
PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

University Mohamed Seddik Ben Yahia of Jijel, Algeria.

Faculty of Exact Sciences and Computer Science

Department of Computer Science

A Dissertation Submitted to the Department of Computer Science in Partial Fulfillment of the
Requirements for the Degree of Master

Option: Artificial Intelligence

Solving the Generalized Cubic Cell Formation Problem
Using Genetic Algorithm

Submitted by: Supervised by:

Ms. Hadil El-Hana Yallas Dr. Hamida Bouaziz

October 2020

Acknowledgment

Above all, I thank my Almighty God, who gave me strength, faith, health, will,
and guidance to accomplish this modest work.

I wish particularly to acknowledge my Supervisor Dr. Hamida Bouaziz for
having supervised, helped, guided, advised, and encouraged me throughout my
work. I would like to praise the efforts and time that she devoted to me as a
supervisor. Thanks to her instructions, the work has been adequately done.

I would also like to thank the jury members who have agreed to review and
participate in the jury of my work.

I take this opportunity to express gratitude to our teachers of the computer
science department at the University of Jijel, who have ensured my formation

during my university cycle.

I would like to extend my sincere thanks to all those who have contributed in one
way or another to the realization of this thesis.

My deepest gratitude goes to my family, who have been able to approach me
without letting go of the support during all these long years of study.

To all these contributors, I offer my thanks, respect, appreciation, and admiration.

Dedication

With deep gratitude and sincere words, I dedicate this humble work to my
beloved and respectful parents, who have sacrificed their lives for my success, and

who have given me their eternal and unconditional love, their support,
encouragement, and their prayers, day and night, which enlightened my path and
helped me to reach the highest expectations in life, hoping that one day, I will be
able to give them back some of what they have done for me. May God grant them

happiness, health, and long life.

I will never forget the help of my supportive supervisor, who believed in me and
encouraged me until the end.

Special credit would be devoted to all those who, with a word, gave me the
strength to go on.

Finally, to all those who have taught me throughout my school life.

Hadil El-Hana

Abstract

Manufacturing cell formation is one of the essential stages in the construction of cellular manu-
facturing systems. It concentrates on grouping machines, parts, workers and assigning them to
corresponding cells. This assignment is guided by multiple objectives and is subject to various
constraints. In this work, the focus is on a variant of the cell formation problem ”the General-
ized Cubic Cell Formation Problem”. To solve the problem, a Genetic Algorithm is developed.
From the viewpoint of the objectives considered, and the computation time, the Genetic Algo-
rithm’s performance has been tested. The simulation results reveal that the Genetic Algorithm
outperforms the Branch & Bound method and the Simulated Annealing Algorithm, especially for
large-sized test problems. On the other hand, regarding the Discrete Flower Pollination Algo-
rithm, GA reaches equal results for some instances. However, for more than half of the instances,
DFPA gives better results than GA. For the computational time, the GA’s results are better than
those of the three other methods for the totality of the instances.

Keywords: Cell formation, Cellular manufacturing, Generalized cubic cell formation problem,
Group technology, Genetic algorithm, Discrete flower pollination algorithm.

Résumé
La formation de cellules de fabrication est l’une des étapes essentielles de la construction des
systèmes de fabrication cellulaires. Elle se concentre sur le regroupement des machines, des
pièces, des ouvriers, et leur affectation à des cellules correspondantes. Cette affectation est guidée
par de multiples objectifs et est soumise à diverses contraintes. Dans ce travail, l’accent est mis
sur une variante du problème de la formation des cellules ”le problème de formation des cellules
cubique généralisé”. Pour résoudre le problème, un algorithme génétique est développé. Du point
de vue des objectifs considérés et du temps de calcul, la performance de l’algorithme génétique a
été testée. Les résultats de la simulation révèlent que l’algorithme génétique surpasse la méthode
Branch & Bound et l’algorithme de recuit simulé en particulier pour les problèmes de test de
grande taille. D’une autre part, en considérant la version discrète de l’algorithme de pollinisation
des fleurs, l’AG donne des résultats égaux dans certains cas. Cependant, pour plus de la moitié
des cas, l’Algorithme discret de pollinisation des fleurs donne de meilleurs résultats que l’AG.
Pour le temps de calcul, les résultats obtenus par l’AG sont meilleurs que ceux des trois autres
méthodes pour la totalité des cas.

Mots clés: Formation de cellules, Fabrication cellulaire, Problème de formation des cellules cu-
bique généralisé, Technologie de groupe, Algorithme génétique, Algorithme discret de pollinisation
des fleurs.

Contents

Contents i

List of Figures iv

List of Tables vi

List of Acronyms vii

0 Introduction 1

1 Cell Formation Problem 3

1.1 Introduction . 3

1.2 Definition of the Cell Formation Problem . 3

1.2.1 Basic Cell Formation Problem . 3

1.2.2 Generalized Cubic Cell Formation Problem . 4

1.3 Related Work . 4

1.3.1 Basic Cell Formation Problem . 5

1.3.2 Generalized Cell Formation Problem . 5

1.3.3 Cubic Cell Formation Problem . 6

1.4 Generalized Cubic Cell Formation Problem Formulation . 7

1.4.1 Assumptions . 7

1.4.2 The constants . 8

1.4.3 The decision variables . 9

1.4.4 The mathematical model . 9

1.4.5 Linearisation of the model . 11

1.5 Conclusion . 13

i

CONTENTS

2 Genetic Algorithms 14

2.1 Introduction . 14

2.2 Definitions and Terminology . 15

2.2.1 Genes and Chromosomes . 15

2.2.2 Populations and Generations . 15

2.2.3 Parents and Children . 15

2.2.4 Mutation . 15

2.2.5 Fitness . 16

2.2.6 Elitism . 16

2.3 A Basic Genetic Algorithm . 16

2.4 GA Operators . 17

2.4.1 Initiation . 17

2.4.1.1 Encoding . 18

2.4.1.2 Fitness Function . 19

2.4.2 Reproduction . 19

2.4.2.1 Selection Strategies . 19

2.4.2.2 Crossover Strategies . 22

2.4.2.3 Mutation Strategies . 27

2.4.3 Generation Replacement . 29

2.4.4 Stopping Criteria . 31

2.5 Conclusion . 31

3 Our Approach To Solve The Generalized Cubic Cell Formation Problem 32

3.1 Introduction . 32

3.2 Solution Representation and Evaluation . 32

3.2.1 Solution Representation . 32

3.2.2 Solution Evaluation . 33

3.3 The Genetic Algorithm . 33

3.3.1 Crossover . 35

3.3.2 Mutation . 35

ii

CONTENTS

3.4 Computational Results . 35

3.4.1 Parameter Setting and Stopping Criterion . 37

3.4.2 GA vs. B&B . 37

3.4.3 GA vs. SA . 39

3.4.4 GA vs. DFPA . 39

3.4.5 The Convergence of Algorithms . 39

3.5 Application Interface and Instances . 43

3.5.1 Instances . 43

3.5.2 Graphical User Interface (GUI) . 43

3.6 Conclusion . 48

4 Conclusion and Perspectives 49

Bibliography 51

iii

List of Figures

1.1 Incidence matrix . 4

1.2 The resulting groupement . 4

2.1 The basic process of genetic algorithm . 17

2.2 Encoding – Decoding method . 18

2.3 Binary encoding . 18

2.4 Hexadecimal encoding . 18

2.5 Real number encoding . 19

2.6 An illustrative example of the population decimation . 21

2.7 Proportionate selection represented as a roulette wheel . 21

2.8 Single point crossover . 23

2.9 Two-point crossover . 23

2.10 Uniform crossover . 24

2.11 Three parent crossover . 24

2.12 Crossover in order coded GA . 25

2.13 Single-point order crossover . 25

2.14 Two-point order crossover . 26

2.15 Partially matched crossover . 27

2.16 Precedence preservative crossover . 28

2.17 Binary mutation . 28

iv

LIST OF FIGURES

2.18 Inversion mutation . 30

2.19 Insertion mutation . 30

2.20 Displacement mutation . 30

2.21 Reciprocal exchange mutation . 31

3.1 Convergence comparison of GA, DFPA, and SA . 42

3.2 Instance representation . 44

3.3 The main window . 45

3.4 The import window . 45

3.5 The GA’s parameters insert window . 46

3.6 Cell visualization window . 47

3.7 The details window . 47

v

List of Tables

2.1 Application of proportionate selection to the individuals in Figure 2.6 22

3.1 Results GA vs. B&B. 38

3.2 Results GA vs. SA. 40

3.3 Results GA vs. DFPA. 41

vi

List of Acronyms

AAA Assignment Allocation Algorithm

ACO Ant Colony Optimization

B&B Branch and Bound

CFOPT Cell Formation OPTimization

CFP Cell Formation Problem

CM Cellular Manufacturing

CMS Cellular Manufacturing System

CO Combinatorial Optimization

CPSO-LP Combinatorial Particle Swarm Optimization and Linear Programming

DFPA Discrete Flower Pollination Algorithm

DPSO Discrete Particle Swarm Optimization

EA Evolutionary Algorithm

EC Evolutionary Computation

FPA Flower Pollination Algorithm

GA Genetic Algorithm

GA-AUGMECON Genetic Algorithm AUGMented E-CONstraint

GCCFP Generalized Cubic Cell Formation Problem

GCFP Generalized Cell Formation Problem

GT Group Technology

HCSA-GCF Hybrid Selection Algorithm-Generalized Cell Formation

InterCMHC Inter-Cellular Material Handling Cost

InterCWM Inter-Cellular Worker Movement

IntraCMHC Intra-Cellular Material Handling Cost

MOGGA Multi-Objective Grouping Genetic Algorithm

MOVDO Multi-Objective Vibration Damping Optimization

NRGA Non-dominated Ranking Genetic Algorithms

vii

List of Acronyms

NSGA-II Non-dominated Sorting Genetic Algorithm

OX Order Crossover

PMCGP Percentage Multi-Choice Goal Programming

PMX Partially Matched Crossover

PPX Precedence Preservative Crossover

PSO Particle Swarm Optimization

RMCGP Revised Multi-Choice Goal Programming

SA Simulated Annealing

TS Tabu Search

viii

Chapter 0

Introduction

Cellular manufacturing (CM) is one of the main applications of group technology (GT). CM emerged as
a production strategy capable of solving specific problems of complexity and long manufacturing lead times
in batch production [1]. Its objective is to simplify the management of the manufacturing industries. By
regrouping different parts’ production into clusters, the manufacturing management is reduced to manage
different small entities. One of the most critical cellular manufacturing problems is the design of these entities,
called manufacturing cells [2].

These cells represent a cluster of machines dedicated to the production of one or several parts. The ideal
design of cellular manufacturing is to make these cells independent from one another. The reality is a little
more complicated. Once the cells are created, there exists still some traffic within and between them. The
inter-cellular movement is the transfer of a part between two machines belonging to different cells. However,
the intracellular movement is the transfer of a part between two machines in the same cell. Initially, each part
is defined by one or several sequences of operations, and each of them can be produced according to a sequence
of machines. A final sequence of machines must be chosen to produce each part. The worker’s dimension is
also considered in addition to the part and the machine dimensions. Because of the human factor essential role,
grouping workers with similar expertise and skills to produce similar families of parts can improve the CMS
design quality.

In literature, the above-described problem bears the name of the Cell Formation Problem (CFP).

Objective :

The cell formation problem is an NP-hard problem. Therefore, exact methods cannot be used to solve
large problems in a reasonable time. On the other hand, meta-heuristics can generate high-quality solutions in
reasonable computing time. In this study, we consider a variant of CFP, called Generalized Cubic Cell Formation
Problem (GCCFP). It bears the adjective ”Generalized” because each part may have more than a plan according
to which it will be produced. However, it is a cubic problem because, besides the part and machine dimensions,
we also consider the worker dimension. Several criteria can be defined at the level of the constraints of the
problem. In this study, we consider four criteria: the inter-cellular movement and the intracellular movement
of parts, inter-cellular movement of workers, and quality index.

1

CHAPTER 0. INTRODUCTION

The final objective is to build cells and to assign parts, machines, and workers to these cells in such a way:

- To minimize the material handling cost, which is the sum of the inter-cellular and the intracellular
movement of the parts.

- To minimize the inter-cellular movement of workers.

- To maximize the produced parts’ quality index.

In the literature, three algorithms have been used to solve the Generalized Cubic Cell Formation Problem [3]:

1. The Branch and Bound method, which is an exact method.

2. The Simulated Annealing algorithm, which is is a single-solution-based metaheuristic.

3. The Discrete Flower Pollination Algorithm (DFPA) which is a population-based metaheuristic.

The results showed that DFPA outperforms the other two above mentioned algorithms. In this study, we
implement another population-based metaheuristic, which is the Genetic Algorithm that was initially introduced
by John Holland [4]. The objective is to verify if GA may beat the results obtained by DFPA.

