial boundary-value problems are important from the point of view of their practical applica-

tion to modelling and investigating of pollution processes in rivers and seas, which are caused

by sewage, in various physical phenomena in the context of chemical engineering, thermoelas-

ticity, population dynamics, heat conduction processes, plasma physics, underground-water

�ow, transmission theory, chemical engineering, control theory, medical science, life sciences

and so forth (see [9, 52]and references therein). It is the reason why such nonlocal mixed prob-

lems gained much attention in recent years, not only in engineering but also in mathematics

community. One of the �rst works, where nonlocal conditions were considered, is [33]. The

nonlocal problem was investigated by applying the method of separation of variables and the

corresponding eigenvalues and eigenfunctions were considered. First, the systematic investiga-

tion of some class of spatial nonlocal problems was carried out in [30]. Further, in the works

[62, 63] resolution methods for such problems in the case of rather general elliptic equations

were suggested. Note that theoretical study of nonlocal problems is connected to great di¢ cul-

ties. The functional analysis, the energy method and the method of singular integral equations

are usually hard to apply in the investigation of problems of this type. The adopted method

is based on the idea introduced in [88], and [81], presented in a form studied for the �rst time

in [54]. This method has been used for the investigation of mixed problems related to elliptic

partial di¤erential equations [78, 79, 82], parabolic equations [11, 19, 27, 40, 41, 57, 70, 79]

hyperbolic equations, [13, 15, 17, 18, 20, 22, 6, 42, 57, 65, 66, 79, 109, 111, 112], pluriparabolic

equations [10, 14], plurihyperbolic equations [105], composite equations [28], mixed equations

[3, 77, 12], non-classical equations[29, 8, 16, 21],operation equations [31, 32, 55, 57, 75], and

transmission problems [66].

Some problems of modern physics and technology can be e¤ectively described in terms of

nonlocal (integral) problems for partial di¤erential equations. These nonlocal conditions arise
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mainly when the data on the boundary cannot be measured directly.

The �rst paper devoted to second order partal di¤erential equations with non local integral

conditions goes back to Cannon [33]. Later, the problems with nonlocal integral conditions for

parabolic equations were investigated by [75], [70], [128], [9]. Problems for elliptic equations

with operator nonlocal conditions were considered by Guschin[68], Skubachevskii [115], Paneiah

[110].

In recent years, much attention has been focused on the study of hyperbolic equations

with purely integral conditions. Such a condition appears in cases where, for instance, direct

measurement quantities are impossible and their mean values are known. Such situations take

place, for example, in elastodynamics. The physical signi�cance of integral conditions (mean,

total �ux, total energy, total mass, moment, ...) has served as a fundamental reason for the

interest carried to this type of problems. The �rst investigation of hyperbolic problems goes

back to Bouziani[13] in (1996), in which the author proved the existence, uniqueness, and

continuous dependence of the solution upon the data for some hyperbolic problems with only

integral boundary conditions. Later, similar problems have been studied in [11, 14, 15, 23, 104]

by using the energetic method and Roth time-discretization method. We refer the reader to

[6, 8, 10, 12, 13, 14, 22, 62, 104, 94, 111, 112, 113] for hyperbolic equations with Neumann and

integarl conditions. For other problems with nonlocal conditions, related to other equations,

we refer to[4, 8, 14, 15, 22] and references therein.

The presence of integral terms in the boundary conditions can greatly complicate the

application of standard numerical techniques such as �nite di¤erence procedures, �nite ele-

ments methods, spectral techniques, etc. Some other models of nonlocal boundary conditions

are numerically solved by Dehghan[45, 46, 47], Bensaid et al. by the Modi�ed Backward

Euler Scheme[7], Bouziani et al. by Galerkin method[26], Rehman et al.by Method of Line

(MOL)[114], Merad et al by Laplace transform technique[92, 93, 95, 96, 97, 98, 99].

So far, not much seems to have been done for obtaining an explicit solution of heat and

wave equations. However, the solvability of these equations has been theoretically studied in

terms of existence and uniqueness of a solution. The main tool used in this thesis is the Laplace

transform and then used the numerical technique for the inverse Laplace tarnsform to obtain

the numerical solution.
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The Laplace transform method has been used to approximate the solution of di¤erent

classes of linear partial di¤erential equations[4, 5, 76, 89]. Suying et al.[120], established a

numerical method based on the Laplace transform for solving initial problem nonlinear dynamic

di¤erential equations. The main di¢ culty in using the Laplace transform method consists in

�nding its inverse. Numerical inversion methods are then used to overcome this di¢ culty.

There are many numerical techniques available in literature to invert Laplace transforms. In

this thesis, we focus exclusively on the Stehfest inversion algorithm[117] in order to e¢ ciently

and accurately invert the Laplace tarnsform (which cannot be done analytically). We �rst take

the Lapalce tarnsform of the equations to reduce the problem to a second order inhomogeneous

ordinary di¤erential equations with nonlocal condition. The reduced problem can be solved

by the method of variation of parameter. After discretization, we use a numerical method for

inverting the Laplace transform to get approximate solution.

The aim of this thesis is to establish the existence, uniqueness and the continuous depen-

dence upon the data for the solution of some linear problems. The proofs are based on an a

priori estimate and the Laplace transform technique. Furthermore, we give some numerical

exemples for comparaison between numerical and exact solutions. This thesis is organized as

follows.

In chapter one, we give the necessary tools and some notions on the theory of the used

function spaces and on the theory of Lapalce transform, as well as some important inequalities.

Chapter two is devoted to the investigation a one-dimensional parabolic problem with

purely integral conditions. The existence and uniqueness of a solution are established.

In chapter three, we study a one-dimensional hyperbolic problem with purely integral

conditions. We prove the existence and uniqueness of solution of the given problem.First, we

establish an a priori estimate from which we deduce the uniqueness of the solution. For the

solvability of the associated problem, we apply the Laplace transform technique to obtain the

numerical solution using the Stehfest algorithm.

Chapter four is preserved to the study of a Telegraph equation. Thus, we establish the

existence and uniqueness which are mainly based on a priori estimate and the Laplace transform

technique. Afterwards, the approximate solution is obtained by the Stehfest algorithm.

In Chapter �ve, we prove the existence and uniqueness of solution of the pseudohyperbolic
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equation with nonlocal boundary conditions, the proofs besed by a priori estimate and Laplace

inversion transform.

Chapter six, we study two problems. The �rst problem (Parabolic Integro-di¤erential

equation with purely integral conditions) is solved by the previous techniques, whereas the

second problem (Hyperbolic Integro-di¤erential equation with purely integral conditions) is

treated by the same procedure.

Finally, we give a complete bibliography mainly on the treated subject and related ones.



Chapter 1

Preliminary notions

1.1 Hilbert Space

We introduce the appropriate function spaces that will be used in the remainder. Let H =

L2 (
), where 
 = (0; 1), be a Hilbert space with a norm k:kH

De�nition 1 (i) Denote by L2 (0; T;H) the set of all square measurable abstract functions

u (:; t) from (0; T ) into H equipped with the norm

kukL2(0;T;H) =

0@ TZ
0

ku (:; t)k2H dt

1A1=2

<1 (1.1)

(ii) Let C (0; T;H) be the set of all continuous functions u (:; t) : (0; T ) �! H with

kukC(0;T;H) = max
0�t�T

ku (:; t)kH <1 (1.2)

(iii) We denote by C0 (
) the vector space of continuous functions with compact support in


: Since such function are Lebesgue integrable with respect to x, we can de�ne on C0 (
) the

bilinear form given by

((u;w)) =

Z



Jmx u:J
m
x wdx; m � 1 (1.3)

where

Jmx u =

xZ
0

(x� �)m�1

(m� 1)! u (�; t) d�; for m � 1: (1.4)

The bilinear form (1:3)is considered as a scalar product on C0 (
) is not complete.
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1.2 Bouziani Space

De�nition 2 Denote by Bm
2 (
), m � 1 the completion of C0 (
) for the scalar product (1:3),

which is denoted (:; :)Bm2 (
) ; introduced by [9]. By the norm of function u from Bm
2 (
), m � 1,

we inderstand the nonnegative number:

kukBm2 (
) =

0@Z



(Jmx u)
2 dx

1A1=2

= kJmx uk ; for m � 1 (1.5)

Lemma 1 For all m 2 N�; the following inequality holds:

kuk2Bm2 (
) �
1

2
kuk2Bm�12 (
) : (1.6)

Proof. See [9].

Corollary 2 For all m 2 N�, we have the elementary inequality

kuk2Bm2 (
) �
�
1

2

�m
kuk2L2(
) : (1.7)

De�nition 3 We denote by L2(0; T ;Bm
2 (
)) the space of functions which are square integrable

in the Bochner sense, with the scalar product (u;w)L2(0;T ;Bm2 (
)) =
R T
0
(u (:; t) ; w (:; t))Bm2 (
)

dt.

Since the space Bm
2 (
) is a Hilbert space, it can be shown that L

2(0; T ;Bm
2 (
)) is a Hilbert

space as well. The set of all continuous abstract functions in [0; T ] equipped with the norm

sup
0�t�T

ku (:; t)kBm2 (
) (1.8)

is denoted by C(0; T ;Bm
2 (0; 1)).

Corollary 3 We deduce the continuity of the imbedding L2 (
) �! Bm
2 (
), for m � 1.

1.3 Important inequalities

Lemma 4 (Gronwall Lemma) Let f1 (t) ; f2 (t) � 0 be two integrable functions on [0; T ] ;

f2 (t) is nondecreasing. If

f1 (�) � f2 (�) + c

Z �

0

f1 (t) dt; 8� 2 [0; T ] ,

where c 2 R+, then

f1 (t) � f2 (t) exp (ct) ; 8t 2 [0; T ] : (1.9)
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Proof. The proof is the same as that of Lemma 1.3.19 in [72].

Cauchy-Schwarz integral inequality:

For any u; v 2 L2 (
), we have the following inequality:

Z



u (x) :v (x) dx �

0@Z



u2 (x) dx

1A 1
2
0@Z



v2 (x) dx

1A 1
2

; (1.10)

Holder�s inequality:

For u; v 2 Lp (
), we have

Z



u (x) :v (x) dx �

0@Z



up (x) dx

1A 1
p
0@Z



v2 (x) dx

1A 1
p

; p > 1: (1.11)

This inequality is the generalization of Cauchy-Schwarz integral inequality.

Cauchy inequality with ":

For all " > 0;and for arbitrary a; b in R we have the inequality

jabj � "

2
jaj2 + 1

2"
jbj2 : (1.12)

Young�s inequality with ":

For all " > 0;and for arbitrary a; b in R we have the inequality

jabj � 1

p
j"ajp + p� 1

p

����b"
���� p
p�1

for all p > 1; (1.13)

which is the generalization of Cauchy inequality with ":

1.4 Laplace Transform Method

1.4.1 Introduction

Many problems in engineering and physics can be described in terms of the evolution of solu-

tions of linear di¤erential equations subject to initial conditions. An important group of these

problems involves constant coe¢ cient di¤erential equations, and equations like these can be

solved very easily by using the Laplace transform.
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The Laplace transform is an integral transform that changes a real variable function f(t)

into a function F (s) of a variable s through F (s) = L (f (t)) =
R1
0
exp (�st) f (t) dt; where in

general s is a complex variable.

The importance of the Laplace transform in the study of initial value problems for linear

constant coe¢ cient di¤erential equations is that it replaces the operation of integrating a dif-

ferential equation in f(t) by much simpler algebraic operations involving F (s). Unlike previous

methods, where �rst a general solution is found, and then the constants in the complementary

function are chosen to match the initial conditions, when the Laplace transform method is used

the initial conditions are incorporated from the start. The task of �nding the function f(t) from

its Laplace transform F (s) is called inverting the transform, and when working with constant

coe¢ cient equations we can accomplish this by appeal to the table of Laplace transform pairs,

that is, to a table listing a function f(t) and its corresponding Laplace transform F (s):

Laplace transform is a powerful method for solving di¤erential equation in engineering

and science. However, using the Laplace transform for solving di¤erential equations sometimes

leads to solutions in the Laplace domain that are not readily invertible to the real domain by

analytical means. Numerical inversion methods are then used to convert the obtained solution

from the Laplace domain into the real domain.

