

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

UNIVERSITY OF MOHAMED SEDDIK BEN YAHIA JIJEL

FACULTY OF EXACT SCIENCES AND COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

DISSERTATION

IN VIEW OF OBTAINING THE MASTER'S DEGREE IN COMPUTER SCIENCE

SPECIALITY : NETWORK & SECURTY

Design and development of a cab booking android application

Submitted by : Supervised by :

Sellemna Abdellatif Melit Leila

– Session 2020 –

* Acknowledgements*

Above all, I thank my Almighty God, who gave me strength, faith, health, will,

and guidance to accomplish this humble work.

I wish to express my sincere appreciation to my supervisor, Mrs Melit Leila, who has the

substance of a genius: she convincingly guided and encouraged me to be professional and do

the right thing even when the road got tough. Without her persistent help, the goal of this

project would not have been realized.

i

Abstract

 Online taxi booking is nowadays a considerable asset for people who no longer want to

waste their time waiting for public transport to be available, especially at times of congestion.

It is also an advantage for people who wish to benefit from the use of cabs at any time (24/7).

In this context, our work consists of designing and implementing an Android mobile

application for geolocation and cab reservation intended for both customers and cab drivers.

We enter the information about our trip, and the driver moves to the exact place where we are.

Also, thanks to our application, we can see the cab's position on a geographical map that

displays its movement in real-time. So there is no need to wait outside or watch through the

window. The client can see the location of the cab on the map. Besides, he will be notified

when the taxi arrives. At the end of the trip, the application offers the customer the possibility

to note the cab driver. To realize our application, we used Android Studio, Android SDK,

Flutter, and some programming languages such as Dart and JSON.

Keyword: Cab booking, Mobile application, Android, Flutter, Dart, JSON, Firebase.

Résumé

 La réservation de taxi en ligne présente de nos jours un atout considérable pour les

personnes ne voulant plus gaspiller leur temps en attendant la disponibilité du transport

public, surtout aux moments des encombrements, c’est aussi un avantage pour les personnes

qui veulent bénéficier de l’utilisation des taxis à tout moment (24h/jour 7j/semaine). Dans ce

contexte, notre travail consiste à concevoir et réaliser une application mobile android de

géolocalisation et de réservation de taxi destinée, à la fois, aux clients et aux chauffeurs de

taxis. On rentre les informations de notre trajet et le chauffeur se déplace à l'endroit exact où

on se trouve. En plus, grâce à notre application, nous pouvons voir la position du taxi sur une

carte géographique qui affiche son déplacement en temps réel. Alors pas besoin d'aller

attendre dehors ou surveiller par la fenêtre, le client voit clairement l'emplacement du taxi sur

la carte. En outre, il sera notifié quand le taxi arrivera chez lui. A la fin du trajet,

l'application offre au client la possibilité de noter le taxieur. Pour réaliser notre application

nous avons utilisé Android Studio, Android SDK, Flutter et quelques langages de

programmation tel que Dart ,JSON.

Mot-clé : Réservation de taxi, Application mobile, Android, Flutter, Dart, JSON, Firebase.

ii

TABLE OF CONTENTS

Table of contents ...ii

List of figures .. iv

List of tables ... v

Introduction ... 1

Chapter 1: Android Applications ... 3

1.1. Introduction .. 3

1.2. Mobile applications .. 3

1.2.1. Definition .. 3

1.2.2. Characteristics of mobile applications... 4

1.2.3. Types of mobile applications ... 4

1.3. Android .. 7

1.3.1. Android operating system.. 7

1.3.2. Android application .. 9

1.4. Cab booking applications .. 18

1.4.1. Some Existing solutions .. 18

1.5. Conclusion ... 20

Chapter 2: Analysis and design ... 21

2.1. Introduction .. 21

2.2. Unified Process(UP).. 21

2.2.1. Definition ... 21

2.2.2. Features of UP .. 22

2.3. Unified Modeling Language (UML) .. 23

2.3.1. Definition ... 23

2.3.2. List of UML Diagram Types ... 23

2.4. Requirements Specification .. 25

2.4.1. Functional requirements : .. 25

2.4.2. Non-functional requirements: ... 25

2.5. Requirements analysis ... 26

2.5.1. Use case diagram .. 26

2.6. Conception ... 33

file:///C:/Users/Amira/Desktop/Nouveau%20dossier%20(2)/memoire%20VF.docx%23_Toc55989132
file:///C:/Users/Amira/Desktop/Nouveau%20dossier%20(2)/memoire%20VF.docx%23_Toc55989150

iii

2.6.1. Class diagram ... 33

2.6.2. Creation of a database ... 35

2.6.3. Component diagram .. 39

2.7. Conclusion ... 39

Chapter 3: Realization ... 40

3.1. Introduction .. 40

3.2. Development languages .. 40

3.2.1. Dart .. 40

3.2.2. Dart features ... 40

3.2.3. JSON .. 41

3.3. Development environment .. 41

3.3.1. Android Studio .. 41

3.3.2. Visual Studio Code .. 41

3.3.3. Android SDK .. 41

3.4. Firebase and web services used ... 43

3.4.1. Firebase .. 43

 3.4.2. Web services used.. 43

 3.4.2.1. Google Map API .. 43

 3.4.2.2. Distance Matrix API .. 44

 3.4.2.3. Places API ... 44

 3.4.2.4. Directions API ... 44

 3.4.2.5. Geocoding API .. 44

3.5. Presentation of the graphical user interfaces... 44

3.5.1. Login UI(user interface) .. 45

3.5.2. Sign up UI(user interface) ... 45

3.5.3. Menu Screen ... 46

3.5.4. History Screen .. 47

3.5.5. Instant booking steps ... 48

3.5.6. Future booking steps ... 49

3.5.7. Manage booking requests .. 50

3.6. Conclusion ... 50

Conclusion .. 51

Bibliography ... 512

file:///C:/Users/Amira/Desktop/Nouveau%20dossier%20(2)/memoire%20VF.docx%23_Toc55989171

iv

LIST OF FIGURES

Figure 1.1. Types of mobile applications……….………...5

Figure 1.2. Architecture d'Android……………………………………….......................….......8

Figure 1.3. Activity lifecycle………………………………...13

Figure 1.4. Service lifecycle ……………………………………………………..……………15

Figure 1.5. Broadcast Receiver……………………………………………..............................16

Figure 1.6. Content providers ……….…………………..16

Figure 1.7. Uber logo ……………………………………………………........................…....18

Figure 2.1. The iteration of UP ...……………………………………………………………..22

Figure 2.2. UML diagram types …….…………………...24

Figure 2.3. Use case diagram…………………………………………….......................…......28

Figure 2.4. Class diagram………….…………………………………….................................35

Figure 2.5. Driver’s document...………………………………………………………………38

Figure 2.6. Reservation’s document…….…….………..38

Figure 2.7. Passenger’s document ……………………………………….......................….....38

Figure 2.8. Component diagram …….…………………………………......................…........39

Figure 3.1. Dart’s logo …………………………………………………..….….......................41

Figure 3.2. Flutter’ logo …………………………………………..42

Figure 3.3. Flutter's approach…………………………………………………..42

Figure 3.4. Login and Otp Screens…………………………..………......................................45

Figure 3.5. Signup and Otp screens………………….……..46

Figure 3.6. MenuScreen...46

Figure 3.7. Client history screens ……...…………………………………..….…....................47

Figure 3.8.Driver trips history screen ………………………………………………...............48

Figure 3.9. Instant booking steps ………………………….....……….....................................49

Figure 3.10. Future booking steps....………………………………………….…….................49

Figure 3.11. Manage booking requests.…………………………………………….................50

v

LIST OF TABLES

Table 1.1. The different states of an activity…………………………………………...…..…..

Table 1.2. Callback methods……………………………………………………….……….......

Table 1.3. Additional components………………………………………….………………......

Table 2.1. The different use cases………………………………………….……………..….....

Table 2.2. User Authentication’s description……………………………………….……...…...

Table 2.3. Manage booking requests’ description……………………………………………...

Table 2.4. Instant booking’s description…………………………………….…………………..

Table 2.5. Future booking’s description………………………………………………………...

Table 2.6. Rate driver’s description……………………………………………………………

Table 2.7. Availability description…………………………………………………………….