This master dissertation is organized into three chapters:

- In the first chapter, we will present the Cell Formation Problem and its variants.

- In the second chapter, we will introduce genetic algorithms by describing its vocabulary and operators.

- In the final chapter of this thesis, we will present the method we have developed to solve this problem
and the results obtained from this study. To highlight the contribution and the efficiency of this approach,
we compare the results obtained by our algorithm with those found in the literature.

- We conclude with a general conclusion that summarizes the performed study and provides some perspec-
tives.

2

Chapter 1

Cell Formation Problem

1.1 Introduction

In manufacturing systems, GT is a manufacturing philosophy based on organizing and grouping common
tasks to improve the productivity of the system [5]. One of the most important applications of GT is CM,
which is the grouping of machines and parts so that each family of parts is processed within a machine cell [6].
Many benefits have been reported for CM, including reducing material handling costs, setup times, expediting
costs, in-process inventories, part makespan, and improving human relations and operator expertise [5]. The
core problem in designing a cellular manufacturing system (CMS) is the cell formation problem.

The CFP in CMSs is an important issue in the operational research literature [7, 8]. It consists of decom-
posing an entire production system into a set of manufacturing cells, assigning machines, and allocating parts
to those cells. Some constraints and objectives must be taken into account to produce the most manageable and
independent cells during this decomposition [3]. The cell formation problem is known to be a non-polynomial
(NP)-hard problem [6]; therefore, the development of efficient machine grouping algorithms has always been the
center of interest in CMS design, which has led to a wide range of research [9].

This chapter is organized as follows: In section 1.2, we define the cell formation problem. In section 1.3, we
present related work. In section 1.4, we give a formulation of the Generalized Cubic Cell Formation Problem
and its mathematical model. Finally, in section 1.5, we conclude.

1.2 Definition of the Cell Formation Problem

1.2.1 Basic Cell Formation Problem

In the basic cell formation problem, the only provided information is the incidence matrix of parts and
machines. The incidence matrix is a binary matrix, where machines and parts are represented in rows and
columns; each cell in this matrix may contain a 0 or 1 as a value. 0 means that the part in the column does not

3

CHAPTER 1. CELL FORMATION PROBLEM

Figure 1.1: Incidence matrix

Figure 1.2: The resulting groupement

need the machine in the row. Otherwise, the cell is filled with the value 1. Figure 1.1 shows an example of an
incidence matrix. The cell formation problem’s output is a configuration that specifies the nature of cells must
be built, the cell to which each machine is assigned, and the cell to which each part is affected (see Figure 1.2).

1.2.2 Generalized Cubic Cell Formation Problem

In this work, we consider a variant of the CFP, known as the GCCFP. The basic CFP considers that each
part has a single route. However, in real situations, a part may have more than one process routing (e.g., part pi
maybe processed on machines m1 and m3 or it may be processed on m1, m2, and m4). The CFP that considers
many potential process routings is called Generalized Cell Formation Problem (GCFP) [10]. Although cells’
formation by considering the parts and the machines is the essence of group technology, its full advantages
cannot be achieved without including the human factor [11]. Because of the workers’ essential role, grouping
workers with similar expertise and skills to produce similar families of parts can improve the CMS design quality.
When the worker’s dimension is considered in addition to the part and the machine dimensions, the problem is
transformed into a GCCFP [3].

1.3 Related Work

In the literature, a wide variety of CFPs have been described, and many techniques and algorithms have
been proposed to solve them, including heuristics, meta-heuristics, exact methods, etc. [8, 7]. The use of exact
methods to solve CFPs provides the best existing solutions. However, due to these combinatorial problems’
NP-hard nature, as the problem’s dimensions increase, these exact methods become incredibly costly in time
and memory consumption. For that reason, meta-heuristic techniques are considered more convenient to solve

4

CHAPTER 1. CELL FORMATION PROBLEM

NP-hard problems and to produce acceptable solutions in a reasonable time. The following review of related
work is established in [3].

1.3.1 Basic Cell Formation Problem

Adil et al. [12] have developed a new non-linear mathematical programming model for CFP. The model’s
objective is to minimize the sum of voids and exceptional elements within and between cells. To simultaneously
identify families of parts and groups of machines, the authors developed an Assignment Allocation Algorithm
(AAA) and a Simulated Annealing (SA) algorithm. The authors modified voids’ weights and exceptional
elements to allow multiple configurations, thus providing designers with multiple possible solutions. Tavakkoli-
Moghaddam et al. [13] used the SA algorithm to solve the CFP. The authors considered two types of cells:
common or general cells and specific cells. The difference between these two types is that common cells can
produce different products (parts). However, only one type of product can be processed by a specific cell. Neto
and Gonçalves Filho [14] suggested a multi-objective approach. The objective of this approach is to build cells
to minimize simultaneously three contradictory objectives, namely (i) the level of the work-in-process, (ii) the
inter-cell moves, and (iii) the total machinery investment. The authors used the Genetic Algorithm (GA) to solve
the CFP. They adopted the Pareto optimality principle in the solution procedure to cope with the conflicting
objectives. Shiyas and Pillai [15] proposed a new mathematical model for designing manufacturing cells. The
model considers two contradictory objectives, such as the inter-cell moves and the cells’ heterogeneity. To solve
the model, the authors developed a GA-based method. In order to propose alternative cell configurations to
decision-makers, a weighting parameter is assigned to the heterogeneity of the objective function of the model.
Hafezalkotob et al. [16] proposed a hybrid algorithm to solve the CFP. The algorithm is a combination of
Discrete Particle Swarm Optimization (DPSO) and SA. The purpose of coupling these two algorithms is to
ensure rapid convergence by DPSO and bring out the search from the local optimum by SA. Danilovic and Ilic
[17] has developed a new hybrid algorithm called Cell Formation OPTimization (CFOPT) to solve the CFP.
The algorithm’s strategy is to use the specificity of the input instances to reduce the set of possible solutions
to increase the optimization process’s efficiency. Mahmoodian et al. [18] presented a new algorithm based on
Particle Swarm Optimization (PSO). The algorithm integrates the self-organization map neural networks to
the PSA algorithm. Karoum and Elbenani [19] combined a local search mechanism with the cuckoo search
algorithm to intensify the search and improve solutions’ grouping efficacy.

1.3.2 Generalized Cell Formation Problem

The GA is used in many works [20, 21, 22, 23]. The SA algorithm is also widely used to solve the problem
[21, 24, 25]. To solve the GCFP, Vin et al. [20] proposed a solution entitled Multi-Objective Grouping Genetic
Algorithm (MOGGA), which is the combination of GA with an integrated heuristic. The authors used the GA
to solve the routing selection problem (to select the most appropriate parts’ processing plan). However, the
integrated heuristic is combined to address the CFP simultaneously. Ameli et al. [26] used a mathematical
programming method named Branch and Bound (B&B) to solve the GCFP. This method, like other exact
methods, is not capable of effectively solving large-scale problems. Wu et al. [21] considered a GCFP model
that takes as input a binary incidence matrix. This matrix indicates each part’s process plans, where each
plan mentions the different machines required by the concerned part without establishing an order between
them. To solve the model, the authors combined GA with the SA algorithm. In contrast, in the GCFP model
solved by Chung et al. [27], the authors consider the sequences of operations, the alternative routing of the

5

CHAPTER 1. CELL FORMATION PROBLEM

parts, and the reliability of machines (machine failure). Taking machine failures into account during the design
of CMS contributes in improving the system’s overall performance. The authors combined two techniques to
solve the model: Tabu Search (TS) and GA’s mutation operator. The use of this operator is justified by its
ability to escape local solutions and prevent premature convergence. Jouzdani et al. [25] have extended the
model presented in [26] to consider set-up costs. The authors have applied a meta-heuristic method, which is
the SA algorithm, to solve the GCFP. Karoum and Elbenani [28] proposed a method entitled Hybrid Selection
Algorithm-Generalized Cell Formation (HCSA-GCF). The method aims to reduce the costs of intra-cellular
part movements and machine breakdowns. The authors compared the obtained results with those provided by
B&B under LINGO software. Hazarika and Laha [23] used a GA heuristic to solve the GCFP with multiple
process routes, operation sequences, and parts volume. Five benchmark problems have been used to show the
performance of the method.

1.3.3 Cubic Cell Formation Problem

Before 1993, all studies were on two-dimensional manufacturing CFP. Despite the importance of the human
dimension, most studies only considered the dimensions of parts and machines. The central issue has been the
grouping of similar parts into part families and machines into machine cells [3]. The cubic CFP, which includes
the worker (operator) as a third dimension, was first introduced by MIN and SHIN [11]. The authors considered
that the group technology cell workers must be multi-disciplined and highly-skilled to work on different machines
and perform various tasks. Li [29] presented a new algorithm to solve cubic CFP. This algorithm’s added value is
to organize all incidence matrices of the problem that links parts to machines, machines to workers, and workers
to parts into a single symmetrical incidence matrix. Mahdavi et al. [30] introduce an integer mathematical
programming model for the cellular manufacturing system design in a dynamic environment. In the model,
the authors took into account multi-period production planning and dynamic reconfiguration of the system.
Nikoofarid and Aalaei [31] presented a new mathematical model for a CFP in production planning in a dynamic
virtual cellular manufacturing system. The proposed model includes the worker dimension and considers as
objectives the minimization of the holding and backorder costs and the management of machines and workers
over a specific planning horizon. Mahdavi et al. [32] used the B&B method of the LINGO software package
to solve the CFP model. In the model, the authors considered two objectives: the minimization of voids and
exceptional elements. The mathematical model catches workers’ skills in performing different tasks. Aalaei and
Shavazipour [33] defined an integer mathematical programming model for designing the cellular manufacturing
systems under data envelopment analysis. The authors tried to minimize the costs of backorders and inter-
cellular movement costs produced by exceptional elements. Bootaki et al. [34] proposed a new multi-objective
mathematical model for cubic binary CFP. In the model, the authors introduced a new objective called ”Quality
Index”. This objective measures the quality of the parts produced. To calculate the value of this index, data
measuring different workers’ skills in producing particular parts on special machines must be performed. The
authors developed a hybrid genetic algorithm, AUGMented ε-CONstraint (GA-AUGMECON) method to solve
the model. Bootaki et al. [35] developed a new multi-objective mathematical model to design dynamic cubic
binary CFP. In the model, the authors consider the machine and the concept of worker utilization. To solve
the model, the authors have developed a new goal programming method called Percentage Multi-Choice Goal
Programming (PMCGP). Motivated by the inefficiency of exact methods to solve large-sized test problems,
Sahin and Alpay [36] proposed a GA to solve cubic binary CFP. Taguchi’s method was used as a statistical
optimization technique to define the parameters’ level. Feng et al. [37] consider that the human factor is essential
for successfully implementing cellular manufacturing systems. In the proposed model, in opposite to [34] and
[35], the author considered operation sequences and alternative process routings. The author also included in

6

CHAPTER 1. CELL FORMATION PROBLEM

the model the simultaneous consideration of production scheduling, lot splitting, workload balancing between
cells, and worker over-assignment to multiple cells. A hybrid approach combining Combinatorial Particle Swarm
Optimization and Linear Programming (CPSO-LP) has been proposed to solve the model’s real-sized problems
efficiently. Bagheri et al. [38] presented a multi-period CFP in a dynamic environment to maximize the total
value of grouping efficacy and minimize the total costs and total non-interest workers in cells. The principal idea
is to improve the cells’ efficiency by assigning workers who have a mutual interest in working with each other.
The authors did not consider sequences of operations. A Revised Multi-Choice Goal Programming (RMCGP)
method was used to solve the proposed multi-objective mathematical model.

1.4 Generalized Cubic Cell Formation Problem Formulation

We adopt the assumptions and the formulation provided in [3].

1.4.1 Assumptions

The GCCFP is studied according to the following hypotheses :

• The number of cells, the upper, and the lower number of machines in each cell are known and considered
as parameters.

• The quality of treating each part on each machine by each worker is specified using a three-dimensional
matrix. This matrix values are integers between 1 and 5 (representing very bad, bad, medium, well, very
well). The value 0 indicates that a given part cannot be processed on a given machine by a given worker.
These values can be estimated by analyzing the historical acquired data and worker errors. During the
initial designing of the production system layout, the same quality level can be assigned to each worker. It
is also possible to estimate the level of quality by analyzing his qualifications and experience. After that,
a continuous evaluation can be planned to acquire the necessary data on the workers’ ability to produce
parts and handle machines. These data may help later for a future update of the system configuration.

• The machines’ and workers’ capacity is not considered.

• Each part type has at least one processing route. Exactly one route will be set up to produce this part.

• There are a single machine and a single worker of each type.

• Parts may move within and between cells. The inter-cellular movement is produced if two consecutive op-
erations are executed on the selected route of a given part in two different cells. However, the intracellular
movement is incurred when two consecutive operations of a part are performed in the same processing
cell.