A very powerful technique for solving these problems is that of the Laplace transform, which

literally transforms the original di¤erential equation into an elementary algebraic expression.

Laplace transform is an e¢ cient method for solving di¤erential equation, partial di¤erential

equation, and integral di¤erential equation. The main di¢ culty with Lapalce transform method

is in inverting the Laplace domain solution into the real domain. Sometimes, an analytical

inversion of a Laplace domain solution is di¢ cult to obtain; thus, a numerical inversion method

(Stehfest inversion algorithm[117]).

The Laplace transformation method plays a signi�cant role in application areas such as

physics and engineering, with a growing interest in areas such as computational �nance. It is a

powerful tool for the solution of ordinary di¤erential equations, as well as of partial di¤erential

equations.
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1.4.2 Laplace Transform

Fundamental Ideas

Let the real function f(t) be de�ned for a � t � b, and let the function K(t; s) of the variables

t and s be de�ned for a � t � b and some s:When it exists, the integral
R b
a
f(t) K(t; s)dt is a

function of the single variable s. Set

F (s) =

Z b

a

f(t)K(t; s)dt (1.14)

The function F (s) in (1:14) is called the integral transform of f(t); the function K(t; s) is

the kernel of the transform, and s is the transform variable. The limits a and b may be �nite

or in�nite, and when at least one limit is in�nite the integral in (1:14) becomes an improper

integral.

When it exists, the Laplace transform F (s) of a real function f(t) with domain of de�nition

0 � t <1 is de�ned as the integral transform (1:14) with the kernel K(t; s) = exp (�st) ; the

interval of integration 0 � t < 1; and s a complex variable such that Re s < c for some non

negative constant c; so that

F (s) = L (f (t)) =
Z 1

0

exp (�st) f (t) dt; (1.15)

Throughout the present thesis, the transform variable s will be considered to be a positive

real variable, and c will be chosen such that the integral in (1:15) converges. However, when

we consider the general problem of recovering a function f(t) from its Laplace transform F (s),

it will be seen that s must be allowed to be a complex variable. The advantage of restricting

s to the real variable case in this thesis is that the recovery of many useful and frequently

occurring functions f(t) from their Laplace transforms F (s) can be accomplished in a very

simple manner without the use of complex variable methods.

The reason for interest in integral transforms in general, and the Laplace transform in

particular, will become clear when the solution of initial value problems for di¤erential equations

is considered. It will then be seen that the Laplace transform replaces integrations with respect

to t by simple algebraic operations involving F (s). So, provided f(t) can be recovered from

F (s) in a simple manner, the solution of an initial value problem can be found by means of

straightforward algebraic operations.
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Clearly, the kernel exp (�st) will only decrease as t increases if s > 0; and the Laplace

transform of f(t) will only be de�ned for functions f(t) that decrease su¢ ciently rapidly as

t ! 1 for the integral in (1:14) to exist. In general, if the function to be transformed is

denoted by a lower case letter such as f; then its Laplace transform will be denoted by the

corresponding uppercase letter F; as in (1:14) : It is convenient to denote the Laplace transform

operation by the symbol L; so that symbolically: F (s) = Lff (t)g :

1.4.3 Formal de�nition of the Laplace transform

Let f(t) be de�ned for 0 � t < 1: Then, when the improper integral exists, the Laplace

transform F (s) of f(t);written symbolically F (s) = Lff (t)g, is de�ned as

F (s) = Lff (t)g =
Z 1

0

exp (�st) f (t) dt;

1.4.4 Laplace transform pair and inverse transform

The two functions f(t) and F (s) are called a Laplace transform pair, and for all ordinary

functions, given F (s) the corresponding function f(t) is determined uniquely, just as f(t)

determines F (s) uniquely. This relationship is expressed symbolically by using the symbol L�1

to denote the operation of �nding a function f(t) with a given Laplace transform F (s):This

process is called �nding the inverse Laplace transform of F (s): In terms of the foregoing example,

we have Lfexp (at)g = 1= (s� a) and L�1 f1= (s� a)g = exp (at) : This is a particular case

of the general result that, by de�nition, the inverse Laplace transform acting on the Laplace

transform of the function returns the original function, so we can write

L�1 fL ff (t)gg = f (t) : (1.16)

1.4.5 Numerical inversion of Laplace transform

Sometimes, an analytical inversion of a Laplace domain solution is di¢ cult to obtain; therefore

a numerical inversion method must be used. A nice comparison of four frequently used numeri-

cal Laplace inversion algorithms is given by H. Hassanzadeh et al. [69]: In this work we use the
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Stehfest�s algorithm [117] that is easy to implement. This numerical technique was �rst intro-

duced by Graver [61] and its algorithm then o¤ered by [117]:Stehfest�s algorithm approximates

the time domain solution as

u (x; t) � ln 2

t

2mX
n=1

�nU

�
x;
n ln 2

t

�
; (1.17)

where m is a positive integer,

�n = (�1)
n+m

min(n;m)X
k=[n+12 ]

km (2k)!

(m� k)!k! (k � 1)! (n� k)! (2k � n)!
; (1.18)

and [q] denotes the integer part of the real number q.

1.5 Existence of Laplace transform Method

A su¢ cient condition for the existence of the Laplace transform of a function f(t) is that the

absolute value of f(t) can be bounded for all t � 0 by

jf (t)j �M exp (�t) ; (1.19)

for some constantsM and �. This means that if numbersM and � can be found such that

jexp (�st) f (t)j �M exp ((�� s) t) ;

then

Lff (t)g =

Z 1

0

exp (�st) f (t) dt

� M

Z 1

0

exp ((�� s) t) dt

=
M

s� �

The integral on the right will be convergent provided that s > � > 0; so when this is true

the Laplace transform F (s) = Lff (t)g will exist. It should be clearly understood that (1:19)

is only a su¢ cient condition for the existence of a Laplace transform, and not a necessary one,

because Laplace transforms can be found for functions that do not satisfy condition (1:19) : For

example, the function f(t) = t�1=4 does not satisfy condition (1:19) :
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The preceding inequality implies that when Lff (t)g exists, F (s) must be such that

lim
s!1

F (s) = 0.

In addition, the condition Lff (t)g �M= (s� �) implies that F (s) cannot be the Laplace

transform of on ordinary function f(t) unless F (s)! 0 as s!1:

The Laplace transform is a linear operation, and the consequence of this important and

useful property is expressed in the following theorem.

1.5.1 Fundamental linearity property

Theorem 5 (Linearity of the Laplace transform) Let the functions f1 (t) ; f2 (t) ; :::; fn (t)

have Laplace transforms, and let c1; c2; :::; cn be any set of arbitrary constants. Then

Lfc1f1 (t) + c2f2 (t) + + cnfn (t)g = c1Lff1 (t)g+ c2Lff2 (t)g+ cnLffn (t)g (1.20)

This theorem has many applications and its use is essential when working with the Laplace

transform. The process of �nding an inverse Laplace transform involves reversing the foregoing

argument and seeking a function f(t) that has the required Laplace transform F (s):Where

possible, this is accomplished by simplifying the algebraic structure of F (s) to the point at

which it can be recognized as the sum of the Laplace transforms of known functions of t:

1.5.2 In�nite Series

For a general in�nite series,
P1

n=0 ant
n, it is not possible to obtain the Laplace transform of

the series by taking the transform term by term.

Theorem 6 If

f (t) =
1X
n=0

ant
n

converges for t � 0; with

janj �
K�n

n!
;

for all n su¢ ciently large and � > 0; K > 0; then

L (f (t)) =
1X
n=0

anL (tn) =
1X
n=0

ann!

sn+1
, (Re(s) > �) (1.21)
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1.5.3 Gamma function

This provides a way of representing the factorial n! in terms of an integral, and it is our �rst

encounter with a special case of the Gamma function that will be required later. The gamma

function, denoted by � (x) for x > 0; is de�ned by

� (x) =

Z 1

0

exp (�t) tx�1dt

In terms of the earlier notation, when the restriction that n is an integer is removed, and

n is replaced by a positive real variable x; we have

� (x+ 1) =

Z 1

0

exp (�t) txdt = I (x; 1) ;

but

I (x; 1) = xI (x� 1; 1) = x� (x) for x > 0;

So, combining results shows that the gamma function satis�es the fundamental relation

� (x+ 1) = x� (x) for x > 0:

It is easily seen from this that

� (n+ 1) = n! for n = 0; 1; 2; ::: ;

so as � (x) is de�ned for all positive x the gamma function provides a generalization of the

factorial function n! for positive non-integer values of n:It will be seen later that the gamma

function, which belongs to the general class of functions called higher transcendental functions,

occursf requently throughout mathematics.

1.5.4 Continuity Requirements

Discontinuous Functions

Because the Laplace transform is de�ned in terms of an integral, it is possible to �nd Laplace

transforms of discontinuous functions. Suppose, for example, that a function g(t) is discontin-

uous at t = a. Then, provided it converges, the integral de�ning the Laplace transform of g(t)

is given by

Lfg (t)g = lim
"!0

Z a�"

0

exp (�t) g (t) dt+ lim
�!0

Z 1

a��
exp (�t) g (t) dt



1.5 Existence of Laplace transform Method 18

where " and � are both positive. For simplicity, the upper limit in the �rst integral is usually

denoted by a� and the lower limit in the second integral by a+. These are, respectively, the

limits of integration to the left and to the right of t = a:

The Laplace transform of a function f(t) has been de�ned. A condition has been given

that ensures the existence of the transform, and the concept of a Laplace transform pair has

been introduced. The transform has been shown to have the fundamental property of linearity,

and some simple transform pairs have been found directly from the de�nition.

The Heaviside unit step function H(t � a), which jumps from zero for 0 � t < a to unity

for t > a; has been introduced and used.

De�nition 4 A function f has a jump discontinuity at a point t0 if both limits

lim
t!t�0

f (t) = f
�
t�0
�
and lim

t!t+0
f (t) = f

�
t+0
�

exist (as �nite numbers).

The class of functions for which we consider the Laplace transform de�ned will have the

following property.

De�nition 5 A function f is piecewise continuous on the interval [0;1) if

1) lim
t!0+

f (t) = f (0+) exists,

2) f is continuous on every �nite interval (0; b) except possibly at a �nite number of points

� 1; � 2; :::; �n in (0; b) at which f has a jump discontinuity.

An important consequence of piecewise continuity is that on each subinterval the function

f is also bounded. That is to say,

jf (t)j �Mi; � i < t < � i+1; i = 1; 2; n� 1;

for �nite constants Mi:

In order to integrate piecewise continuous functions from 0 to b; one simply integrates f

over each of the subintervals and takes the sum of these integrals, that is,Z b

0

f (t) dt =

Z �1

0

f (t) dt+

Z �2

�1

f (t) dt+ ::: +

Z b

�n

f (t) dt

This can be done since the function f is both continuous and bounded on each subinterval,

and thus on each subinterval it has a well de�ned Riemann integral.
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1.5.5 Operational Properties of the Laplace Transform

To use the Laplace transform in order to solve initial-value problems for linear di¤erential

equations and systems, it is necessary to establish a number of fundamental properties of the

transform known as its operational properties. This name is given to properties of the transform

itself that relate to the way it operates on any function f(t) that is transformed, rather than

to the e¤ect these properties of the transform have on speci�c functions f(t):

This means that operational properties are general properties of the Laplace transform that

are not speci�c to any particular function f(t) or to its transform F (s): An important example

of an operational property has already been encountered in Theorem 7.1, where the linearity

property of the transform was established.

Some operational properties, such as the scaling and shift theorems that will be proved

later, save e¤ort when �nding the Laplace transform of a function or inverting a transform,

whereas others such as the transform of a derivative are essential when applying the Laplace

transform to solve initial-value problems for di¤erential equations.

The way derivatives transform is used to �nd how the homogeneous part of a linear di¤er-

ential equation is transformed, and we will see later that it also shows how the initial conditions

for the di¤erential equation enter into the transformed equation. Laplace transform pairs are

needed when transforming the nonhomogeneous term in the di¤erential equation.

