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ABSTRACT

This PhD thesis is dedicated to the study of diferential inclusions involving normal

cones in Hilbert spaces. In particular, we are interested in the sweeping process. The

sweeping process is a constrained diferential inclusion involving normal cones.

This work is divided conceptually in three parts:

In the first part we prove the local existence of solutions of sweeping process involv-

ing a locally prox-regular set with an upper semicontinuous set-valued perturbation

contained in the Clarke subdifferential of a primal lower nice function.

In the second part we consider the free endpoint Mayer problem for a controlled

Moreau process, the control acting as a perturbation of the dynamics driven by the

normal cone, and derive necessary optimality conditions of Pontryagin’s Maximum

Principle type.

Finally, in the third part we consider the problem of minimizing a cost at the end-

point of a trajectory subject to the finite dimensional dynamics, this dynamics is a

nonclassical control problem with state constraints.

Keywords: Diferential inclusions, Sweeping process, Mayer problem, Pontryagin’s

Maximum Principle.
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RÉSUMÉ

Cette thèse est consacrée à l’étude des inclusions differentielles gouvernées par des

cônes normaux dans les espaces de Hilbert. En particulier, nous nous sommes intéressés

à l’étude des processus de rafle. Le processus de rafle est une inclusion differentielle

avec contrainte impliquant des cônes normaux .

Ce travail est divisé conceptuellement en trois parties :

Dans la première partie nous prouvons l’existence de solutions locales pour le

processus de rafle gouverné par un ensemble localement prox-régulier et avec une

perturbation semicontinue supérieurement incluse dans le subdifférentiel de Clarke

d’une fonction pln.

Dans la deuxième partie, nous considérons le problème de Mayer d’un point final

libre pour un processus de Moreau contrôlé, le contrôle agissant comme une pertur-

bation de la dynamique conduite par le cône normal. Nous dérivons les conditions

nécessaires d’optimalité.

Finalement, dans la troisième partie, nous considérons le problème de la minimisa-

tion d’un coût au point final d’une trajectoire soumise à une dynamique en dimension

finie, cette dynamique est un problème de contrôle non classique avec des contraintes

sur l’état.

Mots-clés: Inclusions différentielles, Processus de rafle, Problème de Mayer, Principe

de maximum de Pontryagin.
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GENERAL INTRODUCTION

The theory of multivalued differential equations is now well known. This Theory was

introduced in the 1940s for the study of systems of equations with nonlinear partial

drift and problems from mechanics. Today,this theory has become more important and

more attractive. Its scope has grown considerably, and has been successful in many

areas such as: the unilateral mechanics, the mathematical economy, the sciences of

the engineers(non-regular electrical circuit),... more recently, it has become one of the

methods important for the study of variational evolutionary inequalities, mainly those

governed by the normal cone.

The aim of this thesis is to give some contributions to theory of diferential inclusions

and diferential inclusions involving normal cones. In particular, we are interested at

existence of solutions and necessary optimality conditions.

This thesis is composed of four chapters. The first is about concepts basics and some

auxiliary results that we have used throughout this work.

In chapter two we prove the local existence of solutions of sweeping process involv-

ing a locally prox-regular set C with an upper semicontinuous set-valued perturbation
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General introduction

F contained in the Clarke subdifferential of a primal lower nice function 1 of the form

ẋ(t) ∈ −NC(x(t)) + F(x(t)), x(0) = x0 ∈ C, a.e t ∈ [0,T].

Here NC(·) denotes the Clarke normal cone of C. The study requires the both quantified

concepts of locally prox-regularity termed as (r, α)-prox-regularity for set C and c − pln

regularity for function 1.

In chapter tree we consider the free endpoint Mayer problem for a controlled Moreau

process, the control acting as a perturbation of the dynamics driven by the normal cone,

and derive necessary optimality conditions of Pontryagin’s Maximum Principle type.

The results are also discussed through an example. We combine techniques from [55]

and from [16], which in particular deals with a different but related control problem.

Our assumptions include the smoothness of the boundary of the moving set C(t),

but, differently from [16], do not require strict convexity and time independence of

C(t). Rather, a kind of inward/outward pointing condition is assumed on the reference

optimal trajectory at the times where the boundary of C(t) is touched. The state space

is finite dimensional.

Finally in chapter four we consider the problem of minimizing the cost h(x(T)) at

the endpoint of a trajectory x subject to the finite dimensional dynamics

ẋ ∈ −NC(x) + f (x,u), x(0) = x0,

where NC denotes the normal cone to the convex set C. Such differential inclusion is

termed, after Moreau, sweeping process. We label it as a “nonclassical” control problem

with state constraints, because the right hand side is discontinuous with respect to the

state, and the constraint x(t) ∈ C for all t is implicitly contained in the dynamics.

We prove necessary optimality conditions in the form of Pontryagin Maximum

Principle by requiring, essentially, that C is independent of time. If the reference

trajectory is in the interior of C, necessary conditions coincide with the usual ones.

In the general case, the adjoint vector is a BV function and a signed vector measure
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appears in the adjoint equation.
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CHAPTER 1

DEFINITIONS AND PRELIMINARY

RESULTS

In this chapter we describe the notation, the definitions and basic results that are going

to be used throughout the thesis.

Let H be a real Hilbert space with the norm ∥.∥ and scalar product ⟨., .⟩ . For x ∈ H and

ε > 0, let B(x, ε) = {y ∈ H : ∥y − x∥ < ε} be the open ball centered at x with radius ε and

B(x, ε) be its closure.

We denote by d(x,C) := inf{∥x − y∥; y ∈ C} the distance from x ∈ H to a subset C ⊂ H

and d∗(A,B) := sup{d(a,B) : a ∈ A} for A,B ⊂ H.

One defines the (possibly empty) set of nearest points of y in C by

projC(x) := {y ∈ C : dC(x) = ∥x − y∥}

4



Definitions and Preliminary results

If x ∈ projC(x), and s ≥ 0, then the vector s(y − x) is called (see, e.g., [26]) a proximal

normal to C at x. The set of all vectors of this form is a cone which is termed the proximal

normal cone of C at x. It is denoted by Np
C(x), and Np

C(x) = ∅whenever x ∈ intC.

Given a function f : H→ R ∪ {+∞}. Let dom f := {x ∈ H : f (x) < +∞} be its domain.

We say that f is proper if dom f is nonempty.

1.1 Primal lower nice function

Let us now define primal lower nice function in a quantified way [44, 57].

Definition 1.1.1 Let f : H→ R∪{+∞} be a proper lower semicontinuous function. The

function f is said to be primal lower nice (pln, for short) on an open convex set Owith

O ∩ dom f , ∅ if there exists some real number c ≥ 0 such that for all x ∈ O ∩ dom∂p f (x)

and for all v ∈ ∂p f (x) on has

f (y) ≥ f (x) + ⟨v, y − x⟩ − c(1 + ∥v∥)∥y − x∥2, (1.1)

for each y ∈ O.

The real c ≥ 0 will be called a pln constant for f over O and we will say that f is c -pln

on O.

For x ∈ dom f , we say that f is pln at x whenever it is pln on some open set containing x.

Here ∂P f (x) denotes the proximal subdifferential of f at x (for its definition the reader

is refereed for instance to [14, 33]) and dom∂P f (x) := {x ∈ H : ∂P f (x) , ∅}.

Remark 1.1.1 It is established in [57] that the definition above is equivalent to the pioneering

definition of primal lower nice function.
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Definitions and Preliminary results

The following propositions summarizes some important properties for pln functions

needed in the sequel.

Proposition 1.1.1 [44] Assume that the function f : H → R ∪ {+∞} is primal lower nice on

an open set O with O ∩ dom f , 0. Then for all x ∈ O, we have

∂P f (x) = ∂C f (x)

Hence, the definition of the pln property is independent of the subdifferential operator.

Here ∂C f (x) denotes the Clarke subdifferential of f at x ( see for instance [14, 33] for the

definition of ∂C f ).

1.2 Prox-regular sets

After the above definition of c − pln functions, we recall the definition of local prox-

regularity of sets. For a large development of this concept, the reader is referred to [52].

In this paper, we will use some results where the quantified viewpoint [43] of the local

prox-regularity has been introduced.

Definition 1.2.1 Let C ⊂ Rn be a closed smooth set and ρ > 0 be given. We say that C is

ρ-prox-regular provided the inequality

⟨ζ, y − x⟩ ≤ |y − x|2
2ρ

(1.2)

holds for all x, y ∈ C, where ζ is the unit external normal to C at x ∈ ∂C.

In particular, every convex set is ρ-prox regular for every ρ > 0 and every set with a

C1,1-boundary is ρ-prox regular, where ρ depends only the Lipschitz constant of the

gradient of the parametrization of the boundary (see [32, Example 64]). In this case,
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Definitions and Preliminary results

the (proximal) normal cone to C at x ∈ C is the nonnegative half ray generated by the

unit external normal, and

v ∈ NC(x) if and only if there exists σ > 0 such that ⟨v, y − x⟩ ≤ σ|y − x|2 ∀y ∈ C.

Prox-regular sets enjoy several properties, including uniqueness of the metric projection

and differentiability of the distance (in a suitable neighborhood) and normal regularity,

which hold also true for convex sets, see, e.g. [32].

Definition 1.2.2 For positive real numbers r and α, the closed set C is said to be (r, α) prox-

regular at a point x ∈ C provided that for any x ∈ C ∩ B(x, α) and any v ∈ NP
C(x) such that

∥v∥ ≤ r, one has

x = projC(x + v).

The set C is r prox regular (resp. prox regular) at x when it (r, α) prox regular at x for some

real α > 0 (resp. for some numbers r > 0 and α > 0). The set C is said to be r-uniformly

prox-regular when α = +∞.

It is not difficult to see that the latter (r, α)-prox-regularity property of C at x ∈ C is

equivalent requiring that

x ∈ projC(x + rv) for all x ∈ C ∩ B(x, α) and v ∈ NP
C(x) ∩ B.

When the set C is (r, α)-prox-regular at x, we have

NP
C(x) = NF

C(x) = NL
C(x) = NC

C(x) for all x ∈ C ∩ B(x, α).

The (r, α)-prox-regularity of the set C gives the following hypomonotonicity property of

the truncated normal cone. Recall that a set-valued mapping A : H→ 2H is hypomono-

tone with constant σ ≥ 0 on a subset S ⊂ H when for all x1, x2 ∈ S and ξ1 ∈ A(x1) and

ξ ∈ A(x), ⟨ξ1 − ξ2, x1 − x2⟩ ≥ −σ∥x1 − x2∥2.

7



Definitions and Preliminary results

Proposition 1.2.1 [43] Let C be a closed subset of H, and x ∈ C. Then if there exist positive real

numbers r and α such that C is (r, α)-prox-regular at x, then the set-valued mapping NP
C(·)∩B

is
1
r

-hypomonotone on C ∩ B(x, α).

We also recall the Gronwall Lemma for absolutely continuous solutions of differen-

tial inequalities.

Lemma 1.2.1 (Gronwall lemma) Let α, β, ζ :[T0,T] → R be three real-valued Lebesgue inte-

grable functions. If the function ζ(·) is absolutely continuous and if for almost all t ∈ [T0,T]

ζ̇(t) ≤ α(t) + β(t)ζ(t),

then for all t ∈ [T0,T]

ζ(t) ≤ ζ(T0)exp(
∫ t

T0

β(θ)dθ) +
∫ t

T0

α(s)exp(
∫ t

s
β(θ)dθ)ds

1.3 Control Systems

Control theory provides a different paradigm. We now assume the presence of an

external agent, i.e. a controller, who can actively influence the evolution of the system.

This new situation is medelled by a control system, namely

ẋ(t) = f (t, x(t), u(t)), x(0) = x, u(.) ∈ U (1.3)

where U is the family of admissible control functions defined as

U = {u : [0,T]→ Rm; u measurable,u(t) ∈ U f or a.e. t}. (1.4)

U ⊂ Rm is the set of control values.

In this case, the rate of change ẋ(t) depends not only on the state x itself, but also

on some external parameters, say u = (u1, ..., um), which can also vary in time. The

8



Definitions and Preliminary results

control function u(.), subject to some constraints, will be chosen by a controller in order

to modify the evolution of the system and achieve certain preassigned goals-steer the

system from one state to another, maximize the terminal value of one of the parameters,

minimize a certain cost functional, etc... The system (1.3) can be written as a differential

inclusion, namely

ẋ(t) ∈ F(t, x(t)) (1.5)

where the set of possible velocities is given by

F(t, x) := {y, y = f (t, x(t),u(t), u(t) ∈ U}. (1.6)

Given an initial statex, a set of admissible terminal conditions S ⊂ R × Rm, and a cost

function J : R ×Rm → R, we consider the optimization problem

min
u∈U,T>0

J(T, x(T,u)) (1.7)

with initial and terminal constraints

x(0) = x, (T, x(T)) ∈ S (1.8)

This controlled problem (1.7) subject to (1.3) is called the Mayer problem.

Now we introduce the Pontryagin Maximum Principle (PMP), it can used in order to

compute optimal controls and optimal trajectories. the PMP is used in optimal control

theory to find the best possible control for taking a dynamical system from one state to

another, especially in the presence of constraints for the state or input controls. It was

formulated in 1956 by the Russian mathematician Lev Pontryagin and his students.

So the goal is derive necessary conditions for the optimality of a control x∗(.). These

conditions will provide a basic tool for the actual computation of optimal controls.

Theorem 1.3.1 (Pontryagin Maximum Principle for The Mayer problem with free ter-

minal point). Consider the optimal control problem (1.3) - (1.7), under the assumptions that

the function f = f (t, x,u) is continuous and continuously differentiable w.r.t. x. The payoff

9



Definitions and Preliminary results

function J is differentiable.

Let u∗(.) be a bounded admissible control whose corresponding trajectory x∗(.) = x(.,u) is

optimal. Call p : [0,T] −→ Rm the solution of the adjoint linear equation

ṗ(t) = −p(t).Dx f (t, x∗(t),u∗(t)), p(T) = ∇J(x∗(T)) (1.9)

Then the maximality condition

p(t). f (t, x∗(t),u∗(t)) = max
w∈U
{p(t). f (t, x∗(t),w)} (1.10)

holds for almost every time t ∈ [0,T].

In the above theorem,x, f ,u represent column vectors, Dx f is the n × n Jacobian matrix

of first order partial derivatives of f w.r.t. x, while p is a row vector.

10



CHAPTER 2

ON EVOLUTION EQUATIONS

HAVING HYPOMONOTONICITIES OF

OPPOSITE SIGN GOVERNED BY

SWEEPING PROCESSES

2.1 Introduction

The notion of so-called "sweeping process" was introduced by Jean Jacques Moreau in

the seventies. Moreau studied in a series of seminal papers [46, 47, 49, 50] the both

theoretical and numerical aspects of the sweeping process for a moving closed convex

set included in a Hilbert space. There are plenty of existence and uniqueness results of

the perturbed sweeping processes

ẋ(t) ∈ −NC(x(t)) + F(x(t)), x(0) = x0 ∈ C, a.e t ∈ [0,T], (2.1)

11
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in the literature (see, e.g., [1, 27, 34, 38, 61] and the references therein). The set-valued

perturbations of equations of sweeping processes type have been considered for the

first time by Castaing and Monteiro-Marques [23, 24]. Let us note that the convexity

assumption on the set-valued perturbation is essential in the most previous works: see

for example, some recent papers [34, 61, 15, 35]. In [25, 60], the authors considered the

possibly nonconvex perturbation contained in the subdifferential of a convex Lipschitz

function. Moreover the closed set of constraints was supposed to be compact.

It is also worth mentioning that problem (2.1) in the more general form

ẋ(t) ∈ −∂ f (x(t)) + F(x(t)), F(x) ⊂ ∂1(x), x(0) = x0 ∈ dom f , (2.2)

with 1 is φ-convex of order two and f has a φ-monotone subdifferential of order two

(shortly f ∈MS(2)) have been studied in convex and nonconvex cases , see, e.g [18, 19].

Notice that we can obtain (2.1) from (2.2), by taking the indicator function of the set

of constraints. Indeed, when the set C of constraints is locally pox-regular, then the

associated indicator function f = δC is pln (Proposition 3.31 [43]) and so MS(2).

Despite the similarity of (2.1) and (2.2), the problems are quite different, since in

general with f = δC the level set {x ∈ H; f (x) ≤ r} is not compact, and these were

basic assumption in [18]. The question arises whether we can drop the assumption of

compactness of the set of constraints. Our main result here establishes an existence

result in this vein. Since the compactness assumption will be shifted from the set of

constraints to the nonconvex set-valued perturbation in the case of sweeping processes

problems. This compactness assumption on the set-valued perturbation is necessarily

made because of the infinite dimensional character of the Hilbert space. More precisely,

the ordinary differential equation generally has no solution under the sole continuity

of the single-valued right hand side on the infinite dimensional Hilbert space.

In this chapter, we propose a discretization method based on the existence and

uniqueness of solutions for single-valued perturbation [43] with different techniques

to analyze the sweeping processes under nonconvex set-valued perturbation in Hilbert

12
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spaces. The fixed set of constraints is supposed to be possibly noncompact and locally

prox-regular at the initial datum. The set-valued perturbation force is supposed to be

upper semicontinuous contained in the subdifferential of pln function and also in a

fixed compact subset.

The chapter is organized as follows. In Sect. 2.2, we recall some basic notations,

definitions and useful results which are used throughout the paper. The existence of

solutions are thoroughly analyzed in Sect. 2.3. An extension of the existence result to

the case of shifted moving set is discussed in Sect. 2.4. Finally, Sect. 2.5 closes the paper

with some concluding remarks.

2.2 Fundamental results

In this section, we summarize some preliminary results. We begin with this useful

proposition.

