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Chapter 1

General introduction

As is well known, the systems described by singular Lagrangian contain inherent constraints

that appear clearly in the calculation of the conjugate momenta, where some velocities look

as if it had been absorbed inside them. According to the classical view point, the conjugate

momenta deduced from this Lagrangians are not all invertible with respect to velocities, which

is the main indication that lead us to recognize the existance of the singular Lagrangian type

besides to the standard one. Although the Legendre transformation allows us to deduce the

canonical Hamiltonian, the corresponding canonical equations of motion must be modi�ed so

that they contain the constraints in question after constructing the new Hamiltonian on the

same frequency. This adjustment has been made in order to have a good Hamiltonian that has

no contradictory in the motion equations comparing by the one obtained by Euler-Lagrange.

Seventy years ago, a consistent analysis of constrained systems was formulated by Dirac

[1], then developed by Bergmann [2] whose works were the pioneers in this treatment. This

formulation considered as a standard model to theories that are characterized by constraints

and o¤ers suitable generalized brackets which is the crossing road to quantize these kind of

systems [3]. Since that time, this formalism based on the classi�cation of constraints in �rst and

second class, weak and strong equality notions and his algorithm besides to Bergmann, has been

widely used in many quantum systems [4, 5, 6], in gauge �eld theories, gravitational �eld theory,

supersymmetric theory, super gravity and superstring theory...etc [7]. Although this formalism

is very powerful and consistent, it necessitates considerable calculation of the basic geometric

structures known as Dirac brackets. It could be that Dirac�s method overloads the problem

and leads to unnecessary calculations. On this direction, Faddeev and Jackiw have developed
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a new more economical method based on linear Lagrangians and depends on the matrix form

of Euler-Lagrange equations [8]. The motion equations deduced from these Lagrangians of

the �rst order do not contain the accelerations, where the basic geometric structure known by

generalized Poisson brackets can be deduced directly from them as elements of a matrix known

by their names: Fadeev-Jackiw matrix. Moreover, we can show that these brackets coincide

with those obtained by Dirac�s method; therefore they will be the main tools for a quantum

theory.

The purpose of this thesis is to present Faddeev-Jackiw method which will serve for a

good initiation to scienti�c research given the growing interest of physicists for methods of

quanti�cation to classical systems with the �rst order of lagrangians used for the presence and

absence of constraints by much simpler and faster way comparing to Dirac�s one for singular

systems [6]. We based to show this covered aim under the shadow of comparative study proved

e¢ ctevely in the illustrative applications.

This thesis contains �ve chapters besides to this general introduction.The next chapter will

notably be a reminder to the singular Lagrangian notion with some needed tools of analytical

mechanics.The third chapter will be devoted to the study of systems with constraints by Dirac�s

method until we will de�ne �nally its brackets [6]. In the fourth chapter, we will expose the

Faddeev -Jackiwmethod, where we�ll show the simplicity and the e¢ ciency of this approach that

lead us to the set of Dirac�s brackets in one fell swoop. The �fth chapter will be two illustrative

applications of particle moving on a circle and ellipse treated by the both mentioned methods in

order to compare between them. Finally, we ends with the conclusion in a form of compartive

study and prespective to these treatments as the last chapter.



Chapter 2

Singular Lagrangian

2.1 Introduction

To study the dynamic of a system that described by Lagrangian, we need to calculate the Euler-

Lagrange equations that lead us to get �nally the motion equations, where all the accelerations

are expected to be expressed in functions of positions and velocities as a standard model for

treatment. On the other hand, if we do not reach this expection, it is obvious that we are

dealing with the opposite case where our Lagrangian seemed to be singular. The dilemma is in

this last type of systems which is characterized by constraints presence submitted on the initial

data and assumed generally to be independent of time. Besides that the Lagrangian type may

be predicted from the constraints, there exists a de�nitive way to determine its quality from

the determinant of what is known as the Hessian matrix . The singular Lagrangian expected

to be treated in exception way that made physicists to search for methods to deal with it.

The aim of this �rst chapter is to give an introduction to singular Lagrangian which is

the main motivation that leads us to expose two e¤ective ways to treat its systems as we will

show in the next chapters, depending on simple and illustrative examples. However, this can

not be approached directly without going through important concepts in analytical mechanics

seemed to be related to what is known as the Lagrangian and the Hamltonian formalism that

are descibed respectively in con�guration and phase spaces.
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2.2 Lagrangian formalism

To describ a dynamic system, we give the Lagrangian L (qi; _qi) with N number of freedom

degrees where qi and _qi represent coordinates and velocities respectively, while (i = 1; :::; n).

The action S between two points t1 and t2 is given by the expression

S =

Z t2

t1

L (qi; _qi) dt. (2.1)

Most of the basic equations in physics can be deduced from what we call least action principle

which stipulates that the action S must be stationary, and its small variation �S tends towards

zero between two close moments t1 and t2 verifynig conditions that �q (t1) = �q (t2) = 0 .Indeed

, the variation of the action is then written :

�S =

Z t2

t1

�L (qi; _qi) dt

=

Z t2

t1

X
i

�
@L

@qi
�qi +

@L

@ _qi
� _qi

�
dt;

where we�ll integrate by using

� _qi = �
dqi
dt
=
d

dt
�qi and

@L

@ _qi
� _qi =

�
d

dt

�
@L

@ _qi
�qi

�
� d

dt

�
@L

@ _qi

�
�qi

�
;

to get

�S =
X
i

@L

@ _qi
�qi

�����
t2

t1

+

Z t2

t1

X
i

�
@L

@qi
� d

dt

@L

@ _qi

�
�qidt;

taking into account the conditions at the boundary that we have already mentioned above, we

arrive to

�S =

Z t2

t1

X
i

�
@L

@qi
� d

dt

@L

@ _qi

�
�qidt;

this variation must be null regardless of �qi value, this is only possible if

@L

@qi
� d

dt

@L

@ _qi
= 0; i = 1; :::; n, (2.2)

this equations called Euler-Lagrange equation can be written by pi as follows

pi =
@L

@ _qi
(2.3)

_pi =
@L

@qi
; (2.4)

where pi de�ned in (2.3) called conjugate momenta, while (2.4) is the veritable motion equation

according to the sense of Newton and Lagrange.
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2.3 Hamiltonian formalism

Starting from the Lagrangian and using the transformation of Legendre, we can construct the

Hamiltonian wich is a new description much e¤ective in symmetric systems than lagrangian

formalism. It depends on moving from the con�guration space with n dimensions to the phase

one with 2n dimensions, by remplacing the n generalized velocities _qi according to the momenta

pi de�ned in (2.3 ), where i = 1; :::; n. Thus, the Hamiltonian experssion is given as follows

H(qi; pi) = pi _qi � L (qi; _qi) : (2.5)

The action principle (2.1) gives

S =

Z t2

t1

Ldt

=

Z t2

t1

(pi _qi �H(qi; pi)) dt: (2.6)

The principle of least action stipulates that (�S = 0) between two times t1 and t2 as follows

�S =

Z t2

t1

� (pi _qi �H(qi; pi)) dt =

Z t2

t1

(�pi _qi + pi� _qi � �H(qi; pi)) dt

=

Z t2

t1

�
�pi _qi + pi� _qi �

@H

@qi
�qi �

@H

@pi
�pi

�
dt

=

Z t2

t1

�
�pi _qi +

d

dt
(pi�qi)� _pi�qi �

@H

@qi
�qi �

@H

@pi
�pi

�
dt;

that can be written

�S = (pi�qi)jt2t1 +
Z t2

t1

��
_qi �

@H

@pi

�
�pi �

�
_pi +

@H

@qi

�
�qi

�
dt:

Starting from that �q (t1) = �q (t2) = 0, the �rst term is null. Moreover, the variations �pi and

�qiare independents. So to have �S = 0 we must o¤er that

_qi =
@H

@pi
; i = 1; :::; n (2.7)

_pi = �@H
@qi
; i = 1; :::; n; (2.8)

which are called Hamilton�s equations. These equations are principally equivalents with Euler-

Lagrange equations (2.2).
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2.4 General form of Poisson brackets

De�ning the ordinary form of the Poisson bracket that depends on the two functions f (qi; pi)

and g (qi; pi) as follows

ff; gg =
nX
i=1

�
@f

@qi

@g

@pi
� @f

@pi

@g

@qi

�
; (2.9)

where Poisson bracket verify the next proprieties

ff; gg = �fg; fg (Antisymmetry)

ff + h; gg = ff; gg+ ff; hg (Linearity)

ffh; gg = f fh; gg+ ff; ggh (Leibniz�s identity)

ff; fg; hgg+ fg; fh; fgg+ fh; ff; ggg = 0 (Jacobi�s identity) :

We can express Hamilton�s equations as follows

_qi = fqi; Hg ; i = 1; :::; n (2.10)

_pi = fpi; Hg ; i = 1; :::; n. (2.11)

We can rewrite the formula of Poisson bracket as more general and practical form that will

be used later in the next chapters

ff; ggGPB =
X
ij

Jij
@f

@�i

@g

@�j
; i; j = 1; 2; :::::; 2n (2.12)

where Jij =
�
�i; �j

	
is an antisymmetric matrix element called structure matrix.So, the motion

equation is written as
_f = ff;HgGPB

For our phase space, the dynamic variables are given by

�
�1; �2; :::; �n; �n+1; :::; �2n

�
= (q1; q2; :::; qn; p1; :::; pn) :

For the dynamic variable �i, we have this relation

f�i; fgGPB =
X
j

Jij
@f

@�j
(2.13)
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2.5 Singular Lagrangian

The determination of Lagrangian quality depends on the determinant of the Hessian matrix,

that can be constructed from the di¤erential derivative of momenta with respect to velocities,

where pi = pi (qi; _qi) de�ned by (2.3) in a system with N number of freedom degrees according

to the Lagrangian L (qi; _qi), i = 1; :::; n , as follows

dpi =
X
j

@pi
@qj
dqj +

X
j

@pi
@ _qj
d _qj; (2.14)

and
dpi
dt
=
X
j

@pi
@qj

_qj +
X
j

@pi
@ _qj

�qj; (2.15)

remplacing the relation (2:3) in (2:15) we obtian

dpi
dt
=
X
j

@L2

@qj@ _qi
_qj +

X
j

@L2

@ _qj@ _qi
�qj; (2.16)

we use now the equation (2:4), we get the equalityX
j

@L2

@qj@ _qj
_qj +

X
j

@L2

@ _qj@ _qi
�qj �

@L

@qi
= 0;

or else X
j

Wij (q; _q) �qj =
@L

@qi
�
X
j

@L2

@qj@ _qi
_qj; (2.17)

where W is the Hessian matrix de�ned by the next elements

Wij =
@L2

@ _qj@ _qi
=
@pi
@ _qj
; (2.18)

If detW 6= 0, the marix W is invertible, it means that we can express all the �qi as functions

of _qi and qi. This signi�es that a unique solution of (E-L) equations exists, and we are dealing

with non-singular Lagrangian. Contrariwise, if detW = 0, the matrix W is not invertible, and

the Lagrangian is seemed to be singular.