1.5.6 Transforming Derivatives

Theorem 7 (Transform of a derivative) Let f(t) be continuous on 0 � t < 1; and let

f 0(t) be piecewise continuous on every �nite interval contained in [0;1). Then

Lff 0(t)g = sF (s)� f(0): (1.22)

where Lff (t)g = F (s).

Theorem 8 (Transform of a higher derivative) Let f(t) be continuous on 0 � t < 1;

and let f 0(t), f
00
(t), ,f (n�1)(t) be piecewise continuous on every �nite interval contained in

[0;1). Then

L
�
f (n)(t)

	
= snF (s)� sn�1f(0)� sn�2f 0(0)� � sf (n�2) (0)� f (n�1) (0) : (1.23)
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where Lff (t)g = F (s).

1.5.7 Transform of f 0 when is discontinuous at t = a

Theorem 9 Let f(t) be continuous on 0 � t < a and on a � t < 1; and let it have a simple

jump discontinuity at t = a with the value f�(a) to the immediate left of a at t = a� and the

value f+(a) to the immediate right of a at t = a+: Then, if Lff (t)g = F (s);

Lff 0(t)g = sF (s)� f(0) + [f�(a)� f+(a)] exp (�as) : (1.24)

1.5.8 The s�Shift Theorem

Theorem 10 (The �rst shift theorem or the s�shift theorem) Let Lff (t)g = F (s) for

s > 
: Then, the Laplace tarnsform of exp (at) f (t) is obtained from F (s) by replacing s by

s� a; where s� a > 
: Thus

Lfexp (at) f (t)g = F (s� a), for s� a > 
:

Conversely, we have the inverse transform

L�1 fF (s� a)g = exp (at) f (t) :

1.5.9 The t�Shift Theorem

Theorem 11 (The second shift theorem or the t�shift theorem) Let Lff (t)g = F (s):

Then

LfH(t� a)f (t� a)g = exp (�as)F (s)

and, conversely,

L�1 fexp (�as)F (s)g = H(t� a)f (t� a)

1.5.10 Di¤erentiation and Integration of The Laplace Transform

Theorem 12 Let f be piecewise continuous on [0;1) of exponential order � and L (f (t)) =

F (s) : Then
dn

dsn
F (s) = L ((�1)n tnf (t)) ; n = 1; 2; 3; (s > �) : (1.25)
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Theorem 13 If f is piecewise continuous on [0;1) and exponential order �, with F (s) =

L (f (t)) and such that lim
t!0+

f(t)
t
exists, then

Z 1

s

F (s) dx = L
�
f (t)

t

�
(s > �) (1.26)

1.5.11 Scaling a Transform

Theorem 14 Let Lff (t)g = F (s): Then, if k > 0;

Lff (kt)g = 1

k
F (

s

k
):

1.5.12 Transforming a Periodic Function

Theorem 15 Let f(t) be a periodic function with period T such that
R T
0
exp (�st) f (t) dt is

�nite. Then

Lff (t)g = 1

1� exp (�Ts)

Z T

0

exp (�st) f (t) dt; for s > 0:

1.5.13 The Convolution Operation

Let the functions f(t) and g(t) be de�ned for t � 0.Then, the convolution of the functions f

and g denoted by (f � g) (t), and in abbreviated form by (f � g), is de�ned as the integral

(f � g) (t) =
Z t

0

f (�) g (t� �) d� : (1.27)

1.5.14 The Convolution Theorem

Theorem 16 Let Lff (t)g = F (s) and Lfg (t)g = G(s): Then

Lf(f � g) (t)g = Lff (t) � g (t)gF (s)G(s); (1.28)

or, equivalently,

L
�Z t

0

f (�) g (t� �) d�

�
= F (s)G(s):

Conversely,

L�1 fF (s)G(s)g =
Z t

0

f (�) g (t� �) d�
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Note: A more rigorous proof of the convolution theorem can be found in any standard

treatise (see Doetsch, 1950) on Laplace transforms. The convolution operation has the following

properties:

1) Commutative

f (t) � g (t) = g (t) � f (t) (1.29)

2) Associative

f (t) � fg (t) � h (t)g = ff (t) � g (t)g � h (t) (1.30)

3) Distributive

f (t) � fag (t) � bh (t)g = af (t) � g (t) + bf (t) � h (t)

f (t) � fag (t)g = faf (t)g � g (t) = a ff (t) � g (t)g

L ff1 (t) � f2 (t) � f3 (t) ::: � fn (t)g = F1(s)F2(s):::Fn(s)

Lff �ng = fF (s)gn

where a and b are constants. f �n = f � f � ::: � f is sometimes called the nth convolution.

Remark 1 By virtue of (1:30)and (1:29), it is clear that the set of all Laplace transformable

functions forms a commutative semigroup with respect to the operation �. The set of all Laplace

transformable functions does not form a group because f � g�1 does not, in general, have a

Laplace transform.

1.5.15 Transforming an Integral

Theorem 17 (The transform of an integral) Let f be piecewise continuous on [0;1) of

exponential order � and L (f (t)) = F (s) : Then

L
�Z t

0

f (�) d�

�
=
F (s)

s
; (s > �) :

and, conversely,

L�1
�
F (s)

s

�
=

Z t

0

f (�) d�
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1.5.16 Relating Initial Values and the Transform

Theorem 18 (The initial value theorem) Let Lff (t)g = F (s) be the Laplace transform

of an n� time di¤erentiable function f (t). Then

f (r)(t) = lim
s!1

�
sr+1F (s)� srf(0)� sr�1f 0(0)� � sf (n�1) (0)

	
; r = 0; n

In particular,

f(0) = lim
s!1

fsF (s)g ; f 0(0) = lim
s!1

�
s2F (s)� sf(0)

	
f
00
(t) = lim

s!1

�
s3F (s)� s2f(0)� sf 0(0)

	



Chapter 2

Solvability of parabolic problem with

purely integral conditions

2.1 Position of the Problem

In the recent years, heat equation with purely integral conditions takes an important wide

surface in the research in many branches of physics problems.

Let be the rectangular domain Q = 
 � I = f(x; t) : 0 < x < 1; 0 < t � Tg ; we consider

parabolic equation of determining a function v = v (x; t) satisfying

@v

@t
� �

@2v

@x2
= g (x; t) ; 0 < x < 1; 0 < t � T; (2.1)

subject to the initial conditions

v(x; 0) = � (x) ; 0 < x < 1; (2.2)

and the nonlocal boundary conditionsZ 1

0

v (x; t) dx = E(t); 0 < t � T;Z 1

0

xv (x; t) dx = M(t); 0 < t � T: (2.3)

where g;�; E; and M are known functions, � and T are known positive constants.
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2.2 Reformulation of the problem

Since integral boundary conditions are inhomogeneous, it is convenient to convert problem

(2:1) � (2:3) to an equivalent problem with homogeneous integral conditions. For this, we

introducing a new unknown function

u (x; t) = v(x; t)� w(x; t); (2.4)

where

w(x; t) = E(t) + 6
�
3x2 � 2x

�
: (2M (t)� E(t)) : (2.5)

Problems (2:1)�(2:3) with inhomogeneous integral conditions (2:3) can be equivalently reduced

to the problem of �nding a function u satisfying

@u

@t
� �

@2u

@x2
= f (x; t) ; 0 � x � 1; 0 < t � T; (2.6)

initial conditions

u(x; 0) = ' (x) ; 0 � x � 1; (2.7)

and purely nonlocal conditions

Z 1

0

u (x; t) dx = 0; 0 < t � T;Z 1

0

xu (x; t) dx = 0; 0 < t � T; (2.8)

where

f (x; t) = g(x; t)�
�
@w

@t
� �

@2w

@x2

�
; (2.9)

and

' (x) = � (x)� w (x; 0) : (2.10)

Hance, instead of looking for v , we simply look for u. The solution of problem(2:1)� (2:3)will

be obtained by the relations(2:4) and (2:5) :
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2.3 Uniqueness and continuous dependence of the solu-

tion

We �rst establish an a priori estimates. Then, the uniqueness and continuous dependence of

the solution with respect to the data are immediate consequences.

Theorem 19 If u (x; t) is a solution of problem (2:6)� (2:8) and f 2 C
�
Q
�
, then we have the

a priori estimates

ku (:; �)k2L2(0;1) � c1

�Z �

0

kf (:; t)k2B12(0;1) dt+ k'k
2
L2(0;1)

�
;



@u (:; �)@t





2
L2(0;T ; B12(0;1))

� c2

�Z �

0

kf (:; t)k2B12(0;1) dt+ k'k
2
L2(0;1)

�
(2.11)

where c1 =
max(1;�)

�
; c2 = max (1; �) and 0 � � � T:

Proof. Taking the scalar product in B1
2 (0; 1) of equation (2:6) and

@u
@t
, and integrating over

(0; �), we have Z �

0

�
@u (:; t)

@t
;
@u (:; t)

@t

�
B12(0;1)

dt� �

Z �

0

�
@2u (:; t)

@x2
;
@u (:; t)

@t

�
B12(0;1)

dt

=

Z �

0

�
f (:; t) ;

@u (:; t)

@t

�
B12(0;1)

dt: (2.12)

The integration by parts on the left-hand sid of (2:12) we obtainZ �

0





@u (:; t)@t





2
B12(0;1)

dt+
�

2
ku (:; �)k2L2(0;1) �

�

2
k'k2L2(0;1) =

Z �

0

�
f (:; t) ;

@u (:; t)

@t

�
B12(0;1)

dt:

(2.13)

by the Cauchy inequality, the right-hand side of (2:13) is bounded by

1

2

Z �

0

kf (:; t)k2B12(0;1) dt+
1

2

Z �

0





@u (:; t)@t





2
B12(0;1)

dt: (2.14)

Substitution of (2:14) into (2:13) yieldsZ �

0





@u (:; t)@t





2
B22(0;1)

dt+ � ku (:; �)k2L2(0;1) �
Z �

0

kf (:; t)k2B12(0;1) dt+ � k'k2L2(0;1) : (2.15)

From (2:15) ; we obtain estimates (2:11) :

Corollary 20 If problem (2:6)� (2:8) has a solution, then this solution is unique and depends

continuously on (f; ').
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2.4 Existence of solution

Laplace transform is an e¢ cient method for solving many di¤erential equations and partial

di¤erential equations,The main di¢ culty with Laplace transform method is in inverting the

Laplace domain solution into the real domain. In this section we shall apply the Laplace

transform technique to �nd solutions of partial di¤erential equations.

