République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

Université de Jijel

GEO.05107

Faculté des Sciences Département des Sciences de la terre

Mémoire

De Fin d'Etudes en Vue de l'Obtention du Diplôme d'ingénieur d'état en géologie

Option : Géologie de l'ingénieur

Thème

Membres de jury:

Président : Mr : Mabrouk Fateh

Examinateur: Meme Ben Chikh Messaouda

Encadré par:

- > Mr. Boufatouha youcef
- Mr. Ben zaid Riad

Présenté par :

- > Melle Kendouli Nedjwa
- > Melle Mekhatra Djamila

Promotion Septembre : 2006-2007

Nous remercions le bon Dieu qui donne la force, la volonté et le courage pour achever ce travail.

Nous tenons à formuler notre gratitude et notre profonde reconnaissance à l'égard de notre promoteurs: Monsieur «Ben zaid Riad» et «Boufatouha Youcef» qui ont suivis et dirigés notre travail avec patience et beaucoup d'intérêt.

Nous remercions également :

- Les membres de Jury qui ont accepté de juger notre travail.
- Les enseignants de département des sciences de la terre de l'université de Jijel.
- L'élaboration de ce travail de prés ou de loin.

Djamila et Nedjwa

Résumé:

Le secteur étudié correspondant au versant de « Ciloc » situer au SW de la Wilaya de Constantine.

Il est constitué essentiellement par des formations argileuses marneuses, avec la présence de matériaux perméables (sable et gravier). Ces derniers facilitent l'entrée de l'eau ce qui favorise à la déstabilisation du terrain.

Dans le but que le terrain retrouve le profile de stabilité; on a fait une étude de stabilité et proposer des solutions de confortements efficaces et faciles à réalisées (reprofilage du talus et l'enrochement au pieds de ce dernier).

Liste des tableaux

Tableau IV-1 : Données pluviométrique de la station Constantine Ain El Bey
(1995-2005)23
Tableau IV-2 : Données de température de la station Constantine Ain El Bey
(1995- 2005)
Tableau IV-3 : Données moyennes mensuelles de la température et la précipitation
(1995-2005)25
Tableau IV-4 : Les résultats des mesures piézométrique26
Tableau VI-1 : Sondages carottés réalisés sur le site étudie37
Tableau VI-2: Les valeurs des essais de limite d'atterberg38
Tableau VI-3 : Résultats des essais de cisaillement rectiligne39
Tableau VI-4: Résultats des essais de limite d'atterberg4
Tableau VI-5: Résultats d'un essai de cisaillement rectiligne4
Tableau VIII-1 : Présentation des résultats de calcule de coefficient de sécurité de
cercle critique58
Tableau VIII-2 : Présentation des coordonnées des différents cercles
Tableau IX-1 : Présentation des résultats de calcule de (Fs) après le
terrassement64
Tableau IX-2 : présentation des résultats de calcule de (Fs) après le terrassement et
l'enrochement

Liste des figures

Fig.I-1: Plan de situation de site du CILOC01
Fig.II-1 : Carte et coupe structurale schématique de la chaîne Magrébides montrant
la disposition des zones internes et externes04
Fig.II-2 : Carte schématique illustrant la répartition des différents domaines
paléogéographiques (avec détail de domaine externe)07
Fig.II-3 : Coupe géologique schématique illustrant les relations structurales entre les
différentes unités de la chaîne alpine d'Algérie Nord orientale14
Fig.III-1 : Carte géologique synthétique du bassin de Constantine-Mila16
Fig.III-2 : Coupe géologique NE-SW établie à partir des sondages carottés22
Fig.IV-1 : Graphique ombriométrique (année 1995-2005)25
Fig.V-1 : Schéma d'une tarière mécanique lourde28
Fig.V-2 : Schéma d'inclinomètre29
Fig.V-3 : Principe de mesure l'inclinomètre (modèle Telmac)30
Fig.V-4 : Schéma d'appareil de Cazagrande34
Fig.V-5 : Schéma d'appareil de compression triaxial35
Fig.VI-1 : Diagramme de Casagrande des sols de Ciloc40
Fig.VII-1: Illustration d'un glissement de terrain42
Fig.VII-2: Différents types de rupture circulaire44
Fig. VII-3: Remblai sur sol mou44
Fig.VII-4: Rupture circulaire sous un soutènement44
Fig. VII-5 : Exemple de Fluage45
Fig.VII-6 : Glissement plan46
Fig.VII-7 : Glissement rotationel47
Fig.VII-8 : Glissement successifs emboîtés
Fig.VIII-1 : Découpage en tranches d'un talus49
Fig.VIII-2: Force agissant sur une tranche n
Fig.VIII-3: Méthode de Fellinius en présence de nappe52
Fig.VIII-4 Rupture plane53
FIg.VIII-5: Grille de recherche du centre de rotation54
Fig.VIII-6: Profil du cercle critique57
Fig VIII-7 · Profil des différentes cercles

Fig.IX-1:	Profil du talus après le	terrassement	••••••	63		
Fig.IX-2:	Profil du talus après le	terrassement et l'en	rochement	66		
•						

Sommaire

PREMIERE PARTIER

CHAPITRE I: Généralité
I-1-Sitation géographique du site étudie1
I-2-Caracteristique géomorphologique du site2
I-3-Climat et végétation
I-4- Réseaux hydrographiques
I-5- Historique des travaux géologique2
I-6-Objet et méthode de travail
CHAPITRE II : Cadre géologique régional
II-1-Introduction4
II-2-Les grands ensembles structuraux4
II-2-1- Domaine interne5
II-2-1-1-Le socle kabyle5
II-2-1-2- La dorsale kabyle ou chaîne calcaire5
a- Dorsale interne6
b- Dorsale médiane6
c- Dorsale externe6
II-2-2- Domaine externe
II-2-2-1- Les formations de type flyschs8
a- Le flysch mauritanien8
b- Le flysch massylien8
c- Le flysch numidien8
II-2-2-Les formations telliennes
a- L'unité ultra-téllienne9
b- L'unité tellienne sensu-stricto9
c- L'unité péni-téllienne9
II-2-2-3- Les séries de l'avant-pays
a- Les séries de l'avant-pays septrional10
b- Formations de l'avant-pays méridional(atlasique)10
II-2-3- Les formations post-nappes10

Sommaire

PREMIERE PARTIER

CHAPITRE I: Generalite
I-1-Sitation géographique du site étudie1
I-2-Caracteristique géomorphologique du site2
I-3-Climat et végétation
I-4- Réseaux hydrographiques
I-5- Historique des travaux géologique2
I-6-Objet et méthode de travail
CHAPITRE II : Cadre géologique régional
II-1-Introduction
II-2-Les grands ensembles structuraux
II-2-1- Domaine interne5
II-2-1-1-Le socle kabyle5
II-2-1-2- La dorsale kabyle ou chaîne calcaire5
a- Dorsale interne
b- Dorsale médiane6
c- Dorsale externe
II-2-2- Domaine externe
II-2-2-1- Les formations de type flyschs
a- Le flysch mauritanien8
b- Le flysch massylien8
c- Le flysch numidien8
II-2-2-Les formations telliennes8
a- L'unité ultra-téllienne9
b- L'unité tellienne sensu-stricto9
c- L'unité péni-téllienne9
II-2-2-3- Les séries de l'avant-pays10
a- Les séries de l'avant-pays septrional10
b- Formations de l'avant-pays méridional(atlasique)10
II-2-3- Les formations post-nappes

II-3- La tectonique
II-3-1- Introduction
II-3-2- Tectonique Mésozoïque12
II-3-3- Tectonique Cénozoïque13
a- La phase fini Lutétienne13
b- La phase tectonique Miocène
c- Tectonique récente13
CHAPITRE III : Cadre géologique local
III-1-Introduction15
III-2- Caractéristiques lithostratigraphiques du bassin de Constantine15
III-2-1- Le Trias
III-2-2- Le Jurassique17
III-2-3- Le Crétacé
III-2-3-1- Le Crétacé inférieur
III-2-3-2- Le Crétacé supérieur
III-2-4- Le Paléogène
III-2-5- Le Néogène19
III-2-6- Les formations Quaternaires20
III-3- La géologie du site étudie21
CHAPITRE IV : Hydrologie et hydrogéologie
IV-1- Hydrologie23
IV-1-1- Facteurs climatiques23
a- Climat23
b- Précipitation23
c- Température24
IV-1-2- Hydrologie du site26
IV-2- Hydrogéologie26
DEUXIEME PARTIER
CHAPITRE V : Aperçus théorique sur les méthode de reconnaissances
utilisées dans le site étudie
V-1- Introduction28
V-2- Programme de reconnaissance géotechnique28

V-2-1-1- Sondage mécanique
V-2-1-2- L'essai à l'inclinomètre
V-2-1-3- L'essai piézométrique31
V-2-2- Les essais de laboratoire31
V-2-2-1- Les essais d'identifications
V-2-2- Les essais mécaniques
V-2-2-1- L'essai de cisaillement
V-2-2-3- Autres essais de laboratoire
CHAPITRE VI : Programme de reconnaissance géotechnique du site
VI-1- Introduction36
VI-2- Reconnaissance du site
VI-2-1- Situation36
VI-3- Reconnaissance des sols
VI-3-1- Organisation de la reconnaissance
a- In situ
b- Au laboratoire37
VI-3-2- L'interprétation des essais
VI-3-2-1- Les formations du Quaternaires, remblai38
VI-3-2-2- Les formations du Miocène
CHAPITRE VII: Glissement de terrain
VII-1- Introduction42
VII-2- Les différents causes de rupture42
VII-3- Description des phénomènes43
VII-4- Classifications des mouvements de terrain43
VII-4-1- Les pentes naturelles43
VII-4-2- Talus artificiels
VII-5- Description des principaux types de mouvements45
VII-5-1- Ecrolements45
VII-5-2- Fluages et solifluxion45
VII-5-3- Coulées boueuses46
VII-5-4- Glissement46
a- Glissement plan47
b- Glissement rotationel simple47

c- Glissement rotationel complexe	47
CHAPITRE VIII : Calcule de stabilité	
VIII-1- Calcule de stabilité en rupture circulaire	48
VIII-1-1- Méthode des tranches de Fellenius	48
VIII-1-1- En absence de nappe	48
VIII-1-1-2- En présence de nappe	51
VIII-2- Calcule de stabilité en rupture plan	52
VIII-2-1- En présence de nappe	53
VIII-2-2- En absence de nappe	53
VIII-3- Recherche de ceoficient de sécurité minimale	53
VIII-4- Choix de ceoficient de sécurité	54
VIII-5- L'étude de stabilité de site de Ciloc	55
VIII-5-1- Les facteurs de glissement	55
VIII-5-2- Les applications pratiques	55
CHAPITRE IX: Les recommandations	
Conclusion.	

PREMIERE PARTIE

Chapitre I:

Généralités

I-1- Situation géographique du site étudié :

Le site du CILOC est situé au Sud-ouest du centre ville de Constantine. Il est limité :

- -au Sud par la route nationale RN27;
- -au Nord par un terrain vague;
- -à l'Est par les immeubles du Ciloc et à l'Ouest par la cité Kadour Boumadouse. (Fig.I-1)

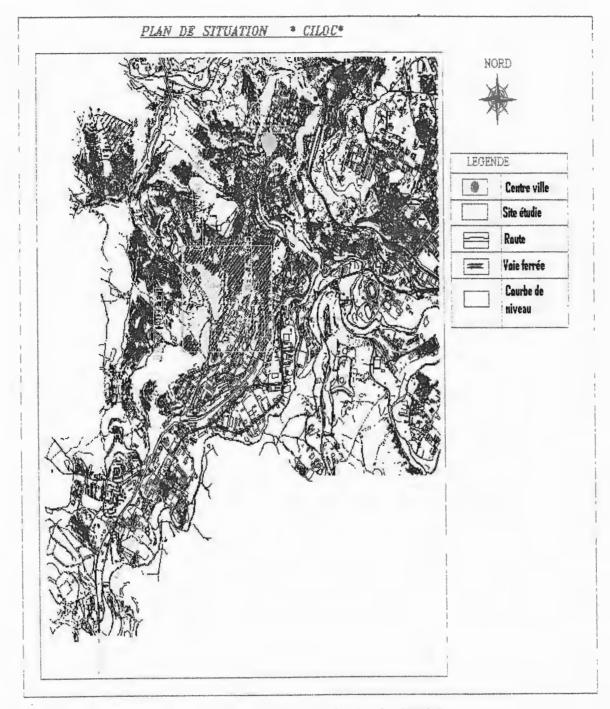


Fig.I-1: Plan de situation du site du CILOC.

Chapitre I Généralités

I-2- Caractéristiques géomorphologiques du site :

Le site étudié est situé sur le versant Est du CILOC. Ce dernier montre des dénivelées entre les cotes 615(Ciloc) et 420 (niveau de lit du Chaabat El Merdja. Il se particularise par une pente irrégulière répartie comme suit :

- forte, de l'ordre de 25% entre la Ciloc et RN27;
- pentes de l'ordre 10 à15% en moyenne, à l'aval de cette dernière jusqu'aux abords de Chaabat El Merdja, avec cependant, localement des pentes pouvant atteindre 25% (extrémité Sud de Chalets SOTRACO).

I-3- Climat et végétation :

La région de Constantine est soumise à un climat semi aride, caractérisé par deux saisons bien définies :

- La première froide et humide, débutant au mois de Décembre et allant jusqu'au mois de Mai ;
- La deuxième saison sèche et chaude, qui s'étend de la fin de Mai jusqu'à la fin du mois de Novembre.

Les précipitations moyennes annuelles sont de l'ordre de 532,3 mm/an et la température moyenne annuelle donnée par la station de Ain El Bey est de 18,96 C°.

I-4- Réseaux hydrographiques:

Le réseau hydrographique du site étudié se résumé à une Chaabat (Chaabat El Merdja). Cette Chaabat draine l'essentiel des eaux de surface.

I-5- Historique des travaux géologiques :

Les travaux géologiques de la région de Constantine ont débuté par les études de l'école Hollandaise près de Constantine (T.Raven à El Khroub, J.R.Van De Fliert à Oued Athmania).

Autres études ont été entreprises par l'école Française, sous la direction de M.Durand Delga, dans le Nord et dans l'Est du Constantinois, spécialement par J.F.Raoult et J.P.Bouillin dans le cadre de levés régulière au 1/50000.

Dans ses travaux, sur les Monts du Houdna, R.Guirand (1973) propose l'allochtonie du «Môle néritique Constantinois». Cette hypothèse fut reprise par la suite par J.M.Vila (1980) qui dans sa longue synthèse sur la chaîne d'Algérie Nord orientale; conclu à l'allochtonie du Môle néritique Constantinois et le désigna sous le terme de «Nappe

néritique Constantinoise», ainsi que la couverture marno-calcaire (crétacé-eocène). Cette conclusion fut cependant contestée par P.E.Coiffait (1992).

I-6- Objet et méthode de travail :

En raison l'ampleur du glissement du Ciloc et son influence sur la stabilité des infrastructures routières et les constructions, l'étude de ce versant nous a été confiée, afin d'apporter une contribution à l'étude géologique et géotechnique de ce site.

A cet effet, le plan de travail suivant a été retenue :

- ♦ Caractérisation du cadre géologique régional et local ;
- ♦ Caractérisation hydrologique et hydrogéologique ;
- ♦ Présentation des différentes méthodes de reconnaissance géotechnique ;
- ♦ Synthèse des données de reconnaissance géotechnique du site ;
- ♦ Etude du glissement de CILOC;
- ♦ Conclusion et recommandation pour assurer la stabilité du versant.

Chapitre II:

Cadre géologique régional.

II-1- Introduction:

Géologiquement, le bassin constantinois appartient au domaine externe de la chaîne alpine d'Algérie nord oriental. Cette dernière est rattachée à la branche sud de la chaîne des maghrébides.

En Algérie, la chaîne alpine s'étend le long du lithoral méditerranéenne sur plus de 1200 km. (Fig. II-1)

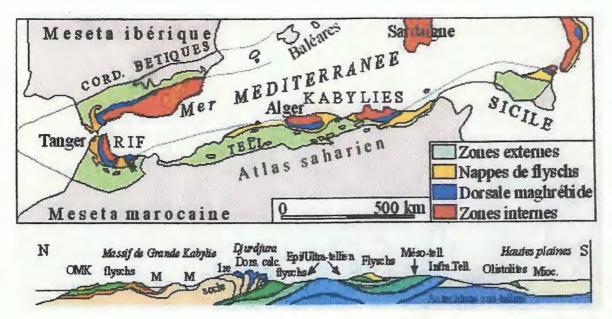


Fig. II-1: Carte et coupe structurale schématique de la chaîne des Magrébides montrant la disposition des zones internes et externes (d'après M.Durand Delga et Fontboté; 1980).

II-2- Les grands ensembles structuraux :

Les séries de la marge nord algérienne sont généralement Subdivisées en unités structurales issues de trois domaines paléogéographiques, (W.Wildi; 1983, M.Durand Delga; 1969, J.P.Bouillin; 1977 et J.M.Vila; 1980).

- Domaine interne : il regroupe le socle kabyle et sa couverture sédimentaire (dorsale kabyle).
- Domaine externe : il correspond aux formations de types flyschs et les formations telliennes.
- Les formations post nappes.

II-2-1- Domaine interne:

Il comprend les formations cristallophylliennes du socle kabyle et la dorsale calcaire, (J.M.Durand Delga; 1969).

II-2-1-1- Le socle kabyle :

Il est représenté par des formations cristallophylliennes formant trois pointements et qui sont le massif du Chanoua à l'Ouest d'Alger, le massif de la grande Kabylie au centre et le massif de la petite Kabylie à l'Est.

Les formations cristallophylliennes du socle Kabyle comprennent deux grands ensembles :

- un ensemble supérieur :

Cet ensemble est formé essentiellement de schistes, de micaschistes et de phyllades.

Cet ensemble est surmonté en discordance par des formations siluriennes, (M.Durand Delga; 1955) comportant de bas en haut :

- Des schistes noirates.
- Des psammites.
- Des grés calcaires.
- Des calcaires à orthocerés.

- un ensemble inférieur :

Gneissique, constitué de para gneiss, d'orthogneiss et de gneiss granulitique à intercalation de marbres et d'amphibolites.

En petite Kabylie, les formations cristallophylliennes du socle kabyle sont largement charriées vers le sud sur les formations de type flysch et les formations telliennes, (M.Durand Delga; 1955 et J.P. Bouillin; 1977).

II-2-1-2-: La dorsale kabyle ou chaîne calcaire:

C'est une zone étroite et discontinue. Elle correspond à un ensemble de lames et d'écailles empilées qui sont chevauchées par le socle kabyle.

Elle est caractérisée par des formations carbonatées ayant un âge Permo-Trais à l'Oligocène, (J.F.Raoult ; 1974).

La dorsale kabyle est subdivisée en trois unités, (J.F.Raoult ; 1974), qui sont du nord au sud :

a- Dorsale interne:

Elle est caractérisée par des séries formées de calcaires néritiques massifs riches en microfaunes benthiques. Ces séries ont un âge allant du Permo-Trais au Lutétien, (J.F.Raoult; 1969-1974).

b- Dorsale médiane:

Elle montre une sédimentation marno-calcaire à microfaune pélagique permettant de dater le Crétacé supérieur, le Paléocène et l'Eocène jusqu'au Lutétien.

c- Dorsale externe:

Elle est constituée par de calcaires dolomitiques du Jurassique inférieur et par un Crétacé supérieur et un Eocène inférieur détritique.

II-2-2- Domaine externe:

Les formations issues du domaine externe sont représentées par les formations de type flysch, telliennes, et de l'avant-pays. (Fig II-2)

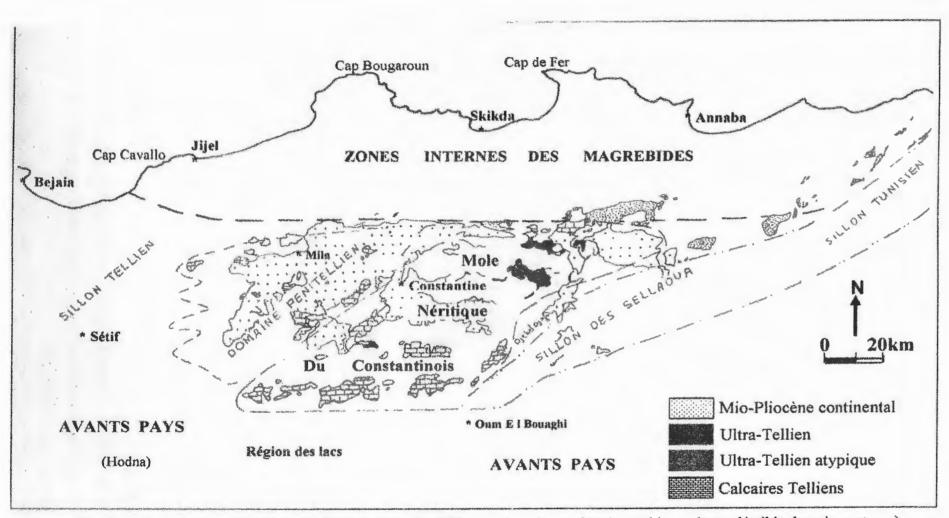


Fig II-2 : Carte schématique illustrant la répartition des différents domaines paléogiographiques (avec détail le domaine externe) (D'après J.C.Lahendère ; 1987).

