REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEURE ET DE LA RECHERCHE SCIENTIFIQUE

جامعة محمد الصديق بن يحي

UNIVERSITE MOHAMED SEDDIK BEN YAHIA-JIJEL FACULTÉ DES SCIENCES ET TECHNOLOGIE DEPARTEMENT DE GENIE DES PROCEDES

Thèse en vue de l'obtention du Diplôme de Doctorat-LMD en GENIE DES PROCEDES *Option : GENIE DE L'ENVIRONNEMENT*

Thème

Synthèse et caractérisation des oxydes type spinelles MCo₂O₄ : propriétés électrochimiques et catalytiques

Présentée par :

Loubna MERABET

Soutenue le :19/01/2019

Devant le jury :

Président :	Pr : M. FERKHI
Rapporteur :	Pr : K. RIDA
Examinateur :	Pr : A. SOUALAH
Examinatrice:	MCA : N. ALIOUANE
Examinatrice:	MCA: F.BOUREMMED

Université Mohamed Seddik Ben Yahia-jijel Université Mohamed Seddik Ben Yahia-jijel Université Abderrahmane Mira-Bejaia Université Abderrahmane Mira-Bejaia Université Mohamed Seddik Ben Yahia-jijel

Remerciement

Louange et Gloire à Allah qui m'a accordé l'aboutissement de ce travail.

A l'issue de la rédaction de ce travail, je suis convaincue que la thèse est loin d'être un travail solitaire. En effet, je n'aurais jamais pu réaliser ce travail doctoral sans le soutien d'un grand nombre de personnes dont la générosité, la bonne humeur et l'intérêt manifesté à l'égard de ma recherche m'ont permis de progresser dans cette phase délicate de «l'apprenti chercheuse».

Tout d'abord, je tiens à exprimer ma profonde reconnaissance à mon directeur de thèse, Monsieur Rida Kamel, Professeur à l'université de Jijel pour son encadrement tout au long de ce travail, pour ses idées pertinentes, ses conseils, sa sympathie, le temps accordé ainsi que pour son aide lors des manipulations, la rédaction de l'article et la correction de cette thèse, mais aussi je tiens à le remercier parce qu'il n'a jamais de cesser de croire en moi, quand pas mal de gens me disais d'arrêter, sa tache de me conduire de l'apprentie chercheuse en chercheuse l' a fait avec brio, donc encore une fois merci.

Je souhaite remercier également tous les membres du jury qui ont accepté de lire ce manuscrit d'abord Monsieur Ferkhi Mosbeh professeur à l'université de Jijel d'avoir accepté la lourde tâche de présider la soutenance, a Madame Bouremmed Farida maitre de conférence à l'université de jijel, examinatrice mais aussi directrice de notre laboratoire LIME à l'université de Jijel, un très grand merci pour tous ce qu'elle a fait pour le développement de notre laboratoire, pour ces encouragement dans les moments de doute, et sa très grande patience avec les thésards. Un très grand merci aussi pour Madame Aliouane Nabila de l'université de Bejaia d'avoir donnée de son temps pour examiner ma thèse, mes remerciement vont aussi a Monsieur Soualah Ahcéne, professeur à l'université de Bejaia d'avoir lui aussi accepté de juger de mon travail.

Je voudrais également remercier tous les membres du laboratoire LIME et tous ceux qui ont contribué à la réalisation de cette thèse, surtout a Nawal de m'avoir intié au domaine de stockage d'énergie mais surtout à Meriem Acila pour tous les bons moments aux sein du laboratoire. merci à tous les autres thésards, en pensant bien fort a ceux qui soutiendront dans les mois ou années à venir (vous allez y arriver, courage, et pas de dépréssion).

Au terme de ce parcours, je remercie enfin les personnes qui me sont chères, ma famille et plus particulièrement, mon papa, ma maman et mes trois frères Tadj, Ibrahim et Cherif. Vous avez toujours veillé à ma réussite scolaire, et personnelle. Vous avez toujours cru en moi et su me porter vers le haut. Votre soutien, votre présence, votre aide, votre motivation ainsi que vos précieux conseils m'ont permis d'avancer tout au long de mes études. Vous êtes des parents merveilleux et formidables.

Je t'ai réservé ces dernières lignes pour toi, mon mari Samir je te remercier de tout mon cœur de partager ma vie et d'avoir été à mes côtés tout au long de ce travail. Tu as toujours trouvé les bons mots pour me prodiguer du soutien et du courage. Cela n'a pas été facile tous les jours surtout pour nos RAMI et NADA, dieux seul sait que je les ai abandonné au détriment de ma recherche. Maman et Papa, ce travail vous est entièrement dédié. SOMMAIRE Sommaire Liste des figures Liste des tableaux Introduction Générale

Chapitre 1: Synthèse bibliographique

1

1. Généralités sur les supercondensateurs	4
1.1Stockage réversible de l'énergie électrique	4
1.2 Les supercondensateurs	4
1.2.1 Les différents types d'un supercondensateur	5
1.2.1.1 Les supercondensateurs électrostatiques	5
1.2.1.2 Les supercondensateurs hybrides	5
1.2.1.3 Les supercondensateurs pseudocapacitifs	5
1.2.1.4Les supercondensateurs à base de polyméres conducteurs électroniques	6
1.2.1.5 Les supercondensateurs à base d'oxydes	6
1.3 Application des supercondensateurs	7

Partie B : Théorie sur les procédés de dépollution

Introduction	11
2.4 Procédés de traitement des colorants	11
2.4.1 Méthodes physiques	12
2.4.2 Méthodes chimiques	12
2.4.3. Méthodes biologiques	13
2.4.4. Procédés d'oxydation avancée	13
2.4.4.1 Procédés photochimiques d'oxydation avancés	15
2.4.4.1.1 Photolyse de l'eau (UV/ H_2O) et des substances chimiques	16
2.4.4.1.2 Photolyse du peroxyde d'hydrogène (UV/H ₂ O ₂)	16
2.4.4.1.3 Photolyse de l'ozone (UV/O ₃)	17
2.4.4.1.4 Procédé UV/H ₂ O ₂ /O ₃	18
2.4.4.1.5 Procédé de photo-Fenton (UV/Fe ²⁺ /H ₂ O ₂)	18
2.4.4.1.6 La photocatalyse hétérogène	18

i-	Principe de la photocatalyse	20
ii-	Paramètres influançant la réaction photocatalytique	22
2.4.4.1	7 La photocatalyse solaire	26
2.4.4.1	8 Les semi conducteurs utilisés en photocatalyse	27
3. Cond	elusion	29
	Partie C : Théorie sur les spinelles MCo ₂ O ₄ et le ZnO	
Introdu	ction	30
3.1 gén	éralités sur les spinelles	30
3.1.1 P	ropriétés structurales de la spinelle MCo ₂ O ₄ (M=Ni,Zn,Cu, Ni)	31
3.1.2 P	ropriétés chimiques et catalytiques des spinelles MCo ₂ O ₄	32
3.1.2.1	Application dans le domaine des supercondensateurs	34
3.1.2.2	Application dans la dépollution par photocatalyse	35
3.2 Gér	éralités sur l'oxyde de zinc	35
3.2.1 Pr	opriétés structurales	35
3.2.2 P	ropriétés chimiques et catalytiques	36
Referen	nces	38

Chapitre 2 : Matériels et Méthodes

Introduction	49
2. Techniques expérimentales	50
2.1 Techniques d'élaborations des matériaux MCo ₂ O ₄ et ZnO	50
2.1.1 Synthèse par voie de chimie douce Sol-Gel	50
2.1.2 Synthése par Co-précipitation	51
3. Technique de caractérisation	52
3.1 Caractérisation physico-chimique	52
3.1.1 Analyses Thermique Différentielle(ATD) et Thermogravimétrique (ATG)3.1.2 Diffraction des Rayons X (DRX)	53 52
3.1.3 Analyse par microscopie électronique à balayage (MEB)	54
3.1.4 Spectroscopie X à dispersion d'énergie (EDX)	55
3.1.5Analyse par spectroscopie infrarouge à transformée de Fourier (FTIR)	56
3.1.6 Mesure de surfaces spécifiques par analyses BET	56
3.2 Caractérisation électrochimiques	57
3.2.1 Tests pseudocapacitifs	57
3.2.2 Voltammétrie cyclique	58

3.2.3La spectroscopie d'impédance électrochimique	59
3.3Tests photocatalytique	60
3.3.1Réacteur sous irradiation solaire naturelle	60
3.3.2Méthodologie expérimentale pour les tests photocatalytiques	62
3.3.2.1Préparation des solutions	62
3.3.2.2Techniques d'analyse	62
3.3.2.3 Utilisation du ZnO et MCo_2O_4 pour le traitement photocatalytique	63

Chapitre3 : Résultats et discussion

Partie A: Synthèse et Caractérisation physicochimique des spinelles MCo₂O₄

et ZnO

1. Synthèses des matériaux MCo ₂ O ₄ par voie sol gel	68
2.Synthèse de ZnO	68
2.1 Synthèse de ZnO par sol gel	68
2.1Synthèse de ZnO par coprécipitation	68
3. Caractérisation physicochimique des matériaux	69
3.1 Caractérisation physicochimique des spinelles MCo ₂ O ₄	69
• Analyse thermogravimétrique (ATD/ATG)	59
• Analyse par diffraction des rayons X (DRX)	70
• Etude des matériaux par spectroscopie infrarouge (FTIR)	71
Microscope électronique à balayage (MEB)	72
• Etude par analyse élementaire (EDS)	74
3.2 Caractérisation physicochimique de ZnO SG et ZnO Cop	76
• Analyse par diffraction des rayons X (DRX)	76
• Etude du ZnO SG et Cop par spectroscopie infrarouge (FTIR)	77
Partie B : Etude du caractère supercapacitif des spinelles MCo_2O_4	
1. Définition du système électrochimique	78
1.1 Préparation des électrodes	78
1.2 Le choix de la fenêtre de potentiels	79
1.3 Le choix du milieu électrolytique	79
2. Etude du supercondensateur MCo2O4 (M=Ni, Zn, Cu, Mn) dans le milieu KOH	79
2.1 Caractérisation par voltamétrie cyclique	79

2.2 Effet de la vitesse de balayage sur la capacité spécifique	82
2.3 Etude de la durée de vie des matériaux MCO dans le milieu KOH	86
2.4 Caractérisation par spectroscopie d'impédance électrochimique	87
2.5 Modélisation des spectres d'impédances par le circuit équivalent des él	ectrodes
MCO	89
3.Etude du supercodensateur MCo ₂ O ₄ (M=Ni, Mn, Cu, Zn) dans le milieu Na ₂ SO ₄	95
3.1 Caractérisation par voltamétrie cyclique du supercondensateur MCo ₂ O ₄ dans l	e milieu
Na ₂ SO ₄ 9:	5
3.2 Effet de la vitesse de balayage sur la capacité spécifique des spinelles MCo_2O_4	96
3.3 Etude de la durée de vie des matériaux MCO dans le milieu Na ₂ SO ₄	100
3.4 Caractérisation par spectroscopie d'impédance électrochimique	101
3.5 Etude comparative avec les travaux antérieurs	102
4. Conclusion	104

Partie C : Etude de la dégradation de quelque colorants par photolyse et photocatalyse solaire

Introduction	105
1. Etude Spectrale du bleue de méthyléne et du rouge congo	106
2.Photolyse directe du BM par irradiationsolaire	107
2.1 Décoloration du BM par les systèmes H_2O_2/UV solaire et $S_2O_8^{-2}/UV$ solaire	107
2.1.1. Système H ₂ O ₂ /UV solair	108
2.1.1.1 Décoloration du BM par le peroxyde d'hydrogène à l'obscurité	108
2.1.1.2 Décoloration du BM par couplage H ₂ O ₂ /UV solaire	109
2.1.2 Système $S_2O_8^{2-}$ / UV solaire et à l'obscurité	110
2.1.2.1 Décoloration du BM par le $S_2O_8^{2-}$ à l'obscurité	110
2.1.2.2 Décoloration du BM par le $S_2O_8^{2-}$ /UV solaire	111
Conclusion	112
Décoloration Photocatalytique du BM	
1. Adsorption du bleue de méthylène à l'obscurité	113
1.1 Equilibre d'adsorption	113
1.2Adsorption sur le ZnO SG et Cop	113

2.Photocatalyse directe du BM par irradiation solaire	114
2.1 Décoloration du BM par le système ZnO (SG et Cop)/UV solaire	114
2.1.1 Effet de la masse de catalyseur	114
2.1.2 Effet de la concentration du polluant	115
2.1.3 Influence des accepteurs d'e-	118
2.1.3.1 Influence du peroxyde d'hydrogène sur la photocatalyse	118
2.1.3.2 Influence du persulfate $S_2O_8^{2-}$ sur la photocatalyse du BM	120

Partie D : A la recherche de nouveaux catalyseurs MCo₂O₄ pour la photocatalyse du Bleue de Méthylène et du Rouge Congo.

Introduction	122
3.1. Equilibre d'adsorption	122
3.1.1 Adsorption sur les spinelles MCo ₂ O ₄	122
3.2. Disparition de la coloration du BM et du RC par le système MCo ₂ O ₄ / UV solaire	122
3.3 Influence de quelque paramétres sur la photocatalyse du BM par CCO et ZCO	124
3.3.1 Effet de la masse du catalyseur sur la vitesse de réaction	124
3.3.2 Influence de la concentration initiale en polluant	125
3.3.3 Influence des accepteurs d'électron	126
3.3.3.1. Influence du peroxyde d'hydrogène sur la décoloration du BM par	CCO et
ZCO	127
3.3.3.2 Influence des persulfates	128
3.4 Etude de la décoloration photocatlytique du rouge congo par CCO et ZCO	131
3.4.1 Influence de quelque paramètres sur la photocatalyse du RC par CCO et ZCO	131
3.4.1.1 Effet de la masse du catalyseur sur la vitesse de réaction	131
3.4.1.2 Effet de la concentration initiale	131
3.4.1.3Influence des accepteurs d'e	133
3.4.1.3.1 Influence du peroxyde d'hydrogène H_2O_2	133
3.4.1.3.2 Influence des persulfates	134
Conclusion Conclusion générale	137 138
Perspective	141

Liste des abréviations

- ERO : espèce réactif en oxygène
- DRX : diffraction des rayons X.
- MEB : microscope électronique à balayage.

FTIR :

- EDX : Spectroscopie X à dispersion d'énergie.
- CV : voltamètrie cyclique.
- EIS : spectroscopie des impédances électrochimique.
- $MCO: MnCo_2O_4.$
- $NCO: NiCo_2O_4$
- $ZCO: ZnCo_2O_4$
- $CCO: CuCo_2O_4$
- BM: bleue de méthyléne
- RC : rouge de congo
- SG : sol-gel
- Cop : coprécipitation.

Liste des Figures

Chapitre 1

Figure 1.1:Diagramme de Ragone des dispositifs de stockage d'énergie usuels
Figure 1.2 : Capacité spécifique des matériaux pour supercondensateur électrochimique9
Figure 1.3 : Schéma réactionnel de la photocatalyse hétérogène par rayonnement solaire21
Figure 1.4 : Schéma de la structure spinelle MgAl ₂ O ₄
Figure 1. 5 :Structure cristallographique de spinelle: normale, inverse et mixte
Figure1.6 :Oxyde de zinc (ZnO) : (a) sous forme naturelle et (b) sous forme artificielle
provenant d'une synthèse sol-gel
Figure 1.7 :Structure cristalline du ZnO (a) cubique de type rocksalt, (b) cubique de type zinc
blende et (c) hexagonale de type wurtzite

Chapitre 2

Figure 2.1 Principale étape d'une synthèse d'un matériau par voie Sol-gel	51
Figure 2.3 :Schéma de principe du diffractomètre aux rayons X	53
Figure 2.3 :Schéma de principe du microscope électronique à balayage	54
Figure 2.4:Image du potentiostat/galvanostat de Radiometer Analytical de type V	Voltalab
40PGZ301	57
Figure 2.5 : Voltamogramme d'un supercondensateur idéal (a), d'un condensateur e	et d'une
résistance montés en série (b) ou en parallèle (c) et d'un supercondensateur réel (d)	59
Figure 2.8 : Schémas des montages des testes photocatalytiques sous irradiations solair	re61

Chapitre 3

Figure 3.1: L'analyse thermogravémitrique ATD/ATG des spinelles MCo ₂ O ₄	71
Figure 3. 2: Spectre de DRX de MCo ₂ O ₄ (M=Ni, Mn, Cu, Zn) traité à 550°C	72
Figure 3.3: FTIR des composés MCo ₂ O ₄ traité à 550°C	73
Figure 3.4: MEB du composé MCo ₂ O ₄ : (a) NCO, (b) MCO, (c)CCO, (d) ZCO	75
Figure 3.5: EDS des composés MCo ₂ O ₄ : (a)ZCo, (b) MCO, (c)CCO, (d)NCO	76
Figure 3.6: Spectre de DRX de MCo ₂ O ₄ (M=Ni, Mn, Cu, Zn) traité à 550°C	77
Figure 3. 7: Spectre FTIR du ZnO SG et Cop traité à 550°C	78

Figure 3.8: Courbe de 20 cycles CV des matériaux MCo_2O_4 à $10mV.s^{-1}$. (a) NCO, (b)MCO,
(c) CCO, (d) ZCO
Figure 3.9: Courbe de CV à différentes vitesses de balayage, (a) NCO, (b) MCO, (c) CCO, (d)
ZCO
Figure 3.10: Effet de la vitesse de balayage sur la capacité spécifique sur les matériaux MCO
Figure 3.11: Variation de la capacité spécifique par rapport au nombre de cycle
Figure 3.12 Spectre d'impédances des matériaux MCo ₂ O ₄ avant et après durée de vie. (a)NCO, (b) MCO,(c)CCO, (d)ZCO90
Figure 3.13: Le circuit équivalent de MCO etZCO
Figure 3.14: Le circuit équivalent de CCO et NCO91
Figure 3.15:Modélisation des impédances avant durée de vie par logiciel
ZsimpWin3.5
Figure 3.16 Courbe de 20 cycles CV des matériaux MCo ₂ O ₄ à 10mV.s ⁻¹ . (a) NCO, (b) MCO,
(c) CCO, (d) ZCO
Figure 3.17: CV à différentes vitesses de balayage de MCo ₂ O ₄ , (a) NCO ; (b) MCO, (c) CCO,
(d) ZCO98
Figure 3.18 : Effet de la vitesse de balayage sur la capacité spécifique100
Figure 3.19 : Effet de la durée de vie sur la valeur de la capacité spécifique101
Figure 3.20:Impédance avant et après durée de vie (a)NCO, (b) MCO, (c)MCO, (d) ZCO. (e) circuit équivalent du matériau
Figure 3.19 :(a) courbe d'étalonnage de BM. (b) spectres d'absorption du BM a différents
pH107
Figure 3.20 :(a) courbe d'étalonnage de RC. (b) spectres d'absorption du RC a différents
pH107
Figure 3.23: Photolyse directe d'une solution de BM à différentes concentrations sous irradiations solaire
Figure 3.24:Cinétique de décoloration du BM par H_2O_2 à l'obscurité : [BM] = 30 mg.L ⁻¹ , pH
= 5,7109

Figure 3.25 : Cinétique de décoloration du BM par le système H_2O_2/UV solaire : [BM] = 30 Figure 3.26 : Cinétique de décoloration du BM par $S_2O_8^{2-}$ à l'obscurité : [BM] = 30 mg.L⁻¹, Figure 3.27 :Cinétique de décoloration du BM par le système $S_2O_8^{-2}$ /UV solaire :[BM] = 30 $mg.L^{-1}, pH = 5.1....112$ Figure 3.28 : Adsorption du BM par le ZnO SG et Cop à l'obscurité : [BM]=10mg.l⁻¹, m_{ZnO} =20mg.....115 Figure 3.29 : Effet de la masse de catalyseur ZnO SG et Cop sur la décoloration photocatalytique du BM......116 Figure 3.30 :(a) Effet de la concentration initiale du BM sur le processus de décoloration par le ZnO SG. (b) Cinétique de décoloration selon la réaction pseudoremier ordre......117 Figure 3.31 :(a) Effet de la concentration initiale du BM sur le processus de décoloration par le ZnO Cop. (b) Cinétique de décoloration selon la réaction pseudopremier ordre......117 Figure 3.32 : Cinétique de décoloration du [BM]=30mg.l⁻¹ à différentes concentrations de Figure 3.33 : Cinétique de décoloration du [BM]=30mg.l⁻¹ à différentes concentrations de Figure 3.34 :(a, b) le taux de décoloration du BM, et (c, d) le taux de décoloration du RC par Figure 3.35: Effet de la masse de catalyseur sur la décoloration du BM......126 Figure 3.36 : Effet de la concentration initiale du BM sur le processus de décoloration par le Figure 3.37 : Cinétique de décoloration selon la réaction pseudopremier ordre. (m_{oxvde}=20mg, Figure 3.38 : (a,c) Effet de la concentration du H₂O₂ sur le processus de décoloration par le CCO et le ZCO respectivement. (b,d) Cinétique de décoloration selon la réaction Figure 3.39 : (a,c) Effet de la concentration du $S_2O_8^{2-}$ sur le processus de décoloration par le CCO et le ZCO respectivement. (b,d) Cinétique de décoloration selon la réaction Figure 3.40 : Effet de la masse du catalyseur sur la décoloration du RC......132

Liste des Tableaux

Chapitre 1

Tableau 1.1: Quelques performances pour des différents systèmes de stockage d'énergie9
Tableau 1.2: Potentiels d'oxydation de quelques oxydants utilisés en milieu aqueux14
Tableau 1.3 : Génération du radical hydroxyle par des procédés photochimiques15
Tableau 1.4 : Energie de bande interdite et longueur bande de quelque semiconducteur19
Tableau 1.5:Statistiques d'ensoleillement par zone en Algérie
Chapitre 2
Tableau 2.1 : Caractéristique physico-chimique du bleu de méthyléne et du rouge congo62
Chapitre3
Tableau 3.1:Surface spécifique des oxydes MCO mesurée par la méthode de la BET
Le Tableau 3.2 : représente les différentes variables déterminées par modélisation sur le logiciel Z.sim des matériaux ZCO et MCO
Tableau 3.3: Représentation des différentes variables déterminées par modélisation sur le logiciel Z.sim des matériaux NCO et de CCO
Tableau 3.4 étude comparative entre les capacités spécifiques de travaux antérieurs et de notre travail
Tableau 3.5 : Paramètres cinétique de la décoloration du BM
Tableau 3.6:Paramètres cinétique de la décoloration du BM par H2O2
Tableau 3.7 : Paramètres cinétique de la décoloration du BM par $S_2O_8^{2^2}$
Tableau 3.8:Taux de décoloration du BM et du RC par photocatalyse des oxydesMCo2O4124
Tableau 3.9 : Paramètres cinétique de la décoloration du BM par photocatalyse avec l'ajout
des accepteurs des e ⁻
Tableau 3.10:Paramètres cinétique de la décoloration du RC par photocatalyse avec l'ajout
des accepteurs des e ⁻

Chapitre 1 Synthèse bibliographique

Partie A : Théorie sur les supercondensateurs

1. Généralités sur les supercondensateurs

1.1Stockage réversible de l'énergie électrique

Le principe de fonctionnement de stockage réversible de l'énergie électrique repose sur la possibilité pour un système d'emmagasiner l'énergieélectrique fournie par un générateur , puis de la restituer ultérieurement à un récepteur [1,2]. Il existe trois grands types de systèmes permettant de stocker réversiblement l'énergie électrique : les condensateurs diélectriques, les accumulateurs et les supercondensateurs. Ces systèmes reposent sur deux modes de stockage de charges à savoir les mécanismes faradiques et non faradiques (capacitifs) [3]. Dans ce qui suit nous allons présenter un état de l'art concernant les supercondensateurs.

1.2 Les supercondensateurs

Encore appelés condensateurs électrochimiques ou condensateurs à double couche électrochimique, ce sont des condensateurs électrochimiques présentant de grandes capacités (d'où le préfixe "super"). Ils sont composés de matériaux d'électrode à forte surface spécifique, ce qui leur permet d'accumuler de grandes quantités de charges de surface et d'offrir ainsi des capacités importantes (jusqu'à plusieurs milliers de fois celle d'un condensateur). L'énergie massique de ce type de système est donc largement supérieure à celle des condensateurs diélectriques, mais elle reste encore inférieure à celle des [4]. D'autre part, les phénomènes de transport ioniques présentant des accumulateurs cinétiques moins rapides (de l'ordre de la seconde) que l'accumulation de charges électroniques par rapport à un diélectrique, et les tensions de fonctionnement étant également plus faibles, ils proposent des puissances plus faibles que celles des condensateurs. Ainsi, les supercondensateurs présentent des caractéristiques intermédiaires entre un diélectrique et un accumulateur. Le Tableau I-1 présente les principales caractéristiques des trois systèmes. Donc d'après le tableau I-1 l'intérêt des supercondensateurs réside dans leur capacité à fournir une puissance 10 à 100 fois supérieure à celle des accumulateurs, et une énergie 10 à 100 fois plus élevée que celle des condensateurs diélectriques. La plage de température de fonctionnement de ce composant est de -40°C à 65°C, de 0 à 2,7V en tension ce qui leur procurent une énorme stabilité dans de sévères conditions.

1.2.1 Les différents types desupercondensateur

Il existe trois types de supercondensateurs : les supercondensateurspseudocapacitifs, les supercondensateursélectrostatiques (capacitifs) et les supercondensateurs hybrides.

1.2 .1.1 Lessupercondensateurs électrostatiques

Ce sont des supercondensateurs symétriques constitués de deux électrodes à base de carbones activés [4]. L'intérêt des carbones activés réside dans la bonne conduction électrique, mais surtout à la surfaces spécifiques particulièrement élevées (jusqu'à 2500 m²/g). Le fonctionnement des supercondensateurs électrostatiques qui est très proche de celui des condensateurs diélectriques, repose sur l'adsorption d'ions à l'interface matière active/électrolyte par le biais de la formation d'une double couche électrochimique (processus capacitifs) [5]. Nous parlons ici d'un supercondensateur à double couche électrochimique ou EDLC en anglais (Electrochemical Double Layer Capacitors). Leur capacité (capacité de double couche) dépend donc de la quantité d'ions adsorbés à la surface de l'électrode. Par conséquent, la structure du matériau d'électrode, en particulier son état de surface, sa surface spécifique sans oublier la distribution des taille de pore auront un grand impact sur ses performances en termes de capacité[4,6].

1.2.1.2Lessupercondensateurs hybrides

Ce type de supercondensateur essaye de tirer profit de chaque mode de stockage d'énergies à savoir : le mode faradique (pseudocapacitive) et le mode non faradique (capacitifs). Donc ces supercondensateurs sont composés de deux électrodes dissymétriques : une électrode est de type capacitif et l'autre de type pseudocapacitif[7]. L'électrode pseudocapacitive permet d'obtenir une grande densité d'énergie, l'électrode capacitive permet d'obtenir une grande densité d'énergie, l'électrode densité de publice de set de set

1.2.1.3Les supercondensateurspseudocapacitifs

Ces supercondensateurs mettent en jeu des réactions faradiques de surface. La capacité est due à la création des réactions redox réversibles ayant lieu à la surface du matériau lorsqu'une tension est appliquée. Les matériaux utilisés doivent avoir certaine caractéristique à savoir l'insolubilité dans l'électrolyte utilisé, possédant une grande conductivité électronique et une surface spécifique élevée[8]. Ils doivent également avoir la possibilité de réactions redox rapides mettant en jeu un nombre maximal de degrés d'oxydation dans une fenêtre de potentiels compatible avec la stabilité électrochimique de l'électrolyte utilisé. Il existeainsi deux types principaux de supercondensateurspseudocapacitifsa savoir :

1.2.1.3.1 Les supercondensateurs à base de polyméres conducteurs électroniques

En 1977, Heeger, MacDiaid et Shirakawa montrèrent qu'un polymère possédant alternativement des liaisons simple et multiple pouvait être dopé pour le rendre électroniquement conducteur [9]. Un polymère conducteur électronique peut recevoir unexcès d'électrons par réduction ou donner des électrons par oxydation. Ce phénomène est réversible, et cette caractéristique très intéressante aide les polymères conducteurs électroniques à stocker des charges et les restituer, c'est pourquoi ils sont utilisés comme des matériaux pour les supercondensateurs[10].Le stockage des charges dans un supercondensateur à base de polymères conducteurs est dû à des cycles de dopage/dédopage au sein du polymère. L'équilibrage des charges est obtenu par les contre-ions présents dans l'électrolyte.

Les polymères conducteurs électroniques sont des matériaux prometteurs pour l'application supercondensateur, puisque IIs possèdent de grandes densités de puissance et d'énergie. De plus ces polymères conducteurs sont peu chers et sont faciles à synthétiser[9,10]. Cependant, leur instabilité durant le cyclage limite aujourd'hui grandement leur utilisation.

1.2.1.3.2Les supercondensateurs à base d'oxydes

Dans ce type de système la capacité est aussi due à des réactions redox à la surface et dans le volume du matériau d'électrode. Elle est dépendante de la quantité de charges transférées, elle-même dépendante de la tension appliquée. La capacité est donnée par l'équation suivante :

$$C = \frac{dQ}{dV} \tag{1-1}$$

avec :

- C la capacité (F)
- Q la charge (C)
- V la tension de cellule (V)

Les oxydes préparés par les méthodes conventionnelles peuvent atteindre des surfaces spécifiques assez importantes et certains peuvent être conducteurs, n'oublions pas qu'ils peuvent aussi posséder un grand nombre d'états d'oxydation[9,11]. Donc cesoxydes métalliques sont de bons matériaux pour développer les supercondensateurs[12]. Lenombre d'états d'oxydation détermine la charge possible c'est-à-dire plus le nombre d'états d'oxydation est élevé plus le nombre de réactions redox possibles est élevé et donc plus la possibilité de stockage de charges électriques est élevée[13].

L'oxyde de ruthénium estle matériau de choix pour cette application[14]. Parce qu'il possède en effet, neuf états d'oxydation possibles (0 à +VIIII). Les réactions redox sont données dans l'équation (1-2) :

 $RuO_{z}(OH)_{y+\sigma}H^{+}+\sigma e - \longrightarrow RuO_{z-\sigma}(OH)_{y+\sigma}$ (1-2)

Wang et al [14] trouvent une capacité d'environ 770 F.g⁻¹ pour un supercondensateur à base d'oxyde de ruthénium. Li et al [15] ont eux obtenu des capacités d'environ 474 F.g⁻¹ avec des composites carbone mésoporeux/oxydes de ruthénium. Malgré les grandes capacités obtenues avec l'oxyde de ruthénium, le coût élevé et la toxicité de ce matériau limitent son utilisation uniquementà des applications très spécifiques. Le développement de supercondensateurspseudocapacitifs pour un usage courant doit passer d'abord par le développement et la recherche d'oxydes métalliques àfaible coût et impact environnemental. De nombreuses recherches sont donc effectuées dans ce sens sur des oxydes métalliques moins chers et moins toxiques, tels que les oxydes : de nickel [13,16] de cobalt [17], ou de cuivre[18,19], sachant que l'oxyde de manganèse reste un des oxydes le plus largement étudié [11,12].Cependant dans la partie prochaine, nous allons nous attarder sur la recherche et le développement des oxydes spinelle cobaltite types MCo₂O₄.

1.3 Application des supercondensateurs

Les supercondensateurs ont été utiliséd'abord pour la sauvegarde de mémoire pour les ordinateurs[2-3]. Leur succès actuel repose sur leur capacité de charge/décharge rapide avec des courants très élevés. Ce composant peut aussi être utilisé pour absorber les pics de puissance et permettre le stockage optimal de l'énergie dans les dispositifs d'énergies renouvelables tels que les éoliennes et les panneaux photovoltaïques. Dans les applications de traction routière ou ferroviaire, ils constituent une vrai solution de stockage d'énergie intéressante pour satisfaire des applications concernant les différents modes de fonctionnement d'un véhicule, que se soit le démarrage, l'accélération ou bien le freinage. Ainsi lors du freinage, une partie de l'énergie, habituellement dissipée en chaleur, peut être récupérée et stockée dans des supercondensateurs pouvant la restituer plus tard. nous pouvons citer l'exemple aussi de leur association avec des alterno-démarreurs où le supercondensateur fournit l'énergie nécessaire au démarrage pour le concept du « Stop and Start » et où il peut récupérer l'énergie de freinage du véhicule[1].

La **Figure 1.1** qui présente le diagramme de Ragone permet de comparer la densité de puissance en fonction de la densité d'énergie des différents systèmes de stockage d'énergies.

Figure 1.1 : Diagramme de Ragone des dispositifs de stockage d'énergie usuels[20].

Les piles et les batteries (accumulateurs) possèdent une grande densité d'énergie mais une faible densité de puissance. Les processus faradiques, à l'origine de l'énergie stockée dans ces systèmes, sont en effet, des processus de volume mais leur cinétique est limitée par le transport de charge. A l'autre extrémité du diagramme de Ragone, nous trouvons les condensateurs diélectriques. Ceux-ci possèdent de grandes densités de puissance mais de très faibles densitésd'énergie a cause du processus non faradiques ou les charges s'accumulent à la surface des électrodes, et les phénomènes engendrés sont surfacique et trés rapides.Les supercondensateurs se situe, aussi bien en termes d'énergie que de puissance, entre ces deux types de systèmes de stockage de l'énergie. Ce sont, donc, des systèmes destinés à des applications de puissance qui nécessitent une densité d'énergie élevée.

Le **Tableau 1.1** donne une comparaison des principales caractéristiques des supercondensateurs, des condensateurs et des batteries.