Suppose that v (x; t) is de�ned and is of exponential order for t � 0 i.e. there exists A;


 > 0 and t0 > 0 such that jf (t)j � A exp (
t) for t � t0: Than the Laplace transform V (x; s),

exists and is given by

V (x; s) = Lfv (x; t) ; t �! sg =
Z 1

0

v (x; t) exp (�st) dt; (2.16)

where s is positive réel parameter. Taking the Laplace transforms on both sides of (2:1) ;

we have

sV (x; s)� �
d2

dx2
[V (x; s)] = G (x; s) + � (x) ; (2.17)

where G (x; s) = Lfg (x; t) ; t �! sg : Similarly,we haveZ 1

0

V (x; s) dx = A(s);Z 1

0

xV (x; s) dx = B(s): (2.18)

where A (s) = LfE(t); t �! sg and B (s) = LfM(t); t �! sg :Thus, the considered equation

is reduced to the boundary-value problem governed by second order inhomogeneous ordinary

di¤erential equation. We obtain a general solution of (2:17) as

V (x; s) = �
r
�

s

Z x

0

[G (� ; s) + � (�)] sinh

�r
s

�
[x� � ]

�
d� +

C1 (s) exp

�
�
r
s

�
x

�
+ C2 (s) exp

�r
s

�
x

�
(2.19)

where C1and C2 are arbitrary functions of s: Substituting (2:19) into (2:18) ; we have

C1 (s)

Z 1

0

exp

�
�
r
s

�
x

�
dx+ C2 (s)

Z 1

0

exp

�r
s

�
x

�
dx

=

r
�

s

Z 1

0

�
[F (� ; s) + ' (�)]

Z 1

�

sinh

�r
s

�
[x� � ]

�
dx

�
d� + A(s);

C1 (s)

Z 1

0

x exp

�
�
r
s

�
x

�
dx+ C2 (s)

Z 1

0

x exp

�r
s

�
x

�
dx

=

r
�

s

Z 1

0

�
[G (� ; s) + � (�)]

Z 1

�

x sinh

�r
s

�
[x� � ]

�
dx

�
d� +B(s): (2.20)
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where 0@ C1 (s)

C2 (s)

1A =

0@ a11 (s) a12 (s)

a21 (s) a22 (s)

1A�1

�

0@ b1 (s)

b2 (s)

1A ; (2.21)

and

a11 (s) =

Z 1

0

exp

�
�
r
s

�
x

�
dx; a12 (s) =

Z 1

0

exp

�r
s

�
x

�
dx;

a21 (s) =

Z 1

0

x exp

�
�
r
s

�
x

�
dx; a22 (s) =

Z 1

0

x exp

�r
s

�
x

�
dx;

b1 (s) =

r
�

s

Z 1

0

�
[G (� ; s) + � (�)]

Z 1

�

sinh

�r
s

�
[x� � ]

�
dx

�
d� + A(s);

b2 (s) =

r
�

s

Z 1

0

�
[G (� ; s) + � (�)]

Z 1

�

x sinh

�r
s

�
[x� � ]

�
dx

�
d� +B(s): (2.22)

It is possible to evaluate exactly the integrals in (2:19) and (2:22). In general, one may

have to resort to numerical integration in order to compute them. For exemple, the Gauss�s

formula (25:4:30) given in Abramowitz and Stegun [1] may be used to calculate these integrals

numerically. We have the following approximations for the integrals:
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Z 1

0

exp

�
�
r
s

�
x

�
dx

' 1

2

NX
i=1

wi exp

�
�
r
s

�
[xi + 1]

1

2

�
;Z 1

0

x exp

�
�
r
s

�
x

�
dx;

' 1

2

NX
i=1

wi

�
1

2
[xi + 1]

�
exp

�
�
r
s

�
[xi + 1]

1

2

�
;Z x

0

[G (� ; s) + � (�)] sinh

�r
s

�
[x� � ]

�
d� ;Z 1

0

�
[G (� ; s) + � (�)]

Z 1

�

sinh

�r
s

�
[x� � ]

�
dx

�
d� ;

' x

2

NX
i=1

wi

h
G
�x
2
[xi + 1] ; s

�
+ �

�x
2
[xi + 1]

�i
sinh

�r
s

�

h
x� x

2
[xi + 1]

i�
;

' 1

4

NX
i=1

wi

�
G

�
1

2
[xi + 1] ; s

�
+ �

�
1

2
[xi + 1]

���
1� 1

2
[xi + 1]

�
�

NX
i=1

wj sinh

�r
s

�

�
1

2

��
1� 1

2
[xi + 1]

�
xj +

�
1 +

1

2
[xi + 1]

��
� 1
2
(xi + 1)

��
;Z 1

0

�
[F (� ; s) + � (�)]

Z 1

�

x sinh

�r
s

�
[x� � ]

�
dx

�
d�

' 1

4

NX
i=1

wi

�
G

�
1

2
[xi + 1] ; s

�
+ �

�
1

2
[xi + 1]

���
1� 1

2
[xi + 1]

�
��

1

2

��
1� 1

2
[xi + 1]

�
xj +

�
1 +

1

2
[xi + 1]

���
�

NX
i=1

wj sinh

�r
s

�

�
1

2

��
1� 1

2
[xi + 1]

�
xj +

�
1 +

1

2
[xi + 1]

��
� 1
2
(xi + 1)

��
;(2.23)

where xi and wi are the abscissa and weights, de�ned as

xi : i
th zero of Pn (x) ; !i = 2=

�
1� x2i

� h
P

0

n (x)
i2
:

Their tabulated values can be found in[1]for di¤erent values of N:

By Stehfest�s algorithm approximates (1:17)� (1:18)we obtain the numerical solution:
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2.5 Numerical exemples

In this section, we report some results of numerical computations using Laplace transform

method proposed in the previous section. These technique are applied to solve the problem

de�ned by (2:1)� (2:3) for particular functions g;�;	; E;M ; and positive constant �:

Example 1 We take

g (x; t) = � exp (� (x+ t)) ; 0 < x < 1; 0 < t � T and � = 1;

� (x) = exp (�x) ; 0 < x < 1;

E(t) =
�
1� e�1

�
cosh (t) ; 0 < t � T;

M(t) =
�
1� 2e�1

�
cosh (t) ; 0 < t � T;

In this case, the exact solution given by

v (x; t) = e�x cosh (t) ; 0 < x < 1; 0 < t � T .

The method of solution is easily implemented on the computer. Numerical results are

obtained for N = 8 in (2:23) and m = 5 in (1:17), and then compared to the exact solution.

For t = 0:10we x 2 [0:10; 0:90], we calculate v numericaly using the proposed method of solution

and compare it with the exact solution in Table1.

x 0:10 0:30 0:50 0:70 0:90

v exact 0:909365376 0:744525399 0:609565841 0:499070300 0:408604202

v numerical 0:909826451 0:744399924 0:608625003 0:499151233 0:408250006

error 0:000507029 �0:000168530 �0:000000154 0:000162167 �0:000866843
Table 1

Example 2 We take

g (x; t) = 0; 0 < x < 1; 0 < t � T and � = 1;

� (x) = sin (�x) ; 0 < x < 1;

E(t) =
2

�
exp

�
��2t

�
; 0 < t � T;

M(t) =
1

�
exp

�
��2t

�
; 0 < t � T;
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In this case, the excat solution given by

v (x; t) = exp
�
��2t

�
sin (�x) ; 0 < x < 1; 0 < t � T .

For t = 0:10, x 2 [0:10; 0:90], we calculate v numericaly using the proposed method of solution

and compare it with the exact solution in Table2.

x 0:10 0:30 0:50 0:70 0:90

v exact 0:115173056 0:301526975 0:372707838 0:301526975 0:115173056

v numerical 0:115157164 0:301736804 0:373047121 0:301250080 0:115109831

error �0:000137983 0:000695887 0:000982761 �0:000918309 �0:000548956
Table2

Example 3 We take

g (x; t) = �2 (x
2 + 1 + t)

(1 + t)3
; 0 < x < 1; 0 < t � T and � = 1;

� (x) = x2; 0 < x < 1;

E(t) =
1

3 (1 + t)2
; 0 < t � T;

M(t) =
1

4 (1 + t)2
; 0 < t � T;

In this case, the excat solution given by

v (x; t) =

�
x

1 + t

�2
; 0 < x < 1; 0 < t � T .

For t = 0:1, x 2 [0:1; 0:9], we calculate v numericaly using the proposed method of solution and

compare it with the exact solution in Table 3.

x 0:10 0:30 0:50 0:70 0:90

v exact 0:008264469 0:074380165 0:206611570 0:404958677 0:669421487

v numerical 0:008258147 0:074381271 0:206744395 0:405038382 0:668936202

error �0:000764961 0:000014872 0:000642874 0:000196823 �0:000724931
Table3



Chapter 3

Solvability of hyperbolic problems with

purely integral conditions

3.1 Statement of the problem

In the rectangular domain Q = 
� I = f(x; t) : 0 < x < 1; 0 < t � Tg, we consider a second-

order hyperbolic equation

@2v

@t2
� �

@2v

@x2
= g (x; t) ; 0 < x < 1; 0 < t � T (3.1)

subject to the initial conditions

v(x; 0) = � (x) ; 0 < x < 1

@v(x; 0)

@t
= 	(x) ; 0 < x < 1 (3.2)

and the purely integral conditionsZ 1

0

v (x; t) dx = E(t); 0 < t � TZ 1

0

xv (x; t) dx = M(t); 0 < t � T (3.3)

where f; ';  ;E; and G are known functions, � and T are known positive constants.
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3.2 Reformulation of the problem

Since integral boundary conditions are inhomogeneous, it is convenient to convert problem

(3:1) � (3:3) to an equivalent problem with homogeneous integral conditions. For this, we

introduce a new function u(x; t) as follows

u (x; t) = v(x; t)� r(x; t) (3.4)

where

r(x; t) = E(t) + 6
�
3x2 � 2x

�
: (2M (t)� E(t)) (3.5)

Problems (3:1)�(3:3) with inhomogeneous integral conditions (3:3) can be equivalently reduced

to the problem of �nding a function u satisfying:

@2u

@t2
� �

@2u

@x2
= f (x; t) ; 0 < x < 1; 0 < t � T (3.6)

with the initial conditions

u(x; 0) = ' (x) ; 0 < x < 1

@u(x; 0)

@t
=  (x) ; 0 < x < 1 (3.7)

and the purely nonlocal conditions

Z 1

0

u (x; t) dx = 0; 0 < t � TZ 1

0

xu (x; t) dx = 0; 0 < t � T (3.8)

where

f (x; t) = g(x; t)�
�
@2r

@t2
� �

@2r

@x2

�
(3.9)

and

' (x) = � (x)� r (x; 0)

 (x) = 	 (x)� r (x; 0) (3.10)

Hence, instead of looking for v , we simply look for u. The solution of problem (3:1) � (3:3)

will be obtained by the relations (3:4)� (3:5)
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3.3 A priori estimates and its consequences

We �rst establish an a priori estimates. Then, the uniqueness and continuous dependence of

the solution with respect to the data are immediate consequences.

Theorem 21 If u (x; t) is a solution of problem (3:6)� (3:8) and f 2 C
�
D
�
, then we have

kuk2C(0;T ;L2(0;1))

� c1

�Z �

0

kf (:; t)k2B12(0;1) dt+ k'k
2
L2(0;1) + k k

2
B12(0;1)

�




@u@t





2
C(0;T ;B12(0;1))

� c2

�Z �

0

kf (:; t)k2B12(0;1) dt+ k'k
2
L2(0;1) + k k

2
B12(0;1)

�
(3.11)

where

c1 =
max (1; 2�) expT

�

c2 = max (1; 2�) expT

and 0 � � � T .

Proof. Taking the scalar product in B1
2 (0; 1) of equation (3:6)and

@u
@t
, and integrating over

(0; �), we haveZ �

0

�
@2u (:; t)

@t2
;
@u (:; t)

@t

�
B12(0;1)

dt� �

Z �

0

�
@2u (:; t)

@x2
;
@u (:; t)

@t

�
B12(0;1)

dt

=

Z �

0

�
f (:; t) ;

@u (:; t)

@t

�
B12(0;1)

dt: (3.12)

The integration by parts on the left-hand side of (3:12) ; we obtain

1

2





@u (:; �)@t





2
B12(0;1)

� 1
2
k k2B12(0;1) +

�

2
ku (:; �)k2L2(0;1) � � k'k2L2(0;1)

=

Z �

0

�
f (:; t) ;

@u (:; t)

@t

�
B12(0;1)

dt: (3.13)

By the Cauchy inequality; the right-hand side of (3:13) is bounded by

1

2

Z �

0

kf (:; t)k2B12(0;1) dt+
1

2

Z �

0





@u (:; t)@t





2
B12(0;1)

dt: (3.14)
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Substitution of (3:14) into (3:13) ; yields



@u (:; �)@t





2
B12(0;1)

+ � ku (:; �)k2L2(0;1)

� max (1; 2�)

�Z �

0

kf (:; t)k2B12(0;1) dt+ k'k
2
L2(0;1) + k k

2
B12(0;1)

�
+

Z �

0





@u (:; t)@t





2
B12(0;1)

dt

� max (1; 2�)

�Z �

0

kf (:; t)k2B12(0;1) dt+ k'k
2
L2(0;1) + k k

2
B12(0;1)

�
+

Z �

0

 



@u (:; t)@t





2
B12(0;1)

+ � ku (:; t)k2L2(0;1)

!
dt; (3.15)

and by Gronwall Lemma, we have



@u (:; �)@t





2
B12(0;1)

+ � ku (:; �)k2L2(0;1)

� max (1; 2�)

�Z T

0

kf (:; t)k2B12(0;1) dt+ k'k
2
L2(0;1) + k k

2
B12(0;1)

�
: (3.16)

Since the right-hand side of (3:16) is independent of � , we take the supremum with respect to

� from 0 to T in the left-hand side, thus obtaining (3:11) :

Corollary 22 If problem (3:6)� (3:8) has a solution, then this solution is unique and depends

continuously on (f; ';  ).