• The material Handling cost of a given design is the sum of the intercellular and the intracellular movement
of the parts.

• The inter-cellular movement of workers is calculated according to the availability or the absence of the
workers in the processing cells.

• A worker can work on several machines.

7

CHAPTER 1. CELL FORMATION PROBLEM

• A part may be processed by multiple workers, but an operation of a part is assigned to a single worker,
and it is performed on a single machine.

1.4.2 The constants

To formulate GCCFP, these notations are used:

C the total number of cells.

T the set of cells, T = {1,...,C}.

M the total number of machines.

P the total number of parts.

W the total number of workers.

Rp the total number of process routes of part p.

Oppr the total number of the operations in route r of part p.

k the index of cells, k= 1,2, ...,C.

p the index of parts, p=1,2, ...,P.

m the index of machines, m=1,2, ...,M.

w the index of workers, w=1,2, ...,W.

r the index of process routes.

s the index of operations within routes.

UM the maximum cell size.

LM the minimum cell size.

COp the cost of moving part p to an outer cell.

CIp the cost of moving part p inside the same cell.

CWw the cost of moving worker w from a cell to another one.

aprsm a binary parameter indicating whether operation s in route r of part p may be processed on machine
m.

bmw a binary parameter indicating whether worker w can use machine m.

cwp a binary parameter indicating whether worker w can process part p.

qpmw quality obtained for part i when it is processed on machine m by worker w.

8

CHAPTER 1. CELL FORMATION PROBLEM

The GCCFP resolution consists of four decisions to be taken :

1. The selection of a single route for each part.

2. The assignment of each machine to a single cell.

3. The allocation of each worker to a single cell.

4. The specification of which worker will perform a given operation of a given part, on which machine, and
within which cell.

1.4.3 The decision variables

Rpr =

1 if part p is processed according to process route r

0 otherwise

Ymk =

1 if machine m is assigned to cell k

0 otherwise

Zwk =

1 if worker w is assigned to cell k

0 otherwise

Xprsmwk =

1 if operation s of part p along route r is processed

on machine m by worker w in cell k

0 otherwise

1.4.4 The mathematical model

min InterCMHC + IntraCMHC + InterCWM

max Quality
(1.1)

InterCMHC =
∑
kεT

∑
k′εT\{k}

P∑
p=1

COp ∗

 Rp∑
r=1

Oppr−1∑
s=1

[
(

M∑
m=1

W∑
w=1

Xprsmwk) ∗ (
M∑
m=1

W∑
w=1

Xprs+1mwk′)

] (1.2)

9

CHAPTER 1. CELL FORMATION PROBLEM

IntraCMHC =

C∑
k=1

P∑
p=1

CIp ∗

 Rp∑
r=1

Oppr−1∑
s=1

[
(

M∑
m=1

W∑
w=1

Xprsmwk) ∗ (
M∑
m=1

W∑
w=1

Xprs+1mwk)

] (1.3)

InterCWM =

C∑
k=1

P∑
p=1

Rp∑
r=1

Oppr∑
s=1

M∑
m=1

W∑
w=1

CWw ∗Xprsmwk ∗ (1− Zwk) (1.4)

Quality =

C∑
k=1

P∑
p=1

Rp∑
r=1

Oppr∑
s=1

M∑
m=1

W∑
w=1

qpmw ∗Xprsmwk (1.5)

Subject to:

Xprsmwk ≤ Rpr ∗ aprsm ∗ Ymk ∗ bmw ∗ cwp ∀(p, r, s,m,w, k) (1.6)

C∑
k=1

M∑
m=1

W∑
w=1

Xprsmwk = Rpr ∀(p, r, s) (1.7)

Rp∑
r=1

Rpr = 1, ∀p (1.8)

C∑
k=1

Zwk = 1, ∀w (1.9)

C∑
k=1

Ymk = 1, ∀m (1.10)

M∑
m=1

Ymk ≤ UM, ∀k (1.11)

M∑
m=1

Ymk ≥ LM, ∀k (1.12)

Xprsmwk, Ymk, Zwk, Rpr ∈ {0, 1} ∀(p, r, s,m,w, k) (1.13)

The objective function of the model is given in equation 1.1. It minimizes the material handling cost
and the inter-cellular movement of workers and maximizes the produced parts’ quality index. The formulas
of calculating the inter-cellular material handling cost (InterCMHC), the intra-cellular material handling cost
(IntraCMHC), the inter-cellular worker movement (InterCWM), and the quality index are respectively given

10

CHAPTER 1. CELL FORMATION PROBLEM

in equations 1.2, 1.3, 1.4, and 1.5. The purpose of the model is to find a better compromise between these
objectives.

Equation 1.6 imposes that an operation s will be executed on machine m by worker w within cell k only if:

• The route, to which s belongs, is set up to produce the concerned part p (Rpr).

• Machine m is required to execute the operation s (aprsm).

• Machine m is already assigned to cell k because machines cannot be moved between cells (Y mk).

• Worker w can use machine m (bmw).

• Worker w can process part p (cwp).

Equation 1.7 guarantees that an operation s is performed at most on a single machine by a single worker
in a single cell and will only be executed if the route to which s belongs is set up to produce the part concerned.
Equation 1.8 means that only one route is established for each part. Constraint 1.9 confirms that each worker
is assigned precisely to one cell. Constraint 1.10 ensures that each machine is assigned to one and exactly one
cell. Constraints 1.11 and 1.12 present the minimum and the maximum number of machines that a cell can
contain. The last constraint represents logical binary requirements on the decision variables.

1.4.5 Linearisation of the model

The non-linearisation in the proposed model is caused by the first three terms of the objective function
(InterCMHC, IntraCMHC, InterCWM), and the constraint 1.6 of the model. The following linearisation is
performed by [3]. To linearize the model, four auxiliary binary variables are used:

• Fprsmm′ww′kk′ =Xprsmwk *Xprs+1m′w′k′ k6=k
′
, s ≤ Oppr-1

• Iprsmm′ww′k= Xprsmwk *Xprs+1m′w′k s≤ Oppr-1

• Jprsmwk = Xprsmwk*(1-Zwk)

• Lprmk = Rpr *Ymk

Thus, the first three terms of the objective function are computed like that:

InterCMHC =
∑
kεT

∑
k’εT\{k}

P∑
p=1

COp ∗
Rp∑
r=1

Oppr−1∑
s=1

M∑
m=1

M∑
m’=1

W∑
w=1

W∑
w′=1

Fprsmm′ww′kk′ (1.14)

11

CHAPTER 1. CELL FORMATION PROBLEM

IntraCMHC =

C∑
k=1

P∑
p=1

CIp

Rp∑
r=1

Oppr−1∑
s=1

M∑
m=1

M∑
m′=1

W∑
w=1

W∑
w′=1

Iprsmm′ww′k (1.15)

InterCWM =

C∑
k=1

P∑
p=1

Rp∑
r=1

Oppr∑
s=1

M∑
m=1

W∑
w=1

CWw ∗ Jprsmwk (1.16)

The constraint 1.6 is replaced by these three constraints:

Xprsmwk ≤ aprsm ∗ bmw ∗ cwp ∗ Lprmk ∀(p, r, s,m,w, k) (1.17)

2 ∗ Lprmk ≤ Rpr + Ymk ∀(p, r,m, k) (1.18)

Lprmk + 1 ≥ Rpr + Ymk ∀(p, r,m, k) (1.19)

The following additional constraints are used to restrict the introduced variables (Fprsmm′ww′kk′ , Iprsmm′ww′k,
Jprsmwk):

2 ∗ F ≤ Xprsmwk +Xprs+1m′w′k′ ∀(p, r, s,m,m
′
, w, w

′
, k, k

′
), k 6= k

′
(1.20)

F + 1 ≥ Xprsmwk +Xprs+1m′w′k′ ∀(p, r, s,m,m
′
, w, w

′
, k, k

′
), k 6= k

′
(1.21)

2 ∗ I ≤ Xprsmwk +Xprs+1m′w′k ∀(p, r, s,m,m
′
, w, w

′
, k) (1.22)

I + 1 ≥ Xprsmwk +Xprs+1m′w′k ∀(p, r, s,m,m
′
, w, w

′
, k) (1.23)

2 ∗ J ≤ Xprsmwk + 1− Zwk ∀(p, r, s,m,w, k) (1.24)

J ≥ Xprsmwk − Zwk ∀(p, r, s,m,w, k) (1.25)

12

CHAPTER 1. CELL FORMATION PROBLEM

1.5 Conclusion

In this chapter, an overview of the Cell Formation Problem is presented. Initially, we have defined its
basic version. After, we have presented a definition of the version that we will consider in our study, which
is the Generalized Cubic Cell Formation Problem. Next, a study of the related work is provided. Finally, a
mathematical formulation of the Generalized Cubic Cell Formation Problem is given.

Our problem belongs to the NP-hard class. The problems of this class are algorithmically solvable but
computationally intractable. There is no exact method that can find the optimal global solutions to NP-hard
problems in polynomial time. Fast approximate heuristics and meta-heuristics are the popular approaches to
search for practical solutions. In our study, we will use the genetic algorithm, which is one of the most popular
meta-heuristics, often used to solve complex large-scale optimization problems. So in the next chapter, we will
give an overview of the genetic algorithm.

13

Chapter 2

Genetic Algorithms

2.1 Introduction

In many real-life settings, high-quality solutions to hard optimization problems are required in a short
amount of time. Due to the practical importance of the combinatorial optimization problems for industry
and science, many algorithms to tackle them have been developed [39]. In combinatorial optimization (CO),
algorithms can be classified as either exact or approximate algorithms. In approximate methods such as meta-
heuristics, we sacrifice the guarantee of finding optimal solutions for the sake of getting good solutions in a
significantly reduced amount of time. Thus, the use of metaheuristics has received more and more attention in
the last decades.

The term metaheuristic was first introduced in [40]. A metaheuristic is an iterative generation process that
guides a subordinate heuristic by combining intelligently different concepts to explore and exploit the search
space to find efficiently near-optimal solutions [41]. Metaheuristics may be classified into methods that perform
a single solution vs. population-based search. This classification refers to the number of solutions used by a
metaheuristic at any time. Generally, algorithms that work on a single solution at any time are referred to as
trajectory methods. They all share the property that the search process describes a trajectory in the search space
(e.g., tabu search, iterated local search, and simulated annealing). Population-based metaheuristics deal at each
algorithm iteration with a set of solutions rather than with a single one. From this set of solutions, the next
iteration population is produced by the application of some operators. Population-based metaheuristics provide
a natural, intrinsic way for the exploration of the search space. However, the final performance strongly depends
on the way the population is manipulated. The most studied population-based methods are evolutionary
computation (EC) and ant colony optimization (ACO) [39].

EC can be regarded as a metaphor for building, applying, and studying algorithms based on Darwinian
natural selection principles. The instances of algorithms based on evolutionary principles are called Evolutionary
Algorithms (EA) [42]. EAs can be characterized as computational models of evolutionary processes. There has
been a variety of slightly different EAs proposed over the years. In our work, we will use an evolutionary
algorithm to solve the Generalized Cubic Cell Formation Problem. This evolutionary algorithm is the Genetic
Algorithm.

14

CHAPTER 2. GENETIC ALGORITHMS

In this chapter, we briefly introduce the genetic algorithms. In section 2.2, we give some definitions and
terminology. In section 2.3, we exhibit the basic genetic algorithms. In section 2.4, we discuss the genetic
algorithm operators. Finally, in section 2.5, we conclude.

2.2 Definitions and Terminology

GA are stochastic search methods that combine two main search strategies: exploiting better solutions and
exploring the global search space. These algorithms are based on the principles of natural selection proposed
by Darwin and natural genetics.

GA was initially introduced by John Holland, his colleagues, and his students at the University of Michigan
[4]. Their research goals have been twofold: (i) to abstract and rigorously explain the adaptive processes of
natural systems, and (ii) to design artificial systems software that retains the important mechanisms of natural
systems. This approach has led to important discoveries in both natural and artificial systems science. Goldberg
presented the fundamentals of GAs and described its usual form [43].

GAs have been successfully applied to many optimization problems in different disciplines that are difficult
to solve by classical mathematical programming [14, 15, 20, 22, 23, 34, 36, 44, 45, 46, 47, 48, 49]. In the following
sections, some important terminology and concepts of GA are presented.

2.2.1 Genes and Chromosomes

The gene is the basic component of the GA. A string of genes is called a chromosome. Chromosomes can
be encoded as binary strings, as strings of real numbers, etc.

2.2.2 Populations and Generations

A population is a set of chromosomes. GA begins with a set of randomly created individuals (chromosomes).
This set is called the initial population. The iterations of GA are called generations. Each iteration involves
selecting individuals with closely related characteristics and recombining them until a new generation is created
to replace the old one [50].