Proposition 2.2.1 [44] Let f : O → R ∪ {+∞} be a proper lower semicontinous function,

where v is an open set of H .The following are equivalent :

(a) f is locally semiconvex, finite and locally lipschitz continuous on O;

(b) f is locally semiconvex, finite and continuous on O;

(c) f is locally bounded from above on O and pln at any point of O.

The graph of the (proximal) subdifferential of a pln function enjoys the useful closure

property.

Proposition 2.2.2 [45] Let f : H → R ∪ {+∞} be a proper lsc function which is pln at

u0 ∈ dom f with constants s0, c0, Q0 > 0, and let T0,T, v0, η0 be positive real numbers such

that T > T0 and v0 + η0 = s0. Let v(.) ∈ L2([T0,T],H) and u(·) be a mapping from [T0,T]

into H. Let (un(·))n be a sequence of mappings from [T0,T] into H and (vn(·))n be a sequence in

L2([T0,T],H). Assume that:

1. {un(t),n ∈N} ⊂ B(u0, η0) ∩ dom f for almost every t ∈ [T0,T],

13
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2. (un)n converges almost everywhere to some mapping u with u(t) ∈ dom f for almost

every t ∈ [T0,T],

3. vn converges to v with respect to the weak topology of L2([T0,T],H),

4. for each n ≥ 1, vn(t) ∈ ∂ f (un(t)) for almost every t ∈ [T0,T].

Then, for almost all t ∈ [T0,T], v(t) ∈ ∂ f (u(t)).

We have the following existence and uniqueness result [43].

Proposition 2.2.3 Let C be an (r, α)-prox-regular set at the point x0 ∈ C and let any real

number η0 ∈]0, α[. Then for any x ∈ B(x0, α − η0) ∩ C, any positive real number τ ≤ T0 − T,

and any mapping h ∈ L1([0,T],H) such that
∫ T0+τ

T0
∥h(s)∥ds < η0/2, the differential variational

inequality

ẋ(t) ∈ −NC(x(t)) + h(t), x(0) = x, a.e t ∈ [T0,T0 + τ], (2.3)

has an absolutely continuous solution x : [T0,T0 + τ]→ B(x, η0) ∩ C. Moreover,

∥ẋ(t)∥ ≤ ∥ẋ(t) − h(t)∥ + ∥h(t)∥ ≤ 2∥h(t)∥ a.e t ∈ [T0,T0 + τ].

2.3 Main Result

In this section, we are interested in the study of the existence of solutions of evolution

problem of the form

ẋ(t) ∈ −NC(x(t)) + F(x(t)), x(0) = x0 ∈ C, a.e t ∈ [0,T], (2.4)

Under the following assumptions :

(HC1) : the closed set C is (r, α)-prox-regular at the point x0 ∈ C;

(HF1) : O ⊂ H is an open convex set containing B(x0, η0) and F : O → 2H is an upper

semicontinous set-valued mapping with nonempty weakly compact values;
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(HF2) : let 1 : O → R∪ {+∞} be a proper lower semicontinous function c-pln on Owith

F(x) ⊂ ∂C1(x), ∀x ∈ O such that 1 is locally bounded from above on O.

By a solution of inclusion (2.1) we mean an absolutely continuous function x(.) : [0,T]→
H, x(0) = x0 ∈ C, such that the inclusion

ẋ(t) ∈ −NC(x(t)) + f (t) (2.5)

holds a.e. for some f ∈ L2([0,T],H) with f (t) ∈ F(x(t)) a.e.

It is known that if x(.) is solution of inclusion (2.1), then x(t) ∈ C for all t ∈ [0,T].

We note that the closed set C is locally prox-regular at x0 ( hence NC is hypomonotone

set-valued mapping), 1 is a pln function and the set-valued mapping F is not necessarily

the whole subdifferential of 1 , and we take the plus sign, instead of the classical minus.

Also, The system (2.1) can be considered as a nonconvex hypomonotone differential

inclusion under control term u(t) ∈ NC(·) which guarantees that the trajectory x(t)

always belongs to the desired (r, α)-prox-regular set C for all t ∈ [0,T]. We prove (local)

existence of solutions.

Theorem 2.3.1 Assume that H is the Hilbert space, (HC1), (HF1) and (HF2) hold. Assume

that for some compact setK ⊂ H, one has F(x) ⊂ K for all x ∈ H.

Then, for any x0 ∈ C there exists T > 0 and an absolutely continuous function x(.) : [0,T] ;

B(x0, η0) a local solution to problem (2.1).

Proof.

First step: Construction of approximates solutions.

Let x0 ∈ C and and let 1 : O→ R ∪ {+∞} satisfy (HF2). Then, by proposition 2.2.1 there

exist M > 0 such that 1 is Lipschitzean with Lipschitz constant M on B(x0, η0) and, since

F(x) ⊂ ∂p1(x) it follows that F is bounded by M on B(x0, η0).

Let T > 0 such that

T < min{η0/2M, (α − η0)/2M}, (2.6)
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where α and η0 are given by (HC1). Our purpose is to prove that there exists x : [0,T]→
B(x0, η0) ∩ C a solution to the Cauchy problem (2.1) .

Let n ∈N∗, tn
0 = 0 and, for i = 1, ..., n, let tn

i = i
T
n

. Take yn
0 ∈ F(x0) and define f n

0 : [0, tn
1[→

H by f n
0 (t) = yn

0 . Then, for a. e t ∈ [0, tn
1]; ∥ f n

0 (t)∥ ≤M and f n
0 ∈ L2([0, tn

1],H).

Let us consider the problem

ẋ(t) ∈ −NC(x(t)) + f n
0 (t), x(0) = x0 ∈ C, a.e t ∈ [0, tn

1]. (2.7)

By (2.6) and proposition 2.2.3, it has an absolutely continuous solution that we denote

by xn
0(.) : [0, tn

1] ; B(x0, η0) ∩ C and this solution satisfies

∥ ˙(xn
0)(t)∥ ≤ 2M, a.e t ∈ [0, tn

1].

This yields for every t ∈ [0, tn
1] that

xn
0(t) ∈ B(x0, α − η0) ∩ C,

because by the latter inequality and by (2.6)

∥xn
0(t) − x0∥ ≤

∫ tn
1

0
∥ ˙(xn

0)(s)ds∥ ≤ 2MT < α − η0.

Likewise, take yn
1 ∈ F(xn

0(tn
1)). Since ∥xn

0(tn
1)−x0∥ < α−η0, we may apply proposition 2.2.3

again with xn
0(tn

1) as initial condition at time tn
1 , f n

1 : [tn
1 , t

n
2[→ H with f n

1 (t) = yn
1 , and this

gives the existence of an absolutely continuous solution xn
1(.) : [tn

1 , t
n
2] ; B(xn

0(tn
1), η0)∩C

of the problem

ẋ(t) ∈ −NC(x(t)) + f n
1 (t), x(tn

1) = xn
0(tn

1) ∈ C, a.e t ∈ [tn
1 , t

n
2], (2.8)

with

∥ ˙(xn
1)(t)∥ ≤ 2M, a.e t ∈ [tn

1 , t
n
2].
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So, for any t ∈ [tn
1 , t

n
2] one has

∥xn
1(t) − x0∥ ≤ ∥xn

1(t) − xn
1(tn

1)∥ + ∥xn
1(tn

1) − x0∥ = ∥xn
1(t) − xn

1(tn
1)∥ + ∥xn

0(tn
1) − x0∥

= ∥
∫ t

tn
1

˙(xn
1)(s)ds∥ + ∥

∫ tn
1

0

˙(xn
0)(s)ds∥

≤
∫ t

tn
1

2Mds +
∫ tn

1

0
2Mds

=

∫ t

0
2Mds ≤ 2MT̄.

(2.9)

The last inequality entails through(2.6)

xn
1(t) ∈ B(x0, η0) ∩ C for a.e t ∈ [tn

1 , t
n
2],

and

∥xn
1(tn

2) − x0∥ < α − η0.

And so on. So, for 2 ≤ k ≤ n − 1 ; take yn
k ∈ F(xn

k−1(tn
k )) with ∥xn

k−1(tn
k ) − x0∥ < α − η0

and define f n
k : [tn

k , t
n
k+1[→ H by f n

k (t) = yn
k , one has a finite sequences of absolutely

continuous mapping xn
k (.) : [tn

k , t
n
k+1] ; B(x0, η0) ∩ C with 0 ≤ k ≤ n − 1, such that for

each k ∈ 0, ...,n − 1 (with xn
−1(tn

0) = x0)



ẋn
k (t) ∈ −NC(xn

k (t)) + f n
k (t), a.e t ∈ [tn

k , t
n
k+1]

xn
k (t) ∈ B(x0, η0) ∩ C; ∀t ∈ [tn

k , t
n
k+1]

xn
k (tn

k ) = xn
k−1(tn

k ),

∥ ˙(xn
k )(t)∥ ≤ 2M, a.e t ∈ [tn

k , t
n
k+1].

Define xn(.), fn(.) : [0, T̄]→ H by xn(t) =
∑n−1

k=0 xn
k (t)χ[tn

k ,t
n
k+1](t) and fn(t) =

∑n−1
k=0 f n

k (t)χ(tn
k ,t

n
k+1](t),

where χA is the characteristic function of the set A.

Second step: Differential inclusion for the approximate solution.

Obviously xn(.) is absolutely continuous with

∥ẋn(t)∥ ≤ 2M, a.e t ∈ [0, T̄], (2.10)
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and, putting  θn(T̄) = T̄

θn(t) := tn
k i f t ∈ [tn

k , t
n
k+1[ f or k ∈ 0, ..., n − 1,

(2.11)

one has 
ẋn(t) ∈ −NC(xn(t)) + fn(t), xn(0) = x0, a.e t ∈ [0, T̄]

xn(t) ∈ B(x0, η0) ∩ C; ∀t ∈ [0, T̄],

fn(t) ∈ F(xn(θn(t))) ⊂ ∂p1(xn(θn(t))) ⊂MB̄(0, 1) a.e [0, T̄],

(2.12)

and

⟨ẋn(t), ẋn(t)⟩ = ⟨ẋn(t), fn(t)⟩ a.e. t ∈ [0, T̄]. (2.13)

Let us prove (2.13). Fix t ∈]0, T̄[ such that ẋn(t) exists and fn(t) − ẋn(t) , 0. (HC1), (2.12)

and the property of the normal cone on C ∩ B(x0, α) yield for any u ∈ C

⟨ fn(t) − ẋn(t)
∥ fn(t) − ẋn(t)∥ , u − xn(t)⟩ ≤ 1

2r
∥u − xn(t)∥2.

Let δ be a real number with 0 < δ < min{t, T̄ − t}. By (2.12), u =: xn(t + δ) ∈ C ∩ B(x0, α)

(note that B(x0, η0) ⊂ B(x0, α)). Then the last inequality gives

⟨ fn(t) − ẋn(t)
∥ fn(t) − ẋn(t)∥ , xn(t + δ) − xn(t)⟩ ≤ 1

2r
∥xn(t + δ) − xn(t)∥2.

Taking successively δ > 0 and δ < 0, dividing by δ, and passing to the limit δ → 0 we

successively obtain

⟨ fn(t) − ẋn(t)
∥ fn(t) − ẋn(t)∥ , ẋn(t)⟩ ≤ 0 and ⟨ fn(t) − ẋn(t)

∥ fn(t) − ẋn(t)∥ , ẋn(t)⟩ ≥ 0,

and hence (2.13).

Third step: Convergence of sequences.

We cannot use Arzela-Ascoli’s theorem, as we do not know the relative compactness

of the sets {xn(t),n ∈ N∗}. However we use technique developed by Bounkhel and

Thibault [15] to prove that (xn)n is a Cauchy sequence in the space C([0,T],H).

Let us define Zn(t) :=
∫ t

0
fn(s)ds. Then for all t ∈ [0,T] the set {Zn(t),n ∈ N∗} is contained

in the strong compact set T co({0}∪K ) and so it is relatively strongly compact in H. Then
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by Arzela Asccoli’s theorem we get the relative compactness of the set {Zn,n ∈ N∗}with

respect to the uniform convergence in C([0,T],H) and so we may assume that without

loss of generality that (Zn)n converges uniformly to some mapping Z. As ∥ fn(t)∥ ≤ M,

we may suppose that ( fn)n converges weakly in L2([0,T],H) to some mapping f . Then

for all t ∈ [0,T]

Z(t) = limnZn(t) = limn

∫ t

0
fn(s)ds =

∫ t

0
f (t)dt.

So Z is absolutely continuous and Ż(t) = f (t) for almost t ∈ [0,T].

Fix m,n ∈ N∗. For almost t ∈ [0,T], (2.12) and the property of the normal cone on

C ∩ B(x0, α) yield for any u ∈ C

⟨ fn(t) − ẋn(t)
∥ fn(t) − ẋn(t)∥ , u − xn(t)⟩ ≤ 1

2r
∥u − xn(t)∥2.

Then

⟨ fn(t) − ẋn(t)
∥ fn(t) − ẋn(t)∥ , xm(t) − xn(t)⟩ ≤ 1

2r
∥xm(t) − xn(t)∥2,

or

⟨ẋn(t) − fn(t), xn(t) − xm(t)⟩ ≤ M
2r
∥xn(t) − xm(t)∥2. (2.14)

Put εm,n := ∥Zm − Zn∥∞ → 0, and wn(t) := xn(t) − Zn(t), we obtain

⟨ẇn(t),wn(t) − wm(t)⟩ = ⟨ẇn(t), xn(t) − Zn(t) − xm(t) + Zm(t)⟩

= ⟨ẇn(t), xn(t) − xm(t)⟩ + ⟨ẇn(t),Zm(t) − Zn(t)⟩.

From the latter equality and from (2.14) we note that

⟨ẇn(t),wn(t) − wm(t)⟩ ≤ M
2r

[∥wn(t) − wm(t)∥ + ∥Zn(t) − Zm(t)∥]2 +M∥Zn(t) − Zm(t)∥,

or

⟨ẇn(t),wn(t) − wm(t)⟩ ≤ M
2r

[∥wn(t) − wm(t)∥ + εm,n]2 +Mεm,n. (2.15)
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Repeating the same argument, we have

⟨ẇm(t),wm(t) − wn(t)⟩ ≤ M
2r

[∥wn(t) − wm(t)∥ + εm,n]2 +Mεm,n. (2.16)

Combining (2.15) and (2.16) we obtain

⟨ẇm(t) − ẇn(t),wm(t) − wn(t)⟩ ≤ M
r

[∥wn(t) − wm(t)∥ + εm,n]2 + 2Mεm,n. (2.17)

As wn(t) = wn(0) +
∫ t

0
ẇn(s)ds = x0 +

∫ t

0
[ẋn(s) − fn(s)]ds then ∥wn(t)∥ ≤ ∥x0∥ + TM, and so

2⟨ẇm(t)−ẇn(t),wm(t)−wn(t)⟩ ≤ 2M
r
∥wn(t)−wm(t)∥2+2M

r
ε2

m,n+8εm,n
M
r

(∥x0∥+TM)+4Mεm,n.

Consequently
d
dt

(∥wm(t) − wn(t)∥2) ≤ 2M
r
∥wn(t) − wm(t)∥2 + γεm,n,

where γ is some positive constant independent of m,n and t. As ∥wm(0) − wn(0)∥ = 0,

the Gronwall inequality implies for almost t

∥wm(t) − wn(t)∥2 ≤ Lεm,n,

L is some positive constant independent of m,n and t.Hence (wn)n converges uniformly

to some mapping w and so (xn)n converges uniformly to some mapping x := w + Z.

Since ∥ fn(t)∥ ≤M and ∥ẋn(t)∥ ≤ 2M a.e.on [0, T̄], we can assume without loss of generality

that ( fn)n∈N∗ converges weakly in L2([0, T̄],H) to f ∈ L2([0, T̄],H) with ∥ f (t)∥ ≤ M a.e

t ∈ [0, T̄] and (ẋn)n∈N∗ converges weakly in L2([0, T̄],H) to u̇ ∈ L2([0, T̄],H). Also, we

have

θn(t)→ t uniformly on [0, T̄].

Fourth step: The limit function x is a solution of the continuous problem ẋ(t) ∈
−NC(x(t)) + ∂1(x(t)).

First, we show that

f (t) ∈ ∂1(x(t)) a.e t ∈ [0, T̄]. (2.18)
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To summarize, we know that

(a) {xn(θn(t)) : t ∈ [0, T̄],n ∈N∗} ⊂ B(x0, η0)

(b) x([0, T̄]) ⊂ B(x0, η0) and xn(θn(·))→n→∞ x(·) uniformly on [0, T̄],

(c) ẋn ⇀ ẋ weakly in L2([0, T̄],H), and

(d) for each n ∈N∗,

fn(t) ∈ F(xn(θn(t))) ⊂ ∂p1(xn(θn(t))) for a.e. t ∈ [0, T̄].

Consequently, Theorem VI − 4 in [22] guarantees the inclusion f (t) ∈ co(F(x(t))) ⊂
∂1(x(t)) a.e t ∈ [0, T̄], and so (2.18).

Now we prove that x(.) satisfies


ẋ(t) ∈ −NC(x(t)) + f (t), a.e t ∈ [0, T̄]

x(t) ∈ B(x0, η0) ∩ C; ∀t ∈ [0, T̄]

x(0) = x0 ∈ C,

(2.19)

and

⟨ẋ(t), ẋ(t)⟩ = ⟨ẋ(t), f (t)⟩ a.e. t ∈ [0, T̄]. (2.20)

Sine xn(·)→ x(·) uniformly, passing to the limit and keeping in the mind that C is closed,

we obtain x(t) ∈ C, for all t ∈ [0, T̄]. Further, from the inequality

∥ − ẋn(t) + fn(t)∥ ≤∥ fn(t) ∥≤M

and from (2.12) it follows for a.e. t ∈ [0, T̄]

−ẋn(t) + fn(t) ∈ NC(xn(t)) ∩ B(0,M) =M∂dC(xn(t)). (2.21)

Now, by Mazur’s lemma, there exists a sequence (ξn(.)) which converges strongly in

L2([0, T̄],H) to −ẋ(.) + f (.) with

ξn(.) ∈ co{−ẋk + fk : k ≥ n}. (2.22)
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Extracting a subsequence if necessary, we may suppose that

(ξn(t))n → −ẋ(t) + f (t) a.e.t ∈ [0, T̄].