3.4 Existence of solution

Laplace transform is an e¢ cient method for solving many di¤erential equations and partial

di¤erential equations,The main di¢ culty with Laplace transform method is in inverting the

Laplace domain solution into the real domain. In this section we shall apply the Laplace

transform technique to �nd solutions of partial di¤erential equations.

Suppose that v (x; t) is de�ned and is of exponential order for t � 0 i.e. there exists A;


 > 0 and t0 > 0 such that jf (t)j � A exp (
t) for t � t0: Than the Laplace transform V (x; s),

exists and is given by

V (x; s) = Lfv (x; t) ; t �! sg =
Z 1

0

v (x; t) exp (�st) dt



3.4 Existence of solution 36

where s is a positive reel parameter. Taking the Laplace transforms on both sides of (3:1), we

get

s2V (x; s)� �
d2

dx2
[V (x; s)] = G (x; s) + s� (x) + 	 (x) (3.17)

where G (x; s) = Lfg (x; t) ; t �! sg : Similarly, we haveZ 1

0

V (x; s) dx = A(s)Z 1

0

xV (x; s) dx = B(s) (3.18)

where

A (s) = LfE(t); t �! sg

B (s) = LfM(t); t �! sg (3.19)

Thus, the considered equation is reduced into a boundary-value problem governed by a second-

order inhomogeneous ordinary di¤erential equation. We obtain a general solution of (3:17)

as

V (x; s) = �
p
�

s

Z x

0

[G (� ; s) + s� (�) + 	 (�) ] sinh

�
sp
�
[x� � ]

�
d�

+C1 (s) exp

�
� sp

�
x

�
+ C2 (s) exp

�
sp
�
x

�
(3.20)

where C1and C2 are arbitrary functions of s: Substituting (3:20) into (3:18), we have

C1 (s)

Z 1

0

exp

�
� sp

�
x

�
dx+ C2 (s)

Z 1

0

exp

�
sp
�
x

�
dx

=

p
�

s

Z 1

0

�
[F (� ; s) + s' (�) +  (�)]

Z 1

�

sinh

�
sp
�
[x� � ]

�
dx

�
d�

+A(s);

C1 (s)

Z 1

0

x exp

�
� sp

�
x

�
dx+ C2 (s)

Z 1

0

x exp

�
sp
�
x

�
dx

=

p
�

s

Z 1

0

�
[G (� ; s) + s� (�) + 	 (�) ]

Z 1

�

x sinh

�
sp
�
[x� � ]

�
dx

�
d�

+B(s); (3.21)

where 0@ C1 (s)

C2 (s)

1A =

0@ a11 (s) a12 (s)

a21 (s) a22 (s)

1A�1

�

0@ b1 (s)

b2 (s)

1A ; (3.22)
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and

a11 (s) =

Z 1

0

exp

�
� sp

�
x

�
dx;

a12 (s) =

Z 1

0

exp

�
sp
�
x

�
dx;

a21 (s) =

Z 1

0

x exp

�
� sp

�
x

�
dx;

a22 (s) =

Z 1

0

x exp

�
sp
�
x

�
dx;

b1 (s) =

p
�

s

Z 1

0

�
[G (� ; s) + s� (�) + 	 (�) ]

Z 1

�

sinh

�
sp
�
[x� � ]

�
dx

�
d�

+A(s);

b2 (s) =

p
�

s

Z 1

0

�
[G (� ; s) + s� (�) + 	 (�) ]

Z 1

�

x sinh

�
sp
�
[x� � ]

�
dx

�
d�

+B(s): (3.23)

It is possible to evaluate the integrals in (3:20) and (3:23) exactly. In general, one may

have to resort to numerical integration in order to compute them, however. For example, the

Gauss�s formula (25:4:30) given in Abramowitz and stegun [1] may be employed to calculate
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these integrals numerically, we have the following approximations for the integrals:Z 1

0

exp

�
� sp

�
x

�
dx

' 1

2

NX
i=1

wi exp

�
� sp

�
[xi + 1]

�
;Z 1

0

x exp

�
� sp

�
x

�
dx

' 1

2

NX
i=1

wi

�
1

2
[xi + 1]

�
exp

�
� sp

�
[xi + 1]

�
;Z 1

0

�
[G (� ; s) + s� (�) + 	 (�)]

Z 1

�

sinh

�
sp
�
[x� � ]

�
dx

�
d�Z x

0

[G (� ; s) + s� (�) + 	 (�) ] sinh

�
sp
�
[x� � ]

�
d�

' x

2

NX
i=1

wi

h
G
�x
2
[xi + 1] ; s

�
+ s�

�x
2
[xi + 1]

�
+	

�x
2
[xi + 1]

�i
�

� sinh
�

sp
�

h
x� x

2
[xi + 1]

i�
;

' 1

4

NX
i=1

wi

�
G

�
1

2
[xi + 1] ; s

�
+ s�

�
1

2
[xi + 1]

�
+	

�
1

2
[xi + 1]

���
1� 1

2
[xi + 1]

�
�

�
NX
i=1

wj sinh

�
sp
�

�
1

2

��
1� 1

2
[xi + 1]

�
xj +

�
1 +

1

2
[xi + 1]

��
� 1
2
(xi + 1)

��
;Z 1

0

�
[F (� ; s) + s' (�) +  (�)]

Z 1

�

x sinh

�
sp
�
[x� � ]

�
dx

�
d�

' 1

4

NX
i=1

wi

�
G

�
1

2
[xi + 1] ; s

�
+ s�

�
1

2
[xi + 1]

�
+	

�
1

2
[xi + 1]

���
1� 1

2
[xi + 1]

�
�

�
�
1

2

��
1� 1

2
[xi + 1]

�
xj +

�
1 +

1

2
[xi + 1]

���
�

�
NX
i=1

wj sinh

�
sp
�

�
1

2

��
1� 1

2
[xi + 1]

�
xj +

�
1 +

1

2
[xi + 1]

��
� 1
2
(xi + 1)

��
; (3.24)

where xi and wi are the abscissa and weights, de�ned as

xi : i
th zero of Pn (x) ; !i = 2=

�
1� x2i

� h
P

0

n (x)
i2
:

Their tabulated values can be found in [1] for di¤erent values of N:

By Stehfest�s algorithm approximates (1:17)� (1:18)we obtain the numerical solution:
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3.5 Numerical examples

In this section, we report some results of numerical computations using Laplace transform

method proposed in the previous section. These technique are applied to solve the problem

de�ned by (3:1) � (3:3) for particular functions g; �; 	; E; M; and positive constant �: The

method of solution is easily implemented on the computer, used Matlab 7:9:3 program. The

numerical results in triple Table (table 1, 2, 3) are excellent agreement with the exact solution.

Example 4 We take

g (x; t) = 0; 0 < x < 1; 0 < t � T and � = 1;

� (x) = exp (�x) ; 0 < x < 1;

	(x) = 0; 0 < x < 1;

E(t) =
�
1� e�1

�
cosh (t) ; 0 < t � T ;

M(t) =
�
1� e�1

�
cosh (t) ; 0 < t � T ;

In this case, the exact solution given by

v (x; t) = e�x cosh (t) ; 0 < x < 1; 0 < t � T .

The method of solution is easily implemented on the computer, and numerical results are

obtained by N = 8 in (3:24) and m = 5 in (1:17). Then, we compared the exact solution

with numerical solution. For t = 0:10; x 2 [0:10; 0:90] ; we calculate v numerically using the

proposed method of solution and compare it with the exact solution in Table 1:

x 0:10 0:30 0:50 0:70 0:90

v exact 0:9093654 0:7445254 0:6095658 0:490703 0:4086042

v numerical 0:9093851 0:7443921 0:6097452 0:500183 0:4080919

error 0:000217 �0:0001790 0:0002943 0:0022295 �0:0012538
Table 1
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Example 5 We take

g (x; t) = �2
�
1 + �2

�
exp

�
��2t

�
sin (�x) ; 0 < x < 1; 0 < t � T and � = 1;

� (x) = sin (�x) ; 0 < x < 1;

	(x) = ��2 sin (�x) ; 0 < x < 1;

E(t) =
2

�
exp

�
��2t

�
; 0 < t � T ;

M(t) = � 1
�
exp

�
��2t

�
; 0 < t � T;

In this case, the exact solution given byv (x; t) = exp (��2t) sin (�x) ; 0 < x < 1; 0 < t � T .

For t = 0:10; x 2 [0:10; 0:90] ; we calculate v numerically using the proposed method of

solution and compare it with the exact solution in Table 2.

x 0:10 0:30 0:50 0:70 0:90

v exact 0:1151730 0:3015269 0:3727078 0:3015270 0:1151730

v numerical 0:1150014 0:3015291 0:3728361 0:3012199 0:1152185

error �0:0014899 0:0000073 0:0003442 �0:0010185 0:0003951

Table 2

Example 6 We take

g (x; t) =
�
1 + 4�2

�
e�t cos (2�x) ; 0 < x < 1; 0 < t � T and � = 1;

� (x) = cos (2�x) ; 0 < x < 1;

	(x) = � cos (2�x) ; 0 < x < 1;

E(t) = 0; 0 < t � T ;

M(t) = 0; 0 < t � T;

In this case, the exact solution given by

v (x; t) = e�t cos (2�x) ; 0 < x < 1; 0 < t � T .

For t = 0:1; x 2 [0:1; 0:9] ; we calculate v numerically using the proposed method of solution

and compare it with the exact solution in Table 3.
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x 0:10 0:30 0:50 0:70 0:90

v exact 0:7320288 �0:2796101 �0:9048374 �0:2796101 0:7320288

v numerical 0:7324162 �0:2795921 �0:9047562 �0:2795421 0:7321329

error 0:0005292 �0:0000644 �0:0000897 �0:0002432 0:0001422

Table 3



Chapter 4

Solvability of the telegraph equation

with purely integral conditions

4.1 Setting of the problem

The telegraph equations appear in the propagation of electrical signals along a telegraph line,

digital image processing, telecommunication, signals and systems, (see Abdou and Soliman[2],

Wazwaz [123]).

Consider the one-dimensional second order hyperbolic equation (telegraph equation) de-

�ned in the region Q = 
� I = f(x; t) : 0 < x < 1; 0 < t � Tg ; of the following form:

@2u

@t2
� c2

@2u

@x2
+ a

@u

@t
+ bu = f (x; t) ; 0 < x < 1; 0 < t � T; (4.1)

subject to the initial conditions

u(x; 0) = ' (x) ; 0 < x < 1;

@u(x; 0)

@t
=  (x) ; 0 < x < 1; (4.2)

and the purely integral conditionsZ 1

0

u (x; t) dx = 0; 0 < t � T;Z 1

0

xu (x; t) dx = 0; 0 < t � T; (4.3)
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where f; ';  ;E; and G are known functions, c; a; b;are constants related to resistance, induc-

tance, capacitance and conductance of the cable and T are known positives constants.

4.2 A priori estimates

We �rst establish an a priori estimates. Then, the uniqueness and continuous dependence of

the solution with respect to the data are immediate consequences.