Table 2.8. View trips history’s description…………………………………………….

Table 2.9.Data dictionary ………………………..…………………………………………….

11

13

17

27

29

30

31

31

32

32

33

35

1

INTRODUCTION

 Since the Internet appeared, the world's way of thinking and living has been changed.

Allowed consumers to make transactions and perform their tasks without having to move

around physically. About ten years later, this innovation was followed by the appearance of

mobile technology, which took an essential place in our society, PDAs, cell phones,

smartphones, tablets etc. The means of connection, such as wireless networks (Wifi, GPRS,

and others), have made it possible to track and access the information we need wherever there

is network coverage. This is being done using mobile applications. Nowadays, having a

mobile device is necessary for every individual, which has made us pushed and motivated to

think about a useful mobile application.

Taxi services play a vital role by providing personalised vehicles in the urban transportation

system. The biggest challenge of this system is the mismatch of passenger demand and taxi

service. It is difficult for passengers to get a taxi on time and mostly vacant taxis waste too

much time for finding a passenger which causes traffic blockage. To overcome this issue a

new system is introduced among the common people to efficiently utilize the perfect

combination of their smartphones and internet to book a cab.So our job is to design and

develop a mobile application under Android for online cab booking. This application is

designed for both customers and cab drivers and will be installed on mobile terminals. The

functionalities of our system are :

 Instant geolocation for both the client and the cab driver.

 Instant and future trip booking.

 An estimate of fares.

 Rate the cab drivers.

Thesis planning

 In addition to the introduction and conclusion, our brief is structured in three chapters. In

the following we detail the contents of the different chapters.

 Chapter 1: This chapter focuses on mobile applications and their types as well as the

different existing mobile operating systems and we have explained some existing cab

booking apps.

 Chapter 2: This chapter will be focused on the analysis and design of the system by

presenting the different diagrams.

Introduction

2

 Chapter 3: This chapter presents the environment and development tools used for the

realization and implementation of our application with screenshots of the proposed

system.

 This paper ends with a general conclusion by presenting a summary of the context of

our work and the perspectives we envision for completing this work.

3

1.1. Introduction

 Nowadays, the massive adoption of mobile devices to perform our tasks in life is behind

the exponential growth in the use of mobile applications as well as in the number of mobile

users. In 2019, users downloaded over 200 billion apps and spent more than $120 billion in

app stores worldwide, and will surpass that mark this year.[1]

 In this chapter, we will start by introducing mobile applications, their definitions, and

features in section 2, then we will talk about the Android platform in section 3 before

detailing the Android applications, and then we will discuss cab booking apps with an

example in section 4. Section 5 concludes the chapter.

1.2. Mobile applications

 Mobile applications arrived in the 1990s. They are linked to developments in Internet and

telecommunications, agent technologies [2], wireless networks, and the emergence and

popularisation of mobile terminals. Over time, the mobile domain has undergone considerable

development, particularly since 28 November 2007 when it became a fully-fledged IT domain

[3].

 In this section, we will describe the main basic concepts of mobile applications.

1.2.1. Definition

 A mobile application or "Apps" is application software developed to be installed on a

mobile electronic device, such as a PDA, mobile phone, smartphone, or personal digital

player. Such an application may be installed on the device at the time of its design or, if

CHAPTER 1: ANDROID APPLICATIONS

Chapter1. Android Applications

4

device allows it, downloaded by the user through an online store, such as Google Play or the

App Store. [4] [5]

1.2.2. Characteristics of mobile applications

 From the target point of view: mobile applications are referred to as electronic devices

such as :

 - Smartphones, tablets, personal digital assistants (PDAs)... etc.

 From the hardware context point of view: to be able to say that a mobile application is

successful, it must have some very important criteria which are the following [6] :

- Lower resources: CPU, RAM, DD, ROM.

- Resource consumption must be minimal e.g.: Power consumption; Optimization of the

application process to ensure efficient use of energy.

- An adapted Graphical User Interface (GUI): a good display quality, a criterion to

seduce the user.

 From a software context point of view: mobile applications can be [7]:

- Connected applications: it is an application that requires an internet connection for

good functioning.

- Non-connected applications: called independent applications, these are applications

that work without the need for an internet or telephone connection, such as a contact

list, calculator, calendar, walkman, console...

- Localized applications: GPS navigation, geo-localized works...

1.2.3. Types of mobile applications

 Currently, there are three (3) types of a mobile application that any user may encounter:

web application, native application, and hybrid application as shown in the figure 1.1 :

Chapter1. Android Applications

5

FIGURE 1.1 - Types of mobile applications [8].

1.2.3.1. Native or embedded application: is based on the language of the platform that

hosts it. They are therefore programs developed to execute certain functionalities and be

deployable in particular mobile platforms or devices.

 A native application is therefore a mobile application developed for an operating system

used by smartphones and tablets (IOS, Android, Windows phone). It is developed with the

language specific to its operating system. Indeed, the development of the native application

requires the use of the smartphone's memory without omitting the options related to the

targeted operating system (GPS, Camera...) [8][6].

 Advantages

- Better performance through the use of valid software and hardware in the mobile

device.

- Since these applications are already installed in the device and use the data already in

existence, they can be run offline without the need for the Internet.

- Each application is distinguished by its logo to attract the attention of the user.

 Disadvantages

- The major disadvantage of this type of application is that they are strongly related to

the device in which they are installed, which will result in the impossibility to evolve

or exploit new technologies.

Chapter1. Android Applications

6

- Making native applications deployable in different types of devices/platforms (i.e.

rewriting code in different languages) is a time-consuming task.

- The exclusivity of native applications for a well-designed mobile device type will

reduce the number of users and the gain in sales.

1.2.3.2. Mobile web application: these types of applications work like websites, they are

mainly developed using web technologies such as HTML5 or CSS3 thanks to HTML5

support and designed specifically for mobile-optimized display [8] Indeed all devices with a

web browser can use this type of application. A web application does not take into account the

different models of operating systems and brands of smartphones, it is not always ergonomic

and moreover it does not use the embedded memory of the smartphone which places it at a

disadvantage compared to the native application.

 Advantages

- The most important advantage of mobile web applications is the ability to deploy on

multiple platforms regardless of device type mobile.

- Cheaper, easy, and quick to develop.

- Easy access using a simple URL without the need for installation or the downloading

the supplements.

 Disadvantages

- Traditional browsers outperform browsers on mobile devices.

- Mobile web applications cannot exploit the functionality offered by mobile device

software and hardware.

- The performance of mobile web applications depends on the speed and state of the

Internet connection.

1.2.3.3. Hybrid App or Hybrid App: is the combination of native applications and mobile

web applications. The synergy between these two types of applications results in a reduction

in time, development effort, price, and maintenance. These applications can be downloaded

via online shops, installed on the device, and run from a simple icon like native applications.

Hybrid mobile applications are created to run on multiple platforms .[8][6]

Chapter1. Android Applications

7

1.3. Android

 There are different mobile operating systems, in this section, we will focus on the

platform we have chosen to develop our application. We start with the definition of the

Android platform, its benefits, features, and architecture, and then we detail the basic concepts

of Android applications.

1.3.1. Android operating system

 The android operating systemis a software platform and operating system

developed by Google (2007). Android is based on the Linux kernel in order

to be exploited by a wide variety of mobile devices. The popularity of

Android is due to the fact that it can be found on a range of devices from

different manufacturers including, Samsung, Motorola and HTC, so

Android is increasing its technological lead over much cheaper mobiles. [9].

1.3.1.1. Advantages of the Android platform

 We chose the Android operating system for the following reasons :

 No license to obtain, no expense for distribution and development.

 To develop location-based applications using GPS.

 Use geographical maps with Google Maps.

 Receive and send SMS, send and receive data on the mobile network.

 Record and playback images, sound, and video.

 Shared data storage tools (SQLite in Sandbox version).

 Hardware acceleration for 2D and 3D.

 Services and applications that can run in the background: that can react during an

action, at your position in the city, at the time it is, depending on the identity of the

caller.

 A development platform that promotes the reuse of components software and the

replacement of the applications provided.

1.3.1.2. Characteristics of Android

 There are many Android operating system features. Among these features are [13] :

 Web browser: Web browser based on the Webkit rendering engine.