Combining the inclusion (2.22) with the latter convergence, we obtain

−ẋ(t) + f (t) ∈ ∩nc̄o{−ẋk + fk : k ≥ n} a.e.t ∈ [0, T̄].

Such an inclusion yield for almost every t ∈ [0, T̄] that

⟨ζ,−ẋ(t) + f (t)⟩ ≤ inf
n

sup
k≥n
⟨ζ,−ẋk(t) + fk(t)⟩ for all ζ ∈ H.

Coming back to (2.21), it follows, for almost every t ∈ [0, T̄],

⟨ζ,−ẋ(t) + f (t)⟩ ≤M lim sup
n
σ(∂pdC(xn(t)), ζ)

≤M lim sup
n
σ(∂CdC(xn(t)), ζ) f or all ζ ∈ H.

Since σ(∂CdC(.), ζ) is upper semicontinuous on H, the latter inequality entails for almost

t ∈ [0, T̄],

⟨ζ,−ẋ(t) + f (t)⟩ ≤Mσ(∂CdC(x(t)), ζ) f or all ζ ∈ H.

Hence, by the closedness and convexity of ∂CdC(x(t)), we obtain

−ẋ(t) + f (t) ∈M∂CdC(x(t)), a.e t ∈ [0, T̄]. (2.23)

The last inclusion and x(t) ∈ C ensure (2.19). To prove (2.20), we proceed like in (2.13)

by using (2.19).

Fifth step: The sequence (ẋn)n converges strongly in L2([0, T̄],H) to ẋ.

By exploiting that 1 is c − pln, (2.13) and (2.20) we will show that the sequence (ẋn)n

actually converges strongly in L2([0, T̄],H) to ẋ.

Since x : [0, T̄] → B(x0, η0) is absolutely continuous function and 1 is M− Lipschitzean

on B(x0, η0), the function (1 ◦ x)(·) is absolutely continuous. Fix any t ∈ [0, T̄] such that
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there exist both ẋ(t) and d
dt(1(x(t))), and consider any ξ ∈ ∂p1(x(t)). Let h be a real positive

number with t + h ∈ [0, T̄], then by (2.19) we have x(t + h) ∈ B(x0, η0). By (HF2), 1 is

c − pln, on O (B(x0, η0) ⊂ O), so

1(x(t + h)) − 1(x(t)) ≥ ⟨ξ, x(t + h)) − x(t)⟩ − c(1 + ∥ξ∥)∥x(t + h)) − x(t)∥2.

Dividing by h and taking the limit h→ 0+, we obtain

d
dt

(1(x(t))) ≥ ⟨ξ, ẋ(t)⟩.

We take h negative such that t + h ∈ [0, T̄], we get by the same argument

d
dt

(1(x(t))) ≤ ⟨ξ, ẋ(t)⟩,

and so
d
dt

(1(x(t))) = ⟨ξ, ẋ(t)⟩.

In particular by (2.18), we have

∫ T̄

0
⟨ f (s), ẋ(s)⟩ds = 1(x(T̄)) − 1(x0). (2.24)

On one hand, by construction, recalling the c−pln on the function 1 and (2.12), we have

for all k ∈ {0, . . . , n − 1},

1(xn(tn
k+1))) − 1(xn(tn

k )))

≥ ⟨yn
k , xn(tn

k+1) − xn(tn
k )⟩ − c(1 + ∥yn

k∥)∥xn(tn
k+1) − xn(tn

k )∥2

= ⟨yn
k ,

∫ tn
k+1

tn
k

ẋn(t)dt⟩ − c(1 + ∥yn
k∥)∥

∫ tn
k+1

tn
k

ẋn(t)∥2

≥
∫ tn

k+1

tn
k

⟨ fn(t), ẋn(t)⟩dt − 4c(1 +M)M2(tn
k+1 − tn

k )2.
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By adding, we obtain

1(xn(T)) − 1(x0)

≥
∫ T

0
⟨ fn(t), ẋn(t)⟩dt − εn

(2.25)

with

εn =
4c(1 +M)M2T

2

n
→ 0, as n→∞.

Comparing (2.24) and (2.25), using the continuity of 1 in x(T) and the uniform conver-

gence of xn to x, it follows that

lim sup
n

∫ T

0
⟨ fn(t), ẋn(t)⟩dt ≤

∫ T

0
⟨ f (t), ẋ(t)⟩dt. (2.26)

On the other hand, from (2.13) and (2.26) we get

lim sup
n

∫ T

0
⟨ẋn(t), ẋn(t)⟩dt = lim sup

n

∫ T

0
⟨ fn(t), ẋn(t)⟩dt ≤

∫ T

0
⟨ f (t), ẋ(t)⟩dt. (2.27)

Integrating (2.20) we have

∫ T

0
⟨ẋ(t), ẋ(t)⟩dt =

∫ T

0
⟨ f (t), ẋ(t)⟩dt. (2.28)

Combining (2.27) and (2.28) we obtain

lim sup
n

∫ T

0
∥ẋn(t)∥2dt ≤

∫ T

0
∥ẋ(t)∥2dt.

By the weak lower semicontinuity of the norm, we deduce that

lim
n

∫ T

0
∥ẋn(t)∥2dt =

∫ T

0
∥ẋ(t)∥2dt,

which implies that (ẋn)n converges to ẋ in the strong topology of L2([0, T̄],H). Therefore,

there exists a subsequence, still denoted by (ẋn)n which converges point-wise a.e. to ẋ.

Then, there is a Lebesgue negligible set N ⊂ [0, T̄] such that for every t ∈ [0, T̄] \ N on
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one hand, (ẋn(t))→ ẋ(t) strongly in H, on the other hand, the inclusions (2.25) hold true

for each n ∈ N∗, i.e.

−ẋn(t) + fn(t) ∈M∂dC(xn(t)). (2.29)

Sixth step: The limit function x is a solution of the continuous problem ẋ(t) ∈ −NC(x(t))+

F(x(t)).

Now, let us establish that

ẋ(t) ∈ −NC(x(t)) + F(x(t)), a.e t ∈ [0, T̄]. (2.30)

Fix t ∈ [0, T̄] \ N and let ε > 0. Recall that xn(θn(t)) → x(t) strongly in H. Then, from

the upper semicontinuity of F, there exists N(ε) ∈ N∗ such that F(xn(θn(t))) ⊂ F(x(t)) +

εB̄(0, 1) for n ≥ Nε.Define the set-valued mapping G(x) := −M∂dC(x)+F(x(t))+ εB̄(0, 1),

x ∈ H. Note that G has a nonempty closed weakly compact values, and recalling by

(HF1) that F is upper semicontinuous with nonempty closed weakly compact values,

then the graph of G is sequentially strongly-weakly closed.

We have

ẋn(t) ∈ G(xn(t)). (2.31)

Since ẋn(t)→ ẋ(t) and xn(t)→ x(t), the inclusion (2.31) entails that

ẋ(t) ∈ G(x(t)).

Finally, as ε > 0 is arbitrary, the inclusion x(t) ∈ C assures us that

ẋ(t) ∈ −M∂pdC(x(t)) + F(x(t)) ⊂ −NC(x(t)) + F(x(t)).

This completes the proof of Theorem 3.1.
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2.4 Extension of our Result with a Moving Set

In the previous section, we have proved the existence result concerning the evolution

problem (2.1). This section is devoted to extend this result to the case of a moving set

C(t). With the specific assumption about the displacement of the set C(·), we have to

require a uniform r−prox-regularity (i.e. α = +∞) and not only a (r, α)-prox-regular

one. Firstly, we give the analogue of Proposition 2.2.3 and (2.20) when C(·) is supposed

to be a translation.

Proposition 2.4.1 Let a ∈ W1,2([T0,T],H) be a mapping such that a(T0) = 0. Let C be an

r-uniformly prox-regular subset of H and let f ∈ L2([T0,T],H). Let x(·) : [T0,T] → H be the

unique solution of the differential variational inequality (see, e.g. [34] for the existence and

uniqueness of solution and (2.33))

ẋ(t) ∈ −NC+a(t)(x(t)) + f (t), x(T0) = x0, a.e t ∈ [T0,T]. (2.32)

Then, the following properties hold true

∥ẋ(t)∥ ≤ ∥ẋ(t) − f (t)∥ + ∥ f (t)∥ ≤ 2∥ f (t)∥ + ∥ȧ(t)∥ a.e t ∈ [T0,T], (2.33)

and

⟨ẋ(t), ẋ(t)⟩ = ⟨ẋ(t), f (t)⟩ + ⟨ẋ(t), ȧ(t)⟩ − ⟨ȧ(t), f (t)⟩ a.e. t ∈ [T0,T]. (2.34)

Proof. Let us prove (2.34). Let t ∈ [T0,T] be a differentiability point of ẋ(·) and ȧ(·). Then

there is some δ > 0 such that

⟨ f (t) − ẋ(t), x(s) − a(s) − x(t) + a(t)⟩ ≤ δ∥x(s) − a(s) − x(t) + a(t)∥2, for all s ∈ [T0,T].

By dividing on s − t an taking the limit as s ↓ t we derive that

⟨ f (t) − ẋ(t), ẋ(t) − ȧ(t)⟩ ≤ 0.
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Repeating the preceding argument by considering s ↑ t yields similarly

⟨ f (t) − ẋ(t), ẋ(t) − ȧ(t)⟩ ≥ 0,

which gives (2.34). Now we come to the extension for Theorem 2.3.1

Theorem 2.4.1 Let H be a Hilbert space. Let O ⊂ H is an open convex subset containing

B(x0, ρ) for some ρ > 0 and F : O → 2H is an upper semicontinous set-valued mapping with

nonempty weakly compact values for which there exists a proper lower semicontinous c-pln

function 1 : O → R ∪ {+∞} that is locally bounded from above on O such that

F(x) ⊂ ∂C1(x),∀x ∈ O.

Let a ∈ W1,2([0,T],H) be a mapping such that a(0) = 0 and C be a nonempty r-uniformly

prox-regular subset of H. We consider the set-valued mapping C(·) defined by ∀t ∈ [0,T],

C(t) = C + a(t).

Then for all x0 ∈ C, there exists T > 0 such that the Cauchy problem

ẋ(t) ∈ −NC(t)(x(t)) + F(x(t)), x(0) = x0, a.e t ∈ [0,T], (2.35)

has an absolutely continuous solution x and for all t ∈ [0,T], x(t) ∈ C(t).

Proof. The proof is similar to the one of Theorem 2.3.1. Let x0 ∈ C and and let

1 : O → R ∪ {+∞}. Then, by proposition 2.2.1 there exist M > 0 such that 1 is

Lipschitzean with Lipschitz constant M on B(x0, ρ) and, since F(x) ⊂ ∂p1(x) it follows

that F is bounded by M on B(x0, ρ).

The suitable final time T > 0 is taken in order that

∫ T

0
(∥ȧ(t)∥ + 2M)dt ≤ ρ. (2.36)
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By using Proposition 2.4.1, we build the same sequence xn(.), which satisfies:


ẋn(t) ∈ −NC(xn(t)) + fn(t), xn(0) = x0, a.e t ∈ [0, T̄]

∥ẋn(t)∥ ≤ 2M + a(t), a.e t ∈ [0, T̄]

fn(t) ∈ F(xn(θn(t))) ⊂ ∂p1(xn(θn(t))) ⊂MB̄(0, 1) a.e [0, T̄],

(2.37)

and

⟨ẋn(t), ẋn(t)⟩ = ⟨ẋn(t), fn(t)⟩ + ⟨ẋn(t), ȧ(t)⟩ − ⟨ȧ(t), fn(t)⟩ a.e. t ∈ [0, T̄]. (2.38)

Then we finish the proof as previously, in applying (2.34) and (2.38) to obtain

lim sup
n

∫ T

0
∥ẋn(t)∥2dt ≤

∫ T

0
∥ẋ(t)∥2dt, (2.39)

which is the key-point of the proof. Indeed, the c−pln regularity on the function 1 gives

lim sup
n

∫ T

0
⟨ fn(t), ẋn(t)⟩dt ≤

∫ T

0
⟨ f (t), ẋ(t)⟩dt. (2.40)

On the other hand, from (2.38) and (2.40) we get

lim sup
n

∫ T

0
⟨ẋn(t), ẋn(t)⟩dt = lim sup

n

∫ T

0
⟨ẋn(t), fn(t)⟩dt +

∫ T

0
⟨ẋ(t), ȧ(t)⟩dt −

∫ T

0
⟨ȧ(t), f (t)⟩dt(2.41)

≤
∫ T

0
⟨ f (t), ẋ(t)⟩dt +

∫ T

0
⟨ẋ(t), ȧ(t)⟩dt −

∫ T

0
⟨ȧ(t), f (t)⟩dt. (2.42)

From the last inequality and from (2.34) we infer that

lim sup
n

∫ T

0
∥ẋn(t)∥2dt ≤

∫ T

0
∥ẋ(t)∥2dt.

Therefore, by the weak lower semicontinuity of the norm, we deduce that

lim
n

∫ T

0
∥ẋn(t)∥2dt =

∫ T

0
∥ẋ(t)∥2dt.
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This completes the strong convergence of the sequence (ẋn)n to ẋ in L2([0, T̄],H) and we

finish to show the existence of solutions in the same way as for Theorem 2.3.1.

2.5 Conclusions

In this chapter, the existence of local solutions for a class of evolution equations of

variational type, defined by a sweeping processes and a set-valued map with nonconvex

values in Hilbert space, has been studied carefully. It is remarkable that the fixed

set of constraints is possibly noncompact and satisfies the weaker assumption than

uniform prox-regularity, namely a quantified viewpoint of local prox-regularity. Also,

an existence result for the particular case of a shifted moving set is considered.
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CHAPTER 3

A MAXIMUM PRINCIPLE FOR THE

CONTROLLED SWEEPING PROCESS

3.1 Introduction

Moreau’s sweeping process appears as a model in several contexts and is being studied

from the theoretical viewpoint since the early Seventies of last Century. The main

subject of investigation continues to be the existence of solutions, under increasing

degrees of generality.

Essentially, the sweeping process is an evolution differential inclusion, which mod-

els the displacement of a point subject to be dragged by a moving set in a direction

normal to its boundary. Formally, the (perturbed) sweeping process is the differential

inclusion

ẋ(t) ∈ −NC(t)(x(t)) + f (x(t)), t ∈ [0,T], (3.1)
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coupled with the initial condition

x(0) = x0 ∈ C(0), (3.2)

where C(t) is a closed moving set, with normal cone NC(t)(x) at x ∈ C(t), and the space

variable belongs to a Hilbert space (to Rn in the present paper). If C(t) is convex, or

mildly non-convex (i.e., uniformly prox-regular), and is Lipschitz as a set-valued map

depending on the time t, and the perturbation f is Lipschitz, then it is well known

that the Cauchy problem (3.1), (3.2) admits one and only one Lipschitz solution (see,

e.g., [61]). Observe that the state constraint x(t) ∈ C(t) for all t ∈ [0,T] is built in the

dynamics, being NC(t)(x) empty if x < C(t).

The present paper deals with the problem of determining necessary conditions for

global minimizers of a final cost h(x(T)), subject to the finite dimensional controlled

sweeping dynamics

ẋ(t) ∈ −NC(t)(x(t)) + f (x(t),u(t)), x(0) = x0 ∈ C(0), u(t) ∈ U, t ∈ [0,T], (3.3)

U being the control set and f being smooth. Given a global minimizer, we prove that for

a suitable adjoint vector, which is a BV function that satisfies a natural ODE in the sense

of distributions together with the usual final time transversality condition, a version

of Pontryagin’s Maximum Principle holds. To keep technicalities at a minimum, we

do not add (further) endpoint constraints and require the final cost to be smooth. We

believe that our arguments can be adapted to such more general cases, including also

problems of Bolza type. Our main assumptions are the smoothness of the boundary

of the moving set C(t) and, more importantly, a kind of outward/inward pointing

condition on f (x∗(t), u∗(t)) at all times t where the optimal trajectory x∗(t) belongs to

the boundary of C(t) (see (M1) or (M2) below). This strong requirement is assumed in

order to handle the discontinuity of the gradient of the distance dC(t)(·) to the set C(t) at

boundary points. In fact, the main difficulty to be overcome in the study of necessary

conditions for optimal control problems subject to (3.3) is the severe lack of Lipschitz
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continuity of the normal cone mapping at boundary points of C(t). The outward/inward

pointing condition on f indeed permits to confine this issue at a negligible time set.

Control problems driven by a dynamics which involves the sweeping process ap-

peared rather recently. Not mentioning some works scattered in the mechanical engi-

neering literature, some early theoretical results appeared in [56] (a Hamilton-Jacobi

characterization of the value function, with C constant, later generalized in [31]) and

in [53, 54] (existence and discrete approximation of optimal controls, in the related

framework of rate independent processes). More recently, the papers [28, 29, 30] are

devoted to the case where the control acts on the moving set, which in turn is required

to have a polyhedral structure. In particular, [30] contains a set of necessary condi-

tions for local minima which are derived by passing to the limit along suitable discrete

approximations. Some partial results on necessary conditions for an optimal control

problem acting on the perturbation f were obtained in [58], while the first complete

achievement of this type appeared in [16]. The present paper owes to [16] several ideas.