2.2.3 Parents and Children

The selection of chromosomes from one generation to another consists of choosing individuals in a proba-
bilistic method [50]. Those with high fitness values have a high probability of being selected to undergo crossover
and produce new chromosomes called children or offsprings. The crossover happens with a priori fixed proba-
bility called crossover rate. It includes a random selection of the parent chromosomes’ crossover points, where
the mixing of parent’s genetic information should be happening.

2.2.4 Mutation

The mutation is a process by which many new points are introduced into the search space. It ensures that
aggressive selection does not result in a suboptimal solution. In other words, it prevents premature convergence

15

CHAPTER 2. GENETIC ALGORITHMS

to a local optimum. It is achieved by randomly changing some chromosome characteristics and is carried out
at very low probability values (mutation rate).

2.2.5 Fitness

The objective function that defines the optimization purpose is called the fitness function. It indicates
”goodness” or ”badness” for each individual.

2.2.6 Elitism

To improve GA’s performance, the best individuals must always participate in reproduction. However,
such individuals can be lost if they are destroyed by crossover or mutation operators. Thus, the first best
chromosome or the few best chromosomes are copied into the new population [51].

2.3 A Basic Genetic Algorithm

In general, a genetic algorithm must be able to achieve six basic tasks [52] :

1. Encoding the solution elements in the form of genes.

2. Create a string of genes to form a chromosome.

3. Initialize a starting population by generating a set of specific chromosomes, usually randomly.

4. Evaluate and assign fitness values to individuals in the population.

5. Perform reproduction by the fitness weighted selection of individuals of the population.

6. Perform recombination and mutation to produce individuals of the following generation.

A GA, then, is an iterative optimization method that simulates the adaptation and evolution of a single
kind of organism. Using a chromosomal mapping system, the GA starts with a large number of possible design
configurations. The range of potential configurations is defined by the limitations of the problem and the method
of encoding all configuration information into the chromosome [50, 53].

A typical GA is represented in Figure 2.1

To start the optimization, the GA selects a set of configurations, almost always at random. This set is
called the initial population, just as in biology. The GA evaluates the performance of each individual of the
population using a cost function that compares the individual’s performance to the desired or ideal performance
and returns to the GA a single number that is a measure of its fitness. As in the evolutionary process of ”survival
of the fittest”, high-quality strings combine and produce offspring, while low-quality strings are removed from
the population[52]. Offspring can be generated by many different methods, each of which is essentially a method
of combining information from two or more parent chromosomes to form a child with the potential to surpass

16

CHAPTER 2. GENETIC ALGORITHMS

Figure 2.1: The basic process of genetic algorithm

its parents. With succeeding generations, the individuals’ quality is continuously improved, and an optimized
solution is finally reached. ”Champions” will have many offsprings, while those who do not perform well will die
without offspring. In this way, after some generations, a good solution is usually achieved [54].

2.4 GA Operators

The tasks that a genetic algorithm must complete and that were outlined in the previous section guide to
the presence of three phases in the genetic algorithm optimization [50].

• Initiation;

• Reproduction;

• Generation replacement.

2.4.1 Initiation

Initiation means filling the initial population with encoded parameter strings or chromosomes, usually
generated randomly. The coding is a mapping from parameter space to chromosome space [54].

17

CHAPTER 2. GENETIC ALGORITHMS

2.4.1.1 Encoding

Encoding is a process of representing individual genes. The process can be performed using bits, numbers,
trees, arrays, lists, or other objects. The encoding depends mainly on solving the problem [55].

An encoding function is used to represent the object variables’ mapping to a string code. The mapping of
string code to its object variable is achieved through the decoding function, as shown in Figure 2.2 [56].

Figure 2.2: Encoding – Decoding method

1. Binary Encoding

The most common way of encoding is a binary string, which would be represented as in Figure 2.3.

Each chromosome is encoded in the form of a binary string. Every bit in the string may represent some
characteristics of the solution. Each string, therefore, is a solution but not necessarily the best solution.
Another possibility is that the entire string may represent a number.

Binary encoding gives many potential chromosomes with a smaller number of alleles [55].

Figure 2.3: Binary encoding

2. Hexadecimal Encoding

This encoding uses a string composed of hexadecimal numbers (0–9, A–F).

Figure 2.4: Hexadecimal encoding

18

CHAPTER 2. GENETIC ALGORITHMS

3. Real Number Encoding

The real number encoding is usually used for ordering issues. In this type of encoding, each chromo-
some represents a sequence of reals; for example, in the traveling salesman problem, the string of numbers
represents the sequence of cities visited by the salesman [56]. Figure 2.5 shows an example of the real
number encoding.

Figure 2.5: Real number encoding

There are other sorts of encoding, such as octal encoding, value encoding, tree encoding, etc. For more
information about these types, an illustrated is provided in [55].

2.4.1.2 Fitness Function

A major problem in optimization is the formulation or the choice of an appropriate fitness function that
determines the selection criterion in particular problems. For minimizing a function using genetic algorithms, a
simple way to create a fitness function is to use the simplest form F = A−y, where A is a large constant (A = 0

is sufficient if the fitness is not required to be non-negative) and y = f(x). The objective is to maximize the
fitness function and then minimize the objective function f(x). Alternatively, for a minimization problem, we
can define a fitness function F = 1/f(x), but it can have a singularity when f → 0. There are many different
ways to define a fitness function [57].

The appropriate form of the fitness function will ensure that solutions with higher fitness are selected
efficiently. A poor fitness function may result in wrong or meaningless solutions.

2.4.2 Reproduction

It consists of three principal operators: selection, crossover, and mutation. These operators are discussed
in the following.

2.4.2.1 Selection Strategies

The selection consists simply of choosing the best individuals to crossover. It aims to take advantage of
these individuals’ good characteristics by considering their fitness values, which is a measure of ”goodness”. In
theory, there are many selection strategies; however, the most commonly used schemes are described in what
follows [54].

19

CHAPTER 2. GENETIC ALGORITHMS

1. Population Decimation

This scheme relates to the so-called deterministic strategies [52]. The idea behind this method is
simply the survival of the fittest with the elimination of the weakest fit. Since the population is deci-
mated before being replaced by reproduction, this method is called population decimation. An arbitrary
minimum fitness is chosen as the cutoff point, and any individual with a lower fitness is eliminated from
the population. As an example of population decimation, consider the individuals in Figure 2.6 who
are ranked, then population decimation consists of keeping the 50% best individuals. Thus, the results
in the lower table of Figure 2.6 are obtained. Notice that the individuals whose values are below the
threshold value are all rejected, which is a disadvantage because these individuals may possess some good
characteristics that could have been obtained by crossover and/or mutation processes in the following
generations.

The advantage of population decimation is its simplicity. However, it has the disadvantage that: once
an individual is eliminated from the population, any unique characteristics that this individual holds are
lost [50]. For this reason, stochastic selection techniques have been developed.

2. Proportionate Selection

This method is also known as the roulette wheel. Its philosophy is that individuals are selected based
on a selection probability given by equation 2.1 [50, 52, 53].

Pselection =
f(parenti)∑
i f(parenti)

(2.1)

Where :

• Pselection is the probability of an individual parent being selected.

• f(parenti) is the fitness value of parenti .

Initially, individuals are sorted according to their fitness. Then, the probabilities of the different
individuals are calculated using equation 2.1. These probabilities are classified into a vector that contains
the cumulative sums of these probabilities. A random number (between 0 and 1) is ”thrown” (as a die
roll), and depending on its value, will choose the individual who will participate in the crossover. Figure
2.7 illustrates the proportionate selection [58], while Table 2.1 shows this method’s application to the
individuals in Figure 2.6.

It should be noted that the most qualified individuals have a higher probability of being selected
to mate in this selection strategy. This drives to the problem of one or more individuals will dominate
the next generations. Finally, the algorithm will saturate, i.e., at a certain generation. Only a group of
individuals that are all the same will be found. The following selection strategy overcomes this problem
[54].

20

CHAPTER 2. GENETIC ALGORITHMS

Figure 2.6: An illustrative example of the population decimation

Figure 2.7: Proportionate selection represented as a roulette wheel

21

CHAPTER 2. GENETIC ALGORITHMS

Rank Individual Chromosome Cost probability
1 I2 101100 22 0.282
2 I6 101010 17 0.218
3 I3 101111 11 0.141
4 I8 000111 9 0.115
5 I5 010101 6 0.077
6 I1 010010 5 0.064
7 I4 001010 3 0.038
8 I7 110110 1 0.013

Table 2.1: Application of proportionate selection to the individuals in Figure 2.6

3. Rank Selection

The Roulette wheel will have a problem when the fitness values differ very much. If the best chromo-
some fitness is 90%, its circumference occupies 90% of the Roulette wheel, and then other chromosomes
have too few chances to be selected. Rank Selection ranks the population, and every chromosome receives
fitness from the ranking. The worst has fitness 1, and the best has fitness N. It results in slow convergence
but prevents too quick convergence. It also keeps up selection pressure when the fitness variance is low.
It preserves diversity and hence leads to a successful search. In effect, potential parents are selected, and
a tournament is held to decide which of the individuals will be the parent. There are many ways this can
be achieved, and two suggestions are [55],

(a) Select a pair of individuals at random. Generate a random number, R, between 0 and 1. If R < r use
the first individual as a parent. If R >= r, then use the second individual as the parent. Moreover,
this is repeated to select the second parent. The value of r is a parameter to this method.

(b) Select two individuals at random. The individual with the highest evaluation becomes the parent.
Repeat to find a second parent.

4. Tournament Selection

An ideal selection strategy should be able to adjust its selective pressure and population diversity to
fine-tune GA search performance. Unlike the Roulette wheel selection, the tournament selection strategy
provides selective pressure by holding a tournament competition among Nu individuals.
The best individual from the tournament is the one with the highest fitness, which is the winner of Nu.
The winner is then inserted into the mating pool. The tournament competition is repeated until the
mating pool for generating new offspring is filled. The mating pool comprising of the tournament winner
has higher average population fitness. The fitness difference provides the selection pressure, which drives
GA to improve the fitness of the succeeding genes [55].

2.4.2.2 Crossover Strategies

The crossover operator is usually the primary operator working only as a mechanism to introduce variety
into the population. The schemes differ from binary to real number encoding.

22

CHAPTER 2. GENETIC ALGORITHMS

1. Binary GA Crossover

For binary encoding GA, there are many ways to perform a crossover. The selected parents simply
interchange parts of their chromosomal structure according to one or more randomly set interchange
points, called crossover sites. The number of exchange points is left to the programmer’s discretion[54].

• Single Point Crossover

After reproduction, the crossover can be done in two steps. First, members of the recently
reproduced chromosomes in the mating pool are mated randomly. Then, each pair of chromosomes
undergoes crossover as follows: an integer position k on the chromosome is selected uniformly, ran-
domly chosen between 1 and the length of the chromosome minus one. Two new chromosomes are
generated by swapping all the genes between k+1 and the length of the chromosomes [43] (see Figure
2.8).

Figure 2.8: Single point crossover

• Two-Point Crossover

Two-point crossover is very similar to single-point crossover, except that two cutoff points are
randomly generated instead of one (see Figure 2.9).

Figure 2.9: Two-point crossover

23

CHAPTER 2. GENETIC ALGORITHMS

• Multi-Point Crossover (N-Point Crossover)

There are two cases in this crossover. The first one is an even number of crossover sites; they are
randomly selected around a circle, and information is exchanged. The other case is an odd number
of crossover sites.

• Uniform Crossover

Uniform crossover is very different from the multi-point crossover. Each gene in the offspring is
generated by copying the corresponding gene from parents according to a randomly created binary
crossover mask of the same length as the chromosomes. When there is a 1 in the crossover mask,
the gene is copied from the first parent, and when there is a 0 in the mask, the gene is copied from
the second parent. A new crossover mask is randomly generated for each pair of parents. Offsprings,
therefore, contains a mixture of genes from each parent. The number of active crossover points is
not fixed but is the average of L/2 (where L is the length of the chromosome) [55].
In Figure 2.10, new children are produced using the uniform crossover method. It can be seen that in
the production of child 1, when there is a 1 in the mask, the gene is copied from parent 1, otherwise
from parent 2. In the production of child 2, when there is a 1 in the mask, the gene is copied from
parent 2. Else the gene is copied from parent 1.

Figure 2.10: Uniform crossover

• Three Parent Crossover

In this crossover technique, three parents are chosen at random. Each bit of the first parent is
compared with the bit of the second parent. If the two are identical, the bit is taken for the offspring.
If not, the bit of the third parent is taken for the offspring. This concept is illustrated in Figure 2.11.

Figure 2.11: Three parent crossover

24

CHAPTER 2. GENETIC ALGORITHMS

2. Crossover Techniques in Order Coded GA

Binary crossover techniques are not applicable to order coded GA. For example, in Figure 2.12, by
applying binary single-point crossover, the obtained offspring chromosomes are not valid.