II-2-2-1- Les formations de type flyschs :

Les flyschs allochtones montrent trois types de séries :

- *le flysch massylien;
- *le flysch maurétanien;
- *le flysch numidien.

a- Le flysch maurétanien :

Il est constitué de bas en haut :

- -D'un flysch schisto-gréseux d'âge Crétacé inférieur (Néocomien à Albien).
- -Des conglomérats du Cénomanien.
- -D'une puissante série gréso-micacée débutant par un flysch à microbrèche atteignant le passage Stampien Aquitanien.

b- Le flysch massylien:

Il est représenté par :

- -un flysch schisto-quartzitique Albo-Aptien
- -un flysch sénonien à microbrèche.

c- Le flysch numidien:

Le flysch numidien forme une entité à part. Il occupe une position structurale allochtone, la plus haute de l'édifice alpin. Il est représenté par une série argilo-greseuse d'âge Oligocène à Burdigalien basal, (J.P.Bouillin; 1977 et J.C. Lahondère; 1979). Il est caractérisé à la base par des argiles sous numidiennes à Tubotomaculum surmontées par des grés numidiens à grain de quartz hétérométriques et le sommet se termine par des marnes et silexites correspondent aux formations supra-numidiennes.

II-2-2-2- les formations telliennes :

Ce sont des séries épaisses à dominante marneuse issues probablement du sillon tellien, d'âge Eocène, (J.M.Vila; 1980). Certain auteurs notamment Durand Delga subdivise les formations du domaine tellien en trois grandes unités:

- -L'unité ultra- tellienne (épitellien);
- -L'unité tellienne sensu- stricto (mésotellienne);
- -L'unité péni-tellienne (infratellienne).

a- L'unité ultra tellienne :

Ce sont des formations marno-calcaires du crétacé-eocène de faciès claires.

Elles affleurent à l'est du méridien de Constantine au dessous des nappes de flyschs, (J.C.Lahondère; 1987). Selon J.M.Vila (1980), cette unité surmonte anormalement les calcaires de la plate-forme constantinois et les formations marneuses et marno-calcaire crétacé-eocène appartenant à l'unité tellienne s.s.

b- L'unité tellienne sensu stricto:

Elle regroupe des formations pélitiques d'âge Crétacé à Eocène. L'Eocène rattaché à cette unité est comparable à celui de l'unité ultra tellienne .Vers l'Est et à partir de la transversale de Constantine, J.M.Vila (1980) considère que l'ensemble des formations crétacé et éocène marneuses et marno-calcaires constituent la couverture allochtone de la plate-forme Crétacé constantinois, désignées sous la dénomination de «nappe de Djemila», (J.M.Vila; 1980).

c- L'unité péni-tellienne :

Elle comprend des formations jrassiquo-crétacés qui se distinguent par des faciès crétacés intermédiaires entre les faciès de plate-forme et des faciès de bassin, (J.C.Lahondère ; 1982).

Ces formations caractérisent la bordure septentrionale de la plat-forme constantinois et sétifienne, (N.Kazi-Tani ; 1972).

Le domaine paléogéographique de la série péni-tellienne constitue ainsi un domaine de passage entre les formations néritiques de plate-forme constantinois et sétifienne et les formations telliennes, (N.kazi.Tani; 1986).

Les formations à nummilites de l'Eocène considérées par (J.M.Vila; 1980), comme la couverture décollée de ce domaine (la nappe méridionale à nummulites) sont replacées depuis les travaux de J.C.Lahondère (1987) et P.E. Coiffait (1992), dans la couverture de la plate-forme constantinois.

II-2-2-3- Les séries de l'avant-pays :

Elle ont été regroupées en deux grandes familles :

a-Les séries de l'avant-pays septentrional:

Elles comportent:

-un ensemble néritique constantinois : le terme de « môle néritique constantinois » désigne en fait l'extension des séries carbonatées de la région de Constantine.

Le Sénonien et le Tertiaire à dominante marneuse de la région de Constantine sont considérés comme la couverture des massifs néritiques.

Structuralement l'ensemble néritique est chevauché par le Numidien, les séries telliennes et les séries de type flyschs.

b-Formations de l'avant-pays méridional (Atlasique) :

Ce sont des séries sédimentaires Mésozoïques épaisses et très plissées. Ces séries forment l'atlas Tunisien, l'atlas Saharien, les Monts du Hodna, les Monts de Batna et les Monts des Aurès.

II-2-3- Les formations post-nappes :

L'âge Burdigalien établi pour la mise en place des nappes dans le constantinois permet de considérer que les formations post-nappes regroupent l'ensemble des dépôts postérieurs au Burdigalien.

Ces formations sont de type marin et continental et sont discordantes sur les formations et les structures anté-burdigaliennes.

La répartition actuelle des affleurements Post-Burdigalien permet de distinguer deux grandes ensembles, (M.Durand Delga; 1955, J.P.Bouillin; 1977, J.M.Vila; 1980 et P.E.Coiffait; 1992).

- *L'ensemble nord, représenté par les bassins côtiers dont le bassin de Mila et le bassin de Guelma.
- *L'ensemble sud, représenté par des bassins situés au de la des limites méridionales et orientales actuelles des massifs calcaires au de la plate-forme constantinois. Ces bassins appartiennent aux bassins de l'avant-pays.

Remarque:

Dans les bassins côtiers, les formations sont différenciées, (formations post-nappes) en faciès au nord et au sud de l'accident Est-ouest (l'accident de M'cid Aicha-Debar) qui délimite la bordure sud du bloc Kabyle. Cette différenciation est caractérisée par des formations marines au nord et des formations laguno-lacustres au sud.

II-3- La Tectonique:

II-3-1- Introduction:

La chaîne des maghrébides s'est surtout structurée au cours des phases tectoniques Tertiaires. Cette structuration est rattachée à la fermeture du sillon des flyschs dont le contenu a été charrié au dessus des zones externes.

Les zones externes du fait de leur appartenance africaine enregistrent des déformations influencées par l'héritage structural Anté-Tertiaire, (N.Kazi-Tani; 1986). Dans les hypothèses basées sur les rares données sur le socle Paléozoïque de la marge septentrional de l'Afrique, comparées aux Paléozoïque Saharien, il est admis que la différenciation des bassins maghrébins est héritée d'une structuration ancienne, (R. Guiraud; 1973).

Cette différenciation est due au fonctionnement d'un accident qui coïncide actuellement avec la « flexure sud atlasique » délimitant la plate-forme saharienne stable des domaines de l'avant-pays de la chaîne des maghrébides, (R.Cuirand; 1973).

II-3-2- Tectonique Mésozoïque:

Les évènements tectoniques Mésozoïques sont peu étudiés. Les auteurs s'accordent pour admettre que la période du Trias correspond à une période distensive, accompagnée d'un volcanisme basique contemporain à une sédimentation d'argiles gypseuses dominante, (R.Guirand; 1973).

Au Jurassique inférieur, la distension provoque une subsidence qui se poursuit au Crétacé inférieur lors de la structuration générale E-W caractéristique des bassins maghrébins (P.Deleau; 1939, G.Durozoy; 1960 et N.Kazi-Tani; 1986).

La plate-forme constantinoise se distingue dès la fin du Trias comme un haut-fond à sédimentation calcaire dominante.

Au Jurassique moyen et supérieur et au Crétacé, la tectonique est mise en évidente par des variations latérales de faciès, des lacunes de dépôts et des discordances angulaires.

* La phase Anté-Sénonienne :

Cette phase correspond à une phase de compression associée à des plis E –W, (M.Durand Delga; 1955 et P. Deleau; 1939). Dans le nord constantinois, ces structures sont alignées suivant l'accident N 100 E qui se suit du massif de M'cid Aicha au massif du Djebel Debbar.

II-3-3- Tectonique Cénozoïque :

a-La phase fini Lutétienne :

Cette phase intervient à la fin d'un grand cycle sédimentaire qui débute dès le Trias.

La déformation rattachée à cette phase est représentée par des structures d'origine compressive.

Dans les zones internes, cette phase se manifeste par l'écaillage et charriage vers le S-E de la marge méridionale du socle Paléozoïque, (J.F.Raoult ; 1974).

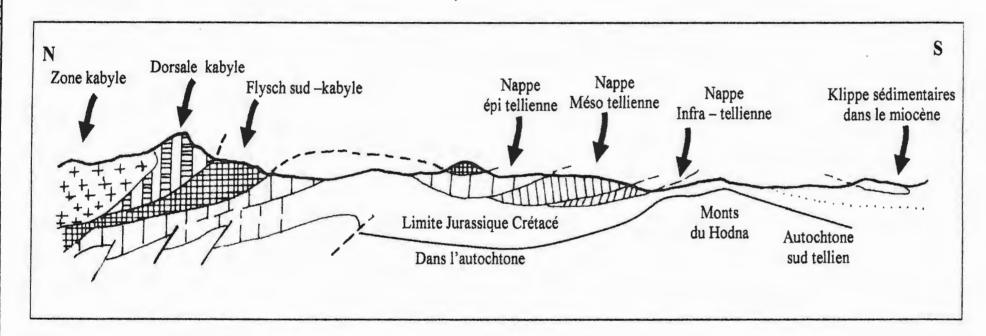
Dans l'avant-pays, elle est à l'origine des plis NE-SW, (R.Guirand; 1973 et N.Kazi.Tani; 1986).

b-La phase tectonique Miocène :

La phase miocène est une phase de compression caractérisée dans toute l'Algérie nord orientale par un raccourcissement N-S, (J.P.Bouillin; 1977 et 1979, J.M.Vila; 1980 et N.Kazi-Tani; 1986).

Dans les zones internes, les chevauchements rattachés à la phase miocène présentent une vergence sud, et ont une direction générale E-W, (J.P.Bouillin; 1977).

A cette direction sont associés des décrochements NW-SE et NE-SW respectivement dextres et senestres.


Cette tectonique correspond à une phase compressive N-S responsable de la mise en place des nappes selon une vergence sud.

Dans les zones externes la tectonique Tortonienne serait selon J.M.Vila (1980), responsables du charriage vers le sud de la plat-forme constantinois et sétifienne au dessus des domaines septentrionaux de l'avant-pays.

L'avant-pays ne montre pas de structures tectoniques directement liées à la tectonique miocène, (R.Guirand; 1973, D. Bureau; 1986 et R.Laffitte; 1939). (fig.II-3)

c- Tectonique récente :

Selon J.M.Vila (1980) et P.E.Coiffait (1992), les déformations liées à la tectonique récente, dans le constantinois sont représentées par des failles normales, de direction variables, en bordures des massifs calcaires jurassico-crétacé.

14

Fig.II-3 : Coupe géologique schématique illustrant les relations structurales entre les différentes unités de la chaîne alpine d'Algérie Nord orientale (d'après J.M.Durand Delga ; 1969).

Chapitre III:

Cadre géologique local.

III-1- Introduction:

Le bassin de Constantine est situe sur la bordure septentrionale des hautes plaines constantinoises .Il s'étend au pied de la chaîne numidique (chaîne du Zouarha et le Djebel Sidi-Dris), et s'étable vers le sud, entre El Khroub et Chelghoum Al Aid, (P.E., Coiffait; 1992). (fig.III-1)

III-2-Caractéristiques lithostratigraphiques du bassin de Constantine :

III-2-1- Le Trias :

Les terrains les plus anciens connus à l'affleurement dans la région d'étude se rapportent au Trias. Ils n'affleurent jamais en position stratigraphique normale, mais soit sous forme de diapirs, soit injecté le long d'accidents tectoniques.

Les affleurements du Trias s'observent dans la région de Constantine : Ain Kerma , Djebel Akhal et sur toute la limite méridionale du Chettaba (Ain Goulia) .Dans la région de Oued Athmania : Ain El Alleg , Djebel Toukouia (Est de Chalghoum Al Aid) et au sud de Ain M'Lila (la région de lacs), (P.E.Coiffait; 1992).

Le Trias est constitué de deux types de terrains dont la nature reste sensiblement inchangée dans toute l'Afrique du nord : des roches sédimentaires et des roches éruptives.

*Les Roches sédimentaires comprend surtout des argilites, des évaporites et des roches carbonatées, essentiellement dolomitiques, (P.E.Coiffait; 1992). Parmi les minéraux associés à ces formations sont présentés : le gypse, les quartzs bipyramides la halite et des

cristaux de dolomites libres, (P.E.coiffait ; 1992).

*Les roches éruptives se présentent le plus souvent à l'état de blocs, et se trouvent associés aux terrains sédimentaires du Trais .Elles sont appelées couramment « roches Vertes », connues sous le nom « d'ophites », (A.Caire ; 1957 et P.E.Coiffait ; 1992), Il s'agit de roches assez Basiques (Basaltes-dolérités et andésites) plus ou mois altérées, (P.E.Coiffait, 1992).

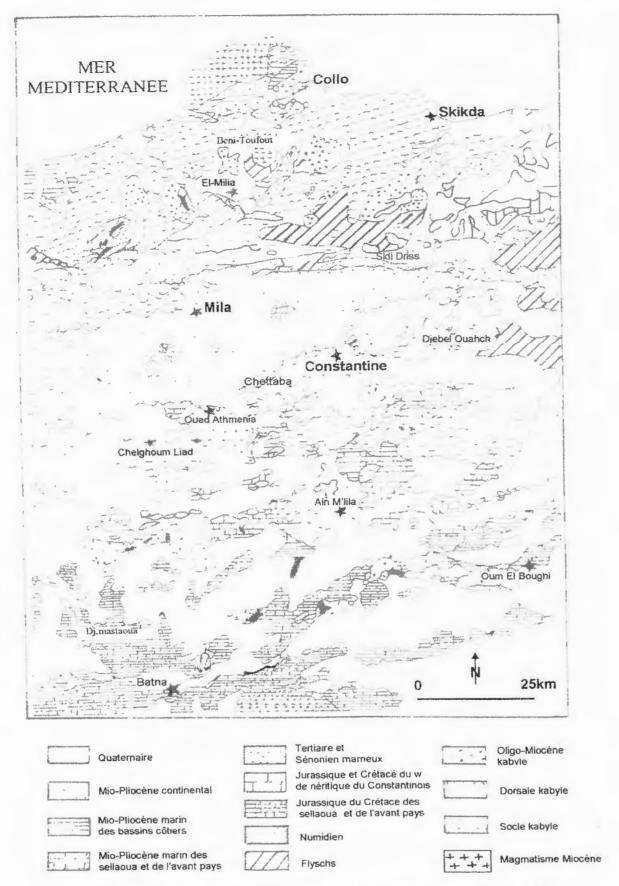


Fig III-1 : Carte géologique synthétique du bassin de Constantine-Mila (D'après, J.M.Vila ; 1980).

III-2-2- Le Jurassique :

Selon P.E.Coiffait (1992), les formations du Jurassique affleurent au Djebel Akhal entre Constantine et Mila, le massif du Chettaba à l'ouest de Constantine et le massif du Kheneg au Nord – Ouest de Constantine.

Le Lias: Il est représenté par des calcaires et dolomies massifs, du Lias inférieur et moyen et des calcaires à silex du Lias supérieur.

Le Dogger: Il est caractérisé par des calcaires gris, des marno-calcaires siliceux et des dolomies.

Le Malm: Il est représenté par des calcaires fins, parfois siliceux ou biodétritiques. Ces calcaires sont affectés par un phénomène de dolomitisation secondaire important (surtout Djebel kheneg).

III-2-3- Le Crétacé:

Les terrains autochtones Crétacés, affleurants dans la région de Constantine, sont représentés par une série qui débute au Néocomien par des faciès néritiques de plate-forme carbonatée, puis passent à des ensembles marno-calcaires formant la couverture de la série calcaire Jurassico-Crétacé de la plate-forme constantinoise.

Dans la région de Constantine, les affleurements Crétacés les plus anciens ont été décrits par Van de Fliert (1955), au dessus des dolomies jurassiques à l'Ouest du massif du Djebel Friktia.

III-2-3-1- Le Crétacé inférieur :

*Le Néocomien :

Le Néocomien affleure dans les massifs du Djebel Akhal, du Djebel Kheneg et Djebel Chettaba, ainsi que dans les massifs du Fortas et du Guerioum. Il s'agit d'une épaisse série des marnes, des calcaires argileux, et marno-calcaires contenant des niveaux de marnes à Ammonites pyriteuses, (P.E.Coiffait; 1992).

*Le Barrémien:

Il affleure au niveau des massifs du Djebel kheneg, du Chetteba, du Djebel Felten et de l'Oum Settas situés respectivement au Nord, à l'Ouest, au Sud —Ouest et au Sud-est de Constantine.

Il est représenté par une épaisse série des calcaires massifs clairs dans lesquels s'intercalent de rares passées de marnes grises. Les calcaires sont très riches en microfaune: Lenticalina ouachensis, Spirillina neocomiana et gravellina barremiana....etc, (P.E.Coiffait; 1992).

III-2-3-2- Le Crétacé supérieur :

*Le Cénomanien:

Les formations du cénomanien affleurant dans les Monts de Constantine sont représentées par des faciès de plate-forme. Ces formations caractérisent les séries des massifs du Kheneg, Grouz, Felten, Rocher de Constantine, Kellal et Oum Settas.

Dans l'ensemble de ces massifs, le Cénomanien est caractérisé par une épaisse série de calcaires blancs massifs associés à des barres bio-détritiques à rudistes, des niveaux à biomécrites à Miliolidès et localement des calcaires rubanés (Rocher de Constantine), (J.R.Van de Fliert, 1955).

*Le Turonien:

Le Turonien se présente dans le rocher de Constantine et les massifs du Felten et de l'Oum Settas, avec une lithologie comparable à celle du Cénomanien.

Les formations du Turonien sont caractérisées par des calcaires à silex (Djebel Grouz, Djebel Kheneg et le massif du Chettaba), (J.C.Lahondère ; 1986).

Au massif du Kheneg, les formations du Turonien débutent par des assises conglomératiques.

*Le Sénonien:

Les formations du sénonien sont essentiellement marno-calcaires.

Elles sont représentées au Djebel Chetteba, Djebel Grouz et Djebel Kheneg, (J.M.Vila; 1980).

III-2-4- Le Paléogène :

Dans les Monts de Constantine, le Paléogène est représenté par une épaisse série de marnes, de calcaires phosphatés et de calcaires à silex. Ces formations n'atteignent l'Oligocène que rarement.

*Le Paléocène :

Le Paléocène est représenté par des formations marneuses faisant suite aux séries du Maestrichtien. Les affleurements les plus septentrionaux comportent une centaine de mètres de marnes noires dans lesquelles s'intercalent des niveaux calcaires à boules jaunes.

Le sommet de la série est souligné par des calcaires à concrétions phosphatées et des marnes à Globigérinides, (P.E.Coiffait ; 1992).

*L'Eocène:

Aux environs de Constantine, l'Eocène est représenté par une épaisse série à dominante calcaire. Cette série débute par des marno-calcaires, des calcaires butimineux à rognons et lits de silex noires, puis des calcaires phosphatés, attribués à l'Yprésien. Par-dessus cet ensemble, vient une puissante série de marnes brunes à passées calcaire jaunes, parfois Lumachellique, du Lutétien, (J.MVila; 1980).

Ces marnes sont ultérieurement replacées dans le Lutétien supérieur, (P.E. Coiffait; 1992).

III-2-5- Le Néogène :

Les formations du Mio-Pliocène sont représentées essentiellement par des dépôts détritiques (conglomérats, graviers, sables et argile), et des dépôts évaporitiques (gypses), et des calcaires lacustres.

Les sédimentations au cours du Néogène sont marquées par des périodes marines et des périodes continentales, (P.E.Coiffait; 1992).

- *Le cycle Langhien-Serravalien inférieur : Il s'agit de marnes sableuses à intercalations de quelques bancs de grès argileux.
- *Le cycle Mellalien supérieur (Serravalien supérieur) : Il est caractérisé par des assises conglomératiques ; surmontées par des argiles sableuses rougeâtres.
- *Le cycle Turolien inférieur : Il est caractérisé par une assise conglomératique suivie par une formation argilo marneuse.

Les formations du Pliocène inférieur sont représentées par des calcaires lacustres au Djebel El Hadj-baba, Ain El Bey, El Khroub, région de Mila et Grarem.

III-2-6- Les formations Quaternaires :

Du fait de leur origine continental, il difficile de tracer une limite exacte entre ces formations et les dépôts néogène détritiques qui sont les plus souvent altérés en surface.

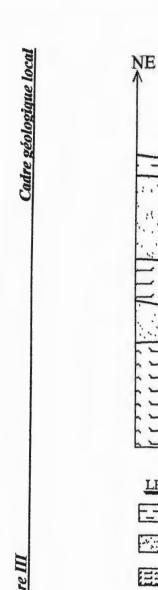
III-2-6-1- Les terrasses alluviales anciennes :

Elles sont représentées par des blocs calcaires et gréseux plus au moins roulés enrobés dans une matrice limoneuse de couleur rougeâtre à brunâtre, provenant des démantèlement des formations anciennes, ces dépôts s'observent essentiellement sur les rives de l'Oued Rhumel et Oued Boumerzoug, formant des terrasses qui s'étendent sur plusieurs de mètre (région Chaabat Rasas au Nord-est).

III-2-6-2- Les terrasses alluviales récentes :

Elles s'observent essentiellement le long de l'Oued Rhumel et d'Oued Boumeraoug de leurs principaux affleurants.

III-3- Géologie du site étudie :


Le versant du CILOC montre un paysage morphologique assez irrégulier. La dénivelée de ce versant est caractérisée par une pente comprise entre 10 à 15 %.