As we know, to pass from the Lagrangian formulation to the Hamiltonian one, it must be

that all the velocities _qi expressed by functions of qi and pi as follows :

_qi = f (qi; pi) ; (2.19)

while the Hamiltonian (2.5) can be constructed by the Legendre transformation as

H =
X
i

pif (qi; pi)� L (qi; f (qi; pi)) : (2.20)
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It is clear that the procedure of having the Hamiltonian (2.20) is based particularly on the

possibility of solving pi = @L=@ _qi. This requires that the Jacobian matrix @pi=@ _qj is invertible,

and it leads to
@pi
@ _qj

=
@

@ _qj

�
@L

@ _qi

�
=

@2L

@ _qj@ _qi
= Wij: (2.21)

Thus, in the case of a singular Lagrangian, it is impossible to pass to the Hamiltonian formu-

lation in a standard way. We will illustrate this point with the following example

Considering the Lagrangian with two degrees of freedom [6] as follows

L =
1

2
( _x� y)2 ; (2.22)

The Hessian matrix W correspondent is

W =

0@ @2L
@ _x@ _x

@2L
@ _x@ _y

@2L
@ _y@ _x

@2L
@ _y@ _y

1A =

0@ 1 0

0 0

1A ; (2.23)

This Lagrangian is singular since that detW = 0. The conjugate momenta are

px =
@L

@ _x
= _x� y and py =

@L

@ _y
= 0: (2.24)

which de�ne the momenta that are insoluble with respect to _y, as what it was expected for a

singular Lagrangian.



Chapter 3

Dirac�s method for systems with

constraints

3.1 Introduction

Hamiltonian of constrained systems represents an important class of physical systems described

by singular Lagrangians. In this case, our conjugate momenta will not all be invertible with

respect to velocities as already mentioned in the previous chapter.The Hamiltonian can be

always formulated by the Legendre transformation, but in singular systems, it must be corrected

so that it contains the constraints in question multiplied by what is called Dirac�s multipliers.

As a result,the canonical Hamiltonian equations changed automatically to be equivalent with

Euler-Lagrange equations.

Dirac was the �rst who succeeded in treating singular systems by standard and consistent

manner [1]. In Dirac�s formalism, the inherent constraints would be generated and called

primary constraints. Due to the consistency conditions, these primary constraints may generate

new constraints, called secondary constraints.This iterative way of calculating the di¤erent

constraints in the Dirac formalism is called the Dirac-Bergmann algorithm that ends when

we determine Dirac�s multipliers. The Poisson brackets must be replaced by another brackets

called Dirac brackets which are more adequate in the presence of constraints.

Thus, the aim of this chapter is to expose this algorithm step by step till we will end with

Dirac brackets determination that may lead us to correct quantizations of constrained systems.
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3.2 Primary constraints and the new Hamiltonian formalism

In a system that desccribed by a singular Lagrangian in wich detW = 0, and the conjugate

momenta are de�ned by (2.3), may not all be invertible to velocities.We can�t work directly

by standard way to get the Hamiltonian equations as we did above. Therefore, we use Dirac�s

method to �x the problem starting on constructing contraints as follows:

the momenta are not all independent, but there are rather some relations of the type

�m (q; p) = 0 called primary constraints, that was obtained automatically from the canoni-

cal de�nition of momenta pi = @L=@ _qi, i = 1; ::::; n. where M is the constraints number

�m (q; p) = 0; m = 1; ::;M where q = (q; p) and M = dim(W )� rank (W ) : (3.1)

In line to the primary constraints existance, our system must be descibed by new total

Hamiltonian HT or new Lagrangian ~L depend on them besides to the older canonical form of

Hc or L respectively, where �m is the Dirac�s multipliers, and the total Hamiltonian expression

is given by

HT (p; q) = Hc (p; q) + �m�m (p; q) ; (3.2)

it can be expressed also by the transformation of Legendre in the opposite direction, and

allows to extract the new Lagrangian as follows

HT (p; q) = pi _qi � ~L leads to ~L = pi _qi �HT (p; q) = pi _qi �Hc (p; q)� �m�m (p; q) : (3.3)

The principle of least action stipulates that (�S = 0) between two times t1 and t2 giving

�S = �

Z tf

ti

~Ldt = �

�Z tf

ti

pi _qi �Hc (p; q)� �m�m (p; q) dt
�
=

Z tf

ti

[� (pi _qi �Hc)� � (�m�m)] dt;

leads to

�S =

Z tf

ti

��
_qi �

@Hc
@qi

� �m
@�m
@pi

�
�pi +

�
� _pi �

@Hc
@qi

� �m
@�m
@qi

�
�qi � ��m�m

�
dt; (3.4)

Since �m (q; p) = 0 and �S ! 0, moreover, 8 �pi , �qi and ��m that are independents, we

get �nally the new Hamiltonian equations
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_qi =
@Hc
@qi

+ �m
@�m
@pi

; i = 1; ::; n (3.5)

_pi = �@Hc
@qi

� �m
@�m
@qi

; i = 1; ::; n (3.6)

�m = 0; m = 1; ::;M: (3.7)

To have the Poisson bracktes form of these equations, we constuct the general formula of

the di¤erential equation with respect to time of the function F = F (q; p) using the usual

mathematical relation

_F =
@F

@qi
_qi +

@F

@pi
_pi; (3.8)

using (3.5), (3.6) and (3.7) we have

_F =
@F

@qi

@Hc
@qi

� @F
@pi

@Hc
@qi

+

�
@F

@qi

@�m
@pi

� @F
@pi

@�m
@qi

�
�m ; �m = 0;

where _F may take the Poisson bracket form as follows

_F = fF;Hcg+ �m fF; �mg ; �m = 0: (3.9)

According to Dirac, it is necessary to calculate the Poisson brackets before using the con-

straints �m = 0: It is therefore convenient to rewrite the previous equation in this form

_F = (fF;Hcg+ �m fF; �mg)j�m=0 (3.10)

or

_F = fF;HTgj�m=0 : (3.11)

Exemple

Considering the Lagrangian from [6]

L =
1

2
_x2 + x _y + f(x; y):

Calculating the (E-L) equations

_y + @f
@x
� �x = 0; @f

@y
� _x = 0; (3.12)

and the conjugate momenta

px =
@L
@ _x
= _x; py =

@L
@ _y
= x;
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we have the primary constraint �1 = py � x = 0: Forming the canonical Hamiltonian

Hc = _xpx + _ypy � L = 1
2
p2x � f(x; y)

If we try to calculate Hamilton�s equations from Hc, we will obtain equations which are not

equivalent to the equations of (E-L). Indeed, we will obtain the equations8<: _x = px

_px =
@f
@x
:
,

8<: _y = 0

_py =
@f
@y
:

(3.13)

Therefore, we must hamiltonize Hc i.e Finding HT for which the corresponding hamiltonian

equations will be equivalent to the E-L one.Writing HT as follows

HT = Hc + �1�1 =
1

2
p2x � f(x; y) + �1 (py � x)

Thus, the Hamiltonian equations lead to8<: _x = px

_px =
@f
@x
+ �1

;

8<: _y = �1

_py =
@f
@y

; and py � x = 0 (3.14)

3.3 Weak and strong equality

Dirac introduced the notion of the weak equality under that sign (" � ") replacing the con-

straints condition given by �m = 0, where the system was described by (= ()j�m=0) to express
the dynamic only in the sub space of constraints, otherwise the notion of strong equality ("=")

is vailable in all the space. Thus, the evolution equations may be written as follows

_F = fF;HTgj�m=0 (3.15)

_F � fF;HTg � fF;Hcg+ �m fF; �mg ; (3.16)

Therefore we can write the Hamiltonian equations in the form of Poisson brackets as well

_qi � fqi; HTg ; _pi � fpi; HTg : (3.17)
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3.4 Secondary constraints and Dirac-Bergmann algorithm

The primary constraints must be preserved over time during an evoltion, we can write

d�m0
dt
= _�m0 � 0; m0 = 1; :::M; (3.18)

but according to (3.16), we�ll have

_�m0 = f�m0 ; HTg � 0, f�m0 ; Hcg+ �m f�m0 ; �mg � 0; m0;m = 1; :::M: (3.19)

That are called consistency conditions (the CCs ), where they are related to primary constraints

here speci�cally.The system (3.19) is a system of non-homogeneous algebraic equations, which

will help us to verify the Dirac�multipliers �m. In reality, the study of this system will lead us

to one of the following three situations :

1) The CCs determine the Dirac�s multipliers either all (all equations give values of �m with

m = 1; :::M) or some (in addition to some equations which are identically true such that 0 � 0).
In this case, the iteration stops.