Caractéristique	Condensateur	Supercondesateur	Accumulateur
STOCKAGE de	Capacitif	Capacitif	Faradique
CHARGE	(adsorption de charge)	(adsorption des ions)	
Energie specifique	≤0.1	1-10	30-250
(Wh/Kg)			
Puissance(W/Kg)	≥10000	1000-20000	≤10000
Temps de	1µs-1ms	1-30s	0.2-10h
charge/décharge			
cyclabilité	x	10^{5} - 10^{6}	3000-10000
Rendement énergetique	100%	85-98%	60-95%
Energie specifique	≤0.1	1-10	30-250
(Wh/Kg)			

Tableau 1.1 Quelques performances pour des différents systèmes de stockage d'énergie[2,20].

Figure 1.2:Capacité spécifique des matériaux pour un supercondensateur électrochimique[18].

Les phénomènes mis en jeu lors du cyclage d'un supercondensateur n'impliquent théoriquement aucune modification de structure ou de composition des matériaux et sont entièrement réversibles. Les supercondensateurs possèdent donc une durée de vie théoriquement illimitée ; elle est cependant limitée par la dégradation de l'électrolyte, des fonctions de surface présentes sur le matériau lui-même ou encore par la corrosion des collecteurs de courant lors du cyclage. Cependant, ils peuvent effectuer aisément 1 000 000 cycles [21]. Pour les mêmes raisons, un supercondensateur se charge en quelques secondes alors qu'une batterie nécessite un minimum de quelques minutes. De plus, le phénomène étant réversible, le rendement énergétique des supercondensateurs est de l'ordre de 95 % alors qu'il est inférieur à 80 % pour les batteries. Tout ceci et autre présente des avantages par rapport aux batteries où ont lieu des réactions faradiques qui limitent la durée de vie.

Partie B : Théorie sur les procédés de dépollution

Introduction

Dans cette partie nous mettrons l'accent sur la réactionphocatalytique, mais avons cela, nous allons voir en bref les principaux procédés de dépollution classique et procédés d'oxydation avancée des eaux usées pour aller ensuite enrichirla partie photocatalyse. Puisque la majorité des catalyseurs élaborés ont un effet dans le domaine UV, un réel travail d'investigation et de recherche bibliographique sur la découverte et la recherche de nouveau catalyseur ayant un pouvoir catalytique dans le domaine du visible solaire sera fait.

2.1Procédés de traitement des colorants

Des quantités plus ou moins importantes de colorants sont rejetées dans l'environnement. Surtoutles colorants azoïques qui représentent la plus grande classe des colorants utilisés (60 – 70%) et leur majorité est constituée par des colorants acides, réactifs et directs, ils peuvent être considérés parmi les colorants les plus polluants (les plus déversés dans les eaux résiduaires de textile)[23]. Ainsi, des systèmes technologiques pour l'élimination des polluants organiques (colorants) sont actuellement bien maîtrisés à l'échelle du laboratoire et appliqués à grande échelle, incluant les traitements physiques, chimiques et biologiques (traitement aérobie et anaérobie). Les techniques de dépollution des eaux usées chargées des colorants les plus importants sont :

2.1.1 Méthodes physiques

Le charbon actif est le meilleur candidat pour le piégeage de nombreux composés en raison desa grande surface spécifique (de 750 à 1500 m²/g) [24]. Il est largement utilisé dans le traitement de l'air et dans la dépollution de l'eau, en particulier, pour traiter les polluants organiques et inorganiques [25]. Des études ont aussi montré qu'il est possible de piégerdes ions métalliques tels que le cuivre, le zinc, le cadmium ou le chrome [24,26]. Ce traitement présente deux principales limites : (i) d'une part, les polluants ne sont pas dégradés mais concentrés sur le charbon actif qui doit être traité ultérieurement pour être régénéré, et

(ii) d'autre part, le coût du charbon actif est relativement élevé.

Les techniques membranaires permettent la séparation de particules, de molécules ou d'ions entre deux phases. La membrane est constituée d'une couche mince (de dix à quelques centaines de microns) d'une matière permettant l'arrêt ou le passage sélectif de substances sous l'action d'une force motrice de transfert. Cette force peut provenir de la convection ou de

la diffusion des molécules induites par un gradient de champ électrique, de concentration, depression ou encore de température [26].

La coagulation et la filtration servent principalementà éliminer les matières en suspension. Les matières colloïdales sont coagulées par un apport de sels minéraux de fer ou d'aluminium puis éliminées sous formes de flocs. Le choix et laperformance des coagulants ont fait l'objet d'un grand nombre de travaux de recherche destinés à améliorer le rendement d'élimination des composés organiques [27,28]. Ensuite, la précipitation des espèces chimiques en solution se fait par l'ajout d'un agent chimique qui les rend insolubles, puis elles sont récupérées par filtration.

2.1.2 Méthodes chimiques

Les techniques d'oxydation chimiques sont généralement appliquées quand les procédés biologiques sont inefficaces. Elles peuvent être ainsi utilisées en étape de prétraitement pour les procédés biologiques. L'oxydation chimique est souvent appliquéepour le traitement des eaux usées contenant des polluants non biodégradables et /outoxiques et de fortes concentrations que les autres procédés ne peuvent pas traiter outransformer en produits biodégradables et/ou non toxiques. Ainsi, l'oxydation chimique se révèle un procédé efficace de traitement des eaux usées. On distingue:

- les procédés classiques d'oxydation chimique.

- les procédés d'oxydation avancée (cette partie sera traitée en détail dans ce qui suit).

Les procédés classiques d'oxydation chimique sont basés sur l'ajout d'un agent oxydantdans la solution à traiter. Les principaux agents oxydants sont:

- Cl₂: représente un oxydant moyennement fort et est utilisé pour le traitement des eauxusées. En revanche, il présente l'inconvénient de produire des sous produits halogénés cancérigènes pour l'homme;
- O₂: il est considéré comme un oxydant modéré, le coût tolérable de ce procédé le rendfréquemment choisi;
- H₂O₂: il est considéré parmi les oxydants les plus appropriés et les plus recommandéspour une grande variété de procédé, utilisé avec ou sans catalyseur.

2.1.3. Méthodes biologiques

Les procédés d'épuration par voie biologique sont basés sur la biotransformation microbienne des colorants. En outre, la majorité des colorants sont très stables et non biodégradables. Néanmoins, beaucoup de recherches ont démontré la biodégradation partielle ou complète des colorants par voie biologique [29,30]. Si ces techniques sontadaptées à un grand nombre de polluants organiques, elles ne sont pas toujours applicablessur les effluents

industriels en raison des fortes concentrations de polluants, de leur toxicitéqui entraînerait la mort des microorganismes ou de leur très faible biodégradabilité. Deplus, ces techniques génèrent des quantités importantes de boues biologiques à retraiter. Selon Loehr [31], la biodégradation est favorable pour les eaux usées présentant un rapportDCO/DBO5 > 0,5, par contre elle est très limitée lorsque ce rapport dépasse 0,2. Le rapportDBO5/DCO, appelé degré de dégradation biochimique, sert de mesure pour la dégradation biochimique des polluants dans les eaux usées.

Les eaux usées biorécalcitrantes nécessitent alors d'autres techniques d'épuration. Parmi les choix basés sur l'oxydation des polluants, plusieurs possibilités s'offrent pour ce genre de situation, telles que l'incinération, l'oxydation par voie humide, ainsi que les procédés d'oxydation avancée (POA) [32]. Au regard des deux premières, les POA ont beaucoup d'avantage (nous le détaillerons plus tard) mais l'inconvénient majeur et le cout relativement élevé, il est alors recommandé de coupler ces procédés avec des procédés biologiques, cela afin de réduire les coûts de traitement.

2.1.4. Procédés d'oxydation avancée (POA)

Les procédés d'oxydation avancée sont des techniques de traitement des effluents liquides et gazeux, La souplesse d'utilisation des POA est liée à la possibilité de produire OH^{\bullet} par différentes techniques, ces méthodes reposent sur la formation des entités chimiques très réactives qui peuvent décomposer les molécules les plus récalcitrantes en molécules biodégradable ou en composés minéraux comme H₂O ou CO₂.Ces procédés reposent sur la formation in situ des radicaux hydroxyles qui ont un pouvoir oxydant supérieur à celui des oxydants traditionnels tel que Cl₂, ClO₂ ou O₃ (**Tableau 1.2**). Les radicaux OH[•]sont capables de minéraliser partiellement ou totalement la plupart des composés organiques grâce à leur potentiel redox standard élevé de 2,8 eV, mais puisque ces radicaux sont des espèces très réactives et instables, elles doivent être régénérer d'une façon continue au moyen de plusieurs réactions : chimiques, photochimiques ou bien électrochimiques.

Oxydant	Potentiel d'oxydation (V/ESH)
OH.	2.8
O 3	2.07
H_2O_2	1.77
HO ₂	1.7
MnO ₄ -	1.67
ClO ₂	1.5
Cl ₂	1.36
02	1.23

Tableau 1.2 : Potentiels d'oxydation de quelques oxydants utilisés en milieu aqueux [33].

Les radicaux hydroxyles sont susceptibles d'être appliqués à la dépollution des eaux car ils répondent aux critères suivants[34,35] :

- > Ils n'induisent pas de pollution secondaire.
- Ils ne sont pas toxiques.
- Ils ne sont pas corrosifs pour les équipements,
- > Ils sont relativement simples à manipuler.

Les POA peuvent être regroupés en cinq grandes catégories :

- Les procédés d'oxydation homogène : la formation des radicaux OH[•]se fait par une réaction chimique ; Fenton, Ozone à pH élevé ou O₃/H₂O₂.
- La photolyse homogène UV et la photocatalyse : ces procédés reposent sur la photolyse UV des H₂O₂ et/ou O₃ pour générer les radicaux OH[•]ou bien repose sur l'excitation d'un semi-conducteur jouant le rôle de catalyseur tel que TiO₂, ZnO dans le cas de la photocatalyse c'est des deux procédés seront décrit de manière approfondie dans les paragraphes qui suivent.... .
- La radiolyse : Les espèces OH[•],H[•] sont produites par irradiation de forte énergie (rayon-γ) des solutions à traiter.

- Les procédés électrochimiques d'oxydation : produisent les oxydants directement dans le milieu par électrochimie, soit directement (oxydation anodique), soit indirectement via le réactif de Fenton.
- Les procédés électriques et sonochimiques : sont des procédés basés sur une alimentation électrique en forte différence de potentielle, les radicaux sont formés à partir d'une décharge électrique (plasma) ou une irradiation ultrasonique.

2.1.4.1Procédés photochimiques d'oxydation avancés

Les procédés photochimiques d'oxydation avancés permettent la génération des radicaux hydroxyls par une photolyse directe de l'eau (H_2O), ou d'un additif (H_2O_2 , O_3) ou bien par l'excitation d'un semi-conducteur. Les méthodes les plus utilisées pour la génération du radical hydroxyl dans les procédés photochimiques sont présentées dans le **Tableau 1.3**.

Procédés photochimiques	Réactions	Longueur d'onde (nm)
UV/H ₂ O ₂	$H_2O_2 + hv \longrightarrow 2 OH^*$	λ < 300 nm
UV/O ₃	$O_{3}+H_{2}O + hv2 \longrightarrow OH \bullet + O_{2}$ $O_{3}+OH \bullet HOO \bullet + O_{2}$	$\lambda < 310 \text{ nm}$
UV/H ₂ O ₂ /O ₃	$O_3 + H_2O_2 + hv \longrightarrow O_2 + OH \bullet + HOO \bullet$	$\lambda < 310 \text{ nm}$
H_2O_2/Fe^{+2}	$H_2O_2 + Fe^{2+} \longrightarrow Fe^{3+} + OH^{-} + OH^{-}$	λ < 580 nm
UV/H ₂ O ₂ /O ₃ (Photofenton)	$Fe^{3+} + H_2O + hv \longrightarrow Fe^{2+} + H^+ + OH^*$	
UV/TiO ₂	$TiO_2 + hv \longrightarrow TiO_2 (e^- + h^+)$	λ < 390 nm
	$TiO_2(h+) + OH^-ad \longrightarrow TiO_2 + OH^-ad$	

Tableau 1.3 : Génération du radical hydroxyle par des procédés photochimiques [36].

2.1.4.1.1 Photolyse de l'eau (UV/H₂O) et des substances chimiques

Lorsque l'eau à l'état liquide est soumise à un rayonnement UV de longueur d'onde inférieure à 185 nm, le phénomène le plus probable découlant de son absorption est la rupture homolytique de deux liaisons O-H et la génération du radical hydroxyl :

$$H_2O + hv \longrightarrow H' + OH \bullet$$
(1-3)

En raison de l'absorption de l'air, il est nécessaire de faire le vide dans les appareils travaillant à ces faibles longueurs d'ondes appelées généralement Ultraviolet du vide (Vaccum Ultraviolet (VUV) en anglais). En absence d'autres réactifs, les radicaux primaires peuvent former du peroxyde d'hydrogène Eq. 1-4, et les radicaux hydrogène peuvent réagir avec le dioxygéne pour former le radical hydroperoxide [Eq. 1-4-1-6].

$$OH' + OH' \longrightarrow H_2O_2$$
 (1-4)

$$H' + O_2 \longrightarrow HOO'$$
 (1-5)

$$HOO \bullet \longrightarrow O_2^{\bullet} + H^+$$
 (1-6)

Durant la photochimie, les photons sont également absorbés par des substrats, ce qui entraîne la rupture des liaisons chimiques entre les différents atomes constitutifs de ces molécules. Comme chaque substance à une longueur d'onde optimale de captation, le spectre UV-Visible, se prête donc à une large gamme de substances chimiques [37,38].

2.1.4.1.2 Photolyse du peroxyde d'hydrogène (UV/H₂O₂)

Le procédé UV/H₂O₂ se base sur l'absorption des photons par le peroxyde d'hydrogène provoquant son excitation électronique et la rupture de la liaison O-O formant deux radicaux hydroxyls [Eq. 1-6] qui participent également, par des réactions secondaires, à la décomposition du peroxyde d'hydrogène selon les équations [Eq. 1-7 – 1-13] [39] :

$$H_2O_2 + hv \longrightarrow 2 OH'$$
 (1-7)

$$OH' + H_2O_2 \longrightarrow H_2O + HOO'$$
(1-8)

$$HOO' + H_2O_2 \longrightarrow OH \bullet + H_2O + O_2$$
(1-9)

$$OH' + HO_2^- \longrightarrow HOO' + OH^-$$
 (1-10)

2HOO'
$$\longrightarrow$$
 H₂O₂ +O₂ (1-11)

$$HOO' + OH' \longrightarrow H_2O + O_2$$
(1-12)

$$2OH \bullet \longrightarrow H_2O_2 \tag{1-13}$$

Pour être efficace, ce procédé nécessite des longueurs d'ondes inférieures à 300 nm. Ainsi, les eaux turbides contenant des composés organiques peuvent absorber les rayonnements UV, d'où la nécessité d'augmenter la dose d'UV, ce qui augmente le coût du processus. Ce

procédé est souvent utilisé pour la décontamination des eaux souterraines et pour l'élimination des polluants tels que trichloréthylène (TCE), tétrachloréthylène, et du benzène [40]. Ce procédé est utilisé aussi pour supprimer des esters phosphoriques de l'eau potable[41].

2.1.4.1.3 Photolyse de l'ozone (UV/O₃)

Des études ont montré que le traitement par l'ozone (O_3) peut également être augmenté au moyen du rayonnement ultraviolet pour produire d'avantage de radicaux hydroxyles [Eq. 1-14-18]. L'ozone présente un maximum d'absorption des radiations UV à 254 nm ce qui conduit à la production de puissants oxydants pour éliminer les polluants organiques et bactériens.

$$O_3 + H_2O + h\lambda \longrightarrow 2 OH \bullet + O_2$$
(1-14)

$$O_3 + OH^{\bullet} \longrightarrow OH^{\bullet} + O_2$$

$$(1-15)$$

$$O_3 + HOO^{\bullet} \longrightarrow OH^{\bullet} + 2O_2$$

$$(1-16)$$

$$OH + HOO' - H_2O + O_2$$
 (1-17)

$$OH \bullet + OH \bullet \longrightarrow H_2O_2$$
 (1-18)

Le procédé UV/O3 est plus efficace que le procédé UV/H2O2 pour la génération des radicaux hydroxyles pour des concentrations égales en oxydants et en utilisant des lampes UV à basse pression. Ce couplage (UV/O₃) a été étudié pour le traitement d'effluents contenant divers types de polluants organiques tels que les pesticides [42], les herbicides [43] et les colorants [44].

2.1.4.1.4 Procédé UV/H₂O₂/O₃

L'addition du H₂O₂ au procédé UV/O₃ accélère la décomposition de l'ozone résultant en une augmentation de radicaux hydroxyles. Ce procédé UV/H₂O₂/O₃ permet une réduction considérable du carbone et une minéralisation rapide des polluants. C'est le procédé le plus efficace pour les effluents fortement pollués[42,44]. Ce procédé est la combinaison des deux systèmes UV/H₂O₂ et UV/O₃. L'équation globale de ce procédé UV/H₂O₂/O₃ est alors obtenu [Eq. 1-19]:

$$2O_3 + H_2O_2 + h\lambda \longrightarrow 2OH \bullet + 3O_2$$
(1-19)

2.1.4.1.5 Procédé de photo-Fenton (UV/Fe²⁺/H₂O₂)

Le procédé photo-Fenton est en fait le couplage du procédé Fenton à une source d'irradiation naturelle ou artificielle. En effet, la réaction de Fenton [Eq. 1-20], utilise le fer comme catalyseur pour produire des radicaux hydroxyles en présence du peroxyde d'hydrogène. Le procédé photo-Fenton utilise en plus des rayonnements UV-Vis (v< 580 nm) pour augmenter le taux de radicaux libres en stimulant la réduction du Fe³⁺ en Fe²⁺ [Eq. 1-20].

$$Fe^{2+} + H_2O_2 \longrightarrow Fe^{3+} + OH^{-} + OH^{-}$$
(1-20)

$$Fe^{3+}+H_2O+hv \longrightarrow Fe^{2+}+OH' + H^+$$
 (1-21)

En fait, la réaction limitant l'action catalytique du fer dans le procédé de Fenton (sans irradiation) est la réaction de réduction de Fe^{3+} . Ainsi, l'irradiation permet la régénération des ions ferreux (Fe^{2+}) par photoréduction des ions ferriques (Fe^{3+}) sans consommer de peroxyde d'hydrogène, tout en formant un radical hydroxyl [45].

Le procédé de photo-Fenton a été d'abord étudié par les chercheurs dans l'atmosphère pour clarifier les mécanismes naturels de la production du radical hydroxyl OH[•] [46-47]. Ce n'est qu'au début des années 1990, qu'il a été introduit comme technologie de traitement des eaux usées, où il a été appliqué avec succès pour traiter une large variété de contaminants[48-49-50-51].

L'inconvénient majeur du procédé photo-Fenton est la nécessité de travailler à faibles valeurs de pH. Un pH de 2,8 a été fréquemment trouvé comme valeur optimale [45]. En effet, à ce pH la précipitation n'a pas encore eu lieu et l'espèce dominante de fer en solution est $[Fe (OH)]^{2+}$. Audelà des valeurs de pH comprises entre 3,0 et 5,0 le fer $(Fe^{2+} et Fe^{3+})$ est susceptible de précipiter et former des hydroxydes defer, induisant ainsi une faible activité catalytique.

2.1.4.1.6 La photocatalyse hétérogène

La photocatalyse hétérogène consiste à irradier naturellement ou artificiellement un matériau semi-conducteur intrinsèque ou extrinsèque par exemple TiO_2 , ZnO, appelé aussi catalyseur,Conduisant ainsi à l'accélération de la photoréaction entre les paires électron/trou et les produits organiques adsorbés à la surface du semi-conducteur.Le processus de la photocatalyse hétérogène peut se décomposer en 5 étapes indépendantes comme tout procédé de catalyse hétérogène [52] :

1 - Transfert du ou des réactifs de la phase fluide vers la surface du catalyseur

- 2 Adsorption d'au moins d'un réactif
- 3 Réactions en phase adsorbée
- 4.- Désorption des produits intermédiaires et/ou finals
- 5 Transfert de ces produits de la région de surface dans la phase fluide.

Plusieurs semi-conducteurs ont été testés dans la photocatalyse comme TiO₂, ZnO, GaP,Fe₂O₃ et CdS . Les semi-conducteurs CdS et GaP ont l'avantage d'absorber par rapport au TiO₂ une fraction plus importante du spectre solaire, mais malheureusement ces semi-conducteurs sont instables durant l'oxydation photocatalytique. TiO₂, au contraire, est stable et constitue un bon compromis entre efficacité et stabilité. C'est le semi-conducteur le plus utilisé en photocatalyse hétérogène en raison de son faible coût et sa grande efficacité à minéraliser des polluants organiques. Plusieurs auteurs ont trouvé une efficacité photocatalytique plus importante en présence de TiO₂sachant que les travaux plus ressent tentent de remplacer ce matériau par d'autres oxydes beaucoup moins couteux et plus abondant sur la croute terrestre [39,43].

Le **Tableau 1.4** présente quelques semi-conducteurs ainsi que leur bande d'énergie interdite et la longueur d'onde maximale requise pour leur activation photocatalytique.

Semi conducteur	Energie de bande interdite (eV)	Longueur d'onde (nm)
TiO ₂	3.2	390
CdO	2.1	590
Fe ₂ O ₃	2.2	565
ZnO	3.2	390
SnO2	3.9	318
SrTiO ₃	3.4	365
BaTiO ₃	3.3	375
GaP	2.3	540

 Tableau 1.4 : Energie de bande interdite et longueur bande de quelque semiconducteur.

i- Principe de la photocatalysehétérogéne

L'absorption d'un photon par un semi-conducteur (par exemple l'oxyde de zinc ZnO ou autre oxyde), après irradiation avec une source lumineuse dont l'énergie des photons est supérieure

ou égale à la différence d'énergie entre les bandes de valence et de conduction du semiconducteur, induit le passage d'un électron de la bande de valence à la bande de conduction (noté e BC), laissant un trou dans la bande de valence (noté h^+VB)**Figure1.3**.

Excitation (réaction 1-22)

$$ZnO + hv(>3.3 \text{ eV}) \longrightarrow ZnO (h^+_{BV} + e^-_{BC})$$
(1-22)

Ces paires (électron/trou) peuvent se recombiner en quelques nanosecondes [52-53] en libérant de la chaleur (réaction 1-23).

Recombinaison (réaction 1-22)

 h^+ (bande de valence) + e^- (bande de conduction) + \longrightarrow chaleur (1-23)

Ou réagir séparément avec des espaces adsorbés à la surface du semi-conducteur. En présence d'eau, les trous (\mathbf{h}^+) peuvent réagir avec des donneurs d'électrons tels que H₂O, les anions OH⁻ et les produits organiques R adsorbés à la surface du semi-conducteur pour produire des espèces oxydantes comme les radicaux hydroxyles OH[•] (potentiel d'oxydation2,8V) et R• selon les réactions suivantes [30-32]:

$$H_2O_{ads} + h^+ \longrightarrow H^+ + OH_{ads}$$
(1-24)

$$OH_{ads} + h^+ \longrightarrow OH_{ads}$$
 (1-25)

$$\mathbf{R}_{ads} + \mathbf{h}^{+} \qquad \longrightarrow \mathbf{R}^{+}_{ads} \qquad (1-26)$$

Les (e-) réagissent avec des accepteurs d'e- tels que le O_2 pour former des radicaux superoxydes O2 · et par la suite H_2O_2 .

$O_2 + e^- \longrightarrow O_2^+$	(1-27)
$O_2 - + e + 2H^+ \longrightarrow H_2O_2$	(1-28)
$O_2 - + H^+ \longrightarrow HOO$	(1-29)

Figure 1.3 : Schéma réactionnel de la photocatalyse hétérogène par rayonnement solaire.

Les entités formées peuvent ensuite se recombiner, être piégées, ou réagir à la surface du catalyseur, soit avec un accepteur d'électrons, soit avec un donneur d'électrons. Ainsi, des radicaux hydroxyles sont formés à la surface du catalyseur par oxydation des molécules d'eau adsorbées. Les radicauxsuperoxydes et perhydroxyles sont également formés par les réactions entre les électrons et l'oxygène adsorbé. Les principales réactions mises en jeu sont les suivantes [53]:

Puisque les trous de la bande de valence jouent le rôle d'un oxydant puissant, les électrons de la bande de conduction se comportent automatiquement comme des réducteurs [54] et participent à la formation des radicaux dans le milieu. Les trous peuvent réagir avec des ions hydroxydes ou des molécules d'eau pour former les radicaux hydroxyles, par contre les électrons de la bande de conduction sont captés par des molécules d'oxygène pour générer des radicaux O_2^{\bullet} ou du peroxyde d'hydrogène en présence de protons. Les espèces radicalaires ainsi formées jouent un rôle essentiel dans l'oxydation des substrats en solution [55]. Les espèces oxydantes les plus réactives sont h⁺ BV et OH⁻. L'oxygène singulet l'O₂ est une autre forme d'EROs (espéce réactif oxygénée) correspond à l'état excité de l'oxygène, il peut être formé durant le processus de photo-oxydation. Sa demi-vie dans l'état excité est longue $(10^{-6}-10^{-5} \text{ secondes})$ comparée aux autres EROs. 1'O₂ est généré encore par la réaction de l'anion superoxyde (O₂⁻) avec le peroxyde d'hydrogène (H₂O₂) viala réaction d'Haber-Weiss [56] :

 $H_2O_2 + O_2^- \longrightarrow OH^- + OH^- + {}^1O_2$ (1-30)

ii-Paramètres influençant la réaction photocatalytique

➤ La masse du photocatalyseur

La photocatalyse est vraiment un processus de catalyse hétérogène, car la vitesse initiale de la réaction photochimique est trouvée directement proportionnelle à la masse du catalyseur. Mais au delà d'une certaine quantité la réaction devient constante est indépendante de la masse du catalyseur. Cette quantité est conditionnée par la forme des particules du catalyseur ainsi que les conditions opératoires de la phtocatalyse. Autrement dit la masse optimale du catalyseur devrait être choisie de façon :i\ à éviter l'excès du catalyseur : ii\ assurer une bonne absorption totale des photons sinon nous allons avoir un effet d'écrantage des particules entre elles[38].

La concentration du polluant

Dans les réactions photocatalytiques, le rendement de dégradation généralement diminue avec l'augmentation de la concentration initiale du polluant. Une forte concentration initiale du polluant signifie une concentration plus élevée du polluant adsorbé à la surface, cela va diminuer considérablement le rendement de la dégradation, ainsi la pénétration des photons à la surface.

Généralement, la cinétique de dégradation d'un composé suit le modèle de Langmuir Hinshelwood confirmant le caractère hétérogène du système photocatalytique [57]. Ce modèle permet d'évaluer la vitesse de dégradation d'un polluant organique à différentes concentrations. Ce modèle a été développé à l'origine pour décrire des réactions hétérogènes en phase gazeuse. Il a été employé par la suite pour la première fois par Ollis [58] pour décrire des réactions liquide-solide.

Les hypothéses pour laquelle ce modèle est fondé sont les suivantes :

- Á l'équilibre, le nombre de sites d'adsorption est fixe.

-Une seule molécule de substrat est adsorbée par site d'adsorption (adsorption en monocouche).

- L'énergie d'adsorption est identique pour tous les sites d'adsorption et indépendante du taux de recouvrement de la surface.

- L'adsorption est rapide par rapport aux réactions secondaires du substrat en solution.

- Seules les molécules adsorbées à la surface du catalyseur réagissent.

Si ces hypothèses sont vérifiées, la vitesse de dégradation photocatalytiqueest proportionnelle au taux de recouvrement Θ de la surface du catalyseur par le polluant, c'est à dire à la quantité de substrat adsorbé à la surface de catalyseur [62].

$$V = \frac{dc}{dt} = k\Theta = k\frac{Qe}{Qmax}$$
(1-31)

La quantité de substrat adsorbé à l'équilibre Qe dépend de la concentration en solution à l'équilibre Ce :

$$Qe = \frac{Q_{max}Ce}{1+KCe}.$$
(1-32)

Le taux de recouvrement o s'écrit:

$$\Theta = \frac{KCe}{1+KCe} = \frac{Qe}{Qmax}$$
(1-33)

L'expression de la vitesse s'écrit:

$$V = \frac{k.KCe}{1+KCe}$$
(1-34)

Où: V : vitesse de la réaction (µmol/L/min).

o: taux de recouvrement de la surface du catalyseur par le substrat.

k : constante cinétique de dégradation (µmol/L/min).

K : constante d'adsorption du substrat (L/mmol).

Ce : concentration à l'équilibre du polluant (mmol/L).

Pour des faibles concentrations en polluants, KCe devient négligeable devant 1 (KCe<<1), la vitesse de réaction devient directement proportionnelle à la concentration de polluant, la réaction est alors du premier ordre, Elle s'écrit selon l'équation :

V = k'Ce = k. K. Ce(1-35)

Pour de grandes concentrations en polluants, KCe>> 1, la vitesse de réaction devient égale à k, elle est maximale et d'ordre zéro[62].

> pH de la solution

Le pH de la solution aqueuse, affecte énormément la charge du photocatalyseur ainsi que la taille des agrégats [63]. Le pH, pour lequel la charge de surface est appellée le point de zéro charge (PZC) ou point de charge nulle (PCN). Le pH n'affecte pas seulement la charge superficielle des particules du catalyseur [53], mais influence également les positions des bandes de conduction et de valence dans un semiconducteur[28].En outre, les eaux usées industrielles peuvent être évacuées à divers pH, ce qui rend le processus photocatalytique plus

compliqué. Généralement, un composé organique est neutre lorsque le pH de la solution est inférieur à sa valeur pKa. Lorsque le pH de la solution est supérieur à la valeur du pKa, le composé est désionisé et existe sous la forme d'une charge négative. De plus, le pH de la solution a un impact sur l'interaction électrostatique entre une surface du catalyseur, les molécules du solvant, le substrat et les radicaux chargés formés pendant un processus de photodégradation.

Par conséquent, la surface du semiconducteur est chargée positivement en dessous de savaleur PZC est chargée négativement lorsqu'elle a dépassé son PZC. Les trous photogénérés(h⁺) sont les espèces oxydantes prédominantes à faible pH, tandis qu'à neutre ou alcalin pH, lesradicaux hydroxyles jouent un rôle majeur dans l'oxydation des contaminants organiques [55-62].Cependant, il faut également noter que les radicaux hydroxyles sont rapidement balayés à pHélevé en raison de l'abondance d'ions hydroxyles qui inhibe sa réaction avec le substratpolluant [55].

> Température de la solution

Le système photocatalytique ne nécessite pas l'apport de chaleur, du fait qu'il s'agit d'unprocessus d'activation photonique. En raison de l'activation photonique, les systèmes photocatalytiques ne nécessitent pas de chauffage et fonctionnent à la température ambiante [57]. La véritable énergie d'activation est égale à zéro, alors que l'énergie d'activation apparente est souvent très faible (quelques kJ/ mol) dans la plage de températures moyennes (entre 20 et 80 °C)[57-63]. La plupart Des études antérieures indiquent qu'une augmentation de la température lors de la photocatalyseau-dessus de 80 °C favorise la recombinaison des porteurs de charge et ne favorise pas l'adsorption de composés organiques sur la surface du catalyseur[62-49]ce qui est un handicap pour la réaction.

Effet de l'intensité lumineuse

Le processus de dégradation photocatalytique dépend d'un facteur crucial qui est l'intensité lumineuse. En effet une bonne illumination de la surface du catalyseur va favoriser l'augmentation des paires électron-trou formées. La vitesse de la réaction est proportionnelle à l'intensité d'irradiation jusqu'à une valeur approximative de 25mW/cm², au delà de cette valeur la vitesse devient proportionnelle à la racine carrée de l'intensité lumineuse[68].

> Effet de la structure cristalline duphotocatalyseur

Plusieurs études ont montré que le rendement d'une réaction photocatalytique est étroitement lié à sa structure cristalline [69]. L'efficacité de photodégradation peut être améliorée grâce à l'évolution de la structuredu catlyseur. Récemment, les nanostructures de ZnO ont reçu un grand intérêt pour l'étudephotocatalytique en raison de leurs caractéristiques prometteuses uniques. Le ZnOnanostructuré peut exister dans diverses morphologies comme, une dimension (1D)nanostructures (nanofils, nanotiges, nanotubes. .), bidimensionnelles (2D) et trois dimensions(3D) (nanodisque, nanofleur comme, nanocube, Nanooursins), où sont différentes dessurfaces, des plans polaires ou des vacations d'oxygène [70-71].

> Effet de la surface spécifique et la taille des particules

En plus de la structure cristallographique, il existe d'autres paramètres jouant un rôle essentiel dans la réaction photocatalytique : La taille des particules qui est inversement proportionnelle à sa surface spécifique possède une importanceprimordiale dans le rendement photocatalytique. L'augmentation da la surface spécifique sans changer les propriétés de surface accélère la vitesse de réaction entre les e- et les trous avec le substrat du fait du nombre plus important de molécules adsorbées entourant les paires (e et trou). Plusieurs études [72,73], montrent que la diminution de la taille des particules (une grande surface spécifique) est suggérée pour diminuer la probabilité de recombinaison des paires électrons trous (e-/h+), qui améliore a son tour l'activité photocatalytique.

Effet de l'O₂ dissous et des accepteurs d'électrons

En plus des paramètres vus dans les paragraphes précédant affectant la réaction photocatalytique, la concentration en oxygène dans le réacteur photocatalytique affecte directement la vitesse de réaction. De plus, l'oxygène est nécessaire pour la minéralisation des polluants, puisque il aide à diminuer la recombinaison trou/électron, et forme les espèces O₂ très réactives. L'injection de l'oxygène dans le réacteur n'est pas toujours nécessaire. En effet, l'eau peut s'oxygéner par agitation.