 Graphics: 2D graphics library, 3D graphics library based on OpenGL ES 1.0.

Hardware acceleration possible.

 Storage: SQL database: SQLite is used for data storage.

 Media: Android supports the following audio/video/image formats: MPEG4, H.264,

MP3, AAC, AMR, JPG, PNG, GIF

Chapter1. Android Applications

8

 Connectivity: gsm, edge, 3G, Bluetooth, wifi.

 Hardware Support: Android is able to use a Camera, GPS, accelerometer

 Development Environment: Android has a complete development environment

containing: an emulator, a debugger, a memory, and a performance analyzer.

1.3.1.3. Android Architecture

 The Android Operating System was initially developed by Android Inc. in 2003 and has

been modified and optimized by Google since 2005 when they bought the company. Thanks

to Google and the Open Handset Alliance (OHA), Android OS was the first open and free

mobile Operating System. It has become the most popular smartphone operating system in the

world. The Android OS is built over the Linux Kernel and consists of four different layers that

perform a variety of tasks that make Android a powerful operating system.[10]

 The following diagram (Figure 1.2) illustrates the main components of the system

Android operating system. Each section is described in more detail below :

FIGURE 1.2 - Architecture d'Android [11].

Chapter1. Android Applications

9

 a) Linux Kernel

 Android is based on a Linux kernel (version 2.6) which manages the system services, such as

security, memory and process management, network stack, and drivers. It also acts as an

abstraction layer between the hardware and the software stack. [11]

b) Android Runtime Engine

 Android includes a set of libraries that provide most of the functionality available in the basic

libraries of the Java programming language. Each Android application runs in its own

process, with its own Dalvik virtual machine instance. Dalvik VM is an implementation of a

virtual machine that has been designed to optimize the multiple executions of virtual

machines.

 It executes bytecode dedicated to it: the bytecode dex. (Format which is optimized for a

minimum memory footprint). This particularity of Android makes it a unique system, far from

the traditional Linux systems that many people have encountered before [9][10].

c) Libraries

 Internally, Android includes a set of C and C++ libraries used by many components of the

Android platform. These libraries are actuallyaccessible to developers through the Android

Framework. Indeed, the Android framework makes, internally, calls to C/C++ functionsmuch

faster to execute than standard Java methods. The Java Native Interface (JNI) technology

allows exchanges between Java code, C, and C++ code [10].

(d) Application Framework

 By providing an open development platform, Android gives developers the ability to create

extremely rich and innovative applications. Developers are free to take advantage of

peripheral hardware, access location information, run background services, set alarms, add

status bar notifications, and much, much more. [10] [11]

e) Applications

 Android comes with a basic set of programs (also called native applications) to access

features such as email, SMS, phone, calendar, photos, maps, web, to name a few. These

applications are developed using the Java programming language. For the end-user, this is the

only accessible and visible layer. [10][11]

1.3.2. Android application

 Android app is a mobile software application developed for use on devices powered by Google's

Android platform.

 An Android application can be written in several different programming languages.

Chapter1. Android Applications

10

1.3.2.1. Applications Component

 Android apps are organized as a set of components. There are four types of components,

and the applications can be composed of one or more of each type. A dynamic instance of one

component corresponds to a subset of applications that can be run independently of the others.

Thus, many Android applications can be considered as a set of interacting components. The

Android application components come in four flavors: [14]

 Activities. User-facing components that implement display and input capture.

 Services. Background components that operate independently of any user-visible

activity.

 Broadcast receivers. A component that listens for and responds to system-wide

broadcast announcements.

 Content providers. Components that make application data accessible to external

applications and system components

a) Activities

 An activity component implements interactions with the user. Activities are typically

designed to manage a single type of user action, and multiple activities are used together to

provide complete user interaction. [14][15]

 Each activity can start another activity in order to perform different actions. Each time a

new activity starts, the previous activity is stopped, but the system preserves the activity in a

stack. When a new activity starts, it is pushed into the back stack and takes user focus. When

the user is done with the current activity and presses the Back button, it is popped from the

stack and destroyed and the previous activity resumes. Activities must be declared in the

manifest file in order to be accessible to the system. This manifest file presents essential

information about the app to the Android system. Information like: minimum SDK (Software

Development Kit) version, permissions, activities, services…

i. Activity Lifecycle

 Before we deep dive into the lifecycle, we should know that an activity has four states:

State Descriptions

Active If an activity is in the foreground of the screen (at the highest position of the topmost

stack), it is active or running. This is usually the activity that the user is currently

interacting with.

Chapter1. Android Applications

11

Paused If an activity has lost focus but is still presented to the user, it is visible. It is

possible if a new non-full-sized or transparent activity has focused on the top of

your activity, another activity has a higher position in multi-window mode, or the

activity itself is not focusable in current windowing mode. Such activity is

completely alive (it maintains all state and member information and remains

attached to the window manager).

Stopped If an activity is completely obscured by another activity, it is stopped or hidden. It

still retains all state and member information, however, it is no longer visible to

the user so its window is hidden and it will often be killed by the system when

memory is needed elsewhere.

Destroyed The system can drop the activity from memory by either asking it to finish or

simply killing its process, making it destroyed. When it is displayed again to the

user, it must be completely restarted and restored to its previous state.

 TABLE 1.1-The different states of an activity [16]

 In order to manage the lifecycle of our activity, we need to implement the callback methods.

these methods are explained in the table below :

Methode description

onCreate() Called when the activity is first created. This is where you should do all of your

normal static set up: create views, bind data to lists, etc. This method also

provides you with a Bundle containing the activity's previously frozen state, if

there was one. Always followed by onStart()

onRestart() Called after your activity has been stopped, prior to it being started again.

Always followed by onStart()

Chapter1. Android Applications

12

onStart() Called when the activity is becoming visible to the user.

Followed by onResume() if the activity comes to the foreground, or onStop() if

it becomes hidden.

onResume() Called when the activity will start interacting with the user. At this point, your

activity is at the top of its activity stack, with user input going to it.

Always followed by onPause().

onPause() Called when the activity loses foreground state, is no longer focusable, or

before the transition to stopped/hidden or destroyed state. The activity is still

visible to the user, so it's recommended to keep it visually active and continue

updating the UI. Implementations of this method must be very quick because

the next activity will not be resumed until this method returns.

Followed by either onResume() if the activity returns back to the front, or

onStop() if it becomes invisible to the user.

onStop() Called when the activity is no longer visible to the user. This may happen either

because a new activity is being started on top, an existing one is being brought

in front of this one, or this one is being destroyed. This is typically used to stop

animations and refreshing the UI, etc.

Followed by either onRestart() if this activity is coming back to interact with

the user, or onDestroy() if this activity is going away.

onDestroy() The final call you receive before your activity is destroyed. This can happen

either because the activity is finishing, or because the system is temporarily

destroying this instance of the activity to save space.

TABLE 1.2 - Callback methods[16]

Chapter1. Android Applications

13

Figure 1.3 illustrates the life cycle of activity components with callback methods :

FIGURE 1.3- Activity lifecycle[16]

b) Service

 Long-running or background components that do not directly interact with the user are

expressed as service components. For example, I/O operations that are initiated by activity

may not complete before the user-facing activity disappears. In this instance, a service

component can be used to carry out the I/O task, independent of the lifetime of the UI

elements that initiated it. Services define and expose their own interfaces, which other

Chapter1. Android Applications

14

components bind to in order to make use of the service. As is common with UI elements in

GUI environments, services typically launch their own threads in order to allow the main

application process thread to make progress and schedule threads associated with other

components.[14]

i. Types of Services [16]

 The three different types of services are :

 Foreground: A foreground service performs some operation that is noticeable to the

user. For example, an audio app would use a foreground service to play an audio track.

Foreground services must display a Notification. Foreground services continue

running even when the user isn't interacting with the app.

 Background: A background service performs an operation that isn't directly noticed

by the user. For example, if an app used a service to compact its storage, that would

usually be a background service.

 Bound: A service is bound when an application component binds to it by calling

bindService(): A bound service offers a client-server interface that allows

components to interact with the service, send requests, receive results, and even do so

across processes with interprocess communication (IPC). A bound service runs only as

long as another application component is bound to it. Multiple components can bind to

the service at once, but when all of them unbind, the service is destroyed.

ii. The lifecycle of a service [12]

 The service lifecycle from when it's created to when it's destroyed can follow either of

these two paths:

1. A started service

 The service is created when another component calls startService (). The service

then runs indefinitely and must stop itself by calling stopSelf ().Another component

can also stop the service by calling stopService ().When the service is stopped, the

system destroys it.