2) The CCs do not determine multipliers and gives at least one incorrect equation such as

for example ( 1 = 0). In this case, there is certainly an anomaly, so it is useless to go further

before modifying the Lagrangian itself, and restarting again the steps.

3) The CCs do not determine the multipliers directly, and give new di¤erent relations

between pi and the qi described by the formula 'k (q; p) � 0 , k = 1; :::; K, that expresses a

new restarting called secondary constraints can have also CCs according to (3.16) and need to

be treated to give cases as the both that we have already mentioned besides to this one itself.

The iteration stops in the end, where we may determine mutipliers.

The logical analysis above was formulated in a sequential consistent manner with restricted

iteration may be stopped or continued according to the existing situation that ends by the

determination of multipliers as a goal. This process is known as The Dirac-Bergmann algorithm.

3.5 Constraints classi�cation

Considering
�
�j � 0

	
with j = 1; :::; J =M +K that describs all the constraints (secondary

and primary), where M is the number of primary constraints, and K the one of secondary

constraints. According to Dirac we say that the function F (q; p) is �rst class if its Poisson

bracket with each of the constraints (primary or secondary) that are included under the previous
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relation, is null on the surface of constraints, i.e
�
F; �j

	
� 0:Otherwise, we say that the function

F (q; p) is second class, if
�
F; �j

	
6� 0 (at least for one j).

3.6 Dirac brackets

We will assume that all the constraints of our system (primary and secondary) are secondary

class. We notice that �m; m = 1; :::;M the primary constraints, while �k , k = 1; :::; K secondry

constraints. Writing the CCs of the set of constraints, we get

�
�j; Hc

	
+ �m

�
�j; �m

	
� 0; m = 1; :::;M et j = 1; :::; J = K +M (3.20)

where

HT = Hc + �m�m; m = 1; :::;M:

Rewriting( 3.20) in matrix form as follows0BB@
f�1; �1g :::: f�1; �Mg

...
. . .

...

f�J ; �1g :::: f�J ; �Mg

1CCA
| {z }

=


0BB@
�1
...

�M

1CCA
| {z }

=�

�

0BB@
�f�1; Hcg

...

�f�J ; Hcg

1CCA ;
| {z }

=�

(3.21)

Or else


� � �; (3.22)

where 
 is a matrix of K lines and M columns. Forming now the square matrix � de�ned

by

��;�0 = f��; ��0g , �; �0 = 1; :::; J where J =M +K; (3.23)

this matrix is antisymmetric and contains the matrix 
 as a block; explicitly

� =

0BBB@
f�1; �1g :::: f�1; �Mg

...
. . .

...

f�J ; �1g :::: f�J ; �Mg

�
�1; �M+1

	
:::: f�1; �Jg

...
. . .

...�
�J ; �M+1

	
:::: f�J ; �Jg

1CCCA

=

0BBBBBBB@
0 :::: f�1; �Mg
...

. . .
...

f�J ; �1g :::: f�J ; �Mg| {z }
=


�
�1; �M+1

	
:::: f�1; �Jg

...
. . .

...�
�J ; �M+1

	
:::: 0| {z }

=!

1CCCCCCCA
;
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Where ! is a matrix with J lines and J � M columns. Dirac has shown that det (�) 6= 0

(for the demonstration, see [1]), moreover the matrix � must be of even dimension, because

the determinant of an odd antisymmetric matrix must be null . Considering now the column

vector � at J components

� =

0B@ �1 :::: �M 0 :::: 0| {z }
J�M

1CA
t

; (3.24)

or otherwise written

� =

0@ �

0

1A : (3.25)

Calculating the product �� by block as follows

�� =(
!)

0@ �

0

1A = 
�; (3.26)

then by comparing between( 3.22)and( 3.26), we get

�� � �; (3.27)

since � is invertible,we can obtain

� � ��1�,

or else

��� ��1
�;�0��0 , �; �

0 = 1; :::; J ,

but as � = (�;0)t, we deduce that

�m = �m � ��1
m;�0��0 , m = 1; :::;M and �0 = 1; :::; J (3.28)

�� = 0 � ��1
�;�0��0 , � =M + 1; :::; J and �0 = 1; :::; J: (3.29)

Since the matrix elements� are the brackets��;�0 = f��; ��0g ; �; �0 = 1; :::; J , the elements
of the inverse matrix ��1 will be noted by ��1

�;�0 = f��; ��0g
�1 ; �; �0 = 1; :::; J: According to

the equations (3.28),(3.29)and (3.21), we write

�m � � f�m; ��0g
�1 f��0 ; Hcg , m = 1; :::;M and �0 = 1; :::; J (3.30)

0 � f��; ��0g
�1 f��0 ; Hcg , � =M + 1; :::; J and �0 = 1; :::; J: (3.31)
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Recalling the evolution equation of the function F (q; p) that was given by (3.16) as follows

_F � fF;Hcg+ �m fF; �mg ;

taking into account (3.30), we�ll have

_F � fF;Hcg � fF; �mg f�m; ��0g
�1 f��0 ; Hcg (3.32)

with m = 1; :::;M and �0 = 1; :::; J;

but according to (3.31), we have f��; ��0g
�1 f��0 ; Hcg � 0, with � = M + 1; :::; J , that allows

to generalize (3.32) without any problem as follows

_F � fF;Hcg � fF; ��g f��; ��0g
�1 f��0 ; Hcg , with �; �0 = 1; :::; J; (3.33)

Dirac de�ned (3.33) as brackts that take his name

fF;HcgD = fF;Hcg � fF; ��g f��; ��0g
�1 f��0 ; Hcg ; (3.34)

while the reduced form is given by

_F � fF;HcgD : (3.35)

The generalization of Dirac bracket to the case of two functions f and g in phase space is

ff; ggD = ff; gg � ff; ��g f��; ��0g
�1 f��0 ; gg : (3.36)

The consistency conditions f��; HTg � 0 allows to write

fF;HTgD = fF;HTg � fF; ��g f��; ��0g
�1 f��0 ; HTg| {z }

�0

;

we obtain the equality

fF;HTgD�fF;HTg� _F :

In the special case where F = q or F = p, we obtain the Hamiltonian equations

_q � fq;HTgD (3.37)

_p � fp;HTgD (3.38)

Dirac brackets have properties similar to those of Poisson brackets, besides to another two

properties given by

ff; ��gD = 0 (�� second class constraint) and ff;GgD � ff;Gg (G �rst class function) ;

(3.39)
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where f depend on q and p. For the demonstration of (3.39), we can have look to [6].

The evolution equation of a quantity F (q; p) is given as a function of these new brackets as

_F � fF;HcgD : (3.40)

Dirac brackets have a simple interpretation, it bears the information of constrained sys-

tems inside itselfs. Otherwise, we can say that the Dirac�s method takes the information on the

constraint starting from the Lagrangian to give it in the end to the canonical brackets of himself.



Chapter 4

Faddeev and jackiw method for

systems with constraints

4.1 Introduction

In order to search for new much simpler methods to deal with constrainted systems, Faddeev-

Jackiw proposed an alternative treatment seems technically di¤erent and does not have the same

Dirac�s conjecture, thus it has evoked much attention [3]. Noting that the original Faddeev-

Jackiw method was addressed to unconstrained systems, while Barcelos-Neto and Wotzasek

had been proposed an extension called symplectic algorithm to deal with constraints systems

[9, 10], that we are dealing with it in this thesis.

The Faddeev-Jackiw (F-J) formalism pursues a classical geometric treatment based on the

sympletic structure of the phase space and it is only applied to �rst order Lagrangians, linear

with respect to velocities [3]. This method is rised basically on Lagrangian formalism and the

matrix form of Euler-Lagrange equations as a main source of studying, without missing an

important passage in converting the Lagrangian to linear one with respect to velocities and

conjugate momenta using the Legendre transformation. The matrix form of (E-L) equations

lead us to introduce the (F-J) matrix that gives us two cases can be treated according to its

determinant as we will see later.

Thus, the objective of this chapter is to treat the (F-J) matrix cases with a symplectic

algorithm step by step till we will end with an invertible matrix represent the basic geometric

structure called generalized Poisson brackets and coincide with Dirac�s brackets, that will be

the bridge to the commutators of the quantized theory, as we have already mentioned in the
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previous chapter, while our real aim is to make a clear comparaison later between those methods

in that crossing road.

4.2 Lagrangian linearization

As we have already evoked in the preceding chapter, we will not be able to express for a

singular systems all velocities ( the _qi) according to the coordinates ( the qi), and the conjugate

momenta (the pi) using the relations pi = @L=@ _qi, i = 1; ::::; n. As we know in this case the

Hessian matrix W is not invertible. Considering R = rank (W ), this means that it is possible

to reverse the equations pi = @L=@ _qi only with respect to R generalized velocities _qa with

a = 1; :::; R, writing them as functions of the other velocities, generalized coordinates and

conjugate momenta as follows : _qa = fa (qi; pb; _qs) , a; b = 1; :::; R , i = 1; ::; n , s = R+1; :::; n

Since s = n�R, we make appear s relations noted as :

�s = ps � gs (qi; pb) ; b = 1; :::; R; s = R + 1; :::; n; i = 1; ::; n; (4.1)

the s relations express constraints that come automatically from the system.