L'ajout d'accepteur d'électron permet de réduire le phénomène de recombinaison électron/trou. Le peroxyde d'hydrogène (H_2O_2) est un oxydant inorganique le plus étudié pour son effet positif sur la cinétique de photodégradation. En effet, c'est un meilleur accepteur d'électrons par rapport à l'oxygène [60]. L'énergie minimale requise à la réduction de l'oxygène pour réduire des radicaux hydroxyles est de 3.0 eV tandis que pour le H_2O_2 elle est de 2.2 eV. De plus, en fonction de la longueur d'onde de la radiation incidente, l'eau

oxygénée peut produire des radicaux hydroxyles •OH pour la dégradation photocatalytique. Cependant, il a été montré que l'effet de H_2O_2 sur la cinétique de dégradation, n'est pas toujours positif et cela dépend de sa concentration et du système étudié.

> Effet des ions

La présence d'anions tels que Cl^- , NO_3^- , HCO_3^- , ClO_4^- , SO_4^{2-} , HPO_4^{2-} et PO_4^{3-} et de cations tels que Na^+ , K^+ , Ca^{2+} , Cu^{2+} , Mn^{2+} , Mg^{2+} , Ni^{2+} , Fe^{2+} , Zn^{2+} et Al^{3+} est inévitable dans les stations de traitement des eaux usées ou industrielles[29]. Cependant l'application du traitement photocatalytique dans ces stations nécessite la compréhension des effets de ces ions et cations qui peuvent affecter fortement l'efficacité photocatalytique en raison de leur adsorption compétitive sur le catalyseur et de leur capacité à piéger les EROs (espèces réactives a oxygènes) [74].

> Effet de la turbidité

La turbidité se réfère souvent à des particules insolubles, qui sont présentes dans les eaux [75]. La présence de ces matières particulaires insolubles est très préjudiciable au traitement photocatalytique car ils peuvent affecter la pénétration de la lumière UV par une forte diffusion et absorption des rayons [76]. Afin d'assurer une réaction photocatalytique rapide, la turbidité de l'eau doit être maintenue au dessous de 5 Unité de Turbidité Néphélométrique (UTN)[77].

2.2La photocatalyse solaire

La génération artificielle des photons UV, pour la dégradation de polluants en milieu aqueux, est l'élément le plus couteux en énergie, lors du fonctionnement d'unités de traitement photocatalytique. Cependant la photocatalyse hétérogène utilisant la lumière solaire, c'est-à-dire les photons issus du rayonnement solaire, emploie une source d'énergie inépuisable et économique pour conduire à des réactions photochimiques. La photocatalyse solaire est un procédé de traitement prometteur, mais présente encore certains inconvénients tels que la mise en forme du catalyseur ou la recombinaison importante des charges photogénérées.

Le soleil peut être utilisé comme source gratuite d'énergie lumineuse. La terre reçoit environ 1.7 x 1014 kW de rayonnement solaire. Les radiations extraterrestres [78] ont une intensité environ de 1367 Wm² et des longueurs d'onde entre 200 et 50000 nm, mais se réduisent entre 280 et 3000 nm, lorsqu'elles atteignent la surface de la terre en raison de l'absorption par les différents composants de l'atmosphère (principalement l'ozone, l'oxygène, le dioxyde de

carbone, les aérosols, les flux et les nuages). Le rayonnement solaire qui atteint le sol sans être absorbé, ou disséminé est appelé faisceau de radiation direct; le rayonnement qui atteint le sol, mais qui a été dispersé avant est appelé le rayonnement diffus. La somme des deux est appelé le rayonnement global.

> Le spectre solaire

Le spectre solaire est la décomposition de la lumière solaire en longueurs d'onde ou couleurs.La lumière solaire est en effet composée de toutes sortes de rayonnements de couleurs différentes, caractérisées par leur gamme de longueur d'onde. Les photons, grains de lumièrequi composent ce rayonnement électromagnétique, sont porteurs d'une énergie qui est reliée àleur longueur d'onde par la relation :

$$E = hv = \frac{hC}{\lambda}$$
(1-36)

Où *h* est la constante de Planck, *v* la fréquence, *C* la vitesse de la lumière et λ la longueurd'onde.

. A cet effet, l'énergie solaire estconsidérée comme l'une des ressources naturelles les plus abondantes en Algérie.L'ensoleillement sur la quasi-totalité du territoire national dépassant les 2500 h par an et peutatteindre 3500 h dans le Sahara, par conséquent l'Algérie peut bénéficier de station d'épuration des eaux par photocatalyse à de très faible cout et de faible consommation énergétique **Tableau 1.6.**

Tableau 1.6 : Statistiques d'ensoleillement	t par zone en Algérie [79]
---	----------------------------

Région	cotiére	Haut plateau	Sahara
Surface (%)	04	10	86
Durée d'ensoleillement	2650	3000	3500
moyenne (h/an)			
Energie moyenne reçue	1700	1900	2650
(kWh/m ² ,par an)			

2.3Les semi conducteurs utilisés en photocatalyse

L'oxyde de Titane TiO₂

Vue le faible cout, la stabilité, la non toxicité, et l'inertie chimique et biologique, l'oxyde de TiO_2 figure comme le matériau le plus utilisé en photocatalyse [80]. TiO_2 est un matériau important dans un large éventail d'applications commerciales, en tant que pigment dans certaines formulations telles que les peintures [81], les dentifrices et les crèmes solaires [82]

en raison de sa couleur blanche. Il est également utilisé dans diverses applications telles que le fractionnement de l'eau [83], la stérilisation [83], la dégradation de composés organiques [76], et la prévention de la corrosion des métaux [41]. Le dioxyde de titane existe dans la nature sous trois formes cristallines différentes, à savoir anatase, brookite et rutile, cette dernière étant la plus abondante et la plus stable du point de vue thermodynamique. Cependant, l'anatase est la plus photo-active des trois formes en raison de sa plus grande mobilité des porteurs de charge et du plus grand nombre de groupes hydroxyles en surface. En effet, les propriétés physico-chimiques du dioxyde de titane différent selon la nature de la phase, mais aussi de la structure cristalline.Les différences de structure induisent des différences de propriétés entre les deux formes. Ainsi, la phase rutile n'absorbe pas bien l'oxygène, ne piège pas bien des électrons, d'où un nombre de recombinaisons électron-trou plus important [77].

> L'oxyde de fer

Il est connu que les oxydes de fer (III) absorbent la lumière jusqu'à 600 nm. La plupart d'entre eux ont des propriétés de semi-conducteurs et peuvent se comporter comme des photocatalyseurs avec recombinaison rapide de la paire électron-trou positif [49-85]. Cependant Les travaux sur les oxydes de fer utilisés seuls comme des catalyseurs hétérogènes sont très limités. Comme les propriétés photochimiques des semi-conducteurs sont liées au processus de transfert de charge, les recherches sur le transfert directe d'électron des oxydes de fer sousirradiation sont mises en œuvre[86].

L'oxydation photocatalytique des composés organiques tels que les acides carboxyliques [86] ou les phénols [87-53] induite par les oxydes de fer (comme l'hématite ou la goethite) en solution aqueuse et sous irradiation de la lumière visible a été signalée récemment par *Wang et al* [54] qui ont étudié la photodégradation des hydrocarbures aromatiques polycycliques (HAP) par plusieurs oxydes de fer (α -FeOOH, α -Fe₂O₃, γ -Fe₂O₃, γ FeOOH). Les résultats ont montré que la photodégradation des HAP en utilisant ces oxydes de fer comme photocatalyseurs est due à l'oxydation par les radicaux hydroxyles formés. *Chatterjee et al* ont attribué la dégradation du phénol en présence de Fe₂O₃ colloïdale à la formation des radicaux hydroxyles.

Plusieurs recherches ont montré que l'activité photocatalytique de l'hématite est négligeable devant celles de TiO_2 ou de ZnO [51-56-57]. Pour cette raison, les oxydes de fer ont été considérés moins appropriés que TiO2 comme semi-conducteur photocatalyseur. Outre les oxydes de fer se dissout sous irradiation par dissolution photoréductrice [58], en particulier à pH acide en présence de chlore [58] ou des ligands organiques [52-58].

L'oxyde de Zinc

L'oxyde de zinc est un matériau semi-conducteur de type II-VI étudié depuis le 20^{ième} siècle, avec une large bande interdite (3.3 eV) et une grande énergie de liaison d'exciton (60 meV) à température ambiante. ZnO est attractif pour ses larges applications potentielles comme la luminescence [87], la photo-détection[88], les cellules solaires [89], et la photocatalyse pour la dégradation et l'élimination des polluants environnementaux [90-91] ces caractéristiques caytalytiques sont détaillé dans le paragraphe **3.2 Généralité sur l'oxyde de zinc** page 36.

-Partie C. Théorie sur les spinelles MCo₂O₄ et le ZnO

Introduction

Le domaine de stockage d'énergie ainsi que celui de la dépollution des eaux, sont tout deux lié l'un à l'autre par le choix de certain matériaux qui peuvent être utilisé dans le stockage d'énergie comme dans la dépollution. Pour cela, de nombreux travaux sont en cour afin d'améliorer les réactions pseudocapacitifs et photocatalytique par le développement et le remplacement de certain oxyde couteux et onéreux par d'autre oxyde à base de métaux de transition tel que Co, Fe, Cu, Zn.... Parmi les grandes familles cristallographiques utilisées : les pérovskites à base de Lanthane, et les oxydes spinelles, tel que CuMn₂O₄, CoFe₂O₄ et les spinelles cobaltites MCO₂O₄ ou M est un métal de transition.

De ce fait nous avons sélectionné, dans le cadre de cette thèse comme objet d'étude la famille spinelle MCo₂O₄ (M=Ni, Zn, Cu, Mn) et le ZnO pour des tests de supercondensateur et de photocalyseur.

3.1Généralités sur les spinelles

La structure spinelle a été mise en évidence pour la première fois par Bragg [92] pour le système MgAl₂O₄. Elle peut-être décrite comme un arrangement cubique à faces centrées d'anions O_2^- . Le groupe d'espace du réseau cristallin est Fd3 m. Les sites tétraédriques seront désignés par la notation A et les sites octaédriques par la notation B. La maille unitaire est une maille rhomboédrique contenant deux groupes formulaires AB₂O₄. Comme elle n'est pas évidente pour décrire la structure, nous décrivons dans la suite la plus petite maille multiple cubique. Cette maille contient 32 atomes d'oxygène, qui définissent 32 sites B et 64 sites A. Seulement 8 sites A et 16 sites B sont occupés par des cations. La plus petite maille cubique contient donc 8 groupes formulaires de type AB₂O₄.

Figure 1.4 : Schéma de la structure spinelle MgAl₂O₄.

3.1.1Propriétés structurales de la spinelle MCo₂O₄ (M=Ni,Zn,Cu, Ni)

En réalité, la répartition des cations dans la structure spinelle est plus complexe que celle de lastructure idéale qui vient d'être décrite. Selon le type et le mode d'élaboration, il répartitions cationiques existe uneinfinité de sur les deux types de sites cristallographiques(tétraédriques et octaédriques). Nous caractérisons leur répartition par le degré d'inversion λ compris entre 0> λ >0,5. $A_{1-2\lambda}B_{2\lambda}[A_{2\lambda}B_{2-2\lambda}]O_4$

Par convention, les cations occupant les sites octaédriques sont écrits entre crochets.La distribution cationique c'est-à-dire la répartition des cations entre les sites tétraédriques ou octaédriques, est une caractéristique très importante, par ce qu' elle peut être la clés de la différence de réponse pseudocapacitif ou catalytique entre une spinelle est une autre.

Dans le cadre d'une spinelle $A^{+2}[B^{+3}]_2O_4$, ou A et B représentent des ions métalliques, cette répartition peut être :

✓ Les spinelles directes dite simples où λ =0, dans ce cas tous les cations Aoccupent uniquement les sites tétraédriques c'est le cas de la spinelle simple synthétisée dans le cadre de ce travail ZnCo₂O₄ ou le cation Zn⁺²occupe le site tétraédrique et le cation Co⁺³ occupe le site octaédrique.

✓ Les spinelles inverses où λ =0,5, dans ce cas la moitié des cations B occupent les sites tétraédriques alors que l'autre moitié des cations B ainsi que les cations A occupent les sites octaédriques c'est le cas des spinelles MnCo₂O₄ et NiCo₂O₄ ou Ni⁺² et Mn⁺²occupent les sites octaédriques et la moitié des cations Co⁺³ occupent les sites tétraédriques et l'autres moitié occupent les sites octaédriques.

✓ Les spinelles mixtes, $\lambda = 0.33$ où les cations A et B occupent à lafois les sites tétraédriques et octaédriques tels que la distribution statistiquement aléatoire des cations sur les deux sites cristallographiques soit égale à 0.33, c'est le cas de CuCo₂O₄ ou les cations Cu⁺² et Co⁺³ occupent à la fois les sites tétraédriques et octaédriques.

Figure 1.5:Structure cristallographique de spinelle: normale, inverse et mixte.

La préférence d'un cation pour un site donné peut être influencée à la fois par des paramètres stériques tels que le rayon ionique du cation et énergétique : énergie de stabilisation dans lechamp cristallin (théorie du champ cristallin), énergie électrostatique du réseau (Madelung) eténergie de polarisation des anions O²⁻ (théorie des champs des ligands). A partir des calculs d'énergie électrostatique du réseau, O'Neill et Navrotsky [93] ont montré que la préférence d'un cation pour l'un ou l'autre pour un site dépend essentiellement de paramètres stériques. Ainsi, pour des spinelles constitués de cations divalents et trivalents, le cation dont rayon est le plus important aura tendance à se localiser sur les sites tétraédriques. La préférence d'un cation pour un site cristallographique donné est aussi fonction de la température.

3.1.2Propriétéélectrochimique et catalytique des spinelles MCo₂O₄

La structure cristalline, la méthode de synthèse, ainsi que la température de calcination confèrent aux spinelles cobaltites MCo_2O_4 des propriétés magnétique, optoélectrique, catalytique et pseudocapacitives très intéressantes plusieurs travaux ce sont penché sur l'étude de ces propriétés pour l'amélioration de leurs caractéristiques.

3.1.2.1 Application dans le domaine des supercondensateurs

Dans ce qui suit nous allons proposer un état de l'art sur les travaux de recherche précédents concernant la synthèse des spinelles types cobaltites et leur application dans le domaine des supercondensateurs.Ces résultats sont dépendants de plusieurs paramètres à savoir le changement du cation M dans la matrice spinelle, la température de calcination ainsi que la méthode de synthèse.

Salukhe et al [94] ont obtenu la spinelle NiCo₂O₄ préparé par la méthode de dépôt chimique à 300°C, et la capacité spécifique obtenue atteint une valeur intéressante de 330 F g⁻¹. Nanoplasmes hexagonaux de NiCo₂O₄ poreux ont été synthétisés par le procédé hydrothermal, par Pu et al [95] à une température de 300 ° C, la capacité spécifique obtenue étant de 294 Fg⁻¹. Chang et al [96] ont synthétisé avec succès eux aussi NiCo₂O₄ dopé par Mn par le procédé de coprécipitation suivi d'une calcination à l'air à 300 ° C, ils ont obtenu une capacité spécifique de 110 F.g⁻¹. Le composite NiCo₂O₄/ graphéne a été synthétisé par la méthode de coprécipitation par Yanjie et al [97] à 250°C pour obtenir une capacité spécifique de 687F.g⁻¹. Yang et alquand à eux ont déposé sur un substrat en ITO par une méthode innovante de sol gel des nano particules de NiCo2O4, et ils ont atteint une capacité de spécifique allant à 2157 F.g⁻¹ [8], *Li et al* ont dopé la phase NiCo₂O₄ par du Fe par la méthode hydrothermale à 350°C pendant 2h et ils ont obtenue une capacité spécifique ègale à 1810F.g⁻¹ [98]. L'équipe*Kim et al*, quand à elle a synthétisé les nanoparticules de NiCo₂O₄ par la méthode hydrothermale, en variant la quantité du précurseur Ni(NO₃)₂ à 400°C, l'équipe a trouvé qu'une quantité du précurseurs égale à 1 donne le meilleur résultats pour la capacité spécifique qui était égale à 332 F.g⁻¹[21].

Beaucoup de chercheur se sont mit d'accord sur le pouvoir pseudocapacitives d'une autre spinelle cobaltite qui est $MnCo_2O_4$. *Li et al* dans la littérature [99], ont synthétisé les nano particules $MnCo_2O_4$ sous forme d'un oursin traité à 600 ° C par la voie hydrothermale, la capacité spécifique présente une valeur de 151,2 F.g⁻¹. *Che et al* [100] ont utilisé la méthode solvothermale pour synthétiser des microsphères creuses $MnCo_2O_4$ de type fleur traité à 350 ° C, les résultats ont abouti à une capacité spécifique de 235,7 F.g⁻¹. Pour *Naveen et al* [101], la synthèse de $MnCo_2O_4$ était par coprécipitation, ou ils ont étudié l'effet de l'incorporation de Mn dans la matrice de la spinelle traité à 400°C ce travail a conduit à une capacité spécifique égale à 440 F.g⁻¹.MnCo₂O₄ été aussi synthétisé par voie sol gel par *Kong et al*, cette fois-ci ils ont étudié l'effet de la température de calcination sur la valeur de la capacité spécifique, et ils ont trouvé que la T de 300°C a donné le meilleur résultats qui est de 405F.g⁻¹ [102]. *Syan et al* quand aeux, ont synthétisé des microcristaux de forme cubique, par voie hydrothermale à une

température de 250°C. Ce type de forme d'oxyde a donné un caractèrepseudocapacitif très intéressant puisque, ils ont obtenue une capacité spécifique égale à 600F.g⁻¹ [103].

Les cobaltites de zinc ZnCo₂O₄ ont fait l'objet eux aussi, d'intéressants travaux. L'équipede *Omar et al*, et *Karthikeyan et al* ont obtenu une capacité spécifique maximale de 398 F.g⁻¹à une densité de courant de 1 A.g⁻¹ et 77 Fg⁻¹ pour des nanoparticules de ZnCo₂O₄ synthétisées respectivement par la méthode hydrothermale et la coprécipitation. [104,105]. *Chen et al* [106] ont élaboré les nanoparticules de ZnCo₂O₄ par une méthode chimique à 400 °C et la capacité obtenue était de 451F.g⁻¹. Pour *vijayakumaret al* la synthèse de ZnCo₂O₄ était par voie hydrothermale, et la température de calcination est de 350°C, la capacité générée dans ce travail était de 886F.g⁻¹[107]. Pour *Pan et al* et *Tomboc et al* [108,109] la synthèsede la spinelle ZnCo₂O₄ était réussite par voie hydrothermale à des température égale à 400 et 180 °c respectivement, et ils ont réussi a atteindre des va leurs de la capacité égaux à 4.6 F.cm² et 1152F.g⁻¹.

le caractère pseudocapacitifs de la spinelle $CuCo_2O_4a$ été testé et appliquerpar plusieurs auteurs ou *Liaou et al.* [110] ont élaboré par le voie hydrothermale les nanofils de $CuCo_2O_4$ à 300 ° C, et la capacité spécifique de $CuCo_2O_4$ a atteint 982 F.g⁻¹. *Shanmugavani et al* [18] ont synthétisé avec succès le nanocomposite $CuCo_2O_4$ /CuO par micro-ondes à différents temps de réaction à une température de 400 ° C, et ils ont obtenu une capacité spécifique de 141. Fg⁻¹.

Ainsi, le choix de la méthode de synthèse et la température des calcinations peuvent améliorer énormément les propriétés des supercapacités et remplacer le candidat RuO_2 par l'oxyde MCo_2O_4 à bas coût comme rapporté par *Li et al* [14] et *Kim et al* [22].

3.1.2.2 Application dans la dépollution par photocatalyse

Les photocatalyseurs à base d'oxydes utilisent les porteurs générés après absorption delumière pour former des molécules très réactives (la plupart du temps des radicaux libres) qui vont dégrader les contaminants (**Figure 1.3**).

Les oxydes de type spinelle à faibles *gap* (<3 eV) sont utilisés pour diverses applications photocatalytiques comprenant l'élimination des contaminants de l'eau et de l'air, le contrôle des odeurs, etc. [111-112]. En effet, ces oxydes à faibles *gap* possèdent également une activité accrue due aux sites catalytiques disponibles liés à leurs structures cristallines. Parmi eux, les ferrites (spinelles constituées en majorité de fer) possèdent des propriétés photocatalytiques importantes pour de nombreux procédés industriels [113].La spinelle ZnCo₂O₄ a fait l'objet d'intéressante étude concernant son activité photocatalytique, elle a été utilisé pour la

dégradation du colorant de bleu de méthylène sous lumière visible par *Bai*et*Kokane* [112-114], *Chen et al* [115] ont réussi eux aussi à dégrader à 96% le vert de malachite en utilisant ZnCo₂O₄comme photocatalyseur sous lumière visible. Pour la spinelle CuCo₂O₄ des travaux en vue le jour ces dernières année sur son utilisation dans la photocatalyse, *Jeghen et al* et *Nithya et al* [116-117] ont pu synthétiser CuCo₂O₄ par la méthode hydrothermale et ont dégradé le méthyl orange par photocatalyse solaire et lumière visible respectivement.

3.2 Généralités sur l'oxyde de zinc

L'oxyde de zinc qui a un intéressant potentiel dans le domaine du visible, le rend potentiellement plus applicable que le TiO₂ [118]. L'oxyde de zinc ZnO, est un matériau non toxique etabondant sur Terre à l'état naturel **Figure 1.6.a**. Les réserves mondiales actuelles en matière première (minerais de zinc) pour produire l'oxyde de zinc sont estimées à β 50 Mt etune production mondiale d'environ 14 Mt/an [118]. Ces réserves servent également àproduire, à partir de divers procédés, d'autres composés à base de zinc tels que le chlorure de zinc, le sulfate de zinc, le phosphure de zinc ou le stéarate de zinc. Cependant, l'oxyde de zincpeut être synthétisé de manière industrielle **Figure 1.6.b**.

Figure 1.6. Oxyde de zinc (ZnO) : (a) sous forme naturelle et (b) sous forme artificielle provenant d'une synthèse sol-gel.

3.2.1 Propriétés structurales

Le ZnO est un semi-conducteur binaire du groupe II-VI. La **Figure 1.7**présente les trois types de structure cristalline dans lesquelles cristallise ce matériau : la structure (a) cubique detype rocksalt, la (b) cubique de type zinc blende et la (c) hexagonale de type wurtzite. La structure wurtzite est la plus stable thermodynamiquement à température ambiante, tandis que la structure cubique zinc blende est observée lors d'une croissance par épitaxie du ZnO. Quant

à la structure de type rocksalt (NaCl), elle apparait à des pressions très élevées.

Figure 1.8Structure cristalline du ZnO. (a) cubique de type rocksalt, (b) cubique de type zincblende et (c) hexagonale de type wurtzite [87].

3.2.2 Propriétés chimiques et catalytiques

Le ZnO possède des propriétés chimiques intéressantes en particulier celle d'absorption de surface. Une des applications possibles concerne le piégeage et la captation chimique de gaz(H₂S, CO₂, O₃, H₂ et CH₄) ou d'humidité [119-120]. Le ZnO possède également des propriétés catalytiques très prometteuses dues à l'efficacité du processus d'oxydoréduction. Les poudres en suspension dans l'eau jouent unrôle essentiel de catalyseur photochimique pour les réactions d'oxydation de l'oxygène en ozone, l'oxydation de l'ammoniac en nitrate, la dégradation de polluants organiques (pesticides, colorants...) [121-122-123].

Le catalyseur ZnO apparait comme une alternative intéressante au TiO₂, utilisé pour la dégradation de matières organiques sous rayonnement solaire, en raison d'une similitude des mécanismes de photodégradation et des propriétés optiques [124]. Différents travaux ont reporté quele ZnO est plus efficace que le TiO₂ dans la décoloration photocatalytique sous rayonnementUV du réactif bleu 19 [125] et de la rhodamine B [121]. Ce catalyseur, comme la plupart des semi-conducteurs, a plusieurs faiblesses telles que le taux de recombinaison rapide des électrons-trous photogénérés et une efficacité photocatalytique faible sous rayonnement solaire. Pour s'affranchir de cette faible efficacité, des recherches intensives sont menées en élargissant la gamme spectrale d'absorption du matériau vers le visible et recueillir ainsi un plus grand nombre de photons [126-127-128]. Cet élargissement peut être réalisé en adaptant les propriétés morphologiques de volume ou de surface telles que la taille des grains et leurs formes. Une autre solution envisagée, la plus traitée dans la littérature, consiste à doper le ZnO avec des éléments chimiques (atomes étrangers) en vue d'élargir la gamme spectrale

d'irradiation. L'insertion d'éléments chimiques en faible pourcentage provoque un réarrangement des niveaux des bandes d'énergie et diminue l'énergie de gap optique [129-128].

Conclusion

Cette partie s'inscrit dans le cadre de la recherche et de la valorisation de certain oxydes de la famille spinelle type cobaltite MCo_2O_4 et de l'oxyde de zinc dans le but de : i/ de les utiliser comme des matériaux d'électrode pour supercondensateurs, ainsi différents travaux se sont basés sur la synthèse des spinelles par différentes méthodes afin d'observer les effets des propriétés physicochimiques sur les propriétés électrochimiques des matériaux ou nous avons arriver à la conclusion que la méthode de synthèse ainsi que la température de calcination ont un effet crucial sur le développement des propriétés pseudocapacitives de ces matériaux.

La photocatalyse hétérogène solaire passe inévitablement par une compréhension approfondie du principe de la photoexcitation et de la production de radicaux liée au mécanisme de fonctionnement de ce procédé. On retiendra que les différentes recombinaisons générées à la surface ou en volume du catalyseur ZnO sont néfastes dans le domaine de la photocatalyse. Il en résulte que la recherche de nouveaux catalyseurs tels que les spinelles cobaltites MCo₂O₄ peuvent inhiber les recombinaisons des charges et augmente ainsi l'efficacité photocatalytique dans le domaine de l'UV. Outre ces recombinaisons, il a été démontré dans la littérature que les spinelles cobaltites peuvent également être envisagé en vue d'acquérir des gains importants des performances photocatalytiques dans le domaine du solaire. Cependant, ce procédé par voie solaire nécessite l'utilisation de catalyseurs performants. Il est également limité par la dépendance de paramètres liés essentiellement aux vitesses de dégradations de polluants.

References

[1] S. Chang, Z. Zainal, K. Tan, N. Yusof, Wan M. Yusoff, S. Prabaharan, Recent development in spinel cobaltites for supercapacitor application, Ceram. Int. 41(2015)1–14.

[2] X. Zhang, W. Wang, H.He, L. Hua, J. Heng, Optimization of the air-cooled supercapacitor module compartment for an electric bus, Appl. Therm. Eng. 112 (2017) 1297–1304.

[3] D.R. Rolison, J.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourga, A.M. Lubersa, Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev.38 (2009) 226-252.

[4] C. Zhao, F. Ren, X. Xue, W. Zheng, X. Wang, L.Chang, A high-performance asymmetric supercapacitor based on Co(OH)₂/ graphene and activated carbon electrodes, J. Electroanal. Chem. 782 (2016) 98–102.

[5] V.T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang, Q.A. Vu, D.T. Pham, J. Lee, S.W. Kim,Y.H. Lee, Coaxial Fiber Supercapacitor Using All-Carbon Material Electrodes, *ACS Nano*. 7 (2013) 5940–5947.

[6] H. Zhou, G. Han, One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors, Electrochim. Acta. 192 (2016) 448–455.

[7] X. Sun, Z. Jiang, C. Li, Y. Jiang, X. Sun, X. Tian, L. Luo, X. Hao, Z.J. Jiang, Facile synthesis of Co_3O_4 with different morphologies loaded on amine modified graphene and their application in supercapacitors, J. Alloys. Compd. 685 (2016) 507-517

[8] Y. Liu, N. Wang, C. Yang, W. Hu, Sol–gel synthesis of nanoporous NiCo₂O₄ thin films on ITO glass as high-performance supercapacitor electrodes, Ceram. Int. 42 (2016) 11411–11416.

[9] Attias A.-J, Polymères conjugués et polymères conducteurs électroniques, Techniques de l'Ingénieur, (2002).P1862.

[10] G.S. Jang, S. Ameen, M. S. Akhtar, H.S. Shin, Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor, Ceram. Int. 44 (2018) 588-595.

[11] N. Boukmouche, N. Azzouz, L. Bouchama, A.L Daltin, J.P. Chopart, Y. Bouznit, Supercapacitance of MnO₂ films prepared bypneumatic spray method, Mater. Sci. Semicond. Process, 27 (2014) 233–239.

[12]K. Xu, S. Li, J. Yang, H. Xu, J. Hu, Hierarchical $MnO_2nanosheets$ on electrospun $NiCo_2O_4$ nanotubes as electrode materials for high rate capability and excellent cycling stability supercapacitors, J. Alloys Compd. 678 (2016) 120-125.

[13] N. Duraisamy, A. Numan, S. O. Fatin, K. Ramesh, S. Ramesh, Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application, J. Colloid Interface Sci. 471 (2016) 136–144.

[14] X. Li, W. Gan, F. Zheng, L. Li, N. Zhu, X. Huang, Preparation and electrochemical properties of RuO₂/polyaniline electrodes for supercapacitors, Syn.Metals. 162 (2012) 953–957.

[15] P.Wanga, Y.Xua, H. Liua, Y. Chena, J. Yang, Q. Tana, Carbon/carbonnanotubesupported RuO₂ nanoparticles withahollowinterior as excellentelectrodematerials for supercapacitors, Nano Energy 15 (2015) 116–124.

[16] H. Wei, J. Wang, L. Yu, Y. Zhang, D. Hou, T. Li, Facile synthesis of NiMn₂O₄nanosheet arrays grown on nickel foam as novel electrode materials for high-performance supercapacitors, Ceram. Int. 42 (2016) 14963-14969.

[16] R.N. Singh, J.P. Pandey, N.K. Singh, B. Lal, P. Chartier, J.-F. Koenig, Sol-gel derived spinel $M_xCo_{3-x}O_4$ (M=Ni, Cu; $0 \le x \ge 1$) films and oxygen evolution, Electrochim. Acta. 45 (2000) 1911–1919.

[17] P. Zhang, X. Han, H. Hu, J. Gui, M. Li, J. Qiu, In-situ growth of highly uniform and single crystalline Co₃O₄nanocubes on graphene for efficient oxygen evolution, Cat.Comm. 88 (2017) 81–84.

 [18]A. Shanmugavani, R. K. Selvan, Improved electrochemical performances of CuCo₂O₄/CuOnanocomposites for asymmetric supercapacitors, Electrochim. Acta. 188
(2016) 852–862.

[19] L.L. Liu, K.P Annamalai, Y.s. Tao, A hierarchically porous $CuCo_2S_4$ /graphene composite as an electrode material for supercapacitors, N. Car. Mat. 31 (2016)336–342.

[20]Burke A, R&D considerations for the performance and application of electrochemical capacitors, Electrochimica Acta,53 (2007) 1083-1091.

[21]T. Kim, A. Ramadoss, B. Saravanakumara, G. K. Veerasubramani, S. J. Kim, Synthesis and characterization of $NiCo_2O_4$ nanoplates as efficient electrode materials for electrochemical supercapacitors, Appl. Surf. Sci. 370 (2016) 452–458.

[22] Easton J.R., The dye maker's view, in Colour in dyehouse effluent, P. Cooper, Editor, Society of Dyers and Colourists: Bradford, England.(1995) 9-21.

[23]K.T.Chung, C.E. Cerniglia., Mutagenicity of azo dyes: Structure-activity relationships, Mutat. Res. 277 (1992) 201-220.

[24] S.D.Lambert, N.J.D. Graham, C.J. Sollars, G.D. Fowler, Evaluation of inorganic adsorbents for the removal of problematic textile dyes and pesticides, Water Sci.Technol. 36 (1997) 173-180.

[25]S.H. Lin, Adsorption of disperse dye by powdered activated carbon, J. Chem. Technol. Biotechnol. 57 (1993) 387-391.

[26] K.R. Ramakrishna, T.Viraraghavan, Dye removal using low cost adsorbents, WaterSci. Technol.36 (1997) 189-196.

[27] Calabro V., Pantano G., Kang R., Molinari R., Drioli E., Experimental study onintegrated membrane processes in the treatment of solutions simulating textile effluents. Energy and exergy analysis, Desalination 78 (1990) 257-277.

[28] Van Der Bruggen B., Lejon L., Vandecasteele C., Reuse, treatment and discharge of the concentrate of pressure-driven membrane processes. Environ. Sci. Techn. 37 (2003) 3733-3738.

[29]M.Adosinda,M. Martins,L. Nelson,A. J.D. Silvestre,M. J.Queiroz, Comparative studies of fungal degradation of single or mixed bioaccessible reactive azo dyes, Chemosphere 52 (2003) 967–973.

[30] C. López, A. G. B. Valade, Combourieu, I. Mielgo, B. Bouchon, J. M. Lema, Mechanism of enzymatic degradation of the azo dye Orange II determined by ex situ 1H nuclear magnetic resonance and electrospray ionization-ion trap mass spectrometry, Anal. Biochem. 335 (2004) 135–149.

[31]R.C.Loehr, Pollution Control for Agriculture. Academic Press, 1977, New York, NY, 382.

[32] R. Andreozzi, V.Caprio, A.Insola, R.Marotta, Advanced oxidation process (AOPs) for water purification and recovery, Catal Today 53 (1999) 51-59.

[33]CRC Hanbook of Chemistry and Physics (CRC Handbook), 85th edition, 2003,Editor-inchief: Lide D.R, CRC Press, Boca Raton, Florida, New York, Washington D.C.

[34]G.V.Buxton, C.L. Grennstock, W.P. Helman, A.B. Ross, Critical review of rateconstants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(OH•/O•–) in aqueous solution, J. Phys. Chem. Ref. Data 17 (1988) 513-886.

[35] W.R. Haag, C.C.D. Yao, Rate constants for reaction of hydroxyl radicals withseveral drinking water contaminants, Environ. Sci. Technol. 26 (1992) 1005-1013.

[36]O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes for water treatment, Chemical Reviews 93 (1993) 671-698.

[37]A. Leifer, The kinetics of environmental aquatic photochemistry: theory and practice Crystal Research and Technology 24 (1989) 732-732.