Les formations lithologiques qui constitués ce versant reconnues par sondage, sont de bas en haut représentés par :

- Des marnes argileuses de teinte grise à noire, généralement sableuses, parfois ces marnes montrent des passées lenticulaires de sable et gravier et gypseuse. Le gypse d'aspect fibreux apparaît en remplissage dans les fractures.
- Ces marnes argileuses sont surmontées par un niveau de sable et de gravier grossier de teinte jaunâtre.
- ➤ Ce niveau de sable et de gravier est surmonté par une série d'argile brune. Cette série d'argile brune est peu sableuse, avec la présence de débris de coquilles.

La corrélation entre les logs de sondages carottés (S2 etS3), laisse apparaître des perturbations dans la structure et la disposition des couches.

Cette perturbation des couches a été expliquée par la présence d'une faille NW-SE. La structure géologique du site est schématisée sur la coupe de la figure III-2.

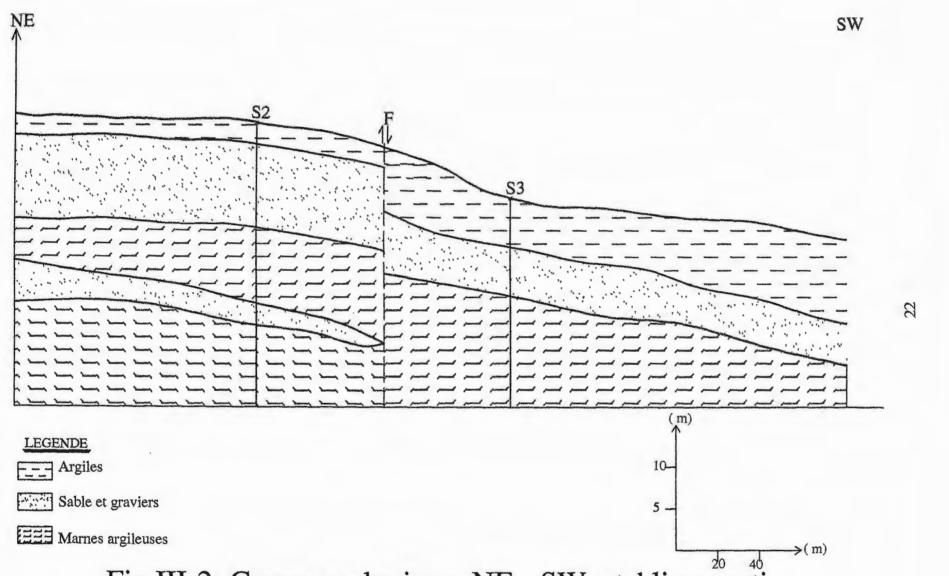


Fig.III-2: Coupe geologique NE - SW etablie a partir des sondages carottes

Chapitre IV:

Hydrologie et hydrogéologie.

IV-1- Hydrologie:

Les conditions climatiques du bassin versant jouent un rôle capital dans le comportement hydrologique des cours d'eau et surtout les précipitations liquides qui constituent le facteur essentiel.

Les différents aspects des précipitations sont plus ou moins modifiés selon l'effet combiné des autres paramètres physiques (température et évaporation surtout). Les facteurs climatiques sont dans l'ensemble des variables aléatoires dans le temps et l'espace permettant d'expliquer quantitativement les variations du régime hydrologique.

IV-1-1- Facteurs climatiques:

a- Climat:

Les données climatiques de la région montrent que le secteur étudié est soumis à un climat sec et chaud en été et un hiver froid .Il se caractérise par de fortes précipitations.

b- Précipitation:

Les précipitations englobent toutes les eaux météoriques présentes sous la forme liquide (pluie et brouillard), ou solide (neige et grêle).

Les données de la pluviométrie de la période entre 1995 -2005 enregistrées par la station Constantine Ain El Bey ; sont représentées dans le tableau de la figure IV-1 :

Tableau IV-1 : Données pluviométriques de la station Constantine Ain El Bey pour la période 1995-2005.

Mois années	S	0	N	D	J	F	M	A	M	J	J	A
1995-1996	31,2	9,1	34,2	37,7	152,0	99,2	69,3	48,5	33,9	47,2	10,5	8,1
1996-1997	26,9	30,1	68,0	56,3	60,5	101,7	56,5	62,3	40,0	37,6	11,1	16,1
1997-1998	57,0	41,4	122,6	59,3	34,7	37,5	48,2	64,2	33,8	25,7	0,6	13,0
1998-1999	66,9	34,1	107,2	73,3	55,0	47,4	47,5	51,2	30,0	19,3	1,6	8,3
1999-2000	38,5	37,0	55,4	75,6	45,5	39,0	36,0	32,3	47,4	32,0	1,6	11,7
2000-2001	48,8	43,3	30,1	38,8	70,4	40,3	16,0	35,6	68,6	21,8	0,1	13,0
2001-2002	50,7	37,3	81,6	64,8	73,4	49,0	17,9	35,0	34,9	2,2	9,8	17,2
2002-2003	41,9	36,4	77,2	128,8	127,3	51,7	94,9	75,9	30,7	2,8	10,9	17,5
2003-2004	43,0	38,2	81,3	164,6	159,2	30,8	49,0	83,8	55,3	15,4	1,5	12,0
2004-2005	19,4	16,2	80,7	122,1	66,6	33,6	47,5	54,4	36,5	21,8	4,2	9,8

D'après les données du tableau, on note que :

- Les mois les plus pluvieux sont : Janvier avec une moyenne de 84,4 mm et Décembre avec une moyenne de 82,1mm.
- Les mois les plus sec sont: juillet avec une moyenne de 5,1mm et Août avec une moyenne de 12,6mm.

c- Température :

Les données de température traitées intéressent la station de Constantine Ain El Bey figurants dans le tableau suivant :

Tableau IV-2 : les données de température de la station de Constantine Ain El Bey pour la période 1995-2005.

Mois année	S	0	N	D	J	F	М	A	М	J	J	A
1995	20,7	16,7	11,5	10,1	5,9	9,7	9,0	11,2	18,2	21,9	25,9	24,5
1996	19,3	14,5	12,2	9,6	9,1	6,5	10,2	11,9	16,4	19,7	24,6	25,6
1997	21,0	16,7	11,7	8,3	8,3	9,1	9,1	12,3	19,9	24,9	25,5	25,3
1998	22,2	14,5	10,0	6,4	7,1	8,1	9,4	13,3	16,2	23,6	26,5	25,4
1999	23,1	19,3	10,4	7,5	7,1	5,5	10,0	13,3	21,0	24,2	25,4	28,8
2000	21,9	15,9	12,3	9,1	4,6	8,2	11,2	14,7	20,1	22,3	26,9	26,4
2001	21,6	20,2	10,9	6,6	8,0	7,4	14,3	12,4	17,2	23,8	27,1	26,3
2002	21,3	17,9	12,3	9,2	6,4	8,6	11,1	14,0	18,7	24,8	25,6	25,0
2003	20,9	18,6	12,0	6,8	7,0	6,3	10,5	14,0	17,7	25,3	28,4	27,4
2004	21,0	19,4	9,9	7,9	7,2	8,8	10,6	11,9	15,1	21,4	25,7	26,9
2005	21,1	17,8	11,8	7,0	4,6	4,7	10,8	13,2	19,2	23,9	26,8	24,7

A partir des données de température, on remarque que cette dernière est basse en hiver et élevée en été.

Le mois le plus frais est Janvier avec une moyenne de 6,8 C °.

Le mois le plus chaud est juillet avec une moyenne de 26,2 C°.

*La relation entre les moyennes mensuelles de température et de précipitation est représentée dans le tableau suivant :

Tableau IV-3 : Les données moyennes mensuelles de la température et précipitation.

Mois	S	0	N	D	J	F	M	A	M	J	J	A
P(mm)	42,4	32,3	73,8	82,1	84,4	53,0	48,2	54,3	41,1	22,5	5,1	12,6
T (c°)	21,2	17,4	11,3	8,0	6,8	7,5	10,5	12,9	18,5	23,2	26,2	26,0

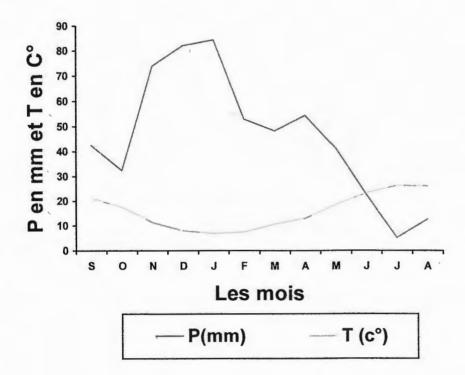


Fig. IV-1: Graphe ombrométrique (année 1995-2005).

A Partir de graphe ombrométrique des données moyennes mensuelles de précipitation et de température, on note que les mois les plus pluvieux sont : Décembre, Janvier et Février correspondent les mois les plus frais.

La période la plus sèche est représentée par les mois les plus chaud et à faible pluviométrie. Elle s'étend, généralement du mois de Juin, Juillet et Août.

XS

*Hydrologie du site étudie:

Les eaux superficielles du site étudie ont comme source les eaux de précipitation et les eaux de résurgences, ainsi que les eaux usées provenant des canalisations défaillantes du site.

Les eaux de surface du versant du site étudie montrent un écoulement souvage suivant la pente du versant, qui est en gros orientée vers le SW.

Ces eaux sont canalisées ensuite par une rigole au niveau de la route RN27.

IV-2- Hydrogéologie:

Le versant du secteur étudie est constitué par des dépôts Mio-Plio-Quaternaire. Ces dépôts sont représentés essentiellement par des sables, des graviers et des galets associes à des argiles reposons sur une substratum des marnes compactes.

Les dépôts sables, graviers et conglomérats forment la nappe superficielle.

*Les eaux profondes :

Les piézomètres SCZ1, SCZ2 et SCZ3 installés dans le site ; enregistrent les niveaux d'eaux qui sont représentés dans le tableau ci-après :

Tableau IV-4 : Résultats des mesures piézométriques.

Sondage	cote	10/0	7/03	12/0	7/03	15/0	7/03	07/08/03	
	Cole	Profond	cote	profond	cote	profond	cote	profond	cote
SCZ1	605,26	-		8,92	596,34	-		9,40	595,86
SCZ2	588,04	-		-		2,00	286,04	5,25	585,79
SCZ3	559,10	5,25	553,85	-		-		5,70	553,40
Sondage	cote	13/0	8/03	05/1	1/03	06/0	1/04	20/0	5/04
		profond	cote	profond	cote	profond	cote	profond	Cote
SCZ1	605,26	9,96	595,86	10,49	594,77	9,78	595,48	**	
SCZ2	588,04	2,38	585,66	1,25	586,79	0,97	587,07		
SCZ3	559,10	6,10	553,00	5,41	553,69	**		**	

^{**} Tube endommagé

A partir des résultats du tableau ci-dessus, on remarque que :

- ✓ Le niveau piézométrique est très proche de la surface au niveau du site étudie
- ✓ entre 6,1 et 5,25 m au niveau de SCZ3 (cote 553,0 à553, 85);
- ✓ entre 10,49 et 8,92 m au piézomètre SCZ1 (cote 594,77 à 596,34).

^{***} Tube bouche

La présence de formations géologiques imperméables en profondeur, une pente favorable (15-25%) et de fortes précipitations représentent des facteurs adéquats pour l'écoulement des eaux en surface. Ces facteurs sembles être à l'origine à l'instabilité des terrains.

DEUXIEME PARTIE

Chapitre V:

Aperçus théorique sur les méthodes de reconnaissance utilisées dans le site étudie

V-1- Introduction:

Les reconnaissances et les études géotechniques complètent celles réalisés par la géologie et l'hydrogéologie. Elles doivent permettre de préciser la description des terrains en question, leurs états de comportement pendant l'exécution puis l'exploitation de l'ouvrage concerné. Enfin de définir les méthodes d'exécution, le dimensionnement des ouvrages, et les précautions particulières.

V-2- Programme de reconnaissance géotechnique :

Il se fait en fonction des caractéristiques de l'ouvrage à réaliser et de la nature géologique des terrains de la zone étudiée.

L'étude comporte deux types de travaux :

V-2-1- Les essais in situ:

En effet, dans la pratique, les études géotechniques débutent par un reconnaissance in situ pour déterminer les différents caractéristiques des sols en place (résistivité, perméabilité, paramètres de cisaillement, ... etc).

V-2-1-1- Sondage mécanique :

Plusieurs techniques sont possibles, les sondages peuvent être :

-Destructifs (peut coûteux). (Fig V-1)

-Non destructifs (beaucoup plus chers), avec prélèvement d'échantillons.

Fig V-1: Schéma d'une tarière mécanique lourde.

Les sondages mécaniques donnent beaucoup de renseignement si on peut les suives sur le chantier. Ils doivent être importés après une reconnaissance de terrain et une compagne géophysique. Ils fournissent une coupe précise des terrains et permettent d'étalonner les diverses méthodes de reconnaissance géotechniques.

Ils sont également très utiles pour repérer :

- -Les zones de faiblesse;
- -Les traces de cisaillement dans les matériaux cohérents ;
- -Installe des piézomètres et des cellules de prise des pressions interstitielles ;
- -Installer des inclinomètres.

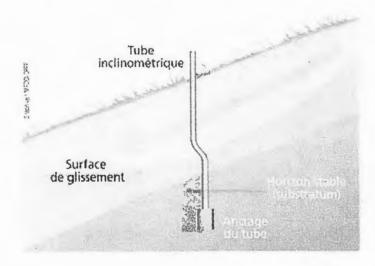
Ils permettent enfin de prendre des échantillons non remanies destinés au laboratoire. Ces prises d'échantillons sont particulièrement intéressantes au voisinage de la surface de glissement. C'est en effet le long de cette surface que l'on cherche à connaître les caractéristiques mécaniques des matériaux, (A.Benaissa; 2003).

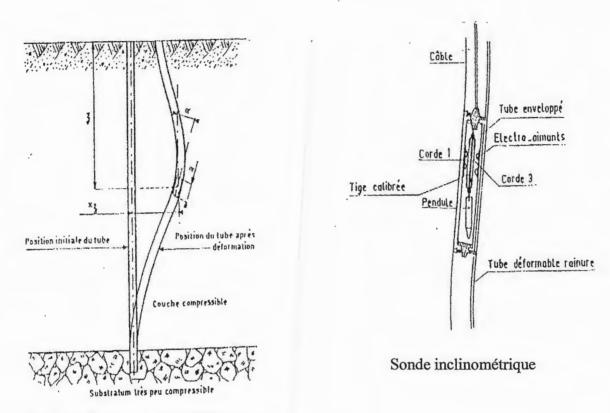
V-2-1-2- L'essai à l'inclinomètre :

L'emploi de l'inclinomètre c'est la méthode la plus sure pour suivre et déterminer les surfaces de glissement.

a- Définition :

L'inclinomètre est un appareil utilisé pour mesurer la déformation du terrain différents profondeurs en fonction du temps.




Fig V-2 : Schéma d'un inclinomètre

b- Principe:

Ils consiste à placé un tube déformable dans un forage de faible diamètre à l'aide dune sonde de mesure est descendue à l'intérieur. Celle-ci fournit, à toute profondeur, l'inclinaison du tubage sur la verticale, et les mesures espacées dans le temps permettent de repérer le ou les surfaces de glissement. (Fig V-3-a et b)

c- Mesure:

L'inclinomètre est un appareil très sensible (déformation horizontale de 0.1mm/m), (A.Benaissa; 2003).

Principe de mesure des déplacements horizontaux.

(Fig-V-3-a) (Fig-V-3-b)

Fig- V-3 : Principe de mesure inclinométrique, (model Telmac).

(A. Bouafia ; 2004)

V-2-1-3- L'essai à piézomètrique :

a-Définition:

Le piézomètre est un tube installé dans le sol et qui permet d'étudier la nappe phréatique.

b-Installation:

Elle commence par la réalisation d'un trou à la tarière de 10 cm de diamètre. Puis, le piézomètre est introduit dans le trou, ce qui produit un frottement important contre les parois et le problème du crépinage se pose alors. En effet, pour que l'eau qui sature le sol entre à l'intérieur du piézomètre, il faut que celui-ci soit crépiné de manière à empêcher l'entrée du matériel du sol.

V-2-2- Les essais de laboratoire :

Les essais de laboratoire ont une moyen pour certains types de problèmes et offrent un accès direct aux paramètres indispensables pour les calcules géotechniques ou de génie civil.

Elles se divisent en deux grandes catégories :

V-2-2-1- Les essais d'identifications :

Ces essais nous permettent de déterminer avec précision la nature du sol, sa structure, et ces propriétés physicochimiques. Elles sont définies par les paramètres suivants :

a- La teneur en eau : w%

Elle permet la détermination de la quantité d'eau existante dans le sol naturel (échantillon).

La teneur en eau est égal le rapport de la masse d'eau ou du masse de matière sèche.

$$W_w$$
 $W = ----- \times 100$
 W_s

b-le degré de saturation : S r %

C'est le rapport du volume occupé par l'eau au volume des vides, (J.Cost et G.Senglerat; 1981).

$$S_r = \frac{V_w}{V_v} \times 100$$

c- Le poids volumique humide γ_h :

C'est le poids volumique de l'unité de volume, eau et air compris.

$$\gamma_h = \frac{W_t}{V_t}$$

d- le poids volumique sec γ_d :

C'est le poids volumique de l'unité de volume du sol exempt d'eau interstitielle.

$$\gamma_d = \frac{W_s}{V_t}$$

e- L'analyse granulométrique :

Elle permet de déterminer les proportions des grains de différentes tailles dans le sol. Elle effectue :

-par tamisage : pour les grains de diamètre supérieur à 80 u m.

-par sédimentométrie : pour les grains les plus fin inférieur 80 u m.

Les résultats sont exprimés sous forme d'une courbe appelée « courbe granulométrique », (G.Philliponnat ; 1979).

f- Les limites d'atterberg:

Elles permettent de déceler l'état d'humidité correspondant aux limites entre trois (états solide, plastique, et liquide).

Remarque:

Cet essai ne s applique qu'aux sols cohérents à grain fin tels que les argiles, (P.Mouroux et al; 1988).

-limite de liquidité (W1) : le passage entre l'état liquide et l'état plastique ;

-limite de plasticité (W_p): le passage entre l'état plastique et l'état solide, (G.philiponnat; 1979).

Ces limites sont déterminer son fraction de sol passant au travers du tamis 200 u m.

-l'indice de plasticité (I_p) : Elle définit l'étendue du domaine plastique du sol entre la limite de liquidité et la limite de plasticité.

$$I_p = W_{l} - W_p$$

V-2-2-Les essais mécaniques :

Elles permettent de déterminer les caractéristiques mécaniques des sols et calculer la déformation de surface. Elles sont définies par des plusieurs essais :

V-2-2-1- l'essai de cisaillement :

Il existe plusieurs types des appareils qui utilisent pour les essais de cisaillement :

- * les appareils pour la détermination in situ (sismomètre).
- * les appareils de laboratoire (l'appareil à cisaillement rectiligne ou boite de cazagrande et l'appareil triaxial)

a- description de l'essai de cisaillement rectiligne :

L'échantillon étudies est placée entre deux demi- boites qui peuvent se déplacer horizontalement l'une par apport à l'autre. Un piston permet d'exercer sur le sol une contrainte normale déterminée.

-La demi- boite inférieure est entraînée horizontalement à vitesse constante. L'effort de cisaillement est mesuré à l'aide d'une anneau dynamométrique fixé à la demi- boite supérieur.

-Il existe des comparateurs pour à mesuré les déformations verticales et horizontales (G.Dreyfus; 1971).

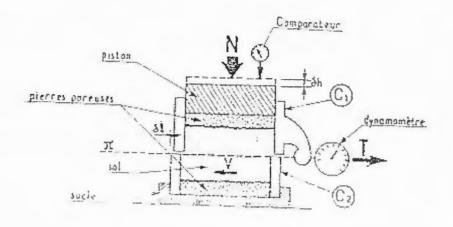


Fig.V-4 : Schéma d'appareil de Cazagrande

c- Description des essais triaxiaux :

L'échantillon du sol est placée dans une cellule qui contient un fluide sous pression, de l'eau en général ; ils donc soumis sur sa surface latérale à une contrainte radial (δr) égal à pression qui règne dans la cellule.

Par ailleurs, l'éprouvette peut – être comprimée verticalement à l'aide d'un piston.

La déformation verticale est mesurée à l'aide d'un capteur de déplacement,(J.Cost et G.Senglerat;1981).

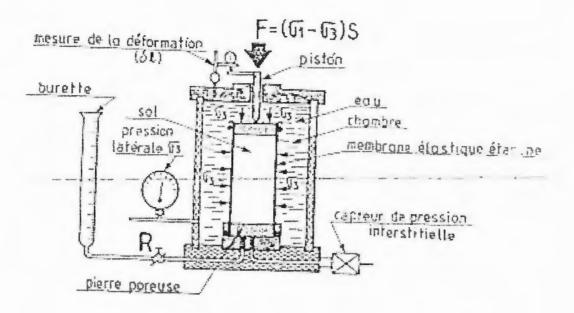


Fig. V-5 : Schéma d'appareil de compression triaxiale.

V-2-2-3- Autres essais de laboratoire :

En plus des essais décrits précédentes, il existe des essais chimiques permettent d'estimer l'agressivité des sols et de l'eaux.

Chapitre VI:

Programme de reconnaissance géotechnique du site

VI-1- Introduction:

Après avoir passé en revue les différentes méthodes, utilisées pour la reconnaissance des sols, nous allons à présent aborder la partie pratique de notre travail.