Figure 2.12: Crossover in order coded GA

Since the sequence of gene values is important, Binary crossover techniques are not applicable to
order coded GA.

• Order Crossover (OX)

– Single Point Order Crossover

With two parents and a random crossover point. The single point order crossover behaves
as follows:
Child 1 inherits its left section from parent 1, and child 2 inherits its left section from parent
2. For the right section of child 1, copy the gene value from parent 2 in the same order as they
appear but not already present in the left section. For the right section of child 2, copy the gene
value of parent 1 in the same order as they appear but are not already present in the left section
(see Figure 2.13).

Figure 2.13: Single-point order crossover

25

CHAPTER 2. GENETIC ALGORITHMS

– Two Point Order Crossover

In the presence of two chromosomes as parents, and two random crossover points are selected,
separating them into a left, middle, and right portion. The ordered two-point crossover behaves
as follows:
Child 1 and child 2 inherit their middle section from parent 1 and parent 2, respectively. The left
and right sections of child 1 are determined by the genes of the left and right sections of parent
1 in the order in which the values appear in parent 2. A similar process is applied to determine
child 2. The process is illustrated in Figure 2.14.

Figure 2.14: Two-point order crossover

• Partially Matched Crossover (PMX)

In Partially Matched Crossover, two strings are aligned, and two crossover points are selected
uniformly at random along the length of the strings. The two crossover points give a matching
selection, which is used to affect across through position by position exchange operations [55].

Consider two strings:

Two crossover points were selected at random, and PMX proceeds by position-wise exchanges.
In-between the crossover points, the genes get exchanged, i.e., the 3 and the 2, the 6 and the 7, the
5 and the 9 exchange places. This is by mapping parent B to parent A. Now mapping parent A to
parent B, the 7 and the 6, the 9 and the 5, the 2 and the 3 exchange places. Thus after PMX, the
offspring produced as follows:

26

CHAPTER 2. GENETIC ALGORITHMS

Figure 2.15: Partially matched crossover

• Precedence Preservative Crossover (PPX)

PPX is illustrated in Figure 2.16, for a problem consisting of six genes A–F. The operator works as
follows:

– Create a vector of length equal to chromosomes’ length, randomly filled with elements from the
set {1,2}. This vector defines the order in which the operations are successively drawn from
parent 1 and parent 2.

– We can also consider the parent and offspring permutations as lists, for which the operations
’append’ and ’delete’ are defined.

– First, we start by initializing an empty offspring.

– The leftmost operation in one of the two parents is selected in accordance with the order of
parents given in the vector.

– After an operation is selected, it is deleted in both parents.

– Finally, the selected operation is appended to the offspring.

– This step is repeated until both parents are empty, and the offspring contains all operations
involved [55].

2.4.2.3 Mutation Strategies

The Mutation is a background operator that produces spontaneous random changes in various chromosomes.
A simple way to achieve mutation would be to alter one or more genes. In GA, mutation serves the crucial role

27

CHAPTER 2. GENETIC ALGORITHMS

Figure 2.16: Precedence preservative crossover

of either replacing the genes lost from the population during the selection process or providing the genes that
were not present in the initial population.

The mutation probability is defined as the percentage of the total number of genes in the population. The
mutation probability controls the probability with which new genes are introduced into the population for trial.
If it is too low, many genes that would have been useful are never tried out. However, if it is too high, there
will be much random perturbation, the offspring will start losing their resemblance to the parents, and the
algorithm will lose the ability to learn from the history of the search [59].

1. Binary GA Mutation

It is simply changing a 1 to 0 or vice-versa depending on a probability. In general, the probability
of mutation is very small (typically less than 0.2) to avoid losing the chromosomes’ good properties (see
Figure 2.17).

Figure 2.17: Binary mutation

2. Real GA Mutation

Up to now, several mutation operators have been proposed for real numbers encoding.

• Random mutation: operators such as uniform mutation, boundary mutation, and plain mutation
belong to the conventional mutation operators, which simply replace a gene with a randomly selected
real number with a specified range.

• Dynamic mutation (non-uniform mutation): is designed for fine-tuning capabilities to achieve high
precision, which is classified as the arithmetical mutation operator.

28

CHAPTER 2. GENETIC ALGORITHMS

• Directional mutation: operator is a kind of direction-based mutation, which uses the gradient expan-
sion of the objective function. The direction can be given randomly as a free direction to avoid the
chromosomes jamming into a corner. If the chromosome is near the boundary, the mutation direction
given by some criteria might point toward the close boundary, and then jamming could occur.

Several mutation operators for integer encoding have been proposed [59].

• Inversion mutation: selects two positions within a chromosome at random and then inverts the
substring between these two positions (see Figure 2.18).

• Insertion mutation: selects a gene at random and inserts it in a random position (see Figure 2.19).

• Displacement mutation: selects a substring of genes at random and inserts it in a random position.
Therefore, insertion can be viewed as a particular case of displacement (see Figure 2.20).

• Reciprocal exchange mutation: selects two positions random and then swaps the genes on the posi-
tions (see Figure 2.21).

2.4.3 Generation Replacement

Once the new offspring solutions are created using crossover and mutation, we need to introduce them to
the parental population. There are many ways we can approach this. Bear in mind that the parent chromosomes
have already been selected according to their fitness, so we hope that the children (which includes parents who
did not undergo crossover) are among the fittest in the population. So we would hope that the population will
gradually, on average, increase their fitness. Some of the most common techniques are outlined below [60].

• Delete-all: This technique deletes all the current population individuals and replaces them with the same
number of chromosomes that have just been created. This is probably the most common technique and will
be the choice technique for most people due to its relative ease of implementation. It is also parameter-free,
which is not the case for those listed below.

• Steady-state: This technique deletes n old individuals and replaces them with n new individuals. The
number to delete and replace, n, at any one time is a parameter to this deletion technique. Another
consideration for this technique is deciding which individuals to delete from the current population. Do
you delete the worst individuals, pick them at random, or delete the chromosomes that you used as
parents?

• Steady-state-no-duplicates: This is the same as the steady-state technique, but the algorithm checks that
no duplicate chromosomes are added to the population. This adds to the computational overhead but can
mean that more of the search space is explored.

29

CHAPTER 2. GENETIC ALGORITHMS

Figure 2.18: Inversion mutation

Figure 2.19: Insertion mutation

Figure 2.20: Displacement mutation

30

CHAPTER 2. GENETIC ALGORITHMS

Figure 2.21: Reciprocal exchange mutation

2.4.4 Stopping Criteria

The stopping criteria is an important issue in evolutionary modeling. Early termination may generate poor
solutions, whereas late termination might cause high time consumption. The proposed GA is terminated if one
of the following cases is reached [61]:

• Maximum number of generations;

• Acceptable fitness reached;

• The maximum number of generations allowed without replacing the fittest reached chromosome.

2.5 Conclusion

In this chapter, an overview of the genetic algorithm and its appearance is provided. Initially, we have given
the important definitions and terminology. After we have presented the basic process of genetic algorithms and
the tasks must be able to achieve. Next, the genetic algorithm operators are detailed. Finally, the stopping
criteria are given.

In the next chapter, we will apply the Genetic Algorithm to the problem already described in chapter 1,
which is the Generalized Cubic Cell Formation Problem.

31

Chapter 3

Our Approach To Solve The Generalized
Cubic Cell Formation Problem

3.1 Introduction

In the previous chapters, we have defined the Generalized Cubic Cell Formation Problem, and we have
given an overview of the genetic algorithm. In this chapter, we will show how we applied the genetic algorithm to
GCCFP. Then, we compare our method with other methods, namely B&B, SA, and DFPA. Thus, this chapter
is organized as follow:

In section 3.2, we present the adopted representation and evaluation of the solution. In section 3.3, we detail
the solution approach containing a description of the proposed GA. In section 3.4, we exhibit computational
results. In section 3.5, we show the application’s interface and instances. Finally, we conclude in section 3.6.

3.2 Solution Representation and Evaluation

3.2.1 Solution Representation

In this study, the solution is represented using two vectors and one matrix:

• The first vector (C_Assign) has a size equal to M+W, where M is the number of machines, and W is
the number of workers. The first piece includes the cell to which each machine is assigned. However, the
second piece models the cell of each worker. By adopting this structure, each worker and each machine
can not be assigned to more than one cell because they have precisely one devoted box in the C_Assign
vector. This makes constraint 1.9 (it verifies that a worker must be affected to a single cell) and constraint
1.10 (it imposes that a machine must be assigned to a single cell) syntactically preserved. It is still to
ensure, during the resolution process, the specification of each worker’s cell and each machine’s cell.

32

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

• The second vector (R_Select) specifies the selected route to process each part. Thus, it has a size equal to
P, where P is the number of parts. A single route can be selected for each part by reserving a single box
in the R_Select vector. Thus, this structure preserves the feasibility concerning constraint 1.8 (it verifies
that a single route is selected to process each part) of the mathematical model.

• Finally, the matrix W_Assign is used to specify the worker in charge of executing each operation. Each
operation is defined by the part to which it belongs and the machine on which it is executed. Thus, the
matrix has the dimension P×M, and each cell contains at most one worker. The fact of reserving a single
box in the W_Assign matrix for each operation of the selected route ensures that each operation can be
executed by one worker. To satisfy constraint 1.7, it is still just to ensure during the resolution process
that the execution of an operation s happens just if its route r of part p has been selected (R_Select[p]=r).

Infeasibility in respecting constraint 1.11 and constraint 1.12 is accepted but penalized during the evolutionary
process.

3.2.2 Solution Evaluation

The evaluation of a solution is obtained by the combination of the different objectives: the inter-cellular
material handling cost (InterCMHC), the intra-cellular material handling cost (IntraCMHC), the inter-cellular
worker movement (InterCWM), and the quality of the produced parts (Quality).

minf = α1.InterCMHC + α2.InterCMHC + α3.InterCWM + α4.(5.P.M −Quality) + α5.P enalty

In this study, a scalar approach is used to solve the problem, which is the weighted sum method. The
principle is to combine all the objectives into one function and associate each objective with a weight αi. Thus,
the decision-maker may implement his preferences by defining the values {αi}.

The model includes some objectives to minimize and one objective to maximize. The objective to maximize
is the quality of the produced parts. Thus to convert it into a minimization problem, the maximization of the
quality is transformed into a minimization of the function 5.P.M − Quality. The value 5.P.M represents the
upper limit of the quality value that a solution may reach. This value can be achieved when all the parts need
all the machines, and each part on each machine is supposed to be processed by one of the workers that do very
well (having a quality value equal to 5) with the concerned part on the concerned machine.

Infeasible solutions that do not respect constraints 1.11 and 1.12 of the mathematical model are penalized
using the factor ”α5Penalty”. Penalty represents the number of times the constraints 1.11 and 1.12 that control
the cells’ size in term of machines being violated. Thus, the penalty value is increased by one each time a cell
exceeds the maximum number of machines (UM) or when it does not contain enough number of machines (LM).

3.3 The Genetic Algorithm

During the creation of the initial population (see Algorithm 3.2), feasibility with respect to constraints 1.6 -
1.10 is guaranteed. The assignment of machines and workers to cells (lines [2-7]) and selecting the part’s routes

33

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

(lines [8-10]) are made randomly. However, the third part of the solution is constructed by selecting the more
skilled workers to execute each operation (lines [11-15]).

In the proposed algorithm 3.1, the best individual best* of the current population POP is saved (line
[4]), and the best 10% individuals of POP are copied to the new population (line [7]). After that, every two
randomly selected individuals of the population are copied to the new population after being modified according
to the instructions mentioned in algorithm 3.3 and algorithm 3.4. In algorithm 3.1, Crossover (line [13]), and
Mutation (lines [15-22]) are integrated. They can be imitated by the behavior described in the next subsections.

A counter (no_improve_counter) is associated with the best individual in the population. Its role is to
save the number of generations within best* did not enhance. After reaching a threshold called ”limit”, The
algorithm will stop (lines [32-34]).

Algorithm 3.1 Genetic Algorithm
1: Initialize the GA parameters (pop_size, nbr_generations, crossover_rate, mutation_rate, limit).
2: Create initial population POP of pop_size individuals (solutions).
3: Create temp_pop of pop_size individuals.
4: Find the best solution best* in the initial population POP.
5: Initialize the counter of iterations without improvement of best* : no_improve_counter ← 0.
6: while generation ≤ nbr_generations do
7: Copy the best 10% solutions of POP into temp_pop.
8: while temp_pop not full do
9: Select two random individuals ind1, ind2 from POP.