[38]J.C. Milano, J.L. Vernet, Degradation par photolyse du dibromo-1,2 propane present a l'etat de traces dans l'eau - influence du peroxyde d'hydrogene, Chemosphere 17 (1988) 963-971.

[39]G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross, Critical review of rate constant for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH• $/O^{-}$) in aqueous solution, Journal of Physical Chemistry 17 (1988) 513-759.

[40] M. Doré, Chimie des oxydants et traitement des eaux, Tec. Doc. Lavoisier (Éditeur), Paris, France, (1989) 505.

[41] A. Machairas, The UV/H_2O_2 advanced oxidation process in UV disinfection units :removal of selected phosphate esters by hydroxyl radical, thése, MassachusettsInstitute of Technology. Dept. of Civil and Environmental Engineering (2004).

[42]J. De Laat, M. Doré, H. Suty, Oxydation de S-triazines par les procédésd'oxydation radicalaire. Sous-produits de réaction et constantes cinétiques deréaction, Journal of Water Science 8 (1995) 23-42.

[43] F.J. Benitez, J. Beltane-Heredia, T. Gonzalez, Degradation By Ozone and UVRadiation of the Herbicide Cyanazine, Ozone: Science & Engineering 16 (1994)213-234.

[44] H.Y. Shu, M.C. Chang, Decolorization effects of six azo dyes by O_3 , UV/ O_3 and UV/ H_2O_2 processes, Dyes and Pigments 65 (2005) 25-31.

[45] F. Zaviska, P. Drogui, G. Mercier, J.-F. Blais, Procédés d'oxydation avancée dans le traitement des eaux et des effluents industriels :Application à la dégradation des polluants réfractaires, Revue des sciences de l'eau. 22 (2009) 535-564.

[46]B. Faust, J. Hoigné, Photolysis of hydroxy-complexes as sources of OH• radicals inclouds, fog and rain. , Atmospheric Environment 24A (1990) 79-89.

[47] C. Guillard, N. Charton, P. Pichat, Degradation mechanism of t-butyl methyl ether (MTBE) in atmospheric droplets, Chemosphere 53 (2003) 469-477.

[48] A.N. Soon, B.H. Hameed, Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process, Desalination 269 (2011) 1-16.

[49] A. Babuponnusami, K. Mutukumar, Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes, Chemical Engineering Journal 183 (2012) 1-9.

[50] C. Sirtori, A. Zapata, I. Oller, W. Gernjak, A. Agüera, S. Malato, Decontaminationindustrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment, Water Research 43 (2009) 661-668.

[51] A. Moncayo-Lasso, R.A. Torres-Palma, J. Kiwi, N. Benítez, C. Pulgarin, Bacterial inactivation and organic oxidation via immobilized photo-Fenton reagent on structured silica surfaces, Applied Catalysis B: Environmental 84 (2008) 577-583.

[52]J.M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis today 53 (1999) 115-129.

[53] B Swagata,D.DDionysios,C.PSuresh.Self-cleaning applications of TiO₂ byphoto-induced hydrophilicity and photocatalysis. Appl. Catal. B: Environ. 396 (2015) 176–177.

[54]Buchalska M, Kras G, Oszajca M, Łasocha W, Macyk W. Singlet oxygen generation in the presence of titanium dioxide materials used as sunscreens insuntan lotions. J. Photochem. Photobiol.A. 213 (2010) 158-163.

[55] Wen S, Zhao J, Sheng G, Fu J, Peng P. Photocatalytic reactions of phenanthrene at TiO₂/water interfaces. Chemosphere. 46 (2002) 871-877.

[56] Koppenol W. H. The Haber-Weiss cycle.70 years later.Redox.Rep. 6 (2001) 229-34.

[57] Sven M, Ann-Sofie A, Leif R, Goran L. Wild-type *Escherichia coli* CellsRegulate the Membrane Lipid Composition in a "Window" between Gel and Nonlamellar Structures. J. Biol. Chem. 271 (1996) 6801–6809,

[58] Ollis D.F. Contaminant degradation in water. Environ. Sci.Tech.19 (1985) 480-484.

[59] Oluwafemi S, Obayori, Lateef B.S, Degradation of polycyclic aromatic hydrocarbons: Role of plasmids. *Sci. Res. Essays.* 5 (2010) 4093-4106.

[60]Jayson G.G, Lawless T.A and Fairhurst D.The adsorption of organic andinorganic phosphates onto a new activated carbon adsorbent. J. Colloid. Interf.Sci. 86 (1982) 397-410.

[61] Gergova K, Galushko A, Petrov N, Minkova V. Investigation of the porousstructure of activated carbons prepared by pyrolysis of agricultural by-products ina stream of water vapor. Carbon. 30 (1992) 721-727.

[62]L. Xu, Y.-L.Hu, C. Pelligra, C.-H. Chen, L. Jin, H. Huang, S. Sithambaram, M. Aindow, R. Joesten, S.L. Suib, ZnO with different morphologies synthesized by solvothermalmethods for enhanced photocatalytic activity, Chemistry of Materials, 21 (2009) 2875-2885.

[63] Malato S, Fernandez-Ibanez P, Maldonado M.I, Blanco J, Gernjak W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal.Today. 147 (2009) 1–59.

[64] Kormann C, Bahnemann D, Hofmann M.R. Photocatalysis of chloroform and other organic molecules in aqueous TiO_2 suspensions. Environ. Sci. technol. 25 (1991) 494-500.

[65] J.M. Herrmann, C. Guillard, P. Pichat, Heterogeneous photocatalysis: an emergingtechnology for water treatment. Catal.today, 17 (1993) 7-20.

[66] C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, J.M. Herrmann, Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by

TiO₂ comparison of the efficiency of powder and supported TiO₂, J. Photochem.Photobiol.

A, 158 (2003) 27-36.

[67] N. Norzita, S.K. Jamaludin, Effects of pH on ethanol photocatalytic oxidation using TiO₂ and zeolite 13x as catalyst. J. Technol., 43 (2005) 27-38.

[68] Meng N.C, Bo J, Christopher W.K.C, Chris. S. Recent developments in photocatalytic water treatment technology: A review. Water. Res. 44 (2010) 2997-3027.

[69] Schindler K.M, Kunst M. Charge-carrier dynamics in titania powders. J. Phys. Chem. 94 (1990) 8222-8226.

[70]Lizama C., Freer J., Baeza J., Mansilla H.D., Optimized photodegradation of reactive blue 19 on TiO₂ and ZnO suspensions, Catal. Today, 76, (2002), 235–246.

[71] Y. Wang, X. Li, N. Wang, X. Quan, Y. Chen, Controllable synthesis of ZnOnanoflowers and their morphology-dependent photocatalytic activities, Separation and PurificationTechnology, 62 (2008) 727-732.

[72] Zhang Z, Wang C.C, Zakaria R, Ying J.Y, Role of particle size in nanocrystallineTiO₂based photocatalysts. J. Phys. Chem. B. 102 (1998) 10871-10878.

[73] Shah S.I, Huang C.P, Chen J.G, Doren D, Barteau M. Semiconductor Metal OxideNanoparticles for Visible Light Photocatalysis. NSF Nanoscale Science and Engineering Grantees Conference NSF NIRT Grant No. 0210284 (2003).

[74] Jr.W. Viessman, M.J. Hammer, Water Supply and Pollution Control.sixth ed. Addison Wesley Longman Inc, (1998) California USA.

[75] M.L. Chin, A.R. Mohamed, S. Bhatia, Performance of photocatalytic reactors using immobilized TiO_2 film for the degradation of phenol and methylene blue dye present in water

stream. Chemosphere, 57 (2004) 547-554.

[76] S. Gelover, L.A. Gomez, K. Reyes, M.T. Leal, A practical demonstration of waterdisinfection using TiO_2 films and sunlight. Water Res., 40 (2006) 3274-3280.

[77] P. Fernandezs-Ibanez, C. Sichel, M.I. Polo-Lopez, M. de Cara-Garcia, J.C. Tello, Photocatalytic disinfection of natural well water contaminated by Fusariumsolaniuing TiO₂slurry in solar CPC photo-reactors. Catal. Today, 144 (2009) 62-68.

[78] C. FRÖHLICH, Solar Radiation and its variation in time. Solar Phyics., 74 (1981) 209-215.

[79] Y. Himri, A.S. Malik, A.B. Stambouli, S. Himri, B. Draoui, Review and use of theAlgerian renewable energy for sustainable development. Renew. Sust.Energ. Rev., 13 (2009)

1584-1591.

[80] A Mills, S Lee. A web-based overview of semiconductor photochemistry-based current commercial applications.J. Photochem. Photobiol. A.152 (2002)233–247.

[81] N.S Allen, M Edge, A Ortega, G Sandoval, C.M Liauw, J Verran, J Stratton, R McIntyre.B. Degradation and stabilisation of polymers and coatings: nano versus pigmentarytitania particles. Polym.Degrad. Stab. 85 (2004) 927-946

[82]MBuchalska,G Kras,MOszajca,WŁasocha, Macyk W. Singlet oxygen generation in the presence of titanium dioxide materials used as sunscreens in suntan lotions. J. Photochem. Photobiol. A. 213 (2010) 158-163

[83] Weir A,P Westerhoff,LFabricius,K Hristovski,G.NVon.Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46 (2012) 2242-50.

[84]Jonathan K. Leland and Allen J. Bard, Photochemlstry of Colloidal Semiconducting Iron Oxlde Polymorphs, J. Phys. Chem. 91(1987) 5076-5083.

[85]B. Voelker , F.M. Morel , B. Sulzberger. Iron Redox Cycling in Surface Waters: Effects of Humic Substances and Light. Environ. Sci. Technol. 31 (1997) 1004-1011.

[86]P.Mazellier, M.Bolte. Heterogeneous light-induced transformation of 2,6-dimethylphenol in aqueous suspensions containing goethite. J.Photochemistry and Photobiology A: Chemistry 132 (2000) 129–135.

[87] Pelaez M, Nolan N.T, Pillai S.C, Seery M.K, Falaras P, Kontos A.G, Dunlop P.S.

M, Hamilton J.W.J, Byrne J.A, O'Shea K, Entezari M.H, Dionysiou D. D.A review on the visible light active titanium dioxide photocatalysts for environmental applications.Appl. Catal. B: Environ. 125 (2012) 331-349.

Chapitre 1

[88] Lewis N.S, Rosenbluth M.L. Photocatalysis fundamentals and applications, SerponePelizetti N., E. éds. Wiley Interscience : New York, (1989). 99

[89] G.M Ali,P.Chakrabarti. ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors. J. Phys. D: Appl. Phys. 43 (2010) 415103–415110.

[90] Law M, Greene L.E, Johnson J.C, Saykally R, Yang P. Nanowire dye-sensitized solar cells. Nature.Mater. 4 (2005) 455–459.

[91] Zeng J.H, Jin B.B, Wang Y.F. Facet enhanced photocatalytic effect with uniformsinglecrystalline zinc oxide nanodisks. Chem. Phys. Lett. 472 (2009) 90–95.

[92] W.H. Bragg, The structure of the single group of crystal, Nature, 30 (1915) 305-315.

[93] H.S.C. O'Neill, A. Navrotsky, Simple spinels; crystallographic parameters, cation radii, lattice energies, and cation distribution, American Mineralogist, 68 (1983) 181-191.

[94] R. R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.H. Han, H. Ahn, Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications, J. Alloys Compd. 509 (2011) 6677–6682.

[95] J. Pu, J. Wang, X. Jin, F. Cui, E. Sheng, Z. Wang, Porous hexagonal NiCo₂O₄nanoplates as electrode materials for supercapacitors, Electrochim. Acta.106 (2013) 226–234.

[96] S.K. Chang, K.T. Lee, Z. Zainal, K.B. Tan, N. Yusof, W. M. D. Yusoff, J. Lee, N.Wu, Structural and electrochemical properties of manganese substituted nickel cobaltite for supercapacitor application, Electrochim. Acta.67 (2012) 67–72.

[97]Y. Xu, L.Wang, P. Cao, C. Cai, Y. Fu, X. Ma, Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors, J. Power Sources. 306 (2016) 742–752.

[98]L. Liu, H. Zhang, L. Fang, Y. Mu, Y. Wang, Facile preparation of novel dandelion-like Fe-doped NiCo₂O₄microspheres@nanomeshes for excellent capacitive property in asymmetric supercapacitors, J. Power Sources. 327 (2016) 135–144.

[99] W. Li, K. Xu, G. Song, X. Zhou, R. Zou, J. Yang, Z. Chen, J. Hu, Facile synthesis of porous MnCo₂O_{4.5} hierarchical architectures for high-rate supercapacitors, Cryst. Eng. Comm. 16 (2014) 2335–2339.

[100] H. Che, A. Liu, J. Mu, C. Wu, X. Zhang, Template-free synthesis of novel flower-like $MnCo_2O_4$ hollow microspheres for application in supercapacitors, Ceram. Int. 42 (2016) 2416–2424.

[101] A.N. Naveen, S. Selladurai, Investigation on physio-chemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications, Electrochim.Acta. 125 (2014) 404–414.

[102]L.Kong, C.Lua, M.C. Liua, Y.ChunLuo, X. Li, F.The specific capacitance of sol-gel synthesised spinel $MnCo_2O_4$ in analkaline electrolyte. ElectrochimicaActa 115 (2014) 22–27.

[103] S. G. Krishnan, M. H,Ab Rahim, R.Jose.Synthesis and characterization of $MnCo_2O_4$ cuboidal microcrystals as a high performance psuedocapacitor electrode.Journal of Alloys and Compounds 656 (2016) 707-713.

[104] F. S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, S. Ramesh, A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor, J. Alloys Compd. 716 (2017) 96–105.

[105] K. Karthikeyan, D. Kalpana, N. G. Renganathan, Synthesis and characterization of $ZnCo_2O_4$ nanomaterial for symmetric supercapacitor applications, Int. J. Ionics. Sci. 15 (2009)107–110.

[106] S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, D. Zhang, Q. Fang, S. Qiu, Porous $ZnCo_2O_4$ nanoparticles derived from a new mixed-metal organic framework for supercapacitors, Inorg. Chem. Front. 2 (2015) 177–183.

[107] S. Vijayakumar, S. Nagamuthu, S.H. Lee, K.S. Ryu, Porous thin layered nanosheets assembled $ZnCo_2O_4$ grown on Ni-foam as an efficient electrode material for hybrid supercapacitor applications, Int J Hydrogen Energy. 44 (2017) 3122–3129.

[108] Y. Pan, H. Gao, M. Zhang, L. Li, G. Wang, X. Shan, Three-dimensional porous $ZnCo_2O_4$ sheet array coated with Ni(OH)₂ for highperformance asymmetric supercapacitor, J. Colloid Interface Sci. 497 (2017) 50-56.

[109] G. M. Tomboc, H. S. Jadhav, H. Kim, PVP assisted morphology-controlled synthesis of hierarchical mesoporous ZnCo₂O₄ nanoparticles for high-performance pseudocapacitor, Chem. Eng. J. 308 (2017) 202–213.

[110] L. Liao, H. Zhang, W. Li, X. Huang, Z. Xiao, K. Xu, J. Yang, R. Zou, J. Hu, Facile synthesis of maguey-like CuCo₂O₄ nanowires with high areal capacitance for supercapacitors, J. Alloys Compd. 695 (2017) 3503–3510.

[111] E. Casbeer, V. K. Sharma , X. Z Li, Synthesis and photocatalytic activity of ferritesunder visible light: A review, Separation and Purification Technology. 87(2012) 1–14.

[112] C. Bai, L. Hong, Z Xiao-Chong, L. Jian-Bao, L. Wen-Di, Visible Light InducedPhotocatalytic Activity of ZnCo₂O₄ Nanoparticles, Acta Phys. -Chim. Sin.27 (2011) 2411-2415.

[113] D. Guin, B. Baruwati, S.V. Manorama, A simple chemical synthesis of nanocrystalline AFe_2O_4 (A = Fe, Ni, Zn): an efficient catalyst for selective oxidation of styrene, J. Mol. Catal. A: Chem. 242 (2005) 26–31.

[114]S. B. Kokane, S. R.Sasikala, M. A.More, S.D. Sartale. Architecture of 3D $ZnCo_2O_4$ marigold flowers: Influence of annealing on cold emission and photocatalytic behavior. Materials Chemistry and Physics 194 (2017) 55-64.

[115]J. Chen, J.Zhan , E. Lu, Y. Wan, Z. Jin, H. Qi. Facile template-free fabrication of mesoporous $ZnCo_2O_4$ fibers with enhanced photocatalytic activity under visible-light irradiation, Materials Letters 220 (2018) 66–69.

[116]S. M.Jeghan, M.k Kang, Facile synthesis and photocatalytic activity of cubic spinel urchin-likecopper cobaltite architecture, Materials Research Bulletin 91 (2017) 108–113

[117]J. S. M. Nithya, J. Y. Do, M. Kang, Fabrication of flower-like copper cobaltite/graphiticcarbon nitride 2 ($CuCo_2O_4/g-C_3N_4$) composite with superior photocatalytic activity, Journal of Industrial and Engineering Chemistry, 57 (2017) 405-415.

[118] ILZSG, International Lead and Zinc Statistics, (2015).

[119]Mortezaali A., Moradi R., The correlation between the substrate temperature and morphological ZnO nanostructures for H2S gas sensors, Sensors Actuators, A Phys., 206, (2014), 30–34.

[120] L.S.R Rocha, C.R Foschini, C.C Silva, Longo E., Simões A.Z., Novel ozone gas sensor based on ZnO nanostructures grown by the microwave-assisted hydrothermal route, Ceram. Int., 42, (2016), 4539–4545.

[121]Byrappa K., Subramani A.K., Ananda S., LokanathaRai K.M., Dinesh R., Yoshimura M., Photocatalytic degradation of rhodamine B dye using hydrothermally synthesized ZnO, *Bull. Mater. Sci.*, *29*, (2006), 433–438.

[122] S.K Kansal, M.Singh, D.Sud, Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, *J. Hazard.Mater.*,141, (2007), 581–590.

[123]Navarro S., Fenoll J., Vela N., Ruiz E., Navarro G., Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight, J. Hazard. Mater. 172, (2009) 1303–1310.

[124] Dindar B., Içli S., Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight, *J. Photochem. Photobiol. A Chem.*, *140*, (2001), 263–268.

[125]Lizama C., Freer J., Baeza J., Mansilla H.D., Optimized photodegradation of reactive blue 19 on TiO₂ and ZnO suspensions, Catal. Today, 76, (2002), 235–246.

[126] S.Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO_2 and ZnO visible light active, J. Hazard. Mater., 170, (2009), 560–569.

[127] Daghrir R., Drogui P., Robert D., Modified TiO_2 For Environmental PhotocatalyticApplications μ A Review, Ind. Eng. Chem. Res., 52, (2013), 3581–3599.

[128]Banerjee S., Pillai S.C., FalarasP., O'Shea K.E., Byrne J.A., Dionysiou D.D., New Insights into the Mechanism of Visible Light Photocatalysis, J. Phys. Chem. Lett., 5, (2014), 2543–2554.

[129]R.Nakamura, T. Tanaka, Y. Nakato, Mechanism for visible light responses in anodic photocurrents at N-doped TiO₂film electrodes, J. Phys. Chem. B, 108, (2004), 10617–10620.

Chapitre 2 Matériels et Méthodes

Introduction

Le travail bibliographique effectué au **chapitre1** a permis d'identifier et de sélectionner d'unepart les matériaux potentiels destinés à des applications supercapacitifs et photocatalytiques et d'autre part, lesprocédés associés à leur élaboration. Parmi les oxydes répertoriés, nous avons sélectionné la famille cobaltite MCo_2O_4 qui fera l'objet d'une étude intéressante pour l'application dans les deux domainesainsi que le catalyseur ZnO qui sera notre référence lors des tests des oxydes MCo_2O_4 pour la photocatalyse solaire. Pour cela, il est nécessaire de mettre enplace et de maitriser les protocoles expérimentaux pour les synthétiser et définir leurs efficacités pseudocapacitives et photocatalytiques dans différents conditions.

Ainsi, ce deuxième chapitre traite les méthodes de synthèse des oxydes de MCo_2O_4 et ZnO et l'ensemble des techniques et moyens de caractérisations mis aupoint et employés pour la réalisation de cette étude.

La première partie de ce chapitre met en œuvre le protocole de synthèse sol-gel et coprécipitation utilisé pour élaborer les spinelles cobaltite ainsi que le ZnO et leurs conditions d'élaboration.La seconde partie présente les principes de fonctionnement des différentes techniques d'analyse ainsi que les protocoles opératoires pour les tests pseudocapacitifs et photocatlytiques mises à notre disposition.

1. Techniques expérimentales

1.1Techniques d'élaborations des matériaux MCo2O4et ZnO

1.1.1Synthèse par voie de chimie douce Sol-Gel

La chimie du solide offre divers modes de préparation des catalyseurs oxyde mixtes selon les applications de chaque (spinelle, pérovskite, pyrochlore,...). Les propriétés catalytiques de ces derniers dépendent du mode et des conditions de préparation ainsi que de la température de cristallisation[1], le but étant aussi d'augmenter leurs surfaces spécifiques, ce qui leur confère une activité catalytique plus élevée par effet géométrique[2]. Différentes méthodes sont connues pour la synthèse des oxydes mixtes, comme la voie sol-gel, la méthode de Co-précipitation, synthèse par voie à l'état solide...etc.

Parmi les différentes méthodes utilisées pour la synthèse de matériaux, le procédé sol gel est particulièrement bien adapté à la synthèse de matériaux homogènes, sous forme de poudres ou de films. Lors d'une synthèse par voie sol-gel dite citrates (utilisation de l'acide citrique), les précurseurs moléculaires contenus dans la solution de départ (le sol) polymérisent suivant divers mécanismes et forment un réseau d'oxydes (le gel). Une étape de séchage suivie de traitements thermiques permet d'éliminer les composés organiques pour former le matériau oxyde inorganique. Cette technique présente de nombreux avantages. Parmi les plus significatifs, citons la très grande pureté et l'homogénéité des solutions liées au fait que les différents constituants sont mélangés à l'échelle moléculaire en solution, les contrôles de la porosité des matériaux et de la taille des nanoparticules, les traitements thermiques requis à basses températures ainsi que la synthèse de matériaux inaccessibles par d'autres méthodes[3-4].

Au cours du processus sol gel se produisent des réactions constituant peu à peu les liens présents dans le matériau final et selon leur degré d'avancement se succèdent plusieurs états de la matière [5]:

- Le sol qui est une suspension stable et transparente dans un liquide d'identités moléculaires ou de particules plus ou moins denses de taille comprise entre 1 et 100 nm.
- Le gel qui est un réseau tridimensionnel solide continu dans un liquide. Le point de transition sol-gel est défini par le moment ou un amas polymérique atteint la taille du récipient. La viscosité du sol, qui augmentait avec la croissance de la taille des particules, diverge alors et le solide formé acquiert un module élastique.

- Le gel sec qui est un solide amorphe et poreux obtenu par évaporation du liquide. Le séchage du gel est une étape très délicate, car il est important que le solvant s'évapore de manière très lente afin d'éviter la fragmentation du xérogel, et éviter ainsi les tensions internes apparaissant lors du séchage, pouvant entrainer la fissuration du matériau(xérogel ou aérogel selon les conditions du séchage).
- Le matériau final, cristallisé, densifié et débarrassé des résidus réactionnels par recuit à plus hautes températures.

Figure 2.1 Principale étape d'une synthése d'un matériau par voie Sol-gel.

La grande diversité de matériaux obtenus par voie sol-gel fait que ces matériaux sont utilisés dans de nombreuses applications. Un secteur particulièrement exploité est celui de l'optique, l'incorporation de colorants, de semi-conducteurs, de particules métalliques, de terres rares permet de développer des systèmes, tels des cellules solaires, des lasers à colorant, des miroirs à conjugaison de phase, des luminophores, ...

1.1.2Synthése par Co-précipitation

Il s'agit d'une des méthodes les plus conventionnelles pour la préparation de nanoparticules d'oxydes métalliques.La synthèse par Co-précipitation permet l'obtention de produits de précurseurs par précipitation simultanée de deux cations M et M' (M étant en général un alcalin ou un alcalino-terreux et M'un métal de transition). Généralement après le mélange des deux solutions contenant les cations métalliques, la mesure du pH est nécessaires pour pouvoir suivre l'évolution de la précipitation [6].Après dissolution des masses adéquates

d'oxydes métalliques, les solutions sont mélangées progressivement puis diluées. La précipitation a lieu à froid ou à chaud à un pH donné. Toutes les espèces ont été précipitées à pH basique sous forme d'oxalate ou hydroxyde. Après les étapes intermédiaires de décantation, rinçage et filtration le précipite subit un lavage destiné a lui régler son pH. Puis le produit obtenue est séché pour évaporer le solvant, ensuite broyé pour diminuer la taille des grains des poudres. Finalement le précipite doit subir une calcination pour obtenir la phase oxyde désiré [7].

- 2. Technique de caractérisation
- 2.1Caractérisation physico-chimique
- 2.1.1Analyses Thermique Différentielle(ATD) et Thermogravimétrique (ATG)
 - Principe de la méthode

L'analyse thermique différentielle (ATD) est une méthode utilisée pour déterminer les températures correspondantes à des modifications du matériau en fonction du traitement thermique. Elle consiste à mesurer la différence de température entre un échantillon (T_e) et une référence (T_r) (matériau inerte thermiquement) en fonction du temps ou de la température, lorsqu'ils sont soumis à une variation programmée de température avec ou sans atmosphère contrôlée. D'une manière générale, les transitions de phase et l'évaporation de solvants se traduisent par des pics endothermiques. Par contre, la cristallisation, l'oxydation et certaines réactions de décomposition se caractérisent par des pics exothermiques.

L'ATD est généralement associé à une analyse thermogravimétrique (ATG) qui permet de mesurer la variation d'une masse d'un échantillon en fonction de la température de traitement thermique. Cette variation de masse peut être une perte de masse telle que l'émission de vapeurs ou un gain de masse lors de la fixation d'un gaz par exemple.

L'analyse thermique des précurseurs faite entre 0 °C et 800°C sous air a été faite à l'aide d'un appareil thermogravimétrique-calorimètre à balayage différentiel **TGA-DSC SETARAM SETSYS,** à l'unité de catalyse et de la chimie du solide UCCS, ENSCL, Université de Lille 1.

2.1.2 Diffraction des Rayons X (DRX)

• Principe de la technique

La Diffraction des Rayons X (DRX) est une méthode de base de caractérisation des produits cristallisés. Elle permet d'obtenir des informations sur la nature et la structure des produits cristallisés. Le rayonnement X, de nature électromagnétique, présente des longueurs d'onde du même ordre de grandeur que la distance interatomique des atomes d'un cristal ce qui lui permet d'être diffracté [8]. A partir de l'analyse des données de diffraction, il est alors possible de remonter à la structure cristalline des composésà l'unité de catalyse et du chimie du solide UCCS, ENSCL, Université de Lille 1.

Figure 2.2 Schéma du principe du diffractomètre aux rayons X.

• Etude des diagrammes de DRX sur poudre à température ambiante

L'identification des phases a été analysé par un diffractomètre BRUCKER D8 ADVANCE La source de Rayons X est une anticathode en cuivre (Cu k , λ =1.54056) alimentée par un générateur (40 kV, 40 mA). Les diffractogrammes sont enregistrés dans la gamme angulaire 5-75° avec un pas de 0,02°.

La préparation de l'échantillon est déterminante pour obtenir un diagramme de diffraction de bonne qualité. Pour ce faire, la poudre est tamisée au-dessus du porte-échantillon puis arasée à l'aide d'une lame de rasoir. Cette technique permet d'obtenir une surface plane où les

particules sont réparties de façon homogène, minimisant ainsi l'orientation préférentielle des cristallites.

2.1.3Analyse par microscopie électronique à balayage (MEB)

• Principe de la méthode

La microscopie électronique à balayage constitue un outil très performant dans le domaine des sciences des matériaux car elle permet la description morphologique, l'analyse de la composition (lorsqu'elle est couplée à un système d'analyse X) et à l'étude de l'homogénéité du solide. Le fonctionnement du microscope électronique à balayage est fondé sur l'émission d'électrons produits par une cathode et la détection de signaux provenant de l'interaction dès les différents types de radiations émises électrons avec l'échantillon.

Dans un microscope électronique à balayage standard, les électrons secondaires sont utilisés pour la réalisation des images. En effet, ces électrons sont très sensibles au milieu qui les entoure. Les images sont réalisées par la collecte des électrons secondaires par un détecteur formé d'un scintillateur couplé à un photomultiplicateur (**Figure 2.3**).

Le microscope électronique à balayage

Figure 2.3 : Schéma du principe du microscope électronique à balayage.

• Préparation des échantillons pour l'imagerie MEB

Le microscope utilisé est de marque Philips XL30de l'unité de catalyse et du chimie du solide UCCS, ENSCL, Université de Lille 1. Il présente une résolution maximale de 100 nm. Le microscope est couplé à un détecteur de type EDXS (Energy Dispersive X-Rays Spectroscopy) qui permet une analyse quantitative locale de la composition. Les observations sont réalisées sous différentes tensions (de 5 à 25 kV), selon le type d'observation et la nature de l'échantillon. Les échantillons sont déposés sur du scotch de carbone. Dans le cas des échantillons non conducteurs, on doit procéder à la métallisation de la surface des échantillons car celle-ci doit être conductrice afin d'éviter que l'échantillon ne se charge. Cette étape se fait par évaporation sous vide. L'or est un des éléments qui présente la plus faible résistivité ($\rho = 240 \ \mu\Omega / m$), il est utilisé dans le cadre d'étude en imagerie. En revanche, L'or absorbe beaucoup les rayons X, ce qui le rend inutilisable dans le cadre d'étude par microanalyse X. Dans ce cas, il est fréquent d'utiliser l'élément carbone qui a une forte résistivité ($\rho = 0.35\Omega$ /m), mais qui est peu absorbant pour rayons Xles images MEB ont eux aussi fait à l'unité de catalyse et du chimie du solide UCCS, ENSCL, Université de Lille 1.

2.1.4Spectroscopie X à dispersion d'énergie (EDX)

• Principe de la méthode

La spectroscopie X à dispersion d'énergie utilise les rayons caractéristiques générés dans un échantillon irradié, par un faisceau d'électrons pour l'identification des éléments chimiques. Si l'on concentre une sonde fine d'électrons en un point d'un photon d'un échantillon et que nous analysons l'émission X, nous pouvons avoir une information sur la composition chimique du point considéré, cette méthode est utilisée pour déterminer les éléments présents dans la cible, ou bien connaitre localement la composition pondérale de la cible [7].

• Appareillage

La composition chimique des échantillons a été déterminée par la spectroscopie X à dispersion d'énergie (EDX) dans un instrument de Quanta microscopique à par un appareil de type SUTW-SAPPHIRE, toujours à l'unité de catalyse et du chimie du solide UCCS, ENSCL, Université de Lille 1.

2.1.5Analyse par spectroscopie infrarouge à transformée de Fourier (FTIR)

• Principe de la méthode

La spectroscopie infrarouge est l'une des techniques spectroscopiques d'absorption, non destructives, les plus utilisées. Cette technique de caractérisation permet d'obtenir des informations sur les modes vibratoires de molécules, et, en particulier, sur la chimie des surfaces des catalyseurs hétérogènes.

Les spectres des poudres étudiés représentent soit leur absorbance, soit leur transmittance T_r , en fonction du nombre d'onde dans un domaine de 400 cm⁻¹ à 4000 cm⁻¹.

• Préparation des échantillons

Les spectres de l'infrarouge ont été fait à l'aide d'un spectromètre à transformé de Fourrier type **SHIMADZU8400S-FTIR**à l'université de Jijel, entre un nombre d'onde compris entre 400-4000 cm⁻¹.Les pastilles des poudres à analyser sont formées de 1% en masse du produit préalablement broyé et dispersé dans du KBr. Les pastilles ont été compactées sous une pression de 10 Tonnes par cm² (10 kbars) pendant 5 minutes, de façon à obtenir des pastilles translucides de 10 mm de diamètre.

L'étalonnage de l'appareil est réalisé à l'aide d'une pastille de KBr pur, bien séchée au paravant dans une étuve à 150°C, car il est hygroscopique. L'attribution des bandes aux différents modes de vibration se fait par comparaison avec celles citées dans la littérature [8].

2.1.6 Mesure de surfaces spécifiques par analyse BET

• Principe de la méthode

La surface spécifique des poudres a été mesurée à l'aide de la méthode mise au point par Brunauer-Emmett-Teller et appelée BET. Cette procédure est basée sur lesphénomènes de physisorption des gaz à la surface d'un matériau. Pour cela, à une température et une pression relative d'un gaz P/P₀(avec P la pression à l'équilibre du gaz et P₀ la pression de vapeur saturante) données, la quantité de gaz physisorbée à la surface du matériau est mesurée [10]Ces mesures permettent d'obtenir les isothermes d'adsorption. A l'aide de ces courbes le volume adsorbé est évalué lors du tracé de la courbe $\frac{P}{V_{ads}(P_0-P)}$ en fonctionP/P₀

Ce terme doit être positif. L'extrapolation linéaire de la droite sur le domaine $0,05 < P/P_0 < 0,35$ permet de déterminer le volume correspondant à l'adsorption de la monocouche V_m et calculer la surface spécifique en fonction de la masse analysée.

2.2Caractérisation électrochimiques

2.2.1Tests pseudocapacitifs

Cette partie sera dédiée à la présentation d'une manièrebrève des techniques mises en œuvre pour la caractérisation des électrodes et les tests de supercondensateurs.