Theorem 23 If u (x; t) is a solution of problem (4:1)� (4:3) and f 2 C
�
D
�
, then we have

ku (:; �)k2L2(0;1)

� c1

�Z �

0

kf (:; t)k2B12(0;1) dt+ k'k
2
L2(0;1) + k k

2
B12(0;1)

�
;



@u (:; t)@t





2
B12(0;1)

� c2

�Z �

0

kf (:; t)k2B12(0;1) dt+ k'k
2
L2(0;1) + k k

2
B12(0;1)

�
; (4.4)

where

c1 =
1

(b+ 2c2)
max

�
1;
1

2a
;
(b+ 2c2)

2

�
; c2 = max

�
1;
1

2a
;
(b+ 2c2)

2

�
and 0 � � � T:

Proof. Taking the scalar product in B1
2 (0; 1) of both sides of equation (4:1) with

@u
@t
, and

integrating over (0; �), we haveZ �

0

�
@2u (:; t)

@t2
;
@u (:; t)

@t

�
B12(0;1)

dt� c2
Z �

0

�
@2u (:; t)

@x2
;
@u (:; t)

@t

�
B12(0;1)

dt+

a

Z �

0

�
@u (:; t)

@t
;
@u (:; t)

@t

�
B12(0;1)

+ b

Z �

0

�
u (:; t) ;

@u (:; t)

@t

�
B12(0;1)

=

Z �

0

�
f (:; t) ;

@u (:; t)

@t

�
B12(0;1)

dt: (4.5)

Integrating by parts on the left-hand side of (4:5) ; we obtain

1

2
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2
B12(0;1)

+

�
b

2
+ c2

�
ku (:; �)k2B12(0;1) + a

Z �

0
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2
B12(0;1)

dt

�
Z �

0

�
f (:; t) ;

@u (:; t)

@t

�
B12(0;1)

dt+
1

2
k k2B12(0;1) +

�
b+ 2c2

4

�
k'k2L2(0;1) (4.6)
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By the "�Cauchy inequality; the �rst term in the right-hand side of (4:6) is bounded by

"

2

Z �

0

kf (:; t)k2B12(0;1) dt+
1

2"

Z �

0





@u (:; t)@t





2
B12(0;1)

dt:

We choose " = 1
2a
so that the second term will be simpli�ed by the third term in the left-hand

sid. Thus, we have 



@u (:; �)@t





2
B12(0;1)

+
�
b+ 2c2

�
ku (:; �)k2L2(0;1)

� 1

2a

Z �

0

kf (:; t)k2B12(0;1) dt+ k k
2
B12(0;1)

+

�
b+ 2c2

2

�
k'k2L2(0;1) (4.7)

:From (4:7), we obtain estimates (4:4) :

Corollary 24 If problem (4:1)� (4:3) has a solution, then this solution is unique and depends

continuously on (f; ';  ).

4.3 Existence of solution

In this section we shall apply the Laplace transform technique to �nd solutions of partial

di¤erential equations. Suppose that u (x; t) is de�ned and is of exponential order for t � 0 i.e.

there exists A; 
 > 0 and t0 > 0 such that jf (t)j � A exp (
t) for t � t0: Than the Laplace

transform U (x; s), exists and is given by

U (x; s) = Lfu (x; t) ; t �! sg =
Z 1

0

u (x; t) exp (�st) dt;

where s is a positive reel parameter. Taking the Laplace transforms on both sides of (4:1), we

have

�c2 d
2

dx2
[U (x; s)] +

�
s2 + as+ b

�
U (x; s) = F (x; s) + (s+ a)' (x) +  (x) ; (4.8)

where F (x; s) = Lff (x; t) ; t �! sg : Similarly, we haveZ 1

0

U (x; s) dx = 0;Z 1

0

xU (x; s) dx = 0; (4.9)
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Thus, the considered equation is reduced into a boundary-value problem governed by a second-

order inhomogeneous ordinary di¤erential equation. We obtain a general solution of (4:8) as

U (x; s) = � cp
s2 + as+ b

Z x

0

[F (� ; s) + (s+ a)' (�) +  (�) ] sinh

 p
s2 + as+ b

c
[x� � ]

!
d�

+C1 (s) exp

 
�
p
s2 + as+ b

c
x

!
+ C2 (s) exp

 p
s2 + as+ b

c
x

!
; (4.10)

where C1and C2 are arbitrary functions of s: Substituting (4:10) into 4:9; we get

C1 (s)

Z 1

0
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�
p
s2 + as+ b

c
x

!
dx+ C2 (s)

Z 1

0
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 p
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c
x

!
dx
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0
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Z 1

�
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 p
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[x� � ]

!
dx

#
d� ;

C1 (s)
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0

x exp

 
�
p
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c
x

!
dx+ C2 (s)

Z 1

0

x exp

 p
s2 + as+ b

c
x

!
dx

=
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Z 1

0

"
F (� ; s) + (s+ a)' (�) +  (�)

Z 1

�

x sinh

 p
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c
[x� � ]

!
dx

#
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(4.11)

where 0@ C1 (s)

C2 (s)

1A =

0@ a11 (s) a12 (s)

a21 (s) a22 (s)

1A�1

�

0@ b1 (s)

b2 (s)

1A ; (4.12)

and

a11 (s) =

Z 1

0

exp

 
�
p
s2 + as+ b

c
x

!
dx;

a12 (s) =

Z 1

0

 p
s2 + as+ b

c
x

!
dx;

a21 (s) =

Z 1

0

x

 
�
p
s2 + as+ b

c
x

!
dx;

a22 (s) =

Z 1

0

x

 p
s2 + as+ b

c
x

!
dx;

b1 (s) =
cp

s2 + as+ b

Z 1

0

"
F (� ; s) + (s+ a)' (�) +  (�)

Z 1

�

sinh

 p
s2 + as+ b

c
[x� � ]

!
dx

#
d� ;

b2 (s) =
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cp
s2 + as+ b

Z 1

0

"
F (� ; s) + (s+ a)' (�) +  (�)

Z 1

�

x sinh

 p
s2 + as+ b

c
[x� � ]

!
dx

#
d� ;

(4.13)

It is possible to evaluate the integrals in (4:10) and (4:13) exactly. In general, one may

have to resort to numerical integration in order to compute them, however. For example, the

Gauss�s formula (25:4:30) given in Abramowitz and stegun [1] may be employed to calculate
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these integrals numerically, we haveZ 1

0

exp

 
�
p
s2 + as+ b

c
x

!
dx

' 1

2

NX
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(4.14)

where xi and wi are the abscissa and weights, de�ned as

xi : i
th zero of Pn (x) ; !i = 2=

�
1� x2i

� h
P

0

n (x)
i2
:
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Their tabulated values can be found in [1] for di¤erent values of N:

By Stehfest�s algorithm approximates (1:17)� (1:18)we obtain the numerical solution:



Chapter 5

Solvability of a Solution for

Pseudohyperbolic equation with

Nonlocal Boundary Condition

5.1 Introduction

Certain problems of modern physics and technology have been studied by many mathematicians

for a long time cf. [3-13, 16-23]. Recent investigations on the nonlocal conditions include

the data on the boundary which can not be measured directly. A large number of physical

phenomena reduce to a work derived by initial-boundary value problem, as follows: For (x; t) 2

D = 
� I with the bounded intervals in R+ as 
 = (0; 1), I = (0; T )

@2v

@v2
� �

@2v

@x2
� �

@3v

@t@x2
= g (x; t) (5.1)

where � and � are positive constants.

Le us consider the following function v = v (x; t) satisfying the Eq. (5.1) in D

v (x; 0) = � (x) ;
@v (x; 0)

@t
= 	(x) (x 2 
) ;Z




v (x; t) dx = � (t) ;

Z



xv (x; t) dx = m (t) (t 2 I) . (5.2)

It follows from (5.2) that

g 2 C
�
D
�
; �;	 2 C1

�


�
; � and m 2 C2

�
I
�
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and the suitable conditions are as follows:Z



� (x) dx = � (0) ;

Z



x� (x) dx = m (0) ;

Z



	(x) dx = �0 (0) ;

Z



x	(x) dx = m0 (0) .

5.2 Reformulation of the problem

Since nonlocal (integral) boundary conditions are inhomogeneous, it is applicable to convert the

problem (5.1)-(5.2) into an equivalent problem with homogeneous nonlocal conditions. Now,

we introduce an unknown function u = u (x; t) subtracting the function v = v(x; t) from the

function w = w(x; t) known in [25], as follows:

u (x; t) = v(x; t)� w(x; t). (5.3)

The problem (5.1)-(5.2) can be equivalently reduced to the problem for �nding the function u

satisfying the following

@2u

@t2
� �

@2u

@x2
� �

@3u

@t@x2
= f (x; t) ; (x; t) 2 D;

u (x; 0) = ' (x) ;
@u (x; 0)

@t
=  (x) ; x 2 
;Z




u (x; t) dx = 0;

Z



xu (x; t) dx = 0; t 2 I; (5.4)

where

'0 (0) = 0;

Z



' (x) dx = 0;  0 (0) = 0;

Z



 (x) dx = 0;

f (x; t) = g(x; t)�
�
@w

@t
� �

@2w

@x2

�
;

' (x) = � (x)� w (x; 0) ;

 (x) = 	 (x)� w (x; 0)

@t
.

Hence, the solution of problem (5.1)-(5.2) will be obtained by the Eq. (5.3).
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5.3 Uniqueness and continuous dependence of the solu-

tion

We �rst establish a priori estimates. In addition, the uniqueness and continuous based on the

solution with respect to the data are immediate consequences.

Theorem 25 If u (x; t) is a solution of problem (5.4) and f 2 C
�
D
�
, then we have a priori

estimates:

ku (:; �)k2L2(
) � c1

�Z �

0

kf (:; t)k2B12(
) dt+ k'k
2
L2(
) + k k

2
B12(
)

�




@u (:; �)@t





2
B12(
)

� c2

�Z �

0

kf (:; t)k2B12(
) dt+ k'k
2
L2(
) + k k

2
B12(
)

�
(5.5)

where c1 = 1
�
max

�
1; �; 1

4�

�
; c2 = max

�
1; �; 1

4�

�
and 0 � � � T:

Proof. It is proved by taking the scalar product in B1
2 (
) of the pseudohyperbolic eqaution

in the Eq. (5.4), @u
@t
and integrating over (0; �), it becomesZ �

0

�
@2u (:; t)

@t2
;
@u (:; t)

@t

�
B12(
)

dt� �

Z �

0

�
@2u (:; t)

@x2
;
@u (:; t)

@t

�
B12(
)

dt

��
Z �

0

�
@3u (:; t)

@t@x2
;
@u (:; t)

@t

�
B12(
)

dt

=

Z �

0

�
f (:; t) ;

@u (:; t)

@t

�
B12(
)

dt: (5.6)

The integration by parts of the left-hand side of the Eq. (1.13) gives

� ku (:; �)k2L2(
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2
B12(
)

+ 2�

Z �
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2
L2(
)
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= 2

Z �

0

�
f (:; t) ;

@u (:; t)

@t

�
B12(
)

dt+ � k'k2L2(
) + k k
2
B12(
)

: (5.7)

It follows from the Eq. (1.11) and the Eq. (1.9) thatZ �

0

�
f (:; t) ;

@u (:; t)

@t

�
B12(
)

dt � "

2

Z �

0

kf (:; t)k2B12(
) dt+
1

4"

Z �

0
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2
L2(
)

dt:
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We choose " = 1
4�
on that it yields to

� ku (:; �)k2L2(
) +




@u (:; �)@t





2
B12(
)

� 1

4�

Z �

0

kf (:; t)k2B12(
) dt+ � k'k2L2(
) + k k
2
B12(
)

: (5.8)

Finally, it follows from (5.8) that we obtain estimates (5.5).

5.4 Existence of Solution

5.4.1 Laplace transform technique

Laplace transform is widely used in the area of engineering technology and mathematical sci-

ence. There are many problems whose solutions may be found in terms of the Laplace transform.

In fact, it is an e¢ cient method for solving many di¤erential equations and partial di¤erential

equations. The main di¢ cult of the method of the Laplace transform is in inverting the solu-

tion of the Laplace domain into the real domain. Hence we apply the technique of the Laplace

transform [69, 93, 94, 96, 118] to �nd solutions of the problem (5.1)-(5.2).

Suppose that v (x; t) is de�ned and is of the exponential order for t � 0, i.e. there exists

A; 
 > 0 and t0 > 0 such that jv (x; t)j � A exp (
t) for t � t0. Then the Laplace transform

V (x; s) including the function v (x; t) is introduced by

V (x; s) = Lfv (x; t) ; t �! sg =
Z 1

0

v (x; t) exp (�st) dt (5.9)

where s is known as a Laplace variable. A capital letter V represents Laplace transform of

function v, i.e., V is a function in the Laplace domain.