The associated Hamiltonian H to the Lagrangian L (qi; _qi) takes the form

H = pi _qi � L

= pa _qa + ps _qs � L

= pafa (qi; pb; _qs) + gs (qi; pb) _qs � L: (4.2)

The H does not depend on generalized velocities despite their apparent presence.We can prove

that fact by deriving( 4.2) with respect to _qc, while it appears directly in illustrative example

since H = H (qi; pi) :

Very often, the Lagrangian is nonlinear with respect to velocities. Linearization consists in

passing from this Lagrangian L(qi; _qi) to a canonical Hamiltonian H (qi; pi), to then return to

have directly a linear Lagrangian L(qi; _qi; pi).The main controller in this process is the Legendre

transformation in the both directions. In a speci�c way, we de�ne the inverse of Legendre

transformation as follows

L = pi _qi �H;

as well as the constraints (4.1), we have

L (qi; _qi; pa) = pa _qa + gs (qi; pa) _qs �H (qi; pa) : (4.3)



4.2 Lagrangian linearization 24

The Faddeev and Jackiw method consists in treating the qi and pa to be independents for

the Lagrangian that had been constructed as we will see in the next example

Example

To explain this point well, considering the following nonlinear Lagrangian [5]

L =
1

2
(y _x+ x _y)2 � xy: (4.4)

The conjugate monenta are

px =
@L

@ _x
= y(y _x+ _y x)

py =
@L

@ _y
= x(x _y + y _x)

(y _x+ _y x) =
px
y
=
py
x

(constraint) :

We can deduce one constraint py = x
y
px:Using this constraint the Hamiltonian gets the

expression

H = px _x+ py _y � L

= px _x+ py _y �
1

2
(y _x+ x _y)2 + xy

= px

�
_x+

x

y
_y

�
y2

y2
� 1
2
(
px
y
)2 + xy

=
p2x
y2
� 1
2
(
px
y
)2 + xy

=
1

2
(
px
y
)2 + xy;

H doesn�t depend on velocities clearly. Now the linear Lagrangian is

L = pi _qi �H

= px _x+ py _y �
1

2
(
px
y
)2 � xy

= px _x+
xpx
y
_y � 1

2
(
px
y
)2 � xy

The independent variables are then x; y and px, while the momentum py depends on the other

variables through the mentioned constraint above py = x
y
px: We will see later that the (E-L)

equations apply on the independent variables of any system according to the constraints.
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4.3 Faddeev and Jackiw approach

Faddeev-Jackiw method is based on two main maneuvers

i) The linearization of the Lagrangian with respect to the generalized velocities.

ii) The inversion of the Faddeev-Jackiw matrix obtained using the (E-L) equations.

This method allows to derive the set of Dirac brackets in one fell swoop without needing

to calculate any Poisson brackets separately .

The idea is to treat the independent variables ( the qi , i = 1; ::; n and the pa , a = 1; :::;

R ), on an equal footing by introducing new variables �i = qi , i = 1; ::; n and �n+a = pa with

a = 1; :::; R, in such a way that the Lagrangian (4.3) is written

L = AJ _�J �H ; J = 1; ::::; n+R; (4.5)

so that

Aa = pa , a = 1; :::; R

As = gs (qi; pa) ; s = R + 1; :::; n

An+a = 0:

We write the Euler-Lagrange equations relating to the dynamic variables (�J ; _�J)

d

dt

�
@L

@ _�J

�
� @L

@�J
= 0: (4.6)

We have

d

dt

�
@L

@ _�J

�
=

d

dt
AJ =

@AJ
@�I

d�I
dt

=
@AJ
@�I

_�I

@L

@�J
=

@AI
@�J

_�I �
@H

@�J
;

thus, (4.6) gives �
@AI
@�J

� @AJ
@�I

�
_�I =

@H

@�J
; (4.7)

or else

fIJ _�I =
@H

@�J
, I; J = 1; ::::; n+R; (4.8)

where

fIJ =
@AI
@�J

� @AJ
@�I

; (4.9)
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is the element of Faddeev-Jackiw matrix f .This matrix is antisymmetric since fIJ = �fJI .
Thus, two cases arise

i) if the matrix f is invertible, we can deduce from (4.8) the expression

_�I = f
�1
IJ

@H

@�J
: (4.10)

On the other hand, Hamilton�s equations must be on the form

_�I = f�I ; Hg ; (4.11)

recalling the general form of the Poisson bracket given by the equation (2.13)

f�I ; Hg = f�I ; �Jg
@H

@�J
; (4.12)

it leads that

f�1IJ = f�I ; �Jg ; (4.13)

The bracketf�I ; �Jg Are nothing but just the Dirac brackets obtained by Faddeev-Jackiw
approach.

Exemple

Considering the nonlinear Lagrangian from [10], while we choosed m = 1

L =
1

2
_q2 � V (q):

the conjugate momentum

p =
@L

@ _q
= _q:

The canonical Hamiltonian

H = p _q � L

= p _q � 1
2
_q2 + V (q)

=
1

2
p2 + V (q):

Thus, the linear Lagrangian will be

L = p _q �H

= p _q � 1
2
p2 � V (q):
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The independent variables q and p .The (E-L) equations are8<:
d
dt

�
@L
@ _q

�
� @L

@q
= 0

d
dt

�
@L
@ _p

�
� @L

@p
= 0

)

8<: _p+ @V
@q
= 0

p� _q = 0
; (4.14)

the matrix form of (4.14) is given by0@ 0 �1
1 0

1A0@ _q

_p

1A =

0@ @V
@q

p

1A ; (4.15)

where f is

f =

0@ 0 �1
1 0

1A
f is invertible, thus its inverse is

f�1 =

0@ 0 1

�1 0

1A =

0@ fq; qg fq; pg
�fq; pg fp; pg

1A
As we have no constraints, we get the from f�1 directly, the canonical Poisson brackets

fq; qg = 0; fq; pg = 1; fp; pg = 0

ii) If f is not invertible, we may deal with two sub cases :

a- there exists supplementary conditions.

Since f is not invertible, it means that rank(f) < n + R, then this matrix admits n + R

�rank(f) independents zero mode �m , m = 1; :::; n+R �rank(f): These modes are the line
vectors verifying the relation

�mf = 0; (4.16)

or explicitly

�mI fIJ = 0: (4.17)

Multipling the equation (4.8) in the left side by �mI will principally give a rise to the

constraints

�m = �
m
I

@H

@�J
= 0; m = 1; :::; n+R� rank(f); (4.18)

These constraints �m are relations between �J that must be conserved with respect to time.

We can write their derivation as follows

_�m =
d�m
dt

=
@�m
@�J

_�J = 0:
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Proceeding this path, we must add to the Lagrangian (4.5) terms of the form
�
�m

@�m
@�J

_�J

�
,

or in the form
�
_�m�m

�
: We obtain a new linear Lagrangian according to _�J and _�m having

the expression

L = AJ _�J +
_�m�m �H: (4.19)

The �mare treated as new independent variables . Thus, (E-L) equations in this case will be

�I !
�
@AI
@�J

� @AJ
@�I

�
_�I +

@�m
@�J

_�m =
@H

@�J
(4.20)

�m !
d�m
dt

=
@�m
@�J

_�J = 0 (conservation of �m with respect to time.) ; (4.21)

in matrix form, the equations will be0@ @AI
@�J

� @AJ
@�I

@�m
@�J

@�m
@�J

0

1A
| {z }

the matrix f

0@ _�I
_�m

1A =

0@ @H
@�J

0

1A

This newmatrix f is an antisymmetric square matrix of dimension n+R+(n+R� rank(f)) =
2 (n+R)� rank(f):
Exemple

Considering the linear Lagrangian

L =
1

2
_x2 � ax _y; a = cte 6= 0: (4.22)

The conjugate momenta

px =
@L

@ _x
= _x

py =
@L

@ _y
= �ax;

where the primary constraint is py + ax = 0. The canonical Hamiltonian is

H = px _x+ py _y � L

= px _x+ py _y �
�
1

2
_x2 � ax _y

�
= p2x + py _y �

1

2
p2x + ax _y

=
1

2
p2x + (py + ax) _y (4.23)
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Since py + ax = 0, the Hamiltonian becomes

H =
1

2
p2x:

Thus, the linear Lagrangien is

L = px _x+ py _y �H

= px _x+ py _y �
1

2
p2x

= px _x� ax _y �
1

2
p2x: (4.24)

The independent variables here are x; y et px. The corresponding (E-L) equations

_px + a _y = 0

�a _x = 0

� _x+ px = 0

The matrix form of the system is given by0BB@
0 a 1

�a 0 0

�1 0 0

1CCA
| {z }

f (0)

0BB@
_x

_y

_px

1CCA
| {z }

_�

=

0BB@
0

0

px

1CCA
| {z }
@H=@�

; (4.25)

f (0) is singular rank
�
f (0)

�
= 2. Thus, this matrix admits one zero mode ; n+R �rank(f (0)) =

2 + 1� 2 = 1 that is given as follows ( check the annex)

� =
�
0 � 1

a
1
�
: (4.26)

Multiplying (4.25) by (4.26) on the left side, we get the next supplementary constraint

px = 0;

that must be preserved with respect to time, therefore we may add the term _�px to the linear

Lagrangian

L = px _x� ax _y �
1

2
p2x +

_�px
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The independent variables now are x; y , px and �: The corresponding (E-L) equations

_px + a _y = 0

�a _x = 0

� _x+ px � _� = 0

_px = 0;

or else 0BBBBB@
0 a 1 0

�a 0 0 0

�1 0 0 �1
0 0 1 0

1CCCCCA
| {z }

f (1)

0BBBBB@
_x

_y

_px

_�

1CCCCCA =

0BBBBB@
0

0

px

0

1CCCCCA ; (4.27)

f (1) is invertible, where the inverse is

�
f (1)

��1
=

0BBBBB@
0 � 1

a
0 0

1
a

0 0 � 1
a

0 0 0 1

0 1
a

�1 0

1CCCCCA (4.28)

The generalized Poisson brackets (that are identical to Dirac�s one ) between the dynamic

variables according to the Lagrangian of the begining are

fx; xg = fy; yg = fpx; pxg = 0

fx; yg = �1
a
; fx; pxg = 0; fy; pxg = 0:

b-There exists no supplementary constraints, but only identities of the type (0 = 0) produced

by multiplying the equation (4.8) in the left side by �mI . This is due to the presence of gauge

symmetry that we lead us to add term coincide with the Lagrangian, where we �x the gauge

in certain conditions.