2. A bound service

 The service is created when another component (a client) calls bindService().The

client then communicates with the service through an IBinder interface. The client

can close the connection by calling unbindService().Multiple clients can bind to the

same service and when all of them unbind, the system destroys the service. The

service does not need to stop itself.

Figure (1.4) illustrates the service lifecycle

Chapter1. Android Applications

15

FIGURE 1.4 - Service lifecycle [17]

c) Broadcast receivers

 A Broadcast Receiver is an intent-based public subscribe mechanism in Android. This

application component allows users to register system events and receive a notification when

the registered event is triggered such as SMS notification, battery life, and so on. The receiver

is simply a stack of code in the application that becomes activated when a subscribed event is

triggered. The system broadcasts events all the time and the broadcasted events can trigger

any number of receivers. Broadcasts can be sent from one part of the application to another or

to a totally different application. Broadcast Receivers themselves do not have graphical

representation, nor do they actively run in memory.

Chapter1. Android Applications

16

FIGURE 1.5- Broadcast Receiver [17]

d) Content providers

 Components that provide access to an application’s data are content providers. Base

classes are provided in the Android SDK for both the content provider (that is, the content

provider component must extend the base class) and the component seeking access. The

content provider is free to store the data in whatever back-end representation it chooses, be it

the file system, the SQLite service, or some application-specific representation (including

those implemented via remote web services).[14]

Figure 1.6 – Content providers [14]

Chapter1. Android Applications

17

1.3.2.2. Additional components

 There are additional components which will be used in the construction of the above-

mentioned entities, their logic, and wiring between them.

component Description

Fragments Represents a portion of the user interface in an Activity.

Views UI elements that are drawn on-screen including buttons, lists forms, etc.

Layouts View hierarchies that control screen format and appearance of the views.

Intents Intents are asynchronous messages that name the activity, service, operation,

or resource being requested. Intents are a dynamic binding mechanism that

enables applications to specify what operations they want to be performed

(optionally with some input data), without having to explicitly specify what

component will carry out the operation.

Resources External elements, such as strings, constants, and drawable pictures.

Manifest Configuration file for the application. The manifest file provides the following

information.

 Component description. The manifest explicitly identifies the

activities, services, broadcast receivers, and content providers in the

application. For each of these, it names the Java classes that

implement each component and describes the Intent messages they can

handle. Each component declaration can include a specification of

which process should be used to host the component.

 Permissions. The manifest itemizes the permissions required to

execute the application and its components. It also specifies what

permissions are required of other applications in order to use this

application’s components. Permissions include access to contacts,

network I/O, and the file system.

 API version. The manifest describes the minimum version of

Android required to execute the application.

Table1.3- Additional components[18][14]

Chapter1. Android Applications

18

1.4. Cab booking applications

 Since the rise of digital marketing has risen us so up, a lot of people now prefer booking

cabs over online applications rather than taking autos or taxis.

Reasons why users prefer online cab booking services :

● Easy to book cabs before the departure time.

● No negotiation with the cab driver about the price of the ride.

● Attractive offers for the users.

We can call an app a cab booking app if it offers some basic functionalities, that are :

 User-friendly UI with location tracking.

 Booking flexibility.

 Estimated time of arrival and distance.

 Fare precision.

 Transparent booking process.

 Cab confirmation.

1.4.1. Some Existing solutions

 There are many apps that take place in this market like : uber , lyft ,Grap,Ola,LeCab but we

will go with the most efficient :

1.4.1.1. Uber

 Uber Technologies Inc. is an American company that develops and offers the Uber mobile

application, the application that connects potential passengers with drivers who use their own

vehicles. The company was founded in San Francisco in 2009 and started marketing the free

mobile application in 2011.[19]

FIGURE 1.7- Uber logo[19]

Chapter1. Android Applications

19

1.4.1.2. Uber services

 Those services are: [19]

 UberT – Potential passengers can hail the official taxi service in that particular town.

In New York City, for example, those are "yellow" taxi cabs with a medallion and

Boro taxi cabs. Uber charges the application usage and the passenger pays the driver

himself.

 UberX – The most famous Uber service. Usually cheaper than the official taxi cabs for

15-20%.

 UberPop – A service that connects potential passengers with unlicensed drivers that

have a contract with Uber and have passed their background check. This service is the

cause of great controversy which escalated into riots in the city of Paris.

 UberPOOL – Launched in 2014, this is Uber’s most affordable service. It allows ride-

sharing with strangers who intend to go the same route. Fare savings can reach up to

40% and if the application cannot find another passenger the sole passenger gets a

10% discount.

 UberMOTO – A low-cost motorcycle transport service launched in February 2016 in

Bangkok. Passengers can pay the cab fare in cash or with a credit card.

 UberBlack – The original Uber service which includes luxury vehicles.

 UberSUV – Passenger transport with spacy vehicles.

 UberXL – Passenger transport for large groups.

1.4.1.3. How to use the Uber app [20]

● A passenger opens the app: The passenger enters his destination in the "Where to?"

and review each travel option to see the vehicle size, price, and estimated delivery

time. Then choose the desired option and confirm the collection.

● A driver is assigned to the passenger: A nearby driver sees the passenger's travel

request and decides to accept it. When the driver's vehicle is approximately one

minute away, the passenger is automatically notified.

● The driver picks up the passenger: The driver and passenger mutually verify their

names and destination. Then the driver begins the journey.

● The driver takes the passenger to the destination: The application offers the driver the

option to access step-by-step directions.

Chapter1. Android Applications

20

● The driver and passenger leave ratings and opinions: At the end of each trip, drivers

and passengers can rate each other with a score of 1 to 5 stars. Passengers also have

the option to congratulate the driver directly in the app

 In the algerian market there are already some existing solutions like Yassir , Temtem and

Coursa.

1.5. Conclusion

 In this chapter, we have presented in the first part, a small overview of mobile applications.

Thus, we have detailed the different features and their types. Then in the second part, we

explained the operating system we used in our application. We also described their

advantages, their main features, and their architecture, and then we describe the concepts of

Android applications. Finally, we made a presentation of some applications of Cab booking

under Android that exists.

21

2.1. Introduction

 Transportation is an issue of concern in big cities of many developing countries today. Due

to that, we have thought of developing for our final project, an android application for online

cab booking. This application is intended for both customers and cab drivers and will be

installed on mobile terminals.

 In this chapter, we are going to see the design of our application by first presenting the

development process used for the realization of our application, and then we will present the

UML diagrams and highlight those we have used. We will then present the analysis of our

system using the diagrams associated with this step and then the creation of the database.

2.2. Unified Process(UP)

 In this section, we will present the development process used, which is essential for any kind

of IT project, and for our application, we have chosen the Unified Process (UP).

2.2.1. Definition

A unified process is a software development process built on UML; it is iterative,

incremental, architecture-centric, use-case driven, and risk-driven [21]. It is a process pattern

that can be adapted to a wide class of software systems, different application domains,

different types of companies, different skill levels, and various company sizes.

The purpose of the Unified Process is to guide developers towards the implementation and

effective deployment of systems that meet customer needs. [22]

CHAPTER 2: ANALYSIS AND DESIGN

Chapter2. Analysis and design

22

2.2.2. Features of UP

● UP is iterative and incremental.

The project is broken down into iterations or short steps that allow for better monitoring of

overall progress. At the end of each iteration, an executable part of the final system is

produced incrementally (by addition).

 Figure 2.1 illustrates the iteration of UP.

FIGURE 2.1 - The iteration of UP[22]

● UP is focused on architecture.

 Any complex system must be broken down into modular parts in order to facilitate

maintenance and evolution. This architecture (functional, logical, hardware, etc.) must be

modeled in UML and not only documented in the text. [22]

 UP is guided by UML use cases.

 The main purpose of a computer system is to satisfy customer needs. The development

process will be accessed on the user. The use case allows us to illustrate these needs.