If we start at this approximation and apply Laplace transform on the both sides of the

problem (5.1)-(5.2), with respect to t, then we discover

d2

dx2
V (x; s)� s2

(�+ �s)
V (x; s) =

� 1

(�+ �s)

�
G (x; s) +

@V (x; 0)

@t
+ sV (x; 0)� �

d2V (x; 0)

dx2

�
; (5.10)
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V (x; 0) = � (x) ;
@V (x; 0)

@t
= 	(x) ;Z 1

0

V (x; s) dx = A (s) ;

Z 1

0

xV (x; s) dx = B (s) . (5.11)

Using the initial conditions, it becomes

d2

dx2
V (x; s)� s2

(�+ �s)
V (x; s)

= � 1

(�+ �s)

�
G (x; s) + 	 (x) + s� (x)� �

d2� (x)

dx2

�
;Z 1

0

V (x; s) dx = A (s) ;

Z 1

0

xV (x; s) dx = B (s) (5.12)

Notice that

V (x; t) = Lfv (x; t) ; t �! sg

G (x; t) = Lfg (x; t) ; t �! sg

A (s) = Lf� (t) ; t �! sg

B (s) = Lfm (t) ; t �! sg :

Hence, it is reduced to the boundary value problem by the inhomogeneous ordinary di¤er-

ential equation of second order. From this, we obtain a general solution of the Eq. (5.12), as

follows:

V (x; t) = �
p
�+ �s

s

Z x
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�
G (� ; s) + 	 (�) + s� (�)� �

d2� (�)

dx2
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(x� �)
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d� + C1 (s) exp

�
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�+ �s
x

�
+

C2 (s) exp

�
sp

�+ �s
x

�
; (5.13)

where C1 and C2 are arbitrary functions of s: Substituting the Eq. (5.13) into the integral

boundary conditions in the Eq. (5.12), we have
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��
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(x� �)

�
dx

�
d� + A (s) ;
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C1 (s)

Z 1
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x exp

�
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x
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Z 1
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�
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which in turn yields to0@ C1 (s)

C2 (s)

1A =

0@ a11 (s) a12 (s)

a21 (s) a22 (s)

1A�1

�

0@ b1 (s)
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1A
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dx;
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��
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dx
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�Z 1
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x sinh
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�
dx

�
d� +B (s) ; (5.14)

Thus, by evaluating all integrals appeared in the Eq. (5.13) and the Eq. (5.14), we

�nd out the solution of the Laplace domain. This can be done for known functions G; 	;

�; A; B; however, in many cases, the results of the functions are not easy to show exactly.

Therefore, it is needed to numerical approximations of the integrals. As it is known, Gaussian

Quadrature formula exists for computing integrals numerically (see [1]). Using this formula,

we have approximate of the above integrals, as follows:Z 1

0

�
1

x

�
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�
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�
dx ' 1
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1
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��
,
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d2� (�)

dx2

�
sinh

�
sp

�+ �s
(x� �)

�
d� '

x

2

nX
i=1

!i

"
G
�x
2
(xi + 1) ; s

�
+	

�x
2
(xi + 1)

�
+ s�

�x
2
(xi + 1)

�
� �

d2�
�
x
2
(xi + 1)

�
d� 2

#
�

sinh

�
sp

�+ �s

�
x� x

2
(xi + 1)

��
;

where we have used � = x
2
(xi + 1).Z 1

0

��
G (� ; s) + 	 (�) + s� (�)� �

d2� (�)

dx2

� Z 1

�

�
1

x

�
sinh

�
sp

�+ �s
(x� �)

�
dx

�
d� '

1

2

nX
i=1

!i

"
G

�
1

2
(xi + 1) ; s

�
+	

�
1

2
(xi + 1)

�
+ s�

�
1

2
(xi + 1)

�
� �

d2�
�
1
2
(xi + 1)

�
d� 2

#
�

�
1� 1

2
(xi + 1)

2

� nX
j=1

!j

�
1�

1� 1
2
(xi+1)

2

�
xj +

�
1+ 1

2
(xi+1)

2

���

sinh

�
sp

�+ �s

��
1� 1

2
(xi + 1)

2

�
xj +

1 + 1
2
(xi + 1)

2
� 1
2
(xi + 1)

��
; (5.15)

where � = 1
2
(xi + 1), xi and !i are de�ned by

xi : i
th zero of Pn (x) ; !i =

2

(1� x2i ) [P
0
n (xi)]

2 .

Their values can be found in [1] for di¤erent values of n.

By Stehfest�s algorithm approximates (1:17)� (1:18)we obtain the numerical solution:

Remark 2 Stehfest�s method gives accurate results for many problems including di¤usion prob-

lem, fractional functions in the Laplace domain. However, it fails to predict exp (t) type func-

tions or those with oscillatory behavior such as sine and wave function (see [69]).

Remark 3 Note that more than one numerical inversion algorithm can also be performed to

check the accuracy of the results.
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5.5 Numerical Examples

In this section, we perform some results of numerical computations using Laplace transform

method proposed in the previous section. This technique is applied to solve the problem de�ned

by the problem (5.1)-(5.2). The method of solution is easily applicable via the computer, is

used Matlab 7.9.3 program.

Example 7 We take

g (x; t) = �
8 tanh (x+ t)

�
2 + sinh2 (x+ t)

�
cosh4 (x+ t)

; 0 < x < 1; 0 < t � T;

� (x) =
1

cosh2 (x)
; 0 < x < 1;

	(x) =
�2 tanh (x+ t)

cosh2 (x+ t)
; 0 < x < 1;

� (t) = tanh (1 + t)� tanh t; 0 < t � T;

m (t) = tanh (1 + t)� ln cosh (1 + t) + ln cosh (t) ; 0 < t � T;

in this case exact solution is given by

v (x; t) =
1

cosh2 (x+ t)
; 0 < x < 1; 0 < t � T .

The method of solution is easily implemented on the computer, numerical results obtained

by n = 8 in (5.15) and m = 5 in (1.25), then we compared the exact solution with numerical

solution. For t = 0:10 and x 2 [0:10; 0:90], we calculate u numerically using the proposed

method of solution and compare it with the exact solution in Table 1.

x 0:10 0:30 0:50 0:70 0:90

u exact 0; 0782785 0; 0879214 0; 1057214 0; 1345645 0; 1791275

u numerical 0; 0778127 0; 0878643 0; 1057002 0; 1340946 0; 1790532

absolute error 0; 0004658 0; 0000517 0; 0000212 0; 0004699 0; 0000743

Table 1
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Example 8 We take

g (x; t) = �
4 cosh (x+ t)

�
sinh2 (x+ t)� 2

�
sinh (x+ t)

; 0 < x < 1; 0 < t � T;

� (x) = coth2 (x) ; 0 < x < 1;

	(x) =
�2 cosh (x)
sinh2 (x)

; 0 < x < 1;

� (t) = 1� coth (1 + t) + coth (t) ; 0 < t � T;

m (t) =
1

2
� coth (1 + t)� ln sinh (1 + t)� ln sinh (t) ; 0 < t � T;

in this case exact solution given by

v (x; t) = coth2 (x+ t) ; 0 < x < 1; 0 < t � T .

For t = 0:10 and x 2 [0:10; 0:90], we calculate u numerically using the proposed method of

the solution and compare it with the exact solution in Table 2:

x 0:10 0:30 0:50 0:70 0:90

u exact 25; 6693160 6; 9270684 3; 4671390 2; 2678574 1; 7240617

u numerical 25; 6692268 6; 9269887 3; 4670924 2; 2678555 1; 724061657

absolute error 0; 0000892 0; 0000797 0; 0000466 0; 0000019 0; 0000043

Table 2

Example 9 We take

g (x; t) =
4 tanh (x+ t)

coth2 (x+ t)
; 0 < x < 1; 0 < t � T;

� (x) =
1

coth2 (x)
; 0 < x < 1;

	(x) = 2 tanh (x) ; 0 < x < 1;

� (t) = 1� tanh (x+ t) + tanh (t) ; 0 < t � T;

m (t) =
1

2
� tanh (t) + ln cosh (t)� ln cosh (t) ; 0 < t � T;

in this case exact solution is given by

v (x; t) =
1

coth2 (x+ t)
; 0 < x < 1; 0 < t � T .
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For t = 0:10 and x 2 [0:10; 0:90], we calculate u numerically using the proposed method of

the solution and compare it with the exact solution in Table 3:

x 0:10 0:30 0:50 0:70 0:90

u exact 0; 0353069 0; 0095278 0; 0047689 0; 0031193 0; 0023714

u numerical 0; 0352700 0; 0093904 0; 0044651 0; 0030620 0; 0023015

absolute error 0; 0000369 �0; 0001374 0; 0003038 0; 0000573 0; 0000699

Table 3



Chapter 6

Solvability of parabolic and hyperbolic

integro-di¤erential problems with

purely integral conditions

6.1 Statement of the problem

In this chapter, we study only parabolic integro-di¤erential equations. The study of hyperbolic

integro-di¤erential equations can be done by the same procedure.

We consider the equation the following parabolic integro-di¤erential equation

@v

@t
(x; t)� @2v

@x2
(x; t) =

tZ
0

a (t� s) v (x; s) ds; 0 < x < 1; 0 < t � T (6.1)

subject to the initial condition

v (x; 0) = � (x) ; 0 < x < 1 (6.2)

and the integral conditions

1Z
0

v (x; t) dx = r (t) ; 0 < t � T

1Z
0

xv (x; t) dx = q (t) ; 0 < t � T (6.3)
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A second problem of a hyperbolic integro-di¤erential equation can be de�ned as

@2v

@t2
(x; t)� @2v

@x2
(x; t) =

tZ
0

a (t� s) v (x; s) ds; 0 < x < 1; 0 < t � T (6.4)

subject to the initial condition

v (x; 0) = � (x) ; 0 < x < 1

@v (x; 0)

@t
= 	(x) ; 0 < x < 1 (6.5)

and the integral conditions

1Z
0

v (x; t) dx = r (t) ; 0 < t � T

1Z
0

xv (x; t) dx = q (t) ; 0 < t � T (6.6)

where v is an unkown function, r; q; � (x) ; and 	(x) are given functions supposed to be

su¢ ciently regular, a is suitably de�ned function satisfying certain conditions that will be

speci�ed later and T is a positive constant. Some problems of modern physics and technology

can be described in terms of partial di¤erential equations with nonlocal conditions. The nonlocal

term of our problem ( i.e

tZ
0

a (t� s) v (x; s) ds) appears, for instance, in the modelling of the

quasistatic �exure of a thermoelastic rod, see [8, 10] �rstly has been studied, by the second

author with more general second-order parabolic equation or a 2m�parabolic equation in [8, 10,

12] by using of the energy-integrals methods and the Rothe method in [101]: For other models,

we refer the reader, for instance, to [6, 10, 11, 13, 14, 21, 22, 102, 94, 117],and references therein.

The Problem (6:1)� (6:3) is studied by the Rothe method in [24].Ang [4] has considered a one-

dimensional heat equation with nonlocal (integral) conditions. The author has taken the laplace

transform of the problem and then used numerical technique for the inverse laplace transform

to obtain the numerical solution.
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6.2 Reformulation of the problem

Since integral conditions are inhomogenous, it is convenient to convert problem (6:1) � (6:3)

to an equivalent problem with homogenous integral conditions. For this, we introduce a new

function u (x; t) representing the deviation of the function v (x; t) from the function

u (x; t) = v (x; t)� w (x; t) ; 0 < x < 1; 0 < t � T (6.7)

where

w (x; t) = 6 (2q (t)� r (t))x� 2 (3q (t)� 2r (t)) (6.8)

Problem (6:1) � (6:3) with inhomogenous integral conditions (6:3) can be equivalently

reduced to the problem of �nding a function u satisfying

@u

@t
(x; t)� @2u

@x2
(x; t) =

tZ
0

a (t� s)u (x; s) ds; 0 < x < 1; 0 < t � T (6.9)

the initial condition

u (x; 0) = ' (x) ; 0 < x < 1 (6.10)

and the purely integral conditions

1Z
0

u (x; t) dx = 0; 0 < t � T

1Z
0

xu (x; t) dx = 0; 0 < t � T (6.11)

and

' (x) = � (x)� w (x; 0) (6.12)

Hence, instead of solving for v, we simply look for u. The solution of problem (6:1)� (6:3)

will be obtained by the relation (6:7)� (6:8).