The problem studied in [16] involves a controlled ODE, coupled with a sweeping pro-

cess with a constant sweeping set C. An adjoint equation together with Pontryagin’s

Maximum Principle are derived by passing to the limit along suitable Moreau-Yosida

approximations, by penalizing also the L2 distance to the reference control. The set C is

required to be both smooth and uniformly convex and the limiting argument requires

the minimizer to be a global one. The dynamics considered in [16] is different from (3.3),

but the main difficulty – namely the discontinuity of ∇dC(·) at boundary points – is ex-

actly the same. In [16], this issue is solved by imposing enough smoothness on ∂C and

via a smooth extension of dC up to the interior of C(t). This method, however, requires

the constancy and the uniform convexity of C, which in turn yields the coercivity of the

Hessian of the (modified) squared distance. This last property is important to obtain

a uniform L1 bound on a sequence of approximate adjoint vectors, which provides

compactness in the space of BV functions of the time variable. Our contribution is in

modifying the method developed in [16] – through seemingly simpler estimates on

the distance dC based on [55] – in order to drop the requirement of uniform convexity.

The price to pay is the inward/outward pointing assumption (M1) or (M2). A simple
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example permits to test our necessary conditions.

The recent results contained in [20, 21] are also worth being mentioned. In such

papers the control acts both on the moving set, which is required to be polyhedral, and

on the perturbation f . The problem studied is on one hand more general, and the class

of minimizers to which the necessary conditions apply is larger, on the other the method

requires some extra regularity assumptions on the optimal trajectory. Also, in contrast

with our approach, the moving set is allowed to be nonsmooth, but its generality is

weakened by the requirement to be a polyhedron. This happens because of the need of

computing explicitly the coderivative of the normal cone mapping. Indeed, the method

used in [20, 21] is completely different from the one adopted in the present paper, as it

relies on passing to the limit along a suitable sequence of discrete approximations of

the reference optimal trajectory. The necessary conditions obtained in [21] include a

kind of adjoint equation, transversality conditions both at the initial and at the final

point, and nontriviality conditions, but do not include a maximum principle. General

existence and relaxation results for optimal control problems of the same nature of

those investigated in [20, 21] appear in [62].

Finally, let us mention that H. Sussmann devoted a lot of work to establish the

Maximum Principle in high generality, including possibly discontinuous vector fields

(see, e.g., [59]). Here we rely on the special structure of the right hand side of (3.3), and

develop an ad hoc method.

In what follows, Section 3.3 contains the statement of overall assumptions and of

the main result, while Sections 3.4 to 3.7 are devoted to the proofs. In Section 3.8 an

example is presented and discussed.

3.2 Preliminaries

We will consider all vectors in a finite dimensional space as column vectors.

Let C ⊂ Rn be nonempty and closed. We denote by dC(x) the distance of x from C,
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dC(x) := inf{|y − x| : y ∈ C}, and the metric projection of x onto C is the set of points in

C which realize the infimum. Should this set be a singleton, we denote this point by

projC(x). Given ρ > 0, we set

Cρ := {x : dC(x) < ρ}.

Prox-regular sets will play an important role in the sequel. The definition was first

given by Federer, under the name of sets with positive reach, and later studied by several

authors (see the survey paper [32]). We give only the definition for smooth sets, because

the general case will not be relevant here. All definitions of tangent and normal cones

may be found in [26], to which we refer for all concepts of nonsmooth analysis that

will be touched within this paper. By a smooth set we mean a closed set C inRn whose

boundary is an embedded manifold of dimension n − 1. In this case, the tangent cone

is actually an n − 1-dimensional vector space and the normal cone is a half ray (or a

line if C has empty interior). In particular, we will consider sets whose boundary can

be described as the zero set of a smooth function (at least of class C1,1, namely of class

C1 with Lipschitz partial derivatives), with nonvanishing gradient.

Definition 3.2.1 Let C ⊂ Rn be a closed smooth set and ρ > 0 be given. We say that C is

ρ-prox-regular provided the inequality

⟨ζ, y − x⟩ ≤ |y − x|2
2ρ

(3.4)

holds for all x, y ∈ C, where ζ is the unit external normal to C at x ∈ ∂C.

In particular, every convex set is ρ-prox regular for every ρ > 0 and every set with a

C1,1-boundary is ρ-prox regular, where ρ depends only the Lipschitz constant of the

gradient of the parametrization of the boundary (see [32, Example 64]). In this case,

the (proximal) normal cone to C at x ∈ C is the nonnegative half ray generated by the

unit external normal, and

v ∈ NC(x) if and only if there exists σ > 0 such that ⟨v, y − x⟩ ≤ σ|y − x|2 ∀y ∈ C.
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Prox-regular sets enjoy several properties, including uniqueness of the metric projection

and differentiability of the distance (in a suitable neighborhood) and normal regularity,

which hold also true for convex sets, see, e.g. [32]. We state the main properties which

we are going to use in the present paper.

Proposition 3.2.1 Let ρ > 0 be given and let C ⊂ Rn be ρ-prox-regular. Then dC is differen-

tiable on Cρ \ C, and

∇dC(x) = (x − projC(x))/dC(x) for all x ∈ Cρ \ C.

Moreover, ∇dC is Lipschitz with Lipschitz constant 2 in C ρ
2
\ C. Finally, projC is well defined

and is Lipschitz with Lipschitz constant 2 in C ρ
2
.

The proof of this Proposition can be found, e.g., in [32].

The fact that the distance from a ρ-prox-regular set C is of class C1,1 in C ρ
2
\ C will

play a fundamental role in the sequel. In particular, given a moving closed set C(t),

t ∈ [0,T], we wish to discuss the differentiability of the Lipschitz map

x 7→ x − projC(t)(x) := P(t, x), (3.5)

namely of the gradient ∇x of 1
2d2

C(t)(x), with respect to the state variable x, in the case

where the boundary of C(t) is an immersed manifold of class C2. Then it is well known

that d2
C(t)(·) is of class C1 in Cρ(t) and of class C2 in Cρ(t) \ C(t), where ρ depends only

on the global lower bound of the curvature of ∂C(t), see, e.g., [3, Theorem 3.1]. If

x ∈ int C(t), then P(t, x) vanishes in a neighborhood of x and so it is differentiable in the

classical sense, with zero Jacobian. If x < C(t), then P(t, x) = dC(t)(x)∇xdC(t)(x), so that

∇xP(t, x) = dC(t)(x)∇2
xdC(t)(x) + ∇xdC(t)(x) ⊗ ∇xdC(t)(x) =: Px(t, x), (3.6)

where we recall that if v and w are column vectors, then v ⊗ w denotes the matrix v w⊤

and we denote by ∇2
x the Hessian with respect to the state variable x.
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Denote by n(t, x) the unit external normal to C(t) at x, if x ∈ ∂C(t), and 0 if x ∈ int C(t).

We will adopt the following convention:

if x ∈ ∂C(t), by writing ∇xdC(t)(x) we mean n(t, x).

With this notation, one can extend ∇xP(t, x) also to x ∈ ∂C(t), by using (3.6). Of course,

this does not mean that P is differentiable at ∂C(t): the Clarke generalized gradient

(with respect to x) of P(t, x) at x ∈ ∂C(t) is ∂xP(t, x) = co {0,∇xP(t, x)}.

We will consider also the signed distance

dS(t, x) :=


dC(t)(x) if x ∈ Cc(t)

−dC(t)c(x) if x ∈ C(t),

where C(t)c denotes the complement of C(t). It is well known that dS(t, ·) is of class C2

around ∂C(t) (see, e.g., Proposition 2.2.2 (iii) in [17]) if ∂C(t) is a manifold of class C2

and C(t) has nonempty interior. It is also easy to see that dS(·, x) is Lipschitz if C(·) is so.

3.3 Standing assumptions and statement of the main re-

sults

The following assumptions will be valid throughout the paper.

(H1): C : [0,∞) ; Rn is a set-valued map with the following properties:

(H1.1): for all t ∈ [0,T], C(t) is nonempty and compact and there exists ρ > 0 such

that C(t) is ρ-prox regular. Moreover, C(t) has a C3-boundary.

(H1.2): C(·) is Lipschitz, with Lipschitz constant γ.

(H2): U ⊂ Rm is compact and convex.

(H3): f : Rn ×U→ Rn is a single valued map with the following properties:
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(H3.1): that there exist β ≥ 0 such that | f (x,u)| ≤ β for all (x,u);

(H3.2): f (·, ·) is of class C1;

(H3.3): f (·, ·) is Lipschitz with constant k;

(H3.4): f (x,U) is convex for all x ∈ Rn;

(H4): h : Rn → R is of class C1.

If C(t) = {x : 1(t, x) ≤ 0}, with 1(·, x) Lipschitz, 1(t, ·) of class C2,1 is possible to impose

conditions directly on the map 1 in order to let (H1.1) and (H1.2) hold. This is discussed

in detail in [2].

We are interested in determining necessary conditions for solutions of the following

minimization problem, that we call Problem (P):

Minimize h(x(T)) subject to ẋ(t) ∈ −NC(t)(x(t)) + f (x(t),u(t))),

x(0) = x0 ∈ C(0) ,
(3.7)

with respect to u : [0,T]→ U, u measurable (labeled as admissible control).

Let us recall that the dynamics (3.7) implicitly contains the state constraint

x(t) ∈ C(t) ∀t ∈ [0,T].

Existence of minimizers for (P) can be obtained by standard methods (even under less

stringent assumptions on f ), essentially thanks to the graph closedness of the normal

cone to a prox-regular set (see, e.g., [32, Proposition 7]).

Let (x∗,u∗) be a minimizer. We will impose an outward (resp. inward) pointing

condition on f (x∗(t),u∗(t)) with respect to the boundary of C(t). To this aim, we introduce

the (possibly empty) set

I∂ := {t ∈ [0,T] : x∗(t) ∈ ∂C(t)} (3.8)
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and require that there exists σ > 0 for which either

∂dS

∂t
(t, x∗(t)) + ⟨∇xdS(t, x∗(t)), f (x∗(t),u)⟩ ≥ σ for a.e. t ∈ I∂ and for all u ∈ U (M1)

or

∂dS

∂t
(t, x∗(t)) + ⟨∇xdS(t, x∗(t)), f (x∗(t),u)⟩ ≤ −σ for a.e. t ∈ I∂ and for all u ∈ U (M2)

hold, where we recall that dS(t, x) denotes the signed distance between x and C(t). Of

course, if I∂ = ∅ both conditions are automatically satisfied.

Remark 3.3.1 More in general, we can assume that [0,T] can be split into finitely many

subintervals such that I∂ does not contain their end points and in each subinterval either (M1)

or (M2) holds. Without loss of generality, the proofs will be carried out in the case where we

have only one interval and either (M1) or (M2) hold.

Before stating the main result of the paper, we recall that in Section 3.2 we have given

a meaning to

∇xdC(t)(x∗(t)) and ∇2
xdC(t)(x∗(t))

also for t ∈ I∂.

Theorem 3.3.2 Assume that (H1), . . . , (H4) hold and consider the minimization problem (3.7).

Let (x∗,u∗) be a global minimizer for which either (M1) or (M2) are valid. Then there exist a

BV adjoint vector p : [0,T]→ Rn, a finite signed Radon measure µ on [0,T], and measurable

vectors ξ, η : [0,T] → Rn, with ξ(t) ∈ L1
µ(0,T), ξ(t) ≥ 0 for µ-a.e. t and 0 ≤ η(t) ≤ β + γ for

a.e. t, satisfying the following properties:
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• (adjoint equation) for all continuous functions φ : [0,T]→ Rn

−
∫

[0,T]
⟨φ(t), dp(t)⟩ = −

∫
[0,T]
⟨φ(t),∇xdC(t)(x∗(t))⟩ξ(t) dµ(t)

−
∫

[0,T]
⟨φ(t),∇2

xdC(t)(x∗(t))p(t)⟩η(t) dt

+

∫
[0,T]
⟨φ(t),∇x f (x∗(t),u∗(t))p(t)⟩ dt,

(3.9)

• (transversality condition) −p(T) = ∇h(x∗(T)),

• (maximality condition)

⟨p(t),∇u f (x∗(t),u∗(t))u∗(t)⟩ = max
w∈U
⟨p(t),∇u f (x∗(t),u∗(t))w⟩ for a.e. t ∈ [0,T]. (3.10)

Further conditions, in particular on discontinuities of p or, equivalently, on Dirac masses

for µ, will be discussed in Proposition 3.7.3 below. Here we observe only that on

I0 := [0,T] \ I∂, namely on the (possibly empty) set where x∗(t) belongs to the interior of

C(t), p is absolutely continuous and satisfies the classical adjoint equation

−ṗ(t) = ∇x f (x∗(t),u∗(t)) p(t) a.e.,

so that µ, ξ, and η do not play any role on that set. This is a simple consequence of (3.9).

The proof of Theorem 3.3.2 is contained in Sections 3.6 and 3.7 and is divided into

several propositions, containing estimates on a sequence of adjoint vectors. Sections 3.4

and 3.5 are devoted to estimates on solutions to suitable approximations of the primal

problem.
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3.4 Results on the sweeping process and its regulariza-

tion

Set n(t, x) to be the unit external normal to C(t) at x ∈ ∂C(t) and 0 if x ∈ int C(t), and not

defined if x < C(t). Observe that n(t, x) = ∇xdS(t, x) for all x ∈ ∂C(t).

For any solution x∗ of (3.7), the general theory on the sweeping process (see, e.g.,

[61, Theorem 3.1]), yields that

|ẋ∗(t)| ≤ γ + β for a.e t ∈ [0,T]. (3.11)

The main tool that we are going to use is an approximate control problem, where the

dynamics is the Moreau-Yosida regularization of (3.7) and the cost is the original one,

plus a penalization term. More precisely, the approximate problem is the following

one:

For a given ε > 0 and a given admissible control u∗,

Minimize h(x(T)) +
1
2

∫ T

0
|u(t) − u∗(t)|2dt (3.12)

subject to

ẋ(t) = −1
ε

(
x(t) − projC(t)(x(t))

)
+ f (x(t),u(t)), x(0) = x0 ∈ C(0), (3.13)

over all admissible controls u : [0,T]→ U.

We label the above problem as (Pε(u∗)). By standard results, for every ε > 0 there

exists a global minimizer uε. If uε is such a minimizer and xε is the solution of (3.13)

with uε in place of u, we will refer to (xε, uε) as an optimal couple for (Pε(u∗)).

As a preliminary result on (Pε(u∗)), we are going to prove that, thanks to the Lipschitz

continuity of the metric projection onto C(t) on the set Cρ for each t, and the boundedness
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of the Lipschitz perturbation f , the Cauchy problem (3.13) admits one and only one

solution on the interval [0,T], for every fixed admissible control u. Our first result is

in fact concerned with existence, uniqueness and some estimates on such solutions,

uniform with respect to ε.

Proposition 3.4.1 Let C, f ,U, h be given satisfying assumptions (H1), . . . , (H4). Let εn ↓ 0

and let {un} be a sequence of admissible controls. Then, for every n large enough, the problem

(3.13) with εn in place of ε and un in place of u admits one and only one solution xn on the

interval [0,T]. Such solutions are Lipschitz uniformly with respect to n, with Lipschitz constant

γ + 2β. Moreover the following estimates hold:

for all t0 ∈ [0,T] and all t ∈ [t0,T]

dC(t)(xn(t)) ≤ dC(t0)(xn(t0))e−
t−t0
εn + εn(β + γ)

(
1 − e−

t−t0
εn

)
, (3.14)

so that, in particular,

dC(t)(xn(t)) ≤ εn(β + γ) for all t ∈ [0,T]. (3.15)

The proof of Proposition 3.4.1 follows the arguments developed in [55, Section 3] and

will be sketched after some technical results.

First of all, let x(t) be absolutely continuous and set 1(t) := dC(t)(x(t)). Recalling

Lemma 3.1 in [55], we have, for a.e. t ∈ [0,T],

1̇(t)1(t) ≤ ⟨ẋ(t), x(t) − projC(t)(x(t))⟩ + γ1(t), (3.16)

provided

dC(t)(x(t)) < ρ for all t ∈ [0,T]. (3.17)

Therefore, we obtain immediately the following Lemma.

Lemma 3.4.1 For every ε > 0, let the admissible control uε be given and let xε be the corre-
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sponding solution of (3.13). Set

1ε(t) = dC(t)(xε(t)), t ∈ [0,T]

and assume that xε satisfies (3.17). Then the estimates (3.14) and (3.15) hold, with 1ε(t) in

place of dC(t)(xn(t)) and ε in place of εn.

Proof. From (3.16) we obtain

1̇ε(t)1ε(t) ≤ γ1ε(t) −
1
ε
12
ε(t) + 1ε(t)| f (xε(t),uε(t))|,

which yields, if 1ε(t) > 0,

1̇ε(t) ≤ −
1
ε
1ε(t) + γ + β.

The case 1ε(t) = 0 can be treated exactly as in the proof of [55, Lemma 3.3]. Then the

result follows from Gronwall’s lemma.

Proof of Proposition 3.4.1. The proof is divided into two steps. First, we assume

that the final time T is small enough, namely 0 < T ≤ θ, with

θ <
ρ

3(2β + γ)
, (3.18)

where we recall that the constants ρ, β, and γ appear in the standing assumptions (H1.1),

(H1.2), and (H3.1). Second, the general case will be treated.