They detect and then describe the functional needs, and together they constitute the use

case model that dictates the full functionality of the system. [23]

Chapter2. Analysis and design

23

 UP is driven by risks

The major risks of the project must be identified as soon as possible, but above all, they

must be removed as quickly as possible. The measures to be taken within this framework

determine the order of iterations.

2.3. Unified Modeling Language (UML)

 Before programming the application and starting to write the code, you must organize the

ideas, document them, then organize the realization by defining the modules and the stages of

the realization. This process, which takes place before writing, is called modeling. Modeling

consists of creating a virtual representation of a reality in such a way as to highlight the points

of interest. In our project, we used the UML methodology for modeling different diagrams.

2.3.1. Definition

« The Unified Modeling Language (UML) is defined as a graphical and textual modeling

language for understanding and describing requirements, specifying and documenting

systems, sketching software architectures, designing solutions, and communicating

viewpoints. UML is a language with a well-defined syntax and rules that try to achieve

writing goals through a graphical representation made of diagrams and textual modeling that

enriches the graphical representation. » [24].

2.3.2. List of UML Diagram Types

The current UML standards call for 13 different types of diagrams: class, activity, object, use

case, sequence, package, state, component, communication, composite structure, interaction

overview, timing, and deployment.[25]

 These diagrams are organized into two distinct groups: structural diagrams and behavioral

or interaction diagrams. (see figure 2.2).

Structural UML diagrams

● Class diagram.

● Package diagram.

● Object diagram.

● Component diagram.

● Composite structure diagram

Chapter2. Analysis and design

24

● Deployment diagram.

Behavioral UML diagrams

● Activity diagram.

● Sequence diagram.

● Use case diagram.

● State diagram.

● Communication diagram.

● Interaction overview diagram.

● Timing diagram.

FIGURE 2.2 - UML diagram types[25]

 The diagrams we are going to present are the diagrams we used in our application :

2.3.2.1. Use Case Diagram

As the most known diagram type of the behavioral UML types, Use case diagrams give a

graphic overview of the actors involved in a system, different functions needed by those

actors, and how these different functions interact.

Chapter2. Analysis and design

25

It’s a great starting point for any project discussion because you can easily identify the main

actors involved and the main processes of the system. [26]

5.3.2.2. Class Diagram

Class diagrams are the main building block of any object-oriented solution. It shows the

classes in the system, attributes, and operations of each class, and the relationship between

each class.

 In most modeling tools, a class has three parts. Name at the top, attributes in the middle,

and operations or methods at the bottom. In a large system with many related classes, classes

are grouped together to create class diagrams. Different relationships between classes are

shown by different types of arrows.[26]

5.3.2.3. Component Diagram

A component diagram displays the structural relationship of components of a software

system. These are mostly used when working with complex systems with many components.

Components communicate with each other using interfaces. The interfaces are linked using

connectors.[26]

2.4. Requirements Specification

The specification of requirements is the starting phase of any application to be developed in

which we will identify the needs of our application. We distinguish between needs

functionalities that present the expected functionalities of our application and our customers'

needs.

2.4.1. Functional requirements :represent the actions that the system must perform, it

becomes operational only if it satisfies them. This application must cover mainly the

following functional requirements :

● Location of the user.

● Instant Booking

● Future Booking

● An estimate of time and distance.

● An estimate of the fare.

● Manage Booking requests.

● Review the booking history.

● Registration.

● Rate the driver.

2.4.2. Non-functional requirements: they are needs in terms of performance, type of

material, or design type. For this, our future system must meet the following characteristics :

Chapter2. Analysis and design

26

● Provide good UX (user experience).

● Security.

2.5. Requirements analysis

 The first step in design is to analyze the situation to take into account the constraints, risks,

and any other relevant elements and ensure work or process that meets the needs of the client.

In this section, we define the actors of our system and present the use case diagram.

2.5.1. Use case diagram

The representation of a use case involves three concepts: the actor, the use case, and the

interaction between the actor and the use case [27]. In this section, we present these three

concepts for our approach.

2.5.1.1. Identifying Actors

An actor is a person, organization, local process (e.g., system clock), or external system that

plays a role in one or more interactions with the system.

 The actors within our approach are :

● Passenger.

● Driver

2.5.1.2. Identifying use cases

A use case represents a system functionality. This functionality is accomplished by a user

(Actor)[27].

 The following table shows the different use cases associated with our system :

Function Use case Actor

Sign up with a phone number

User Authentication

Passenger

/Driver

Sign up with a Google account

Sign in with phone number

Chapter2. Analysis and design

27

Sign in with a Google account

View trips history View trips history Passenger

/Driver

Accept request Manage booking requests

Driver
Refuse request

Set availability Set availability Driver

Specify the beginning and the end stations Instant booking Passenger

Specify the beginning and the end stations

Future booking

Passenger
Indicate time

Rate Driver Rate Driver Passenger

 Table 2.1 - The different use cases

2.5.1.3. Illustration of use case diagram

 Figure 2.3 illustrates a use case diagram with the actors: the driver and the passenger, as

well as use cases.

Chapter2. Analysis and design

28

FIGURE 2.3 - Use case diagram.

2.5.1.4.Use Cases Descriptions

 Each use case must be associated with a textual description of the interactions between the

actor and the system.

The description of a use case is written in six points :

● Objective

● Actor(s)

● Pre-conditions: the conditions that must hold for the use case to begin.

● Post-conditions: the conditions that must hold once the use case has been completed.

● Main success scenarios(Basic Flow): use case in which nothing goes wrong.

● Alternative paths (Alternative Flow): these paths are a variation on the main theme.

Chapter2. Analysis and design

29

● Use case <<User Authentication>>

 The following table is a textual description of the use case " User Authentication ".

Use case title User Authentication

Objective Authenticate user

Actor(s) Driver/ Passenger

Basic Flow 1- launch the app

2- the user choose between sign-in /up with a phone number or with a

google account

3-after successful Authentication, the user will be redirected to the home

screen.

Alternative

Flow

1-If the user chooses to go with a google account :

-If the user enters an invalid google account, an error message is shown

-If an error occurs during parsing information of a google account, an

error message is shown.

2-If the user chooses to go with the phone number :

-if the user enters an invalid phone number, an error message is shown

If the user enters an invalid OTP code, an error message is shown.

3-If the user login with account that not exist :

 if a user enters a not valid account, an error message shaw indicates that

the account does not exist.

Table 2.2 - User Authentication’s description.

● Use case << Manage booking requests>>

The following table is a textual description of the use case " Manage booking

requests ".

Chapter2. Analysis and design

30

Use case title Manage booking requests

Objective Manage booking requests that were made by Clients

Actor(s) Driver

Pre-conditions The driver must have already opened the app and already

authenticated.

Booking exists

Basic Flow 1- The driver receives the trip booking information

2- The Driver swipe right to accept the reservation

3- The status of The cab driver becomes automatically unavailable

Alternative

Flow

The Driver swipes right to refuse the reservation, so the passenger

keeps waiting for another driver to accept

Post-conditions Booking is confirmed or rejected

Table 2.3 - Manage booking requests’ description

● Use case << Instant booking>>

 The following table is a textual description of the use case " Instant booking " :

Use case title

Instant booking

Objective

Booking a Driver for an immediate trip

Actor(s)

Passenger

Pre-conditions The Passenger should be already opened the app and already

authenticated.

Chapter2. Analysis and design

31

Basic Flow 1- The system detects the location of the passenger with all nearby

driver.

2- The client specifies the beginning and end stations.

3- The system estimates the duration, the distance and the fare of the

trip.

4- The client receives a message indicating that the trip has been

confirmed.

5-The client will be redirected to the trip screen.

Alternative

Flow

If the waiting period runs out, the customer will receive a message

that there is no driver who has responded to his request on time.

Post-conditions The booking is made.

Table 2.4 - Instant booking’ description

● Use case << Future booking>>

 The following table is a textual description of the use case " Future booking " :

Use case title Future booking

Objective Booking a Driver for a future trip.

Actor(s) Passenger.

Pre-conditions The passenger must be already authenticated.

Basic Flow 1- The client specifies the beginning and end stations.

2- The system will estimate the duration , the distance and the fare of

the trip

3- The client Indicates the date and time.

4- when the date of the trip is equal to the current date, the client

receives a notification.

Alternative

Flow

If the app was closed or in the background, the client receives a notice

to remind him.