Dans ce chapitre, on va se pencher sur les essais réalisés in situ ainsi qu'au laboratoire et essayer d'en tirer les renseignements essentiel pour l'étude de la stabilité du site de CILOC.

VI-2- Reconnaissance du site:

✓ VI-2-1- Situation:

La dénomination de CILOC concerne une série de cinq immeubles en R+12, orientés N-S. Ces bâtiments occupent la bordure occidentale du plateau de Belleville, et dominent un versant de pente relativement élevée (20 à 25%) jusqu' à la RN 27. En aval de cette route, le versant est de plus faible déclivité (10 à 15%) et se prolonge jusqu'à Zaouch et Boudraa.

Ce versant a affecté, depuis Février 1987, par un glissement au pied de bâtiment B.

VI-3- Reconnaissance des sols :

VI-3-1- Organisation de la reconnaissance :

Pour déceler les caractéristiques d'identifications et mécaniques des sols, et notamment la résistance des sols en place au cisaillement, EEG SIMEC SOL / LTP Est, à réaliser les travaux suivants :

a-In situ:

- *les sondages carottés avec prélèvement d'échantillons intacts :
 - neuf (09) sondages sont réalisée en 1987;
 - quatre (04) sondage sont réalisée en 2002 ;

*le tableau ci-dessous montre les cordonnées et leur profondeur des sondages nouveaux.

Tableau VI-1: sondages carottés réalisés sur le site étudié

Sondage	X	Y	Z	Profondeur	Observation
Sc1	850027.61	345990.15	605.50	71.0	Remplace
Sc1-N	850020.08	345990.08	604.89	49	cs1
Sc2	849979.53	345920.97	588.29	61.0	Détruit
Sc2 (Sc2-N)	849982.04	345932.32	588.09	47	Remplace
					sc2

^{*}Trois (03) forages Sc1, Sc1-N et Sc2 ont été équipés des tubes inclinométriques.

- -Scz1 en tête de pente, près du sondage Sc1;
- -Scz2 à proximité du sondage Sc2;
- -Scz3 en pied de versant, près de la RN 27.

b- Au laboratoire:

Les échantillons des sols prélevés dans ces sondages ont été soumis aux essais de laboratoire suivant :

- *la détermination de :
 - -la teneur en eau (W%).
 - -Degré de saturation (Sr%).
- *l'analyse granulométrique.
- *Détermination de la limite d'atterberg :
 - -limite de liquidité W₁;
 - -l'imite de plasticité W_p;
 - -l'indice de plasticité I_p ;
 - -l'indice de consistance I_c.
- *les essais de cisaillement rectiligne non consolidé, non drainé, pour déterminer les caractéristiques mécaniques du sol à savoir :
 - -la cohésion apparente Cu (bar);
 - -l'angle de frottement φ (°).

^{*}Trois (03) piézomètres ont été installés dans le versant :

VI-3-2- L'interprétation des essais :

VI-3-2-1- Les formations du quaternaire, remblai :

* Masse volumique sèche:

Elle est comprise entre 1.16 g/cm³ (moyenne 1.86 g /cm³ de 69 valeur)

* Teneur en eau:

Les valeurs des teneurs en eau sont comprises entre 6.4 %et 29.7 % la moyenne de W est de 14.8 % (85 valeurs) le sol douce moyennement humide.

*Limite d'atterberg:

Les résultats obtenus sont représentés dans le tableau ci-dessous

Tableau VI-2: les valeurs des essais de limite d'atterberg.

·	W ₁	W _p	Ιp	Ιc
Maximum	58.5	29.4	30.8	2.0
Minimum	36.2	15.2	13.0	0.4
Moyenne	44.0	21.9	22.2	1.3
Nombre de valeurs	66	66	66	66

Ces terrains correspondent à un sol plastique, ferme à dur.

* caractéristique de cisaillement :

Les résultats des essais cisaillement rectiligne sont regroupes dans le tableau ci après :

Tableau VI-3: Résultats des essais de cisaillement rectiligne.

Référence de l'échantillon		Cisaillement rectiligne (U.U)		Référenc	Cisaillement rectiligne (U.U)		
Sondage N:	Profondeur (m)	C bar	φ (°)	Sondage N:	Profondeur (m)	C	φ (°)
S1	7.60-1.90	0.3	1	S5	16.10-16.70	0.0	15
21	14.20-14.70	1.1	38		8.00-8.80	0.0	24
GO	13.90-14.20	0.5	17	S8	12.20-12.70	1.1	33
S2	23.20-23.80	0.0	15		23.40-24.00	0.9	25
	4.00-4.55	0.1	7	S9	3.00-3.70		
S3	6.30-7.00	0.0	15		6.60-7.00	0.2	24
33	8.20-8.80	0.9	1		5.30-5.80	0.0	46
	18.50-18.90	0.2	18		7.40-8.00	0.0	27
	7.10-7.50	0.1	25	S10	7.40-8.00		
S4	12.00-12.80	1.7	25		17.00-17.50	0.8	6
	19.50-20.50	0.0	12		24.40-25.70	0.5	12

(U.U) non consolidé non drainé

VI-3-2-les formations du miocène :

Il s'agit de formations profondes, constituées de marnes qui peuvent être limoneuses.

* Masse volumique sèche :

Elle est varies entre 1.9 g/cm³ et 2.1 g/cm³ (moyenne 2.0 g/cm³ pour 5 valeurs).

* teneur en eau:

Les valeurs de teneur en eau est comprise entre 9.6% et 16% la moyenne des teneur en eau est 12.1% (5 valeur).

* Limite d'atterberg:

Les valeurs obtenues sont récapitulées dans le tableau suivant :

Tableau VI-4: les résultats des essais de limite d'Atterberg.

	W_l	W _p	I_p	I_{c}
Maximum	46.0	21.5	24.5	1.5
Minimum	38.0	20.8	17.8	1.2
Moyenne	42.0	21.1	20.8	1.4
Nombre de valeurs	3	3	3	3

Ces terrains correspondent à un sol plastique, de consistance dure

Diagramme de Cesagrande Miocène Quaternaire , plio-quaternaire Site Ciloc 60 50 Argiles Irès rès argiteux plastiques CH 40 Indice de plasticité argileux Argiles plastiques moyerinement argileux Argiles limons très plastiques CH Argiles peu plastiques faiblement argileux 10 Limons peu CL plastiques 0 100 60 70 80 90 40 50 30 10 20 0 Limite de liquidité WL %

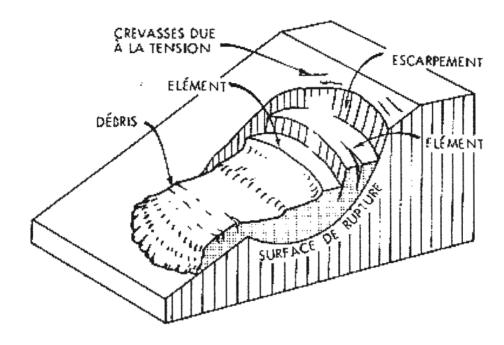
Fig.VI-1: Diagramme de Casagrande des sols de Ciloc.

* caractéristique de cisaillement :

Un essais de cisaillement rectiligne sue le marne du sondage Sc2 a donne les résultats suivants :

Tableau VI-5 : les résultats d'un essai de cisaillement rectiligne

sondage	Prof échantillon	Cohésion C (bar)	Angle de frottement φ (°)
Sc2	45.10-45.5	2.4	27


Chapitre VII:

Glissement de terrain.

VII- Aperçus théorique sur les glissements de terrain :

VII-1- Introduction:

Le terme de « Mouvement de Terrain » regroupe des phénomènes très variés, par leur nature (affaissements et effondrements dus aux cavités souterraines...) instabilités de versants (glissements, écroulements, coulées boueuses, éboulement rocheux...) et par leur dimension (phénomènes significatifs à partir de quelques m3 et pouvant atteindre quelques centaines de millions de m³). On inclut parfois également les déformations des sols dues à la sécheresse : retrait et gonflement.

FigVII-1: Illustration d'un glissement de terrain.

VII-2- Les différentes causes de rupture :

- -Les ruptures dues aux modifications du moment moteur (surcharges additionnelles par exemple).
- -Les ruptures provoquées par les modifications des conditions hydrauliques (apparition d'un écoulement).
- -Les ruptures entraînées par les modifications des caractéristiques géotechniques du terrain (rupture à long terme des pentes naturelles).

Plusieurs exemples montrent que la morphologie de glissement présente divers aspects, tant dans les milieux pulvérulents que dans les milieux cohérents, (J.Cost et G. Senglirat; 1981)

VII-3- Descriptions des phénomènes :

La répartition spatiale des mouvements de terrain est guidée par la topographie et par la géologie (nature et fracturation des formations affleurantes, hydrogéologie) c'est-à-dire par l'environnement physique. Ils concernent non seulement les régions montagneuses et côtières, mais aussi les bassins à forte densité de vides souterrains (naturels ou miniers), les sols argileux sensibles aux variations de teneur en eau, ... Leur occurrence est très marquée par les variations climatiques (périodes de fortes pluies, fonte des neiges, sécheresse) mais peut aussi être liée à des secousses sismiques ou encore être induite par les activités humaines.

VII-4- Classifications des mouvements de terrain :

VII-4-1- Les pentes naturelles :

Les mouvements de terrain des pentes naturelles peuvent se présenter sous plusieurs formes telles que :

- · Les écroulements ;
- Les glissements : glissement plan ;
 - glissement rotationnel simple;
 - glissement rotationnel complexe;
- Le fluage et la solifluxion;
- Les coulées boueuses, (G.Philliponnat; 1979).

VII-4-2- Talus artificiels:

Les talus artificiels sont essentiellement affectés par des glissements et parfois par des phénomènes de fluage.

On peut les classer en fonctions des types d'ouvrages :

- -Talus en déblais (Fig.VII-2);
- -Talus en remblais sur sol compressible;
- -Talus en remblais sur sol mou (Fig. VII-3);

-Ouvrages de soutènement vis-à-vis d'un glissement profond (Fig.VII-4); -Stabilité des digues et barrages en terre, (G.Philliponnat; 1979).

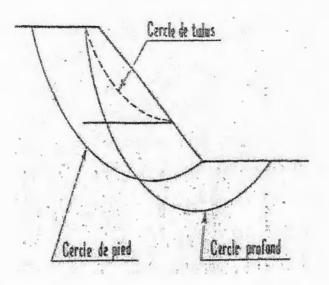


Fig.VII-2: Différents types de rupture circulaire.

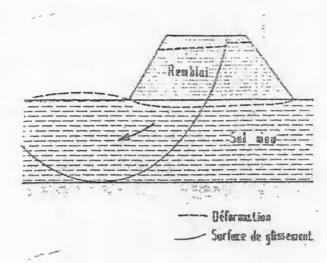


Fig.VII-3: Remblai sur sol mou.

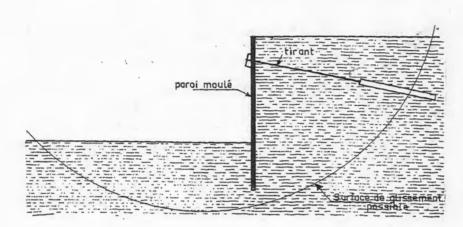


Fig.VII-4: Rupture circulaire sous un soutènement.

VII-5-Decription des principaux types de mouvements :

VII-5-1- Ecroulements:

Les écroulements concernent les massifs rocheux plus ou moins fracturés, qui se romprent progressivement par tassement, basculement, rupture de bancs rocheux, ... etc. Ils consistent en une chute de terrain rocheux se détachant d'une falaise sous l'action de la pesanteur, complétée ou non par une secousse sismique ou des surpressions d'eau, en général par manque d'appui à la base.

VII-5-2-Fluages et solifluxion :

a-Fluage: Il correspond à des mouvements lents dus à des sollicitations proches de la rupture du sol. L'état ultime pouvant être soit la stabilisation, soit la rupture. (Fig.VII-5)

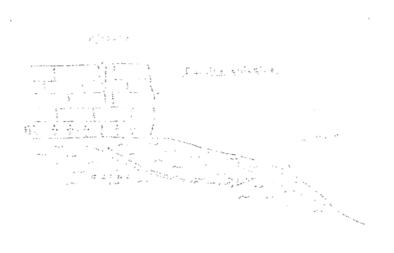


Fig. VII-5: Exemple de fluage.

b- Soliffuxion:

C'est un cas particulier de fluage. C'est un phénomène superficiel provoqué par les variations volumiques du sol au cours des saisons (gel dégel en montagnes, alternance de saisons sèches et pluvieuses). Elle se repère par la présence d'ondulations du sol et par l'inclinaison des arbres, (A.Benaissa; 2003)

VII-5-3- Coulées boueuses :

Les coulées boueuses sont dues aux infiltrations importantes d'eau, transportant des matériaux solides. Elles se produisent surtout en montagne. Elles sont caractérisées par leur très fort remaniement interne et par leur apparition dans les sols meubles ; l'extension peut être très grand surtout si la teneur en eau est importante.

VII-5-4-Glissements:

Les glissements affectent les sols; ces mouvements ont lieu le long d'une surface définie. Les vitesses de rupture sont variables, dans certains cas la rupture est précédée de signes annonciateurs, dans d'autres cas, elle est brutale, (G.Philliponnat et H.Bertrant; 2003, A.Benaissa; 2003).

a- glissement plan: qui s'effectue le long d'une surface de rupture sensiblement plane. (Fig.VII-6)

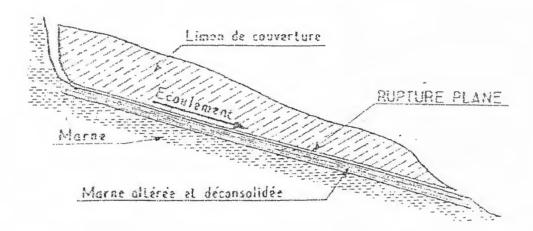


Fig.VII-6: Glissement plan.

b-glissement rotationnel simple : est le plus fréquent. La surface de rupture a une forme simple semblable à un cylindre. (Fig. VII-7)

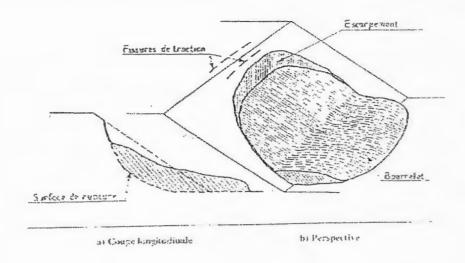


Fig.VII-7: Glissement rotationnel.

c-glissement rotationnel complexe : est un glissement multiple «emboîtés» les uns dans les autres. L'apparition du premier glissement, en bas de la pente, provoque une perte brutale de butée pour les terres situées au dessus, et aussi des glissements successifs remontant vers l'amont. (Fig.VII-8)

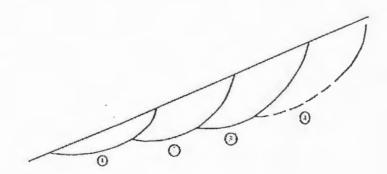


Fig. VII-8: Glissements successifs emboîtés.

Chapitre VIII:

Calcule de stabilité.

Chapitre VIII Calcule de stabilité

VIII- Calcule de stabilité:

VIII-1- Calcule de stabilité en rupture circulaire :

Le calcul de la stabilité d'un ouvrage ou d'un talus se fait par tâtonnement en cherchant la ligne de glissement la plus défavorable. Cette ligne de glissement est prise comme une ligne circulaire (hypothèse simplificatrice).

Il existe plusieurs méthodes de calcul. La plus connue est la méthode de Fellenius.

VIII-1-1- Méthode des tranches de Fellenius (1927) :

VIII-1-1-En absence de nappe :

Dans cette méthode, on suppose que la surface de rupture potentielle est circulaire, est on néglige totalement les efforts inter tranches, qui se divisent en efforts verticaux V_n et V_{n+1} et horizontaux H_n et H_{n+1} . Considérons un talus recoupant un certain nombre de couches de sol de caractéristiques différentes : C_i , ϕ_i , γ_i .

On veut déterminer le coefficient de sécurité vis- à- vis du glissement (Fs), il est défini :

$$\mathbf{F_S} = \frac{\sum Moments \ r\acute{e}sistants}{\sum Moments \ moteurs}$$

Soit un cercle quelconque de centre « O » et de rayon « R ».

Cette méthode consiste à diviser le volume concerné dans l'arc E M F en une série de tranches verticales (Fig.VIII-1), (G.Philliponnat et H.Bertrand ; 2003).

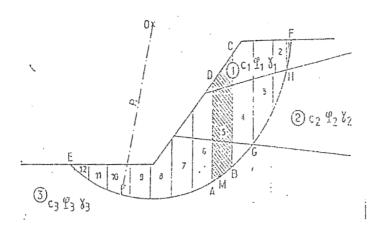


Fig-VIII-1: Découpage en tranches d'un talus.

- Etude de la tranche « A B C D » affectée par l'indice n : (n varie de 1 à 12).

Les différentes forces qui agissent sur cette tranche sont : (Fig. VIII-2-.a)

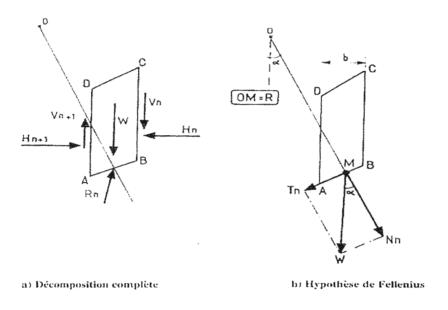


Fig.VIII-2: Forces agissantes sur la tranche n.

- \mathbf{W}_i : poids de la tranche n.

Se décompose en $\begin{cases} \text{une force normale (Nn).} \\ \text{Et une force tangentielle (Tn).} \end{cases}$

- $\mathbf{R}_{\mathbf{n}}$ (force résistante) : résistance du sol due à sa cohésion et son angle de fortement interne.

-Les réactions sur les faces verticales B C et A D décomposées en réactions horizontales : H_n et H_{n+1} , et en réactions verticales V_n et V_{n+1}

Par rapport au centre « O » on à : (Fig. : VIII-2- b)

a- Moment moteur: Celui du poids des terres, de l'eau interstitielle et des surcharges éventuelles tendant à provoquer le glissement.

b-Moment résistant: Celui des réactions s'opposant au glissement.

Le moment résistant est fourni par la valeur maximale que peut prendre la composante tangentielle R_n .

D'après Coulomb : $R_n = C_i .AB + N_n t_g \varphi_i$

La somme des moments résistants pour toutes les tranches sera :

$$\sum_{n=1}^{n=m} (Ci.AB + N.tg\varphi i)$$

Avec: m, nombre total des tranches.

C_i, φ i : caractéristiques mécaniques de la couche dans laquelle se trouve AB.

Avec:
$$\begin{cases} N_n = W \cos \alpha \\ T_n = W \sin \alpha \\ L = AB = b/\cos \alpha \end{cases}$$

La formule VIII-1 devient :
$$Fs = \frac{\sum_{n=1}^{n=m} \left[C_i \cdot \frac{b_i}{\cos \alpha_i} + W_i \cdot \cos \alpha_i \cdot tg \varphi_i \right]}{\sum_{n=1}^{n=m} W_i \cdot \sin \alpha_i}$$
...VIII-2

Remarque:

Les Paramètres géométriques intervenant dans le calcule de Fs sont :

b: la largeur des tranches.

α : l'angle orienté que fait le rayon du cercle passant par le milieu de la base de la tranche avec la verticale.

Et La hauteur de la tranche pour le calcul du poids (W).

VIII-1-1-2-En présence de nappe :

La prise en compte des écoulements est assez délicate. La méthode des tranches de Fellenius est appliquée en utilisant l'équation de Coulomb : $\tau = C + (\sigma - U)$. $tg\phi$

a-Détermination de la Pression interstitielle (U) :

La pression interstitielle (U) en chaque point du massif de sol se détermine à partir du réseau d'écoulement.

Considérons la tranche A B C D (Fig.VII-3), la valeur de (U) est donnée sur la figure par :

$$U = \gamma_w$$
. Z_w .

 Z_w : La distance entre le point M et le point N où l'équipotentielle passant par M recoupe la surface libre.

Par définition de l'équipotentielle, les charges hydrauliques en M et en N sont identiques On a donc : $U = (Zn - Zm) \gamma_w$

b- Calcul du coefficient de sécurité global :

Soit : W : le poids total de la tranche AB C D, V_1 et V_2 les volumes :

$$\mathbf{W} = \gamma_{\mathbf{h}} \cdot \mathbf{V}_1 + \gamma_{\mathbf{sat}} \cdot \mathbf{V}_2$$

N et T: les composantes normale et tangentielle sur l'arc AB du poids W de la tranche ABCD ((Fig.VIII-3).

La résistance maximale au cisaillement le long de AB est donnée par :

$$C.AB + (N - U.AB) tg \phi$$

La somme des moments résistants pour toutes les tranches :

$$\sum_{n=1}^{n=m} \left[Ci.AB + (N-U.AB) tg \varphi_i \right] \Rightarrow F_S = \frac{\sum_{n=1}^{n=m} \left[C_i.AB + (W_i.\cos \alpha_i - U.AB) tg \varphi_i \right]}{\sum_{n=1}^{n=m} T}$$

La formule devient :
$$F_{S} = \frac{\sum_{n=1}^{n=m} \left[C_{i} \frac{b_{i}}{\cos \alpha_{i}} + \left(W_{i} \cdot \cos \alpha_{i} - \frac{U \cdot b_{i}}{\cos \alpha_{i}} \right) tg \varphi_{i} \right]}{\sum_{n=1}^{n=m} W_{i} \cdot \sin \alpha_{i}}$$

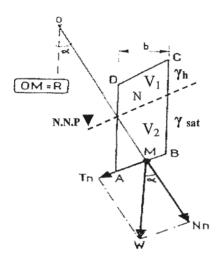


Fig.VIII -3-: Méthode de Fellinius en présence de nappe.