Les tests sont obtenus grâce à des montages à trois électrodes immergées dans l'électrolyte étudié soit 1M de KOH ou bien 1M Na₂SO₄. Ces trois électrodes sont :

- ✓ L'électrode de travail : elle est l'électrode analysée et est le siège des réactions étudiées. C'est son potentiel qui va êtreenregistré par rapport à l'électrode de référence.
- ✓ L'électrode de référence : elle possède un potentiel connu et constant et permet de suivre le potentiel imposé à l'électrode de travail grâce à un potentiostat permettant de lire la différence de potentiel entre l'électrode de travail et une électrode de référence. La connaissance de la nature de l'électrode de référence est nécessaire (son potentiel est donné par rapport à l'électrode Standard à Hydrogène (ESH), référence absolue de potentiel choisi égal à 0V par convention international). Dans notre travail, l'électrode de référence utilisée est une électrode au calomel saturée Hg/Hg₂Cl₂/KCl dont le potentiel par rapport à l'ESH est de +0.234V à T=25°C.
- ✓ La contre électrode : elle permet d'assurer le passage du courant dans le système à trois électrodes. Elle est formée d'un matériau inerte chimiquement (platine ou carbone vitreux) et est dotée d'une surface suffisante pour ne pas limiter le passage du courant.

• Appareillage

Les tests électrochimiques sur nos électrodes élaborés ont été réalisés en utilisant un potentiostat/galvanostat de RadiometerAnalytical de type Voltalab 40PGZ301 et un autre de type Voltalab 21PGZ201. Le logiciel Voltamaster 4 a été utilisé pour l'acquisition des données.

Figure 2. 4 : Image du potentiostat/galvanostat de RadiometerAnalytical de type Voltalab 40PGZ301.

Pour faire les tests de supercondensateur, les électrodes ont été testépar deux méthodes de caractérisation électrochimiques :

-Voltamétrie cyclique (CV)

-Spectroscopie d'impédances électrochimiques (SIE).

2.2.2Voltammétrie cyclique

La voltampérométrie cyclique (ou voltammétrie cyclique) est une technique de mesure électrochimique potentiodynamique. Un balayage en potentiel à vitesse constante est imposé à la cellule. Le potentiel varie linéairement avec le temps et s'exprime selonl'eq 2.1, et on mesure le courant pour chaque valeur de potentiel appliqué. En faisant varier le potentiel des électrodes étudiées, un courant est produit suite aux réactions électrochimiques se déroulant à ces dernières, nous parlons alors d'un courant faradique. En l'absence d'un courant faradique seule l'accumulation des ions chargés sur la surface des électrodes polarisées produit un courant que l'on nomme capacitif. . Le voltamogramme d'un supercondensateur idéal est rectangulaire : il n'y a pas de réaction faradique et les phénomènes sont réversibles. Les écarts observés à cette forme rectangulaire sont expliqués par l'existence de résistances en série ou en parallèle (résistances de contact dans l'électrode et résistance de l'électrolyte dans les pores).[9] La voltammétrie cyclique nous permet en particulier de savoir où se situent les potentiels d'oxydation et de réduction des espèces présentes dans les électrolytes étudiés, de définir les limites électrochimiques des électrolytes et électrodes utilisés (fenêtre électrochimique) ainsi que de déterminer la capacitance spécifique (massique ou surfacique) des matériaux[10]. Les résultats sont représentés sous forme d'un voltamogramme cycliqueFigure 2.5.

E = E0 + vt (2-1)

Figure 2.5 : Voltamogramme d'un supercondensateur idéal (a), d'un condensateur et d'unerésistance montés en série (b) ou en parallèle (c) et d'un supercondensateur réel (d).

2.2.3 Spectroscopie d'impédance électrochimique

La spectroscopie d'impédance électrochimique, aussi nommée impédance complexe, consiste en la mesure de l'impédance d'un système électrochimique polarisé en fonction de la fréquence du signal appliqué. Si les autres méthodes électrochimiques permettent de déterminer la plupart des paramètres électrochimiques d'une cellule, la spectroscopie d'impédance reste une technique de choix pour approfondir la connaissance du système et, en particulier[11], pour construire un modèle de circuit électrique équivalent. Dans une expérience de spectroscopie d'impédance usuelle, une tension électrique alternative U(t) = U0 *sin wt*est appliquée aux électrodes avec une faible amplitude (typiquement 5 ou 10 mV) et en variant la fréquence du signal (généralement de 1 MHz à 1 mHz). Pour chaque fréquence nous enregistrons l'impédance Z (qui est donc la mesure de l'opposition/résistance d'un circuit électrique au passage d'un courant sinusoïdal). Le résultat obtenu est un spectre d'impédance qui nous permet de déterminer en particulier la résistance série de la cellule (résistance de l'électrolyte principalement) R_s et celle de transfert de charge R_{tc} entre électrolyte et électrode. Il met également en évidence la droite de Warburg (droite autour de

45°), qui nous permet d'évaluer la plus ou moins bonne diffusion des ions de l'électrolyte dans la porosité du matériau d'électrode (selon l'inclinaison de cette droite) [12].

Ce spectre d'impédance est un diagramme de Nyquist représentant l'évolution de la partie imaginaire de l'impédance Z_i en fonction de sa partie réelle Z_r sachant que ($Z = Z_r + j Z_i$) et que (Z = 1/R).

L'impédance complexe s'écrit alors $Z = Z_r + jZ_i$. Le modèle d'un supercondensateur, est constitué d'une résistance et d'un condensateur montés en série. Or l'impédance d'une résistance est un réel R et l'impédance d'un condensateur est un imaginaire. L'impédance complexe d'un circuit RC est donc de la forme :

$$Z = R + \frac{1}{jC\omega}(2-2)$$

L'équation(2-2) montre que, à haute fréquence (ω_{∞}) , l'impédance tend vers une résistance pure et qu'à basse fréquence (ω_0) , l'impédance tend vers une capacité pure. La partie à basse fréquence, qui correspond au comportement capacitif du supercondensateur, est caractérisée par une droite quasiment verticale et prend en compte tous les phénomènes cinétiques. Lorsque la fréquence augmente,nous observons la transition entre les comportements capacitifs et résistif du supercondensateur. La fréquence du coude caractérise cette transition.

La partie à haute fréquence, qui correspond au comportement résistif du supercondensateur, est caractérisée par une droite de pente 45°, appelée région de Warburg et correspond aux différentes résistances du supercondensateur (résistances électroniques des matériaux, résistances de contact...).

Les calculs de la capacité spécifique sont faits à l'aide de la relation :

$$c = \frac{\int IdV}{mv\Delta V} \tag{2-3}$$

Ou : m est la masse du matériau actif (g), v est la vitesse de balayge (V.s⁻¹), ΔV est la fenêtre de potentiel de travail (V) et $\int I dV$ est la surface intégrée de la courbe de CV.

3.3Tests photocatalytique

3.3.1Réacteur sous irradiation solaire naturelle

Les expériences sous irradiations solaires ont été réalisées dans des béchers en Pyrex de 250

mL ouverts à l'atmosphère (**Figure 2.6**). Les solutions à traiter en présence du photocatalyseur ont été exposées à la lumière solaire pendant les jours ensoleillés àl'université de Mohammed Sedik ben Yahia (en face du laboratoire de recherche).

L'évaporation de l'eau a été évaluée durant les expériences photocatalytiques.Elle dépendait de la température de chaque journée. La photolyse des solutions (en absence dephotocatalyseur et/ou de l'oxydant) a été faite en parallèle avec les expériences photocatalytiques afin d'évaluerla contribution de la photolyse directe sous la même intensité solaire.

Figure 2.6 : Schémas du montage des testsphotocatalytiques sous irradiations solaire.

• Choix des colorants

Le choix des deux colorantsbleue de méthyléne (BM)etdu colorant (RC)comme molécule modèle est basé sur les caractéristiques suivantes :

- Solubilité élevée.
- Analyse simple par spectrométrie UV/visible.
- Faible volatilité (ou nulle).
- -BM cationique et RC anionique.

Caractéristique	Bleu de méthyléne	Rouge congo		
des colorants				
structure		$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & &$		
Masse molaire	319,852 ± 0,022 g/mol	$696,663 \pm 0,04 \text{ g/mol}$		
solubilité	50g.1 ⁻¹ dans l'eau à 20°C	$25 \text{ g} \cdot 1^{-1}$ dans l'eau à 20 °C		
Utilité	- textile	- textile		
	- colorant en bactériologie	- colorant en bactériologie		
Volatilié	Faible	Faible		

Tableau 2.1 Caractéristique physico-chimique du bleu de méthyléne et du rouge congo.

3.3.2Méthodologie expérimentale pour les tests photocatalytiques

3.3.2.1Préparation des solutions

Les solutions mères du BM et du RC ont été préparé par dissolution d'une quantité de ce colorant en milieu aqueux (eau distillée) tout en tenant compte de sa solubilité. Les solutions filles devant servir à l'analyse, ont été obtenues par des dilutions successives jusqu'aux concentrations désirées. Des courbes d'étalonnage des deux colorant ont été établies pour le calcul des concentrations résiduelles pour les diverses techniques expérimentales.

3.3.2.2Techniques d'analyse

• pH-mètre

Les mesures de pH (plus précisément les ajustements) ont été effectuées à l'aide d'un pHmètre de type (HANNA, HI 8521). L'étalonnage de l'appareil a été réalisé avec dessolutions tampons commerciales à pH 4,0, 7,0 et 10,0.

• Spectroscopie d'absorption UV-visible

La spectrophotométrie est une méthode analytique quantitative qui consiste à mesurer l'absorbance d'une substance chimique donnée, généralement en solution. Son principe est

basé sur la mesure de la différence entre lumière incidente et lumière transmise par la solution. En effet, Lorsqu'une lumière d'intensité I_0 passe à travers cette solution une partie de celle-ci est absorbée par le soluté, et l'autre partie sera transmise avec une intensité linférieure à I_0 . L'absorbance, est une valeur positive, sans unité. Elle est d'autant plusgrande que l'intensité transmise est faible.

L'absorbance est définit comme suit:

$$A = \log \frac{I_0}{I} = -\log T \varepsilon_{\lambda} \tag{2-4}$$

$$T = \frac{I}{I_0} \tag{2-5}$$

La loi de Beer-Lambert (2-4) indique que pour une longueur d'onde λ , l'absorbance d'une solution est proportionnelle à sa concentration et à la longueur du trajet optique (épaisseur de la solution traversé par la lumière).

$$A = \log \frac{I}{I} = \varepsilon_{\lambda}. l. C$$
(2-6)

 A_{λ} : Absorbance ou densité optique à une longueur d'onde λ (sans unité).

 ϵ_{λ} : Coefficient d'extinction molaire, il dépend de la longueur d'onde λ et de la nature chimique de l'entité (L.mol⁻¹.cm⁻¹).

l: Longueur du trajet optique dans la solution traversée, elle correspond à l'épaisseur de la cuve utilisée (cm).

C : Concentration de la substance absorbante $(mol.l^{-1})$.

Selon la loi de Beer-Lambert, l'absorbance est additive (mais non la transmittance). Ainsi,pour une solution contenant plusieurs substances absorbantes, l'absorbance de la solutionest la somme de leurs absorbances.

Le spectrophotomètre UV-visible de marque Optizen Pop a été utilisé pour déterminer les spectres d'absorption du bleue de méthyléne (BM) et du rouge congo (RC). Les différents échantillons de 'BM et du RC prélevés au cours du traitement de la photocatalyse à des longueur d'ondes égale à 665 et 495 nm respectivement correspondante au maximum d'absorbance des colorants. L'évolution de leur concentration au cours du traitement est calculée à partir de la courbe de calibration construite à partir des étalons chapitre 3 partie c (étude spectrale du BM et du RC), par application de la loi de Beer – Lambert.

3.3.2.3 Utilisation du ZnO et MCo₂O₄ pour le traitement photocatalytique

En général, pour évaluer la photoactivité d'un photocatalyseur, le rendement de dégradation

photocatalytique en présence du photocatalyseur sous irradiation UV solaire est comparé avec lesrendements de l'adsorption à l'obscurité et la photolyse directe sous les mêmes conditions. Dans cette partie, l'efficacité photocatalytique des différents oxydes préparés a été déterminée sousirradiation UV solaire comme cité auparavant. Nous avons choisi le bleue de méthyléne comme modèle de polluantsorganiques. Les expériences photocatalytiques ont été effectuées en utilisant les rayons solaires représentés dans la **Figure 2.6**(page 61). Pour cela, une masse du photocatalyseur (0.01 g) est mise en contact avec 100 mL de la solution du BMdeconcentration10mg.I⁻¹ sous rayonnement solaire pendant 3 h. Le suivi de la réaction photocatalytique se fait par colorimétrie en prélevant à des intervalles de temps, 4mL de lasolution du BM. Les particules de suspension du photocatalyseur ont été éliminées par centrifugation. Lesexpériences d'adsorption du BM ont été réalisées à l'obscurité dans les mêmesconditions. La photolyse directe a été faite pour la même concentration du BM en absence du photocatalyseur sous irradiation UV solaire.

Références

[1] R. Xu, W, Pang, Q. Huo, Modern inorganicsyntheticChemistry. Elsivier.

[2]Yann Dandeville. Analyse thermique et électrochimique de supercondensateurs carbone-MnO₂ en milieu aqueux. Génie des procédés. Université de Nantes, 2012. Français.

[3] Daniel AMORIN ROSARIO, Synthèse et Recyclage de Catalyseurs Métallodendritiques par leur Greffage sur des Nanoparticules Magnétiques, L'UNIVERSITÉ BORDEAUX 1, 2009.

[4]G. R. Williams, A. Norquist, D. O'Hare,Formation of Second-Stage Intermediates in Anion-Exchange Intercalation Reactions of the Layered Double Hydroxide $[LiAl_2(OH)_6]Cl\cdot H_2O$ As Observed by Time-Resolved, in Situ X-ray Diffraction,Chem. Mater.,16 (2004) 975.

[5] S. G. Krishnan, M. H,Ab Rahim, R.Jose.Synthesis and characterization of $MnCo_2O_4$ cuboidal microcrystals as a high performance pseudocapacitor electrode.Journal of Alloys and Compounds 656 (2016) 707-713.

[6] F. S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, S. Ramesh, A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor, J. Alloys Compd. 716 (2017) 96–105.

[7] Aurelie Rosset. Synthèse et caractérisation de nanoparticules catalytiques pour une application en photocatalyse solaire. Autre. Université de Perpignan, 2017.

[6] F. Zaviska, P. Drogui, G. Mercier, J.-F. Blais, Procédés d'oxydation avancée dans le traitement des eaux et des effluents industriels :Application à la dégradation des polluants réfractaires, Revue des sciences de l'eau. 22 (2009) 535-564.

[8] Alexis Quentin. Modifications structurales de spinelles sous irradiation. Matière Condensée .Université de Caen, 2010. Français.

[9] S. Vijayakumar, S. Nagamuthu, S.H. Lee, K.S. Ryu, Porous thin layered nanosheets assembled $ZnCo_2O_4$ grown on Ni-foam as an efficient electrode material for hybrid supercapacitor applications, Int J Hydrogen Energy. 44 (2017) 3122–3129.

[10] Stéphanie Capdeville. Couches minces de ferrites spinelles à propriétés semiconductrices destinées à la réalisation de microbolomètres. Matériaux.Université Paul Sabatier - Toulouse III, 2005.

[11]L. Liu, H. Zhang, L. Fang, Y. Mu, Y. Wang, Facile preparation of noveldandelion-like Fe-doped NiCo₂O₄microspheres@nanomeshes for excellent capacitive property in asymmetricsupercapacitors, J. Power Sources. 327 (2016) 135–144.

[12] V.T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang, Q.A. Vu, D.T. Pham, J. Lee, S.W. Kim,Y.H. Lee, Coaxial Fiber Supercapacitor Using All-Carbon Material Electrodes, *ACS Nano*. 7 (2013) 5940–5947.

Chapitre 3 Résultats

et

Discussion

Partie A: Synthèse et caractérisation physicochimique des oxydes MCo₂O₄et ZnO Introduction

L'élaboration d'oxyde connu, en vue de leur intégration dans deux différents domaine fait partie des challenges proposé dans notre travail, pour cela dans cette première partie et a partir de la rechercher bibliographique faite aux chapitre 1 et 2 nous avons synthétisé les oxydes MCo₂O₄(M=Zn, Mn, Cu, Ni) par la méthode sol gel dite citrate ainsi que le ZnO par le sol gel et coprécipitation. Pour les identifier, nous les avons fait soumettre à différentes techniques de caractérisation physicochimique à savoir DRX, ATD/ATG, MEB,FTIR, EDS, BET.

1. Synthèses des matériaux MCo₂O₄(M=Zn, Mn, Cu, Ni) par voie sol gel

Beaucoup de travaux ont été effectué sur la synthèse et la caractérisation des spinelles cobaltites par différente méthode physicochimique ou bien électrochimique pour des tests de supercondensateurs ou de catalyse [1-2], l'efficacité et la facilité que nous offre la méthode sol gel, nous ont poussées à l'utiliser comme méthode de synthèse des oxydes MCo_2O_4 .

La synthèse des spinelles cobaltite MCo_2O_4 (M=Ni, Mn, Cu, Zn) a été préparé par voie sol gel en utilisant 1 mole de $M(NO_3)_2.6H_2O$ et 2 mole de $Co(NO_3)_2.6H_2O$ sachant que les précurseurs n'ont subi aucun traitement préalable. Les deux précurseurs ont été dissous séparément dans 50ml d'eau distillée chacun, puis ont été mélangé et agitées jusqu'à l'obtention d'une solution homogène. L'acide citrique a été ajouté après comme agent complexant et le tout est chauffé à 80°C en maintenant l'agitation jusqu'a l'obtention d'un gel. Ce dernier est séché à 110°C puis calciné à 550°C pendant 5 h sous air.

Dans ce qui suit pour abrévier les noms de oxydes, le $NiCo_2O_4$ sera mentioné de la façon suivante NCO, le CuCo₂O₄sera CCO, le ZnCo₂O₄sera ZCO, et le MnCo₂O₄ sera MCO.

2. Synthèse de ZnO par sol gel et Co-précipitation

2.1 Synthèse de ZnO par sol-gel (ZnO SG)

Le même protocole qui a été suivi lors de la synthèse des spinelles MCo_2O_4 est suivi pour la synthèse de l'oxyde ZnO. Sauf pour l'utilisation des précurseurs nous avons utilisé que les nitrates de zinc, l'agent complexant est toujours l'acide citrique, et une fois la poudre amorphe est obtenue, elle est calcinée à 550°C pendant 5h pour pouvoir faire après l'étude comparatifs avec les autres spinelles.

2.2 Synthèse de ZnO par Coprécipitation (ZnO cop)

Pour la synthèse du ZnO par coprécipitation, les nitrates de zinc sont dissous dans de l'eau distillée, avec la stockiométrie adéquate en maintenant l'agitation. L'obtention de l'hydroxyde de zinc $Zn(OH)_2$ fut obtenue par la précipitation des ions Zn^{+2} en ajoutant une solution de 2M de KOH. Le précipité obtenu filtré et lavé plusieurs fois avec de l'eau distillée, puis séché à 110°C, pour être calciné à 550°C pendant 5h.

3. Caractérisation physicochimique

3.1 Caractérisation physicochimique des spinelles MCo₂O₄

• Analyse thermogravimétrique (ATD/ATG)

Dans le but de connaitre la perte de masse accompagné lors du processus de calcination et de déterminer la température de calcination, l'analyse thermogravimétrique de nos précurseurs est présentée dans la **Figure 3.1**.D'abord il faut noter que le processus de décomposition pour les quatre matériaux se ressemble et le pourcentage de perte de masse globale entre 57 et 69% entre 25°C et 550°C.

Nous avons 3 perte de masse pour chaque matériaux. La 1^{iére} perte de masse est entre [T_{amb}-250°C], accompagné d'un pic endothermique, elle est attribuée majoritairement à la disparition de l'eau surfacique et structurale [2, 4, 5], cette décomposition est accompagnée d'un faible pic endothermique à une température égale à 205° C pour le ZnCo₂O₄ et le NiCo₂O₄ et une température égale à environ 165°C pour le MnCo₂O₄ et le CuCo₂O₄. La 2^{éme} perte de masse accompagnée d'un intense pic exothermique à environ 380°C est attribué à la décomposition de l'hydroxyde-citrate M-Co en oxyde plus stable [4,5]. Etrangement le pourcentage de perte de masse dans le 2^{éme} palier est presque identique ces matériaux, cela signifie que la formation des spinelles types MCo₂O₄commence à environ 350°C. Cette information a été confirmé par plusieurs travaux antérieurs [6, 7]. Le dernier palier qui est audelà de 400°C est dû à la décomposition complète de l'hydroxy-citrate MCo₂O₄ en spinelle stable [7]. Au-delà de la température de 550°C serait idéale pour le traitement thermique de ces spinelles.

• Analyse par diffraction des rayons X (DRX)

La **Figure 3.2** montre le spectre de diffraction des rayons X des matériaux (MCo₂O₄) traité à 550°C pendant 5h. Le diffractogramme du produit final de MCo₂O₄ convient très bien avec celui du modèle standard (JCPDF card N 23-1237 : groupe d'espace Fd3m $a=b=c=8.265\pm0.003$, $\alpha=90^{\circ}$) [5,7]. Pour celui du ZnCo₂O₄les raies de diffractions correspondent au standard (JCPDF card N 23-1390 : groupe d'espace Fd3m

a=b=c=8.096±0.006, α =90°) [8].Aucun autre pic d'une seconde phase n'est observé pour ces deux phases.

Par contre pour la phase NiCo₂O₄, son diffractogramme convient au modèle (JCPDF card N 20-0781: groupe d'espace Fd3m a=b=c= 8.099 ± 0.011 , $\alpha=90^{\circ}$) et son spectre exhibe d'autre pic d'une autre phase secondaire qui est NiO à 2 θ égale à 38 et 43°[9,10].

La phase CuCo₂O₄ qui correspond au modèle standard (JCPDF card N 01-1155 le groupe d'espace Fd3m a=b=c= 8.071 ± 0.011 , $\alpha=90^{\circ}$)[11-12], montre elle aussi d'autre pics d'une autre phase secondaire le CuO à 2 théta égale à 43et 59 °. L'apparition de l'oxyde de Nickel et de l'oxyde de cuivre sont généralement présentent lorsque nous augmentons la température au delà de 350° C [11], sachant que la spinelle NiCo₂O₄et le CuCo₂O₄ sont instable thermodynamiquement et tente de se décomposer en NiO et CuO [12, 13].

Figure 3. 2:Spectre de DRX de MCo₂O₄ (M=Ni, Mn, Cu, Zn) traité à 550°C.

• Etude des matériaux par spectroscopie infrarouge (FTIR)

Le spectre FTIR des composés MCo_2O_4 traité à 550°C est représenté dans la **Figure 3.3**. une large bande entre [3100-3600 cm⁻¹] et une autre bande à 1632 cm⁻¹ pour les quatre

matériaux correspondent respectivement à une vibration d'élongation et d'étirement -OH de la molécule d'eau adsorbée[14-15].La bande à 1140 cm⁻¹ très bien observé pour le NiCo₂O₄ et le CuCo₂O₄ est attribué à la vibration d'élongation de NO³⁻[16]. Par contre pour les bandes observé à 550 jusqu'à 680cm⁻¹ sont probablement lié à la vibration d'élongation de la liaison M-O (M=Zn,Cu,Ni,Mn) [16-17] ainsi qu'à la vibration d'élongation de Co-O [18-19]. La dernière bande observée chez le NiCo₂O₄ à 557cm⁻¹est assignée à la liaison M-O pour la phase secondaire NiO [17], confirmant ainsi les résultats obtenus par DRX.

Figure 3.3 : FTIR des composés MCo₂O₄traité à 550°C.

• Microscope électronique à balayage (MEB)

Pour accéder à la morphologie des particules d'oxydes nous avons utilisé le microscope électronique à balayage. La **Figure 3.4** montre l'imagerie MEB des matériaux MCO traité à 550°C pendant 5h.Les quatre matériaux sont denses et exhibent une certaine hétérogénéité dans la distribution des particules à leur surface. Cependant nous pouvonsc

onstater que pour le CuCo₂O₄(c) et le MnCo₂O₄(b) la forme des microparticules est plus homogène que les deux autres oxydes, et se caractérise par une forme pyramidale aidant ainsi au développement de la surface de contacte entre l'électrode et la solution de l'électrolyte[11-16]. Contrairement au NiCo₂O₄(a) et le ZnCo₂O₄(d) la forme des microparticules est de tailles variées, cela peut conduire à une diminution de la surface spécifique ainsi qu'une diminution des réactions redox à l'interface des matériaux [15].

Figure 3.4:MEB du composé MCo₂O₄ : (a) NiCo₂O₄, (b) MnCo₂O₄, (c)CuCo₂O₄, (d) ZnCo₂O₄.

• Etude par analyse élementaire (EDS)

Les oxydes spinelles MCO ont été soumis à une analyse élémentaire pour confirmer la composition des oxydes. Les résultats obtenus sont présentés dans la **Figure 3.5.** Nous pouvons voir que la majeur composition élémentaire des matériaux est M=Zn, Ni, Cu, Mn, l'oxygène et le cobalt. L'apparition de l'or et du carbone est dû à la technique de métallisation comme il a été mentionné déjà dans le chapitre 2 page 55.Nous remarquons que le pourcentage des éléments diffère d'un matériau à un autre probablement à cause de la

Chapitre 3

différence de l'occupation des cations des matériaux dans les sites cristallographiques. Cela va certainement influencer les propriétés supercapacitives des matériaux.

Figure 3.5:EDS des composés MCo₂O₄ : (a)ZnCo₂O₄, (b)MnCo₂O₄, (c)CuCo₂O₄,(d)NiCo₂O₄.

• Etude de la surface spécifique

Les résultats de la surface spécifique calculée à partie de la méthode BET sont montrés dans le **tableau 3.1**. Les valeurs de la surface spécifique obtenue pour les quatre spinelles sont

faibles, cela confirme les résultats précédant du MEB révélant que les matériaux sont denses. Dans ce cas-là nous parlons d'une macroporosité.

МСО	NCO	МСО	ССО	ZCO
Surface spécifique (m ² /g)	2	6	10	3

Tableau 3.1 surface spécifique des oxydes MCO mesurée par la méthode de la BET.

3.2 Caractérisation physicochimique de ZnO SG et ZnO Cop

• Analyse par diffraction des rayons X (DRX)

Des analyses structurales ont également été effectuées par DRX sur les poudres de ZnO SG et du ZnO Cop. Les diffractogrammes des rayons X sont présentés sur la **Figure 3.6**. Les principales raies de diffraction sont indexées comme étant des réflexions des plans de ZnO (100), (002), (101), (102), (110), (103), (200), (112) et (201) correspondant respectivement aux angles de diffractions à $2\theta = 31,74^{\circ}$, $34,72^{\circ}$, $36,27^{\circ}$, $47,53^{\circ}$, $56,58^{\circ}$, $62,83^{\circ}$, $66,43^{\circ}$, $67,99^{\circ}$ et $69,0.8^{\circ}$.

Ainsi les résultats obtenus sont en accord avec le diffractogramme standard de la poudre ZnO SG et Cop (JCPDS No 36-1451) [20]. A partir des raies de diffraction les paramètres de maille sont a= $3.24A^\circ$ et c= $5.193A^\circ$, sachant que l'ensemble du composé se cristallise dans une structure hexagonale Wurtzite (groupe d'espace P63mc)[21]. Notons également qu'aucune phase secondaire n'a été détectée qui pourrait indiquer la présence d'hydroxyde de zinc (Zn(OH)₂) ou autre oxyde.

Figure 3.6:Spectre de DRX de ZnO traité à 550°C.

• Analyse par spectroscopie infrarouge (FTIR)

La **Figure 3.7** montre les spectres IRTF (4000-400 cm⁻¹) superposés des échantillons ZnO SG et ZnO Cop. L'examen de ces spectres fait apparaître des bandes d'absorption qui peuvent être assignées comme suit:

- (i) la bande centrée vers 1635 cm⁻¹ est attribuée aux vibrations de déformation des groupements OH des molécules H₂O adsorbées par les ZnO SG et Cop [20]. La bande large située dans l'intervalle 3200-3600 cm⁻¹ correspond aux vibrations d'élongation des groupements OH⁻ de la couche octaédrique [20-22].
- (ii) Les bandes situées à 595 et 659 cm⁻¹ sont attribuées respectivement aux vibrations de déformation des liaisons Zn-O [22].
- (iii) La bande à 1128 cm⁻¹est caractéristique de vibrationNO₃⁻[20].

Il est important de souligner que les bandes observées chez les deux ZnO sont superposées, mais les bandes du ZnO SG sont plus intense que celle observée pour le ZnO Cop laissant prédire que le ZnO SG présente une meilleure cristallisation.

Figure 3. 7: Spectre FTIR du ZnO SG et Cop traité à 550°C.

Partie B : Etude du caractère supercapacitif des spinelles MCo₂O₄

1. Définition du système électrochimique

Afin d'étudier leurs propriétés électrochimiques, les oxydes types spinelles cobaltites précédemment synthétisés sont préparés sous forme d'électrodes**section1.1 chapitre 3 partie B**, c.-à-d. des pastilles pressées. Les électrodes constituent la matière active qui est la spinelle cobaltite. Le mode de préparation des électrodes, les configurations électrochimiques utilisées (cellules et électrodes), sont décrit dans le chapitre 2. Précisons que les grandeurs spécifiques sont rapportées à la masse de matériau actif.

1.1 Préparation des électrodes

Chaque électrode est constituée d'un matériau principal dit « actif » à fonction pseudocapacitive, d'un matériau de bonne conductivité électronique, permettant d'améliorer celle de l'électrode, et d'un liant organique assurant la tenue mécanique des électrodes. Le matériau permettant d'améliorer la conductivité électrique est du noir de carbone de type « Black Furnace ». La surface spécifique de ce noir de carbone est faible (35 m²/g) et il est introduit à une masse égale de 20 % de la masse totale de l'électrode. Cette quantité permet d'assurer une bonne percolation électrique entre les particules du matériau actif sans affecter significativement la capacité de l'électrode. Le liant utilisé est une goutte de l'huile de paraffine utilisée pour garantir une tenue mécanique suffisante. La matrice polymère ainsi formée est suffisamment poreuse pour ne pas affecter la diffusion des ions dans l'électrode.

Les électrodes sont obtenues en broyant fermement dans les proportions massiques définies (80% de la matière actives (oxyde) et 20% du noir de carbone) [3] puis les quelques gouttes de l'huile de paraffine sont ajoutées pour assurer un mélange homogène. La pate visqueuse obtenue est ensuite pressée à l'aide d'une presse hydraulique pour obtenir des pastilles d'environ 100 μ m d'épaisseur, la pastille obtenue est mise au four à 80°C plusieurs heures pour éliminer l'excès de l'huile de paraffine, puis à 500°C pendant 2h pour assurer un meilleure compactage de la pastille.

Ensuite nous avons utilisé la laque d'argent comme collecteur de courant, et un fil électrique en cuivre afin d'assurer le contact électrique, enfin un enrobage de l'électrode par une résine a été effectué pour éviter toute pénétration des solutions électrolytique.

Après ce traitement, les électrodes de travail sont plongées directement dans la solution d'électrolyte 1M KOH ou Na₂SO₄1h avant les tests électrochimiques selon les expériences.

1.2Le choix de la fenêtre de potentiels

Nous avons restreint notre étude aux milieux aqueux qui sont peu coûteux, meilleurs conducteurs ioniques et plus respectueux de l'environnement que les milieux organiques (sels, solvants, liquides ioniques) [16-23]. En contrepartie, les tensions atteintes sont plus faibles car limitées par la fenêtre de stabilité de l'eau (1,23 V du point de vue thermodynamique). Celleci est délimitée à haut potentiel par l'oxydation de l'eau (ou OER pour Oxygen Evolution Reaction), sur l'électrode, et à bas potentiel par la réduction de l'eau (ou HER pour Hydrogen Evolution Reaction. Ces deux réactions génèrent respectivement de l'oxygène et de l'hydrogène, selon les équations (3-1) et(3-2).

$$H_2O \longrightarrow \frac{1}{2}O_2 + 2H^+ + 2e^- \quad ou \quad 2OH^- \longrightarrow \frac{1}{2}O_2 + H_2O + 2e^- \tag{3-1}$$

$$H^{+} + e^{-} \longrightarrow \frac{1}{2} H_2(g) \text{ ou } H_2O + e^{-} \longrightarrow \frac{1}{2} H_2(g) + OH^{-}$$
(3-2)

1.3 Le choix du milieu électrolytique

Parmi les milieux aqueux, les milieux acides concentrés sont les plus conducteurs (740 mS/cm pour l'acide sulfurique), viennent ensuite les milieux basiques concentrés (530 mS/cm pour KOH) et les milieux neutres [24]. Comme les oxydes spinelles cobaltites se dissolvent dans les milieux acides concentrés, la partie caractérisations électrochimiques sera réalisée dans des électrolytes basiques concentrés à base de KOH 1M et d'autres tests seront également effectués en milieu neutre Na₂SO₄ 1M afin d'étudier l'influence de l'électrolyte. Pour choisir l'intervalle de potentiel de travail, nous allons procéder à des tests de voltamétrie cyclique de façon a ne pas dépasser le potentiel au-delà duquel l'oxydation de l'eau n'est plus négligeable par rapport à l'oxydation du matériau. Le choix de la concentration de 1M n'est pas pris aussi au hasard puisque d'après certain travaux [12-21-25], la distinction entre l'oxydation de l'électrolyte n'est plus possible pour des concentrations en KOH très faible.

2. Etude du supercondensateur MCo₂O₄ (M=Ni, Zn, Cu, Mn) dans le milieu KOH 2.1 Caractérisation par voltamétrie cyclique

Avant de soumettre nos matériaux à la dur épreuve de la durée de vie, il faut comprendre d'abord les phénomènes électrochimique qui reine sur ces matériaux, pour cela nous avons commencé de faire une activation électrochimique. L'enjeu de cette dernière est d'oxyder suffisamment l'électrode pour en extraire un maximum de capacité, sans trop bien sur oxyder l'électrolyte afin de maintenir des rendements faradiques assez importants .La **Figure 3.8** représente la CV des spinelles MCo_2O_4 à une vitesse de balayage égale à 10mV/s dans une solution de 1 KOH. Nous remarquons que les fenêtres de potentiels de travail sont relativement grands, [-600,600mV] pour NiCo₂O₄, [-600,500mV] pour CuCo₂O₄, [350-600mV] pour ZnCo₂O₄, et [-400,500mV] pour MnCo₂O₄ Le choix de la fenêtre de potentiel se révèle donc être particulièrement crucial dans l'étude des performances électrochimiques du matériau MCo₂O₄.