10: Creat a copy indiv1 of ind1, and a copy indiv2 of ind2.
11: rand ← Random (0:1)
12: if rand < crossover_rate then
13: Crossover(indiv1,indiv2)
14: end if
15: rand ← Random (0:1)
16: if rand < mutation_rate then
17: Mutation(indiv1)
18: end if
19: rand ← Random (0:1)
20: if rand < mutation_rate then
21: Mutation(indiv2)
22: end if
23: Add indiv1 and indiv2 to temp_pop.
24: end while
25: Find the best solution new_best in temp_pop.
26: Update POP by temp_pop.
27: Clear temp_pop.
28: if f(new_best) > f(best*) then
29: Update best* by new_best
30: no_improve_counter ← 0
31: else
32: no_improve_counter ← no_improve_counter+1
33: if no_improve_counter = limit then
34: break;
35: end if
36: end if
37: end while

34

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Algorithm 3.2 Create initial population
1: for i ← 1 to pop_size do
2: for each m ∈ M do . Assign machine m to a random cell
3: indivi.C_Assign[m] ← Random(1:C)
4: end for
5: for each w ∈ W do
6: indivi.C_Assign[M+w] ← Random(1:C) . Assign worker w to a random cell
7: end for
8: for each p ∈ P do . Select a random route r for part p
9: indivi.R_Select[p] ← Random(0:Rp)

10: end for
11: for each p ∈ P do
12: for each m ∈ M do . Assign the skillful worker w to op(p,m)
13: indivi.W_Assign[p][m] ← w . with respect to 1.6 and 1.7
14: end for
15: end for
16: end for

3.3.1 Crossover

The crossover is defined as the global process that allows the solution to jump toward the best current
solution. In this study, a crossover procedure adapted to GCCFP is developed. This crossover is occurred
between two random individuals in the population (see algorithm 3.3). In the proposed algorithm, crossover
acts with a probability called Crossover_rate on the assignment of cells (machines or workers) or in the routes
selection of parts.

The crossover consists of an exchange between the two selected individuals with three crossover sites
randomly generated in : (i) the cell affectation of machines (lines [3-13]), or (ii) the cell affectation of workers
(lines [16-26]), (iii) the routes selection of parts (lines [29-39]) with the exchange in the workers’ assignment of
operations (lines [40-53]). This last action allows us to keep constraints 1.6 and 1.7 verified.

3.3.2 Mutation

In GA, the mutation procedure (see algorithm 3.4) is used to escape local optima. The mutation acts with
a probability called mutation_rate randomly on the assignment of cells (machines or workers) or in the routes
selection of parts or the workers’ assignment of operations. It consists of changing a machine or a worker to a
random cell (lines [2-8]), or changing the selected route for a part to another route randomly (lines [11-13]), the
lines [14-17] consists of changing the assignment of workers to the operations of this route. This action allows
us to keep constraints 1.6 and 1.7 verified. Finally, the mutation procedure can act on the workers’ assignment
of operations, and it consists of selecting a random operation (lines [19-20]) and a random worker w that may
execute this selected operation (line [21]). The mutation is done by assigning w the concerned operation (line
[22]).

3.4 Computational Results

The GA was coded in java using the integrated development environment: NetBeans IDE 8.1 (Build
201510222201), under Windows 8.1 operating system, and run on a PC Intel(R) Core(TM) i5-6200U CPU

35

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Algorithm 3.3 Crossover(indiv1,indiv2)
1: rand ← Random (1:3)
2: if rand = 1 then . exchange in the cell affectation of machines
3: generate three random positions r1, r2 and r3 between (1:M) . r1 ≤ r2 ≤ r3
4: for i ← r1 to r2 do
5: val ← indiv1.C_Assign[i]
6: indiv1.C_Assign[i] ← indiv2.C_Assign[i]
7: indiv2.C_Assign[i] ← val
8: end for
9: for i ← r3 to M do

10: val ← indiv1.C_Assign[i]
11: indiv1.C_Assign[i] ← indiv2.C_Assign[i]
12: indiv2.C_Assign[i] ← val
13: end for
14: else
15: if rand = 2 then . exchange in the cell affectation of workers
16: generate three random positions r1, r2 and r3 between (1:W) . r1 ≤ r2 ≤ r3
17: for i ← r1 to r2 do
18: val ← indiv1.C_Assign[M+i]
19: indiv1.C_Assign[M+i] ← indiv2.C_Assign[M+i]
20: indiv2.C_Assign[M+i] ← val
21: end for
22: for i ← r3 to W do
23: val ← indiv1.C_Assign[M+i]
24: indiv1.C_Assign[M+i] ← indiv2.C_Assign[M+i]
25: indiv2.C_Assign[M+i] ← val
26: end for
27: else
28: if rand = 3 then
29: generate three random positions r1, r2 and r3 between (1:P) . r1 ≤ r2 ≤ r3
30: for i ← r1 to r2 do . exchange in the routes selection of parts
31: val ← indiv1.R_Select[i]
32: indiv1.R_Select[i] ← indiv2.R_Select[i]
33: indiv2.R_Select[i] ← val
34: end for
35: for i ← r3 to M do
36: val ← indiv1.R_Select[i]
37: indiv1.R_Select[i] ← indiv2.R_Select[i]
38: indiv2.R_Select[i] ← val
39: end for
40: for i ← r1 to r2 do
41: for m ← 0 to M do . exchange in the workers assignment of operations
42: val ← indiv1.W_Assign[i][m]
43: indiv1.W_Assign[i][m] ← indiv2.W_Assign[i][m]
44: indiv2.W_Assign[i][m] ← val
45: end for
46: end for
47: for i ← r3 to P do
48: for m ← 0 to M do
49: val ← indiv1.W_Assign[i][m]
50: indiv1.W_Assign[i][m] ← indiv2.W_Assign[i][m]
51: indiv2.W_Assign[i][m] ← val
52: end for
53: end for
54: end if
55: end if
56: end if

36

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Algorithm 3.4 Mutation(indiv)
1: rand ← Random (1:4)
2: if rand = 1 then
3: m ← Random(0:M)
4: indiv.C_Assign[m] ← Random(1:C)
5: else
6: if rand = 2 then
7: w ← Random(0:W)
8: indiv.C_Assign[M+w] ← Random(1:C)
9: else

10: if rand = 3 then
11: p ← Random(0:P)
12: r ← Random(0:Rp)
13: indiv.R_Select[p] ← r
14: for each op(p,m) ∈ r do . op is an operation of r
15: Select a random worker w that may execute op
16: indiv.W_Assign[p][m] ← w
17: end for
18: else
19: p ← Random(0:P)
20: m ← Random(0:M)
21: Select a random worker w that may execute op(p,m)
22: indiv.W_Assign[p][m] ← w
23: end if
24: end if
25: end if

running at 2.30GHz 2.40GHz with 8 GB of RAM. In this study, we will evaluate the performance of our
algorithm GA against other methods developed in [3]: B&B, SA, and DFPA.

3.4.1 Parameter Setting and Stopping Criterion

The correct choice of parameter values highly affects the efficiency of meta-heuristic algorithms. It is not
always suitable to set them by referring to the previous literature. In this study, the traditional trial-and-error
method is adopted. Thus, after intensive testing, the parameters are set as follows: nbr_generations=20000,
pop_size=120, crossover_rate=0.8, mutation_rate=0.2, limit=1000.

3.4.2 GA vs. B&B

Ten runs of GA were conducted on each test problem. The objective value of the best found solution in
these ten runs for each test problem is shown in Table 3.1. This table also presents the average time and the
average objective value obtained for each instance.

The obtained results of GA are compared with those of B&B. Table 3.1 shows that GA and B&B offer the
same results regarding the objective function’s value for the four test instances (#1, #2, #3, and #5). However,
regarding the computational time, GA takes less time to find the global optimal solution. For problem #4, the
B&B reached the global optimal solution in more than 2 hours. But, the solution provided by the GA is just
1% larger. However, the GA’s computational time is much less. For the remainder problem instances, LINGO

37

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Table 3.1: Results GA vs. B&B.

In bold, the best found value of the objective function for each problem instance.

* problem instances could not be solved on our machine using LINGO software.

T
he

pr
ob

le
m

ch
ar
ac
te
ri
st
ic
s

LI
N
G
O

so
ft
w
ar
e

G
A

N
o.

P
∑ p p

=
1

R
P

M
W

C
N
V
L
M

N
C
L
M

S L
M

T
L
M

be
st

S G
A

A
vg

S G
A

T
G
A

1
4

8
3

3
2

12
60
0

10
43
7

52
3

00
:0
0:
01

52
3

52
3

00
:0
0:
01

2
5

10
4

3
2

36
58
8

34
06
3

80
4

00
:0
0:
54

80
4

80
4

00
:0
0:
01

3
6

11
3

4
2

32
93
2

27
99
5

69
4

00
:0
9.
27

69
4

69
7

00
:0
0:
01

4
7

12
4

3
2

51
21
2

45
41
8

12
94

02
.1
1.
16

13
08

13
08

00
:0
0:
01

5
8

16
4

3
3

11
54
33

13
18
10

17
61

>
5.
00
.0
0

17
61

18
58

00
:0
0:
01

6
9

18
5

4
4

73
48
18

82
74
01

27
34

>
5.
00
.0
0

24
27

25
60

00
:0
0:
01

7
10

20
5

4
3

73
85
11

59
80
40

33
68

>
5.
00
.0
0

31
15

31
98

00
:0
0:
01

8
10

20
7

6
4

49
86
87
6

63
91
34
6

69
76

>
5.
00
.0
0

39
19

40
63

00
:0
0:
01

9
11

22
4

4
3

27
90
98

27
51
12

21
20

>
5.
00
.0
0

16
81

18
23

00
:0
0:
01

10
12

24
6

7
3

30
84
97
9

34
17
65
8

47
42

>
5.
00
.0
0

28
97

31
29

00
:0
0:
01

11
13

26
8

7
4

13
13
98
66

69
14
45
2

37
25

>
5.
00
.0
0

23
28

24
03

00
:0
0:
02

12
13

26
8

7
5

19
68
62
65

10
30
34
27

29
29

>
5.
00
.0
0

21
98

22
74

00
:0
0:
02

13
14

28
10

7
4

-
-

-
-

*3
65
1

38
14

00
:0
0:
02

14
20

40
13

15
5

-
-

-
-

*4
65
5

47
31

00
:0
0:
03

15
30

80
15

12
5

-
-

-
-

*6
60
2

67
71

00
:0
0:
05

16
35

85
18

18
6

-
-

-
-

*9
08
6

94
48

00
:0
0:
05

17
40

80
20

15
7

-
-

-
-

*5
84
48

59
33
8

00
:0
1:
05

18
50

14
8

22
15

7
-

-
-

-
*1
38
68

14
31
8

00
:0
0:
15

38

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

software could not reach better or equal values to those obtained by GA in less than 5 hours. Regarding the
elapsed time measure, as can be seen in Table 3.1, GA outperforms B&B highly.

3.4.3 GA vs. SA

The assessment of GA against SA is shown in Table 3.2. By considering the objective function value of the
best found solution, it can be seen that for the problems (#1, #2, #3, #4 and #5), GA and SA converge to
almost the same value. For the last thirteen problems (#6, #7, #8, #9, #10, #11,#12, #13, #14, #15, #16,
#17, and #18), the convergence values of GA are better than those of SA, Regarding the time-consuming GA
takes much less time. Summarily, GA outperforms SA, especially for large-sized test problems. A third meta-
heuristic is used as a reference to compare our algorithm, which is the DFPA. The discussion of the obtained
results is shown in the next subsection.

3.4.4 GA vs. DFPA

The DFPA is an adaptation of the Flower Pollination Algorithm (FPA) to the discrete GCCFP [3]. The
fast convergence and the simple computation of FPA make it a good choice to solve continuous and discrete
problems. It has been extensively used in recent years to solve problems in many fields such as computer science,
bioinformatics, operational research, the food industry, ophthalmology, engineering, etc.

In [3], an adaptation of DFPA is defined to solve the GCCFP.

The assessment of GA against DFPA is shown in Table 3.3. By considering the objective function value of
the best found solution, it can be seen that for the problems (#1, #2, #3, #4, #5, #6 and #9), GA and DFPA
converge almost to the same value. For problems (#7, #8, #10, #11,#12, #13, #14, #15, #16, and #18),
the convergence values of DFPA are better than those of GA. And for problem #17, GA’s best found solution is
better than the solution of DFPA. Regarding the computational time, GA is better in time-consuming it takes
much less time. Summarily, by considering the convergence of algorithms, we can see that GA performs better
than SA. However, DFPA outperforms both of them.

3.4.5 The Convergence of Algorithms

The convergence curves of GA, DFPA, and SA for the eighteen problems are shown in Figure 3.1. The
figure shows that GA and DFPA has a faster speed to converge. This fast convergence may be explained by
their principle, which is a population-based optimization technique.

The population-based algorithms (GA, DFPA) tend to converge faster than the single-solution-based algo-
rithm (SA) because the population-based metaheuristics deal at each algorithm iteration with a set of solutions
rather than a single one. In other words, the population-based algorithm can complete the searching process
with multiple initial points in a parallel approach. This technique has the advantage where it can provide the
search space for the exploration in an effective way. This method is suitable for searching globally because it
has the ability of global exploration and local exploitation.

