Résumé:
Dans ce mémoire, nous avons, tout d'abord, commencé par énoncer et démontrer deux résultats élaborés par L. Thibault, qui traitent d'une équivalence entre les solutions d'un processus de la rafle non convexe et une inclusion différentielle dont le second membre est un sous-différentiel de la fonction distance.
Dans un deuxième temps, en usant de l'une de ces équivalences, nous avons traité l'existence des solutions d'une inclusion différentielle du second ordre gouvernée par un processus de la rafle, sous des hypothèses de non convexité dans un espace de Hilbert de dimension finie. Processus qui de plus est perturbé par la somme de deux multi-applications, l'une semi-continue supérieurement et l'autre semi-continue mixte.
Un résultat important a été obtenu et démontré dans ce sens.