VIII-2- calcule de stabilité en rupture plane (glissement plan) :

Soit une pente indéfinie d'inclinaison (β) dans un sol ayant pour caractéristiques :

γ: poids volumique au dessus de la nappe,

 $\gamma_{\,\text{sat}}$: poids volumique saturé au dessous de la nappe,

C et ϕ : la cohésion et l'angle de frottement interne du sol

La nappe est située sur une hauteur (h_w) et s'écoule parallèlement à la pente ce qui est le cas le plus courant (fig.VIII-4).

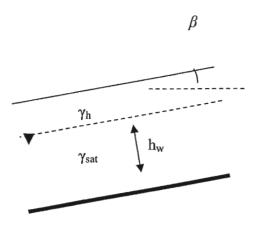


Fig. VIII-4: Rupture plane.

VIII-2-1- en présence de nappe :

$$Fs = \frac{C + (\sum_{i=0}^{Z} \gamma_{i}.h_{i} - \gamma_{w}.h_{w}).\cos^{2}\beta.tg\varphi}{\sin\beta.\cos\beta\sum_{i=0}^{Z} \gamma_{i}.h_{i}}$$

VIII-2-2- en absence de nappe :

$$Fs = \frac{C + \gamma . h. \cos^2 \beta . tg \varphi}{\gamma . h. (\sin \beta . \cos \beta)}$$

VIII-3- Recherche de coefficient de sécurité minimale :

Pour donner une valeur précise de (Fs), on commence par diverses lignes de glissements possibles et on cherche pour quelle ligne on obtient la valeur la plus faible de (Fs), puisque c'est le long de cette surface de glissement que la rupture se produira.

Il n'y a pas de méthode précise pour définir ce cercle, la méthode générale consiste à calculer le facteur de sécurité (**Fs**) pour un nombre suffisant de cercles (fig.VIII-5), (G.Philliponnat et H.Bertrand; 2003).

En général, il y a beaucoup de possibilités car :

- ✓ Pour un cercle donné, on peut faire varier le rayon du cercle.
- ✓ La possibilité du centre peut varier horizontalement et verticalement.
- ✓ Pour chaque centre de cercle, on porte le (Fs) calculé.

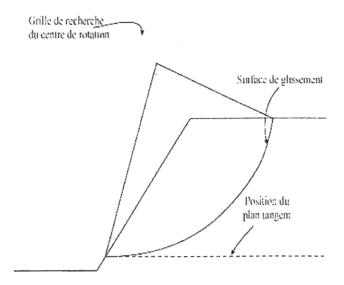


Fig.VIII-5: Grille de recherche du centre de rotation.

VIII-4- Choix de coefficient de sécurité :

Le cœfficient de sécurité (**Fs**) définit par rapport au moment résistant par des essais successifs permettent de déterminer le cercle le plus défavorable, c'est-à-dire celui dont le (**Fs**) est le plus petit, (P.Habib; 1997).

Les intervalles des valeurs de (Fs) pour considérer que le talus est stable ou non sont:

- Fs $_{min}$ < 1 : talus instable.
- $1 < \text{Fs}_{\text{min}} < 1,5$: talus douteux.
- Fs $_{min}$ > 1,5 : talus stable.

VIII-5- L'étude de stabilité de site de CILoc:

Le glissement de CIloc remonté à Février 1987 d'après Montjoie (1987) et A. Benaissa (1989), qui relatent l'apparition d'un escarpement qui longe le coin sud-ouest de bâtiment B, à 2-3m de ce dernier, avec des décrochements de 1-2,5m, en tête du versant, et à proximité du bâtiment B; à la suite de travaux de terassemets dans la pente.

VIII-5-1- Les facteurs de glissement :

Avant tout mouvement, il existe un état d'équilibre entre les différents facteurs, les causes des mouvements doivent donc être recherchées dans les variations possibles de ces facteurs.

Le glissement a été le résultat de l'action conjuguée de différents facteurs à savoir :

- La lithologie de la zone est représentée par des argiles avec la présence des galets calcaires et sable.
- Le terrain présente un relief, qui caractérisé par une pente de l'ordre de 25% orienté NE-SW, donc cela favorisera le glissement.
- L'action d'eau qui joue un rôle très important dans la diminution de la stabilité du terrain.
- La surcharge de la construction surtout le bâtiment B, qui situe sur l'amont du versant.
- L'effet de siesme qui joue un rôle d'accélération de glissement.

VIII-5-2- Les applications pratiques :

Dans notre calcule, on a utilisés la méthode de Fellinuis (1929) pour déterminer le coefficient de sécurité (Fs), en présence d'eau :

$$Fs = \frac{\sum_{n=1}^{n=m} \left[C_i \frac{b_i}{\cos \alpha_i} + \left(W_i \cdot \cos \alpha_i - \frac{U \cdot b_i}{\cos \alpha_i} \right) t g \varphi_i \right]}{\sum_{n=1}^{n=m} W_i \cdot \sin \alpha_i}$$

Pour cette étude, on pris les caractéristiques de sol suivants :

-poid volumique sec : γd

-poid volumique humide : $\gamma_h = \gamma d (W+1)$; avec: W=9,7%

Donc : γ_h =2,21(0,097+1) = 2,42 t/m³. -poid volumique saturé : γ_{sat} = γd +W γ_w ; avec : γw = 10 Kn/m³ =1 t/m³.

Donc : $\gamma_{sat} = 2.21 + (0.097*1) = 2.307 \text{ t/m}^3$.

Les caractéristiques mécaniques $\,C\,$ et ϕ sont varies selon le profondeur et la lithologie.

Les résultats de calcule sont représentées dans les tableaux suivants :

Li =
$$176,38m$$
; b = $5,34m$.

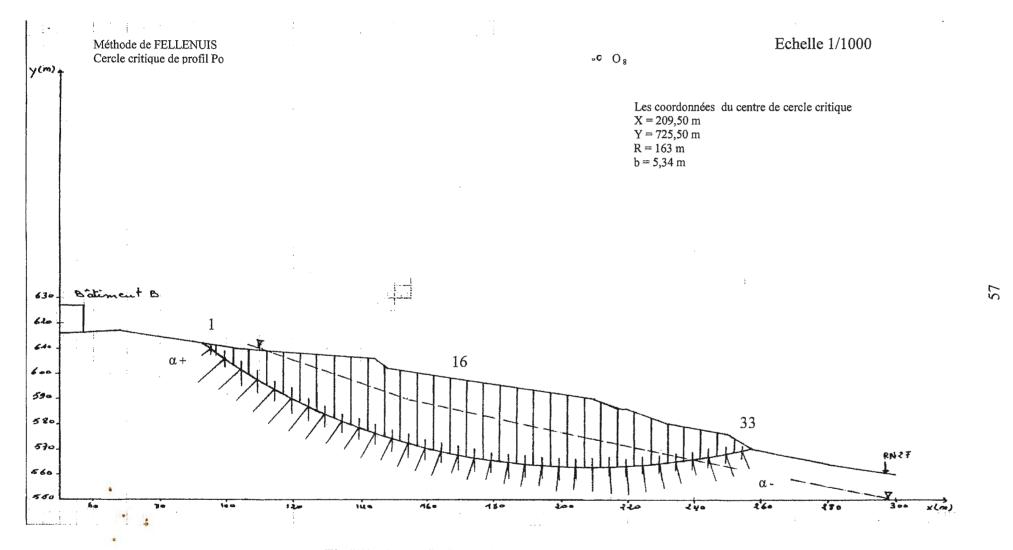


Fig.VIII-1: Profil du cercle critique du glissement.

Tableau VII-1 : Les résultats du calcule de (Fs) de cercle critique.

1	2
Ω	Û

N°	W_1	W ₂	W _t (t/m)	C(t/m ²)	φ(°)	α(°)	Sinα	WSina	Cosa	WCosα	b/Cosa	U(t/m²)	Ub/Cosα	1-2
1	_	18,47	18,47	1	25	45	0,707	13,05	0,707	13,05	7,55	2	15,10	-2,05
2	_	55,43	55,43	1	25	43	0,681	37,74	0,731	40,51	7,30	4,5	32,85	7,66
3	_	98,55	98,55	1	25	40	0,642	63,26	0,766	75,48	6,97	8	55,76	19,42
4	_	144,74	144,74	1	25	37,5	0,608	88,00	0,793	114,77	6,73	11,50	77,39	37,38
5	12,92	173,01	185,93	2	18	36	0,587	108,82	0,809	149,98	6,60	14	92,40	57,58
6	35,54	187,86	223,40	2	18	33,5	0,551	123,57	0,833	186,09	6,41	15	96,15	89,94
7	54,90	203,27	258,17	2	18	32	0,529	136,57	0,848	218,92	6,29	16,5	103,78	115,14
8	80,75	209,43	290,18	2	18	30	0,5	145,09	0,866	251,29	6,16	17	104,72	146,57
9	109,84	112,50	322,34	6	18	27,5	0,461	148,59	0,887	285,91	6,02	17,5	105,35	180,56
10	132,47	182,65	315,12	6	18	26	0,438	138,02	0,898	282,97	5,94	18	106,92	176,05
11	135,68	221,75	357,43	6	18	24	0,406	145,11	0,913	326,33	5,84	18	105,12	221,21
12	129,22	221,75	350,97	6	18	21	0,358	125,64	0,933	327,45	5,72	18	102,96	224,49
13	129,22	221,75	350,97	6	18	19,5	0,333	116,72	0,942	330,18	5,66	17,5	99,05	231,13
14	135,68	221,75	357,43	6	18	18,5	0,317	113,30	0,948	338,84	5,63	18	101,34	237,50
15	145,36	221,75	367,11	6	18	16	0,275	100,95	0,961	352,79	5,55	18	99,90	252,89
16	148,61	221,75	370,36	6	18	15	0,258	95,55	0,965	357,39	5,53	18	99,54	257,85
17	151,82	221,75	373,57	6	18	13,5	0,233	87,04	0,972	363,11	5,49	17,5	96,07	267,04
18	158,34	215,54	373,88	6	18	11,5	0,199	74,40	0,979	366,02	5,45	17	92,65	273,37
19	164,78	206,33	371,11	6	18	9,5	0,165	61,23	0,986	365,91	5,41	16,5	89,26	276,65
20	174,45	193,52	368,04	6	18	7	0,121	44,53	0,992	365,09	5,38	16	86,08	279,01
21	184,16	181,70	365,86	6	18	4	0,069	25,24	0,997	364,76	5,35	15	80,25	284,51
22	190,62	199,38	360,00	6	18	3	0,052	18,72	0,098	359,28	5,35	14	74,90	284,38
23	197,02	153,99	351,05	6	18	2	0,034	11,93	0,999	350,69	5,34	13	69,42	281,27
24	200,30	138,58	338,88	6	18	- 1	-0,017	-5,76	0,999	338,54	5,34	11,5	61,41	277,13
25	170,62	120,10	310,72	6	18	-2,5	-0,043	-13,36	0,999	310,40	5,34	10	53,40	257,00

N°	W_1	W ₂	W _t (t/m)	C(t/m²)	φ(°)	α(°)	Sinα	WSinα	Cosα	WCosα	b/Cosα	U(t/m²)	Ub/Cosα	1-2
26	187,38	98,55	285,93	2	18	-4	-0,069	-19,72	0,997	285,07	5,35	8	42,80	242,27
27	187,38	73,91	261,29	2	18	-6	-0,104	-27,17	0,994	259,72	5,37	6	32,22	227,50
28	171,23	52,35	223,58	2	18	-7	-0,121	-27,05	0,992	221,79	5,38	4,5	24,21	197,58
29	164,77	27,71	192,48	0	15	-9	-0,156	-30,02	0,987	189,97	5,41	2	10,82	179,15
30	164,17	3,77	167,84	9	1	-11	-0,190	-31,88	0,981	164,65	5,44	-	-	164,65
31	138,90	_	138,90	9	1	-13	-0,224	-31,11	0,974	135,28	5,48	-	-	135,28
32	100,13	-	100,13	9	1	-15	-0,258	-25,83	0,659	65,68	8,10	-	-	65,68
33	38,76	-	38,76	1	7	-17	-0,292	-11,31	0,563	21,82	9,48	-	-	21,82
Σ	-	-	-	-	-	<u> </u>	-	1799,4	-	-	-	_	-	-

 \Box

 W_1 : Le poid de la partie humide. W_2 : Le poid de la partie saturé. W_t : Le poid totale de la tranche. U: La pression de l'eau ($U = \gamma_w$. Z_w). Calcule de Fs:

$$Fs = \frac{\sum_{n=1}^{n=m} \left[C_i \frac{b_i}{\cos \alpha_i} + \left(W_i . \cos \alpha_i - \frac{U . b_i}{\cos \alpha_i} \right) tg \, \varphi_i \right]}{\sum_{n=1}^{n=m} W_i . \sin \alpha_i}$$

$$Fs = \frac{858,37 + 1820,93}{1799,40} = 1,49$$

 ${\mathbb T}$

> 3%

* Les coordonnées du centre des différents cercles O_i sont représentées dans le tableau suivant:

Centre O _i	X (m)	Y (m)	R (m)	B (m)	Fs
O ₁	160	645,50	60	5,44	1,42
O_2	178	652,50	78	5,63	1,28
O ₃	189	656,50	82	5,55	1,17
O ₄	207	671	102	5,56	1,14
O_5	233	667,50	96	5,32	0,88
O ₆	210,50	702,50	136	5,42	1,30
O_7	207,50	690,50	130	5,55	1,36
O_8	209,50	725,50	163	5,34	1,49
O ₉	110	643 ,50	43	5,52	1,63
O ₁₀	111,50	657,50	65	5,57	1,55
O ₁₁	110	648	53	5,55	1,57
O ₁₂	117,50	644	58	5,90	2,48

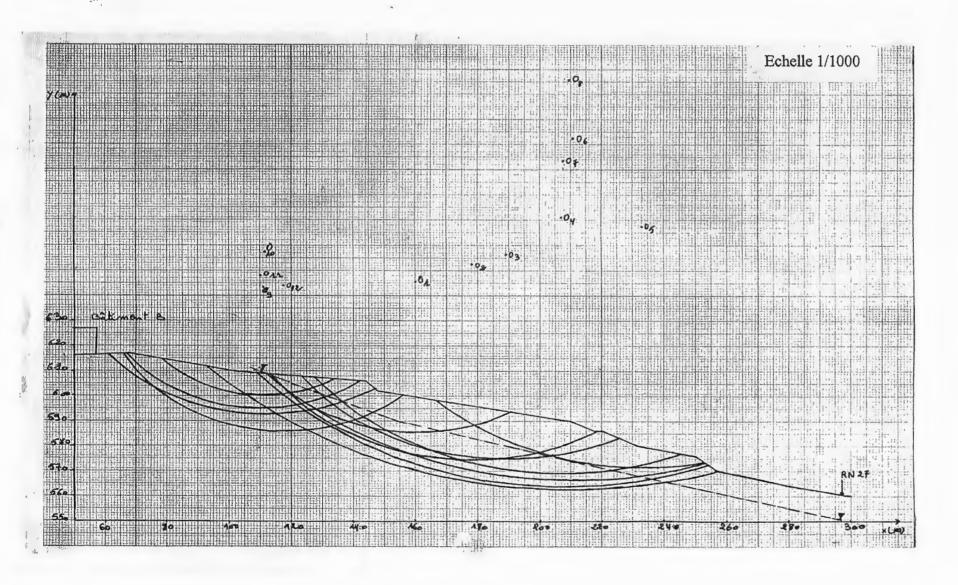


Fig.VIII-2 : Profil des différents cercles de glissement.

Chapitre IX:

Les recommandations.

VIX- Les recommandations:

Les solutions proposées sont les suivants :

- Eviter tous les travaux de surcharges sur le talus ;
- Eviter les travaux de terrassement au pied du talus ;
- Le reboisement de la zone glissée;
- Traitement de la pente du talus par la réalisation des banquettes horizontales (ex : 2m/6m pente de pente);
- La réalisation d'un massif en enrochements au pied du talus pour améliorer la stabilité.

Les résultats de calcule du coefficient de sécurité après la réalisation de ces solutions sont représentées dans les tableaux suivants :

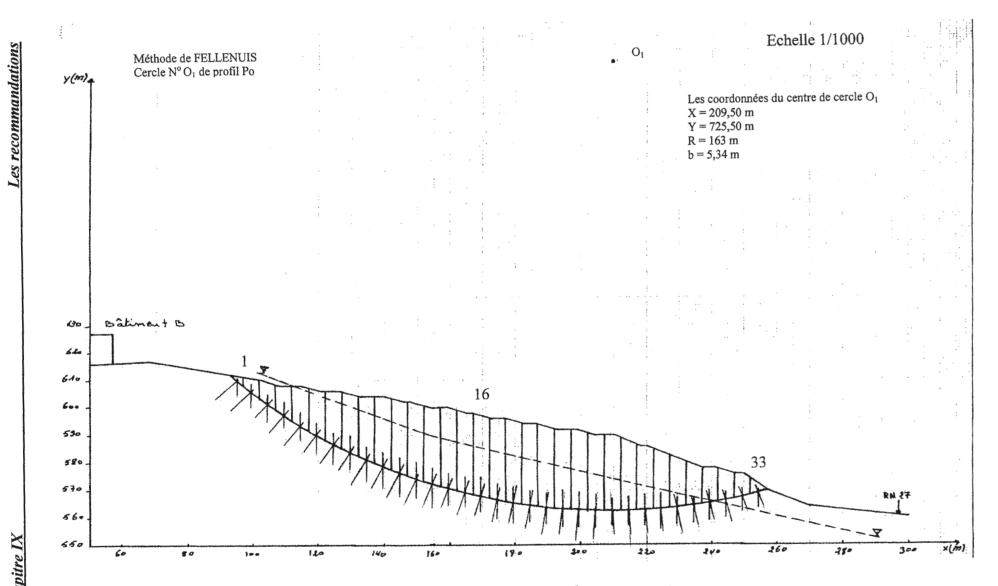


Fig.IX-1: Profil de talus après le terrassement.

Tableau VIII-1 : Les résultats de calcule de (Fs) après le terrassement.

1	2
Ω	Ω

Nº	W_1	W_2	W _t (t/m)	C(t/m ²)	φ(°)	α(°)	Sinα	WSina	Cosα	WCosα	b/Cosα	$U(t/m^2)$	Ub/Cosa	1-2
1	_	18,47	18,47	1	25	45	0,707	13,05	0,707	13,05	7,55	2	15,10	-2,05
2	-	55,43	55,43	1	25	43	0,681	37,74	0,731	40,51	7,30	4,5	32,85	7,66
3	-	86,23	86,23	1	25	40	0,642	55,35	0,766	66,05	6,97	7	47,11	18,94
4	-	123,19	123,19	1	25	37,5	0,608	74,89	0,793	97,68	6,73	10	67,30	30,38
5	6,46	160,15	166,61	2	18	36	0,587	97,80	0,809	134,78	6,60	14	92,40	42,32
6	9,70	187,86	197,56	2	18	33,5	0,551	108,85	0,833	164,56	6,41	15	96,15	68,41
7	25,86	203,27	229,13	2	18	32	0,529	121,20	0,848	194,30	6,29	16,5	103,78	90,52
8	45,22	209,43	254,65	2	18	30	0,5	127,32	0,866	220,52	6,16	17	104,72	115,60
9	67,85	212,50	280,35	6	18	27,5	0,461	129,24	0,887	248,67	6,02	17,5	105,35	145,32
10	87,24	218,65	305,89	6	18	26	0,438	133,97	0,898	274,68	5,94	18	106,92	167,76
11	100,13	221,75	221,88	6	18	24	0,406	130,68	0,913	293,87	5,84	18	105,12	188,75
12	109,84	221,75	331,59	6	18	21	0,358	118,70	0,933	309,37	5,72	18	102,96	206,77
13	122,76	221,75	344,51	6	18	19,5	0,333	114,72	0,942	324,52	5,66	17,5	99,05	225,47
14	135,68	221,75	357,43	6	18	18,5	0,317	113,30	0,948	338,84	5,63	18	101,34	237,50
15	142,14	221,75	363,89	6	18	16	0,275	100,06	0,961	349,69	5,55	18	99,90	250,15
16	142,14	221,75	363,89	6	18	15	0,258	93,88	0,965	351,15	5,53	18	99,54	251,61
17	148,61	221,75	370,36	6	18	13,5	0,233	86,29	0,972	359,98	5,49	17,5	96,07	263,91
18	155,07	215,59	370,66	6	18	11,5	0,199	73,76	0,979	362,87	5,45	17	92,65	270,22
19	161,53	206,34	367,87	6	18	9,5	0,165	60,69	0,986	362,71	5,41	16,5	89,26	273,45
20	167,99	194,02	362,01	6	18	7	0,121	43,80	0,992	359,11	5,38	16	86,08	273,03
21	171,23	181,70	352,93	6	18	4	0,069	24,35	0,997	351,87	5,35	15	80,25	271,62
22	184,16	169,38	353,54	6	18	3	0,052	18,38	0,098	352,83	5,35	14	74,90	277,93
23	193,84	153,99	347,83	6	18	2	0,034	11,82	0,999	347,48	5,34	13	69,42	278,06
24	197,08	138,58	335,66	6	18	- 1	-0,017	-5,70	0,999	335,32	5,34	11,5	61,41	273,91
25	193,84	120,10	313,94	6	18	-2,5	-0,043	-13,49	0,999	313,62	5,34	10	53,40	260,22

Nº	W_1	W ₂	W _t (t/m)	C(t/m ²)	φ(°)	α(°)	Sina	WSina	Cosa	WCosα	b/Cosa	U(t/m²)	Ub/Cosα	1-2
26	187,38	98,55	285,93	2	18	-4	-0,069	-19,72	0,997	285,07	5,35	8	42,80	242,27
27	180,91	73,92	254,83	2	18	-6	-0,104	-26,50	0,994	253,30	5,37	6	32,22	221,08
28	161,53	52,35	213,88	2	18	-7	-0,121	-25,87	0,992	212,16	5,38	4,5	24,21	187,95
29	151,85	27,71	179,56	0	15	-9	-0,156	-20,01	0,987	177,22	5,41	2	10,82	166,40
30	151,85	3,07	154,92	9	1	-11	-0,190	-29,43	0,981	151,97	5,44	-	-	151,97
31	122,76	-	122,76	9	1	-13	-0,224	-27,49	0,974	119,56	5,48	-	-	119,56
32	90,45	-	90,45	9	1	-15	-0,258	-23,33	0,659	59,60	8,10	-	-	59,60
33	38,76	-	38,76	1	7	-17	-0,292	-11,31	0,563	21,82	9,48	-	-	21,82
Σ	-	-	_	-	-	-	-	1687,49	-	-	-	-	-	-

Û

Û

W₁: Le poid de la partie humide. W₂: Le poid de la partie saturé.
W_t: Le poid totale de la tranche.