39

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Table 3.2: Results GA vs. SA.

In bold, the best found value of the objective function for each problem instance.
T
he

pr
ob

le
m

ch
ar
ac
te
ri
st
ic
s

SA
G
A

N
o.

P
∑ p p

=
1

R
P

M
W

C
be

st
S S

A
A
vg

S S
A

T
S
A

be
st

S G
A

A
vg

S G
A

T
G
A

1
4

8
3

3
2

52
3

52
3

00
:0
1

52
3

52
3

00
:0
0:
01

2
5

10
4

3
2

80
4

81
4

00
:0
2

80
4

80
4

00
:0
0:
01

3
6

11
3

4
2

69
4

69
7

00
:0
2

69
4

69
7

00
:0
0:
01

4
7

12
4

3
2

12
94

13
02

00
:0
2

13
08

13
08

00
:0
0:
01

5
8

16
4

3
3

17
61

18
05

00
:0
3

17
61

18
58

00
:0
0:
01

6
9

18
5

4
4

24
72

25
08

00
:0
4

24
27

25
60

00
:0
0:
01

7
10

20
5

4
3

31
96

32
63

00
:0
4

31
15

31
98

00
:0
0:
01

8
10

20
7

6
4

40
40

40
78

00
:0
7

39
19

40
63

00
:0
0:
01

9
11

22
4

4
3

18
54

18
88

00
:0
5

16
81

18
23

00
:0
0:
01

10
12

24
6

7
3

29
02

29
42

00
:0
8

28
97

31
29

00
:0
0:
01

11
13

26
8

7
4

23
85

24
10

00
:0
9

23
28

24
03

00
:0
0:
02

12
13

26
8

7
5

22
49

23
34

00
:0
8

21
98

22
74

00
:0
0:
02

13
14

28
10

7
4

38
11

38
71

00
:1
1

36
51

38
14

00
:0
0:
02

14
20

40
13

15
5

48
59

49
24

00
:3
3

46
55

47
31

00
:0
0:
03

15
30

80
15

12
5

67
39

68
09

01
:2
6

66
02

67
71

00
:0
0:
05

16
35

85
18

18
6

96
60

96
90

02
:2
9

90
86

94
48

00
:0
0:
05

17
40

80
20

15
7

62
99
3

63
48
4

05
:3
6

58
44
8

59
33
8

00
:0
1:
05

18
50

14
8

22
15

7
13
98
8

14
35
7

05
:3
4

13
86
8

14
31
8

00
:0
0:
15

40

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Table 3.3: Results GA vs. DFPA.

In bold, the best found value of the objective function for each problem instance.

T
he

pr
ob

le
m

ch
ar
ac
te
ri
st
ic
s

D
F
PA

G
A

N
o.

P
∑ p p

=
1

R
P

M
W

C
be

st
S D

F
P
A

A
vg

S D
F
P
A

T
D
F
P
A

be
st

S G
A

A
vg

S G
A

T
G
A

1
4

8
3

3
2

52
3

52
3

00
:0
1

52
3

52
3

00
:0
1

2
5

10
4

3
2

80
4

80
4

00
:0
2

80
4

80
4

00
:0
1

3
6

11
3

4
2

69
4

69
4

00
:0
2

69
4

69
7

00
:0
1

4
7

12
4

3
2

12
94

12
94

00
:0
3

13
08

13
08

00
:0
1

5
8

16
4

3
3

17
61

17
61

00
:0
4

17
61

18
58

00
:0
1

6
9

18
5

4
4

24
21

24
27

00
:0
5

24
27

25
60

00
:0
1

7
10

20
5

4
3

30
53

30
54

00
:0
8

31
15

31
98

00
:0
1

8
10

20
7

6
4

39
06

39
24

00
:0
8

39
19

40
63

00
:0
1

9
11

22
4

4
3

16
81

16
81

00
:0
5

16
81

18
23

00
:0
1

10
12

24
6

7
3

28
40

28
55

00
:0
9

28
97

31
29

00
:0
1

11
13

26
8

7
4

22
02

22
37

00
:1
1

23
28

24
03

00
:0
2

12
13

26
8

7
5

21
22

21
33

00
:1
0

21
98

22
74

00
:0
2

13
14

28
10

7
4

34
72

34
94

00
:1
5

36
51

38
14

00
:0
2

14
20

40
13

15
5

45
98

46
53

00
:3
9

46
55

47
31

00
:0
3

15
30

80
15

12
5

62
99

63
28

01
:4
8

66
02

67
71

00
:0
5

16
35

85
18

18
6

89
73

90
21

03
:3
0

90
86

94
48

00
:0
5

17
40

80
20

15
7

60
34
5

60
52
3

07
:2
4

58
44
8

59
33
8

01
:0
5

18
50

14
8

22
15

7
13
52
6

13
55
3

09
:4
3

13
86
8

14
31
8

00
:1
5

41

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Figure 3.1: Convergence comparison of GA, DFPA, and SA

42

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

3.5 Application Interface and Instances

3.5.1 Instances

Each instance is represented in a text file and organized, as shown in Figure 3.2.

1 : The total number of parts.

2 : The total number of routes.

3 : The total number of machines.

4 : The total number of workers.

5 : The total number of cells.

6 : The vector that represents the number of routes for each part.

7 : The matrix that represents the number of operations in each route for each part.

8 : The vector that represents the InterCelluar material handling cost per part.

9 : The vector that represents the IntraCellular material handling cost per part.

10 : The vector that represents the InterCelluar movement cost per worker.

11 : The three-dimensional matrix that indicates which machine is used in each operation in each rout for each
part.

12 : The matrix that indicates whether the worker can use the concerned machine.

13 : The matrix that indicates whether the worker can process the concerned part.

14 : Three-dimensional matrix represents the quality obtained for each part when it is processed on each machine
by each worker.

3.5.2 Graphical User Interface (GUI)

The development of our application revolves around the main window, shown in Figure 3.3.

1 : The import button. By selecting this function, the window shown in Figure 3.4 is displayed.

In Figure 3.4:

2 : This window contains a button that allows you to determine the path to the file(s) that are already stored
in memory (Hard Disk) and which contains the instances. By pushing the button ”Open”, the file selection is
validated, as shown in Figure 3.5.

In Figure 3.5, the numbered elements are defined as follows:

43

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Figure 3.2: Instance representation

44

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Figure 3.3: The main window

Figure 3.4: The import window

45

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Figure 3.5: The GA’s parameters insert window

1 : The selected instance file.

2 : The entries of the selected file.

3 : Input fields for entering the genetic algorithm parameters.

4 : Quick Solve button. This button launches the algorithm, and when the execution is finished, it displays the
final result.

5 : Animated Solve button. This button launches the algorithm and displays the evolution of the solution
during the runtime.

By pushing the ”Quick Solve” button or the ”Animated Solve” button, the window shown in Figure 3.6 is
displayed.

In Figure 3.6, the numbered elements are defined as follows:

1 : The cells’ visualization and the assignment of parts and machines and workers to these cells.

2 : The evaluation value of the final best solution.

3 : The evaluation value of the previous best solution.

4 : The evaluation value of the current best solution.

5 : Details button. By pushing this button, the window shown in Figure 3.7 is displayed.

6 : Back button. It allows going back to the main window (Figure 3.3).

The numbered elements in Figure 3.7 are defined as follows:

46

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

Figure 3.6: Cell visualization window

Figure 3.7: The details window

47

CHAPTER 3. OUR APPROACH TO SOLVE THE GENERALIZED CUBIC CELL FORMATION
PROBLEM

1 : The workers’ assignment matrix to specify the worker in charge of executing each operation.

2 : The specification of the routes selected to process each part and the machines used in each route.

3 : Cells button allows going back to the cell visualization window (Figure 3.6).

3.6 Conclusion

In this chapter, we have shown how we applied the genetic algorithm to GCCFP. Initially, the adopted
representation and evaluation of the solution are presented. Next, the solution approach containing a description
of the proposed GA is detailed. After, the computational results are exhibited. Next, the application’s interface
and instances are shown.

48

Chapter 4

Conclusion and Perspectives

In this study, we have tackled the Generalized Cubic Cell Formation Problem, which is a variant of the
Cell Formation Problem. In this problem, we consider:

- workers as the third dimension besides parts and machines.

- multiple plans (routs).

Our method is based on using the genetic algorithm to solve the generalized cubic cell formation problem.
To evaluate the performance of our implementation of the genetic algorithm, we compared our obtained results
with the results obtained by the LINGO software by solving the problem instances using the exact Branch &
Bound method. We also made a comparison with the simulated annealing algorithm and also with the discrete
flower pollination algorithm.

The Comparison with Branch & Bound reveals that the GA outperforms B&B highly. For 22.22% of the
instances, we obtained equal results. For 72.23%, our method offers better results. However, for 5.55%, our
method gives larger results than B&B.

By comparing the objective value of the best found solution by our algorithm with those of SA, we found
that our method gives equal results for 22.22% of the instances. For 72.23% of the instances, our method gives
better results. However, for 5.55% of the instances, our method gives larger results than SA.
GA outperforms SA, especially for large-sized test problems.

The Comparison of GA with DFPA reveals that we obtained equal results for 27.78% of the instances. For
5.56%, GA offers better results. However, for 66.66%, DFPA gives better results than GA.

For the computational time, our method’s results are better than those of the three other methods for the
totality of the instances.

As it is well known in optimization, the combination of parameter’ values has a great impact on the obtained
results. In this study, we have used the trial and error method to fix them. Our choice of the parameter values
enabled us to obtain these results, but there is a possibility that if we make more experiments, we fall on

49

CHAPTER 4. CONCLUSION AND PERSPECTIVES

a combination that gives better results than those exhibited in this manuscript. In the future, we have the
intention to apply a statistical method called the "Taguchi method" to fix the level of each parameter.

As a perspective, we aim to solve the problem using Multi-objective methods. These laters allow us to
solve this problem and provide multiple solutions instead of a single one. From these methods, we can cite
the Non-dominated Sorting Genetic Algorithm (NSGA-II), Multi-Objective Vibration Damping Optimization
algorithm (MOVDO), Non-dominated Ranking Genetic Algorithms (NRGA).

50

Bibliography

[1] Murugan, M., & Selladurai, V. (2005). Manufacturing cell design with reduction in setup time through
genetic algorithm. Journal of Theoretical and Applied Inform.

[2] Vin, E. (2010). Genetic algorithm applied to generalized cell formation problems. Ph.D. thesis, Free Uni-
versity of Brussels, Faculty of Applied Sciences and Engineering.

[3] Bouaziz, H., Berghida, M., & Lemouari, A. (2020). Solving the generalized cubic cell formation
problem using discrete flower pollination algorithm. Expert Systems with Applications, 150, 113345.
DOI:10.1016/j.eswa.2020.113345.

[4] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan
Press.

[5] Greene, T. J., & Sadowski, R. P. (1984). A review of cellular manufacturing assumptions, advantages and
design techniques. Journal of Operations Management, 4(2), 85–97. DOI:10.1016/0272-6963(84)90025-1.

[6] Ballakur, A., & Steudel, H. J. (1987). A within-cell utilization based heuristic for design-
ing cellular manufacturing systems. International Journal of Production Research, 25(5), 639–665.
DOI:10.1080/00207548708919868.

[7] Nouri, H., Tang, S., Tuah, B., Ariffin, M., & Samin, R. (2013). Metaheuristic techniques on cell formation
in cellular manufacturing system. Journal of Automation and Control Engineering, 1(1), 49-54.

[8] Joines, J., King, R., & Culbreth, C. (1996). A comprehensive review of production-oriented manufacturing
cell formation techniques. International Journal of Flexible Automation and Intelligent Manufacturing, 3,
254-264.

[9] Utkina, I. E., Batsyn, M. V., & Batsyna, E. K. (2018). A branch-and-bound algorithm for
the cell formation problem. International Journal of Production Research, 56(9), 3262–3273.
DOI:10.1080/00207543.2018.1444811.

[10] KUSIAK, A. (1987). The generalized group technology concept. International Journal Of Production Re-
search, 25(4), 561-569. DOI:10.1080/00207548708919861.

[11] MIN, H., & SHIN, D. (1993). Simultaneous formation of machine and human cells in group technol-
ogy: a multiple objective approach. International Journal Of Production Research, 31(10), 2307-2318.
DOI:10.1080/00207549308956859.

[12] Adil, G., Rajamani, D. & Strong, D. (1997) Assignment allocation and simulated annealing algorithms for
cell formation. IIE Transactions, 29(1), 53-67. DOI:10.1080/07408179708966312.