To make it clear, we recall the previous example mentioned in (4.4)

L =
1

2
(y _x+ x _y)2 � xy; (4.29)

where its linear form was as follows
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L = px _x+
xpx
y
_y � 1

2
(
px
y
)2 � xy:

The independent variables are then x; y and px, while the momentum py depends on the other

variables through the mentioned constraint above py = x
y
px: the (E-L) equations apply on the

independent variables as follows

_y
px
y
� _px = y

� _xpx
y
+ _px

x

y
= �p

2
x

y3
+ x

_x+ _y
x

y
=

px
y2
;

their matrix form is given by0BB@
0 px

y
�1

�px
y

0 �x
y

1 x
y

0

1CCA
| {z }

f (0)

0BB@
_x

_y

_px

1CCA
| {z }

_�

=

0BB@
y

�p2x
y3
+ x

px
y2

1CCA
| {z }

@H=@�

; (4.30)

f (0) is singular of rank
�
f (0)

�
= 2. Thus the matrix admits one zero mode; n+R �rank(f (0)) =

2 + 1� 2 = 1 is given as follows
� =

�
� x
px

y
px

1
�

(4.31)

Multiplying (4.30) by (4.31) in the left side, we get only identities of the type (0 = 0), so there

is no generated constraint in this case, and the matrix keeps singular to express that we are

dealing exactely with the presence of gauge symmetry. We choose the gauge condition y = 1

by adding the term _w(y � 1) to the Lagrangian as follows

L = px _x+
xpx
y
_y � 1

2
(
px
y
)2 � xy + _w(y � 1):

The indepandent variables now x; y , px and w:The corresponding (E-L) equations

px
y
_y � _px = y

�px
y
_x� x

y
_px + _w = �p

2
x

y3
+ x

_x+
x

y
_y =

px
y2

� _y = 0;
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using the matrix form we get0BBBBB@
0 px

y
�1 0

�px
y

0 �x
y
1

1 x
y

0 0

0 �1 0 0

1CCCCCA
| {z }

f (1)

0BBBBB@
_x

_y

_px

_w

1CCCCCA =

0BBBBB@
y

�p2x
y3
+ x

px
y2

0

1CCCCCA ; (4.32)

f (1) is invertible, and it inverse is given by

f (1)
�1
=

0BBBBB@
0 0 1 x

y

0 0 0 �1
�1 0 0 � 1

y
px

�x
y
1 1

y
px 0

1CCCCCA =

0BBBBB@
fx; xg fx; yg fx; pxg fx;wg
fy; xg fy; yg fy; pxg fy; wg
fpx; xg fpx; yg fpx; pxg fpx; wg
fw; xg fw; yg fw; pxg fw;wg

1CCCCCA ; (4.33)

where then we can extract the following brackets

fx; pxg = 1 , fy; pxg = 0; and fx; yg = 0.

At this level, we can summarize the existence of three cases that characterize Faddeev and

Jackiw method as follows

i) f is invertible and the brackets are obtained using f�1as a matrix elements, and the

algorithm ends here.

ii) f is not invertible and there is no generated constraints, this is a sign of gauge symmetry

presence. In this case ,the supplementary conditions �n (�) = 0 are necessary in order to �x

the gauge and have an invertible matrix f . We add terms to the Lagrangian (4.5) as _!n�n (�)

where !n represent multipliers. Then we have to write the E-L equations with respect to these

variables �I , �m and !n: Algorithm ends when we �nd f�1:

iii) f is not invertible and the zero modes give new constraints. We must then add them to

the Lagrangian (4.19) with a di¤erent lagrangian multipliers, and restart the zero procedure.



Chapter 5

Special applications

There is no doubt that the comparaison study between Dirac�s method and (F-J) approach in

introducing correct brackets supposed to be the bridge to the quantize theory for constrained

systems highlights e¤ectively under the shadow of illustrative applications more than giving

analysis to the general principles. In order that, we will show two applications of particle

moving on circle and other one moving on ellipse. These two applications will be studied by

those methods mentioned above for giving remarks later.

5.1 Applications treated by Dirac�s method

5.1.1 Particale moving on a circle

Considering here a particle of mass m moving on a circle of radius (r = a). We will calculate

the Dirac brackets for this system. Thus, the corresponding Lagrangian is written

L (x; _x; y; _y; �) =
1

2
m
�
_x2 + _y2

�
� �

�
x2 + y2 � a2

�
(5.1)

where the quantity � is treated here as an independent dynamic variable that called Lagrangian

multiplier. The corresponding conjugate momenta are

px =
@L

@ _x
= m _x

py =
@L

@ _y
= m _y

p� =
@L

@ _�
= 0
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The Hessian matrix W corresponding is

W =

0BB@
@2L
@ _x@ _x

@2L
@ _x@ _y

@2L
@ _x@ _�

@2L
@ _y@ _x

@2L
@ _y@ _y

@2L
@ _y@ _�

@2L
@ _�@ _x

@2L
@ _�@ _y

@2L
@ _�@ _�

1CCA =

0BB@
m 0 0

0 m 0

0 0 0

1CCA (5.2)

det (W ) = 0; therefore Lagrangian (5.1) is singular. We pose the relation p� � 0 as a primary
constraint

�1 = p� � 0: (5.3)

The constraint �1is our only primary constraint, then we construct the canonical Hamil-

tonian

Hc = px _x+ py _y + p� _�� L

=
1

2m

�
p2x + p

2
y

�
+ p� _�+ �

�
x2 + y2 � a2

�
;

then the total Hamiltonian

HT = Hc + �1�1; (5.4)

where �1 is Dirac�s multiplier. Explicitly HT is

HT =
1

2m

�
p2x + p

2
y

�
+ �

�
x2 + y2 � a2

�
+ p�; (5.5)

where �1 + _� = . The consistency condition for �1 is

_�1 = f�1; HTg � 0) fp�; HTg � 0) �
�
x2 + y2 � a2

�
� 0; (5.6)

which is a new constraint, that the Lagrange multiplier had already implicitly imposed. So, we

write

�2 = a
2 � x2 � y2 � 0 (5.7)

Likewise, the consistency condition for �2 gives

_�2 = f�2; HTg � 0)
�
a2 � x2 � y2; 1

2m

�
p2x + p

2
y

��
� 0) � 2

m
(xpx + ypy) � 0;

which also a new constraint that we note by

�3 = �
2

m
(xpx + ypy) � 0; (5.8)
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we do the same for �3, we obtain

_�3 = f�3; HTg � 0)
�
� 2
m
(xpx + ypy) ;

1

2m

�
p2x + p

2
y

�
+ �

�
x2 + y2

��
� 0

) 4�

m

�
x2 + y2

�
� 2

m2

�
p2x + p

2
y

�
� 0;

which is also a new constraint, can be de�ned as

�4 =
4�

m

�
x2 + y2

�
� 2

m2

�
p2x + p

2
y

�
� 0: (5.9)

Finally, if we apply again the consistency condition for �4, we get expression for  (or else

for �1)

 = � 4�

m (x2 + y2)
(xpx + ypy) : (5.10)

The algorithm ends.

We have four constraints, �1; �2; �3 and �4 and the Poisson brackets between these con-

straints can be written in the form of an antisymmetric matrix � whose elements are noted

�ij =
�
�i; �j

	
: This matrix is known as the constraints matrix. Explicitly

� =

0BBBBB@
0 �12 �13 �14

��12 0 �23 �24

��13 ��14 0 �34

��14 ��24 ��34 0

1CCCCCA ; (5.11)

where

�12 = f�1; �2g =
�
p�; a

2 � x2 � y2
	
= 0

�13 = f�1; �3g =
�
p�;�

2

m
(xpx + ypy)

�
= 0

�14 = f�1; �4g = �
4

m

�
x2 + y2

�
= �4a

2

m

�23 = f�2; �3g =
4

m

�
x2 + y2

�
=
4a2

m

�24 = f�2; �4g =
8

m2
(xpx + ypy) = 0

�34 = f�3; �4g =
16�

m2

�
x2 + y2

�
+
8

m3

�
p2x + p

2
y

�
=
32a2

m2
�;

where we used the constraints as strong equalities after the computation of these brackets .
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Therefore the constraints matrix is going to be

� =

0BBBBB@
0 0 0 �4a2

m

0 0 4a2

m
0

0 �4a2

m
0 32a2

m2 �

4a2

m
0 �32a2

m2 � 0

1CCCCCA (5.12)

the inverse is

��1 =

0BBBBB@
0 2�

a2
0 m

4a2

�2�
a2

0 � m
4a2

0

0 m
4a2

0 0

� m
4a2

0 0 0

1CCCCCA (5.13)

Calculating now the Dirac�s brackets of the dynamic variables using the formula (3.36) to

know that

ff; ggD = ff; gg �
4X

i;j=1

ff; �ig��1
ij

�
�j; g

	
: (5.14)

For example, we calculate the bracket f�; p�gD

f�; p�gD = 1�
4X

i;j=1

f�; �ig��1
ij

�
�j; p�

	
= 1� f�; �1g��1

14 f�4; p�g

= 1� f�; p�g
m

4a2

�
4�

m

�
x2 + y2

�
; p�

�
= 1� m

4a2
f�; p�g

4

m

�
x2 + y2

�
= 1� m

4a2
4

m

�
x2 + y2

�
, x2 + y2 = a2

= 0:

Likewise we can obtain the bracket

fx; pxgD = 1�
4X

i;j=1

fx; �ig��1
ij

�
�j; px

	
= 1�

4X
j=1

fx; �3g��1
3j

�
�j; px

	
�

4X
j=1

fx; �4g��1
4j

�
�j; px

	
= 1� fx; �3g��1

32 f�2; pxg

= 1�
�
x;� 2

m
(xpx + ypy)

�
m

4a2
�
a2 � x2 � y2; px

	
= 1� x

2

a2
:
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We can equaly verify that we have the Dirac�s brackets as follows

fy; pygD = 1� y
2

a2
, fx; pygD = �

xy

a2
; fy; pxgD = �

xy

a2
;

fx; ygD = 0; fpx; pygD = �
1

a2
(xpy � ypx) = �

1

a2
LZ ; (5.15)

where LZ is the angular momentum for the component Z:

5.1.2 Particale moving on ellipse

Considering here a particle of mass m moving on a ellipse that was centered at the origin with

width 2a and height 2b. We will calculate the Dirac brackets for this system.