U: La pression de l'eau ($U=\gamma_w$. Z_w). Calcule de Fs:

$$F_{S} = \frac{\sum_{n=1}^{n=m} \left[C_{i} \frac{b_{i}}{\cos \alpha_{i}} + \left(W_{i} \cdot \cos \alpha_{i} - \frac{U \cdot b_{i}}{\cos \alpha_{i}} \right) tg \varphi_{i} \right]}{\sum_{n=1}^{n=m} W_{i} \cdot \sin \alpha_{i}}$$

$$F_{S} = \frac{858,37 + 1730,75}{1687,49} = 1,53$$

$$Fs = 1,53$$

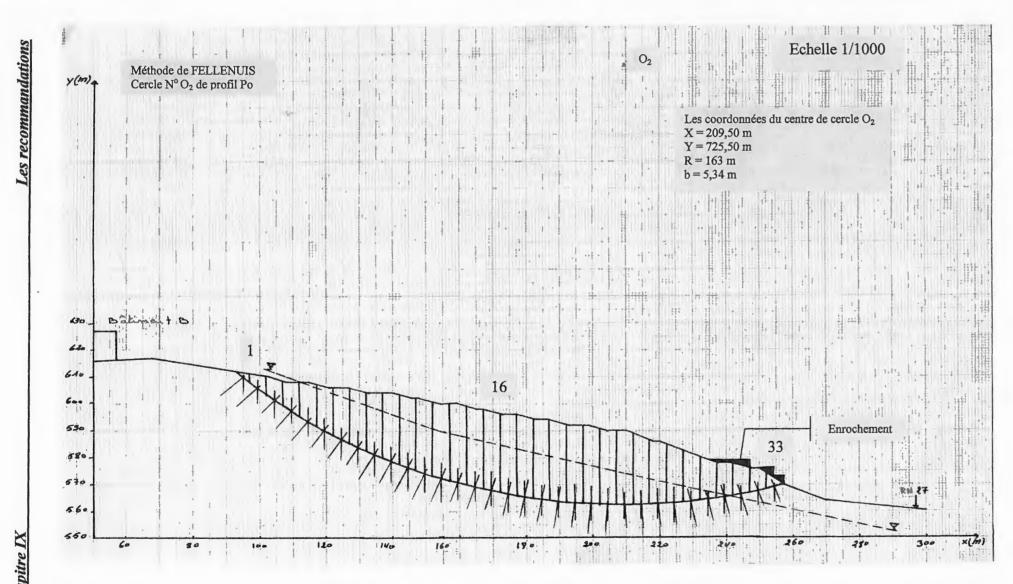


Fig.IX-2 : Profil de talus après le terrassement et l'enrochement.

Tableau VIII-1 : Les résultats de calcule de (Fs) après le terrassement et l'enrochement.

											Û			Û	
Nº	W_1	W ₂	W ₃	W _t (t/m)	C(t/m²)	φ(°)	α(°)	Sina	WSina	Cosa	WCosα	b/Cosa	U(t/m²)	Ub/Cosα	1-2
1	-	18,47	-	18,47	1	25	45	0,707	13,05	0,707	13,05	7,55	2	15,10	-2,05
2	-	55,43	-	55,43	1	25	43	0,681	37,74	0,731	40,51	7,30	4,5	32,85	7,66
3	-	86,23	-	86,23	1	25	40	0,642	55,35	0,766	66,05	6,97	7	47,11	18,94
1	-	123,19	-	123,19	1	25	37,5	0,608	74,89	0,793	97,68	6,73	10	67,30	30,38
5	6,46	160,15	-	166,61	2	18	36	0,587	97,80	0,809	134,78	6,60	14	92,40	42,32
5	9,70	187,86	-	197,56	2	18	33,5	0,551	108,85	0,833	164,56	6,41	15	96,15	68,41
7	25,86	203,27	-	229,13	2	18	32	0,529	121,20	0,848	194,30	6,29	16,5	103,78	90,52
3	45,22	209,43	-	254,65	2	18	30	0,5	127,32	0,866	220,52	6,16	17	104,72	115,60
)	67,85	212,50	-	280,35	6	18	27,5	0,461	129,24	0,887	248,67	6,02	17,5	105,35	145,32
0	87,24	218,65	-	305,89	6	18	26	0,438	133,97	0,898	274,68	5,94	18	106,92	167,76
1	100,13	221,75	-	221,88	6	18	24	0,406	130,68	0,913	293,87	5,84	18	105,12	188,75
2	109,84	221,75	-	331,59	6	18	21	0,358	118,70	0,933	309,37	5,72	18	102,96	206,77
3	122,76	221,75	-	344,51	6	18	19,5	0,333	114,72	0,942	324,52	5,66	17,5	99,05	225,47
4	135,68	221,75	-	357,43	6	18	18,5	0,317	113,30	0,948	338,84	5,63	18	101,34	237,50
5	142,14	221,75	-	363,89	6	18	16	0,275	100,06	0,961	349,69	5,55	18	99,90	250,15
6	142,14	221,75	-	363,89	6	18	15	0,258	93,88	0,965	351,15	5,53	18	99,54	251,61
7	148,61	221,75	-	370,36	6	18	13,5	0,233	86,29	0,972	359,98	5,49	17,5	96,07	263,91
8	155,07	215,59	-	370,66	6	18	11,5	0,199	73,76	0,979	362,87	5,45	17	92,65	270,22
9	161,53	206,34	-	367,87	6	18	9,5	0,165	60,69	0,986	362,71	5,41	16,5	89,26	273,45
0.9	167,99	194,02	-	362,01	6	18	7	0,121	43,80	0,992	359,11	5,38	16	86,08	273,03
21	171,23	181,70	-	352,93	6	18	4	0,069	24,35	0,997	351,87	5,35	15	80,25	271,62
2	184,16	169,38	-	353,54	6	18	3	0,052	18,38	0,098	352,83	5,35	14	74,90	277,93
3	193,84	153,99	-	347,83	6	18	2	0,034	11,82	0,999	347,48	5,34	13	69,42	278,06
24	197,08	138,58	-	335,66	6	18	- 1	-0,017	-5,70	0,999	335,32	5,34	11,5	61,41	273,91
25	193,84	120,10	-	313,94	6	18	-2,5	-0,043	-13,49	0,999	313,62	5,34	10	53,40	260,22

Nº	W_1	W ₂	W ₃	W _t (t/m)	C(t/m ²)	φ(°)	α(°)	Sina	WSina	Cosa	WCosα	b/Cosa	U(t/m²)	Ub/Cosα	1-2
26	187,38	98,55	-	285,93	2	18	-4	-0,069	-19,72	0,997	285,07	5,35	8	42,80	242,27
27	180,91	73,92	-	254,83	2	18	-6	-0,104	-26,50	0,994	253,30	5,37	6	32,22	221,08
28	161,53	52,35	-	213,88	2	18	-7	-0,121	-25,87	0,992	212,16	5,38	4,5	24,21	187,95
29	148,61	27,70	8,02	184,33	0	15	-9	-0,156	-28,75	0,987	181,93	5,41	2	10,82	171,11
30	151,85	3,07	10,68	165,60	9	1	-11	-0,190	-31,46	0,981	162,45	5,44	-	-	192,45
31	122,76	-	21,36	144,12	9	1	-13	-0,224	-32,28	0,974	140,37	5,48	-	-	140,37
32	90,45	-	10,68	101,13	9	1	-15	-0,258	-26,09	0,659	66,64	8,10	-	-	66,64
33	38,76		52,14	90,90	1	7	-17	-0,292	-2654	0,563	51,17	9,48	-	-	51,17
Σ	-	_		-	-	-	-	-	1653,67	-	-	-	-	-	-

W₁: Le poid de la partie humide.W₂: Le poid de la partie saturé.

 W_3 : Le poid de l'enrochement, avec : $\gamma = 20 \text{ Kn/m}^3 = 2 \text{ t/m}^3$. W_t : Le poid totale de la tranche.

U: La pression de l'eau (U= γ_w . Z_w).

Calcule de Fs :

$$Fs = \frac{\sum_{n=1}^{n=m} \left[C_i \frac{b_i}{\cos \alpha_i} + \left(W_i \cdot \cos \alpha_i - \frac{U \cdot b_i}{\cos \alpha_i} \right) tg \, \varphi_i \right]}{\sum_{n=1}^{n=m} W_i \cdot \sin \alpha_i}$$

$$Fs = \frac{858,37 + 1735,93}{1653,67} = 1,57$$

$$Fs = 1,57$$

89

 Ω

 $\hat{\mathbb{U}}$

Conclusion

Conclusion

Au terme de cette étude, nous pouvons dresser un bilan des points que nous avons établis et qui nous paraissent importants.

- Du point de vue géologique, le terrain en question appartient au Mio-Pliocène. Ce sont essentiellement des formations argilo-marneuses. Ils montrent dans le détail une grande hétérogénéité à la fois dans le sens vertical et dans le plan horizontal, avec des niveaux lenticulaires à perméabilité plus forte (grés, sables et graviers).
- Du point de vue climatique, le site est caractérisé par un climat semi-aride doux, avec une moyenne de précipitation égale à 61,15 mm entre octobre et Avril, mais ce qui est important se sont les précipitations exceptionnelles qui se concentrent sur la courte période et qui sont dangereuses.
- Du point de vue géotechnique, on classe ces sols comme des argiles non organiques, de moyenne à forte plasticité. La présence des carbonates en profondeur et les fragments de gypses de manière abondante provoque au contacte de l'eau la fragilité de ces argiles.
- En ce qui concerne le comportement mécanique généralement ces terrains de nature argileux et argilo-marneux sont peu résistants au cisaillement.
- Pour ce qui est du mécanisme même des mouvements de terrain, il s'agit d'un glissement de forme complexe et profond.
- Enfin, les calcules de (Fs) par la méthode de Fellenius montrent un instabilité de terrain en présence d'eau.

On peut dire que la stabilisation doit être recherché dans l'élimination aussi complète que possible des arrivées d'eau (eau naturelle et rejets d'eau usée). Ainsi que dans le drainage des niveaux plus perméable.

Bibliographie

Benaissa .A (2003): calcul de stabilité, glissement de terrain. o.p.u, 95.

Boullin .J.P (1977): Géologie alpine de petite Kabylie dans les régions de Collo et d'El-Milia (Algérie). Thèse de doctorat. Paris roneot .509 p.

Boullin.J.P (1979): La transversale de Collo et d'EL.Milia (petite Kabylie): Une région clef pour l'interprétation de la tectonique alpine de la chaîne littorale d'Algérie. Mem.soc, Geol. Série, pp.1_84.

Bouillin.J.P (1986): Le bassin maghrébin, Une ancienne.limito entre l'Europe et l'Afrique à l'Ouest des alpes.Soc.Geol.France, pp.558.

Caire.A (1957): Etude géologique de la région de Biban (Algérie). Thèse .Paris. Bull. Serv. Carte Geol, nouv. .série, pp 1-818.

Coiffait.P.E (1992): Un bassin poste _ nappes dans son cadre structural: l'exemple.du bassin de Constantine (Algérie_oriental). Thèse doctoral. Univ. Nancy. 505p.

Cost.J et Senglerat.G (1981): cours pratiques de mécanique des sols, Tom 1: plasticité et calcul des tassements des ouvrages, 3 eme édition, dunad.

Cost.J et Senglerat.G (1983): cours pratique de mécanique des sols, Tome 2: calcul des ouvrages 3^{eme} édition dumod.

Deleau.P (1939): Etude géologique des régions de Jemmapes, Hammam Meskoutine et du col des oliviers, n°= 14, t.1,551 p. Alger.

Dreyfus.G (1971): Etude des Remblai sur les sols compressibles (recommandation de laboratoire des ponts et chaussées), DUIVOD.

Durant Delga.M (1955): Etude géologique de l'ouest de la chaîne nimidique (Algérie). Thèse sciences .Paris .Publ. Serv. Carte Geol. Algérie.

Durant Delga.M (1969): Mise en point sur la structure du Nord Est de la Berberie. Publ. Serv. Carte géol. Algérie. Ns. Alger.

Durozoy.G (1960): Etude géologique e de la région de Château dum Rhumel .Thèse .Alger, N° 24 ; 533 pp.

Guirand.R (1973): Evolution post-triasique de l'avant pays de la chaîne alpine en Algérie, d'après l'étude de bassin de Hodna et des régions voisines. Thèse .Nice.

Habib.P (1987): Génie géotechnique; application de la mécanique des sols et des roches, édition Marketing Ellipses, I.S.B.N2-7298-4729-4, ISSNO933-3948.

Kazi. Tani.N (1986): Evolution géodynamique de la bordure Nord-Africain; le domaine intra plaque Nord-Algerien. Thèse .Pan, 886 p.

Lahander.J.C (1979): Datation des grés numidien d'Algérie orientale conséquences structurales C.R.A cad.Sc.Paris, t 289, (D), n° 4, pp 383-386.

Lahander.J.C (1987): Les séries ultra-telliennes d'Algérie Nord-orientale et les formations environnantes dans leur cadre structural. Thèse. Toulouse, pp 8-19, pp 94-97.

Laffite.R (1939): Etude géologique de l'Aurèse.Publ.Serv. Carte Géol. Algérie .Bull, n°=

Mouroux.P, Margron.P et Pinte.J.C (1988): La construction économique sur sols gonflonts: Manuels et méthodes; n°=14. (Edition: BRGM).

Philliponnat.G (1979): Fondations et ouvrages en terre. (Editions: Eyrolles).

Remmache.I (2006): Potentiel en substances utiles non métalliques (gypse et sel.gemme) du bassin de Mila (Algérie Nord-orientale). Thèse. Univ. Mentouri-Const.

Roult.J.F (1969): Nouvelle données sur les flysch du Nord et Kef Sidi Dris et dans la zone de col des oliviers. (Nord du Constantinois, Algérie).

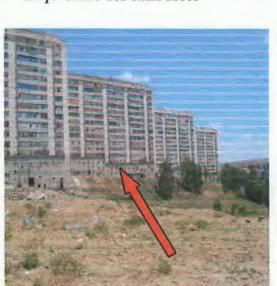
Roult.J.F (1974): Géologie de centre de la chaîne numidique (Nord de Constantine Algérie). Thèse. Paris, pp. 1-163.

Van de Filiert.J.R (1955): Etude géologie de la région d' Oued-Athmania. Publ. Algérie, nouv. série, n°=3; 264p.

Vila.J.M (1980): La chaîne alpine d'Algérie oriontal et des confins d'Algéro-Tunisiens I.II.III. Thèse .ES.Sciences .Paris, pp.139-174.

Wildy.W (1983): Chaîne tello-rifaine (Algérie-Maroc-Tunisie) structure stratigraphie et évolution du Trias au Miocène.

Rapport de ministère de l'habitat et de la construction ; wilaya de Constantine (direction de l'urbanisme et de la construction).

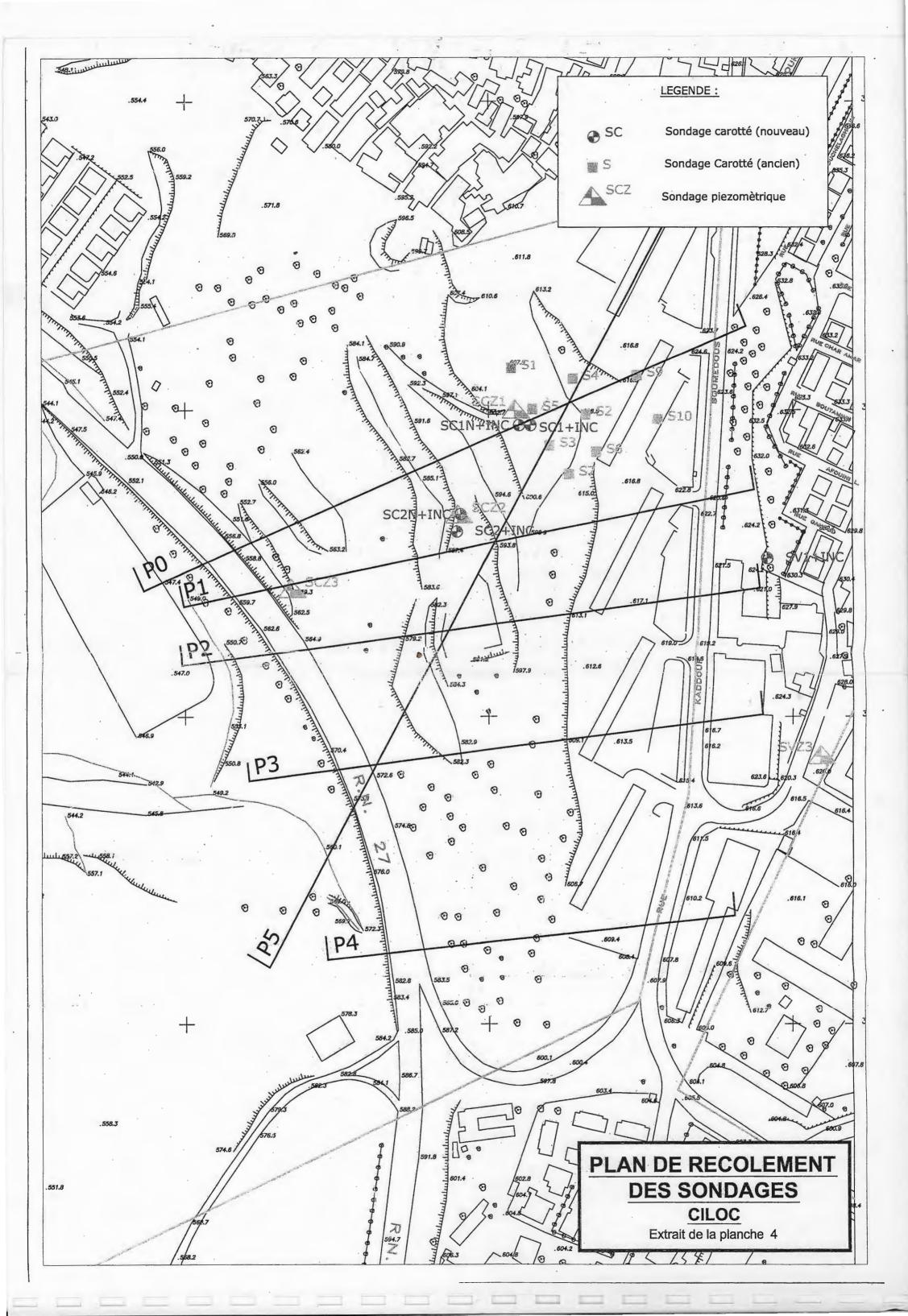

Site Web

http://www.assemblee-nationale.fr/documents

5,451 p, Alger.