6.3 Existence of the Solution

Laplace transform is an e¢ cient method for solving many di¤erential equations and partial

di¤erential equations,The main di¢ culty with Laplace transform method is in inverting the
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Laplace domain solution into the real domain. In this section we shall apply the Laplace

transform technique to �nd solutions of partial di¤erential equations.

Suppose that v (x; t) is de�ned and is of exponential order for t � 0 i.e. there exists A;


 > 0 and t0 > 0 such that jv (x; t)j � A exp (
t) for t � t0: Than the Laplace transform

V (x; s), exists and is given by

V (x; s) = Lfv (x; t) ; t �! sg =
Z 1

0

v (x; t) exp (�st) dt; (6.13)

where s is positive real parameter. Appying the Laplace transform on both sides of (6:1) ; we

have

(s� A (s))V (x; s)� d2

dx2
V (x; s) = s� (x) ; (6.14)

where G (x; s) = Lfg (x; t) ; t �! sg : Similarly, we haveZ 1

0

V (x; s) dx = R(s);Z 1

0

xV (x; s) dx = Q(s); (6.15)

where

R (s) = Lfr(t); t �! sg ;

Q (s) = Lfq(t); t �! sg :

Now, we distinguish the following cases:

Case 1: If s� A (s) > 0:

Case 2: If s� A (s) < 0:

Case 3: If s� A (s) = 0:

We only consider cases 2 and 3, since case 1 can be dealt with similarly as in [4]. For

(s� A (s)) = 0; we have
d2

dx2
V (x; s) = �s� (x) : (6.16)

The general solution for case 3 is given by

V (x; s) = �
Z x

0

Z y

0

[s� (x)] dzdy + C1 (s)x+ C2 (s) : (6.17)
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Putting the integral conditions (6:15) in (6:17) we get

1

2
C1 (s) + C2 (s)

=

Z 1

0

Z x

0

Z y

0

[s� (x)] dzdy +R(s);

1

3
C1 (s) +

1

2
C2 (s)

=

Z 1

0

Z x

0

Z y

0

x [s� (x)] dzdy +Q(s); (6.18)

and

C1 (s) = 12

Z 1

0

Z x

0

Z y

0

x [s� (x)] dzdy �

6

Z 1

0

Z x

0

Z y

0

[s� (x)] dzdy +

12Q(s)� 6R(s);

C2 (s) = 4

Z 1

0

Z x

0

Z y

0

[s� (x)] dzdy �

6

Z 1

0

Z x

0

Z y

0

x [s� (x)] dzdy �

6Q(s) + 4R(s): (6.19)

For case 2, that is, (s� A (s)) < 0; using the method of variation of parameter, we have

the general solution as

V (x; s) =
1p

A (s)� s2

Z x

0

(s� (x))�

sin
�p

A (s)� s
�
(x� �) d� + d1 (s) cos

p
(A (s)� s)x+

d2 (s) sin
p
(A (s)� s)x: (6.20)
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From the integral conditions (6:15) we get

d1 (s)

Z 1

0

cos
p
(A (s)� s)xdx+ d2 (s)

Z 1

0

sin
p
(A (s)� s)xdx

= R(s)� 1p
A (s)� s2

Z 1

0

Z x

0

(s� (x))�

sin
�p

A (s)� s
�
(x� �) d�dx;

d1 (s)

Z 1

0

x cos
p
(A (s)� s)xdx+ d2 (s)

Z 1

0

x sin
p
(A (s)� s)xdx

= Q(s)� 1p
A (s)� s

Z 1

0

Z x

0

x (s� (x))�

sin
�p

A (s)� s
�
(x� �) d�dx: (6.21)

Thus d1; d2 are given by0@ d1 (s)

d2 (s)

1A =

0@ a11 (s) a12 (s)

a21 (s) a22 (s)

1A�1

�

0@ b1 (s)

b2 (s)

1A ; (6.22)

where

a11 (s) =

Z 1

0

cos
p
(A (s)� s)xdx;

a12 (s) =

Z 1

0

sin
p
(A (s)� s)xdx;

a21 (s) =

Z 1

0

x cos
p
(A (s)� s)xdx;

a22 (s) =

Z 1

0

x sin
p
(A (s)� s)xdx;

b1 (s) = R(s)� 1p
A (s)� s

Z 1

0

Z x

0

(s� (x))�

sin
�p

A (s)� s
�
(x� �) d�dx;

b2 (s) = Q(s)� 1p
A (s)� s

Z 1

0

Z x

0

x (s� (x))�

sin
�p

A (s)� s
�
(x� �) d�dx: (6.23)

If it is not possible to calculate the integrals directly, then we calculate them numerically.

We approximate similarly as done in [4]. If the Laplace inversion is possibly computed directly

for (6:17) and (6:20) ; we get our solution explicitly. In otherwise we use the suitable approxi-

mate method and then we use the numerical inversion of the Laplace transform. Considering



6.4 Numerical Example 65

A (s) � s = k (s) and using Gauss�s formula given in [1] we have the following appoximations

of the integrals: Z 1

0

�
1

x

�
cos
p
k (s)xdx

' 1

2

NX
i=1

wi

�
1

1
2
[xi + 1]

�
cos

�p
k (s)

1

2
[xi + 1]

�
;Z 1

0

�
1

x

�
sin
p
k (s)xdx

' 1

2

NX
i=1

wi

�
1

1
2
[xi + 1]

�
sin

�p
k (s)

1

2
[xi + 1]

�
;Z x

0

(s� (x)) sin
�p

k (s)
�
(x� �) d�

' x

2

NX
i=1

wi

h
s�
�x
2
[xi + 1]

�i
sin
�p

k (s)
h
x� x

2
[xi + 1]

i�
;Z 1

0

�
[s� (�)]

Z 1

�

�
1

x

�
sin
�p

k (s)
�
(x� �) dx

�
d�

' 1

2

NX
i=1

wi

�
s�

�
1

2
[xi + 1]

��
�
1� 1

2
[xi + 1]

2

� NX
i=1

wj

�
1

1� 1
2
[xi+1]

2
xj +

1� 1
2
[xi+1]

2

�
�

sin

�p
k (s)

�
1� 1

2
[xi + 1]

2
xj +

1 + 1
2
[xi + 1]

2
� 1
2
(xi + 1)

��
; (6.24)

where xi and wi are the abscissa and weights, de�ned as

xi : i
th zero of Pn (x) ; !i = 2=

�
1� x2i

� h
P

0

n (x)
i2
:

Their tabulated values can be found in [1] for di¤erent values of N:

By Stehfest�s algorithm approximates (1:17)� (1:18)we obtain the numerical solution:

6.4 Numerical Example

In this section, we perform some results of numerical computations using Laplace transform

method proposed in the previous section. This technique is applied to solve the problem de�ned
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by the problem (6:1)� (6:3). The method of solution is easily applicable via the computer, is

used Matlab 7:9:3 program.

Example 10 We take

@v

@t
(x; t)� @2v

@x2
(x; t) =

tZ
0

exp(t� s)u (x; s) ds; 0 < x < 1; 0 < t � T;

v (x; 0) = sinx; 0 < x < 1;
1Z
0

v (x; t) dx = 0; 0 < t � T;

1Z
0

xv (x; t) dx = 0; 0 < t � T;

in this case exact solution is given by

v (x; t) = exp(�t): cos t: sin x; 0 < x < 1; 0 < t � T .

The method of solution is easily implemented on the computer, numerical results obtained

by N = 8 in (6.24) and m = 5 in (??), then we compared the exact solution with numerical

solution. For t = 0:10 and x 2 [0:10; 0:90], we calculate v numerically using the proposed

method of solution and compare it with the exact solution in Table 1.

The relative error computed by v numerical�v exact
v exact

x 0:10 0:30 0:50 0:70 0:90

v exact 0:0898817 0:2660619 0:4316350 0:5800001 0:7052425

v numerical 0:0898818 0:2660623 0:4316355 0:5800058 0:7052395

relativ error �0; 0000058 0; 0000017 0; 0000012 0; 0000099 �0; 0000043
Table1

6.5 Uniqueness and Continuous dependence of the So-

lution

We establish an a priori estimate, the uniqueness and continuous dependence of the solution

with respect to the data are immediate consequences.
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Theorem 26 If u (x; t) is a solution of the Problem (6:9)� (6:11), then we have

ku (:; �)k2L2(0;1) � c1

�
k'k2L2(0;1)

�




@u (:; �)@t





2
L2(0;T ; B12(0;1))

� c2

�
k'k2L2(0;1)

�
; (6.25)

where c1 = exp (a0T ) ; c2 =
exp(a0T )
1�a0 ; 1 < a (x; t) < a0; and 0 � � � T:

Proof. Taking the scalar product in B1
2 (0; 1) of equation (6:9) and u, and integrating over

(0; �), we have Z �

0

�
@u (:; t)

@t
; u

�
B12(0;1)

dt�Z �

0

�
@2u (:; t)

@x2
; u

�
B12(0;1)

dt

=

Z �

0

0@ tZ
0

a (t� s)u (x; s) ds;
@u (:; t)

@t

1A
B12(0;1)

dt: (6.26)

Integrating by parts on the left-hand sid of (6:26) we obtain

1

2





@u (:; t)@t





2
B12(0;1)

+

1

2
ku (:; �)k2L2(0;1) �

1

2
k'k2L2(0;1)

=

Z �

0

0@ tZ
0

a (t� s)u (x; s) ds;
@u (:; t)

@t

1A
B12(0;1)

dt: (6.27)

By the Cauchy inequality, the right-hand side of (6:27) is bounded by

a0
2

tZ
0

ku (x; s)k2
L2(0;T ; B12(0;1))

ds+
a0
2





@u (:; t)@t





2
L2(0;T ; B12(0;1))

(6.28)

Substitution of (6:28) into (6:27) yields

(1� a0)





@u (:; t)@t





2
L2(0;T ; B12(0;1))

+ ku (:; �)k2L2(0;1) �

k'k2L2(0;1) +

a0
2

tZ
0

ku (x; s)k2
L2(0;T ; B12(0;1))

ds: (6.29)



By the Gronwall Lemma we have

(1� a0)





@u (:; t)@t





2
L2(0;T ; B12(0;1))

+ ku (:; �)k2L2(0;1)

� exp (a0T )
�
k'k2L2(0;1)

�
: (6.30)

From (6:30) ; we obtain the estimates (6:25).

Corollary 27 If Problem (6:9)�(6:11) has a solution, then this solution is unique and depends

continuously on ':

.
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 ملخص

 لبعض  للحل بالمعطياتالمستمر الارتباطو ،وحدانيةو وجود نثبت الاطروحة هذه في

 البراهين(. شروط حدية تكاملية) ةمحلي غيرمع شروط  المسائل التطورية الخطية اصناف

 وفي الاخير نتحصل على الحل باستعمال لى تقديرات قبلية وطريقة تحويل لابلاسعتعتمد 

وذلك بعكس تحويل لابلاس (لوغاريتم ستيفاست) تقنية عددية    

 

 

RESUME 

Dans cette thèse, nous démontrons l'existence, l'unicité et la dépendance 

continue de la solution par rapport aux données pour certaines classes des 

problèmes d'évolution linéaires avec des conditions non locales (conditions aux 

limites intégrales). Les preuves sont basée sur des estimations a priori et la 

méthode de transformée de Laplace. Finalement, nous obtenons la solution en 

utilisant la technique numérique (algorithme de Stehfest) pour inverser la 

transformée de Laplace. 

 

ABSTRACT 

In this thesis we prove the existence, uniqueness, and continuous dependance 

of solution upon the data for some classes linear evolution problems with 

nonlocal conditions (boundary integral conditions).  The proofs are based on a 

priori estimates and Laplace transform method. Finally, we obtain the solution 

by using numerical technique ( Stehfest algorithm) for inverting the Laplace 

transform. 
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