- Le CV de NiCo₂O₄ à 10 mV.s⁻¹,et montre une excellente stabilité et une bonne réversibilité après une activation de 20cycles. un pic redox bien défini peut être clairement observé à 0 V/ECS est peut-être dû au couple redox Co⁺³/Co⁺², impliquant la présence d'une réaction de Faradique réversible [16, 22]. Cependant nous arrivons à la conclusion que le stockage des charges à l'interface est dus aux phénomènes d'oxydoréduction à l'interface matériaux solution d'électrolyte.
- Pour le MnCo₂O₄la formes de courbes CV ne changent pas évidemment avec l'activation par cyclage voltamétrique, indiquant une excellente réversibilité et une bonne stabilité électrochimique, son CV indique lui aussi des couples redox à 330 et -90mV/ECS qui sont probablement dus aux couples redox Co⁺²/Co⁺³et Mn⁺²/Mn⁺³[26, 27] indiquant ainsi que le caractère pseudocapacitifs vient des réaction redox se trouvant à l'interface matériau/solution d'électrolyte. L'allure de la courbe de voltamétrie cyclique est différente de celle d'une EDLC (capacité de la double couche électrochimique) puisque celle-ci est de forme rectangulaire à cause d'un stockage de charge par adsorption est n'en pas par réaction redox comme dans le cas des oxydes.
- Ainsi pour le CuCo₂O₄ dans KOH 1M, la fenêtre de potentiel ne doit pas dépasser les -600 mV/ECS puisque nous remarquons un début de dégagement d'hydrogène, au dessous de ce potentiel le matériau n'a plus d'activité électrochimique. Du point de vue thermodynamique, la réversibilité et la stabilité électrochimique de cet électrode est excellente puisque les réactions faradiques redox sont réversibles et stables après une activation de 20 cycles. L'apparition des pics redox à -115 et -50 mV/ECS sont probablement dus aux couples redox Co⁺³/Co⁺² et Cu⁺²/Cu⁺. Le plus surprenant dans cette phase est l'allure rectangulaire de la courbe de CV à 10 mV.s⁻¹ cela indique un pouvoir pseudocapacitif très intéressant.
- Pour l'électrode à base de ZnCo₂O₄, l'allure de CV ressemble à celle de MnCo₂O₄, cette électrode exhibe elle aussi une bonne stabilité et réversibilité

électrochimique après de 20 cycles. Le mode de stockage de charge est faradique puisque, il ya l'apparition de pic redox à -220 et à 370 mV/ECS qui sont bien sur assignés aux couples redox $\text{Co}^{+3}/\text{Co}^{+2}$ et $\text{Zn}^{+2}/\text{Zn}^+$.

Figure 3.8: Courbe de 20 cycles CV des matériaux MCo₂O₄ à 10mV.s⁻¹.

2.2Effet de la vitesse de balayage sur la capacité spécifique

L'évolution de la capacité en fonction de la vitesse de balayage est également une information importante à connaître afin d'estimer le comportement des spinelles dans le domaine des supercondensateurs. **La Figure 3.9** montre les courbes CV des matériaux (MCo₂O₄) à différente vitesse de balayage de 5 jusqu'à 200 mV.s⁻¹ chaqu'un dans son intervalle de potentiel. Des pics redox sont très bien remarqués pour des faibles vitesses de balayage 5, 10 et 30 mV.s⁻¹ pour tous les matériaux, ces derniers pics correspondent aux réactions réversibles redox de M (Ni,Cu,Mn,Zn) et Co comme l'exprime les équations suivantes [28-31]:

Pour MCo₂O₄ (M=Ni-Cu)

$$MCo_2O_4 + OH^- + H_2O \iff MOOH + 2CoOOH + e^-$$
 (3-3)

$$CoOOH + OH^- \leftrightarrow CoO_2 + H_2O + e^-$$
 (3-4)

Pour le MnCo₂O₄

$$MnCo_2O_4 + OH^- + H_2O \iff MnOOH + 2CoOOH + e$$
- (3-5)

$$MnOOH + OH^{-} \iff MnO_2 + H_2O + e^{-}$$
(3-6)

Pour le ZnCo₂O₄

$$Co_2O_4^{2-} + 2H_2O \longrightarrow 2CoOOH + 2OH^{-}$$
(3-7)

$$CoOOH+H_2O \longrightarrow Co(OH)_2+OH^-$$
(3-8)

L'allure des courbes est pseudo-capacitive avec des pics d'oxydoréduction comme cela était déjà expliqué. Nous remarquons aussi que ces courbes ont une excellente stabilité est une bonne reproductibilité électrochimiques [29,24].Il est claire qu'avec l'augmentation des de la vitesse de balayage l'allure des courbes CV augmente et la réponse du courant augmente avec l'augmentation de la vitesse de balayage. Nous remarquons aussi qu'au-delà de la vitesse de balayage de 30mV /s certain pics cathodiques disparaissent laissant place uniquement aux phénomènes capacitifs [24-19]. La disparation de ces pics est assignée à l'augmentation des vitesses de balayage, qui ne laisse pas le temps au système de réagir .

Enfin, certain pics anodiques se sont déplacés vers des directions cathodiques avec l'augmentation de la vitesse de balayage, cela indique l'irréversibilité cinétique dans le processus redox [10-23-30].

Figure 3.9:Courbe de CV à différentes vitesses de balayage, (a) NiCo₂O₄, (b) MnCo₂O₄, (c) CuCo₂O₄, (d)ZnCo₂O₄.

Les résultats de l'influence de la vitesse de balayage sur la capacité spécifique de l'électrode sont présentés dans la **Figure 3.10**.Le matériau qui a la meilleure capacité est le CCOavec une capacité spécifique allant jusqu'à 285F.g⁻¹ suivi de l'électrode NCO avec une capacité égale à 211F.g⁻¹ puis le MCO avec une capacité égale à 180 F.g⁻¹ et enfin l'électrode de ZCO avec une capacité égale à 158F.g⁻¹ à une vitesse de balayage égale à 5mVs⁻¹.

La capacité spécifique diminue avec l'augmentation de la vitesse de balayage pour tous les matériaux cette diminution est expliquée principalement par les problèmes de chute ohmique qui sont d'autant plus importants que les courants sont forts et donc que la vitesse de balayage est élevée. Ainsi qu'aux sites actifs qui ne peuvent plus subir de manière complète les transitions redox comme aux faibles vitesses de balayage comme a été aprobé par plusieurs auteurs [18, 24, 32].Cependant nous ne pouvons pas exclure aussi une limitation associée à la diffusion des ions de l'électrolyte vers la surface de l'électrode, en raison de la forte concentration de l'électrolyte (KOH 1M) et de la structure macroporeuse des matériaux. Donc plus la vitesse de balayage diminue, plus la diffusion des ions OH⁻dans l'électrode augmente dans la quasi-totalité des pores [8, 23], ce qui conduit à une réaction d'insertion compléte.

Figure 3.10 : Effet de la vitesse de balayage sur la capacité spécifique sur les matériaux MCo₂O₄.

Aux faibles vitesses de balayage, les oxydes CCO et NCo, présentent des comportements capacitifs presque idéaux, puisque leur allure ressemble à peu prés aux allures rectangulaires d'un modèle capacitif parfait. Cela explique surement la meilleure valeur de la capacité spécifique

2.3 Etude de la durée de vie des matériaux MCO dans le milieu KOH

Divers critères sont pris en considération pour que le matériau réponde aux caractéristiques d'un supercondensateur à savoir la capacité spécifique, une résistance faible, et le coût bas de synthèse. Ces paramètres ont été largement utilisé pour nous guider à trouver de nouveaux systèmes de supercondensateurs et de nombreux efforts ont été déployés pour arriver à ce but. La stabilité cyclique à long terme est un autre paramètre critique dans les supercondensateurs, et doit être pris très sérieusement. La **Figure 3.11** révèle la variation de la capacité spécifique par rapport au nombre de cycles (1000 cycle) à une vitesse de balayage égale à 5mV/s. la rétention de la capacité spécifique est de 92% par rapport à la valeur initiale pour le NiCo₂O₄, 84% de la capacité initiale pour le MnCo₂O₄ et 83% de la capacité initiale pour le CuCo₂O₄ et pour finir 75% de la capacité initiale pour le ZnCo₂O₄. Indiquant ainsi que les matériaux sont très stables. Étonnamment, la capacité spécifique des quatre électrodes a augmenté au-delà des 200 cycles de plus de 100% de la valeur initiale contrairement a certain travaux [24-31], cela est attribué à une activation entièrement électrochimique de la surface des matériaux qui pourrait fournir une capacité supplémentaire grâce à l'augmentation du comportement pseudocapacitifs des matériaux.

La raison de la bonne rétention pour le $MnCo_2O_4$ et le $CuCo_2O_4$ est peut-être du à la texture pyramidale du matériau ainsi qu'à l'homogénéité de la morphologie[29,30,] permettant ainsi l'expansion du volume durant la charge et la décharge (augmentation de l'adsorption des ions de l'électrolyte à l'interface du matériau ainsi qu'aux réactions redox).Même si les structures de NiCo₂O₄ et de ZnCo₂O₄ sont hétérogènes, ils ont eux aussi développés une bonne rétention, cela est peut être due aux lacunes entre les particules permettant une meilleure pénétration de l'électrolyte est ainsi une meilleure rétention de la capacité [17-26].La diminution de la capacité spécifique sur la base de cette valeur maximale après test de 1000 cycles est d'environ 25% ce qui est considéré comme insignifiant comparé a d'autres travaux, révélant ainsi l'excellent caractère pseudocapacitifs des matériaux.

Figure 3.11 : Variation de la capacité spécifique par rapport au nombre de cycle.

2.4 Caractérisation par spectroscopie d'impédance électrochimique

La spectroscopie des impédances a été faite pour comprendre le comportement électrochimique des matériaux MCo_2O_4 , la **Figure 3.12**expose les diagrammes des impédances fait entre une fréquence de 100kHz à 1mHz avant de soumettre nos matériaux à la dure épreuve de la durée de vie et après. Chaque matériau est représenté par une courbe de la manière suivante : d'abord l'arc d'un demi-cercle dans la région des fréquences élevée suivi d'une droite aux moyennes et aux basses fréquences. Les résultats électrochimiques et la capacité spécifique observée précédemment

Dans la représentation Nyquist et avant d'avoir soumis ces matériaux à une durée de vie de 1000 cycles tous les matériaux manifeste des demi cercles négligeables ce qui indique que la résistance interfaciale est faible et que la conductivité des matériaux est grande [28-33-34], cela est en accord avec les courbes de CV. Quoi que la valeur de Le transfert de charges (diamètre des demi-cercles) étant amélioré pour les échantillons ZnCo₂O₄ puis MnCo₂O₄, NiCo₂O₄ et enfin la meilleure valeur est pour le CuCo₂O₄, ce qui est cohérent avec les résultats de CV ainsi qu'avec les résultats de la capacité spécifique.

Aux fréquences moyennes pour le NiCo₂O₄ et le CuCo₂O₄, on constate que les droites ont des pentes égale à 45° correspondent à l'impédance de Warburg qui est due aux phénomènes de diffusion des ions OH⁻ de l'électrolyte à l'intérieur du matériau cela a été confirmé par les résultats FTIR ou nous avons constaté des larges bande d'absorption de OH⁻ à environ 3450 cm⁻¹ pour le CuCo₂O₄ et le NiCo₂O₄. Par contre les droites aux basses fréquences sont dues à la nature capacitive du matériau [21,35]. Les résultats que nous avons obtenu grâce à la CV disant que le matériau CuCo₂O₄ à la meilleure réponse pseudocapacitive suivi de NiCo₂O₄sont confirmés par les impédances car ils possèdent les pentes les plus verticalement possible comparé aux MnCo₂O₄ et le ZnCo₂O₄. La verticalité des droites aux basses fréquences suggère que l'adsorption des ions de l'électrolyte ainsi que la diffusion ionique est très rapide sur la surface de l'électrode laissant place aux phénomènes capacitifs [11,28].

Par contre après une durée de vie égale à 1000 cycle nous remarquons que la résistance équivalente en série a augmenté (matériaux plus résistants et augmentation des demi-cercle) et les pentes sont moins verticale qu'avant cela est due aux réactions faradiques irréversibles [15,28], bloquant ainsi les pores de la structure du matériau ainsi qu'a la limitation de la diffusion des ions à l'intérieur des matériaux. Sauf pour le CuCo₂O₄ ou sa pente est resté presque la même, cela est due à sa surface spécifique supérieur et à l'homogénéité de sa surface [17, 36].

Figure 3.12:Spectre d'impédances des matériaux MCo₂O₄ avant et après durée de vie.

2.5 Modélisation des spectres d'impédances par le circuit équivalent des électrodes MCO

Les données d'impédances expérimentales ont été ajustées en utilisant le logiciel ZsimpWin3.5 avec le circuit équivalent Figure 3.13 :

Figure 3.13 : Le circuit équivalent de : MnCo₂O₄, ZnCo₂O₄.

Le Tableau 3.2 : Représente les différentes variables déterminées par modélisation sur le logiciel Z.sim des matériaux ZnCo₂O₄ et MnCo₂O₄.

Matériaux		R ₁ (Ohm)	CPE(S-sec^n)	0 <n<1< th=""><th>R₂</th><th>W(S-sec^.5)</th></n<1<>	R ₂	W(S-sec^.5)
МСО	Avant 1000 cycle	13.2	0.002	0.57	35.9	1.5
	Après 1000 cycle	18.42	0.68	0.54	131	2.96
ZCO	Avant 1000 cycle	9.67	0.0236	0.37	67	2.94
	Après 1000 cycle	9.1	0.755	0.603	217.9	1.23

Figure 3.14 : Le circuit équivalent de : NiCo₂O₄, CuCo₂O₄.

Tableau 3.3: Représentation des différentes variables déterminées par modélisation	sur
le logiciel Z.sim des matériaux NiCo ₂ O ₄ et de CuCo ₂ O ₄ .	

Matériau		R ₁ (Ohm)	CPE(S-sec^n)	0 <n<1< th=""><th>R₂(Ohm)</th><th>CPE(Ssec^n)</th><th>0<n<1< th=""><th>R₃(Ohm)</th></n<1<></th></n<1<>	R ₂ (Ohm)	CPE(Ssec^n)	0 <n<1< th=""><th>R₃(Ohm)</th></n<1<>	R ₃ (Ohm)
NCO	Avant	0.541	0.94	0.38	0.91	3681	0.91	$2.99*10^{10}$
	1000 cycle							
	Après	2.32	2.325	0.66	3.2	3000	0.85	$3*10^{10}$
	1000 cycle							
ссо	Avant	3.47	819	0.93	315	16	0.45	1.102
	1000 cycle							
	Après	4.25	985	0.77	421	35	0.32	3.015
	1000 cycle							

La **Figure 3.15** représente le spectre d'impédance des matériaux MCo_2O_4 et leur modélisation par le circuit équivalent décrit précédemment qui « fit » bien avec les points expérimentaux. A présent définissons les composantes de ce circuit équivalent:

R1 correspond essentiellement à la résistance de l'électrolyte. **Q** (**CPE**) correspond à une fonction complexe appelée « constant phase element » (CPE). La CPE est utilisée afin de modéliser des phénomènes non-linéaires notamment des processus électrochimiques inhomogènes comme par exemple le cas d'une large distribution de taille de pores ou de la rugosité au sein de l'électrode. **Q** peut prendre alors plusieurs sens physiques suivant la valeur du coefficient **n**. Dans le cas ou **n** est égal à 0.45, l'élément correspond à un comportement de type Warburg, qui traduit l'impédance due à la diffusion à la surface et dans le matériau, dans le cas ou **n** est égale à 1 nous avons alors un système purement capacitif.**R**₂est la résistance de transfert de charge et **R**₃est la résistance à la diffusion.

Circuit1 :

- ✓ R₁corresponds principalement à la résistance de l'électrolyte. Cependant de légères différences sont observées au niveau des valeurs. Ceci peut s'expliquer par le changement de l'ion M dans le matériau MCo₂O₄ ainsi qu'à d'autres aspects résistifs liés au montage de la cellule électrochimique (distance entre les deux électrodes, résistances des fils...) par exemple.
- ✓ CPEest lié à n₂ est correspond à la capacitance de double couche électrochimique (adsorption des ions sur la surface du matériau d'électrode).

✓ \mathbf{R}_2 corresponds à la résistance de transfert de charge pour les deux circuits. Celle-ciest supérieure pour le ZCO par rapport à celle observée aux autres matériaux. De plus, cette dernière est beaucoup plus faible pour le CCO et NCO confirmant ainsi les résultats de voltammétrie cyclique observés précédemment.

Circuit 2 :

- ✓ Pour le circuit (**b**) \mathbf{R}_3 désigne la résistance à la diffusion des ions dans les pores. Celleci est relativement faible cela laisse prédire la facilité d'insertion des ions de l'électrolyte dans le matériau.
- ✓ Q_3 est lié au coefficient **n**. Ce dernier étant proche de 1, par conséquent Q_3 correspondrait à la capacitance pure pour ce matériau d'électrode (en prenant en compte la diffusion dans les pores).

Figure 3.15: Modélisation des impédances avant durée de vie par logiciel ZsimpWin3.5.

Conclusion

Il faut noter que le CuCo₂O₄ qui à la plus grande surface spécifique et la meilleure distribution morphologique l'a aidé à créer de nombreux cavités favorisant ainsi les réactions redox à l'interface et l'a aidé plus facilement à l'insertion des ions OH⁻ dans les sites actifs du matériau[3,16]. Pour le NiCo₂O₄ sa surface spécifique est égale à 2 m²/g mais sa grande affinité à adsorber les ions OH⁻ d'après le spectre FTIR l'a aidé a mieux stocker les ions de l'électrolyte et ainsi avoir une bonne capacité spécifique [8,16]. Pour le MnCo₂O₄ sa structure pyramidale et homogène, mais il n'a pas une grande affinité pour adsorber les ions OH⁻ cela l'a empêché d'avoir une capacité spécifique élevée [25,27,3]. Enfin pour la conclusion qui peut être faite sur la corrélation entre les propriétés pseudocapacitifs et les propriétés physico chimiques, c'est que le matériau doit développer une bonne surface spécifique, une texture homogène avec des particules de taille petite mais aussi une bonne affinité par rapport aux ions de l'électrolyte.

Le plus surprenant dans ces matériaux, c'est qu'ils sont issus de la même phase mère la spinelle cobaltite Co_3O_4 , mais ils ne donnent pas la même réponse pseudocapacitifs, cela est probablement du au changement de l'ion M dans la spinelle MCo₂O₄. Le changement de l'ion Co dans la spinelle cobaltite Co_3O_4 par un ion d'un métal de transition (Cu-Ni-Mn-Zn) a conduit à la naissance de trois type de spinelle à cause des réarrangements des ions dans les sites cristallins comme cela a été déjà expliqué dans le **chapitre 1 partie C**. Pour la substitution de l'ion Co par le Cu (CCO) la spinelle devient une spinelle mixte, c'est- à-dire que le Co et le Cu occupent en même temps les sites tétraédriques et octaédriques, pour les deux spinelle devient inverse ou le Co occupe les sites tétraédriques et les sites octaédriques en même temps et le Ni ou Mn occupe les sites octaédriques. Pour la substitution de l'ion Co par le Zn (ZCO), la spinelle devient une spinelle simple ou direct dans ce cas le Co est dans le site octaédrique et le Zn dans le site tétraédrique. D'après les réactions redox cités au paravent, nous avons remarqué que le Co est majoritairement responsable de ces réactions redox et puisque le CCO et le NCO ont le meilleure pouvoir capacitive.

Sur la base des considérations ci-dessus, nous pouvons en déduire que les cations Co à l'interface des spinelles cobaltites occupant les sites tétraédriques et octaédriques seront bénéfiques pour la performance électrocatalytique améliorée. Pour CCO, la teneur en surface de Co (70%) est la plus élevée parmi ces cobaltites confirmées par EDAX, et tous les ions Co

occupent les sites tétraédriques et octaédriques. Et dans ZCO bien que la teneur en Co à la surface soit également élevée, seuls les cations Co qui occupent les sites octaédriques seront actifs. Pour les spinels inversé NCO et MCO, le contenu des cations Co à l'interface est respectivement (55-26%) ces valeurs bien qu'elles sont inferieurs a celle du ZCO, la distribution des cations Co occupant les sites octaédriques et tétraédriques a entrainé des meilleures réponses pseudocapacitifs. Ainsi, pour le développement d'une électrode spinelle cobaltite MCo_2O_4 de haute performance pseudocapacitive, la quantité de Co-composants l'interface occupant les sites tétraédriques et octaédriques est cruciale. Ces résultats obtenus peuvent fournir un aperçu du développement de nouveaux matériaux pour les supercondensateurs.

3. Etude des supercodensateurs MCo₂O₄ (M=Ni, Mn, Cu, Zn) dans le milieu Na₂SO₄

Toujours dans le but d'améliorer les performances pseudocapacitifs des matériaux synthétisés conduisant ainsi à des capacités intéressantes, nous avons changé le milieu électrolytique KOH en Na₂SO₄. Le but étant de gagner une durée de vie plus importante tout en gardant ou améliorant les performances obtenues lors dans le milieu précédant.

3.1 Caractérisation par voltamétrie cyclique du supercondensateur MCo₂O₄ dans le milieu Na₂SO₄

La Figure 3.16 représente la CV des spinelles MCo₂O₄ à une vitesse de balayage égale à 10mV/s dans une solution de 1M Na₂SO₄. Nous remarquons que les fenêtres de potentiels de travail sont relativement moins grands que ceux utilisé dans le milieu KOH (1M), [-100,700mV] pour NCO, [0,600mV] pour le CCO, [-400-550mV] pour le ZCO, et [-600,200mV] pour le MCO. Les CV de MCO (m=Ni,Mn,Cu,Zn) à 10 mV.s⁻¹ dans le milieu Na2SO4 (1M), et après une activation 20 cycles diffèrent de ceux de MCO dans le milieu KOH (1M)sauf pour le ZCO, mais ce qui est claire c'est la stabilité et la bonne réversibilité des phénomènes électrochimiques. La cinétique d'activation par charge et décharge est presque constante avec l'augmentation du nombre de cycle sur la plage de potentiel utilisée pour chaque matériau. Nous ne remarquons pas de pics clairement définie pour le NCO et le CCO, leur courbes de charges sont légèrement arrondies et sont presque superposées, alors que l'arrondi des courbes de décharge pour le NCO augmente avec l'augmentation des cycles[31]. Cette observation est relativement paradoxale : l'augmentation du nombre de cycle, devrait à priori se traduire par un voltammogramme plus « rectangulaire » [36-37] ce qui n'est pas le cas pour nos quatre matériaux. En l'absence d'expérimentations complémentaires l'interprétation de cette tendance nous laisse perplexe. Pour le ZCO comme cela a été déjà cité son CV est presque identique a celui dans la solution électrolytique de KOH, ou nous pouvons remarquer un pic au balayage de charge à environ 370mV/ECS et un autre à environ -100mV/ECS cela sont surement due au couple redox Co^{+3}/Co^{+2} et Zn^{+2}/Zn^{+} . Pour le MCO nous remarquons un pic redox à environ -100 mV/ECS, probablement due au couple redox Co^{+3}/Co^{+2} .

Figure 3.16 Courbe de 20 cycles CV des matériaux MCo₂O₄ à 10mV.s⁻¹. (a) NCO, (b)MCO, (c) CCO, (d) ZCO.

3.2Effet de la vitesse de balayage sur la capacité spécifique des spinelles MC02O4

La Figure 3.17 montre les courbes CV des matériaux (MCo_2O_4) à différente vitesse de balayage de 5 jusqu'à 200 mV.s⁻¹ chaqu'un dans son intervalle de potentiel dans une solution de Na₂SO₄. Des pics redox sont très bien remarqués pour des faibles vitesses de balayage 5 10 et 30 mV.s⁻¹ pour tous les matériaux, ces derniers pics correspondent aux réactions réversibles redox de M (Ni,Cu,Mn,Zn) et Co comme cela a été déjà expliqué au paravent.

97

Figure 3.17: CV à différentes vitesses de balayage de MCo₂O₄.

Les résultats de l'influence de la vitesse de balayage sur la capacité spécifique de l'électrode sont présentés dans la **Figure 3.18.** Le matériau qui a la meilleure capacité est le NCO avec une capacité spécifique allant jusqu'à 157 F.g⁻¹ suivi de l'électrode CCO et du MCO avec des capacités spécifique égale à 100 et 106F.g⁻¹ et enfin l'électrode de ZCO avec une capacité égale à 51 F.g⁻¹ à une vitesse de balayage égale à 5mVs⁻¹.La capacité spécifique diminue avec l'augmentation de la vitesse de balayage pour tous les matériaux comme cela était déjà expliqué, cette diminution est principalement du aux sites actifs qui ne peuvent plus subir de manière complète les transitions redox comme aux faibles vitesses de balayage. Nous remarquons qu'avec le changement du milieu électrolytique les valeurs de la capacité spécifiques ont chuté comparé au milieu KOH [24,22], cela est expliqué par la bonne conduction ionique des solutions basiques, et la forte réactivité des OH⁻avec l'interface des oxydes pour faire les réactions redox [18,26].

Figure 3.18:Effet de la vitesse de balayage sur la capacité spécifique.

3.3 Etude de la durée de vie des matériaux MCO dans le milieu Na₂SO₄

La stabilité cyclique à long terme est un autre paramètre qui a été testé dans ce milieu vue sa grande importance. La Figure 3.19, révèle la variation de la capacité spécifique par rapport au nombre de cycles (1000 cycle) à une vitesse de balayage égale à 10 mV/s. contrairement au milieu KOH la rétention des matériaux a dépassé les 100%.pour le NCO la rétention de la capacité spécifique est de 103 % par rapport à la valeur initiale, elle est de 104% de la capacité initiale pour le MCO et de 142% de la capacité initiale pour le CCO et pour le matériau ZCO elle de 109% de sa capacité initiale. Indiquant ainsi que les matériaux ont une bonne stabilité et une très une grande réversibilité électrochimique. La conservation de la capacité spécifique et son amélioration sont attribuées à une meilleure activation électrochimique de la surface des électrodes, grâce aux effets de cyclage qui ont amélioré le caractère pseudocapacitifs en améliorant les réactions redox a la surface des matériaux [23], Malgré que la capacité spécifique des matériaux n'est pas aussi élevée dans le milieu Na₂SO₄ mais étonnamment les matériaux améliorent leur capacité spécifique au fil des cycles contrairement au milieu KOH qui a donné une meilleure capacité spécifique mais une moins bonne rétention que le milieu neutre, a cause de l'agressivité des ions OH⁻[19-26].

Figure 3.19 : Effet de la durée de vie sur la valeur de la capacité spécifique.

3.4 Caractérisation par spectroscopie d'impédance électrochimique

Les diagrammes d'impédances exposés sur la **Figure 3.20** confirment les résultats électrochimiques observés précédemment, le circuit équivalent est le même que celui proposé plus haut dans ce chapitre pour les composés ZCO et NCO, pour le MCO son circuit équivalent est le même que celui de NCO par contre pour le CCO, il a exhibé un autre circuit équivalent **Figure 3.20** (e). En effet, les plus basses résistances de transfert de charges, R_{tc}, (diamètre des demi-cercles) sont attribuées aux matériaux NCO, CCO et puis MCO, pour le ZCO nous remarquons une résistance de transfert de charge assez élevée. Tout cela est très cohérent avec les résultats obtenus au paravent disant que le matériau ZCO à la plus faible valeur de la capacité spécifique cela est surement expliqué par le résistance de transfert de charge élevée.

Figure 3.20 : Impédance avant et après durée de vie. (e) circuit équivalent du matériau.

3.5 Etude comparative avec les travaux antérieurs

Le **Tableau 3.4** représente la comparaison des capacités spécifiques des oxydes spinelle MCo_2O_4 préparé par différent méthodes. A partir de ces observations nous pouvons constater que la méthode de préparation des matériaux ainsi que la température de calcination ont une grande influence sur les propriétés pseudocapacitives des matériaux.

Tableau 3.4 : Etude comparative entre les capacités spécifiques de travaux antérieurs et
de notre travail.

Matériau	Milieu électrolytique	Méthode de préparation	T °C de calcination	Capacité spécifique (F.g ⁻¹)	Réferences
NiCo ₂ O ₄	KOH (2M)	chemical bath deposition	300	330 $F.g^{-1}(1A.g^{-1})$	[28]
NiCo ₂ O ₄	KOH(1M)	Hydrothermale	300	294 $F.g^{-1}(1A.g^{-1})$	[18]
NiCo ₂ O ₄ doped par Mn	KCl(1M)	Coprecipitation	/	110 F.g ⁻¹ (1A.g ⁻¹)	[32]
MnCo ₂ O ₄	KOH(1M)	Hydrothermale	600	118.8 F.g^{-1} $^{1}(1A.g^{-1})$	[25]
MnCo ₂ O ₄	KOH(2M)	solvothermale	350	235.7F.g ⁻¹ (1Ag ⁻¹)	[30]
ZnCo ₂ O ₄	KOH(6M)	coprecipitation	200	77 F.g ⁻ 1(5mVs ⁻¹)	[31]
ZnCo ₂ O ₄	KOH(2M)	Hydrothermale+polymer isation par oxydation	180	398 $F.g^{-1}(1A.g^{-1})$	[27]
CuCo ₂ O ₄	KOH(3M)	Hydrothermale	300	982F.g ⁻¹ (1.5A.g ⁻¹)	[29]
CuCo ₂ O ₄	KOH(1M)	Micro-onde	400	141 F.g ⁻ ¹ (1mVs ⁻¹)	[19]
NiCo ₂ O ₄	KOH/Na ₂ SO ₄ (1M)	Sol-gel	550	211/157 F.g ⁻ ¹ (5mVs ⁻¹)	Présente étude
CuCo ₂ O ₄	KOH/Na ₂ SO ₄ (1M)	Sol-gel	550	285/100 F.g ⁻ (5mVs ⁻¹)	Présente étude
MnCo ₂ O ₄	KOH/Na ₂ SO ₄ (1M)	Sol-gel	550	185/106 F.g ⁻ ¹ (5mVs ⁻¹)	Présente étude
ZnCo ₂ O ₄	KOH/Na ₂ SO ₄ (1M)	So-lgel	550	151/57 F.g ⁻ ¹ (5mVs ⁻¹)	Présente étude

4. Conclusion

Les travaux exposés dans cette partie ont porté sur l'application des oxydes types spinelles synthétisé par la voie sol gel dans le domaine des supercondensateurs. Le but étant d'avoir un maximum de capacité et une durée de vie assez importante.

L'effet de la méthode de synthèse sol gel sur les propriétés électrochimiques a été étudié. Puisque rarement les matériaux synthétisés par cette dernière ont été appliqué aux supercondensateurs. La meilleur valeur de la capacité spécifique dans le milieu électrolytique 1M KOH a été obtenue pour le matériau CCO grâce a ces propriétés physicochimique intéressante avec une capacité spécifique allant jusqu'à 285 F.g⁻¹. Dans le milieu Na₂SO₄ la meilleur réponse pseudocapacitifs a été attribué aux matériaux CCO avec une capacité égale à 157 F.g⁻¹ces résultats confirme ainsi l'hypothèse mis sur l'emplacement de l'ion cobalt dans les sites tétraédriques et octaédriques, puisque le matériau CCO et NCO bénéficie d'un réarrangement des ions du cobalt dans les sites tétraédriques et octaédriques.

Partie C : Etude de la dégradation de quelque colorants par photolyse et photocatalyse solaire

Introduction

La photocatalyse hétérogène a été rapportée comme une technique des plus prometteuses dans l'élimination des micropolluants organiques en général, et des colorants en particulier.Dans cette partie de notre travail, nous avons mis l'accent sur l'efficacité du catalyseur ZnO synthétisé par sol gel et coprécipitation comme catalyseur référence, ainsi que les spinelles MCo_2O_4 testé dans la partie précédente comme des supercondensateurs, pour l'élimination de du bleue de méthylène (BM) et rouge congo (RC). Les cinétiques de décoloration et l'influence d'un certain nombre de facteurs opératoires sur la dégradation de ces colorants sont examinées : à savoir, la concentration du polluant, la concentration en catalyseur, le type du semi-conducteur, le peroxyde d'hydrogène, les ions persulfates. Nous signalerons que l'ensemble des expériences présentées dans cette partie ont été effectué sous irradiation solaire et à pH non contrôlé (initialement ~ 6,5 et 5.9 pour le BM et le RC respectivement), sauf précision apportée dans le texte.

1. Etude Spectrale du bleue de méthyléne et du rouge congo

Les longueurs d'onde du maximum d'absorption des colorants (λ_{max}) sont 665, et 495 nm respectivement pour le bleu de méthylène (BM), et le rouge congo (RG). Les spectres d'absorption à différent pH et les courbes d'étalonnage à pH neutres (pH=6.5) des deux colorants sont représentés dans les **Figures 3.21 et 3.22**. Nous remarquons que pour le BM le spectre d'absorbance of fonction de la longueur d'onde n'a pas changé avec le changement du pH, cependant pour le RC a pH acide la courbe est changée complètement cela est probablement du à un changement de groupement fonctionel absorbant dans l'UV/visible.

Figure 3.21:(a) courbe d'étalonnage de BM. (b) spectres d'absorption du BM a différents pH.

Figure 3.22 : (a) courbe d'étalonnage de RC. (b) spectres d'absorption du RC à différents pH.