Post-conditions The booking is made.

Table 2.5 - Future booking’s description

Chapter2. Analysis and design

32

● Use case << Rate driver >>

 The following table is a textual description of the use case " Rate driver " :

Use case title Rate driver

Objective Rate the trip’s driver

Actor(s) Passenger

Pre-conditions The passenger must be already authenticated.

Basic Flow 1- The client rates the driver by stars

Table 2.6 - Rate driver’s description

 Use case << Set Availability >>

 The following table is a textual description of the use case " Set Availability" :

Use case title Set Availability

Objective Set the availability of the cab driver

Actor(s) Driver

Pre-conditions The driver must be already authenticated.

Basic Flow 1- The driver chooses his status

Table 2.7 – Availability‘s description

 Use case << View trips history >>

 The following table is a textual description of the use case " View trips history" :

Chapter2. Analysis and design

33

Use case title View trips history

Objective View trips history

Actor(s) Driver / Passenger

Pre-conditions The driver / passenger must be already

authenticated.

Basic Flow 1- The driver / passenger View his trips

history

Table 2.8 -View trips history’s description

2.6. Conception

 This part will be dedicated to the design of our system, we will use the class diagram to

represent the entities manipulated by the users.

2.6.1. Class diagram

2.6.1.1. Data Dictionary

Table 2.7 below represents the data dictionary of the class diagram :

Chapter2. Analysis and design

34

Class attribute description Type

passenger

uid passenger’s identifier String

account passenger’s account (email/phone) String

fullname passenger’ full name String

Driver

uid Driver’s identifier String

fullname Driver’s full name String

contact Drivers’ contact(email/phone) String

rate Driver’s rate Double

cab_num cab number String

nrate Number of the clients who rated the driver Integer

available The availability of the driver Boolean

cordinate The coordinate of the driver(location) Geopoint

Reservation

id Reservation’s id String

uid_r passenger’s identifier String

uid_d Driver’s identifier String

cost Reservation’s cost Integer

Time Duration of the trip String

distance Reservation’s distance Double

date Reservation’s date Datetime

source Reservation’s source String

Chapter2. Analysis and design

35

 destination Reservation’s destination String

rate The rate that was given for the driver by a

client

double

picked_up The booking was accepted or not Boolean

 Table 2.9 - Data dictionary

2.6.1.2. Class diagram illustration

Figure 2.4 represents class diagram of our system :

 FIGURE2.4 - Class diagram

2.6.2. Creation of a database

 Our application is based on distributed systems and manages data hosted on servers that

change in real time, so we need to store our data in real time and access it just as quickly, and

Chapter2. Analysis and design

36

traditional relational databases cannot provide a satisfactory response time, which is why we

opted to use NoSQL databases.

 We will present in the following, the main concepts of the NoSQL database.

2.6.2.1. NoSQL

NoSQL databases are those databases that are non-relational, open-source, distributed in

nature as well as having high performance in a linear way that is horizontally scalable. A

Nonrelational database does not organize its data in related tables (i.e., data is stored in a non-

normalized way). NoSQL databases are open-source; therefore, everyone can look into its

code freely, update it according to his needs, and compile it. Distributed means data is spread

to different machines and is managed by different machines so here it uses the concept of data

replication.[28]

2.6.2.2. NoSQL features

NoSQL databases are an excellent fit for many modern applications such as mobile, web, and

gaming that require flexible, scalable, high-performance, and highly functional databases to

provide great user experiences.[29]

● Flexibility: NoSQL databases generally provide flexible schemas that enable faster

and more iterative development. The flexible data model makes NoSQL databases

ideal for semi-structured and unstructured data.[29]

● Scalability: NoSQL databases are generally designed to scale out by using distributed

clusters of hardware instead of scaling up by adding expensive and robust servers.

Some cloud providers handle these operations behind-the-scenes as a fully managed

service.[29]

● High-performance: NoSQL database is optimized for specific data models and

access patterns that enable higher performance than trying to accomplish similar

functionality with relational databases.[29]

● Highly functional: NoSQL databases provide highly functional APIs and data types

that are purpose-built for each of their respective data models.[29]

2.6.2.3. NoSQL datastore types

NoSQL databases are divided into a number of databases. There are four new different types

of data stores in NoSQL :

1. Key-value databases: The key-value database name itself states that it is a

combination of two things that are key and a value. It is one of the low profile

Chapter2. Analysis and design

37

(traditional) database systems. Key-Value (KV) databases are the mother of all the

databases of NoSQL. The Key is a unique identifier to a particular data entry. The key

should not be repeated if one used that it is not duplicate in nature. Value is a kind of

data that is pointed out by a key.[28]

2. Wide column/column family:are NoSQL databases that store data by column instead

of saving data by row (as in relational databases). Thus, some rows may not contain

part of the columns, offering flexibility in data definition and allowing them to apply

data compression algorithms per column. Furthermore, columns that are not often

queried together can be distributed across different nodes.[30]

3. Graph-oriented: These databases aim to store data in a graph-like structure. Data is

represented by arcs and vertices, each with its particular attributes. Most Graph-

oriented databases enable efficient graph traversal, even when the vertices are on

separate physical nodes. Moreover, this type of database has received a lot of attention

lately because of its applicability to social data.[30]

4. Document: A document is a series of fields with attributes.Most databases of this type

store documents in semi-structured formats such as XML(eXtensible Markup

Language), JSON (JavaScript Object Notation), or BSON (Binary JSON). They work

similarly to Key-Value databases, but in this case, the key is always a document's ID

and the value is a document with a pre-defined, known type (e.g., JSON or XML) that

allows queries on the document's fields.[30]

 As the saying goes, don't bring a knife to a gunfight. Using the right tool for the job is one

of the most important things to reach the most desirable results. So we've decided to pick

Firestore, which is a Document database, for these reasons:

● Offers great performance for mass read and write requests.

● Documents organized into collections.

● Assign an ID to each document which makes it easy to retrieve and manage.

● The documents are in the format of the JSON format (JavaScript Object Notation),

which allows us great interoperability.

2.6.2.4. Our database schema

 The figure below 2.5 illustrates the driver’s document:

Chapter2. Analysis and design

38

FIGURE 2.5 - Drivers document

 The figure 2.6 below illustrates the Passenger’s document :

FIGURE 2.6 – Passenger’s document

 The figure 2.7 below illustrates the Reservation’s document :

FIGURE 2.7 – Reservation’s document

Chapter2. Analysis and design

39

2.6.3. Component diagram

One key element to develop a taxi booking application is the GPS. When it comes to GPS

service there’s only one name that rules. It’s Google Maps. The figure 2.8 below illustrates

the Component diagram of our system:

FIGURE 2.8- Component Diagram

2.7. Conclusion

 This chapter introduced the design phase of our system using the Unified Process approach

and the appropriate UML diagrams, the ones we found indispensable to our work. A

description of the functional requirements of the different application actors and non-

functional requirements as well as the UML design of the application are also presented.

Driver

Passenger

Authentication

Reservation

Database

Google MAPs

Cab booking

40

3.1. Introduction

 We continue with the last stage of our work, which is the realization phase by specifying the

development tools used, programming languages and web services. These last ones allowed

us to reach the desired result, which let us present the different services offered by our

application.

3.2. Development languages

3.2.1. Dart

Dart is a programming language that was developed by Google. The first version of Dart was

released on November 14, 2013, and version 2.0 was released in August 2018. It's open-

source, object-oriented, strongly typed, a class defined, and uses a C-style syntax, which is to

say, it's like many other modern programming languages, including Java or C#, and to some

extent, even JavaScript. [31]

3.2.2. Dart features

● Owned by Google.

● Dart supports both just-in-time (JIT) compiling and ahead-of-time (AOT)

compiling.[flutter in action].

● It can transpile to JavaScript to maximize compatibility with web development.[31]

CHAPTER 3: REALIZATION

Chapter 3. Realization

41

 FIGURE 3.1- Dart’s logo[31]

3.2.3. JSON

 JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for

humans to read and write. It is easy for machines to parse and generate. It is based on a subset

of the JavaScript Programming Language Standard ECMA-262 3rd Edition - December 1999.