La présence des eaux usées

Le poids des immeubles de Ciloc


La présence de poids de déblai

L'absence des arbres dans la zone de glissement

Le sens du versant

Annexe B

Coupe des sondages carottés

	26/10/02	au 4/11/02 X: 850027	.61	Y: 34	4599	0.15	5 Z	: 605	5.50	SOND	AGE CAF	TOS	TE N° S	3C1
PROFONDEURS (m)	COUPE DES TERRAINS	DESCRIPTIONS DES TERRAINS	ETAGE	MODE	ORA	TUBAGE	FLUIDE	NIVEAU D'EAU	PIEZOMETRE	ECHANTILLON 22 Remanië 11 Intact	ESSAI D'EAU	AVANCEMENT	% DE CAROTTA % DE RQD	
0.50	5 5	Terre végétale argileuse, brune.										\vdash		
2.30		Argile brune, très peu graveleuse.				Ø 143mm				1.8 2.3		1/02		
4.00 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Argile, limon, beige à rares petits graviers.	QUATERNAIRE							3.6 4		26/10/02		
- 6.70		Argile brune, compacte.			CC T6 Ø 116mm					5.3 5.7				
	*.00.50.50.50.50.50.50.50.50.50.50.50.50.	Graviers fins anguleux + galets assez bien roulés ou plutôt sable grossier Ø=2mm), calcaire + gréseux, passée argileuse vers 9m.										27/10/02		
		Argile grise, limoneuse marmorisée devenant graveleuse et sableuse.	PLIO-QUATERNAICE		T6 Ø 116mm									
16.20	0 0	Argile limoneuse, brune, marmorisée.			CDT					15.7 16.2				
		Argile brune un peu graveleuse, à lentilles centimétriques de graviers (micro-poudingue).								17.8 18.4 19.8		28/10/02		

Date:	26/10/02	2 au 4/11/02 X: 85002	7.61	Y: 34	4599	0.1	5 Z	Z: 60	5.50	SOND	AGE CAF	ROT.	TE N°	SC1
(w) S)	φ.,			F	ORA	TIOI	1	2	щ	N .		T.	% DE	GE Z
PROFONDEURS (m)	COUPE DES TERRAÎNS	DESCRIPTIONS DES TERRAINS	ETAGE	MODE	OUTIL	TUBAGE	FLUIDE	NIVEAU D'EAU	PIEZOMETRE	ECHANTILLON cz Remaniè	ESSAI D'EAU	AVANCEMENT	% DE RQD	10 60 80
22.00 .		Argile brune un peu graveleuse, à lentilles centimétriques de graviers (micro-poudingue).								20.5 21.5 22		28/10/02		
24.00		Galets calcaires et gréseux et argile.								2		28/1		
27.20		Argile brune, traces d'oxydation, un peu sableuse et passée décimétrique grossiere vers 27.2m.												
29.00 .		Argile brune, compacte avec plan de cisaillement oblique avec stries.										29/10/02		
35.00		Galets et blocs calcaires dans matrice argileuse.	PLIO-QUATERNAICE		CC T6 Ø 116mm							2		
37.80		Argile brune, un peu sableuse.		a Apr								30/10/02		
		Passées de galets, blocs et d'argile brune graveleuse en alternance.												

Date:	26/10/02	au 4/11/02 X: 85002	27.61	Y: 34	1599	0.15	5 Z	: 60	5.50	SONDA	GE CAF	ROTTE N° SC1
S (m)	(0			F	ORA	TION	1	٦	ш	No		% DE CAROTTAGE
PROFONDEURS (m)	COUPE DES TERRAINS	DESCRIPTIONS DES TERRAINS	ETAGE	MODE	OUTIL	TUBAGE	FLUIDE	NIVEAU D'EAU	PIEZOMETRE	ECHANTILLON ≥ Remanlè ■ Infact	ESSAI D'EAU	CAROTTAGE 2221
- - 12.50		Passées de galets, blocs et d'argile brune graveleuse en altemance.	PLIO-QUATERNAICE									30/10/02
- - 15.00 -		Passée de poudingue, (éléments assez émoussés) dans matrice argileuse. Argile graveleuse, brune.	PLIO-QUA									31/10/02
- 47.50		Argile limoneuse, compacte.										
- - 51.60		Alternance de galets et argile graveleuse.			CC T6 Ø 116mm							2/11/02
58.00		Argile rougeâtre, peu graveleuse avec passées décimétriques franchement bréchiques vers 59.5m et 60m.	MIOCENE POST NAPPES									3/11/02
		Argile graveleuse, rougeâtre.										

СНА	NTIER:	CONSTANTINE (ALGERIE) Gliss SITE DU CILOC	semen	its c	le t	erra	ain							
Date:	26/10/02	au 4/11/02 X: 85002	27.61	Y: 34	4599	90.1	5 2	Z: 605	5.50	SOND	AGE CAR	ROT	TE N° S	SC1
PROFONDEURS (m)	COUPE DES TERRAINS	DESCRIPTIONS DES TERRAINS	ETAGE	MODE	ORA	TUBAGE	FLUIDE	NIVEAU D'EAU	PIEZOMETRE	ECHANTILLON 2Z Remaniè Intact	ESSAI D'EAU	AVANCEMENT	% DE CAROTTAC % DE RQD	
- 64.00		Argile graveleuse, rougeâtre.	φ									3/11/02		
		Brèche (micro) éléments aplatis.	MIOCENE POST NAPPES		CC T6 Ø 116mm									
		Argile rougeâtre, graveleuse avec passées fréquentes bréchiques.									•	4/11/02		
71.00 -														
Comn	nentaire:													

	29/10/02	au 24/11/02 X: 84997	9.52	Y: 34	592	0.97	, z	: 588.	.29	SOND	AGE CAF	ROT	TE N° S	SC2
RS (m)	Sis			F	ORA	OIT	1	:AU	RE	TON		E	% DE CAROTTA	ge 💹
PROFONDEURS (m)	COUPE DES TERRAINS	DESCRIPTIONS DES TERRAINS	ETAGE	MODE	OUTIL	TUBAGE	FLUIDE	NIVEAU D'EAU	PIEZOMETRE	ECHANTILLON	ESSAI D'EAU	AVANCEMENT	% DE RQD	o eo 80
0.50	5 5	Terre végétale argileuse.										1		
-		Altemance: galets arrondis, hétérogènes + argile graveleuse.			CC K2 Ø 116mm	Ø 128mm				2.4 2.7		30/10/02 29/10/02		
8.00 -		Argile brune, limon, marmorisée.	PLIO-QUATERNAIRE						•	8.4 8.7		31/10/02		
10.40		Passée de galet puis argile brune, un peu sableuse vers 11m.	PLIC-QU		CC K2 Ø 101mm					10.4		2/11/02 1/11/02		
17,00 .		Argile rougeâtre, sableuse, compacte, (gréseuse) à passées microbréchiques.								16.5 17		3/11/02		
19.10		Argile gris-beige, assez homogène.								19.1				

Date: 2	29/10/02	au 24/11/02 X: 849979	.52	Y: 34	592	0.97	' Z	: 588	.29	SOND	AGE CAF	OT	TE N° SC2
PROFONDEURS (m)	COUPE DES TERRAINS	DESCRIPTIONS DES TERRAINS	ETAGE	MODE	ORA		FLUIDE	NIVEAU D'EAU	PIEZOMETRE	ECHANTILLON Remanlè Intact	ESSAI D'EAU	AVANCEMENT	% DE CAROTTAGE //
PROF	100 E		ГП	₩ Q	OUTIL	TUBAGE	FLU	NIVE	PIEZ	ECI EZ Rer Inte		AVAN	20 40 60 80
_		Argile gris-beige, assez homogène.										4/11/02	
23.00 -	5 _0		Щ									5/11/02	
-			PLIO-QUATERNAIRE									9/11/02	
-		Sable grossier à éléments argileux, friable devenant argilo-graveleuse entre 24 et 25m puis conglomérats et sable graveleux.			101mm .							10/11/02	
- 30.50 - -	a l	Argile rougeâtre, sableuse (rugueux au toucher).			CC K2 Ø 101mm					■ 32.9		11/11/02	
35.00 -		,	MIOCENE POST NAPPES							33.4		12/11/02	
		Galets, graviers et sable moyen.	MIOCENE P									13/11/02	
38.50		Argile rouge-brique, limon, avec plusieurs plans de cisaillement (p itch faiblement induré vers 40m).	and and an expectability. If the in-										

Date:	29/10/02	au 24/11/02 X: 84997	79.52	Y: 34	1592	0.97	Z	: 588	.29	SOND	AGE CAF	ROT	TE N°	SC2
SS (m)	82.0			F	ORA	TION	1	AU	삤	NO		-	% DE CAROTT	AGE
PROFONDEURS (m)	COUPE DES TERRAINS	DESCRIPTIONS DES TERRAINS	ETAGE	MODE	OUTIL	TUBAGE	FLUIDE	NIVEAU D'EAU	PIEZOMETRE	ECHANTILLON zz Remanlè ■ Intact	ESSAI D'EAU	AVANCEMENT	% DE RQD	40 60 80
		Argile rouge-brique, limon, avec plusieurs plans de cisaillement (p itch faiblement induré vers 40m).			CC K2 Ø 101mm					44 44 44.4 45 45.5		17/11/02 16/11/02		
		Argile graveleuse (passée) et sable moyen avec graviers centimétriques.	MIOCENE POST NAPPES									19.11/02 18/11/02		
54.50		Argile rouge-brique à rares graviers.			CC T6 Ø 101mm					53.8 54.2		20/11/02		
56.50	A A A	Brèche classique à éléments aplatis.										.2		
		Galets et graviers bien roulés dans une mâtrice d'argile remaniée (carottes remaniées).										24/11/02 23/11/02		

ate:	29/10/02	au 24/11/02 X: 8499	79.52	Y: 34	1592	0.97	Z	: 588.29	30110	AGE CAF	(UI	LEN	302
S (m)	S			F	ORA	TION	ON S M		NO.			% DE	AGE Z
PROFONDEURS (m)	COUPE DES TERRAINS	DESCRIPTIONS DES TERRAINS	ETAGE	MODE	OUTIL	TUBAGE	FLUIDE	NIVEAU D'EAU PIEZOMETRE	ECHANTILLON	ESSAI D'EAU	AVANCEMENT	% DE RQD	40 60 80
1.00	0 0	Argile rougeâtre assez proche de la brêche.							Land to the control of the control o		24/11/02		

5	COUPE DU: SC 1 Projet: Glissement Ci	loc Constantine			·04/87	
Rec	Lieu: Ciloc Batiment	6 X= 0 Y= 0 Z		g. Tub	Description	· ·
- D				1,	— Argila brune plostique, pau adbieuse peu de galeta millimetriques	
100				2.	— Argila brunatre pau plastique рни sablause peu mameuse, рни carbonatee	-
11.5			·	6_	Sable argileux brun et galete Calets et cailloux centimetriques avec une matrice sableuse peu argileuse Calloux de gres centimetriques Sablee argileux brun peu compacte et galets	
95					Calsta et cailloux centimetriques avec une matrice sableuse peu argileuse Argile brunatre campacts aableuse peu marneuse	.4.
17.60	0.000	1				
40	7			9	Galets et cailloux a matrice sablo argilouse	
20	3.6.6.9					
80				10	aaplo-mamause.	
245						

Γ					Ech:1/ 1				25/04/87
	5	Projet: Lieu: C	Glisse Noc 8	entent Ci atiment	loc Cons B K=	tantine 0 Y= 0	Z= 0 ln=	∙dg.	
	Rec	Litho						Tub	Description
	- D 65 1.8	1-64-00 1-44-0							1 Remblais constitue d'argile sableuse plustique
	70								2Sable Fin
	7.5	**************************************	-						3 Galete calaire 4 Sable et gravier
	65 <u>.</u>	\$ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	•					•	5
	1&5	0 1 / W 1 / W							6Sable et gravier et peu
	50	5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5							6. Sable et gravier et peu d'argile
	19.K	0	. .						
1 2 3 4 5	100	\$3222.22.23 \$3222.22.33 \$3222.23 \$3222.23 \$322							7_Argile mameuse peu sableuse tres compacte
4 5	25								

.

Name of the last o	COUPE DU: SC3 Ech:1/ 189e	25/04/87	
	Projet: Glissement Ciloc Constantine Lieu: Ciloc Batiment (1) = () Y= ()		
Rec	Jeitho Ech	Tub Description	
100 11	\$\$.4\$\$.4\$\$\$.4\$\$\$.4\$\$.4\$\$.6\$\$.5\$\$\$\$\$\$\$\$\$\$	1 Argile brunatre plastique peu sableuse avec peu de galets et clebris de coquilles	
		2 Argite rougeatre plastique peu sablo- marneuse	
11	75.75.75 75.75.75 75.75.75	Agile tres sobleuse ovec bequisoup de galets Agolis n'oyen et galets	
60	0 6 6 9	5 cailloux et galets a matrice aableues peu argileues	
15.5	7.7.7. A 7.7.7. A 7.7.7. A 7.7.7. A 7.7.7. A 7.7.7. A 7.7.7. A	5aable jauna fin et moyen 7gres compact jaune Argileux peu rnarneux et peu da galeta	
100	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	8.—Argile tres mameuse ou marne argileuse compacte brunatre jaunatre sableuse	

.

	COUPE: DI Projet: Glis Lieu: Ciloc	J: SC4 E	oc Consta	intine	7_ 0 1		25/04/87
Rec	Litto Ect	7		7 12 0 2	Z= U In=	Tub	Description
- D							1Terre vegetale
97							Remblais constitue d'Argile jounatre sableuse avec presence de galets cailloux et cramique
	\$ 1 \$ 2 \$ 2 \$ 2 \$ 2 \$ 2 \$ 2 \$ 2 \$ 2 \$ 2						Agile brunatre peu verdatre marnause compacte
7.5							Argile jaunatre tres sableuse et galets Sable jaune moyen et caïlloux
	****** ****** ******						6 Cailloux ronds avec matrice subleuse peu argileuse 7 Argile brunatre peu verdatre compacte marneuse
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$						B Argile brunatre sableuse uvec des galets
100	\$						9 Argila compocte brunatra trea marneuse
30							

Project Glissement Click Constantine Lieu: Click Batiment B X=0 Y=0 Z=0 In=dg. Rec Letho Ech Tub Description 1 Tub Description 1 Terre vegetale brundtre compacta peu acable argileuse 2 Argile brundtre compacta peu acable argileuse 3 Sable moyen ovec de rare 4 Calibrar randa ovec matrice acable argileuse 5 Argile jounatre tres echiquee 5 Argile jounatre tres echiquee 5 Sable moyen et gros ovec des colitoux ronds et galets 7 Calibrar ronds avec une matrice sobleuse peu argileuse 8 Argile tres manneuse compacte 90 Sable fin et moyen jouns 70 Pub Project Glissement Click Constantine 7 Calibrar ronds avec une matrice sobleuse peu argileuse 8 Argile tres manneuse compacte 90 Sable fin et moyen jouns 10 Marme argilo sableuse 10 Sableuse ronds avec une matrice sobleuse peu argileuse					ch:1/ 17		7 0 1		25/04/87
To argillause 2 Argile brundtre compacta peu enfoliare 3 Sable moyen avec de rare 4 Cauloux ronds avec matrice eablo argillause 5 Argile jaunatre tres sableuse 5 Argile jaunatre tres sableuse 6 Sable moyen et gros avec deu califoux ronds et galets 7 Cailloux ronds avec une matrice sableuse peu argileuse 8 Argile tres marmeuse compacte peu argileuse 90 Peus sableuse 90 Sable fin et moyen jouns 70 Marne argilo sableuse	Rec			annent (U 1= U	Z= U In=		Description
3. Sable moyen avec de rare galets 4. Calibux ronds avec matrice abible argileuse 5. Argile jounatre tres sableuse 6. Sable moyen et gras avec des calibux ronds et galets 7. Calibux ronds avec une metrice sableuse peu argileuse 8. Argile tres mameuse compacte pgu sableuse 90. Sable fin et moyen jouns 10. Mame argile sableuse aumpacte jauna vardatre	- D	**************************************						Tub	1. Terre vegetale brunatre argileuse
5. Argile jaunatre tres sableuse 5. Sable moyen et gros avec des califoux ronds et galets 7. Califoux ronds avec une matrice sableuse peu argileuse 8. Argile jaunatre tres sableuse 8. Sable moyen et gros avec des califoux ronds avec une matrice sableuse peu argileuse 8. Argile jaunatre tres sableuse 7. Califoux ronds avec une matrice sableuse compacte peu argileuse 8. Argile jaunatre tres sableuse 7. Califoux ronds avec une matrice sableuse compacte 90. Sable fin et moyen jauna 70. Argile jaunatre tres sableuse 10. Argile jaunatre tres sableuse	90	* * * * * * * * * * * * * * * * * * *							•
7. Cailloux ronds avec une matrice sableuse peu argileuse 8. Argile tres mameuse compacte peu sableuse 90. Saliki fin et moyen jauna 70. Marma argila sableuse compacte jauna vardatra	70	*****							4 Cailloux ronds avec matrice sublo argileuse 5 Argile jaunatre tres sableuse
90 20 20 20 20 20 20 20 20 20	58	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							6 Sable moyen et gros avec des cailloux ronds et galets
90 8. Argile tres mameuse compacte peu sableuse 9. Salite fin et moyen jauna 10. Marne argilo sableuse compacte jauna verdatra	135								7. Cailloux ronds avec une matrice sableuse peu argileuse
9Salate fin et moyen jauna 10Marne argito sableuse compacte jaune verdatre	90								8. Argille tres mameuse compacte peu sableuse
70 1[Marne argilo sableuse compacte jauna vardatra	2D	× × ×	,		,				9Salale fin et moyen jaune
28.5	70								
100	26.5								10 Marne argilo sableuse compacte jaune verdatre
	100								•••

	Nega .	COUPE	יטנו :	SC8 Ed	r:1/ 15	ປີປີປ			25/04/87		
	6	Projets	Olisae	ment Cik	c Coasto	natine			•		
		Lieu: C	iloc B	latiment E	X== (3 Y= 0 7	(= 0 In=	da.		1.	
	Rec	litte	Cab								
	IVEC	Litho	ECII :					Tub	Description		
- <u> </u>											
= "									1 — Remblais constitue d'argile aobleues plastique		
<u>-</u> -1			,						zaplenes blastidns		
=		4 x 0 x 1 2	. `				Ì	- [
<u>-</u> 2		~ * ~ * ~ ~				1	Ì	İ		1 1.	
=		V: X: X	İ					1			
<u>-</u> 3		V-7-7-		1			İ				
		7 - N		}							
= 4		マニベニ ベ						- 1	2 Argile mamo sableuse tres compacte avec des blocs de calcaire		
Ē_5		₩ <u>₹</u> ₩₹ ₩		'					calcaire		
		74.74 X		}	j						
Ē-6				1							
=		2202 O			1			- 1		1 1	
7		7 = 7 ×			ì			- 1			
=		W A 4		1	1	}		- 1			
- <u>-</u> 8		WENE 13						1		1.	
Ĭ .		WEWE !!			j			1			
<u>-</u> 9		×= ×= ×				İ					
1.0		WINI W	1		İ						
= 10											
Ē-11		W=10= 10			1		1				
Ē	1 1	~ 1 ~ 1			i			- 1		1 1 .)
<u>=</u> -12		~ 4 N 4 11						i			
=		~=~= ~			-				•	1 1	
-13	1	~ <u>=</u> ~ ~	1	,					3 Complexe de galet cologine et		
	1	~: ~:		-	1			- 1	3 Complexe de galet calcaire et gravier	1 1	
<u>-</u> 14		2:2:2			1				4Argile sobleuse		
=_15		\$1.00 EX	.		1			- 1		1 1	
= 13		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						- 1	5 Argile sublo graveleuse tres compacte		
=-16					- 1			i			
= ''		W-W-W						-	6		
		VI ~ I ~	. 1			1			matrice argilo marneuse	1	
Ē		~: ~: ~					ļ				
<u>-18</u>		22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2			,		}		B Argile sableuse tres compacte		
=		~ ~ ~			1						
<u>=</u> -19		~ ~ ~									
րոստիլուտականականականականականականականականականակա		~ ~ ~									
		~.~.		1	1	1					
<u></u>		~_~~									
=		~ <u>`</u> ~:_~				l		1	9 Argile mamo sableuse tres		
_ _ _ _ _ _ _ _ _ _		~: ~: ~							compacte		
=	1 1	~= ~= ~		ļ		l					
<u>-</u> = −23		~ <u>;</u> ~: <u>;</u> ~									
=		~- ~ · · · · · ·		1							
<u>-</u>		~ ~ ~									
171	1 1	~ <u>`</u> ~: <u>·</u> ~			-						
25	1 {	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1	l	1		1		1 1	

[1		COUPE	E DU:	SC10	Ech:1/	179e			25/04/87
Ĺ	(b)							Z= 0 ln=	≈da	,,,
	Rec	.sr	Litho	Ech			7		Tub	Description
0 1 2	- D			-						1 — Remblais constitue d'argile juunatre tree sableuse et galets
0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -16 -17 -18 -20 -21 -22 -23 -26 -27 -28 -29 -30	100			,						2 Argile brunatre plastique marneuse sableuse remblais 3 Argile mameuse ou marne argiteuse brune verdatre subleuse compacte
-1 <i>7</i> -18	18									
-19 -20	70		* 1 + p.	,						4Sable Jaunatre mayen et galete
-21	21		* * * * * * * * * * * * * * * * * * *	-						
-22 -23										5
-24			~_	-						
-25 -26	100									Angile brunatre verdatre tres marneuse peu sableuse
-27			~							
-28			<u>~</u> ;							
-29 30	30		~_			ŀ				
anu I		· - 1	<u>~_ ~</u>	_	ı	1	1	1	1 1	

:

	RENCES DES DE JANTILLON	NATURE DU MATERIAU	TENEUR EN EAU	MASSE VOLUMIQUE DU SOL SEC	DEGRE DE SATURATION	GR. SED	ANULO!				LIMITE	_	LIMITE DE RETRAIT	PRESSION DE CONSOLIDATION	INDICE DE COMPRESSIBILITE	INDICE DE GONFLEMENT		LEMENT ILIGNE		SAILL TRIA	EME!	п		NALYS HIMIQI	
SC N°	PROF.		W %	γd g/cm3	Sr %	Dmax (mm)	2 (mm)	100 µm	2 µm	WL %	WP %	IP %	LR %	Pc kg/cm2	Cc %	Cg %	c bar	φ (°)	C bar	φ (°)	C' bar	φ' (°)	CaCO3 %	Ins. %	SO4 %
SC1	1.80 - 2.30	Argile marneuse grise gypseuse peu graveleuse présence de débris de coquilles	14.8					-		-															
SC1	3.60 - 4.00	Argileuse sableuse brune Gypseuse peu graveleuse présence de débris de coquilles, cohérente	22.1	1.70	98.8	5	94	87	49	55.8	29.4	26.4											48.8		
SC1	5.30 5.70	Marne limoneuse rousse peu gypseuse marmorisée	11.9	2.00	99.6	1	100	93	37	45.9	21.6	24.3					0.6	38							
SC1	15.70 - 16.20	Marne brune limoneuse, sableuse et gypseuse	12.2	2.00	99.6	5	95	69	28	39.8	19.7	20.0					1.7	48					44.0		
SC1	17.80 - 18.40	Limon brun marneux et marmorisé	10.1																						
SC1	19.80 - 20.50	Sable brun marneux marmorisé	10.6	2.10	97.8	2	99	81	29	36.4	19.5	16.9											36.0		
SC1	21.50 - 22.00	Marne brune peu sableuse peu limoneuse et marmorisé. Limon brun marneux peu sableux marmorisé	12.1																						
SC2	2.40 - 2.70																		-						
SC2	8.40 - 8.70		12.1	2.00	98.3	1	100	85	37	51.0	26.5	24.6					1.7	18					36.6		
SC2	10.00 - 10.40		12.4	2.00	99.9	0.062	100	100	44														32.5		
SC2	19.10 - 19.80	Limon brun argileux gypseuse consolidé marmorisé	9.2	2.10	98.6	2	99	60	26														35.4		
SC2	33.40	Sable limoneux marneux consolidé marmorisé	9.6	2.10	99.2	2	97	37	18														32.3		
SC2	41.40 - 42.00	Marne brune peu limoneuse consolidée marmorisée	10.2	2.10	99.8	2	99	69	30	41.3	21.1	20.1											30.7		
SC2		Marne peu limoneuse peu gypseuse marmorisée	11.8	2.00	99.3	5	94	42	18								2.4	27					34.6		

	ENCES DES DE ANTILLON	NATURE DU MATERIAU	TENEUR EN EAU	MASSE VOLUMIQUE DU SOL SEC	DEGRE DE SATURATION		ANULO!			1	LIMITE	_	LIMITE DE RETRAIT	PRESSION DE CONSOLIDATION	INDICE DE COMPRESSIBILITE	INDICE DE GONFLEMENT		LEMENT ILIGNE		SAILL TRIA		п		NALYSI	
SC N°	PROF. (m)		W %	γd g/cm3	Sr %	Dmax (mm)	2 (mm)	100 µm	2 µm	WL %	WP %	IP %	LR %	Pc kg/cm2	Cc %	Cg %	c bar	φ (°)	C bar	φ (°)	C' bar	φ' (°)	CaCO3 %	Ins. %	SO4 %
SC1_N	1.00 - 1.30	Argile marneuse calcareuse	21.5						-								·								
SC1_N	3.30 - 3.70	Argile marneuse calcareuse	18.75	1.77	99.92	0.4	100	94	45	50.11	24.44	25.66					0.3	21							
SC1_N	5.50 - 5.80	Marne calcareuse	15.73	1.82	91.09	0.4	100	96	42	52.4	23.2	29.2							0.39	22					
SC1_N	12.60 - 13.00	Marne limoneuse calcareuse	9.32	2.13	99.81	0.4	100	93	39	41.41	22.7	18.7													
SC1_N	15.00 - 15.40	Marne limoneuse calcareuse	11.9				***																		900133361 361 661 661 661 180 180
SC1_N	21.00 - 21.30	Argile limoneuse calcareuse	11.2	ANA				4																	
SC1_N	24.00 - 24.40	Marne limoneuse	13.23	1.96	99.94	1	100	97	43	43.3	21.64	21.66													
SC1_N	28.50 - 28.90	Argile limoneuse calcareuse	12.3																						
SC1_N	32.50 - 32.80	Argile limoneuse calcareuse	14.1														***								
SC1_N	36.00 - 36.40	Argile limoneuse calcareuse	13.1																						
SC1_N	38.90 - 39.10	Argile limoneuse	12.4																						
SC1_N	43.50 - 43.80	Argile	11.3																						
SC1_N	48.60 - 49.00	Argile limoneuse	10.9			***	***																		

	RENCES DES DE HANTILLON	NATURE DU MATERIAU	TENEUR EN EAU	MASSE VOLUMIQUE DU SOL SEC	DEGRE DE SATURATION	GR/ SEDI	ANULO! IMETRO				LIMITE		LIMITE DE RETRAIT	PRESSION DE CONSOLIDATION	INDICE DE COMPRESSIBILITE	INDICE DE GONFLEMENT		LEMENT ILIGNE		SAILL	EMEN XIAL	(T		ANALYS HIMIQI	
SC N°	PROF.		W %	yd g/cm3	Sr %	Dmax (mm)	2 (mm)	100 µm	2 µm	WL %	WP %	IP %	LR %	Pc kg/cm2	Cc %	Cg %	c bar	φ (°)	C	φ (°)	C' bar	φ' (°)	CaCO3	Ins.	SO4 %
S1	1.50 -	argile brunâtre peu plastique, peu sableuse, peu marneuse, peu carbonatée	10.0	1.69						39.5	19.6	19.9											30.7	53.2	
S1	4.50 - 5.00	argile brunâtre peu plastique, peu sableuse, peu marneuse, peu carbonatée					***			43.5	21.7	21.8					мми								
S1	7.60 - 7.90	argile brunâtre peu plastique, peu sableuse, peu marneuse, peu carbonatée	15.2	1.88						44.2	22.2	22.0	-				0.3	1					26.8	57.3	traces
S1	12.30 - 12.80	argile brunâtre compacte sableuse peu marneuse	12.6	2.00						39.0	20.1	18.9													
S1		argile brunâtre compacte sableuse peu marneuse	12.6	2.02						37.4	17.8	19.6					1.1	15					28.3	57.7	traces
S1		argile brunâtre compacte sablo- marneuse	11.5	2.10						40.3	20.2	20.1													
S2	13.9 - 14.20	argile marno-sableux compacte	13.0	1.84						50.0	23.9	26.1			-		0.5	17					28.4	56.5	traces
S2	23.20 - 23.80		6.4	1.76				-		37.0	18.4	18.6					0.0	15					31.3	56.5	traces
S3	1.30 - 1.80		21.7	1.63						53.8	27.6	26.2										-			
S3	4.00 - 4.55		28.0	1.48						50.2	24.6	25.6					0.1	. 7					36.2	48.3	traces
S3	6.30 - 7.00		27.0	1.52						58.5	29.1	29.4					0.0	15							
S3	8.20 -	argile rougeâtre plastique, peu sablo-marneuse	25.4	1.58						38.6	18.5	20.1					0.9	1							
S3	10.30 -	argile rougeâtre plastique, peu sablo-marneuse	27.3	1.54						58.4	27.6	30.8											30.8	50.3	traces
53	18.50 - 18.90		20.0	1.16						44.2	21.6	22.6					0.0	18							
	22.50 - 23.10		18.1	2.01]				40.0	20.4	19.6	_										28.3	62.6	traces

	RENCES DES DE HANTILLON	NATURE DU MATERIAU	TENEUR EN EAU	MASSE VOLUMIQUE DU SOL SEC	DEGRE DE SATURATION		ANULON IMETRO				LIMITE: ATTERBI		LIMITE DE RETRAIT	PRESSION DE CONSOLIDATION	INDICE DE COMPRESSIBILITE	INDICE DE GONFLEMENT		LEMENT LLIGNE		GAILLI TRIA)	EMEN (IAL	П		NALYS HIMIQI	
SC N°	PROF. (m)		W %	γd g/cm3	Sr %	Dmax (mm)	nm) (mm) µm µm 9			WL %	WP %	IP %	LR %	Pc kg/cm2	Cc %	Cg %	c bar	φ (°)	C	φ (°)	C' bar	φ' (°)	CaCO3 %	Ins. %	SO4 %
S3	27.50 - 28.00	,	19.7	1.78							19.0	22.6					0.6	15							
S4	1.5 -	argile jaunâtre sableuse galets et cailloux, céramique	18.4	1.80						56.2	28.1	28.1		Ada		-									
S4	5.65 - 6.50	argile brunâtre peu verdâtre, compacte, marneuse	18.3	1.83							16.3	29.7											23.6	62.8	traces
S 4	7.10 - 7.50	argile brunâtre peu verdâtre, compacte, marneuse	13.4	1.85						48.1	24.3	23.8					0.1	25							
S 4	12.00 - · 12.80	argile brunâtre peu verdâtre, compacte, marneuse	11.8	2.01						46.0	23.2	22.8					1.7	25				-	29.1	58.6	traces
54	15.50 - 16.20	argile très marneuse brunâtre compacte	12.5	2.04						44.3	24.6	19.7													
S4	19.50 - 20.50	argile très marneuse brunâtre compacte	11.4	2.05						40.4	20.3	20.1					0.0	12					29.1	61.5	1.20
S4	23.10 - 23.40	argile très marneuse brunâtre compacte	16.6	1.83						40.5	19.4	21.1					0.0	23							
S4		argile très mameuse brunâtre compacte	12.0	2.00		****				39.0	16.5	22.5				-		1					22.0	59.8	6.40
S5	2.00 - 2.50	argile brunâtre compacte peu sableuse	29.7	1.62	96.0					38.0 •	18.6	19.4													
S5	16.10 - 16.70	argile très marneuse compacte, peu sableuse	11.9	2.03	98.0												0.0	15 `					29.4	60.0	traces
S5	19.30 - 19.70	argile très marneuse compacte, peu sableuse	15.9	1.87	92.6]	-	45.5	22.2	23.3											27.9	57.6	traces
S6																									
S7								-								T									

	RENCES DES DE HANTILLON	NATURE DU MATERIAU	TENEUR EN EAU	MASSE VOLUMIQUE DU SOL SEC	DEGRE DE SATURATION		ANULON IMETRO			9	LIMITE:	_	LIMITE DE RETRAIT	PRESSION DE CONSOLIDATION	INDICE DE COMPRESSIBILITE	INDICE DE GONFLEMENT		LEMENT ILIGNE	1	SAILL TRIA		VT		NALYS HIMIQI	_
SC	PROF.		w	γd	Sr	Dmax	2	100	2	WL.	WP	IP	LR	Pc	Cc	Cg	С	φ	С	φ	C'	φ	CaCO3	Ins.	504
No	(m)		%	g/cm3	%	(mm)	(mm)	μm	μm	%	%	%	%	kg/cm2	%	%	bar	(°)	bar	(°)	bar	(°)	%	%	%
S8	4.00 - 4.60	Argile marno-sableuse très compacte avec des blocs de calcaire	15.0	1.82	23.2			-		48.0	23.2	24.8											31.3	58.3	traces
S8	8.00 - 8.80	Argile marno-sableuse très compacte avec des blocs de calcaire	18.1	1.72	89.1					39.7	19.3	20.4					0.0	24		-			29.0	56.5	traces
S8	8.00 - 8.80																				0.0	32			
S8	12.20 - 12.70	Argile marno-sableuse très compacte avec des blocs de calcaire	9.9	2.04	83.0												1.1	33					29.8	56.3	traces
S8	18.00 - 18.60	Argile sableuse très compacte	7.9	2.10	74.5				-	49.3	23.7	25.6											22.1	55.3	9.70
S8	23.40 - 24.00	Argile marno-sableuse très compacte	12.5	1.98	92.6					44.0	21.4	22.6					0.9	25					38.9	61.5	3.70
										•															
S9		Argile brunâtre, peu sableuse, marneuse; compacte, débris de coquilles	18.4	1.74	90.2					53.2	26.5	26.7											38.9	45.6	traces
S9	6.60 - 7.00	Argile très marneuse brunâtre verdâtre, compacte	15.2	1.87	96.8					44.3	21.2	23.1					0.2	24					33.6	52.2	traces
S9	8.00 - 8.40	Argile très marneuse brunâtre verdâtre, compacte	9.7	2,21、	75.8					46.2	22.6	23.6											24.4	63.2	traces
S9	16.30 - 16.60	Argile compacte brunâtre verdâtre sableuse très marneuse	14.9	1.84	87.4																		27.5	58.6	traces
S9	23.20 - 23.70	Argile compacte brunâtre verdâtre sableuse très marneuse	16.3	1.86	97.6					44.0	22.4	21.6											24.4	63.1	traces

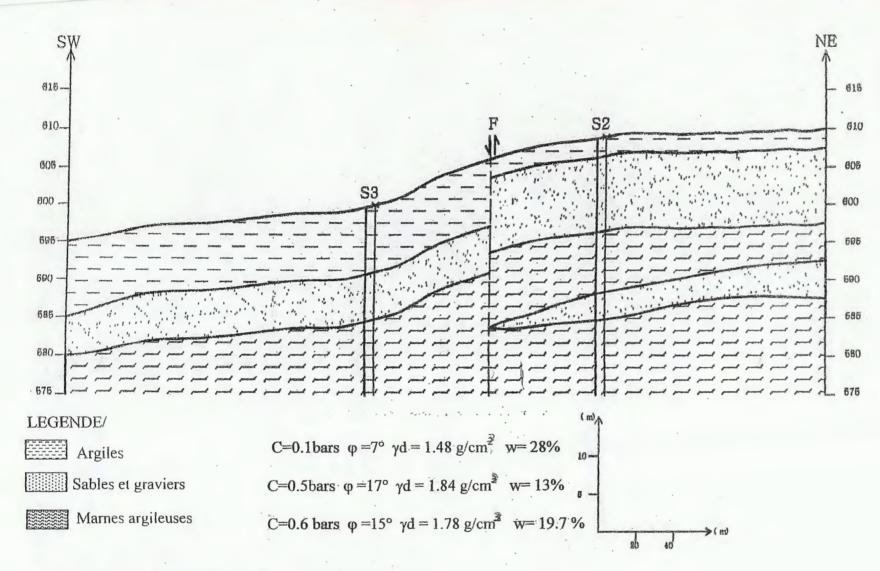
	RENCES DES DE HANTILLON	NATURE DU MATERIAU	TENEUR EN EAU	MASSE VOLUMIQUE DU SOL SEC	DEGRE DE SATURATION	1	GRANULOMETRIE SEDIMETROMETRIE Dmax 2 100 2 (mm) (mm) µm µm				LIMITE		LIMITE DE RETRAIT	PRESSION DE CONSOLIDATION	INDICE DE COMPRESSIBILITE	INDICE DE GONFLEMENT		LEMENT ILIGNE	1	SAILI TRIA	EMEN XIAL	٧T		NALYS	
SC N°	PROF. (m)		W %	γd g/cm3	Sr %					WL %	WP %	IP %	LR %	Pc kg/cm2	Cc %	Cg %	c bar	φ (°)	C bar	φ (°)	C' bar	φ' (°)	CaCO3 %	Ins. %	SO4 %
S10	5.30 - 5.80	Argile marneuse ou marne Argileuse brune verdâtre, sableuse, compacte	16.5	1.76	91.2					38.0	19.1	18.9					0.0	27					35.9	52.2	traces
S10	7.40 - 8.00	Argile marneuse ou marne Argileuse brune verdâtre, sableuse, compacte	16.9	1.76	86.1												0.0	27	-				28.2	57.0	traces
S10	7.40 - 8.00																		0.1	37					
S10		Argile marneuse ou marne Argileuse brune verdâtre, sableuse, compacte	14.5	1.92	94.8					42.5 .	22.0	20.5			-		8.0	6					29.0	57.6	traces
S10	24.40 - 25.70	Argile brunâtre, verdâtre, très marneuse peu sableuse	16.3	1.88	100.0					38.5	19.0	19.5					0.5	12					25.9	59.7	traces
SA	6.50 - 7.00		17.5	1.87	100.0					46.8	19.7	27.1							0.3	8	0.3	7	30.1	57.7	traces
SA	8.80 - 9.50		12.5	2.03	100.0					38.5	22.1	16.4		4.50	0.05	0.03			0.4	18	0.3	21	9.8	59.6	traces
SA	13.20 - 14.00		12.2	2.04	100.0					40.0	22.0	18.0							1.7	24	1.5	27			
SA	19.60 - 20.20		14.5	1.96	100.0					37.3	24.3	13.0		-3.70	0.05	0.02							22.8	62.4	2.54
SA	26.20 - 26.25		12.4	2.03	100.0					40.2	23.0	17.2		2.60	0.05	0.02							22.8	66.7	traces
SA	32.90 - 32.53		12.9	2.01	100.0		***			43.0	21.7	21.3							2.3	6	2.2	7			
SA	43.90 - 44.40		13.2	2.03	100.0					с	C	с												61.0	5.10
SA	45.70 - 46.20		16.6	1.89	100.0					39.8	22.1	17.7							0.4	8	0.3	8	22.0	61.3	5.50

	DE LANTILLON	NATURE DU MATERIAU	TENEUR EN EAU	MASSE VOLUMIQUE DU SOL SEC	DEGRE DE SATURATION		ANULON IMETRO				LIMITE		LIMITE DE RETRAIT	PRESSION DE CONSOLIDATION	INDICE DE COMPRESSIBILITE	INDICE DE GONFLEMENT	CISAILI RECTI			SAILL	EMEN XIAL	п		NALYS	
SC N°	PROF.		W %	γd g/cm3	Sr %	Dmax (mm)	2 (mm)	100 µm	2 µm	WL %	WP %	IP %	LR %	Pc kg/cm2	Cc %	Cg %	c bar	φ (°)	C bar	φ (°)	C' bar	φ¹ (°)	CaCO3 %	Ins.	SO4 %
SB	10.50 - 11.30		12.6	1.97	91.1					45.0	22.1	23.9		3.20	0,11	0.04									
SB	21.70 - 22.20		13.3	1.98	99.0					47.0	22.8	24.2													
SB	24.90 - 25.30		13.8	1.96	100.0					44.2	23.6	20.6								-					
SB	27.90 - 28.30		13.0	2.01	100.0					36.7	18.0	18.7													
SB	35.00 - 35.50		15.1	1.92	100.0					45.2	24.2	21.0													
SB	50.30 - 50.90		10.7	2.06	94.2					36.2	18.6	17.6					***								
SD	5.00 - 5.60		14.5	1.90	100.0					38.2	15.2	23.0		2.40	0.15	0.03			0.3	16	0.5	14	***		
SD	9.00 - 9.60		11.8	2.02	95.4					37.0	19.2	17.8		2.50	0.10	0.04							32.5	56.2	traces
SD	12.50 ~ 13.00		14.1	1.98	100.0					44.5	23.0	21.5		1.25	0.12	0.06			0.8	7	0.9	5	31.7	54.9	traces
SD	13.50 - 13.90		15.2	1.92	100.0					46.6	21.8	24.8											34.1	52.5	traces
SD	17.00 - 17.50		17.2	1.90	100.0					с	с	C											~~~		'
SE	3.00 - 3.30		14.4	1.88	89.1					47.5	21.4	26.1													
SE	5.50 - 6.10		15.6	1.88	96.8					45.5	21.8	23.7													
SE	8.00 - 8.30		15.3	1.92	100.0					43.0	21.5	21.5							0.2	20	0.3	18	24.4	62.3	traces
SE	11.90 - 12.50		12.8	2.02	100.0		-			38.6	20.8	17.8											26.0	61.3	traces
SE	17.40 - 17.85		16.0	1.90	100.0					46.0	21.5	24.5													

	ENCES DES DE ANTILLON	NATURE DU MATERIAU	TENEUR EN EAU	MASSE VOLUMIQUE DU SOL SEC	DEGRE DE SATURATION		ANULON METRO				LIMITES TTERBE		LIMITE DE RETRAIT	PRESSION DE CONSOLIDATION	TH S	INDICE DE GONFLEMENT	CISAILL RECTI			SAILL TRIA	EMEN XIAL	п		NALYS IIMIQL	
SC	PROF.		W	γd	Sr	Dmax	2	100	2	WL ·	WP	IP	LR	Pc	Cc	Cg	c	φ	С	φ	C'	φ'	CaCO3	Ins.	S04
No	(m)		%	g/cm3	%	(mm)	(mm)	μm	μm	%	%	%	%	kg/cm2	%	%	bar	(°)	bar	(°)	bar	(°)	%	%	%
SF	3.00 - 3.30		-											5.50	0.14	0.01									
SF	5.50 6.10													2.30	0.24	0.10									
SF	17.40 - 17.85													3.50	0.06	0.03									

Annexe D

Tableaux des mesures piézométriques



SONDAGE	COTE NGA	10/07/2003		12/07/2003		15/07/2003		07/08/2003		13/08/2003		05/11/2003		06/01/2004		20/05/2004	
		Prof	Cote	Prof	Cote	Prof	Cote	Prof	Cote	Prof	Cote	Prof	Cote	Prof	Cote	Prof	Cote
SCZ1	605.26	-		8.92	596.34	-		9.40	595.86	9.96	595.86	10.49	594.77	9.78	595.48	**	1
SCZ2	588.04			-		2.00	586.04	2.25	585.79	2.38	585.66	1.25	586.79	0.97	587.07		
SCZ3	559.10	5.25	553,85	-		-	entrois.	5.70	553.40	6.10	553.00	5.41	553.69	**		**	

^{**} Tube endommagés *** Tube bouché

Annexe E

La coupe géotechnique

 S_2 et S_3 : Sondage carottes

Coupe géotechnique NE-SW établie à partir des sondages carottes