Assume now that T ≤ θ and let εn ↓ 0 and a sequence {un} of admissible controls

be given. It is clear that a solution xn of (3.13), with εn, resp. un, in place of ε, resp.

u, exists and is defined on its maximal interval of existence [0,Tn] ⊆ [0,T] such that

dC(t)(xn(t)) < ρ for all t ∈ [0,Tn]. We have from Lemma 3.4.1 that (3.15) holds on [0,Tn]

and so the solution xn is unique by a standard application of Gronwall’s lemma. It is

also easy to see, arguing as in [55, Sect. 3], that the maximal interval of existence must
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be the whole of [0,T]. Moreover, we have for all n

|ẋn(t) − f (xn(t),un(t))| =
∣∣∣∣∣∣xn(t) − projC(t)(xn(t))

εn

∣∣∣∣∣∣ = 1
εn

dC(t)(xn) ≤ γ + β ∀t ∈ [0,T],

from which the conclusion on the Lipschitz constant of ẋn follows immediately, since f

is uniformly bounded by β.

Consider now the general case. From the preceding argument, for each n there

exists a solution xn such that, for all t ∈ [0, θ],

dC(t)(xn(t)) ≤ εn(β + γ). (3.19)

For every n large enough, we can assume that

εn(β + γ) + θ <
ρ

3(2β + γ)
.

Applying the argument used in the preceding step to the Cauchy problem


ẋ(t) = − 1

εn

(
x(t) − projC(t)(x(t))

)
+ f (x(t),un(t)),

x(0) = xn(θ),

we can extend xn, keeping the property (3.19), up to the time 2θ. Since θ is independent

of n, the interval [0,T] can be covered after finitely many steps.

Our second result is concerned with compactness and passing to the limit for solu-

tions of (Pε(u∗)), as ε→ 0.

Proposition 3.4.2 Let u∗ be a global minimizer for the problem (P), together with the corre-

sponding solution x∗ of (3.7). Let (xε,uε) be an optimal couple for the regularized minimization

problem (Pε(u∗)). Then there exists a sequence εn ↓ 0 such that

xεn → x∗ weakly in W1,2([0,T];Rn),

uεn → u∗ strongly in L2([0,T];Rm).
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Proof. By Proposition 3.4.1 and assumptions (H2) and (H3.1), we find a sequence εn ↓ 0

and an admissible control ũ such that

xn := xεn converges weakly in W1,2([0,T];Rn) to some x,

un := uεn converges weakly in L2([0,T];Rn) to ũ,∫ T

0
|un(t) − u∗(t)|2 dt converges to some δ ≥ 0,

(3.20)

and moreover (3.15) holds for every n. Observe that (3.15) implies in turn that

projC(t)(xn(t)) is well defined and also

xn(t) − projC(t)(xn(t)) ∈ NC(t)

(
projC(t)(xn(t))

)
(3.21)

for each t ∈ [0,T] and n ∈N.

Let us prove first that there exists an admissible control ū such that

ẋ(t) ∈ −NC(t)(x(t)) + f (x(t), ū(t)) a.e. on [0,T]. (3.22)

Indeed, from

−ẋn(t) =
xn(t) − projC(t)(xn(t))

εn
− f (xn(t),un(t))

and (3.4), (3.21), (3.15) it follows immediately that

⟨−ẋn(t) + f (xn(t),un(t)), y − projC(t)(xn(t))⟩ ≤
γ + β

2ρ
|y − projC(t)(xn(t))|2 ∀y ∈ C(t). (3.23)

First we see that the uniform convergence of xn to x implies by passing to the limit in

(3.15) that x(t) ∈ C(t) for all t ∈ [0,T]. Furthermore, by possibly taking a subsequence

we may assume that zn := f (xn,un) converges weakly in L2([0,T];Rn) to some z, and by

Mazur’s lemma we can find a convex combination
∑r(n)

k=n Sk,n(−ẋk+ zk), with
∑r(n)

k=n Sk,n = 1

and Sk,n ∈ [0, 1] for all k,n, which converges strongly in L2 and pointwise a.e. to −ẋ + z.
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Let now t ∈ [0,T] and y ∈ C(t). We have

⟨−ẋ(t) + z(t), y − x(t)⟩ =
⟨
− ẋ(t) + z(t) −

r(n)∑
k=n

Sk,n(−ẋk(t) + zk(t)), y − x(t)
⟩

+

r(n)∑
k=n

Sk,n⟨−ẋk(t) + zk(t), y − projC(t)(xk(t))⟩

+

r(n)∑
k=n

Sk,n⟨−ẋk(t) + zk(t),−x(t) + projC(t)(xk(t))⟩.

The first and the third summands in the above expression tend to zero a.e. The second

one, thanks to (3.23), satisfies the estimate

r(n)∑
k=n

Sk,n⟨−ẋk(t) + zk(t), y − projC(t)(xk(t))⟩ ≤
γ + β

2ρ

r(n)∑
k=n

Sk,n|y − projC(t)(xk(t))|2.

Thus, passing to the limit one obtains

⟨−ẋ(t) + z(t), y − x(t)⟩ ≤
γ + β

2ρ
|y − x(t)|2 ∀y ∈ C(t).

This proves that ẋ(t) ∈ −NC(t)(x(t)) + z(t) for a.e. t ∈ [0,T]. Since f (x,U) is convex for all

x, from the classical Convergence Theorem (see, e.g., [7, Theorem 1, p. 60]) it follows

that z(t) ∈ f (x(t),U) for a.e. t. It then follows from from Filippov’s Selection Theorem

(see, e.g., [63, Th. 2.3.13]) that there exists ū(·) such that z(t) = f (x(t), ū(t)). This proves

(3.22).

We claim now that (x, ū) = (x∗,u∗). To this aim, define xn
∗ to be the unique solution

of the Cauchy problem ẏ(t) = − 1
εn

(
y(t) − projC(t)(y(t))

)
+ f (y(t), u∗(t)),

y(0) = x0 ,

on [0,T] and observe that xn
∗ converges weakly to x∗ in W1,2([0,T];Rn) (see [55, Lemma

3.6]). Since (xn,un) is an optimal couple (namely, a global minimizer) for (Pε(u∗)), we
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have

h(xn
∗ (T)) ≥ h(xn(T)) +

1
2

∫ T

0
|un(t) − u∗(t)|2dt (3.24)

for all n ∈ N. By passing to the limit in (3.24), using the weak lower semicontinuity of

the integral together with our convergence properties (3.20), we obtain

h(x∗(T)) ≥ h(x(T)) + δ ≥ h(x(T)) +
∫ T

0
|ũ(t) − u∗(t)|2dt.

Since x∗ is a global minimizer for the problem (P), the above inequalities imply that

δ = 0, i.e., un → u∗ strongly in L2([0,T];Rn).

Now, the strong convergence of un to u∗ allows us to prove that xn → x∗ weakly in

W1,2([0,T];Rn). Indeed, set rn =
1
2 |xn(t) − x∗(t)|2. Then, by using the fact that −ẋn(t) +

f (xn(t),un(t)) = 1
εn

(
xn(t) − projC(t)(xn(t))

)
∈ NC(t)(xn(t)) for all t ∈ [0,T],n ∈ N together

with the (hypo)monotonicity of the normal cone to C(t) – which follows immediately

from (3.4) – and (H3.3), (3.11), we obtain, for all t ∈ [0,T] and each n ∈N large enough,

ṙn(t) = ⟨−ẋn(t) + ẋ∗(t),−xn(t) + x∗(t)⟩

≤ −⟨ f (xn(t),un(t)) − f (x∗(t),u∗(t)), xn(t) − x∗(t)⟩ +
2γ + 3β
ρ

rn(t)

≤ Krn(t) + k|xn(t) − x∗(t)| |un(t) − u∗(t)|,

where K := k+ 2γ+3β
ρ . Since rn(0) = 0 for each n ∈N, Gronwall’s Lemma yields, for each

t ∈ [0,T],

rn(t) ≤ k
∫ T

0
|xn(t) − x∗(t)| |un(t) − u∗(t)|eK(T−t)dt,

which, by the strong convergence of un to u∗, implies that x(t) = x∗(t) for all t ∈ [0,T].

Remark 3.4.1 Observe that a similar argument implies that the sequence {xn} is Cauchy for

the uniform convergence.
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3.5 Monotonicity of the distance

Let x∗ be a given optimal trajectory, and xn be trajectories of the regularized dynamics,

and recall that I∂ := {t ∈ [0,T] : x∗(t) ∈ ∂C(t)}. The first result in this section will be

crucial in order to allow some estimates involving ∇xdC(t)(xn(t)) and ∇2
xdC(t)(xn(t)) by

forbidding that xn(t) remains on ∂C(t) on a set of times with positive measure. Recall

that ∂C(t) is the discontinuity set of ∇xdC(t)(x) and ∇2
xdC(t)(x) as a function of x. The

simplest way to satisfy this requirement is giving sufficient conditions in order to let
d
dtdS(t, xn(t)) be nonzero for a.e. t in a suitable neighborhood of I∂.

Proposition 3.5.1 Assume (H1), . . . , (H4), and let the admissible control u∗, with the corre-

sponding solution x∗ of (3.7), be such that that there exists σ > 0 for which either (M1) or (M2)

hold. Let εn ↓ 0 and let un be admissible controls such that un → u∗ strongly in L2([0,T];Rm)

and the corresponding solutions of (3.13) xn → x∗ strongly in W1,2([0,T];Rn). Then for each

n large enough there exists at most one time tn ∈ [0,T] such that xn(tn) ∈ ∂C(tn).

Proof. We write the proof for the case (M1), the case (M2) being similar and easier.

Assume (M1) and let δ > 0 be such that for a.e. t ∈ [0,T] with d(t, I∂) < δ and all

x, y ∈ Rn with |x − x∗(t)|, |y − x∗(t)| < δ , u ∈ U we have

∂dS

∂t
(t, x) + ⟨∇xdS(t, y), f (x,u)⟩ ≥ σ

2
. (3.25)

Let yn(t) be the projection of xn(t) onto C(t). Then, for a.e. t ∈ [0,T] we have

d
dt

dS(t, xn(t)) =
∂dS

∂t
(t, xn(t)) + ⟨∇xdS(t, xn(t)), ẋn(t)⟩

=
∂dS

∂t
(t, xn(t)) +

⟨
∇xdS(t, yn(t)) + ∇2

xdS(t, yn(t))(xn(t) − yn(t))

+
∑

|α|=2,α∈Nn

∫ 1

0
(1 − τ)∂αx∇xdS

(
t, yn(t) + τ(xn(t) − yn(t))

)
(xn(t) − yn(t))α dτ,

− xn(t) − yn(t)
εn

+ f (xn(t),un(t))
⟩
,

(3.26)
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where α is the multiindex (α1, . . . , αn) ∈Nn, ∂αx =
∂α1

∂xα1
1
. . . ∂

αn

∂xαn
n

, and |α| denotes the sum of

all entries of α.

Let now t0 ∈ [0,T] ∩
(
I∂ + (−δ, δ)

)
be such that dC(t0)(xn(t0)) ≤ σ

4εn. Thanks to (3.14),

for all n large enough we have for all t ∈ [t0,T]

dC(t)(xn(t)) ≤ εn

(
σ
4

e−
t−t0
εn + (γ + β)

(
1 − e−

t−t0
εn

))
< δ.

Therefore, for all t ∈ I∂ + (−δ, δ), t ≥ t0, we obtain from (3.26) and the above inequality

that

d
dt

dS(t, xn(t)) ≥ ∂dS

∂t
(t, xn(t)) + ⟨∇xdS(t, yn(t)), f (xn(t),un(t))⟩

− (γ + β)
(
1 − e−

t−t0
εn

)
− σ

4
− KdC(t)(xn(t)),

for a suitable constant K, independent of t and n. Since xn converges uniformly to x∗, we

obtain from (3.25) that d
dtdS(t, xn(t)) > 0 for a.e. t in a (suitably small) right neighborhood

of t0, for all n large enough. Thus there must exist at most one t ∈ [0,T] ∩ (I∂ + (−δ, δ))

such that xn(t) ∈ ∂C(t). Since in [0,T] \ (I∂ + (−δ, δ)) the trajectory xn(t) belongs to int C(t)

for all n large enough, no further crossings of ∂C(t) are possible.

The second case is analogous and actually easier. In fact there will not be any

crossing of ∂C(t) on (0,T], for all n large enough, since on a suitable neighborhood of I∂

we will have d
dtdS(t, xn(t)) < 0.

The following simple corollaries will be useful in the discussion of necessary con-

ditions.

Proposition 3.5.2 Assume (M1). Then I∂ is an interval and, if it is nonempty, sup I∂ = T.

Proof. It is enough to show that if t ∈ I∂, then [t,T] ⊂ I∂. To this aim, assume by

contradiction that there exists t < T such that t ∈ I∂, but t̄ := sup I∂ < T . This means, in

48



A Maximum Principle for the controlled Sweeping Process

particular, that for all s ∈ (t̄,T] we have dS(s, x∗(s)) < 0 . Thus, for all such s we have

0 > dS(s, x∗(s)) − dS(t̄, x∗(t̄)) =
∫ s

t̄

(∂dS

∂t
(τ, x∗(s)) + ⟨∇xdS(τ, x∗(τ)), ẋ∗(τ)⟩

)
dτ

=

∫ s

t̄

(∂dS

∂t
(τ, x∗(s)) + ⟨∇xdS(τ, x∗(τ)), f (x∗(τ),u∗(τ))⟩

)
dτ

and the integrand is positive if s is close enough to t̄, a contradiction.

Proposition 3.5.3 Assume (M2). Then I∂ is at most the singleton {0} .

Proof. Assume by contradiction that there exists t̄ > 0, with t̄ ∈ I∂. Then, for all t < t̄

we have, on one hand,

dS(t̄, x∗(t̄)) − dS(t, x∗(t)) ≥ 0,

while on the other,

dS(t̄, x∗(t̄)) − dS(t, x∗(t)) =
∫ t̄

t

(∂dS

∂t
(τ, x∗(s)) + ⟨∇xdS(τ, x∗(τ)), ẋ∗(τ)⟩

)
dτ

=

∫ t̄

t

(∂dS

∂t
(τ, x∗(s)) + ⟨∇xdS(τ, x∗(τ)), ẋ∗(τ) − f (x∗(τ),u∗(τ))⟩

+ ⟨∇xdS(τ, x∗(τ)), f (x∗(τ),u∗(τ))⟩
)

dτ

Observe that if x∗(τ) ∈ int C(τ), then ẋ∗(τ) − f (x∗(τ),u∗(τ)) = 0, while if x∗(τ) ∈ ∂C(τ),

then ẋ∗(τ) − f (x∗(τ),u∗(τ)) = −δ(τ)∇xdS(τ, x∗(τ)) for a bounded nonnegative function δ.

Therefore, (M2) implies that the integrand is< 0, provided t is close enough to t̄, yielding

a contradiction.

3.6 The Approximate Control Problem

Given a global minimizer u∗ of the problem (P) and ε > 0, we recall that in Section 3.4

the approximate problem (Pε(u∗)) was defined and studied.

Let uε be a global minimizer for (Pε(u∗)). By Proposition 3.4.2, we know that, up

to a subsequence, uε converges weakly in L2([0,T];Rm) to u∗ and xε converges strongly
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in W1,2([0,T];Rn) to the optimal trajectory x∗, namely the trajectory of (3.7) where we

replace u with u∗.

In order to state necessary conditions satisfied by (xε, uε), we recall that the subdif-

ferentiability of the Lipschitz map

x 7→ x − projC(t)(x) := P(t, x)

was preliminarly discussed in Section 3.2. Here we recall only that under our standing

assumptions the unit external normal to C(t) at x ∈ ∂C(t) is ∇xdS(t, x).

Differently from classical computations in control theory, we will not consider needle

variations, but rather compute a directional derivative of the cost, following [16]. More

precisely, let (xε,uε) be an optimal pair for the problem (3.12) subject to (3.13) and let

ũ be an admissible control. For σ ∈ [0, 1] set uσ(t) = uε(t) + σ(ũ(t) − uε(t)) and observe

that, thanks to the convexity of the control set U, this is an admissible control as well.

Set xσ to be the corresponding solution of (3.13). We wish to compute the directional

derivative of the cost J(x,u; u∗) at (xε,uε) in the direction ũ − uε. Should this derivative

exist, then it would be ≥ 0, by the minimality of (xε,uε), namely

lim
σ→0

J(xσ,uσ; u∗) − J(xε,uε; u∗)
σ

≥ 0.

The difference quotient in the above expression consists of the summands

h(xσ(T)) − h(xε(T))
σ

+
1

2σ

∫ T

0
(|uσ(t) − u∗(t)|2 − |uε(t) − u∗(t)|2) dt.

The limit of the second summand for σ→ 0 is straightforward and equals

∫ T

0
⟨ũ(t) − uε(t),uε − u∗(t)⟩ dt

The limit of the first summand is

lim
σ→0

⟨∇h(xε(T)),
xσ(T) − xε(T)

σ

⟩
+

o
(
xσ(T) − xε(T)

)
σ

 .
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Therefore, we are lead to compute the limit

lim
σ→0

xσ(T) − xε(T)
σ

.

This is classical (see, e.g., [12, Theorem 3.4]) under the assumption of continuous

differentiability with respect of both x and u of the right hand side of (3.13) for a.e. t.

Such assumptions are valid in our setting thanks to Proposition 3.5.1, since there exists

at most one time t such that xε(t) belongs to ∂C(t). Therefore, thanks to Theorem 3.4 in

[12] we have

lim
σ→0

xσ(T) − xε(T)
σ

=
⟨
∇h(xε(T)),

∫ T

0
M(T, t)∇u f (xε(t),uε(t))(ũ(t) − uε(t)) dt

⟩
, (3.27)

where M(T, t) is the fundamental matrix solution of the linear O.D.E.

v̇(t) =
(−1

2ε
∇2

xd2(xε(t),C(t)) + ∇x f (xε(t),uε(t))
)
v(t)

We can write the right hand side of (3.27) as

∫ T

0

⟨
MT(T, t)∇h(xε(T)),∇u f (xε(t), uε(t))(ũ(t) − uε(t))

⟩
dt.