Thus, the corresponding Lagrangian is written

L (x; _x; y; _y; �) =
1

2
m
�
_x2 + _y2

�
� �

�
b2x2 + a2y2 � a2b2

�
; (5.16)

where the quantity � is treated here as an independent dynamic variable.

The corresponding conjugate momenta are

px =
@L

@ _x
= m _x

py =
@L

@ _y
= m _y

p� =
@L

@ _�
= 0

The Hessian matrix W is

W =

0BB@
@2L
@ _x@ _x

@2L
@ _x@ _y

@2L
@ _x@ _�

@2L
@ _y@ _x

@2L
@ _y@ _y

@2L
@ _y@ _�

@2L
@ _�@ _x

@2L
@ _�@ _y

@2L
@ _�@ _�

1CCA =

0BB@
m 0 0

0 m 0

0 0 0

1CCA (5.17)

det (W ) = 0 , therefore Lagrangian (5.16) is singular. We pose the relation p� � 0 as a primary
constraint.i.e

�1 = p� � 0 (5.18)

The constraint �1is our only primary constraint. then we construct the canonical Hamil-

tonian

Hc = px _x+ py _y + p� _�� L

=
1

2m

�
p2x + p

2
y

�
+ p� _�+ �

�
b2x2 + a2y2 � a2b2

�
;
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while, the total Hamiltonian

HT = Hc + �1�1; (5.19)

where �1 is Dirac�s multiplier. Explicitly HT is

HT =
1

2m

�
p2x + p

2
y

�
+ �

�
b2x2 + a2y2 � a2b2

�
+ p�; (5.20)

where �1 + _� = . The consistency condition for �1 is

_�1 = f�1; HTg � 0) fp�; HTg � 0) �
�
b2x2 + a2y2 � a2b2

�
� 0; (5.21)

which is a new constraint, that the Lagrangian multiplier had already implicitly imposed. So

we write

�2 = a
2b2 � b2x2 � a2y2 � 0; (5.22)

Likewise, the consistency condition for �2 gives

_�2 = f�2; HTg � 0)
�
a2b2 � b2x2 � a2y2; 1

2m

�
p2x + p

2
y

��
� 0) � 2

m

�
b2xpx + a

2ypy
�
� 0;

which also is a new constraint that we note by

�3 = �
2

m

�
b2xpx + a

2ypy
�
� 0; (5.23)

We do the same for �3, we obtain

_�3 = f�3; HTg � 0)
�
� 2
m

�
b2xpx + a

2ypy
�
;
1

2m

�
p2x + p

2
y

�
+ �

�
b2x2 + a2y2 � a2b2

��
� 0

) 4�

m

�
b4x2 + a4y2

�
� 2

m2

�
b2p2x + a

2p2y
�
� 0;

which is also a new constraint, can be de�ned as

�4 =
4�

m

�
b4x2 + a4y2

�
� 2

m2

�
b2p2x + a

2p2y
�
� 0; (5.24)

Finally, if we apply again the consistency condition for �4, we get expression for  (or else

for �1)

 = � 4�

m (b4x2 + a4y2)

�
b4xpx + a

4ypy
�
: (5.25)

The algorithm ends.
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We have four constraints, �1; �2; �3 and �4 and the Poisson brackets between these con-

straints can be written in the form of an antisymmetric matrix � whose elements are noted

�ij =
�
�i; �j

	
. This matrix is known as the constraints matrix. Explicitly

� =

0BBBBB@
0 �12 �13 �14

��12 0 �23 �24

��13 ��14 0 �34

��14 ��24 ��34 0

1CCCCCA ; (5.26)

where

�12 = f�1; �2g =
�
p�; a

2b2 � b2x2 � a2y2
	
= 0

�13 = f�1; �3g =
�
p�;�

2

m

�
b2xpx + a

2ypy
��
= 0

�14 = f�1; �4g = �
4

m

�
b4x2 + a4y2

�
�23 = f�2; �3g =

4

m

�
b4x2 + a4y2

�
�24 = f�2; �4g =

8

m2

�
b4xpx + a

4ypy
�

�34 = f�3; �4g =
16�

m2

�
b6x2 + a6y2

�
+
8

m3

�
b4p2x + a

4p2y
�
:

Where we have used the constraints as strong equalities after the computation of these brackets

. Therefore the constraints matrix is

� =

0BBBBBB@
0 0 0 �4(b4x2+a4y2)

m

0 0
4(b4x2+a4y2)

m

8(b4xpx+a4ypy)
m2

0 �4(b4x2+a4y2)
m

0
16�(b6x2+a6y2)

m2 +
8(b4p2x+a4p2y)

m3

4(b4x2+a4y2)
m

�8(b4xpx+a4ypy)
m2 �16�(b6x2+a6y2)

m2 � 8(b4p2x+a4p2y)
m3 0

1CCCCCCA :

The inverse is

��1 =

0BBBBBB@
0

�(b6x2+a6y2)
(b4x2+a4y2)2

+
(b4p2x+a4p2y)

2m(b4x2+a4y2)2
�(b

4xpx+a4ypy)
2(b4x2+a4y2)2

m
4(b4x2+a4y2)

��(b6x2+a6y2)
(b4x2+a4y2)2

� (b4p2x+a4p2y)
2m(b4x2+a4y2)2

0 � m
4(b4x2+a4y2)

0

(b4xpx+a4ypy)
2(b4x2+a4y2)2

m
4(b4x2+a4y2)

0 0

� m
4(b4x2+a4y2)

0 0 0

1CCCCCCA :
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Calculating now the Dirac�s brackets of the dynamic variables in the same frequency of

circle application, for example, we calculate the bracket f�; p�gD

f�; p�gD = 1�
4X

i;j=1

f�; �ig��1
ij

�
�j; p�

	
= 1� f�; �1g��1

14 f�4; p�g

= 1� f�; p�g
m

4 (b4x2 + a4y2)

�
4�

m

�
b4x2 + a4y2

�
; p�

�
= 1� m

4 (b4x2 + a4y2)
f�; p�g

4

m

�
b4x2 + a4y2

�
= 1� m

4 (b4x2 + a4y2)

4

m

�
b4x2 + a4y2

�
= 0:

Likewise we can obtain the bracket

fx; pxgD = 1�
4X

i;j=1

fx; �ig��1
ij

�
�j; px

	
= 1�

4X
j=1

fx; �3g��1
3j

�
�j; px

	
�

4X
j=1

fx; �4g��1
4j

�
�j; px

	
= 1� fx; �3g��1

32 f�2; pxg

= 1�
�
x;� 2

m

�
b2xpx + a

2ypy
�� m

4 (b4x2 + a4y2)

�
a2b2 � b2x2 � a2y2; px

	
= 1� b4x2

(b4x2 + a4y2)
:

We can equaly verify that we have the Dirac�s brackets as follows

fy; pygD = 1� a4y2

(b4x2 + a4y2)
, fx; pygD = �

a2b2xy

(b4x2 + a4y2)
; fy; pxgD = �

a2b2yx

(b4x2 + a4y2)
;

fx; ygD = 0; fpx; pygD = �
LZ

(b4x2 + a4y2)
: (5.27)

5.2 Applications treated by Fadeev and Jackiw method

5.2.1 Particle moving on a circle

The Lagrangian of the system is given by

L (x; _x; y; _y; �) =
1

2
m
�
_x2 + _y2

�
� �

�
x2 + y2 � a2

�
: (5.28)
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The correspondant conjugate momenta are

px =
@L

@ _x
= m _x , py =

@L

@ _y
= m _y , p� =

@L

@ _�
= 0; (5.29)

where p� = 0 is the primary constraints . The canonical Hamiltonian for the system is

H = px _x+ py _y + p� _�� L

= px _x+ py _y + p� _��
1

2
m
�
_x2 + _y2

�
+ �

�
x2 + y2 � a2

�
=

1

2m

�
p2x + p

2
y

�
+ �

�
x2 + y2 � a2

�
, p� = 0: (5.30)

Thus, the linear Lagrangian will be

L = px _x+ py _y �H

= px _x+ py _y �
1

2m

�
p2x + p

2
y

�
� �

�
x2 + y2 � a2

�
: (5.31)

We arrive to an important situation that deserves to be given some observations. if we follow

directly the algorithm above, we may �nd as follows in the next step using our independent

variables x; y; �; px and py: The correspondent (E-L) equations lead us to

_px + 2�x = 0

_py + 2�y = 0

x2 + y2 � a2 = 0

� _x+ px
m

= 0

� _y + py
m

= 0:

Under the matrix form, we have0BBBBBBBB@

0 0 0 �1 0

0 0 0 0 �1
0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

1CCCCCCCCA
| {z }

= f

0BBBBBBBB@

_x

_y

_�

_px

_py

1CCCCCCCCA
=

0BBBBBBBB@

2x�

2y�

a2 � x2 � y2
px
m

py
m

1CCCCCCCCA
: (5.32)

The calculation of the determinant of f leads that it is singular with rank ( f) = 4.

Therefore, this matrix admits one zero mode under this relation n+R �rank(f) = 3+2�4 = 1,
that is given by

� =
�
0 0 1 0 0

�
(5.33)
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Multiplying( 5.32) on the left side by (5.33), we may obtain a supplementary constraint

� = a2 � x2 � y2 = 0; (5.34)

which is nothing but expresses the circle equation as it should be. However, we know that this

constraint must be introduced in the Lagrangian (5.31) either like _�� or � _�; where � is the

Lagrangian multiplier. Thus, it is now more practical to replace easily �! _� in the begining.