2. Photolyse directe du BM par irradiation solaire

Avant de connaitre l'effet des catalyseurs préparés sur la réaction de dégradation du BM et du RC vis-à-vis de la réaction photocatytique. Il faut d' abord connaitre les effets du rayonnement solaire (photolyse directe) sur la décoloration des polluants. La photolyse solaire du BM à 665 nm a été effectuée en milieu aqueux avec des concentrations différentes à savoir 5, 10, 20, 30 mg. L⁻¹. Le pH mesuré initialement est égal à 6.5. Les résultats obtenus dans la **Figure 3.23** montrent que le composé est légèrement photolysable par les radiations solaires. Ainsi, au bout de 180min d'irradiation, le pourcentage de décoloration atteint n'est que de 5 % pour les concentrations les plus élevées et 35% pour la concentration la plus faible. Donc le composé devient photolysable lorsque sa concentration diminue.

Figure 3.23: Photolyse directe d'une solution de BM à différentes concentrations sous irradiations solaire.

2.1Décoloration du BM par les systèmes H₂O₂/UVsolaire et S₂O₈²⁻/UVsolaire

Plusieurs travaux ont mis l'accent sur les effets des accepteurs d'e- lors de la dégradation des polluants pour cela nous allons voir l'effet direct de ces oxydants sur la décoloration du BM. Dans les systèmes H_2O_2/UV solaire $etS_2O_8^{2-}/UV$ solaire, la réaction repose sur l'attaque de HO• dans H_2O_2/UV alors que $SO_4^{-\bullet}$ est impliqué dans le système $S_2O_8^{2-}/UV$ sous irradiation solaire[39,40]. Ce qui permet d'étudier la réactivité de ces deux radicaux vis-à-vis de notre substrat et donc de déduire une comparaison d'ordre cinétique.

2.1.1. Système H₂O₂/UV solaire

Il a été rapporté par un grand nombre d'auteurs que la combinaison du rayonnement UV avec le peroxyde d'hydrogène (H₂O₂) peut constituer un moyen simple, peu couteux et efficace de dégradation des micropolluants organiques [41,42].La décomposition du peroxyde d'hydrogène génère des radicaux hydroxyles par simple irradiation à un rayonnement UV \leq 300 nm(3-9) :

$$H_2O_2 + h\nu \to 2HO^{\bullet} \tag{3-9}$$

Le radical hydroxyle est une espèce oxydante qui réagit très rapidement et non sélectivement sur la plus part des composés organiques.

2.1.1.1 Décoloration du BM par le peroxyde d'hydrogène à l'obscurité

Avant d'étudier l'efficacité du procédé H_2O_2/UV solaire sans catalyseur sur dégradation du BM, nous avons testé en premier lieu la réactivité du H_2O_2 sur le BM à l'obscurité. Différentes solutions contenant chacune une concentration fixe du colorant (30 mg. L⁻¹) et différentes concentrations en H_2O_2 , allant de 10^{-3} mol. L⁻¹ à 5.10⁻² mol. L⁻¹ ont été préparées. Les résultats présentés dans la **Figure 3.24** montrent que le taux d'oxydation est quasi nul pour les différentes concentrations en H_2O_2 utilisées.

Figure 3.24: Cinétique de décoloration du BM par H_2O_2 à l'obscurité : [BM] = 30 mg.L⁻¹, pH = 5,7.

La réaction à l'obscurité du peroxyde d'hydrogène sur le BM sera donc négligée devant la réaction photochimique dans le traitement des résultats. Ce qui mettra bien en évidence l'efficacité intrinsèque du système H_2O_2/UV solaire.

2.1.1.2 Décoloration du BM par couplage H_2O_2/UV solaire

Les quantités de radicaux HO• générés par la réaction du couplage H₂O₂/UV dépendent des paramètres expérimentaux, notamment, la concentration en peroxyde d'hydrogène. La décoloration du BM (30 mg. L⁻¹) a été suivi en fonction du temps d'irradiation solaire pour différentes concentrations de peroxyde d'hydrogène, a savoir 5.10^{-3} , 10^{-2} et 10^{-2} mol.l⁻¹. La **Figure 3.25** montre que la vitesse initiale d'oxydation du BM augmente lorsque la concentration du H₂O₂ augmente, cependant des travaux antérieurs [43 ?44] ont montré qu'une concentration trop élevée de H₂O₂supérieur à 10^{-2} M va provoquer un effet d'écran qui diminuera sensiblement l'efficacité de la réaction de photolyse.

Figure 3.25: Cinétique de décoloration du BM par le système H_2O_2/UV solaire : [BM] = 30 mg.L⁻¹, pH = 5,7.

Il est connu que l'excès de H₂O₂ généralement au-delà de 10⁻² M agit comme piège à radicaux créant ainsi un effet autoinhibition qui annule l'effet accélérateur [43-45]. Ce fait pourrait être attribué à la formation d'entités HO₂[•] qui sont moins réactive que HO[•] selon la réaction: $H_2O_2 + HO^• \rightarrow HO_2^• + H_2O$ (3-10) Plusieurs auteurs ont rapporté l'effet auto-inhibiteur des concentrations élevées de H₂O₂ à la

Plusieurs auteurs ont rapporté l'effet auto-inhibiteur des concentrations élevées de H_2O_2 à la dégradation des colorants et d'autres molécules organiques [44-46], donc le choix de la

concentration s'avère être un paramètre essentiel pour l'optimisation de la décoloration du BM.

2.1.2 Système S₂O₈²⁻/ UV solaire et à l'obscurité

Le potentiel standard d'oxydoréduction de l'ion persulfate $(S_2O_8^{2-})$ a été déterminé à une valeur proche de 2 V, il est un des agents oxydants les plus puissants en solution aqueuse [46]. Ce fort potentiel lui confère un pouvoir oxydant voisin de celui du peroxyde d'hydrogène (1,78 V). L'activation thermique du persulfate en solution aqueuse, résulte en la coupure homolytique de la liaison O-O (3-11). Il a été postulé que la photolyse du persulfate conduit à la formation de deux radicaux du type : SO4 ^{-•}[47].

$$S_2O_8^2 \xrightarrow{hv} 2 SO_4^{-\bullet}$$
 (3-11)

2.1.2.1 Décoloration du BM par le S₂O₈²⁻ à l'obscurité

En absence de lumière UV, le taux de décoloration du BM est très faible pour la concentration de 10^{-3} mol.l⁻¹de S₂O₈²⁻ et reste relativement faible pour les concentrations les plus élevées (taux d'oxydation d'environ 24 % au bout de 180 minutes pour [S₂O₈²⁻] = 10^{-2} mol. L⁻¹) (**Figure 3.26**).

Figure 3.26 : Cinétique de décoloration du BM par $S_2O_8^{2-}$ à l'obscurité : [BM] = 30 mg.L⁻¹, pH = 5.4.

2.1.2.2 Décoloration du BM par le S₂O₈²⁻/UV solaire

Le procédé $S_2O_8^{2-}/UV$ solaire est nettement plus efficace que l'oxydation par le persulfate seul **Figure 3.27**. Cette efficacité croît considérablement avec la dose de $S_2O_8^{2-}$ introduite initialement. Ainsi, nous observons une décoloration meilleure du BM après 180 minutes en présence de $S_2O_8^{2-}$, à la concentration initiale de 10^{-2} mol. L-¹.

Figure 3.27: Cinétique de décoloration du BM par le système $S_2O_8^{-2}$ /UV solaire : [BM] = 30 mg.L⁻¹, pH = 5.1.

Conclusion

Cette première partie d'étude montre que les propriétés oxydantes du peroxyde d'hydrogène permettent une dégradation importante du BM. Ceci est expliqué par la forte réactivité de H_2O_2 vis-à-vis des colorants azoïques. Les résultats ont ainsi permis de mettre en évidence l'existence d'une dose optimale en oxydant pour obtenir une dégradation maximale du BM ($[H_2O_2]$ optimale est de 10^{-2} mol. L⁻¹), car d'après la littérature au-delà de cette valeur, on observe aucune amélioration de la vitesse de réaction, en raison des réactions d'auto-inhibition. Il est cependant souhaitable de maintenir la concentration de H_2O_2 en cours de réaction à une valeur modérée par une introduction lente et progressive de l'oxydant dans le milieu réactionnel. Les résultats présentés montrent également la particularité de la réactivité du radical sulfate vis-à-vis du BM. Bien que ce radical ait des propriétés proches du radical hydroxyle, celui-ci permet d'obtenir de meilleures cinétiques de décoloration du BM. La minéralisation du BM par photolyse de l'ion persulfate est meilleure que celle obtenue par photolyse du peroxyde d'hydrogène.

Décoloration Photocatalytique du BM par le ZnO

1. Adsorption du bleue de méthylène à l'obscurité

En photocatalyse, il est admis que les réactions se produisent essentiellement entre le substrat et les radicaux hydroxyles générés dans le milieu [48].

La réaction peut avoir lieu entre :

i. Les deux substances adsorbées, qui sont le radical et le polluant ;

ii. Le radical en solution et le polluant adsorbé ;

iii. Le radical à la surface et le polluant en solution ;

iv. Le polluant et le radical en solution.

1.1 Equilibre d'adsorption

Il faut noter en premier lieu que le suivi du taux d'adsorption en fonction du temps de contact en présence du semi-conducteur a été déterminé pour le ZnO SG et Cop. Dans ces conditions, l'équilibre "adsorption/désorption" a été atteint au bout de30 minutes. Avant d'entamer les irradiations à la lumière solaire, les suspensions polluant/ZnO ont été agitées pendant 180 minutes à l'obscurité, un temps qui est donc largement suffisant pour atteindre l'équilibre d'adsorption.

1.2 Adsorption sur le ZnO SG et Cop

L'adsorption du BM par le ZnO SG et Cop en l'absence des irradiations UV solaire présentée dans la **Figure 3.28**, provoque une légère diminution de la concentration du colorant dans la solution. Le taux d'adsorption du BM sur le ZnO SG et Cop a été estimé à environ 14 et 9% respectivement de la concentration initiale.

Figure 3.28: Adsorption du BM par le ZnO SG et Copà l'obscurité : [BM]=10mg.l⁻¹, m_{ZnO} =20mg, pHi=6.8, T=24°C.

2. Photocatalyse directe du BM par irradiation solaire

2.1 Décoloration du BM par le système ZnO (SG et Cop)/UV solaire

2.1.1 Effet de la masse de catalyseur

Les expériences concernant l'influence de la masse du ZnO ont été réalisées avec les concentrations de ZnO de : 100 ; 200et 300 mg. L⁻¹ et sont présentés dans la **Figure 3.29**.Lavitesse de décoloration du BM augmente avec les masses de ZnO 10 et 20 mg, quand la masse de ZnO est égale à 30 mg il n'y a pas une augmentation considérable du taux de la décoloration que se soit pour le ZnO SG ou bien le ZnO cop. Il faut savoir que dans la réaction photocatlytique, la vitesse initiale de la réaction est directement proportionnelle à la masse de catalyseur. Cependant, à partir d'une certaine valeur de concentration en catalyseur, la vitesse de réaction devient indépendante de la masse en catalyseur. Cette limite dépend de la géométrie et des conditions de travail. En effet, pour une quantité bien définie de l'oxyde, il est nécessaire de bien connaître la surface de catalyseur effectivement irradiée [49-50]. Quand la concentration de ZnO SG et du ZnO cop sont très grandes, la lumière atteint difficilement le cœur du réacteur et un effet d'écran se produit à cause de la très grande masse du catalyseur. Cela induit une diminution de la vitesse de réaction à cause de l'opacité et de la grande turbidité de la solution qui empêche le catalyseur d'être illuminé [49].

Les résultats montrent que le ZnO SG est beaucoup plus efficace que le ZnO Cop, cela est probablement dû à la meilleure cristallisation du ZnO SG que celle de ZnO Cop. Le

manque de la caractérisation physicochimique nous laisse perplexe sur explication de la différence du comportement catalytique.

Figure 3.29: Effet de la masse de catalyseur ZnO SG et Cop sur la décoloration photocatalytique du BM.

2.1.2 Effet de la concentration du polluant

Les résultats de l'étude cinétique de réaction photocatalytique du BM en fonction de la concentration initiale ont été menés en faisant varier celle-ci de 10 à 40 mg. L^{-1} .

Figure 3.30 : (a) Effet de la concentration initiale du BM sur le processus de décoloration par le ZnO SG. (b) Cinétique de décoloration selon la réaction pseudopremier ordre.

Figure 3.31: (a) Effet de la concentration initiale du BM sur le processus de décoloration par le ZnO Cop. (b) Cinétique de décoloration selon la réaction pseudopremier ordre.
Ces variations sont représentées en Figure 3.30 et 3.31 et montrent que le colorant irradié est éliminé pour toute la gamme de concentration utilisées. A cet effet, on constate que plus la concentration augmente en substrat plus le temps final de décoloration augmente. Ce qui peut s'expliquer par une forte concurrence du colorant envers les entités photoactives tels que : les radicaux HO•, les trous positifs h⁺ et l'anion superoxyde O₂[•][51-52].

Puisque la cinétique de décoloration en fonction de la concentration est décrite correctement par une loi cinétique apparente d'ordre 1, laquelle est caractérisée par des paramètres comme les constantes apparentes et les temps de demi-réactions $t_{1/2}$ (**Tableau 3.5**). Ces derniers sont bien meilleure de pour le ZnO SG que le ZnO cop ou le temps de demi réaction est atteint pour 3 concentration et les vitesses initiales de réaction sont 10 fois plus grande pour la concentration de 10mg.L¹⁻.

Ces résultats montrent que la dégradation photocatalytique du BM par le ZnO, suit une cinétique du premier ordre avec une vitesse qui a pour équation :

$$v0 = -\frac{dc}{dt} = k.V.C$$

 v_0 : vitesse initiale de dégradation photocatalytique (mol/L.min⁻¹)

k : constante apparente de dégradation, calculée à partir de la pente de la courbe $deln(C/C_0)$ en fonction du temps (min⁻¹).

C : concentration en solution du colorant (mol/L).

t : Temps d'irradiation (min).

V : le volume de la solution.

Pour une cinétique de premier ordre le temps de demi-vie est calculé par la relation suivante :

$$t_{1/2} = \frac{ln2}{k}$$

Catalyseur	[BM] ₀ (mg/l)	k (min ⁻¹)	t _{1/2} (min)	V ₀ (mol.L ⁻¹ .min ⁻¹)	R ²
	10	0.01	69	1.10 ⁻⁵	0.97
	20	0.004	136	8.10 ⁻⁶	0.97
ZnO SG	30	0.005	138	15.10^{-6}	0.92
	40	0.002	Non atteint	8.10 ⁻⁶	0.97
	10	0.004	173	4.10 ⁻⁶	0.95
ZnO Cop	20	0.003	Non atteint	6.10 ⁻⁶	0.94
	30	0.002	Non atteint	6.10 ⁻⁶	0.98
	40	0.002	Non atteint	8.10 ⁻⁶	0.96

Tableau 3.5 : Paramètres cinétique de la décoloration du BM.

2.1.3 Influence des accepteurs d'e-

2.1.3.1 Influence du peroxyde d'hydrogène sur la photocatalyse

Pour étudier l'influence des oxydants ajoutés nous allons continuer l'étude par le ZnO qui a donnée le meilleure résultat c'est-à-dire ZnO SG.La **Figure 3.32** montre l'effet de H₂O₂ sur la cinétique de dégradation du BM photocatalysée par le ZnO SG et Cop. L'expérience montre que l'addition de peroxyde d'hydrogène en photocatalyse hétérogène accélère le processus de décoloration du BM où le taux de dégradation est beaucoup plus supérieur $[H_2O_2] = 10^{-2}$ mol. L⁻¹).Les vitesses de dégradation par ZnO SG/UV solaire augmentent avec l'augmentation de la concentration en peroxyde d'hydrogène en accord avec les réactions jusqu'à une concentration optimale 10^{-2} M au delà de laquelle la vitesse de décoloration se stagne [43,45] (effet d'inhibition)(3-12) et (3-13)Toutes ces réactions indiquent le mode de réaction des radicaux HO• avec le BM selon:

$$\begin{array}{l} H_2O_2 + O_2^{\bullet} \rightarrow HO^{\bullet} + O_2 + OH^{-} \\ H_2O_2 + e^{-}BC \rightarrow OH^{-} + HO^{\bullet} \end{array}$$

$$\begin{array}{l} (3-12) \\ (3-13) \end{array}$$

Figure 3.32 : Cinétique de décoloration du [BM]=30mg.l⁻¹ à différentes concentrations de H₂O₂en présence de ZnO SG (m_{ZnO}=20mg).

$H_2O_2 + OH \bullet \rightarrow H_2O + HO_2 \bullet k = 2,7 \times 10^7$	[53]	(3-14)
$2h++H_2O_2 \longrightarrow O_2+2H^+$		(3-15)
$H_2O_2 + h^+_{BV} \rightarrow HO_2^{\bullet} + 2H^+$		(3-16)

Cette inhibition a donc deux origine : (i) la consommation en phase liquide de radicaux hydroxyles, aux dépens de leur réaction avec le polluant organique (3-14), (ii) l'adsorption de H_2O_2 qui réagit avec les trous (3-15 et 3-16). Les données de cette expérience indiquent que le peroxyde d'hydrogène peut avoir deux effets antagonistes : le premier serait donc de promouvoir la dégradation des polluants organiques et le second serait d'inhiber cette même dégradation par effet de piège des radicaux hydroxyles. Par conséquent, le peroxyde d'hydrogène devrait être ajouté à une concentration optimale pour obtenir la dégradation la plus efficace. Les résultats obtenus par d'autres travaux ont confirmé ce phénomène [54,55].

[BM] ₀ (mg/l)	$[H_2O_2](\text{mol.L}^{\text{-1}})$	k(min ⁻¹)	t _{1/2} (min)	$V_0(mol.L^{-1}.min^{-1})$	\mathbf{R}^2
30	0	-0.002			0.99
30	5.10-3	0.005	136	3.10 ⁻⁵	0.95
30	10 ⁻²	0.013	69	4.5.10 ⁻⁵	0.97
30	5.10 ⁻²	0.032	21	3.3.10 ⁻⁴	0.98
30	10 ⁻¹	0.033	20	3.33.10 ⁻⁴	0.97

Tableau 3.6: Paramètres cinétique de la décoloration du BM par H₂O₂.

2.1.3.2 Influence du persulfate $S_2O_8^{2-3}$ sur la photocatalyse du BM

Comme illustré dans la **Figure 3.33**, l'introduction de $S_2O_8^{2-}$ dans le milieu réactionnel accélère la décoloration photocatalytique du BM. Ce résultat est conforme à d'autres travaux[56] et confirme une fois de plus les propriétés accélératrices du $S_2O_8^{2-}$.

Comme pour le procédé H_2O_2/UV solaire, une modélisation cinétique montre que le systèmeS₂O₈²⁻/UV est également décrit correctement par une loi cinétique apparente d'ordre 1, laquelle est caractérisée par des paramètres comme les constantes apparentes et les temps de demi-réactions t_{1/2} (**Tableau 3.7**). Ces derniers augmentent et diminuent respectivement.

[BM] ₀ (mg/l)	$[S_2O_8^{-2}]$	k	t _{1/2}	$v_0(mol.L^{-1}.min^{-1})$	\mathbf{R}^2
30	0	-0.002	Non atteint		0.99
30	5.10 ⁻³	0.010	69	3.10 ⁻⁵	0.96
30	10 ⁻²	0.015	46	4.5.10 ⁻⁵	0.97
30	5.10 ⁻²	0.110	6.27	3.3.10 ⁻⁴	0.94
30	10-1	0.111	6.21	3.33.10 ⁻⁴	0.92

Tableau 3.7: Paramètres cinétique de la décoloration du BM par S₂O₈²⁻.

Partie D : A la recherche de nouveaux catalyseurs MCo₂O₄pour la photocatalyse du Bleue de Méthylène et du Rouge Congo.

Introduction

L'objectif des travaux présentés dans cette partie est de développer de nouveaux catalyseurs autres que le ZnO ayant des propriétés de structure requises pour améliorer leurs performances photocatalytiques. Pour réaliser cette étude, la démarche scientifique adoptée consiste à l'élaboration et l'amélioration des photocatalytiseurs capables d'absorber les photons du domaine du visible et dans le domaine de l'UV, afin de produire efficacement des radicaux. Pour ce faire, nous allons tester une nouvelle famille de catalyseur rarement étudié dans le domaine de la photocatalyse, ce sont les spinelles cobaltites MCo₂O₄ testé dans le chapitre précédant autant que supercondensateur.

3.1. Equilibre d'adsorption

Il faut noter en premier lieu que le suivi du taux d'adsorption en fonction du temps de contact en présence des semi-conducteurs a été déterminé pour les spinelles MCo₂O₄. Dans ces conditions, l'équilibre "adsorption/désorption" a été atteint au bout de 30 minutes. Avant d'entamer les irradiations à la lumière solaire, les suspensions polluant/MCo₂O₄ont été agitées pendant 180 minutes à l'obscurité, un temps qui est largement suffisant pour atteindre l'équilibre d'adsorption.

3.1.1 Adsorption sur les spinelles MCo₂O₄

L'adsorption du BM et du RC par les MCo_2O_4 en l'absence des irradiations UV solaire, provoque une légère diminution de la concentration du colorant. Le taux d'adsorption de du BM et du RC par les spinelles MCo_2O_4 est montré dans le **Tableau 3.8**, on voit clairement qu'après un temps de 30min on atteint l'équilibre d'adsorption.

3.2. Suivi de la décoloration du BM et du RC par le système MCo₂O₄/UVsolaire

Les expériences concernant l'influence du cation divalent M ont été réalisées avec les quantités des catalyseurs MCo_2O_4 de 200 mg. L⁻¹sous irradiation solaire. La réponse de la décoloration du BM et du RC varie d'un catalyseur à un autre. C'est-à-dire que la vitesse de décoloration des deux colorants dépend énormément du choix du cation M. Le taux décoloration en présence des catalyseurs et du rayonnement solaire et montre dans le **Tableau 3.8**.

Figure 3.34 : Le taux de décoloration du BM et du RC à l'obscurité et aux UV solaire par les catalyseurs MCo₂O₄,.

Tableau 3.8: Taux de décoloration du BM et du RC par photocatalyse des oxydes MC02O4.

Colorants	Taux de	CCo	NCo	MCo	ZCo
10mg.L ⁻¹	décoloration(%)				
BM	Catalyseur+obscurité	14	11	8	10
BM	Catalyseur+UVsolaire	53	23	29	55
RC	Catalyseur+obscurité	19	9	13	7
RC	Catalyseur+UVsolaire	98	31	30	100

Pour définir l'efficacité photocatalytique des catalyseurs élaborés, la cinétique du processus de photodégradation a été établies **Figure 3.34**. Les catalyseurs en suspension ont été soumis à un rayonnement solaire. Les résultats photocatalytiques obtenus dans le domaine du visible+UV solaire montre que les catalyseurs les plus actifs sont ceux à base de cuivre et du zinc (CCo et le ZCo).

Sachant que le CCO possède un taux d'adsorption de 19% et une décoloration photocatalytique de 53% pour le BM et jusqu'à 98% pour le RC.

Pour le ZCO le taux d'adsorption sur le BM et le RC respectivement est 10 et 7% et le taux de la décoloration photocatalytique est de 55 et 100 % pour le BM et le RC respectivement. Par conséquent la suite du travail sera basée sur l'utilisation uniquement des spinelles CCo et ZCo, sachant que certain travaux ressent ont trouvé que ces oxydes ont un pouvoir photocatalytique intéressant [57-58].

3.3 Influence de quelque paramètre sur la photocatalyse du BM par CCO et ZCO3.3.1 Effet de la masse du catalyseur sur la vitesse de réaction

Les expériences concernant l'influence de la masse du catalyseur ont été réalisées avec les quantités de CCO et ZCO de : 100 ; 200 ; 300 ; 400 mg. L⁻¹. Dans le domaine de masse, la vitesse de décoloration du BM augmente quand la masse de l'oxyde catalyseur augmente ; jusqu'à une de 30mg ou cette masse du catalyseur concentrations plus élevées de catalyseur, la vitesse de décoloration reste pratiquement constante la **Figure 3.35.** Les résultats montrent donc que les vitesses initiales de décoloration du BM sont proportionnelles à la concentration du catalyseur. Ce comportement est une conséquence d'une augmentation de la surface de particules à illuminer [59,60], produisant ainsi une plus grande quantité de paires "électrontrou" et donc une plus grande quantité de HO•[61]. Néanmoins, un plafond est observé ou audelà d'une certaine masse du ZCO ou du CCO. Dans ce cas nous l'appelons une masse limite de photocatalyseur qui correspond à l'absorption complète des photons provenant de la source lumineuse [62,63].

Dans le reste des expériences, nous allons donc fixer la masse du catalyseur à une valeur optimale de 20 mg.

Figure 3.35:Effet de la masse de catalyseur sur la décoloration du BM.

3.3.2 Effet de la concentration initiale en polluant

L'étude de la cinétique de réaction photocatalytique du BM en fonction de la concentration initiale a été menée en faisant choisir trois concentrations initiales à savoir 10, 30, 40 mg.L⁻¹.Ces variations sont représentées en **Figure 3.36.** Elles montrent que le colorant irradié est éliminé pour toute la gamme de concentration utilisées. A cet effet, nous constatons que plus la dose du colorant augmente plus le taux de décoloration diminuent. Ce qui peut s'expliquer par une forte concurrence du colorant envers les entités photoactives tels que : les radicaux HO•, les trous positifs h⁺ et l'anion superoxyde O₂[•] [57-60-64].

Figure 3.36: Effet de la concentration initiale du BM sur le processus de décoloration par le CCO et le ZCO.

La décoloration de BM peut être interprétée selon une loi cinétique de pseudo 1er ordre. Comme il a était indiqué dans de travaux précédents, dans un milieu dilué $(K_{BM}.[BM]_o << 1)$ la cinétique suit une réaction d'ordre 1, soit sous forme intégrée :

$$\ln [BM]_{o}/[BM]_{t} = k_{app}.t$$
 (3-17)

La Figure 3.37 illustre l'application de cette simple loi et montre clairement l'effet de la concentration initiale sur la vitesse d'élimination du composé.

Figure 3.37: Cinétique de décoloration selon la réaction pseudopremier ordre.

3.3.3 Effet des accepteurs d'électron

La prévention de la recombinaison "électron-trou"(e^- / h^+) qui est une étape limitante lors de la présence d'un catalyseur, devient très importante. Pour cela, de nombreux chercheurs on constaté que l'ajout d'accepteurs d'électrons permet de réduire ce phénomène [65-66-67] selon :

• réduction de la recombinaison "électron-trou", en captant l'électron de la bande de conduction selon l'équation :

$$H_2O_2 + e^-_{BC} \rightarrow OH^- + HO^-$$

- augmentation de la concentration des radicaux hydroxyles dans le milieu réactionnel selon aussi l'équation :H₂O + h⁺ → HO[•] + H⁺
 (3-19)
- production d'autre espèces oxydantes (SO₄^{-•}) dans le cas de l'utilisation des persulfates [68].

$$S_2O_8^{2-} + e - BC \rightarrow SO_4^{-+} + SO_4^{2-}$$
 (3-20)

Nous avons donc jugé essentiel d'examiner l'influence de deux accepteurs comme H_2O_2 et $S_2O_8^{2-}$ sur la décoloration photocatalytique du BM.

(3-18)

3.3.3.1. Influence du peroxyde d'hydrogène sur la décoloration du BM par CCO et ZCO

La **Figure 3.38** montre l'effet de H_2O_2 sur la cinétique de dégradation du BM photocatalysée par le CCO et le ZCO. L'expérience montre que l'addition de peroxyde d'hydrogène en photocatalyse hétérogène accélère le processus de décoloration du BM où le taux de dégradation et le temps de demi-réaction sont respectivement multipliés par les facteurs 1,5 et 2 ([H_2O_2] = 10⁻² mol. L⁻¹).

Les vitesses de dégradation par CCO ou ZCO/UV solaire augmentent en présence de faible concentration en peroxyde d'hydrogène en accord avec les réactions (3-12) et (3-13). Toutes ces réactions indiquent le mode de réaction des radicaux HO• avec le BM selon:

$H_2O_2 + O_2^{\bullet} \rightarrow HO^{\bullet} + O_2 + OH^{\bullet}$	(3-12

$$H_2O_2 + e_{BC} \rightarrow OH^- + HO^-$$
(3-13)

Comme cela a déjà été démontré dans la partie de la photocatalyse du BM par le ZnO des concentration trop élevées du H_2O_2 (10⁻²M) peuvent provoquer l'inhibition de la réaction photocatlytique selon deux modes : (i) la consommation en phase liquide de radicaux hydroxyles, aux dépens de leur réaction avec le polluant organique, (ii) l'adsorption de H_2O_2 qui réagit avec les trous, pour cela nous n'avons pas dépassé la concentration de 10⁻²M.

3.3.3.2 Influence des persulfates

Comme illustré dans la **Figure 3.39**, l'introduction de $S_2O_8^{2-}$ dans le milieu réactionnel accélère considérablement la décoloration photocatalytique du BM par les deux catalyseurs malgré que la vitesse de réaction par le CCO est plus importante que celle avec le ZCO. Les résultats obtenus sont conformes aux prévisions et confirme une fois de plus les propriétés accélératrices du $S_2O_8^{2-}$.

Les résultats de l'excellente amélioration de la décoloration du BM par l'ajout de l'accepteur d'e-, peut être expliqué par l'inhibition de la recombinaison "électron-trou" par l'addition des persulfates d'une part et d'autre part à la production d'autres espèces oxydantes $SO_4^{-\bullet}$ et HO[•]: $S_2O_8^{2-} + e_{BC}^{-} \rightarrow SO_4^{-\bullet} + SO_4^{2-}$ (3-21) $SO_4^{-\bullet} + H_2O \rightarrow OH^{\bullet} + SO_4^{2-} + H^{+}$ (3-22)

L'anion radical sulfate (SO₄^{-•}) formé est un oxydant fort ($E_o = 2,6 \text{ eV}$). Ce dernier, prend part aux réactions possibles avec les composés organiques. Soit en arrachant un atome d'hydrogène du carbone saturé. Soit en l'ajoutant à un carbone non saturé ou aromatique ou bien en enlevant un électron de l'anion carboxylate et de certaines molécules neutres[68-69] Cependant, il peut réduire le processus de dégradation photocatalytique en éliminant le radicale SO4^{-•}selon la réaction (3-22)[70].

$$\mathrm{SO_4}^{\bullet} + \mathrm{e}_{-}(\mathrm{CB}) \to \mathrm{SO_4}^{2^-}$$
(3-23)

Une modélisation cinétique de la réaction photocatalytique montre que le système $S_2O_8^{2^2}/UV$ et H_2O_2/UV sont décrit correctement par la loi cinétique apparente d'ordre 1, laquelle est caractérisée par des paramètres comme les constantes apparentes et les temps de demi-réactions $t_{1/2}$, tous les paramètres sont mentionnés dans le **Tableau 3.9**.La constante de la vitesse apparente augmente proportionnellement avec l'augmentation de la concentration du H_2O_2 et de $S_2O_8^{2^2}$ montrant ainsi efficacité des accepteurs d'é-.

L'ajout des accepteurs d'e a considérablement amélioré l'efficacité du catalyseur CCO, par rapport au catalyseur ZCO.

colorant	catalyseur	[oxydant]	mol.L ⁻¹	k (min ⁻¹)	t _{1/2} (min)	v ₀ (mol.L ⁻¹ . min ⁻¹)	\mathbf{R}^2
			0	0.002	Non atteint	6.10 ⁻⁶	0.99
		H_2O_2	10 ⁻³	0.004	172	12.10 ⁻⁶	0.99
			5.10 ⁻³	0.006	115	18.10 ⁻⁶	0.99
			10 ⁻²	0.009	76	27.10 ⁻⁶	0.94
	CCO	$S_2O_8^{-2}$	0	0.002	Non atteint	6.10 ⁻⁶	0.99
			10 ⁻³	0.007	98	21.10-6	0.93
			5.10 ⁻³	0.010	69	3.10 ⁻⁵	0.97
BM			10 ⁻²	0.016	43	4.8.10-5	0.97
	H ₂		0	0.003	Non atteint	9.10-6	0.93
		H_2O_2	10-3	0.004	172	12.10-6	0.99
			5.10 ⁻³	0.005	138	15.10-6	0.94
			10 ⁻²	0.006	115	18.10-6	0.94
	ZCO		0	0.003	Non atteint	9.10-6	0.93
		$S_2O_8^{-2}$	10-3	0.004	172	12.10-6	0.97
			5.10-3	0.006	115	18.10-6	0.97
			10 ⁻²	0.008	86	24.10-6	0.94

Tableau 3.9: Paramètres cinétique de la décoloration du BM par photocatalyse avec l'ajout des accepteurs des e⁻.
3.4Etude de la décoloration photocatlytique du rouge congo par CCO et ZCO

L'évaluation de l'activité photocatalytique du CCO et du ZCO pour dégrader un autre colorant azoïque mais cette fois c'est un colorant anionique qui est le rouge du congo RC. Le même protocole qui a été suivi lors de la décoloration de son confrère BM va être suivi pour le RC. Toutes les expériences seront faites après l'adsorption à l'obscurité du RC par les catalyseurs CCO et ZCO.

3.4.1 Influence de quelque paramètres sur la photocatalyse du RC par CCO et ZCO3.4.1.1 Effet de la masse du catalyseur sur la vitesse de réaction

La **Figure 3.40** montre l'effet de masse du catalyseur ZCO et CCO sur la dégradation du RC. Nous remarquons que pour des quantités en catalyseur trop élevée comme pour la masse 40mg la solution devient trop turbide, cela empêche la pénétration de lumière au sein de la solution ce qui conduit à une diminution de la quantité décoloré du RC comparé aux autres masses (une partie de la masse du catalyseur ne sera pas photoexcité). Par conséquent la masse de 20mg s'avère parfaite pour continuer les tests sur la décoloration du RC.