By setting pε(t) to be the solution of the adjoint equation


−ṗε(t) =

(
−1
2ε∇2

xd2(xε(t),C(t)) + ∇x f (xε(t), uε(t))
)
pε(t), t ∈ [0,T]

−pε(T) = ∇h(xε(T)),
(3.28)

the sign condition on the directional derivative becomes, for all feasible ũ,

∫ T

0

(
⟨−pε(t),∇u f (xε(t),uε(t))(ũ(t) − uε(t))⟩ + ⟨uε(t) − u∗(t), ũ(t) − uε(t)⟩

)
dt ≥ 0.
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Since ũ is an arbitrary measurable selection from U, we obtain

⟨pε(t),∇u f (xε(t),uε(t))uε(t)⟩ − ⟨uε(t) − u∗(t),uε(t)⟩ =

max
u∈U
{⟨pε(t),∇u f (xε(t),uε(t))u⟩ − ⟨uε(t) − u∗(t), u⟩} for a.e. t ∈ [0,T]. (3.29)

Now we recall that, thanks to Proposition (3.5.1), if εn ↓ 0 is such that (xεn ,uεn)→ (x∗,u∗),

for all n large enough the right hand side of (3.28) is single valued except for at most

one point t and equals either ∇x f (xεn(t),uεn(t))pεn(t), if xεn(t) ∈ int C(t), or

(−1
εn

dC(t)(xεn)∇2
xdC(t)(xεn) + ∇xdC(t)(xεn) ⊗ ∇xdC(t)(xεn) + ∇x f (xεn(t),uεn(t))

)
pεn(t)

if xεn < C(t). This means that we can consider (3.28) as a differential equation with a

switch, which occurs (at most) at a single time tεn . Without loss of generality, we can

assume that

tεn converges to some t̄ ∈ I∂. (3.30)

3.7 Estimates and convergence for the adjoint vectors

In this section we keep the notations of the preceding one, and we consider a sequence

εn ↓ 0 such that the conclusions of Propositions 3.4.2 and 3.5.1 are valid.

3.7.1 Estimates

First we prove some uniform estimates on the sequence {pεn(·)}, which will guarantee

compactness in a suitable space.

Lemma 3.7.1 The sequence {pεn(·)} is uniformly bounded in L∞([0,T];Rn).
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Proof. We can rewrite (3.28) as

−ṗεn(t) =
−1
εn
∇xP(t, xεn(t))pεn(t) + ∇x f (xεn(t), uεn(t))pεn(t),

where the Jacobian ∇xP(t, xεn(t)) of P(t, xεn(t)) with respect to the state variable x exists

for all t different from the (possible) switching time tεn . Recalling (3.5) and (3.6), we

have, for all t , tεn ,

∇xP(t, xεn(t)) pεn(t) = dC(t)(xεn(t))∇2
xdC(t)(xεn(t))pεn(t)

+ ⟨∇xdC(t)(xεn(t)), pεn(t)⟩∇xdC(t)(xεn(t)).

From this we obtain

−ṗεn(t) =
−dC(t)(xεn(t))

εn
∇2

xdC(t)(xεn(t))pεn(t) − 1
εn
⟨∇xdC(t)(xεn(t)), pεn(t)⟩∇xdC(t)(xεn(t))

+ ∇x f (xεn(t),uεn(t))pεn(t).

Observe that either pεn vanishes identically or it is never zero. In this case, we multiply

both sides of the adjoint equation by pεn (t)
|pεn (t)| , and obtain

− d
dt
|pεn(t)| =

−dC(t)(xεn(t))
εn

⟨ pεn(t)
|pεn(t)| ,∇

2
xdC(t)(xεn(t))pεn(t)

⟩
− 1
εn

1
|pεn(t)|

⟨
∇xdC(t)(xεn(t)), pεn(t)

⟩2

+
⟨
∇x f (xεn(t),uεn(t))pεn(t),

pεn(t)
|pεn(t)|

⟩
.

(3.31)

The second term on the right hand side of (3.31) is nonpositive, while the first one is

bounded by Lemma 3.4.1, recalling that, if εn is small enough and t , tεn , xεn(t) belongs

to a set where dC(t)(·) is C1,1. Let c be a Lipschitz constant for ∇xdC(t)(·) on this set.

Integrating over the interval [t,T] and recalling the final time condition contained in

(3.28) yields

|pεn(t)| − |∇h(xεn(T))| ≤
∫ T

t
c(γ + β)|pεn(s)|ds +

∫ T

t
⟨∇x f (xεn(t),uεn(t))pεn(t),

pεn(t)
|pεn(t)| ⟩ds,
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whence

|pεn(t)| ≤ |∇h(xεn(T))| +
(
c(γ + β) + k

) ∫ T

t
|pεn(s)| ds,

recalling that f is k-Lipschitz continuous. Now Gronwall’s Lemma in integral form

yields

|pεn(t)| ≤ |∇h(xεn(T))|e(c(γ+β)+k) (T−t) for all t ∈ [0,T].

Since xεn(T) converges uniformly to x∗(T) and h is of class C1, the proof is concluded.

We deal now with a uniform L1-bound for {ṗεn}. For simplicity of notation, we set tn :=

tεn , xn(t) := xεn(t), un(t) := uεn(t), pn(t) := pεn(t), δn(t) := dC(t)(xn(t)), δ′n(t) := ∇xdC(t)(xn(t)),

and finally δ′′n (t) := ∇2
xdC(t)(xn(t)). We observe first that, thanks to (3.15) and the fact that

xn(t), for all t , tn, belongs to a region where dC(t)(·) is of class C1,1,

δn(·)
εn

δ′′n (·) is well defined and is bounded in L∞([0,T];Rn), uniformly with respect to n.

(3.32)

Define now the normal component of pn(t) as

ξn(t) = ⟨pn(t),∇xdC(t)(xn(t))⟩ (= ⟨pn(t), δ′n(t)⟩), t , tn.

We have, for a.e. t (in particular t , tn),

ξ̇n(t) = ⟨ṗn(t), δ′n(t)⟩ + ⟨pn(t), δ′′n (t)ẋn(t)⟩. (3.33)

With this notation, the primal dynamics in (3.13) and the dual one in (3.28) can be

rewritten, respectively, as

ẋn(t) = −δn(t)
εn

δ′n(t) + f (xn(t),un(t))

−ṗn(t) = −δn(t)
εn

δ′′n (t)pn(t) − 1
εn
δ′n(t) ⊗ δ′n(t)pn(t) + ∇x f (xn(t),un(t))pn(t)

= −δn(t)
εn

δ′′n (t)pn(t) − ξn(t)
εn

δ′n(t) + ∇x f (xn(t),un(t))pn(t).
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By inserting ṗn(t) and ẋn(t) from the above equations into (3.33), we obtain, for a.e.

t ∈ [0,T],

−ξ̇n(t) = −δn(t)
εn
⟨δ′′n (t)pn(t), δ′n(t)⟩ − ξn(t)

εn
|δ′n(t)|2

+ ⟨∇x f (xn(t),un(t))pn(t), δ′n(t)⟩

−
⟨
pn(t), δ′′n (t)

(
− δn(t)

εn
δ′n(t) + f (xn(t),un(t))

)⟩
.

(3.34)

In order to simplify the above relation, we observe that,

δ′′n (t)δ′n(t) = ∇2
xdC(t)(x)∇xdC(t)(x) = 0 for all t ∈ [0,T] and all x < ∂C(t)

(see Lemma 3.8 in [16]), and furthermore that

ξn(t) = ξn(t)|δ′n(t)|2 for all t ∈ [0,T], t , tn,

since if xn(t) ∈ int C(t) then both sides are zero, while if xn(t) < C(t) we have |δ′n(t)| = 1.

Therefore, recalling that xn(t) < ∂C(t) for all t , tn, the equation (3.34) becomes, for a.e.

t ∈ [0,T] (with t , tn),

−ξ̇n(t) +
1
εn
ξn(t) = −δn(t)

εn

[
⟨δ′′n (t)pn(t), δ′n(t)⟩ + ⟨pn(t), δ′′n (t) f (xn(t),un(t))⟩

]
+ ⟨∇x f (xn(t),un(t))pn(t), δ′n(t)⟩.

(3.35)

Observe now that the right hand side of the above equality is bounded in L∞([0,T],Rn),

uniformly with respect to n, thanks to Lemma 3.7.1 and (3.15), and to the ρ-prox-

regularity of the moving set C(·). Observe also that Lemma 3.7.1 implies that ξn(t) is

bounded in L∞(0,T), uniformly with respect to n. By multiplying both sides of (3.35)

by sign(ξn(t)) and integrating over the interval [t,T], we then obtain

1
εn

∫ T

t
|ξn(s)|ds ≤ k̄ for all t ∈ [0,T] (3.36)

for a suitable constant k̄ independent of n.
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We are now ready to obtain the L1 uniform boundedness of the sequence {ṗε}.

Lemma 3.7.2 The sequence {ṗn(·)} is bounded in L1([0,T],Rn), uniformly with respect to n .

Proof. We recall that that the adjoint equation can be rewritten as

−ṗn(t) = −δn(t)
εn

δ′′n (t)pn(t) − ξn(t)
εn

δ′n(t) + ∇x f (xn(t),un(t))pn(t).

The result follows immediately by using Lemma 3.7.1 together with (3.36), (3.32), and

the assumptions on f .

3.7.2 Passing to the limit

We wish now to derive the equations which are satisfied by a suitable limit of the

sequence {pn}. By possibly extracting a further subsequence from {εn} (without relabel-

ing), thanks to Lemma 3.7.2 and Helly’s selection theorem, we can suppose that there

exists a function p ∈ BV([0,T];Rn) such that

pn(t)→ p(t) for all t ∈ [0,T]

(in particular p(T) = −∇h(x∗(T))) and, for all h ∈ C0([0,T];Rn),

∫ T

0
⟨h(t), ṗn(t)⟩dt→

∫ T

0
⟨h(t), dp⟩.

We recall also that

xn → x∗ uniformly in [0,T]

ẋ∗n ⇀ ẋ∗ weakly in L2([0,T];Rn)

un → u∗ strongly in L2([0,T];Rm)

un(t)→ u∗(t) a.e. on [0,T],
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and that we have set

I∂ = {t ∈ [0,T] : x∗(t) ∈ ∂C(t)}.

We define also

I0 := [0,T] \ I∂ = {t ∈ [0,T] : x∗(t) ∈ int C(t)}.

Of course one of the two sets I0 and I∂ may be empty. We will proceed with our

arguments, without loss of generality, by assuming that both of them are nonempty.

For every compact interval [s, t] ⊂ I0, the adjoint equation for pn is

−ṗn(τ) = ∇x f (xn(τ),un(τ))pn(τ), (3.37)

since dC(t)(·) is zero in a neighborhood of x∗(t) and xn converges to x∗ uniformly. By

integrating (3.37) over [s, t] and using the absolute continuity of pn, we obtain

pn(s) − pn(t) =
∫ t

s
∇x f (xn(τ),un(τ))pn(τ) dτ.

Since pn converges to p pointwise and is uniformly bounded, by the dominated con-

vergence theorem we obtain

p(s) − p(t) =
∫ t

s
∇x f (x∗(τ),u∗(τ))p(τ) dτ.

We have therefore proved the following

Proposition 3.7.1 On I0, p is absolutely continuous and satisfies the equation

−ṗ(t) = ∇x f (x∗(t),u∗(t))p(t), a.e. t ∈ I0. (3.38)

We will deal now with passing to the limit along (3.28) and obtaining necessary condi-

tions on the whole interval [0,T]. The main effort will be put in passing to the limit in

I∂.

For the sake of convenience, we rewrite here the adjoint equation for pn, recalling
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that we have set ξn(t) = ⟨∇xdC(t)(xn(t)), pn(t)⟩. We have

−ṗn(t) = − 1
εn
∇xdC(t)(xn(t))ξn(t) −

dC(t)(xn(t))
εn

∇2
xdC(t)(xn(t))pn(t)

+ ∇x f (xn(t),un(t))pn(t)

:= I + II + III

We recall that under our assumptions this equation can be seen as and O.D.E. with

(possibly) a switch, which occurs at the time tn, and we can assume that the sequence

{tn} has a limit point t̄ (see (3.30)).

We discuss now passing to the limit for each summand I, II, and III.

I. Set n∗(t) to be the unit external normal to C(t) at x∗(t) for all t ∈ I∂ and 0 for all

t ∈ I0 . Observe that on every compact subset I ⊂ [0,T] such that t̄ < I we can suppose

that ∇xdC(t)(xn(t)) converges to n∗(t) uniformly on I. By the uniform boundedness of

∇xdC(t)(·) and (3.36) we can suppose that (up to a subsequence) along {εn} we have that

the sequence of measures {ξn(.)
εn
∇xdC(·)(xn(·)) dt

}
converges weakly∗ in the dual of C0([0,T];Rn) to a finite signed Radon measure on

[0,T], which can be written as

ξ(t)n∗(t)dµ, (3.39)

where µ is a finite signed Radon measure on [0,T] and ξ ∈ L∞[0,T], ξ(t) ≥ 0 µ-a.e.

Observe that, without loss of generality, we can suppose that ξ(t) = 0 on I0.

II. Recalling (3.15),

dC(t)(xn(t))
εn

≤ β + γ for all t ∈ [0,T] and n ∈N.

Recall that ∇2
xdC(t)(x∗(t)) = 0 if t ∈ I0, and set ∇2

xdC(t)(x∗(t)) = ∇2
xdS(t, x∗(t)) if t ∈ I∂ (indeed,

the signed distance dS(t, ·) is C2 in a neighborhood of boundary points of C(t), t ∈ I∂,

see, e.g., Proposition 2.2.2 (iii) in [17], since both (M1) and (M2) imply that C(t) has

nonempty interior).
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We can suppose that∇2
xdC(t)(xn(t)) converges uniformly to∇2

xdC(t)(x∗(t)) on every compact

I ∈ [0,T] such that t̄ < I. By combining the uniform bound on dC(t)(xn(t))/εn, the uniform

convergence of ∇2
xdC(t)(xn(t)) on every compact I ∈ [0,T] with t̄ < I and the pointwise

convergence of pn, we obtain, up to a subsequence without relabeling, that

dC(t)(xn(t))
εn

∇2
xdC(t)(xn(t))pn(t) ⇀ η(t)∇2

xdC(t)(x∗(t))p(t)

weakly in L2([0,T];Rn), where η ∈ L∞[0,T], 0 ≤ η(t) ≤ β + γ a.e. Observe also that

η(t) ≡ 0 on I0.

III. Recalling Proposition 3.4.2, up to a subsequence

∇x f (xn(t),un(t))pn(t)→ ∇x f (x∗(t),u∗(t))p(t) a.e. on [0,T]

and weakly in L2([0,T];Rn).

We have therefore proved that p satisfies in a weak sense a differential equation,

namely (and this establishes (3.9)) we have

Proposition 3.7.2 Let p be a weak limit of pn in BV([0,T];Rn). Then p(T) = −∇h(x∗(T))

and there exist a finite Radon measure µ on [0,T], and nonnegative measurable functions

ξ, η : [0,T]→ R satisfying the properties ξ ∈ L1
µ(0,T), ξ(t) = 0 on I0 and ξ(t) ≥ 0 on I∂, µ-a.e.,

and 0 ≤ η(t) ≤ β+γ, η(t) = 0 on I0, a.e., such that for all continuous functions φ : [0,T]→ Rn

we have

−
∫

[0,T]
⟨φ(t), dp(t)⟩ +

∫
[0,T]
⟨φ(t),n∗(t)⟩ξ(t) dµ −

∫
[0,T]
⟨φ(t),∇x f (x∗(t),u∗(t))p(t)⟩ dt

= −
∫

[0,T]
⟨φ(t), η(t)∇2

xdC(t)(x∗(t))p(t)⟩ dt,
(3.40)

where we recall that n∗(t) = 0 if x∗(t) ∈ int C(t), and n∗(t) = ∇xdS(t, x∗(t)) is the unit external

normal to C(t) if x∗(t) ∈ ∂C(t).

The adjoint vector p can be proved to satisfy a bunch of further conditions in the interval

I∂.
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Proposition 3.7.3 Let p, ξ, η be given by Proposition (3.7.2) and set pN(t) = ⟨p(t),n∗(t)⟩ for

all t ∈ [0,T]. Then

(1) pN(t) = 0 for a.e. t ∈ [0,T], and p is absolutely continuous on I0.

(2) If (M1) holds, then (recall that I∂ = [t̄,T] according to Proposition 3.5.2 and (3.30)) p is

absolutely continuous on (t̄,T) and for a.e. t ∈ [t̄,T] we have

−ṗ(t) = ⟨ṅ∗(t), p(t)⟩n∗(t) + Γ(t)p(t) − ⟨Γ(t)p(t), n∗(t)⟩n∗(t), (3.41)

where Γ(t) = ∇x f (x∗(t),u∗(t)) − η(t)∇2
xdC(t)(x∗(t)). Moreover, the equalities

p(t̄−) − p(t̄+) = pN(t̄−)n∗(t̄) (3.42)

p(T−) − p(T) = −pN(T)n∗(T) (3.43)

(which mean that jumps may occur only in the normal direction n∗) are valid.

(3) If (M2) holds, then

p(0) − p(0+) =
(
pN(0) − pN(0+)

)
n∗(0). (3.44)

(4) If (M1) holds, p is continuous at t̄ and |p(T−)| ≤ |p(T)|.

Remark 3.7.1 It follows from the above Proposition that the measure µ appearing in (3.40)

may admit a Dirac mass at most at t = 0 (if (M2) holds) or at t = T (if (M1) holds).

Proof. (1). The first assertion is an immediate consequence of (3.36), which implies

that the sequence ⟨pn(t),∇xdC(t)(xn(t))⟩ converges to 0 in L1(0,T), and the convergence

of ∇xdC(t)(xn(t)) to n∗(t) for all t ∈ [0,T], t , t̄ and of pn(t) to p(t). The second assertion

follows from Proposition 3.7.1.