By doing this, we simply introduce a total derivative to the Lagrangian

��! ��� d

dt
(��) = (�� _�)�� � _�: (5.35)

Choosing � = _�: After this digression, we then write our Lagrangian (5.31) as follows

L = px _x+ py _y �
1

2m

�
p2x + p

2
y

�
� _�

�
x2 + y2 � a2

�
: (5.36)

Our independent variables become (x; y; px; py and �). The (E-L) equations give

_px + 2x _� = 0

_py + 2y _� = 0

� _x+ px
m

= 0

� _y + py
m

= 0

�2x _x� 2y _y = 0:

Under the matrix form, we get0BBBBBBBB@

0 0 �1 0 �2x
0 0 0 �1 �2y
1 0 0 0 0

0 1 0 0 0

2x 2y 0 0 0

1CCCCCCCCA
| {z }

f (0)

0BBBBBBBB@

_x

_y

_px

_py

_�

1CCCCCCCCA
=

0BBBBBBBB@

0

0

px
m

py
m

0

1CCCCCCCCA
; (5.37)

f (0) is singular and rank
�
f (0)

�
= 4, where it has one zero mode given by

� =
�
0 0 �2x �2y 1

�
(5.38)

Multiplying the system (5.37) by that latter (5.38) , we obtain a new supplementary

constraint

� 2
m
(xpx + ypy) = 0 (5.39)
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This constraint must be introduced in the Lagrangian of the starting (5.36). Thus, we write

L = px _x+ py _y �
1

2m

�
p2x + p

2
y

�
� _�

�
x2 + y2 � a2

�
� 2

_�

m
(xpx + ypy) (5.40)

Our independent variables now are x; y , px; py; � and �:The corresponding (E-L) equations

are

_px + 2x _�+ 2
px
m
_� = 0

_py + 2y _�+ 2
py
m
_� = 0

� _x+ px
m
+ 2

x

m
_� = 0

� _y + py
m
+ 2

y

m
_� = 0

�2x _x� 2y _y = 0

� 2
m
( _xpx + _ypy + x _px + y _py) = 0

Under the matrix form, we get0BBBBBBBBBBB@

0 0 �1 0 �2x �2px
m

0 0 0 �1 �2y �2py
m

1 0 0 0 0 �2x
m

0 1 0 0 0 �2y
m

2x 2y 0 0 0 0

2px
m

2py
m

2x
m

2y
m

0 0

1CCCCCCCCCCCA
| {z }

f (1)

0BBBBBBBBBBB@

_x

_y

_px

_py

_�

_�

1CCCCCCCCCCCA
=

0BBBBBBBBBBB@

0

0

px
m

py
m

0

0

1CCCCCCCCCCCA
(5.41)

Noting in the begining that the matrix f (1)contains the matrix f (0) as a sub matrix. More-

over, f (1) is invertible and its inverse is

�
f (1)

��1
=

0BBBBBBBBBBB@

0 0 1� x2

a2
�xy
a2

x
2a2

0

0 0 �xy
a2

1� y2

a2
y
2a2

0

x2

a2
� 1 xy

a2
0 �Lz

a2
� px
2a2

mx
2a2

xy
a2

y2

a2
� 1 Lz

a2
0 � py

2a2
my
2a2

� x
2a2

� y
2a2

px
2a2

py
2a2

0 � m
4a2

0 0 �mx
2a2

�my
2a2

m
4a2

0

1CCCCCCCCCCCA
(5.42)

The generalized Poisson brackets of the dynamic variables contained in the symplectic matrix�
f (1)

��1
are identical to the Dirac�s brackets obtained by his method in the same treatment.
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For example, we mention the next brackets

fx; pxgGPB = 1� x
2

a2
= fx; pxgD

fy; pygGPB = 1� y
2

a2
= fy; pygD

5.2.2 Particle moving on ellipse

The Lagrangian of the system is given by

L (x; _x; y; _y; �) =
1

2
m
�
_x2 + _y2

�
� �

�
bx2 + a2y2 � a2b2

�
: (5.43)

The correspondent conjugate momenta are

px =
@L

@ _x
= m _x , py =

@L

@ _y
= m _y , p� =

@L

@ _�
= 0 (5.44)

where p� = 0 is the primary constraints . The canonical Hamiltonian for the system is

H = px _x+ py _y + p� _�� L

= px _x+ py _y + p� _��
1

2
m
�
_x2 + _y2

�
+ �

�
bx2 + a2y2 � a2b2

�
=

1

2m

�
p2x + p

2
y

�
+ �

�
bx2 + a2y2 � a2b2

�
, p� = 0: (5.45)

Thus, the linear Lagrangian will be

L = px _x+ py _y �H

= px _x+ py _y �
1

2m

�
p2x + p

2
y

�
� �

�
bx2 + a2y2 � a2b2

�
: (5.46)

We arrive to an important situation that deserves to be given some observations. if we follow

directly the algorithm above, we may �nd as follows in the next step using our independent

variables x; y; �; px and py: The correspondent (E-L) equations lead us to

_px + 2�b
2x = 0

_py + 2�a
2y = 0�

bx2 + a2y2 � a2b2
�
= 0

� _x+ px
m

= 0

� _y + py
m

= 0:
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Under the matrix form, we have0BBBBBBBB@

0 0 0 �1 0

0 0 0 0 �1
0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

1CCCCCCCCA
| {z }

= f

0BBBBBBBB@

_x

_y

_�

_px

_py

1CCCCCCCCA
=

0BBBBBBBB@

2xb2�

2ya2�

a2b2 � b2x2 � a2y2
px
m

py
m

1CCCCCCCCA
: (5.47)

The calculation of the determinant of f leads that it is singular with rank ( f) = 4.

Therefore, this matrix admits one zero mode under this relation n+R �rank(f) = 3+2�4 = 1,
that is given by

� =
�
0 0 1 0 0

�
(5.48)

Multiplying( 5.47) on the left side by (5.48), we may obtain a supplementary constraint

� = a2b2 � b2x2 � a2y2 = 0 (5.49)

which is nothing but expresses the ellipse equation as it should be. However, we know that

this constraint must be introduced in the Lagrangian (5.46). As in circle application we choose

� = _�, and we write our Lagrangian (5.46) as follows

L = px _x+ py _y �
1

2m

�
p2x + p

2
y

�
� _�

�
b2x2 + a2y2 � a2b2

�
: (5.50)

Our independent variables becomes (x; y; px , py and �).

_px + 2b
2x _� = 0

_py + 2a
2y _� = 0

� _x+ px
m

= 0

� _y + py
m

= 0

�2b2x _x� 2a2y _y = 0:

Under the matrix form, we get0BBBBBBBB@

0 0 �1 0 �2b2x
0 0 0 �1 �2a2y
1 0 0 0 0

0 1 0 0 0

2b2x 2a2y 0 0 0

1CCCCCCCCA
| {z }

f (0)

0BBBBBBBB@

_x

_y

_px

_py

_�

1CCCCCCCCA
=

0BBBBBBBB@

0

0

px
m

py
m

0

1CCCCCCCCA
; (5.51)
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f (0) is singular and rank
�
f (0)

�
= 4, where it has one zero mode given by

� =
�
0 0 �2b2x �2a2y 1

�
: (5.52)

Multiplying the system (5.51) by that latter (5.52), we obtain a new supplementary

constraint

� 2
m

�
b2xpx + a

2ypy
�
= 0: (5.53)

This constraint must be introduced in the Lagrangian of the starting (5.50). Thus, we write

L = px _x+ py _y �
1

2m

�
p2x + p

2
y

�
� _�

�
b2x2 + a2y2 � a2

�
� 2

_�

m

�
b2xpx + a

2ypy
�
: (5.54)

Our variables now are x; y , px; py; � and �:The corresponding E-L equations are

_px + 2b
2x _�+ 2b2

px
m
_� = 0

_py + 2a
2y _�+ 2a2

py
m
_� = 0

_x� 2b2 x
m
_� =

px
m

_y � 2a2 y
m
_� =

py
m

�2b2x _x� 2a2y _y = 0

� 2
m

�
b2 ( _xpx + x _px) + a

2 ( _ypy + y _py)
�
= 0

Under the matrix form, we get0BBBBBBBBBBB@

0 0 �1 0 �2b2x �2b2px
m

0 0 0 �1 �2a2y �2a2py
m

1 0 0 0 0 �2b2x
m

0 1 0 0 0 �2a2y
m

2b2x 2a2y 0 0 0 0

2b2px
m

2a2py
m

2b2x
m

2a2y
m

0 0

1CCCCCCCCCCCA
| {z }

f (1)

0BBBBBBBBBBB@

_x

_y

_px

_py

_�

_�

1CCCCCCCCCCCA
=

0BBBBBBBBBBB@

0

0

px
m

py
m

0

0

1CCCCCCCCCCCA
(5.55)

Noting in the begining that the matrix f (1)contains the matrix f (0) as a sub matrix. More-
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over, f (1)is invertible and its inverse is

�
f (1)

��1
=

0BBBBBBBBBBB@

0 0 a4y2

a4y2+b4x2
� a2b2xy
a4y2+b4x2

b2x
2(a4y2+b4x2)

0

0 0 � a2b2xy
a4y2+b4x2

b4x2

a4y2+b4x2
a2y

2(a4y2+b4x2)
0

� a4y2

a4y2+b4x2
a2b2xy

a4y2+b4x2
0 � a2b2Lz

a4y2+b4x2
� b2px
2(a4y2+b4x2)

b2mx
2(a4y2+b4x2)

a2b2xy
a4y2+b4x2

� b4x2

a4y2+b4x2
a2b2Lz

a4y2+b4x2
0 � a2py

2(a4y2+b4x2)
a2my

2(a4y2+b4x2)

� b2x
2(a4y2+b4x2)

� a2y
2(a4y2+b4x2)

b2px
2(a4y2+b4x2)

a2py
2(a4y2+b4x2)

0 � m
4(a4y2+b4x2)

0 0 �b2mx
2(a4y2+b4x2)

�a2my
2(a4y2+b4x2)

m
4(a4y2+b4x2)

0

1CCCCCCCCCCCA
:

The generalized Poisson brackets of the dynamic variables contained in the symplectic matrix�
f (1)

��1
are identical to the Dirac�s brackets obtained by his method in the same treatment.