51

BIBLIOGRAPHY

[13] Tavakkoli-Moghaddam, R., Rahimi-Vahed, A. R., Ghodratnama, A., & Siadat, A. (2009). A simulated an-
nealing method for solving a new mathematical model of a multi-criteria cell formation problem with capital
constraints. Advances in Engineering Software, 40(4), 268-273. DOI:10.1016/j.advengsoft.2008.04.008.

[14] Neto, A. R. P. & Goncalves Filho, E. V. (2010). A simulation-based evolutionary multiobjec-
tive approach to manufacturing cell formation. Computers & Industrial Engineering, 59(1), 64-74.
DOI:10.1016/j.cie.2010.02.017.

[15] Shiyas, C. R., & Pillai, V. M. (2014). A mathematical programming model for manufacturing
cell formation to develop multiple configurations. Journal of Manufacturing Systems, 33(1), 149-158.
DOI:10.1016/j.jmsy.2013.10.002.

[16] Hafezalkotob, A., Tehranizadeh, M. A., Rad, F., & Sayadi, M. K. (2015). An improved DPSO algorithm
for cell formation problem. Journal of Industrial and Systems Engineering, 8(2), 30-53.

[17] Danilovic, M., & Ilic, O. (2019). A novel hybrid algorithm for manufacturing cell formation problem. Expert
Systems With Applications, 135, 327-350. DOI:10.1016/j.eswa.2019.06.019.

[18] Mahmoodian, V., Jabbarzadeh, A., Rezazadeh, H., & Barzinpour, F. (2019). A Novel Intelligent Particle
Swarm Optimization Algorithm for Solving Cell Formation Problem. Neural Computing and Applications,
31(2), 801-815.

[19] Karoum, B., & el Benani, Y. B. (2019). Discrete cuckoo search algorithm for solving the cell formation
problem. International Journal of Manufacturing Research, 14, 245–264.

[20] Vin, E., De Lit, P., & Delchambre, A. (2005). A multiple-objective grouping genetic algorithm for the
cell formation problem with alternative routings. Journal of intelligent manufacturing, 16(2), 189-205.
DOI:10.1007/s10845-004-5888-4.

[21] Wu, T. H., Chung, S. H., & Chang, C. C. (2009). Hybrid simulated annealing algorithm with mutation
operator to the cell formation problem with alternative process routings. Expert Systems with Applications,
36(2), 3652-3661. DOI:10.1016/j.eswa.2008.02.060.

[22] Deep, K., & Singh, P. K. (2015). Design of robust cellular manufacturing system for dynamic part popu-
lation considering multiple processing routes using genetic algorithm. Journal of Manufacturing Systems,
35, 155–163. DOI:10.1016/j.jmsy.2014.09.008.

[23] Hazarika, M., & Laha, D. (2018). Genetic Algorithm approach for Machine Cell Formation with Alternative
Routings. Materials Today: Proceedings, 5(1), 1766–1775. DOI:10.1016/j.matpr.2017.11.274.

[24] Tavakkoli-Moghaddam, R., Safaei, N., & Sassani, F. (2008). A new solution for a dynamic cell formation
problem with alternative routing and machine costs using simulated annealing. Journal Of The Operational
Research Society, 59(4), 443-454. DOI:10.1057/palgrave.jors.2602436.

[25] Jouzdani, J., Barzinpour, F., Shafia, M. A., & Fathian, M. (2014). Applying Simulated Annealing To
A Generalized Cell Formation Problem Considering Alternative Routings And Machine Reliability. Asia-
Pacific Journal of Operational Research, 31(04), 1450021. DOI:10.1142/s0217595914500213.

[26] Ameli, M. S. J., Arkat, J., & Barzinpour, F. (2008). Modelling the effects of machine breakdowns in the
generalized cell formation problem. The International Journal of Advanced Manufacturing Technology,
39(7), 838-850. DOI:10.1007/s00170-007-1269-4.

52

BIBLIOGRAPHY

[27] Chung, S. H., Wu, T. H., & Chang, C. C. (2011). An efficient tabu search algorithm to the cell for-
mation problem with alternative routings and machine reliability considerations. Computers & Industrial
Engineering, 60(1), 7–15. DOI:10.1016/j.cie.2010.08.016.

[28] Karoum, B., & Elbenani, Y. B. (2017). A clonal selection algorithm for the generalized cell formation
problem considering machine reliability and alternative routings. Production Engineering, 11(4), 545-556.
DOI:10.1007/s11740-017-0751-6.

[29] Li, M. L. (2003). The algorithm for integrating all incidence matrices in multi-dimensional group technology.
International Journal of Production Economics, 86(2), 121-131. DOI:10.1016/s0925-5273(03)00010-0.

[30] Mahdavi, I., Aalaei, A., Paydar, M. M., & Solimanpur, M. (2010). Designing a mathematical model for dy-
namic cellular manufacturing systems considering production planning and worker assignment. Computers
& Mathematics with Applications, 60(4), 1014–1025. DOI:10.1016/j.camwa.2010.03.044.

[31] Nikoofarid, E., & Aalaei, A. (2012). Production planning and worker assignment in a dynamic virtual
cellular manufacturing system. International Journal of Management Science and Engineering Management,
7(2), 89–95. DOI:10.1080/17509653.2012.10671211.

[32] Mahdavi, I., Aalaei, A., Paydar, M. M., & Solimanpur, M. (2012). A new mathematical model for integrat-
ing all incidence matrices in multi-dimensional cellular manufacturing system. Journal of Manufacturing
Systems, 31(2), 214–223. DOI:10.1016/j.jmsy.2011.07.007.

[33] Aalaei, A., & Shavazipour, B. (2013). The Tchebycheff Norm for Ranking DMUs in Cellular Manufacturing
Systems with Assignment Worker. International Journal of Applied, 3(3), 41-57.

[34] Bootaki, B., Mahdavi, I., & Paydar, M. M. (2014). A hybrid GA-AUGMECON method to solve a cubic
cell formation problem considering different worker skills. Computers & Industrial Engineering, 75, 31-40.
DOI:10.1016/j.cie.2014.05.022.

[35] Bootaki, B., Mahdavi, I., & Paydar, M. M.(2015). New bi-objective robust design-based utilisation towards
dynamic cell formation problem with fuzzy random demands. International Journal of Computer Integrated
Manufacturing, 28(6), 577-592. DOI:10.1080/0951192x.2014.880949.

[36] Buruk Sahin, Y., & Alpay, S. (2016). A metaheuristic approach for a cubic cell formation problem. Expert
Systems With Applications, 65, 40-51. DOI:10.1016/j.eswa.2016.08.034.

[37] Feng, H., Da, W., Xi, L., Pan, E., & Xia, T. (2017). Solving the integrated cell formation and worker
assignment problem using particle swarm optimization and linear programming. Computers & Industrial
Engineering, 110, 126-137. DOI: 10.1016/j.cie.2017.05.038.

[38] Bagheri, F., Safaei, A., Kermanshahi, M., & Paydar, M. (2019). Robust Design of Dynamic Cell Formation
Problem Considering the Workers Interest. International Journal of Engineering, 32(12), 1790-1797. DOI:
10.5829/ije.2019.32.12c.12.

[39] Blum, C., & Roli, A. (2008). Hybrid metaheuristics: An introduction. Studies in Computational Intelli-
gence, 114, 1-30. DOI:10.1007/978-3-540-78295-7.

[40] Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computers &
Operations Research, 13(5), 533–549. DOI:10.1016/0305-0548(86)90048-1.

53

BIBLIOGRAPHY

[41] Osman, I. H., & Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Operations Research, 63(5),
511–623. DOI:10.1007/bf02125421.

[42] Bäck, T., Fogel, D., & Michalewicz, Z. (1997). Handbook of Evolutionary Computation. New York: Institute
of Physics Publishing Ltd, Bristol and Oxford University Press.

[43] Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Boston: Addison
Wesley.

[44] Gen, M., & Cheng, R. (2000). Genetic Algorithms and Engineering Optimizations. New York: Wiley.

[45] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE transactions on Evolutionary Computation, 6(2), 182-197.
DOI:10.1109/4235.996017.

[46] Mello-Román, J. D., & Hernandez, A. (2020). KPLS optimization approach using genetic algorithms.
Procedia Computer Science, 170, 1153–1160. DOI: 10.1016/j.procs.2020.03.051.

[47] Čuboňová, N., Dodok, T., & Ságová, Z. (2019). Optimisation of the machining process using genetic
algorithm. Scientific Journal of Silesian University of Technology. Series Transport, 104, 15-25. DOI:
10.20858/sjsutst.2019.104.2.

[48] Xu, Z., & Brill, M. H. (2019). Reflective color reduction using genetic algorithm optimization. Color
Research and Application, 44, 526– 530. DOI: 10.1002/col.22361.

[49] Hemati, A., & Shooshtari, A. (2019). Suspension damping optimization using genetic algorithms. Interna-
tional Journal of Automotive Engineering and Technologies, 8 (4), 178-185. DOI: 10.18245/ijaet.531810.

[50] Coley, D. (1999). An introduction to genetic algorithms for scientists and engineers. Singapore: World
Scientific Publishing.

[51] Sharma, P., Wadhwa, A., & Komal, K. (2014). Analysis of Selection Schemes for Solving an Opti-
mization Problem in Genetic Algorithm. International Journal Of Computer Applications, 93(11), 1-3.
DOI:10.5120/16256-5714.

[52] Rahmat-Samii, Y. & Michielssen, E. (1999). Electromagnetic optimization by genetic algorithms. New
York: John Wiley & Sons.

[53] Haupt, R., & Haupt, S. (2004). Practical genetic algorithms. Hoboken, N.J.: John Wiley.

[54] Recioui, A. (2006). Use of Genetic Algorithms in Antennas: Application to Yagi-Uda antenna and antenna
arrays. Thesis. Boumerdes: M’hamed Bouguerra University – Faculty of Engineering.

[55] Sivanandam, S., & Deepa, S. (2008). Introduction to genetic algorithms. New York: Springer.

[56] Kumar, A. (2013). Encoding schemes in genetic algorithm. International Journal of Advanced Research in
IT and Engineering, 2 (3), 1-7.

[57] Yang, X. (2014). Nature-Inspired Optimization Algorithms. London: Elsevier.

[58] Linden, D. (1997). Automated design and optimization of wire antennas using genetic algorithms. Ph.D.
Thesis. MIT.

54

BIBLIOGRAPHY

[59] Gen, M., Cheng, R., & Lin, L. (2008). Network models and optimization: Multiobjective genetic algorithms
approach. London: Springer.

[60] Burke, E., & Kendall, G. (2014). Search methodologies: Introductory tutorials in optimization and decision
support techniques. New York: Springer.

[61] Lughofer, E., & Sayed-Mouchaweh, M. (2019). Predictive Maintenance in Dynamic Systems: Advanced
Methods, Decision Support Tools and Real-World Applications. Springer.

55

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	0 Introduction
	1 Cell Formation Problem
	1.1 Introduction
	1.2 Definition of the Cell Formation Problem
	1.2.1 Basic Cell Formation Problem
	1.2.2 Generalized Cubic Cell Formation Problem

	1.3 Related Work
	1.3.1 Basic Cell Formation Problem
	1.3.2 Generalized Cell Formation Problem
	1.3.3 Cubic Cell Formation Problem

	1.4 Generalized Cubic Cell Formation Problem Formulation
	1.4.1 Assumptions
	1.4.2 The constants
	1.4.3 The decision variables
	1.4.4 The mathematical model
	1.4.5 Linearisation of the model

	1.5 Conclusion

	2 Genetic Algorithms
	2.1 Introduction
	2.2 Definitions and Terminology
	2.2.1 Genes and Chromosomes
	2.2.2 Populations and Generations
	2.2.3 Parents and Children
	2.2.4 Mutation
	2.2.5 Fitness
	2.2.6 Elitism

	2.3 A Basic Genetic Algorithm
	2.4 GA Operators
	2.4.1 Initiation
	2.4.1.1 Encoding
	2.4.1.2 Fitness Function

	2.4.2 Reproduction
	2.4.2.1 Selection Strategies
	2.4.2.2 Crossover Strategies
	2.4.2.3 Mutation Strategies

	2.4.3 Generation Replacement
	2.4.4 Stopping Criteria

	2.5 Conclusion

	3 Our Approach To Solve The Generalized Cubic Cell Formation Problem
	3.1 Introduction
	3.2 Solution Representation and Evaluation
	3.2.1 Solution Representation
	3.2.2 Solution Evaluation

	3.3 The Genetic Algorithm
	3.3.1 Crossover
	3.3.2 Mutation

	3.4 Computational Results
	3.4.1 Parameter Setting and Stopping Criterion
	3.4.2 GA vs. B&B
	3.4.3 GA vs. SA
	3.4.4 GA vs. DFPA
	3.4.5 The Convergence of Algorithms

	3.5 Application Interface and Instances
	3.5.1 Instances
	3.5.2 Graphical User Interface (GUI)

	3.6 Conclusion

	4 Conclusion and Perspectives
	Bibliography