(2) and (3). Since n∗(t) is continuous on I∂, there exist n − 1 continuous unit vectors

v1(t),. . . , vn−1(t) such that Rn = Rn∗(t) ⊕ span ⟨v1(t), . . . , vn−1(t)⟩. Fix t ∈ (t̄,T) and σ > 0

such that [t−σ, t+σ] ⊂ (t̄,T). Let φ : [0,T]→ Rn be continuous, with support contained
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in [t− σ, t+ σ] . Set φT(t) = φ(t)− ⟨φ(t),n∗(t)⟩n∗(t). By putting φT(t) in place of φ in (3.40)

we obtain

−
∫ t+σ

t−σ
⟨φT(s), dp(s)⟩ +

∫ t+σ

t−σ
⟨φT(s), n∗(s)⟩ξ(s) dµ =

∫ t+σ

t−σ
⟨φT(s),∇x f (x∗(s),u∗(s))p(s)⟩ ds

−
∫ t+σ

t−σ
⟨φT(s), η(s)∇2

xdC(s)(x∗(s))p(s)⟩ ds.

(3.45)

Observe now that ⟨φT,n∗(t)⟩ ≡ 0, so that, by letting σ → 0 in the above equation

and using the continuity of φT, we obtain ⟨φT(t), p(t+) − p(t−)⟩ = 0, namely ⟨p(t+) −
p(t−), φ(t)⟩ = ⟨p(t+)− p(t−), ⟨φ(t),n∗(t)⟩n∗(t)⟩. By taking subsequently φ such that φ(t) =

n∗(t), and φ(t) = vi(t), we obtain that p(t−)−p(t+) = (pN(t−)−pN(t+))n∗(t), namely jumps

of p may occur only in the direction n∗(t), for all t ∈ (t̄,T). By taking t = T and arguing

as in (3.45), but integrating over [T − σ,T], one immediately obtains (3.43). In order to

prove (3.42), resp. (3.44), it is enough to extend n∗(t) to be constantly n∗(t̄) on [t̄ − σ, t̄),
resp. constantly n∗(0) on (0, σ), and observe that the part (1) of this Proposition together

with the fact that p has bounded variation imply that p(t̄+) = p(T−) = 0.

Fix now an interval [s, t] ⊆ (t̄,T). The regularity condition on ∂C(t) allows us to

integrate by parts on (s, t) (see (34), p. 8 in [39]), so that

∫ t

s
⟨n∗(τ), dp(τ)⟩ +

∫ t

s
⟨ṅ∗(τ), p(τ)⟩ dτ = ⟨n∗(t+), p(t+)⟩ − ⟨n∗(s−), p(s−)⟩ = 0, (3.46)

where both summands in the right hand side of (3.46) vanish, as a consequence of (1)

and of the fact that p has bounded variation, since both s and t belong to the interior of

I∂. In other words, the two measures ⟨n∗, dp⟩ and ⟨ṅ∗, p⟩ dt coincide in the open interval

(t̄,T). Therefore, for all continuous φ, with support contained in (t̄,T), we obtain from
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(3.45) and (3.46) that

−
∫ T

t̄
⟨φ(t), dp(t)⟩ = −

∫ T

t̄
⟨φ(t),n∗(t)⟩ ⟨n∗(t), dp(t)⟩ −

∫ T

t̄
⟨φT(t), dp(t)⟩

=

∫ T

t̄
⟨φ(t),n∗(t)⟩⟨p(t), ṅ∗(t)⟩ dt

+

∫ T

t̄
⟨φ(t) − ⟨φ(t),n∗(t)⟩n∗(t),∇x f (x∗(t),u∗(t))p(t)⟩dt

−
∫ T

t̄
⟨φ(t) − ⟨φ(t),n∗(t)⟩n∗(t), η(t)∇2

xdC(t)(x∗(t))p(t)⟩dt

Since φ is arbitrary, we obtain (3.41).

(4). By multiplying (3.28) by pn(s)
|pn(s)| and integrating over [t̄ − σ, t̄ + σ], using the fact

that dC(t)(·) is C1,1, uniformly with respect to t, by using the same argument of the proof

of Lemma 3.7.1 (see (3.31)) we obtain

|pn(t̄ − σ)| − |pn(t̄ + σ)| ≤ k
∫ t̄+σ

t̄−σ
|pn(s)|ds

for a suitable constant k independent of n. By passing to the limit as n → ∞ (along a

suitable subsequence) we obtain

|p(t̄ − σ)| − |p(t̄ + σ)| ≤ 0,

whence

|p(t̄−)| ≤ |p(t̄+)|.

Analogously, multiplying both sides of (3.35) by sign (ξn(t)), integrating and using the

fact that |ξn |
εn

is uniformly bounded in L1(0,T), we obtain by passing to the limit as n→∞
that |pN(t̄−)| ≤ |pN(t̄+)| = 0. The latter vanishes, recalling (1), and thus it follows that

pN(t̄−) = 0 as well. Recalling (3.42), p is continuous at t̄. The same argument shows that

|p(T−)| ≤ |p(T)|.

Our last task is now to the limit formulation of the maximum principle. Indeed,
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from (3.29) we immediately obtain, by passing to the limit for n→∞, that (3.10) holds.

Therefore, the proof of our main result is concluded.

3.8 An example

We propose a simple example, inspired by Remark 5.1 in [58], in order to test our

necessary conditions.

3.8.1 Example 1

The state space is R2 ∋ (x, y), the constraint C(t) is constant and equals C := {(x, y) : y ≥
0}, the upper half plane.

We wish to minimize x(1) + y(1) subject to


(
ẋ(t), ẏ(t)

)
∈ −NC

(
x(t), y(t)

)
+

(
ux(t), uy(t)

)
(
x(0), y(0)

)
=

(
0, y0

)
, y0 ≥ 0,

(3.47)

where the controls
(
ux(t),uy(t)

)
belong to [−1, 1] × [−1,−1/2] =: U.

By inspecting the level sets of the cost h
(
(x, y)

)
= x + y, it is natural looking for an

optimal solution such that both ux and uy are nonpositive. If we restrict ourselves to

the case where uy(t) < 0 for a.e. t, then this problem satisfies all our assumptions; in

particular we are in the case (M1).

Observe first that if y0 ≥ 1, the constraint C does not play any role, and the optimality

of the control (−1,−1) is straightforward. If instead 0 ≤ y0 < 1, then our analysis

becomes relevant. Since we are in the case (M1), there exists at most one t̄ such that the

optimal solution hits the boundary of C and after t̄ it remains on ∂C. The external unit

normal n∗(t) is identically (0,−1) and on ∂C, namely for x = 0, we have ∇2
xdC

(
(0, y)

)
≡ 0.

Thanks to Propositions (3.7.3) and (3.38) we obtain, for the optimal trajectory (x∗, y∗)
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corresponding to the optimal control (ux
∗ ,u

y
∗ ) and the adjoint vector (px, py), that (px, py)

is absolutely continuous on (0, 1), ṗx = 0, ṗy = 0 a.e. on [0,T], px(1) = py(1) = −1, px

is continuous at t = 1 and py(1−) + 1 = 1, namely py(1−) = 0. Thus the adjoint vector

(px, py) is :

px(t) = −1 for all t ∈ [0, 1]

py(t) = 0 for all t ∈ [0, 1)

py(1) = −1

µ = −δ1.

The maximum condition reads as

⟨(−1,−1), (ux
∗ ,u

y
∗ )⟩ = max

|u1|≤1,−1≤u2≤−1/2
⟨(−1,−1), (u1,u2)⟩ for t = 1

⟨(−1, 0), (ux
∗ ,u

y
∗ )⟩ = max

|u1|≤1,−1≤u2≤−1/2
⟨(−1, 0), (u1,u2)⟩ for 0 ≤ t < 1,

which gives ux
∗ = −1, while no information is available for uy

∗ (t). If we assume that

uy
∗ is continuous at t = 1, then the transversality condition yields and uy

∗ (1) = −1. If

we assume that uy
∗ is constant, then an expected optimal control uy

∗ = −1 is found. Of

course all other optimal controls uy
∗ , namely uy

∗ (t) = −1 for 0 ≤ t < t̄ and uy
∗ (t) ≤ 0 for

t̄ < t < 1 satisfy our necessary conditions.

Remark 3.8.1 1) The vanishing of py on the interval [t̄, 1] is somehow to be expected, since

all controls uy ≤ −1/2 (actually uy ≤ 0) in that time interval are optimal. The vanishing of

py on [0, t̄] instead makes a remarkable difference with the classical case (i.e., C = Rn), where

py ≡ −1 allows to fully determine the optimal control. It should be natural finding an adjoint

vector which gives the same information as in the classical case in an interval where the optimal

solution lies in the interior of C, but this feature does not follow from the method developed here.

2) In order to have the assumption (M1) be satisfied, we had to impose that the control uy

was negative and bounded away from zero. However, all arguments of Section 3.7 go through

also in the case where uy belongs to the interval [−1, 1]. In fact, the optimal control uy
n for

the approximate problem is always −1, so that the approximate solution (xn, yn) touches the
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boundary of C only at one time.

3.9 Conclusions

Given a smooth moving set C(·) and smooth maps f and h, we have proved necessary

optimality conditions for global minimizers of the problem (P), provided the strong

inward/outward pointing conditions (M1) or (M2) are satisfied. Such conditions were

imposed in order to deal with the discontinuity of the gradient of the distance to

C(t) at boundary points and actually transform the space discontinuity into a time

discontinuity. A similar idea appears in [9]. An alternative approach is adopting

the method developed in [16], which makes use of a smooth approximation of the

distance. This approach, however, requires the uniform strict convexity and the time

independence of the sweeping set.

If C(t) is a moving smooth manifold without boundary, in particular has empty

interior, then the squared distance d2
C(t)(·) is of class C2 in a whole neighborhood of C(t).

In this case, then, all the convergence arguments of Section 3.7 leading to Proposition

3.7.2 go through without requiring (M1) or (M2). Theorem 3.3.2 can be rephrased in

this context, but for the sake of brevity we do not perform this task.
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CHAPTER 4

NECESSARY CONDITIONS FOR A

NONCLASSICAL CONTROL

PROBLEM WITH STATE

CONSTRAINTS

4.1 Introduction

The sweeping process was introduced by Moreau in the Seventies as a model for dry

friction and plasticity (see [48]) and later studied by several authors. In its perturbed

version, it features the differential inclusion

ẋ(t) ∈ −NC(t)(x(t)) + f (x(t)), t ∈ [0,T] (4.1)
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coupled with the initial condition

x(0) = x0 ∈ C(0). (4.2)

Here C(t) is a closed moving set, with normal cone NC(t)(x) at x ∈ C(t). The space

variable, in this paper, belongs toRn. If C(t) is convex, or mildly non-convex (in a sense

that will not be made precise here), and is Lipschitz as a set-valued map depending

on t, and the perturbation f is Lipschitz as well, then it is well known that the Cauchy

problem (4.1), (4.2) admits one and only one Lipschitz solution (see, e.g., [61]). Observe

that the state constraint x(t) ∈ C(t) for all t ∈ [0,T] is built in the dynamics, being NC(t)(x)

empty if x < C(t): should a solution x(·) exist, then automatically x(t) ∈ C(t) for all t. If

a control parameter u appears within f , then one is lead to study problems of the type

ẋ(t) ∈ −NC(t)(x(t)) + f (x(t),u(t)), u(t) ∈ U (4.3)

subject to (4.2), aiming, for example, at

minimizing h(x(T)), (4.4)

the final cost h being smooth. There is a clear difference with classical control problems

with state constraints (see, e.g., [63]), where the constraint does not appear explicitly

in the dynamics: in this case the right hand side of the dynamics is not Lipschitz with

respect to the state variable, but indeed has only closed graph. This fact is a source of

major difficulties in deriving necessary optimality conditions for (4.3), (4.4).

In recent years (see, e.g., [8], [36], [16], [30], [31], [4], and [21], and references

therein) some papers dealing with control problems involving the sweeping process

were published, the control appearing in the perturbation f and/or in the moving set C.

Several necessary conditions were established, under different kinds of assumptions,

or a Hamilton-Jacobi characterization of value function was proved. The present paper

is devoted to prove a result inspired by [4] and [16]. More precisely, we prove necessary

conditions of Pontryagin maximum principle type for (4.4) subject to (4.3) and (4.2), the
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control appearing only within f , in the case where C(·) is constant, smooth and convex

(see Theorems 4.5.1 and 4.5.2). The case where C satisfies milder convexity assumptions

and is not necessarily constant was treated in [4] with an extra assumption, while

[16] contains results for a particular control problem involving a fixed smooth and

uniformly convex set C. More preccisely, differently from [30] and [21], where discrete

approximations are used, in both [16] and [4] the authors use a penalization technique.

The classical Moreau-Yosida regularization allows in [4] to relax the uniform convexity

assumption, at the price of requiring a strong outward pointing condition on f in order

to treat the discontinuity of second derivatives of the squared distance function at the

boundary of C(t). In [16], the authors adopt a suitable smoothing of the distance, which

on one hand needs C(t) constant and uniformly convex and 0 ∈ C, while on the other

avoids imposing further compatibility assumptions between f and C. In this paper

we adapt to our situation the method developed in [16] and remove the assumption of

strict convexity on C. The main technical part is Section 4.

4.2 Preliminaries and assumptions

Notation. We define the distance from a set C ⊂ Rn as d(x) = inf{∥y − x∥ : y ∈ C}
and signed distance from C as dS(x) = d(x) if x < C and dS(x) = − inf{∥y − x∥ : y < C}
if c ∈ C. The normal cone to a convex set C is defined as NC(x) = ∅ if x < C and

NC(x) = {v ∈ Rn : ⟨v, y − x⟩ ≤ 0 ∀y ∈ C} if x ∈ C.

Assumptions on the set C. Let

C = {x ∈ Rn : 1(x) ≤ 0},

where 1 : Rn → R is of class C2 with gradient∇1 , 0 on the boundary ∂C of C, and with

the Hessian matrix ∇21(x) positive semidefinite for all x ∈ Rn. Assume furthermore

that 1(·) is coercive, so that C is compact (and convex) and that 1(0) < 0, so that 0 ∈ C

and C has nonempty interior. Observe that under our assumption the signed distance
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dS(x) from C is of class C2 in a neighborhood of ∂C.

Assumptions on the dynamics and the cost. The control set U ⊂ Rn is compact and

f is continuous and bounded, say by a constant β, and is of class C1 with respect to x,

with ∥∇x f (x,u)∥ ≤ L for all x,u. The cost h is smooth.

Let now ψ(x) be a C2 smoothing of dS in the interior of C (which is < 0 in int C and

is such that ∇ψ(x) is the unit external normal to C at x for every x ∈ ∂C). Set also

Ψ(x) =
1
3
ψ3(x) 1(0,+∞)(ψ(x)).

Observe thatΨ(·) is of class C2 and convex in the whole of Rn and that both ∇Ψ(·) and

∇2Ψ(·) vanish on C. Moreover one has, for each x ∈ Rn,

∇Ψ(x) = d2(x)∇d(x), (4.5)

∇2Ψ(x) = 2d(x)∇d(x) ⊗ ∇d(x) + d2(x)∇2d(x), (4.6)

because in C, and in particular at the points where ∇d(x) does not exist (namely, in ∂C),

both sides of the above expressions vanish, and outside C they coincide.

4.3 The regularized problem

Consider the regularized dynamics

ẋ(t) =
−1
ε
∇Ψ(x(t)) + f (x(t),u(t)), x(0) = x0, (4.7)

where ε > 0 and u(t) ∈ U for all t. For each given u, this Cauchy problem admits a

unique solution xε for each ε > 0 on a maximal interval of existence. It is not difficult

to prove that this interval is [0,T] (see the proof of Proposition 4.3.1).

For every ε > 0 and every global minimizer x∗, u∗ of (4.4) subject to (4.3) and (4.2),
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we consider the approximate problem Pε(u∗)

minimize h(x(T)) +
1
2

∫ T

0
∥u(t) − u∗(t)∥2 dt, (4.8)

over controls u, where x is a solution of (4.7). By standard results, Pε(u∗) admits a global

minimizer uε, with the corresponding solution xε. Necessary conditions of the original

problem will be obtained by passing to the limit along conditions for Pε(u∗).

4.3.1 A priori estimates for the regularized problem

Proposition 4.3.1 Let εn → 0 and let (un, xn) be a solution of the problem Pεn . Then, up to a

subsequence, un converges strongly in L2(0,T) to u∗ and xn converges weakly in W1,2(0,T) to

x∗.

Proof. Since 0 ∈ C and so∇Ψ(0) = 0, by the convexity ofΨwe obtain that ⟨∇Ψ(x), x⟩ ≥ 0

for all x ∈ Rn. Thus

∥xn(t)∥ − ∥x0∥ =

=

∫ t

0

⟨ xn(s)
∥xn(s)∥ ,

−1
εn
∇Ψ(xn(s)) + f (xn(s),un(s))

⟩
ds ≤ β,

which, in particular, implies that xn is defined in the whole of [0,T]. Moreover,

∥ẋn∥2L2 =

∫ T

0

⟨
ẋn(t),

−1
εn
∇Ψ(xn(t)) + f (xn(t), un(t))

⟩
dt

=

∫ T

0

(−1
εn

d
dt
Ψ(xn(t)) + ⟨ f (xn(t),un(t)), ẋn(t)⟩

)
dt

=
−1
εn
Ψ(xn(T)) +

1
εn
Ψ(x0) + β

∫ T

0
∥ẋn(t)∥ dt

≤ β
√

T∥ẋn∥L2 ,

where we have used the fact that x0 ∈ C and that ψ(xn(T)) ≥ 0. The above estimate

implies that the sequence ẋn is uniformly bounded in L2(0,T). Thus, up to a subse-

70



Necessary conditions for a nonclassical control problem with state constraints

quence, xn converges weakly in W1,2(0,T) to x̄. Observe now that the from the uniform

boundedness of ∥ẋn∥L2(0,T) and of f , we can deduce from (4.7), thanks to (4.5), that

∥d(xn(·))2∥L2(0,T) ≤ Kεn (4.9)

for a suitable constant K. Thus x(t) ∈ C for all t. Again up to a subsequence, un converges

weakly in L2(0,T) to some ū. By using the very same argument of Proposition 4.3 in

[4], one can prove that x̄ is the solution of (4.3), (4.2) corresponding to ū, that ū = u∗,

and so that x̄ = x∗, and that the convergence is indeed strong.