JSON is a text format that is completely language independent but uses conventions that are

familiar to programmers of the C-family of languages, including C, C++, C#, Java,

JavaScript, Perl, Python, and many others. These properties make JSON an ideal data-

interchange language.[32]

3.3. Development environment

3.3.1. Android Studio

Android Studio is the official Integrated Development Environment (IDE) for Android app

development, based on IntelliJ IDEA.[33] .

3.3.2. Visual Studio Code

Visual Studio Code is a lightweight but powerful source code editor that runs on your desktop

and is available for Windows, macOS, and Linux. It comes with built-in support for

JavaScript, TypeScript, and Node.js and has a rich ecosystem of extensions for other

languages (such as C++, C#, Java, Python, PHP, Go, Dart) and runtimes (such as .NET and

Unity).[34]

3.3.3. Android SDK

The Android SDK (software development kit) is a set of development tools used to develop

ap[35] :

● Required libraries.

● Debugger.

● An emulator

Chapter 3. Realization

42

● Relevant documentation for the Android application program interfaces (APIs).

● Sample source code.

● Tutorials for the Android OS.

3.3.4. Flutter

Flutter is Google’s UI toolkit for building beautiful, natively compiled mobile, web, and

desktop applications from a single codebase. It aims to make development as easy, quick, and

productive as possible. Things such as Hot Reload, a vast widget catalog, excellent

performance, and a solid community contribute to meeting that objective and makes Flutter a

pretty good framework.[36][37].

FIGURE 3.2 - Flutter’ logo[36]

3.3.4.1. Flutter's approach

Compared to other solutions, flutter performs much better because the application is compiled

AOT (Ahead Of Time) instead of JIT (Just In Time) like the JavaScript solutions. Flutter

eliminated the bridge and the OEM platform and uses Widgets Rendering instead of working

with the canvas and events, which is up to its rendering engine. And it uses Platform Channels

to use the services. Besides, it is not difficult to use platform APIs with an asynchronous

messaging system, which means if you need to use a specific Android or iOS feature, you can

do it quickly. Flutter also makes it possible to create plugins using channels that can be used

by every new developer. So, to put it simply: code once and use it everywhere! [37]

FIGURE 3.3 - Flutter's approach[37]

Chapter 3. Realization

43

3.4. Firebase and web services used

3.4.1. Firebase

Firebase is a mobile and web application development platform created in 2011 by

Firebase.Inc and then acquired by the company by Google in 2014 to be integrated into its

Cloud services offering (Google Cloud Platform). Firebase’s primary objective is to free you

from the complexity of creation and maintenance server architecture while ensuring you rock-

solid scalability and ease of use.

Firebase has several services ready to use and those that we picked to use in our

application :

1. Cloud Firestore: Cloud Firestore is a flexible, scalable database for mobile, web, and

server development from Firebase and Google Cloud Platform. It keeps the data in-

sync across client apps through realtime listeners and offers offline support for mobile

and web so you can build responsive apps that work regardless of network latency or

Internet connectivity.[38]

2. Authentication: Firebase Authentication provides backend services, easy-to-use

SDKs, and ready-made UI libraries to authenticate users to your app. It supports

authentication using passwords, phone numbers, popular federated identity providers

like Google, Facebook, Twitter, and more.[39]

3. Cloud Messaging: is a cross-platform messaging solution that lets you reliably send

messages at no cost. Using FCM, you can notify a client app that a new email or other

data is available to sync. You can send notification messages to drive user re-

engagement and retention. For use cases such as instant messaging, a message can

transfer a payload of up to 4KB to a client app.[40]

3.4.2. Web services used

Web services are self-descriptive, modular, and weakly coupled applications that provide a

simple, standards-based model for programming and deploying applications and running

through the web infrastructure.

There are two types of Web service :

● Web service based on the SOAP protocol.

● Web service based on the REST architectural style.

Considering the REST style’s simplicity, we opted to invoke existing REST web services

with JSON messages. As part of our application, we used some existing web services:

3.4.2.1. Google Map API

With the Google Map API, we can add maps based on Google Maps data to our application.

The API automatically handles access to Google Maps servers, data

Chapter 3. Realization

44

downloading, map display, and response to map gestures. We also use API calls to add

markers, polygons, overlays to a basic map, and change the user's view of a particular map

area.[41]

3.4.2.2. Distance Matrix API

 The Distance Matrix API is a service that provides travel distance and time for a matrix of

origins and destinations. The API returns information based on the recommended route

between start and endpoints, as calculated by the Google Maps API, and consists of rows

containing duration and distance values for each pair.We used this for retrieve distance and

duration of the trips [42].

3.4.2.3. Places API

 The Places API is a service that returns information about places using HTTP requests.

The Places API lets you search for place information using various categories, including

establishments, prominent points of interest, and geographic locations. You can search for

places either by proximity or a text string. A Place Search returns a list of places along with

summary information about each place; additional information is available via a Place Details

query.We used this api for retrieve places addresses[43]

3.4.2.4. Directions API

 The Directions API is a service that calculates directions between locations using an HTTP

request.[44]

3.4.2.5. Geocoding API

 Google Maps Geocoding API is a service that performs geocoding and reverse geocoding

of addresses.

3.5. Presentation of the graphical user interfaces

Our Project contains two applications, one reserved for the client and another reserved for the

cab driver. In the following, we would like to present the interfaces of our cab booking

system:

Chapter 3. Realization

45

3.5.1. Login UI(user interface)

This Screen is shared between the passenger and the driver apps. The user has to choose to

sign in within a Phone number or google account. If the user decides to use a phone number,

he will receive an OTP code by SMS that must be entered on Otp UI to sign in.

 FIGURE 3.4- Login and Otp Screens

3.5.2. Sign up UI(user interface)

 This Screen is common between the passenger and the driver apps. The user has to enter his

full name and choose to register within a Phone number or google account. If the user decides

to use a phone number, he will receive an OTP code by SMS that must be entered on Otp UI

to sign up.

Chapter 3. Realization

46

FIGURE 3.5- Signup and Otp screens

3.5.3. Menu Screen

When the driver and client access the application, he will be able to consult its menu, as

shown in the following figure :

Chapter 3. Realization

47

 FIGURE 3.6 - Menu Screen

3.5.4. History Screen

This screen is unique for the driver app and the client app

● Client : the screen has tabs to show the previous and futter trips , as shown in the

following figure :

 FIGURE 3.7 - Client history screens

● Driver : The driver app shows all the trips that were carried by this driver.

Chapter 3. Realization

48

 FIGURE 38- Driver trips history screen

3.5.5. Instant booking steps

The passenger's location is detected automatically; he can see all available drivers within a 3

km radius. He should pick the beginning and the end stations on the home screen. The app

calculates the cost automatically using a formula which is defined by this equation: a base fare

(100 DZD) +(mileage * 5 DZD + the number of minutes *2 DZD), the app also calculates the

trip's duration expected and the distance and shows it with a road trace. Then he will hit the

"book now" button, then he will be redirected to the "waiting screen," waiting for a driver to

take his ride. When a driver accepts the booking request, the passenger receives a notification

also when the cab driver arrives at the start location.

Chapter 3. Realization

49

 FIGURE 3.9-Instant booking steps

3.5.6. Future booking steps

The passenger's location is detected automatically; he can see all available drivers within a 3

km radius. He should pick the beginning and the end stations on the home screen. The app

calculates the cost automatically using a formula which is defined by this equation: a base fare

(100 DZD) +(mileage * 5 DZD + the number of minutes *2 DZD), the app also calculates the

trip's duration expected and the distance and shows it with a road trace. Then he will hit the

"book for later" button, then he should select the time and the day.

 FIGURE 3.10- Future booking steps

Chapter 3. Realization

50

3.5.7. Manage booking requests

 All the cab drivers near the pickup location receive a notification of the client's reservation

request. So the cab driver has to swipe right to accept or left to refuse.

 FIGURE 3.11 - Manage booking requests

3.6. Conclusion

 In this chapter, we have described the practical aspects related to the implementation of

our application, the environment, the development tools, as well as the languages used,

followed by Firebase, without forgetting the web services that we used, then we presented the

main interfaces of our mobile application.

51

CONCLUSION

 Mobile applications for Taxi or cab booking is one of the basic needs of the general

population nowadays, especially in urban areas since this application picks up significance

among the general population. In this context, the objective of our work is the development of

an Android application for a cab reservation system.