Figure 3.40:Effet de la masse du catalyseur sur la décoloration du RC.

3.4.1.2 Effet de la concentration initiale

L'influence de la concentration initiale en RC a été étudiée dans l'intervalle 10, 30, 40mg.L^{-1} . La Figure 3.41 représente la variation C/C₀ en fonction du temps, ainsi la cinétique selon la réaction pseudo premier ordre. Après 3 h d'irradiation, la dégradation est 100% et de 98% pour la concentration10mg.L⁻¹pour les catalyseurs ZCO et CCO respectivement. Nous remarquons aussi que la cinétique de la dégradation diminue avec l'augmentation de concentration du RC (**Tableau 3.10**), où la constante de vitesse apparente réduit lorsque la

concentration augmente [61]. Ce résultat pourrait s'expliquer par l'insuffisance de la quantité des radicaux •OH générés par les particules du ZCO et CCO pour dégrader tous les molécules du RC présentes dans la solution avec le même taux et la même vitesse quand la concentration du RC augmente [56-60]. Il est important de souligner que la forte concentration du RC peut ralentir l'action photocatalytique par l'empêchement d'une partie des UV à pénétrer sur la surface des catalyseurs.

Figure 3.41:Effet de la concentration initiale du RC sur le processus de décoloration par le CCO et le ZCO. Cinétique de décoloration selon la réaction pseudopremier ordre.

3.4.1.3 Effet des accepteurs d'e

3.4.1.3.1 Effet du peroxyde d'hydrogèneH₂O₂

L'efficacité photocatalytique du CCO et du ZCO en présence de H_2O_2 à décolorer le RC a été étudié. La **Figure 3.42** regroupe les résultats de l'effet de la concentration de H_2O_2 sur la réaction photocatalytique sous UV solaire.

Figure 3.42: Effet de la concentration du H₂O₂ processus de décoloration par le CCO et le ZCO.Cinétique de décoloration selon la réaction pseudopremier ordre.

3.4.1.3.2Influence des persulfates

La **Figure 3.43**, montre l'effet de l'ajout de différente concentration de $S_2O_8^{2-}$ dans le milieu réactionnel.

Figure 3.43:Effet de la concentration du S₂O₈²⁻ processus de décoloration.Cinétique de décoloration selon la réaction pseudopremier ordre.

L'ajout de ces deux accepteurs d'e- H_2O_2 , $S_2O_8^{2-}$ ont un effet préventif sur la recombinaison de trous d'électrons. Dans les réactions photocatalytiques hétérogènes, l'oxygène moléculaire (air) a été utilisé à cette fin comme accepteur d'électrons pour la

prévention à recombinaison de trous d'électrons [57,58], bien que son rôle ne soit pas simplement de piéger les électrons. Une approche utilisée par les chercheurs dans le but d'empêcher la recombinaison de trous d'électrons consiste à ajouter des accepteurs d'électrons à la réaction.

Par conséquent et d'après la **Figure 3.42** et **3.43** l'amélioration de l'activité photocatalytique est du principalement à : (a) d'éviter la recombinaison d'électrons-trous en acceptant les électrons de la bande de conduction; (b) augmenter les concentrations du radical hydroxyle; et c) celle d'autres espèces oxydantes (SO₄⁻) pour augmenter le taux d'oxydation du composé intermédiaire [42,43].

Comme cela a déjà était mentionné auparavant, une modélisation cinétique de la réaction photocatalytique montre que le système $S_2O_8^{2^2}/UV$ et H_2O_2/UV pour la décoloration de RC sont décrit correctement par la loi cinétique apparente d'ordre 1, les paramètres caractérisant la réaction photocatalytique sont mentionnés dans le **Tableau 3.10**.

Tableau 3.10: Paramètres cir	nétique de la décoloration	du RC par ph	otocatalyse avec
1	'ajout des accepteurs des	e.	

colorant	catalyseur	[oxydant]mol.L ⁻¹		K (min ⁻¹)	t _{1/2} (min)	$V_0(mol.L^{-1}.min^{-1})$	\mathbf{R}^2
RC	ССО	H ₂ O ₂	0	0.005	115	18.10 ⁻⁶	0.94
			10 ⁻³	0.006	115	18.10 ⁻⁶	0.88
			5.10-3	0.007	98	21.10 ⁻⁶	0.92
			10 ⁻²	0.009	76	27.10 ⁻⁶	0.91
		$S_2O_8^{-2}$	0	0.006	115	18.10-6	0.94
			10-3	0.008	86	24.10-6	0.98
			5.10 ⁻³	0.021	32	6.10 ⁻⁵	0.98
			10 ⁻²	0.030	23	9.10 ⁻⁵	0.99
	ZCO	H ₂ O ₂	0	0.006	115	18.10-6	0.94
			10-3	0.006	115	18.10-6	0.94
			5.10-3	0.007	98	21.10-6	0.93
			10 ⁻²	0.009	76	27.10-6	0.97
		S ₂ O ₈ ⁻²	0	0.006	115	18.10 ⁻⁶	0.93
			10-3	0.011	62	33.10-6	0.98
			5.10-3	0.023	30	70.10 ⁻⁶	0.95
			10 ⁻²	0.035	20	1.05.10 ⁻⁴	0.97

Nous remarquons que la vitesse de réaction augmente avec l'ajout des accepteurs d'e-, sachant que l'effet de l'ajout de $S_2O_8^{2-}$ est meilleure que, l'ajout de H_2O_2 ou la constantes de vitesse des persulfate est 3 fois supérieur a celle du peroxyde d'hydrogène, pour les deux catalyseurs.

Le temps de demi réaction quand a lui diminue avec l'augmentation des concentrations des accepteurs d'e⁻, grâce à une meilleure génération des radicaux OH⁻, sauf pour des faibles

concentrations de H_2O_2 , la différence entre les temps de demi vie n'est pas significative, par conséquent des concentrations de H_2O_2 trop faible n'ont pas d'effet, et des concentrations de H_2O_2 trop élevées peuvent aussi causé l'inhibition de la réaction photocatalytique, cela est probablement dus à la nature des colorants puisque le RC est anionique et le BM est cationique, l'affinité des colorants par rapport aux oxydes étudiés sera différentes.

Cela nous conduit a se poser la question, sur le mécanisme catalytique de CCO et ZCO pour cela et afin de comprendre le comportement des deux oxydes dans le système il faut aller dans la structure cristallographique, ou il a été rapporté que dans de nombreux oxydes de métaux de transition de structures spinelles, la présence d'ions divalents sur des sites octaédriques améliore l'activité catalytique par rapport aux sites tétraédriques [41]. Pour le CCO comme cela a été mentionné dans la chapitre.1 partie C, la structure cristalline de CCO est inverse cela implique que la moitié des cations divalents Cu²⁺ occupent les sites octaédriques, tandis que la moitié des cations trivalents Co³⁺ occupent les sites tétraédriques, et inversement, ce positionnement pourrait très bien expliqué le pouvoir catalytique de cette spinelle, pour le CCO qui est une spinelle simple, c'est-à-dire que le Zn⁺² occupe les sites tétraédrique et que le Co⁺³ occupe les sites octaédrique, par conséquent la formation de Co⁺² sur les sites octaédriques est crustial pour expliquer de manière logique le comportement catalytique. Cela peut être confirmé par la méthode de XPS.

Conclusion

- la cinétique de disparition du BM et du RC est correctement décrite par le modèle de pseudopremier ordre.
- Ia vitesse de disparition augmente avec la dose du catalyseur (ZnO, CCOou ZCO) dans le milieu, mais le surdosage peut conduire a une inhibition de l'activité du photocatalyseur puisque il est limité par son absorbance photonique et l'agrégation de ces particules.
- l'addition de H₂O₂et S₂O₈² améliore les performances de dépollution de la technique de photocatalyse. L'excès de H₂O₂crée un effet d'autoinhibition qui annule l'effet accélérateur.
- Le pouvoir photocatalytique des spinelles CCo et ZCo ont fait leur preuve avec succès, les classant ainsi avec les catalyseurs du ZnO et du TiO₂ degusssa.

Conclusion Générale

Le travail réalisé au cour de cette thèse, s'inscrit dans le cadre du développement du stockage d'énergie et de la dépollution des eaux usées. Il a eu comme objectif l'élaboration des oxydes à valence mixtes, qui peuvent être appliqués dans les deux domaines.

Nous avons pris la lourde tache de démontrer que ces spinelles pourraient être multidisciplinaires et pouvait être des supercondensateurs et catalyseurs pour la photocatalyse de certain colorants azoïques.

Les résultats obtenus indique que :

- I. Les oxydes à valence mixtes à savoir les spinelles MCo₂O₄ ont été élaborés dans la première partie expérimentale pour l'application des supercondensateurs et dans la dépollution des eaux par photocatalyse. La synthèse de ces oxydes a été réalisée par la méthode sol gel dite citrate, et le traitement thermique de ces oxydes était fait à 550°C. quatre oxydes ont été élaborés NiCo₂O₄, CuCo₂O₄, MnCo₂O₄ et le ZnCo₂O₄.pour déterminer les propriétés physicochimiques et structurales, ces oxydes ont subi une série de caractérisation en utilisant plusieurs techniques. La caractérisation physicochimique a montré que la formation des spinelles cristallisant dans le système cubique dans le groupe d'espace Fd3m, pour le MCO et le ZCO les oxydes sont purs alors que le CCO et le NCO il y'a apparition des phases secondaires CuO et NiO respectivement.
- II. En deuxième lieu, l'étude des propriétés supercapacitives était faite en utilisant les spinelles synthétisés auparavant comme des matériaux d'électrodes dans une solution de 1M KOH et de Na₂SO₄ 1M. Les résultats obtenu montre que la meilleure réponse était pour le CuCo_{2O4} suivi de NiCo₂O₄ et MnCo₂O₄ et enfin ZnC_{o2O4} avec une capacité spécifique 158 F.g⁻¹dans le milieu basique. L'étude physicochimique faite auparavant nous a permis de comprendre pourquoi quand nous changeons le cation M dans la spinelle MC_{o2O4} et nous avons arrivé à la conclusion que la distribution des cations dans les sites cristallographiques est très importante. Donc pour le développement d'une électrode spinelle cobaltite MC_{o2O4} de haute performance pseudocapacitive, la quantité de Cobalt Co composants l'interface doit occuper les sites tétraédriques et octaédriques en même. Ces résultats obtenus peuvent fournir un aperçu du développement de nouveaux matériaux pour les supercondensateurs.

- III. En troisième lieu nous avons étudié la photolyse et la photocatalyse de deux colorants azoïques à savoir le bleu de méthyléne et le rouge congo sous irradiations solaire en utilisant les spinelles MCo₂O₄ et le ZnO comme oxyde référence dans le domaine de la photocatalyse. La synthèse du ZnO était par la méthode solgel et coprécipitation, les spectres de DRX et infrarouge ont confirmé la formation du ZnO élaboré par les deux méthodes.
 - La photolyse UV ne permet de dégrader que les faibles concentrations du BM, elle peut être accélérée par l'augmentation de l'intensité du flux photonique.
 - Le couplage H₂O₂/solaire permet d'oxyder le BM avec une concentration maximale de 10⁻² mol. L⁻¹. Au delà de cette valeur on n'observe aucune amélioration de la vitesse de réaction en raison de l'ampleur prise par les réactions d'auto inhibition. La photolyse solaire du persulfate permet la production du radical sulfate. Les expériences réalisées en présence de colorant ont montré que le procédé persulfate/UV solaire a des capacités meilleuresque celles du procédé de photolyse du peroxyde d'hydrogène pour la décoloration de BM. Pour des concentrations initiales identiques en oxydant (10⁻² mol. L⁻¹) les vitesses de décoloration du BM dans les systèmes S₂O₈²⁻/UVsolaire et plus vite que la vitesse de décoloration du systéme H₂O₂/UVsolaire.
 - Dans la partie photocatalyse nous avons fait la conclusion que le ZnO préparé par le Sol gel présente une meilleure performance photocatlytique comparé au ZnO par Copécipitation. L'addition de H₂O₂ et S₂O₈²⁻ améliorent nettement les performances de dépollution par photocatalyse.
 - L'utilisation des spinelles MCo2O4 comme catalyseur pour la réaction photocatalytique a permis de sélectionner deux catalyseur actif le CCO et le ZCO. La photocatalysedu BM par le CCO et le ZCO a montré que le BM et sous irradiations solaire se dégrade à 53 et 55% respectivement, durant 180 min, pour la photacatalyse du RC le taux de dégradation a atteint 98% pour le CCO et 100% pour le ZCO durant un temps d'irradiations de 180 min. l'addition des accepteurs d'e- tel que le H₂O₂ et le S₂O₈²⁻améliorent nettement les performances des catalyseurs en

inhibant les recombinaison e- trous et en augmentant la production des radicaux hydroxyles.

Perspectives

Pour les supercondensateurs l'une des principales limitations liée à ce système est le coût du cobalt, qui reste assez élevé. La poursuite de ces travaux s'oriente donc vers des électrodes sous forme de films minces, d'autant plus que nous avons montré que seule la surface de l'électrode à base d'oxyde est électro-chimiquement active. Dans ce contexte, nous cherchons en particulier à déposer des particules des oxydes à la surface d'un collecteur de courant tel que le nickel. L'objectif est double : augmenter la surface d'échange entre l'électrolyte et l'électrode et diminuer la quantité des oxydes déposée. Pour cela nous allons envisagées de nouvelles méthodes de dépôts afin de lever ce verrou : électrodéposition, pyrolyse de spray.

Une seconde perspective vise à utiliser les bonnes propriétés de conduction de ces oxydes a base de cobalt pour améliorer le comportement d'autre matériaux. Il s'agit la d'une approche d'ingénierie des matériaux, Pour pouvoir allier les propriétés de stockage capacitives et conductives des matériaux.

Pour la photocatlyse, la mise en évidence de la minéralisation des colorants par le ZnO et le CuCo₂O₄ et le ZnCo₂O₄ est un point qui n'a pas pu être abordé dans ce travail. Il serait aussi intéressant d'étudier plus profondément le mécanisme gouvernant l'acte photocatalytique sur la surface de des oxydes. Dans les perspectives à long terme, les catalyseurs en suspension utilisés comme tels ne sontpas une voie envisageable pour le traitement de l'eau à l'échelle industrielle. En effet, une étape de post traitement serait nécessaire afin de séparer la phase liquide/solide après le traitement de l'eau par photocatalyse solaire. Cependant, la mise en place de ce procédé peut avoir des coûts prohibitifs. La solution envisagée consiste à réaliser des catalyseurs supportés pour remédier au problème de récupération des catalyseurs.

Référence bibliographique

[1] H. Zhou, G. Han, One-step fabrication of heterogeneous conducting polymers-coated graphene oxide/carbon nanotubes composite films for high-performance supercapacitors, Electrochim. Acta. 192 (2016) 448–455.

[2]X. Sun, Z. Jiang, C. Li, Y. Jiang, X. Sun, X. Tian, L. Luo, X. Hao, Z.J. Jiang, Facile synthesis of Co_3O_4 with different morphologies loaded on amine modified graphene and their application in supercapacitors, J. Alloys. Compd. 685 (2016) 507-517

[3] D.R. Rolison, J.W. Long, J.C. Lytle, A.E. Fischer, C.P. Rhodes, T.M. McEvoy, M.E. Bourga, A.M. Lubersa, Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev.38 (2009) 226-252.

[4] C. Zhao, F. Ren, X. Xue, W. Zheng, X. Wang, L.Chang, A high-performance asymmetric supercapacitor based on Co(OH)₂/ graphene and activated carbon electrodes, J. Electroanal. Chem. 782 (2016) 98–102.

[5] V.T. Le, H. Kim, A. Ghosh, J. Kim, J. Chang, Q.A. Vu, D.T. Pham, J. Lee, S.W. Kim, Y.H. Lee, Coaxial Fiber Supercapacitor Using All-Carbon Material Electrodes, *ACS Nano*. 7 (2013) 5940–5947.

[6] S. Chang, Z. Zainal, K. Tan, N. Yusof, Wan M. Yusoff, S. Prabaharan, Recent development in spinel cobaltites for supercapacitor application, Ceram. Int. 41(2015)1–14.

[7] X. Zhang, W. Wang, H.He, L. Hua, J. Heng, Optimization of the air-cooled supercapacitor module compartment for an electric bus, Appl. Therm. Eng. 112 (2017) 1297–1304.

[8] Y. Liu, N. Wang, C. Yang, W. Hu, Sol–gel synthesis of nanoporous NiCo₂O₄ thin films on ITO glass as high-performance supercapacitor electrodes, Ceram. Int. 42 (2016) 11411–11416.

[9] Attias A.-J, Polymères conjugués et polymères conducteurs électroniques, Techniques de l'Ingénieur, (2002) Réf 1862.

[10]H. Zhou, G. Liu, J. Liu, Y.Wang, Q. Ai, J. Huang, Z. Yuan, L. Tan, Y. Chen, Effective Network Formation of PEDOT by in-situ Polymerization Using Novel Organic Template and Nanocomposite Supercapacitor, Electrochim. Acta. 247 (2017) 871-879.

[11] N. Boukmouche, N. Azzouz, L. Bouchama, A.L Daltin, J.P. Chopart, Y. Bouznit, Supercapacitance of MnO₂ films prepared bypneumatic spray method, Mater. Sci. Semicond. Process, 27 (2014) 233–239.

[12]K. Xu, S. Li, J. Yang, H. Xu, J. Hu, Hierarchical MnO₂nanosheets on electrospun NiCo₂O₄ nanotubes as electrode materials for high rate capability and excellent cycling stability supercapacitors, J. Alloys Compd. 678 (2016) 120-125.

[13] N. Duraisamy, A. Numan, S. O. Fatin, K. Ramesh, S. Ramesh, Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application, J. Colloid Interface Sci. 471 (2016) 136–144.

[14] X. Li, W. Gan, F. Zheng, L. Li, N. Zhu, X. Huang, Preparation and electrochemical properties of RuO₂/polyaniline electrodes for supercapacitors, Syn.Metals. 162 (2012) 953–957.

[15] P.Wanga, Y.Xua, H. Liua, Y. Chena, J. Yang, Q. Tana, Carbon/carbonnanotubesupported RuO₂ nanoparticles withahollowinterior as excellentelectrodematerials for supercapacitors, Nano Energy 15 (2015) 116–124.

[16] H. Wei, J. Wang, L. Yu, Y. Zhang, D. Hou, T. Li, Facile synthesis of NiMn₂O₄nanosheet arrays grown on nickel foam as novel electrode materials for high-performance supercapacitors, Ceram. Int. 42 (2016) 14963-14969.

[17] R.N. Singh, J.P. Pandey, N.K. Singh, B. Lal, P. Chartier, J.-F. Koenig, Sol-gel derived spinel $M_xCo_{3-x}O_4$ (M=Ni, Cu; $0 \le x \ge 1$) films and oxygen evolution, Electrochim. Acta. 45 (2000) 1911–1919.

[18] J. Pu, J. Wang, X. Jin, F. Cui, E. Sheng, Z. Wang, Porous hexagonal NiCo₂O₄ nanoplates as electrode materials for supercapacitors, Electrochim. Acta.106 (2013) 226–234.

[19]A. Shanmugavani, R. K. Selvan, Improved electrochemical performances of CuCo₂O₄/CuO nanocomposites for asymmetric supercapacitors, Electrochim. Acta. 188 (2016) 852–862.

[20 W. Li, K. Xu, G. Song, X. Zhou, R. Zou, J. Yang, Z. Chen, J. Hu, Facile synthesis of porous MnCo₂O_{4.5} hierarchical architectures for high-rate supercapacitors, Cryst. Eng. Comm. 16 (2014) 2335–2339.

[21] H. Che, A. Liu, J. Mu, C. Wu, X. Zhang, Template-free synthesis of novel flower-like $MnCo_2O_4$ hollow microspheres for application in supercapacitors, Ceram. Int. 42 (2016) 2416–2424.

[22] A.N. Naveen, S. Selladurai, Investigation on physio-chemical properties of Mn substituted spinel cobalt oxide for supercapacitor applications, Electrochim. Acta. 125 (2014) 404–414.

[23]L.Kong, C.Lua, M.C. Liua, Y.Chun Luo, X. Li, F.The specific capacitance of sol-gel synthesised spinel $MnCo_2O_4$ in analkaline electrolyte. Electrochimica Acta 115 (2014) 22–27.

[24] S. G. Krishnan, M. H,Ab Rahim, R.Jose.Synthesis and characterization of $MnCo_2O_4$ cuboidal microcrystals as a high performance psuedocapacitor electrode.Journal of Alloys and Compounds 656 (2016) 707-713.

[25] W. Li, K. Xu, G. Song, X. Zhou, R. Zou, J. Yang, Z. Chen, J. Hu, Facile synthesis of porous MnCo₂O_{4.5} hierarchical architectures for high-rate supercapacitors, Cryst. Eng. Comm. 16 (2014) 2335–2339.

[26] F. S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, S. Ramesh, A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor, J. Alloys Compd. 716 (2017) 96–105.

[27] F. S. Omar, A. Numan, N. Duraisamy, S. Bashir, K. Ramesh, S. Ramesh, A promising binary nanocomposite of zinc cobaltite intercalated with polyaniline for supercapacitor and hydrazine sensor, J. Alloys Compd. 716 (2017) 96–105.

[28] R. R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, S.H. Han, H. Ahn, Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications, J. Alloys Compd. 509 (2011) 6677–6682.

[29]L. Liu, H. Zhang, L. Fang, Y. Mu, Y. Wang, Facile preparation of novel dandelion-like Fe-doped NiCo₂O₄ microspheres @ nanomeshes for excellent capacitive property in asymmetric supercapacitors, J. Power Sources. 327 (2016) 135–144.

[30] H. Che, A. Liu, J. Mu, C. Wu, X. Zhang, Template-free synthesis of novel flower-like MnCo₂O₄ hollow microspheres for application in supercapacitors, Ceram. Int. 42 (2016) 2416–2424.

[31]Y. Zhu, X. Ji, Z. Wu, W. Song, H. Hou, Z. Wu, X. He, Q. Chen, C. E. Banks, Spinel NiCo₂O₄ for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties, J. Power Sources. 267 (2014) 888–900.

[32] S.K. Chang, K.T. Lee, Z. Zainal, K.B. Tan, N. Yusof, W. M. D. Yusoff, J. Lee, N.Wu, Structural and electrochemical properties of manganese substituted nickel cobaltite for supercapacitor application, Electrochim. Acta.67 (2012) 67–72.

[33]G.S. Jang, S. Ameen, M. S. Akhtar,H.S. Shin,Cobalt oxide nanocubes as electrode material for the performance evaluation of electrochemical supercapacitor, Ceram. Int. 44 (2018) 588-595.

[34] K. Karthikeyan, D. Kalpana, N. G. Renganathan, Synthesis and characterization of $ZnCo_2O_4$ nanomaterial for symmetric supercapacitor applications, Int. J. Ionics. Sci. 15 (2009)107–110.

[35] S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, D. Zhang, Q. Fang, S. Qiu, Porous ZnCo₂O₄ nanoparticles derived from a new mixed-metal organic framework for supercapacitors, Inorg. Chem. Front. 2 (2015) 177–183.

[36] S. Vijayakumar, S. Nagamuthu, S.H. Lee, K.S. Ryu, Porous thin layered nanosheets assembled $ZnCo_2O_4$ grown on Ni-foam as an efficient electrode material for hybrid supercapacitor applications, Int J Hydrogen Energy. 44 (2017) 3122–3129.

[37] Y. Pan, H. Gao, M. Zhang, L. Li, G. Wang, X. Shan, Three-dimensional porous ZnCo₂O₄ sheet array coated with Ni(OH)₂ for highperformance asymmetric supercapacitor, J. Colloid Interface Sci. 497 (2017) 50-56.

[38] G. M. Tomboc, H. S. Jadhav, H. Kim, PVP assisted morphology-controlled synthesis of hierarchical mesoporous ZnCo₂O₄ nanoparticles for high-performance pseudocapacitor, Chem. Eng. J. 308 (2017) 202–213.

[39] F. Zaviska, P. Drogui, G. Mercier, J.-F. Blais, Procédés d'oxydation avancée dans le traitement des eaux et des effluents industriels :Application à la dégradation des polluants réfractaires, Revue des sciences de l'eau. 22 (2009) 535-564.

[40]B. Faust, J. Hoigné, Photolysis of hydroxy-complexes as sources of OH• radicals inclouds, fog and rain. , Atmospheric Environment 24A (1990) 79-89.

[41] C. Wu, H. Shemer, K. G. Linden.Photodegradation of Metolachlor Applying UV and UV/H₂O₂.J. Agric. Food Chem., 55 (2007)4059–4065.

[42]C. Guillard, N. Charton, P. Pichat, Degradation mechanism butyl methyl ether (MTBE) in atmospheric droplets, Chemosphere 53 (2003) 469-477.

[43] H.Y. Shu, M.C. Chang, Decolorization effects of six azo dyes by O_3 , UV/ O_3 and UV/ H_2O_2 processes, Dyes and Pigments 65 (2005) 25-31.

[44] M. Doré, Chimie des oxydants et traitement des eaux, Tec. Doc. Lavoisier (Éditeur), Paris, France, (1989) 505. [45] A. Machairas, The UV/H_2O_2 advanced oxidation process in UV disinfection units :removal of selected phosphate esters by hydroxyl radical, thèse, MassachusettsInstitute of Technology. Dept. of Civil and Environmental Engineering. (2004).

[46]J. De Laat, M. Doré, H. Suty, Oxydation de S-triazines par les procédésd'oxydation radicalaire. Sous-produits de réaction et constantes cinétiques deréaction, Journal of Water Science 8 (1995) 23-42.

[47]Tsao M.S et Wilmarth W.K.The aqueous chemistry of inorganic free radicals, and theirmechanism.Journal of Physical Chemistry 63 (1959) 346-353.

[48] A.N. Soon, B.H. Hameed, Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process, Desalination 269 (2011) 1-16.

[49] A. Babuponnusami, K. Mutukumar, Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes, Chemical Engineering Journal 183 (2012) 1-9.

[50] C. Sirtori, A. Zapata, I. Oller, W. Gernjak, A. Agüera, S. Malato, Decontaminationindustrial pharmaceutical wastewater by combining solar photo-Fenton and biological treatment, Water Research 43 (2009) 661-668.

[51]A. Moncayo-Lasso, R.A. Torres-Palma, J. Kiwi, N. Benítez, C. Pulgarin, Bacterial inactivation and organic oxidation via immobilized photo-Fenton reagent on structured silica surfaces, Applied Catalysis B: Environmental 84 (2008) 577-583.

[52] Dindar B., Içli S., Unusual photoreactivity of zinc oxide irradiated by concentrated sunlight, J. Photochem. Photobiol. A Chem., *140*, (2001), 263–268

[53] Gau S.H., Chang F.S. Wat. Improved Fenton method to remove recalcitrant organics in landfill leachate.Sci. Tech. 34, 7-8 (1996) 455-462.

[54]Muruganandham M., Swaminathan M. Decolourisation of Reactive Orange 4 by Fenton and Photo-Fenton Oxidation Technolog. Dyes Pigments 63 (2004) 315–21.
[55] Muruganandham M., Swaminathan M. J.Advanced oxidative decolourisation of Reactive Yellow 14 azo dye by UV/TiO₂, UV/H₂O₂, UV/H₂O 2/Fe².Processes - A comparative study. Separation and Purification Technology, 48 (2006) 297–303.

[56]Lizama C., Freer J., Baeza J., Mansilla H.D., Optimized photodegradation of reactive blue 19 on TiO₂ and ZnO suspensions, Catal. Today, 76, (2002), 235–246.

[57] S.Rehman, R. Ullah, A.M. Butt, N.D. Gohar, Strategies of making TiO₂ and ZnO visible light active, J. Hazard. Mater., 170, (2009), 560–569.

[58] Daghrir R., Drogui P., Robert D., Modified TiO_2 For Environmental Photocatalytic Applications μ A Review, Ind. Eng. Chem. Res., 52, (2013), 3581–3599.

[59]Banerjee S., Pillai S.C., Falaras P., O'Shea K.E., Byrne J.A., Dionysiou D.D., New Insights into the Mechanism of Visible Light Photocatalysis, J. Phys. Chem. Lett., 5, (2014), 2543–2554.

[60] R.Nakamura, T. Tanaka, Y. Nakato, Mechanism for visible light responses in anodic.

photocurrents at N-doped TiO_2 film electrodes, J. Phys. Chem. B, 108, (2004), 10617–10620.

[61]S. B. Kokane, S. R. Sasikala, M. A. More, S.D. Sartale. Architecture of 3D $ZnCo_2O_4$ marigold flowers: Influence of annealing on cold emission and photocatalytic behavior. Materials Chemistry and Physics. 194 (2017) 55-64.

[62]J. Chen, J.Zhan , E. Lu, Y. Wan, Z. Jin, H. Qi. Facile template-free fabrication of mesoporous $ZnCo_2O_4$ fibers with enhanced photocatalytic activity under visible-light irradiation, Materials Letters 220 (2018) 66–69.

[63]S. M. Jeghan, M.k Kang, Facile synthesis and photocatalytic activity of cubic spinel urchin-likecopper cobaltite architecture, Materials Research Bulletin 91 (2017) 108–113.

[64]J. S. M. Nithya, J. Y. Do, M. Kang, Fabrication of flower-like copper cobaltite/graphiticcarbon nitride 2 ($CuCo_2O_4/g-C_3N_4$) composite with superior photocatalytic activity, Journal of Industrial and Engineering Chemistry.57 (2017) 405–415.

[65]Muneer M., Theurich J., Bahnemann D. Titanium dioxide mediated photocatalytic degradation of 1,2-diethyl phthalate.J Photochem Photobiol.143 (2001)213-219.

[66]Chen H.Y, Zahraa O, Bouchy M.Inhibition of the adsorption and photocatalytic degradation of an organic contaminant in an aqueous suspension of TiO_2 by inorganic ionsJournal of Photochemistry and Photobiology A:Chemistry, 108 (1) (1997) 37-44.

[67]Amine-khodja A., Trubetskaya O., Trubetskoj O., Cavani L., Ciavatta C., Guyot G.,Richard C. J Chemosphere. 62 (2006) 1021-1027.

[68] Wardman. P, Reduction potentials of ane-electron couples involving free radicls in aqeous solution. J. Phys. Chem, 18 (1989) 1637-1755.

[69]Low G.K.C., McEvoy S.R., Matthews R.W. Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms. Environ. Sci. Technol. 25 (1991) 460-467.

[70]Kositzi A. Antoniadis I. Poulis I. Kiridis S. Malato. Solar photocatalytic treatment of simulated dyestuff effluentsSol.Energy 77 (2004) 591-

Résumé

Cette thèse s'inscrit dans le cadre du développement et de l'optimisation d'u panel d'oxydes pour le stockage d'énergie, mais aussi dans le cadre de traitement des eaux usées par un procédé d'oxydation avancée (POA). Le but étant d'améliorer les propriétés supercapacitives, mais aussi celle catalytique. Dans cette optique, une étude a été menée sur les oxydes spinelles MCo_2O_4 , l'ensemble des oxydes MCo_2O_4 ont été synthétisé par le procédé sol gel. Les caractérisations structurales, morphologiques, chimiques, ont été réalisées en vue de définir leurs paramètres physico-chimiques pour maitriser les conditions de synthèses des oxydes mais aussi pour pouvoir donner des interprétations logique sur le comportement capacitives ou bien catalytique.

L'étude des propriétés électrochimiques a montré la présence de deux modes de stockage des charges, l'un électrostatique (double couche électrochimique) et l'autre faradique via l'oxydation et la réduction du cobalt. Elle a également permis de déterminer la signature électrochimique de ces oxydes (capacité, fenêtre de potentiels), prérequis indispensable à leur intégration dans une cellule complète. Finalement, la meilleure réponse pseudocapacitives a été attribué au CuCo₂O₄ grâce à la position de l'ion Co⁺³ dans le site tétraédrique.

Les expérimentations photocatalytiques ont été menées dans le domaine du solaire, ou une attention particulière est portée sur la synthèse du ZnO puisque lui aussi a été synthétisé dans le cadre de ce travail, pour pouvoir comprendre les effets d'un catalyseur sur la décoloration d'un colorant. Les particules de la spinelle CCO et ZCO présentent des réponses photocatalytiques prometteuses dans le domaine du solaire. Une corrélation a également été mise en évidence entre les propriétés physico-chimiques des catalyseurs et l'efficacité à produire des radicaux. Arrivons à la conclusion que le CCO et le ZCO peuvent être classé avec les catalyseurs TiO₂ et le ZnO.

ملخص

هذهالأطروحة هي جزء من تطوير وتحسين مجموعة من الأكسيدات لتخزين الطاقة بسعة فائقة ،وأيضا لمعالجة مياه الصرف الصحي من خلال عمليات الأكسدةالمتقدمة.و بهذا السياق، أجريت دراسة على المواد MC02O4 ،التي تمت صناعتها بطريقة sol gelحيث أجريت التحليلات البنيوية والمورفولوجية والكيميائية من أجل تحديد البندة الفيزيائية الكيميائية و هدالتحديد السلوك الطاقوي و التحفيزي.

أوضحت دراسة الخواص الكهروكيميائية وجو دنمطين لتخزين الشحنة،واح دكهربائي (طبقةكهروكيميائيةمزدوجة) والأخرى فارادي عن طريق أكسدة الكوبالت. ،و هدا شرط أساسي لإدماجه في خلية كاملة. وأخيرًا،تم ارجاع أفضل استجابة إلى2040 نظرً لموقع الشاردة ^{3 +}CO في موقع التتراهدرا.

أجريت ايضا التجارب التحفيز بالاشعة الشمسية ، على هده الاكاسد من اجل تصفية المياه الملوثة حيث اظهرت النتائج ان هده الاكسيدات بامكانها تصفية المياه و بهدا يمكن تصنيفهما مع المحفز ات الاكثر استعمالا و هماZnOو TiO اكسيد