Remark. Eq. (4.9) implies that, up to a subsequence,

∥d(xn(·))∥L2(0,T) ≤
√

TK
√
εn. (4.10)

From the uniform convergence of xn (again up to a subsequence) we also get ∥d(xn(·))∥L∞ →
0 for n → ∞. This is an important difference between this approach and the use of

Moreau-Yosida approximation, which instead yields the stronger estimate ∥d(xn(·))∥L∞ ∼
εn (see [55] or [4, Proposition 4.1]). Observe that the assumption that C is constant ap-

pears essential in order to obtain uniform a priori estimates for ∥ẋn∥L2 within the present

approach, which essentially uses the weaker penalization d3 instead of the Moreau-

Yosida one, namely d2.

4.3.2 Necessary conditions for the regularized problem

The approximate problem Pε(u∗) satisfies the assumptions for necessary conditions of

classical unconstrained optimal control problems. The same computations of Section

6 in [4] yield that for every ε and every minimizer (uε, xε) there exists an absolutely

continuous adjoint vector pn : [0,T]→ Rn such that

−ṗε(t) =
(−1
ε
∇2Ψ(xε(t)) + ∇x f (xε(t),uε(t))

)
pε(t) (4.11)
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a.e. on [0,T], together with the final condition

−pε(T) = ∇h(xε(T)), (4.12)

and the maximality condition

⟨pε(t),∇u f (xε(t),uε(t))uε(t)⟩ − ⟨uε(t) − u∗(t),uε(t)⟩ =

max
u∈U
{⟨pε(t),∇u f (xε(t),uε(t))u⟩ − ⟨uε(t) − u∗(t),u⟩}

for a.e. t ∈ [0,T].

4.4 Passing to the limit

From now on we consider a sequence εn → 0 such that the minimum (un, xn) of the

approximate problem converges as in the statement of Proposition 4.3.1. We set pn :=

pεn .

4.4.1 A priori estimates for the adjoint vectors of the approximate

problem

We obtain from (4.11) and (4.6) that

∥pn(t)∥ − ∥pn(T)∥ = −1
εn

∫ T

t

(⟨∇2Ψ(xn(s))pn(s), pn(s)
⟩

∥pn(s)∥

+
⟨
∇x f (xn(s),un(s))pn(s),

pn(s)
∥pn(s)∥

⟩)
ds ≤

(since ∇2Ψ is positive semidefinite and ∇x f is bounded)

≤ L
∫ T

t
∥pn(s)∥ ds.
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Recalling (4.12), we obtain from the above inequality and Gronwall’s lemma that there

exists a constant K1 independent of n such that

∥pn∥∞ ≤ K1. (4.13)

Now we address ourselves to prove an a priori estimate on ∥ṗn∥L1 . To this aim, we define

ξn(t) = ⟨pn(t),∇d(xn(t))⟩,

(whenever it makes sense, i.e., if xn(t) < ∂C(t)), so that,

ξ̇n(t) = ⟨ṗn(t),∇d(xn(t))⟩ + ⟨pn(t),∇2d(xn(t))ẋn(t)⟩.

Set now

δn(t) = d(xn(t)), δ′n(t) = ∇d(xn(t)), δ′′n (t) = ∇2d(xn(t)).

With this notation, thanks to (4.5) and (4.6), eq. (4.11) can be rewritten as

−ṗn(t) = −δ
2
n(t)
εn

δ′′n (t)pn(t) − 2
δn(t)ξn(t)

εn
δ′n(t) +

+∇x f (xn(t),un(t))pn(t). (4.14)

Inserting ṗn and ẋn in the expression for ξ̇n we obtain (omitting the t-dependence and

using the fact that∇2d(x)∇d(x) = 0 for all x where it makes sense, and that δn∥∇ψ(xn)∥2 =
δn∥∇d(xn)∥ = δn)

−ξ̇n + 2
δnξn

εn
= −δ

2
n

εn
⟨δ′′n pn, δ

′
n⟩

+⟨∇x f (xn,un)pn, δ
′
n⟩ − ⟨pn, δ

′′
n f (xn,un)⟩.

Observe now that the first summand in the right hand side of the above expression

is bounded in L1(0,T) uniformly with respect to n, because, recalling (4.10),
∥δ2

n∥L1

εn
is

uniformly bounded. In turn, the second and the third summands are seen to be

bounded in L∞(0,T), uniformly with respect to n, by invoking (4.13). By multiplying
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both sides by sign(ξn) and integrating, we thus obtain the second estimate

1
εn

∫ T

t
δn(s)|ξn(s)| ds ≤ K2, (4.15)

for a suitable constant K2, independent of n. As a consequence, all three summands

in the right hand side of the adjoint equation (4.14) are bounded in L1(0,T), uniformly

with respect to n, and so we reach our final estimate

∥ṗn∥L1(0,T) ≤ K3 (4.16)

for a suitable constant K3 independent of n.

4.4.2 Passing to the limit along the adjoint equation

By possibly extracting a further subsequence, we can assume that the sequence of

measures ṗn dt converges weakly∗ in the sense of Radon measures to a signed vector

measure µ, which is the distributional derivative of the BV function p(t) =: lim pn(t), i.e.,

µ = dp, where the limit of the pn is pointwise in [0,T]. By arguing as in [4, Proposition

7.3], we obtain first that the sequence of measures

δn(t)ξn(t)
εn

δ′n(t) dt

converges weakly∗ to a finite signed vector Radon measure, which can be written as

ξ(t)n∗(t) dν,

where ξ ∈ L1
ν(0,T), ξ ≥ 0 ν-a.e., n∗(t) denotes the unit outward normal vector to C at

x∗(t) if x∗(t) ∈ ∂C and 0 if x∗(t) ∈ int C, and ν is a finite vector measure. Moreover

δ2
n(t)
εn

δ′′n (t)pn(t) ⇀ η(t)∇2d(x∗(t))p(t)

in L2(0,T), where η ∈ L∞ν (0,T) and η ≥ 0 a.e., with η ≡ 0 when x∗ is in int C.
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4.4.3 Passing to the limit along the maximality condition

By taking into account Proposition 4.3.1, we obtain that the limit adjoint vector p is such

that

⟨p(t),∇u f (x∗(t),u∗(t))u∗(t)⟩ =

= max
u∈U
{⟨p(t),∇u f (x∗(t),u∗(t))u⟩} for a.e. t ∈ [0,T]. (4.17)

4.5 The main result

We deduce from Sections 3 and 4 the following necessary conditions:

Theorem 4.5.1 Under the assumptions stated in Section 2, let (x∗,u∗) be a global minimizer for

(4.4) subject to (4.3) and to (4.2). Then there exist a BV adjoint vector p : [0,T]→ Rn, together

with a finite signed Radon measure ν on [0,T], and measurable vectors ξ, η : [0,T]→ R (with

ξ ∈ L1
ν(0,T), ξ(t) ≥ 0 for ν-a.e. t, η ∈ L∞(0,T), and η(t) ≥ 0 for a.e. t) such that ξ(t) = η(t) = 0

for all t with x∗(t) ∈ int C, satisfying the following properties:

• (adjoint equation)

for all continuous functions φ : [0,T]→ Rn

−
∫

[0,T]
⟨φ(t), dp(t)⟩ = −

∫
[0,T]
⟨φ(t),n∗(t)⟩ξ(t) dν(t)

−
∫

[0,T]
⟨φ(t),∇2

xd(x∗(t))p(t)⟩η(t) dt

+

∫
[0,T]
⟨φ(t),∇x f (x∗(t),u∗(t))p(t)⟩ dt,

• (transversality condition)

−p(T) = ∇h(x∗(T)),
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• (maximality condition)

⟨p(t),∇u f (x∗(t),u∗(t))u∗(t)⟩ =

= max
u∈U
⟨p(t),∇u f (x∗(t),u∗(t))u⟩ for a.e. t ∈ [0,T].

Some more precise statements on the measure ν require some assumptions on the

reference trajectory x∗. In fact, consider the sets

E0 := {t ∈ [0,T] : x∗(t) ∈ int C}

E∂ := {t ∈ [0,T] : x∗(t) ∈ ∂C}.

Of course, E0 is open and E∂ is closed, but one has to take into account the possibility

that E∂ be irregular (e.g., totally disconnected). Such phenomenon, in stratified state

constrained control theory, is sometimes referred to as Zeno phenomenon, namely the

switching from a stratum (the boundary of C, in this case) to other strata (the interior

of C in this case) occurs at a complicated set (see, e.g., [10]).

The following is the second part of our necessary conditions. It is only a partial

result, with respect to the rich set of conditions proved in [16].

Theorem 4.5.2 Under the assumptions stated in Section 2, let (x∗,u∗) be a global minimizer

for (4.4) subject to (4.3) and to (4.2), and let p the adjoint vector given by Theorem 4.5.1. Define

pN(t) = ⟨p(t),n∗(t)⟩, t ∈ [0,T]. The following properties hold:

(1) pN(t) = 0 for all t ∈ E0, and p is absolutely continuous on E0, where it satisfies the

classical adjoint equation

−ṗ(t) = ∇x f (x∗(t),u∗(t)) p(t). (4.18)

(2) At every interior (or such that a left or right neighborhood is contained in E∂) point t of
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E∂, jumps of p may occur only in the normal direction n∗(t), namely

p(t−) − p(t+) =
(
pN(t−) − pN(t+)

)
n∗(t).

(3) The adjoint vector p is absolutely continuous on every open interval contained in E∂, and

for a.e. t in such interval we have

−ṗ(t) = ⟨ṅ∗(t), p(t)⟩n∗(t) + Γ(t)p(t) −

−⟨Γ(t)p(t),n∗(t)⟩n∗(t), (4.19)

where Γ(t) = ∇x f (x∗(t),u∗(t)) − η(t)∇2
xd(x∗(t)).

Proof. (1). The first assertion is obvious, since on E0 we have n∗ ≡ 0 and the absolute

continuity together with (4.18) follow from the properties of the functions ξ and η

proved in Theorem 4.5.1.

(2). Since n∗(t) is continuous on E∂, there exist n−1 continuous unit vectors v1(t),. . . ,

vn−1(t) such that Rn = Rn∗(t) ⊕ span ⟨v1(t), . . . , vn−1(t)⟩ for all t ∈ E∂. Let t ∈ E∂ and σ > 0

be such that [t−σ, t+σ] ⊂ E∂. Letφ : [0,T]→ Rn be continuous, with support contained

in [t − σ, t + σ]. Set φT(t) = φ(t) − ⟨φ(t),n∗(t)⟩n∗(t). By putting φT(t) in place of φ in the

adjoint equation we obtain

−
∫ t+σ

t−σ
⟨φT(s), dp(s)⟩ +

∫ t+σ

t−σ
⟨φT(s),n∗(s)⟩ξ(s) dν

=

∫ t+σ

t−σ
⟨φT(s),∇x f (x∗(s),u∗(s))p(s)⟩ ds

−
∫ t+σ

t−σ
⟨φT(s), η(s)∇2d(x∗(s))p(s)⟩ ds. (4.20)

Observe now that ⟨φT,n∗(t)⟩ ≡ 0, so that, by letting σ → 0 in the above equation

and using the continuity of φT, we obtain ⟨φT(t), p(t+) − p(t−)⟩ = 0, namely ⟨p(t+) −
p(t−), φ(t)⟩ =

⟨
p(t+)− p(t−), ⟨φ(t),n∗(t)⟩n∗(t)

⟩
. By taking subsequently φ such that φ(t) =

n∗(t), andφ(t) = vi(t), i = 1, . . . , n−1, we obtain that p(t−)−p(t+) =
(
pN(t−)−pN(t+)

)
n∗(t),

namely jumps of p may occur only in the direction n∗(t), for all t in the interior of E∂. If
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t is a left or a right endpoint of E∂, one can extend n∗ as a constant to the left or to the

right of t and repeat the same argument.

(3). Fix now an interval [s, t] ⊆ E∂. The regularity condition on ∂C allows us to

integrate by parts on (s, t), so that

∫ t

s
⟨n∗(τ), dp(τ)⟩ +

∫ t

s
⟨ṅ∗(τ), p(τ)⟩ dτ =

= ⟨n∗(t+), p(t+)⟩ − ⟨n∗(s−), p(s−)⟩ = 0. (4.21)

Observe that both summands in the right hand side of (4.21) vanish, as a consequence

of (1) and of the fact that p has bounded variation, since s and t belong to the interior of

I∂. In other words, the two measures ⟨n∗, dp⟩ and ⟨ṅ∗, p⟩ dt coincide in any open interval

contained in E∂. Therefore, for all continuous φ with support contained in (s, t), we

obtain from (4.20) and (4.21) that

−
∫ t

s
⟨φ(τ), dp(τ)⟩ =

= −
∫ t

s
⟨φ(τ),n∗(τ)⟩ ⟨n∗(τ), dp(τ)⟩ −

∫ t

s
⟨φT(τ), dp(τ)⟩

=

∫ t

s
⟨φ(τ),n∗(τ)⟩⟨p(τ), ṅ∗(τ)⟩dτ

+

∫ t

s

⟨
φ(τ) − ⟨φ(τ),n∗(τ)⟩n∗(τ),∇x f (x∗(τ),u∗(τ))p(τ)

⟩
dτ

−
∫ t

s

⟨
φ(τ) − ⟨φ(τ),n∗(τ)⟩n∗(τ), η(τ)∇2

xd(x∗(τ))p(τ)
⟩
dτ

Since φ and the interval (s, t) are arbitrary, we obtain (4.19).
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In this thesis, by using tools from nonsmooth and variational analysis, we have studied

diferential inclusions involving normal cones in Hilbert spaces. Although the main

focus of this thesis has been the sweeping process, the developed methods have allowed

us to address several diferential inclusions involving normal cones.

In chapter two, we give a new approach, in which the compactness assumption is

shifted from the uniformly prox-regular set to the perturbation, and prove the existence

of local solutions without compactness of the set. In this chapter we ask the following

open question: How can we get the validity of Theorem 2.3.1 and Theorem 2.4.1 without

using specific assumptions about the displacement of the moving set and how can we

get around the assumption of compactness ? The arguments (used in Sect. 2.3 and

Sect. 2.4 ) are based on Proposition 2.4.1 and are specific to the shifted moving set case.

Mainly, the property (2.34) is the bridge between the normal cone and the nonconvex

set-valued perturbation and permits to get the convergence for the norm topology of

space of Lebesgue square integrable functions of the sequences of derivatives. For

general moving set, this property do not holds and so the existence of solutions seems

to be a difficult problem. We also probably need a new approach of this question.

In chapter tree, we get a nonclassical necessary optimality conditions of Pontrya-
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gin’s Maximum Principle type for a Mayer problem. Our assumptions include the

smoothness of the boundary of the moving but do not require strict convexity and

time independence of the set, rather, a kind of inward/outward pointing condition is

assumed on the reference optimal trajectory. A related problem that can be addressed

is try to remove this inward/outward pointing condition.

In chapter four, we adapt to our situation the method developed in chapter tree,

remove the assumption of strict convexity on the set and inward/outward pointing

condition is removed also.

80



BIBLIOGRAPHY

[1] S. Adly, T. Haddad, L. Thibault, Convex sweeping process in the framework of measure

differential inclusions and evolution variational inequalities, Math. Program. Ser. B 148

(2014), 5-47.

[2] S. Adly, F. Nacry, and L. Thibault, Preservation of prox-regularity of sets with applica-

tion to constrained optimization, SIAM J. Optim., 26 (2016), 448-473.

[3] L. Ambrosio, H.M. Soner, Level set approach to mean curvature flow in arbitrary

codimension, J. Differential Geom., 43 (1996), 693-737.

[4] Ch. Arroud and G. Colombo, A Maximum Principle for the controlled Sweeping

Process,SVVA ,(2017), DOI: 10.1007/s11228-017-0400-4.

[5] Ch. Arroud and G. Colombo, Necessary conditions for a nonclassical control problem

with state constraints,IFAC PapersOnLine 50-1 (2017) 506-511.

[6] Ch. Arroud and T. Haddad, On Evolution Equations Having Hypomonotonicities of

Opposite Sign governed by Sweeping Processes, J. JOTA (2018) .

[7] J. P. Aubin and A. Cellina, Differential Inclusions. Set-valued Maps and Viability Theory,

Springer-Verlag, (1984).

81



Bibliography

[8] F. Bagagiolo, Dynamic programming for some optimal control problems with hysteresis,

NoDEA, (2002), 9:149–174.

[9] G. Barles, A. Briani, and E. Trélat, Value Function and Optimal Trajectories for Regional

Control Problems via Dynamic Programming and Pontryagin Maximum Principles,

[10] R.C. Barnard and P.R. Wolenski,Flow invariance on stratified domains, Set-Valued

Var. Anal, (2013), 21:377–403.

[11] A. Bressan, A. Cellina and G. Collombo, Upper semicontuous differential inclusions

without convexity, Proc.Am. Math. Soc 106 (1989), 771-775.

[12] A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS

(2007).
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