 In order to achieve this goal, we have chosen to model our system with UML formalism

based on a unified process approach. We have defined the functional requirements

specifications through the use case diagram with the textual description of each use case.

Once the system's functionalities were defined, we presented the design of our application

using the class and component diagrams. The last step was an overview of all tools used for

the realization of our application, followed by a presentation of the main interfaces of our

application.

 Our cab booking application gives its clients two options while booking, Ride Now or

Ride Later, in a few clicks. Registration process is simple and booking process estimates fare

and calculates the cost automatically.

Perspectives

 In order to improve our application, we have drawn a line of perspective. We mention:

● Add in-app payment.

● Improve the UX(user experience).

● Create an IOS version for the app.

● Create an Admin panel to manage the backend.

52

BIBLIOGRAPHY

[1] https://www.riskiq.com/resources/research/2019-mobile-threat-landscape-report/.visited on

14/7/2020.

[2] Horn, U. et al. (1999). "Services mobiles interactifs-La convergence de la

radiodiffusion et des communications mobiles." UER-revue technique, Union

européenne de radio-télévision(281) : 14-19. ISSN : 1019-6595.

[3] Perchat, J. (2015). « Composants multiplateformes pour la prise en compte de

l’hétérogénéité des terminaux mobiles » . Thèse de doctorat en Informatique.

Valenciennes : Université de Valenciennes et du Hainaut-Cambresis, 08-01-2015, 209 p.

[4] « Mobile app », disponible sur l’url « https://whatis.techtarget.com/definition/mobile-

app », visited on 15/7/2020.

[5] R. Minelli and M. Lanza (2013). “ Software analytics for mobile applications--insights

& lessons learned.” Software Maintenance and Reengineering (CSMR), 2013 17th

European Conference on, IEEE.

[6] https://www.hd-motion.com/quels-sont-les-differents-types-dapplication-mobile/ . visited

on 16/7/2020.

[7]https://www.taktilcommunication.com/blog/applications-mobile/definition-typologie-

applications-mobiles.html, visited on 16 /7/2020.

[8] https://generationmobiles.net/autre/les-differents-types-dapps-mobiles-leurs-avantages-et-

inconvenients/.visited on 16 /7/2020.

[9] Android (2020). « https://www.android.com/»visited on 17 /7/2020.

[10] Sierra, F., & Ramirez, A. (2015). « Defending Your Android App. » Proceedings of the

4th Annual ACM Conference on Research in Information Technology - RIIT

’15. doi:10.1145/2808062.2808067

[11] Naing Linn Htun , Mie Mie Su Thwin(2017) « Proposed Workable Process Flow with

Analysis Framework for Android Forensics in Cyber-Crime Investigation», The

International Journal Of Engineering And Science (IJES) ,Volume 6 , PP 82-92, 2017 .

https://www.riskiq.com/resources/research/2019-mobile-threat-landscape-report/
https://whatis.techtarget.com/definition/mobile-app
https://whatis.techtarget.com/definition/mobile-app
https://www.hd-motion.com/quels-sont-les-differents-types-dapplication-mobile/
https://www.taktilcommunication.com/blog/applications-mobile/definition-typologie-applications-mobiles.html
https://www.taktilcommunication.com/blog/applications-mobile/definition-typologie-applications-mobiles.html
https://generationmobiles.net/autre/les-differents-types-dapps-mobiles-leurs-avantages-et-inconvenients/
https://generationmobiles.net/autre/les-differents-types-dapps-mobiles-leurs-avantages-et-inconvenients/
https://www.researchgate.net/profile/Naing_Htun3
https://www.researchgate.net/profile/Mie_Thwin

Bibliography

53

[12] http:// devloper.android.com/guide/components/services. visited on 16/7/2020.

[13] http://igm.univ-mlv.fr/~dr/XPOSE2008/android/ , visited on 18/7/2020.

 [14] Barry,P.Crowley.P. «Modern Embedded Computing Designing Conncted Pervasive,

Media-Rich Systems». 2012

[15] https://devloper.android.com/guide/components/activities/. visited on 16 /7/2020

[16] https://devloper.android.com/guide/components/services/. visited on 16 /7/2020

[17] https://www.tutorialispoint.com/android/android-broadcast_receivers.htm/. visited on 16

/7/2020

[18] https://www.tutorialispoint.com/android/androidapplication_components.htm/. visited on

16 /7/2020

[19] Slavulj, Marko & Kanižaj, Krešimir & Đurđević, Siniša. « The Evolution of Urban

Transport – Uber ». (2016)

[20] HTTPS://WWW.UBER.COM/ES/EN/, visited on 17 /7/2020.

[21] ROQUES P et VALLEE F. UML en action de l'analyse des besoins a la

conception en JAVA , 2eme Edition EYROLLES, 2003.

[22] JOCOBSON I. et BOOCH G. et RUMBAUGH J. « Le processus unie de développement

(the unied software développement process) », Edition EYROLLES, 2000.

[23] https://sabricole.developpez.com/uml/tutoriel/unifiedProcess/. consulted on 20/9/2020

[24] PASCAL ROQUES, «Les cahiers du programmeurs UML2 modéliser une application

web »,EYROLLES, 4e édition, 2008

[25] https://www.smartdraw.com/uml-diagram/. visited on 20/9/2020.

[26] https://creately.com/blog/diagrams/uml-diagram-types-examples/ , visited on 20/9/2020

[27] JOSEF GABAY, DAVID GABAY, « UML2 Analyse et Conception », Université de

Québec, 1
re

 édition, 2009.

[28] Vatika Sharma, Meenu Dave, « SQL and NoSQL Databases », International Journal of

Advanced Research in Computer Science and Software Engineering Research Paper,

Volume 2, Issue 8, August 2012.

[29] https://aws.amazon.com/nosql/, visited on 20/9/2020.

[30] Alejandro Corbellinin, Cristian Mateos, Alejandro Zunino, Daniela Godoy,

SilviaSchiaffino, « Persisting big-data: The NoSQL landscape», Information Systems,

Volume 63,2017, Pages 1-23, ISSN 0306-4379.

http://igm.univ-mlv.fr/~dr/XPOSE2008/android/
https://www.tutorialispoint.com/android/android-broadcast
https://www.smartdraw.com/uml-diagram/
https://creately.com/blog/diagrams/uml-diagram-types-examples/
https://aws.amazon.com/nosql/

Bibliography

54

[31] Alessandria,S. « Flluter Projcts»Packet.2020

[32] https://www.json.org/json-en.html . visited on 18/10/2020

[33] https://developer.android.com/studio/intro . visited on 18/10/2020

[34] https://code.visualstudio.com/docs. visited on 18/10/2020

[35] https://www.techopedia.com/definition/4220/android-sdk. visited on 18/10/2020

[36]https://flutter.dev/docs. consulted on 18/10/2020

[38] https://firebase.google.com/docs/firestore. consulted on 18/10/2020

[37] Giordano,S.,Mainkar,P. « Google Flluter Mobile Devlopment Quick Start

Guide.»Packet. ISBN=9781789344967, March 2019.

[39] https://firebase.google.com/docs/auth. visited on 18/10/2020

[40] https://firebase.google.com/docs/cloud-messaging. visited on 18/10/2020

[41] https://developers.google.com/maps/documentation/android-sdk/overview. visited on

18/10/2020

[42] https://developers.google.com/maps/documentation/distance-matrix/overview. visited on

18/10/2020

[43] https://developers.google.com/places/web-service/overview. visited on 18/10/2020

[44]https://developers.google.com/maps/documentation/directions/overview. visited on

18/10/2020.

https://www.json.org/json-en.html .%20visited%20on%2018/10/2020
https://developer.android.com/studio/intro .%20visited%20on%2018/10/2020
https://code.visualstudio.com/docs
https://www.techopedia.com/definition/4220/android-sdk
http://flutter.dev/
https://flutter.dev/docs
https://firebase.google.com/docs/firestore
https://firebase.google.com/docs/auth
https://firebase.google.com/docs/cloud-messaging
https://developers.google.com/maps/documentation/android-sdk/overview
https://developers.google.com/maps/documentation/distance-matrix/overview
https://developers.google.com/places/web-service/overview
https://developers.google.com/maps/documentation/directions/overview