For example, we mention the next brackets

fx; pxgGPB =
a4y2

a4y2 + b4x2
= 1� b4x2

(b4x2 + a4y2)
= fx; pxgD

fy; pygGPB =
b4x2

a4y2 + b4x2
= 1� a4y2

(b4x2 + a4y2)
= fy; pygD

5.3 Notes and results

It must be noted that we dealt in the two above-mentioned applications with Lagrangians of the

�rst order with two ways that are technically di¤erent of Dirac and (F-J).These both methods

enabled us to reach the Dirac�s brackets which considerd as important entrance to the quantize

theory with fully compatible results. There is no doubt that the F-J method was much faster

and more economical .We can recognize that e¢ ctively in givinig us those Dirac�s brackets in

one fell swoop as a matrix elements, while Dirac�s conjecture gave us the same result, one by

one under many Poisson brackets calculations.

It is clear also that we didn�t use much steps and notions such as weak and strong equality,

constraint classi�cations, and there is also reduction in constraints number in F-J method.

We need to mention that it is axiomatic that the brackets obtained in the ellipse application

can lead us to the same one obtained for a particle moving on circle in speci�c condition where

a = b:Indeed, this is what we may get clearly in our brackets.

Finally we may say that the e¤ective role of Dirac�s conjecture can�t be denied, but (F-J)

method is considered to be more successful and attractive in practice.



Chapter 6

General conclusion and perspectives

The importance of singular Lagrangians is fundamental to the fact that when we express the

four konwn fundamental interactions in a Lagrangian or Hamiltonian framework correspond

precisely to this kind of systems.

In this thesis, we studied mainly the classical dynamics of systems described by singular

lagrangians by two methods namely: the Dirac-Bergmann algorithm and the Faddeev-Jackiw

method. Firsteval, we started by de�ning the notion of singular Lagrangian through simple and

illustrative examples where we recalled also the necessary concepts and methods of analytical

mechanics.

For a singular Lagrangian, the conjugate momenta are not all invertible with respect to

velocities. Therefore, there may exist constraints that will be generated from the system, and

called primary constraints. In this case, it is necessary that the canonical equations must be

corrected so that they contain the constraints in question. These primary constraints generate

another constraints called secondary constraints. In fact, it was Dirac then Bergmann, who

proposed an algorithm seventy years ago, which allows to determine all the constraints of

the system with an iterative process by applying certain consistency conditions. Although

the Dirac method is very powerful and consistent, it requires considerable computation of the

basic geometric structures known as Dirac�s brackets. For this reason, another method was

proposed later by Faddeev and Jackiw to study standard and singular systems.This method

consists �rsteval to linearize the Lagrangian with respect to velocities, and then in inverting

the symplectic matrix obtained using the Euler-Lagrange equations. The main advantage

of Faddeev and Jackiw technique is that it manages in several situations and lead to derive
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directly the Dirac brackets in one fell swoop, with the fewest possible concepts, counter to

Dirac�s approach, where the bridge to the quantize theory need to be calculated separately

moving through speci�c notions in the treatment.

Our comparaison study focused on the compatibility of the both methods in giving us

consistent results that appear speci�cally in the suitability of Dirac brackets obtained by the

both methods.While, some studies ([3] and [7]) indicated the possibility that this compatibility

is submitted to certain conditions that we hope to investigate later.



Annex
Zero mode matrix

Zero mode matrix A are the basis vectors of the null space of this matrix nul (A).the null

space of A is de�ned as :

nul (A) = fx; Ax = 0g

We can �nd the basis vectors of nul (A) easily using "scienti�c work place" by writing the

matrix then we put the cursor just next to this matrix and follow the following path:

Compute! Matrices! Nullspace Basis

Example

Considering the matrix0BB@
0 a 1

�a 0 0

�1 0 0

1CCA, null space basis:
0BB@

0

� 1
a

1

1CCA :
� � � � � � � �

.



Bibliography

[1] P. A. M. Dirac, Can. J. Math. 2, 129 (1950). "Lectures on Quantum Mechanics" (Belfer

Graduate School of Science, Yeshiva University, New York 1964).

[2] J. L. Anderson and P. G. Bergmann, Phys. Rev. 83 1018 (1951); P. G. Bergmann, I.

Goldberg, Dirac bracket transformations in phase space, Phys. Rev., 98, 531 (1955).

[3] J. Ramos ,"On the equivalence and non-equivalence of Dirac and Faddeev-Jackiw for-

malisms for constrained systems",Can. J. Phys. 95 (3) (2016) 225.

[4] Heinz J.Rothe, Klaus D.Rothe "Classical and Quantum Dynamics of Constrained Hamil-

tonian Systems". Teoretische physik, Universität Heidelberg, Germang, World scienti�c,

2010.

[5] Z. Belhadi " Application de la mécanique quantique non commutative en relativité et quan-

ti�cation des systèmes avec contraintes". (Thèse de Doctorat, Université Mouloud Mam-

meri, Tizi-Ouzou 2015).

[6] R. Zerimeche, "Etude classique et quantique d�une particule soumise à des contraintes",

Mémoire de Master, University de Jijel (2019).

[7] Leng Liao and Young Chang Hung,"Non equivalence of Fadeev -Jackiw method and Dirac-

Bergmann algorithm and the modi�cation Fadeev -Jackiw for keeping the equivalence",6

November 2006.

[8] L. Faddeev and R. Jackiw,Phys. Rev. Lett.60, 1692 (1988).

[9] J. Barcelos-Neto and C. Wotzasek, Mod. Phys. Lett. A 07, 19 (1992).

[10] J. Barcelos-Neto and C. Wotzasek, Mod. Phys. Lett. A 07, 20 (1992).



BIBLIOGRAPHY 52

[11] Antonello Scardicchio "classical and quantum dynamics of a particle constrained on a

circle" Physics Letters A 300 (2000) 7-17



Summary
There is many physical domains that concerne on the quantum study for its systems, where

the Poisson brackets of the classical mechanics is considered as the main bridge to commutators

in the quantize theory.This treatment is made for the standard systems, where our lagrangian

is non singular.

Our study aims to treat constrained systems that is described by singular Lagrangians to

get an alternative and correct entrance to the quantum study called Dirac�s brackets presenting

the Fadeev-Jackiw method as much simpler, faster and economical treatment to reach them

comparing to Dirac�s one in one fell swoop as matrix elements without going through many

notions and calculations .

To show the di¤erence between the both methods, we depended on the general analyti-

cal study of these treatments Supported by illustrative examples in addition to two special

applications of a particle moving on circle and another one on ellipse.

Résumé
Il existe de nombreux domaines physiques qui concernent à l�étude quantique de leurs sys-

tèmes, où les crochets de Poisson de la mécanique classique sont considérés comme le pont

principal vers les commutateurs dans la théorie de la quanti�cation. Ce traitement est fait

pour les systèmes standards, où notre Lagrangien est non singulier.

Notre étude vise à traiter des systèmes avec contraintes qui sont décrits par des Lagrangiens

singuliers pour obtenir une entrée alternative et correcte à l�étude quantique appelée les crochets

de Dirac présentant la méthode de Fadeev-Jackiw comme un traitement plus simple, rapide et

économique pour les atteindre d�un seul coup sous forme des éléments de matrice sans passer

par de nombreuses notions et calculs comparés à celui de Dirac.

Pour montrer la di¤érence entre les deux méthodes, nous avons adopté l�étude analytique

générale de ces traitements appuyée par des exemples illustratifs, en plus de deux applications

spéciales d�une particule se déplaçant sur un cercle, et une autre sur un ellipse.

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Keywords: Constraints, Singular Lagrangian, Dirac-Bergmann algorithm, Dirac brackets, Faddeev-

Jackiw method, Symplectic matrix.



 الملخص

يت لأَظًتها، حيث تؼُتبس أقىاس ىيهُاك انؼديد يٍ انًجالاث انفيزيائيت انتي تهتى باندزاست انكً

 ِبىاسىٌ نهًيكاَيكا انكلاسيكيت بًثابت انجسس انسئيسي نهًبدلاث في َظسيت انتكًيى ، ويتى إجساء هر

 .يكىٌ لاغسوَجياٌ انُظاو غيس شاذنلأَظًت انقياسيت ، حيث  ًؼانجتان

نهحصىل ػهى يدخم  ،شاذغساَجياٌ انًىصىفت بانلاتهدف دزاستُا إنى يؼانجت الأَظًت انًقيدة ان

ع أبسط وأسسكجاكيى -طسيقت فاديف يستؼسضت أقىاس ديساكب ىصىفتيت انًىيديم وصحيح نهدزاست انكًب

انًفاهيى ٍ كؼُاصس يصفىفت دوٌ انًسوز بانؼديد ييسة واحدة  إنيها  تىصم نأكثس اقتصادا في او طسيقت

 وانحساباث يقازَت بًُهجيت ديساك.

 ًتيدػ اتيٍ انطسيقتيٍ،لإظهاز الاختلاف بيٍ انطسيقتيٍ ، اػتًدَا ػهى اندزاست انتحهيهيت انؼايت نه

 .َاقصقطغ  نجسيى يتحسك ػهى دائسة وآخس ػهىبالإضافت إنى تطبيقيٍ خاصيٍ  ،بأيثهت تىضيحيت


